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Differentiability of Lipschitz functions,

structure of null sets, and other problems
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Abstract. The research presented here developed from rather mysterious observations,
originally made by the authors independently and in different circumstances, that Lebesgue
null sets may have uniquely defined tangent directions that are still seen even if the set
is much enlarged (but still kept Lebesgue null). This phenomenon appeared, for example,
in the rank-one property of derivatives of BV functions and, perhaps in its most striking
form, in attempts to decide whether Rademacher’s theorem on differentiability of Lipschitz
functions may be strengthened or not.

We describe the non-differentiability sets of Lipschitz functions on R
n and use this

description to explain the development of the ideas and various approaches to the definition
of the tangent fields to null sets. We also indicate connections to other current results,
including results related to the study of structure of sets of small measure, and present
some of the main remaining open problems.
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1. Differentiability of Lipschitz functions

One of the important results of Lebesgue tells us that Lipschitz functions on the real
line are differentiable almost everywhere. It is also well-known that the converse is
true: for every Lebesgue null set E on the real line there is a real-valued Lipschitz
function which is non-differentiable at any point of E. That is:

Theorem 1.1. For a given set E ⊂ R there is a Lipschitz function f : R → R

which is not differentiable at any point x ∈ E if and only if E is Lebesgue null.

One of our aims is to generalise Theorem 1.1, and also its more precise variants
that will be described in Theorem 1.13, to Lipschitz functions f : Rn → R

m.

Since a Lipschitz function on R is differentiable almost everywhere, Fubini The-
orem implies immediately that the directional (or partial) derivative

f �(x;u) := lim
t→0

f(x+ tu)− f(x)

t

of a Lipschitz function f : Rn → R
m exists for each direction u at a.e. x.

Although differentiability is not the same as the existence of sufficiently many
partial derivatives, the set of points at which these two notions differ is relatively
easy to control. First recall the following definition:
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Definition 1.2. A set E ⊂ R
n is porous at a point x ∈ E if there is a c > 0 and

there is a sequence yn → 0 such that the balls B(x+ yn, c|yn|) are disjoint from E.
The set E is porous if it is porous at each of its points, and it is called σ-porous if
it is a countable union of porous sets.

Theorem 1.3 ([3]). Let f : Rn → R
m be a Lipschitz function. Then the set of

those points at which f is not differentiable but it is differentiable in n linearly
independent directions is σ-porous.

It follows from Lebesgue’s density theorem that σ-porous sets have Lebesgue
measure zero. Therefore as an immediate corollary we obtain:

Theorem 1.4 (Rademacher). Every Lipschitz function f : Rn → R
m is differen-

tiable almost everywhere.

The converse direction, i.e. the description of those sets E ⊂ R
n for which there

is a non-differentiable Lipschitz function, is much harder. D. Preiss proved that
the converse of Rademacher’s theorem is false, already in dimension 2:

Theorem 1.5 ([9]). There is a Lebesgue null set E ⊂ R
2 such that every Lipschitz

function f : R2 → R is differentiable in at least one point of E.

Unlike in the classical Lebesgue and Rademacher theorem, Preiss’s result is not
an ‘almost everywhere’ result, he does not show that the function is differentiable
at ‘most’ of the points x ∈ E. Indeed this is not possible. We prove the following
theorem:

Theorem 1.6. For every Lebesgue null set E ⊂ R
2 there is a Lipschitz function

f : R2 → R
2 which is not differentiable at any point x ∈ E.

This theorem says that for every Lebesgue null set there are two real-valued
Lipschitz functions, namely, the coordinate functions of f , such that at each x ∈ E
at least one of the two functions are non-differentiable.

Remark. In [9] the result is proved not only in R
2, but in every Banach space

with a smooth norm. Preiss’s set E is dense. In a recent paper [5], M. Doré
and O. Maleva constructed a closed (and hence nowhere dense) null set with the
same property: in every Banach space X with separable dual there exists a closed
bounded set of Hausdorff dimension one containing a Fréchet-differentiability point
of every Lipschitz function f : X → R.

Let E ⊂ R
n. It is immediate from the definition that a set E is porous at

x ∈ E if and only if the Lipschitz function f(x) = dist(x,E) is non-differentiable
at x. Of course σ-porous sets cannot fully describe non-differentiability sets of
Lipschitz functions (not even in R, since not all Lebesgue null sets of R are σ-
porous). But by Theorem 1.3, in order to find all Lebesgue null sets for which
there is a non-differentiable Lipschitz function, it is enough to consider functions
not having enough many directional derivatives.

From the point of view of differentiability problems, the sets that are the most
negligible are the sets of points at which a Lipschitz function may be differentiable
in no direction. We show that these sets form a σ-ideal. We call them uniformly
purely unrectifiable. Notice that uniformly purely unrectifiable sets are purely
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unrectifiable, i.e. they are null on every rectifiable curve, since a Lipschitz function
is differentiable in the tangent direction at a.e. point of a curve. We will see later
that uniformly purely unrectifiable sets have the (possibly only formally) stronger
property that they can be covered by an open set which is small on many curves
simultaneously.

For simplicity, consider just Lipschitz functions f : R2 → R
m. We will show that

if f is not differentiable at the points of E ⊂ R
2, then at each point x ∈ E except

for a uniformly purely unrectifiable set, there is a unique differentiability direction
τ(x) of f . Moreover, this direction is determined by the geometry of the set E, it
is independent of the function f : for any other Lipschitz function g, the direction
constructed using f and g agree at each point of E except for a uniformly purely
unrectifiable set. Indeed, if E is contained in the non-differentiability set of both
f : R2 → R

m1 and g : R2 → R
m2 , then the direction τ defined by the function

h = (f, g) : R2 → R
m1+m2 must coincide with the directions defined by f or g,

whenever f , g and h have a unique direction of differentiability.
Using also Theorem 1.6, we obtain:

Corollary 1.7. For every planar Lebesgue null set E, at each point x ∈ E there
is a direction τ(x) with the following property: every Lipschitz function f : R2 →
R
m is differentiable in the direction τ(x) at every x ∈ E, except at a uniformly

purely unrectifiable set of points. This direction is determined uniquely, except for
a uniformly purely unrectifiable set.

Remark. There are null sets which are very far from being purely unrectifiable.
For instance, R. O. Davies showed in [4] that every Borel set B ⊂ R

2 can be
covered by infinite straight lines without increasing its Lebesgue measure. One
can even put continuum many lines through each of the points of B so that the
union of these lines has the same measure as B. Now if B = B0 is, say, a point,
applying Davies’s theorem iteratively, we can find B0 ⊂ B1 ⊂ B2 ⊂ . . . such that
each Bk has continuum many lines through the points of Bk−1, and the sets Bk are
Lebesgue null. Then

�
Bk is also Lebesgue null, and it has continuum many lines

through each of its points. What could be τ on
�
Bk? Since Lipschitz functions

are differentiable along lines, at each line of the construction, τ must agree with
the direction of the line at a.e. of its points. But there are continuum many lines
at each point, how can we choose only one of these, so that along any given line
at a.e. point we choose the direction of the given line and not one of the others?

Now, consider Lipschitz functions on R
n.

Notation. We denote by Nn,k the σ-ideal of subsets of Rn generated by sets for
which there is a Lipschitz function f : Rn → R differentiable in at most k linearly
independent directions.

So Nn,0 are exactly the uniformly purely unrectifiable sets, while Nn,n−1 are the
non-differentiability sets we are mainly interested in.

Since a Lipschitz function is differentiable in the tangent directions of any k-
rectifiable set at Hk-almost all of its points, therefore Nn,k−1 sets are k-purely

unrectifiable, i.e. they meet every k-rectifiable set in an Hk-null set.
As a refinement of the above observations on directions of differentiability in the

plane, we will show that whenever E ∈ Nn,k, there is τ : E → G(n, k) such that



4 G. Alberti, M. Csörnyei, D. Preiss

for all x ∈ E except those belonging to an Nn,k−1 set, every Lipschitz function
f : Rn → R

m is differentiable in the direction τ(x).

Definition 1.8. τ : E → G(n, k) is called a k-dimensional tangent field of a set E
if every Lipschitz function f : Rn → R

m is differentiable in the direction τ(x) at all
x ∈ E except those belonging to an Nn,k−1 set.

Theorem 1.9. Every set E ∈ Nn,k has a k-dimensional tangent field. Moreover,
the tangent field is unique up to an Nn,k−1 set.

It is easy to see that:

Proposition 1.10. The set of (directional) non-differentiability of a Lipschitz
function f : Rn → R can be written as a countable union of sets E, for each of
which we may find a direction u and numbers a < b such that

lim inf
t→0

f(x+ tu)− f(x)

t
< a < b < lim sup

t→0

f(x+ tu)− f(x)

t
.

Since our f is Lipschitz, such set is null not only on every line in direction u,
but also on every curve γ : R → R

n provided that |γ� − u| is small enough.
We can do slightly better: if δ > 0 is small enough, for every ε > 0 there is

an open set G ⊃ E such that the length of G ∩ γ is less than ε for every curve
γ : R → R

n with |γ� − u| < δ.

This observation motivates the following definition. Given a convex cone C, we
may define the C-width of an open set G as the supremum of the lengths of γ ∩G
where the supremum is taken over all Lipschitz curves γ that ‘go in the direction of
C’, i.e. for which γ�(t) ∈ C for a.e. t. Then we define the C-width for general sets
as the infimum of the C-widths of open sets containing it. In fact, our definition of
the width is slightly more complicated: instead of the length we use a technically
more convenient measure (that also depends on a vector e ∈ int(C)) of the part of
the curve that lies in the set G. (See later, Definition 1.14.)

Using this notion of width, an equivalent description of the tangent field of
a set can be obtained without referring to non-differentiability sets and non-
differentiability directions of Lipschitz functions:

Definition 1.11. If E ⊂ R
n, we say that the mapping τ : E → G(n, k) is a k-

dimensional tangent field of E if for every cone C, the set of those points x ∈ E
for which τ(x) ∩ C = {0} has C-width zero.

This defines the same tangent field as Definition 1.8: one can show that the
family of those subsets of Rn that admit a k-dimensional tangent field according
to Definition 1.11 coincides with the σ-ideal Nn,k, and also that the two tangent
fields coincide.

According to Proposition 1.10 (and paragraphs preceding it), the set where f is
not differentiable can be covered by countably many sets, each of which has width
zero with respect to some cone.

We do not know whether this is a full description, i.e. we do not know whether
the non-differentiability sets of Lipschitz functions (i.e. those sets that admit an
(n−1)-tangent field) are exactly described by the property that they can be covered
by countably many sets, each of which has width zero with respect to some cone.
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It is not very hard to show, using Definition 1.11, that the existence of an (n− 1)-
tangent field of a set is equivalent to the property that for every ε > 0 the set can
be covered by a finite number of sets each of which has width zero with respect to
some cone that is only ε-far from a halfspace.

Our results include:

Theorem 1.12. For every set E ⊂ R
n, the following are equivalent:

(i) There is a Lipschitz function f : Rn → R
n that is non-differentiable at any

point of E.
(ii) There is a sequence (possibly infinite) of Lipschitz functions fj : R

n → R

such that at every point of E at least one of the fj is non-differentiable.
(iii) The set E is in Nn,n−1.
(iv) The set E has an (n− 1)-tangent field.
(v) If n ≤ 2: E has Lebesgue measure zero.

We do not know whether every Lebesgue null set is in Nn,n−1 for n > 2. And
we do not know whether it is true that for every m < n there is a null set E ∈ R

n

such that every Lipschitz function f : Rn → R
m is differentiable at some point of

E. Preiss proved in [9] that the answer is ‘yes’ for 1 = m < n. Doré and Maleva
in [6], building heavily on methods due to Lindenstrauss, Preiss and Tǐser in [8]
in their study of differentiability problems in infinite dimensional Banach spaces,
proved that the answer is also yes for 2 = m < n. But their current methods do
not work for m ≥ 3.

So far we didn’t say anything about how we can construct a non-differentiable
function for a given (small) set E. This is much harder than the other direction, i.e.
showing that the set of points of non-differentiability must be small. In dimension 1
it is easy, and one may try to use the 1-dimensional proof as a guidance. One
could even consider generalising the more precise description of the sets of non-
differentiability of Lipschitz functions f : R → R due (with slightly worse constants)
to Zahorski [11]. (See [7] for a more recent proof.)

Theorem 1.13 (Zahorski). For any Gδ set E ⊂ R of Lebesgue measure zero there
is a Lipschitz function f : R → R with Lip(f) ≤ 1 which is differentiable at every
point x /∈ E and

lim inf
t→0

f(x+ t)− f(x)

t
= −1 < 1 = lim sup

t→0

f(x+ t)− f(x)

t

for every x ∈ E.

Recall that a set is Gδ if it is an intersection of countably many open sets.
Recall also that, by adding together suitable multiples of functions obtained by
this theorem for Gδ sets Ei, Zahorski showed that E ⊂ R is the set of points of
non-differentiability of some Lipschitz function f : R → R if and only if E is of
Lebesgue measure zero and of type Gδσ (a union of countably many Gδ sets).

So let us see how one can construct a Lipschitz function f : R → R non-
differentiable at the points of the given Lebesgue null set E. We recursively find
open sets G1 ⊃ G2 ⊃ · · · ⊃ E so small that Gk is small in every component of Gk−1.
(For example, |Gk ∩ C| < 2−k|b − a| for any component C = (a, b) of Gk−1.) Let
fk(x) denote the measure of (−∞, x) ∩Gk. Then f �

k(x) = 1 at each point x ∈ Gk,
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but the slope (fk(b)− fk(a)/(b−a) is close to 0. Using this it is easy to check that
f(x) =

�
(−1)kfk(x) is not differentiable at any point of

�
Gk. If E is Gδ and

ε > 0, it is not difficult to choose the Gk so that, defining f(x) =
�

λkfk(x) where
|λk| < ε and the partial sums of the λk oscillate between ±1, we get a function
that almost satisfies the statement of Theorem 1.13. However, at the points of
R \ E we would only get that the upper and lower derivatives of f differ by no
more than 2ε, not that f is differentiable. We are in fact able to find a higher
dimensional analogue of this construction. Recall however that Theorem 1.13 is
proved in a different way, and that the weaker statement that we have just indi-
cated is not sufficient for showing the full description of non-differentiability sets
mentioned above.

As a higher dimensional analogue of the functions fk, for an open set G ⊂ R
n

of (small) C-width w and unit vector e from the interior of C, we construct a
function ω : Rn → R such that Lip(ω) is bounded by a constant depending on C
and e, ω(y) ≥ ω(x) if y− x ∈ C, ω(x+ te) = ω(x) + t if the segment [x, x+ te] lies
in G, and 0 ≤ ω(x) ≤ w for all x ∈ R

n.
The function ω can be used to construct non-differentiable functions, in a similar

way as the functions fk were used in dimension 1. Indeed, ω has directional
derivative 1 in the direction e at each x ∈ G, but from the more global point of
view ω looks like having derivative zero.

The technical details of the construction are quite complicated. They may be
somewhat simplified in the case of sets E ∈ Nn,0. Given any vector e, we choose
an open set G ⊃ E with small C-width where C is close to the halfspace {x :
�x, e� ≥ 0}. The function �x, e� − ω(x) sees, from every point of G, some points
in the direction e with slope almost one, but has local Lipschitz constant close
to zero on G. This allows us to iterate the construction locally. Moving also the
vectors e through a dense subset of the unit sphere, we get a function which is
non-differentiable at any point of E in any direction. More precisely, here is our
definition and the results we prove:

Definition 1.14. Let C be a convex cone and let e be a unit vector in C.

(i) We define M = MC,e : R
n → R by

M(x) = sup{λ ∈ R : x− λe ∈ C} .

(ii) The C-width w(G) = wC,e(G) of an open set G ⊂ R
n is defined as the

supremum of the numbers�
{t:γ(t)∈G}

M(γ�(t)) dt

among all Lipschitz curves γ : R → R
n which go in the direction of C.

(iii) For a general set E ⊂ R
n, w(E) is the infimum of w(G) among all open

sets G which contain E.
(iv) Let G ⊂ R

n be an open set of finite width. For every point x ∈ R
n we set

ω(x) = ωG,C,e(x) as the supremum of the numbers

−λ+

�
t∈[a,b],γ(t)∈G

M(γ�(t)) dt

among all a, b ∈ R, λ ≥ 0 and γ : [a, b] → R
n such that γ(b)− x = λe and

γ goes in the direction of C.
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We use this function ω to prove:

Theorem 1.15. For every ε̃ > 0 and for every set E which is Gδ and uniformly
purely unrectifiable there is a function f : Rn → R such that

(i) Lip(f) = 1;
(ii) f is ε̃-differentiable on R

n \E, that is, for every x ∈ R
n \E there is r > 0

and a vector u such that

|f(x)− f(y)− �u, y − x�| ≤ ε̃|y − x| for all y ∈ B(x, r),

(iii) for every x ∈ E, η ∈ B(0, 1) ⊂ R
n and ε > 0 there is an r < ε such that

|f(y)− f(x)− �η, y − x�| ≤ εr for all y ∈ B(x, r).

In particular, f is not differentiable at the points of E, it is not even ε-
differentiable for any ε < 1.

Since every uniformly purely unrectifiable set is contained in a Gδ uniformly
purely unrectifiable set, this indeed shows that for every Nn,0 set there is a Lips-
chitz function that is non-differentiable in any direction. However this result does
not provide Zahorski-type exact description of sets of non-differentiability in any
direction (which, by analogy, one would conjecture to be Nn,0 sets of type Gδσ),
since we do not know (in dimension n > 1) whether (ii) of Theorem 1.15 can be
replaced by the condition that f is differentiable on R

n \ E.
By a rather delicate induction with respect to k (which is where we need the

condition (ii) of Theorem 1.15) we show that the sets of points of k-dimensional
differentiability can be characterised as follows:

Theorem 1.16. (i) Let f : Rn → R
m be a Lipschitz function, and for each

x ∈ R
n choose τ(x) to be a maximal dimensional subspace such that the

restriction of f to x+τ(x) is differentiable at x. For each 0 ≤ k ≤ n−1, let
Ek denote the set of those points at which dim τ(x) = k. Then Ek ∈ Nn,k.

(ii) Let Ek ⊂ R
n be an Nn,k set for some 0 ≤ k ≤ n − 1. Then there is a

Lipschitz function f : Rn → R
k+1 and a k-tangent field τ of Ek such that

f is not differentiable at any x ∈ Ek in any direction e that is orthogonal
to τ(x).

We can make (ii) of Theorem 1.16 more quantitative. Again, this is a weaker
analogy of Theorem 1.13, which is needed for induction and to which the same
remarks as to the case k = 0 apply.

Theorem 1.17. For each 0 ≤ k < n there is a constant cn,k > 0 such that,
whenever l > k, ε > 0 and E is a Gδ, Nn,k subset of Rn, then there is a function

f : Rn → R
l with Lip(f) ≤ 1 which is ε-directionally differentiable at every point

of Rn \E and has the property that for every x ∈ E there are k-dimensional linear
subspaces V,W of Rn,Rl, respectively, so that for any unit vectors v ∈ V ⊥ and
w ∈ W⊥,

lim sup
t�0

�f(x+ tv)− f(x), w�

t
− lim inf

t�0

�f(x+ tv)− f(x), w�

t
≥ cn,k .

According to (iii) of Theorem 1.15, cn,0 = 2. We do not know whether cn,k = 2
for k > 0.
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We finish this section by showing that for differentiability with respect to a
measure (instead of at every point of a given set) it is sufficient to consider real-
valued functions:

Theorem 1.18. Let µ be a σ-finite Borel measure on R
n.

(i) Every real-valued Lipschitz function f : Rn → R is differentiable µ-almost
everywhere, if and only if every set in Nn,n−1 is µ-null.

(ii) On the other hand, if an Nn,n−1-set has positive µ-measure, then there
is a Lipschitz function f : Rn → R which is non-differentiable µ-almost
everywhere on this set.

In particular, for every singular probability measure µ in the plane there is a
Lipschitz function f : R2 → R which is non-differentiable µ-almost everywhere.

This nicely complements the result of Preiss mentioned before, according to
which there is a null set E ⊂ R

2 such that every Lipschitz function f : R2 → R is
differentiable in at least one point of E.

As we have already pointed out, the proof of Theorem 1.16 is rather involved.
However, Theorem 1.18 may be proved in a simpler way, closer to the argument
that we indicated for Theorem 1.15. Recall that the key point of this argument was
that for an open set G of small C-width and e ∈ C we constructed a function ω with
directional derivative 1 in the direction e at each x ∈ G, but looking like having
derivative zero from the global point of view. To prove Theorem 1.15, we needed
only one such G (as it contained the whole set E) while to prove Theorem 1.16 we
need several of them which may overlap and so constructions that we need to do
cannot be independent. However, to show Theorem 1.18, we may throw away sets
of small measure, and so achieve that the sets G in which we have to construct the
function ω are in positive distance from each other. These constructions may still
be handled independently, resulting in a reasonably accessible proof.

2. Structure of null sets and other problems

In this section we list various results that can be proved using similar techniques
and ideas as the ones we use for the characterisation of non-differentiability of
Lipschitz functions.

2.1. Tangent of null sets. In the planar case, we know that the σ-ideal N2,1

and the σ-ideal of Lebesgue null sets coincide, i.e. every planar Lebesgue null set
admits a 1-tangent field. We do not know if the same is true in higher dimension.
However, there is another, weaker notion of tangent fields that can be defined for
any Lebesgue null set in R

n:

Definition 2.1. Given a set E ⊂ R
n, we say that a Borel measurable map

τ : E → G(n, k) defines a weak k-tangent field to E if for every k-rectifiable set
S, Tan(S, x) = τ(x) for Hk-a.e. x ∈ S ∩ E.

Notice that in this definition we had to include a measurability assumption. It
was not needed in Definition 1.8 since the tangent field defined there is automat-
ically Borel measurable (after a modification on an Nn,k−1 set). However, under
the continuum hypothesis one can define a non-measurable weak k-tangent field
by ordering k dimensional C1 surfaces in R

n into Sα, α < ω1 and defining τ(x) as
the tangent space of Sα at x where α is the first ordinal for which x ∈ Sα.
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It follows from the definition that, given a set E ⊂ R
n, the weak k-tangent field,

provided that it exists, is uniquely defined up to k-purely unrectifiable subsets of
E (recall that the k-tangent field is uniquely defined up to an Nn,k−1 set). Also,
if a set admits a k-tangent field then it is also a weak k-tangent field. We do not
know (even in the planar case for k = 1) whether the σ-ideal Nn,k−1 coincides with
the σ-ideal generated by Gδ (or Borel, or analytic) k-purely unrectifiable sets, and
we do not know in dimensions n > 2 whether every set admitting a weak k-tangent
field also admits a k-tangent field. However, we can prove that:

Theorem 2.2. Any set E ⊂ R
n of Lebesgue measure zero admits a weak (n− 1)-

tangent field.

This result can be understood as saying the rather mysterious fact that one can
prescribe in which direction an (n−1)-surface meets a null set E, without knowing
the surface itself. The mystery would deepen if, for example, one had a purely 1-
unrectifiable set in Nn,1 \ Nn,0: this set would have uniquely prescribed directions
that would not be possible to describe by meeting with curves.

2.2. Covering by Lipschitz slabs and intersecting by curves. The notion
‘C-width’ can be defined in the following, equivalent way. Given a cone C and a
vector e ∈ int(C), if E is a ‘C-Lipschitz set’, i.e. E ∩ (x + C) = {0} and E meets
each line of direction e in exactly one point, then we call the set between E and
its shifted copy E + we (w > 0) a C-Lipschitz slab of width w. If K ⊂ R

n is
compact, we may define its C-width as the infimum of the total width of families
of C-Lipschitz slabs covering it. If G ⊂ R

n is open, then we define its C-width as
the supremum of C-widths of compact sets contained in it, and finally if E ⊂ R

n

is arbitrary, then its C-width is defined as the infimum of the C-widths of open
sets containing it.

In our original definition of C-width, we measured the part of the curve γ that
lies in the set G (i.e. we chose the function M(x) in (i) of Definition 1.14) in such
a way that we obtain exactly the same width as the one defined using C-Lipschitz
slabs.

So a compact set has C-width zero if it can be covered by C-Lipschitz slabs of
arbitrary small total width. In particular, in R

2, every compact Lebesgue null set
is in N2,1, therefore it can be covered by Lipschitz slabs of arbitrary small total
width. In fact, in the plane one can cover any null set, and it is enough to use the
coordinate directions and Lipschitz graphs with Lipschitz constant one. We show
the following:

Theorem 2.3. Every set E ⊂ [0, 1]2 of measure 0 ≤ m < ab is the union of two
sets E = A ∪ B, where A has C-width less than a for C = {(x, y) : |x| > |y|} and
B has C-width less than b for C = {(x, y) : |y| > |x|}.

That is, there are Lipschitz functions fi : R → R, gj : R → R with Lipschitz
constant 1 and wi, wj > 0 with

�
iwi < a,

�
j wj < b, such that

A ⊂
�
i

{(x, y) : fi(x) ≤ y ≤ fi(x)+wi} B ⊂
�
j

{(x, y) : gj(y) ≤ x ≤ gj(y)+wj} .

This can be used e.g. to show that there is a 1-Lipschitz function f : R → R

whose graph (x, f(x)) or (f(x), x) meets E in length at least m1/2. The analogous
result is also true in higher dimension:
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Theorem 2.4. For every set E ⊂ [0, 1]n of measure m there is a Lipschitz curve
(with a fixed Lipschitz constant that depends only on the dimension n) that meets

E in length at least cnm
1/n.

Here a curve means the graph of a map from one of the coordinate axis into
its orthogonal complement. We do not know whether there is a k-dimensional
Lipschitz surface (where surfaces are understood similarly) that meets E in Hk-

measure ck,nm
k/n.

2.3. Mappings onto balls and weak derivatives. Among the problems explor-
ing the geometric structure of sets with positive Lebesgue measure, the following
one, proposed by M. Laczkovich, is particularly interesting:

Problem 2.5. Given a set E ⊂ R
n of positive Lebesgue measure, is there a Lips-

chitz function f : Rn → R
n which maps E onto a set with non-empty interior (or,

equivalently, that maps E onto a ball)?

Without loss of generality we can assume that E is compact. In dimension
n = 1, f(x) = |(−∞, x) ∩ E| maps E onto an interval and R \ E onto a countable
set.

P. Jones called our attention to a result of N.X. Uy in [10]:

Theorem 2.6 ([10]). For every compact set E ⊂ R
2 of positive Lebesgue mea-

sure there is a non-constant complex-valued Lipschitz function that is holomorphic
everywhere outside E (including infinity).

If we identify C and R
2, we obtain a mapping f : R2 → R

2 that is orientation
preserving and open on the complement of E; using degree theory it follows that
f(E) ⊃ f(R2\E) ⊃ a ball. This gives a positive answer to Problem 2.5 in dimension
n = 2.

In dimension n = 2 a completely different construction can also be obtained
using our function ω from (iv) Definition 1.14 (more precisely, the function u(x) =
x − ω(x)e, whose distance from the identity is small). Instead of constructing an
open mapping on R

2 \ E, we show that close to a density point of E a Lipschitz
perturbation of the identity can be found which maps R

2 \ E onto a 1-rectifiable
set (and consequently, it maps E onto a set of non-empty interior):

Theorem 2.7. For n = 1, 2 and for every E ⊂ R
n of positive Lebesgue measure

there is an orientation-preserving Lipschitz mapping f : Rn → R
n such that f(E) =

[0, 1]n and f(R2 \ E) is (n− 1)-rectifiable.

Unfortunately none of these methods are powerful enough to construct such a
mapping in higher dimension; the question in dimensions n ≥ 3 remains open.
It may be true that, in any dimension, there is a Lipschitz perturbation of the
identity that maps Rn \ E onto an (n− 1)-rectifiable set.

Another use of ω is the following. Let µ be a measure such that µ(S) > 0
for some S ∈ Nn,n−1, and let E be a subset of S with µ(E) > 0 of C-width
zero for some cone C. Let ωj denote the function ω for w = 1/j. Then the
functions ωj : R

n → R have uniformly bounded Lipschitz constants, they converge
to constant 0 as j tends to infinity, and ω�

j(x; e) ≥ 0 everywhere and ω�
j(x; e) = 1

for x ∈ E.
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A moment’s reflection shows that ω�
j cannot converge to 0 = ω� in any weak sense

with respect to µ (and a straightforward smoothing argument can make them C1).
Therefore, for a measure µ in R

n, weak derivatives of Lipschitz functions may
be defined iff µ is absolutely continuous with respect to Nn,n−1, hence iff every
Lipschitz function is differentiable µ-almost everywhere. For n = 2 we know that
the above holds iff µ is absolutely continuous with respect to the Lebesgue measure.
This answers a problem due to G. Mokobodzki.

2.4. Tangents of measures. Alberti proved in [1] the so-called ’rank-one prop-
erty’ of BV functions:

Theorem 2.8 ([1]). Let u and v be BV functions on R
n. Then the direction of the

gradients of u, v agree µ-a.e. whenever the measure µ is singular, and absolutely
continuous with respect to the variation of the gradients of both u and v.

This result can be understood as saying that certain class of Rn-valued measures
in R

n, namely those that arise as singular parts of derivatives of BV functions,
have a.e. uniquely defined normal directions and so also ‘tangent’ hyperplanes. The
question naturally arises: for what measures is our (n−1)-dimensional tangent field
uniquely defined almost everywhere? Is it the same as the hyperplane defined via
derivatives of BV functions?

The measure has to be concentrated on Nn,n−1 and it has to be absolutely
continuous with respect to Nn,n−2. Since sets from Nn,n−2 are purely (n − 1)-
unrectifiable, for the later requirement it suffices that the measure is absolutely
continuous with respect to purely (n−1)-unrectifiable sets. The former requirement
would be equivalent to singularity if Nn,n−1 coincided with Lebesgue null sets,
which we do not know. But the methods used to prove it when n = 2 are powerful
enough to show that every Lebesgue null set in R

n is a union of a set from Nn,n−1

and a purely (n − 1)-unrectifiable set. So it suffices to assume that the measure
is singular, and absolutely continuous with respect to purely (n− 1)-unrectifiable
sets.

Definition 2.9. Ameasure on R
n is called k-rectifiable if it is absolutely continuous

with respect to Hk|E , where E ⊂ R
n is a k-rectifiable set. Measures which can be

represented as integral combinations µ =
�
µt dP (t) of k-rectifiable measures µt

are called k-rectifiably representable.

Theorem 2.10. A measure µ is k-rectifiably representable if and only if µ(E) = 0
for every k-purely unrectifiable set E.

Definition 2.11. Given a k-rectifiably representable measure µ on R
n, τ : Rn →

G(n, k) defines a k-tangent field of µ, if for every representation µ =
�
µt dP (t)

where µt is supported on a k-rectifiable set Et, there holds Tan(Et, x) = τ(x) for
µt-a.e. x and P -a.e. t.

The k-tangent field, if it exists, is uniquely determined up to µ-negligible sets.
We show that:

Theorem 2.12. An (n − 1)-rectifiably representable measure admits an (n − 1)-
tangent field if and only if it is singular.
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Singular parts of derivatives of BV functions are (n−1)-rectifiably representable,
and indeed, the hyperplane orthogonal to the gradient and the (n−1)-tangent field
of these measures coincide.

We finish this section by saying that, applying a version of Radon-Nýkodim
Theorem, we show that

Theorem 2.13. Every measure µ on R
n can be uniquely decomposed as

µ = µn + µn−1 + · · ·+ µ0 ,

where each µk is a k-rectifiably representable measure supported on a (k+1)-purely
unrectifiable set.

We do not know whether the measure µk admits a k-tangent field for k < n− 1.

3. Combinatorial connections

Combinatorial connections of our results were first noted by Matoušek. He
observed that a part of our proof of Laczkovich’s problem is similar to the proof of
the Erdős-Szekeres Theorem, and he recognised that this part may be replaced by
its corollary: for any planar set M having m2 points there is a function ψ : R → R

with Lip(ψ) ≤ 1 such that one of the sets

{(x, y) ∈ M : y = ψ(x)} or {(x, y) ∈ M : x = ψ(y)}

has at least m points.
Some of the results on which our proofs are based exploited this connection

and may be considered as a continuous analogy of the Erdős-Szekeres or Dilworth
Theorems. For example, if a set E admits a k-tangent field then for every de-
composition G(n, k) =

�
Aj there corresponds a partition E ⊂

�
Ej , where Ej

contains those x ∈ E for which τ(x) ∈ Aj . By definition, the set Ej has width
0 with respect to any proper closed convex cone C for which C ∩ S = {0} for all
S ∈ Aj . That is, we can decompose E into parts that can be covered by Lipschitz
slabs of arbitrary small total width. Discrete analogue of this statement says that,
in the plane, a finite set of points can always be covered by a small number of
Lipschitz curves of given directions (and then of course one of them must contain
many points).

The relation to the combinatorial results becomes even more apparent if we
consider weak k-tangent fields. Look at only the special case k = n − 1, and
suppose that E ⊂ [0, 1]n is Lebesgue null and compact. Then we can approximate
E by a grid: it intersects o(Nn) out of Nn subcubes of [0, 1]n. Let C be a convex
cone, and consider the partial order on R

n defined by x1 ≺ x2 ⇐⇒ x2 − x1 ∈ C.
By Dilworth Theorem, the set of the centres of the cubes intersecting E can be
covered by o(Nn−1) chains and o(N) antichains. Chains are curves going in the
direction of C and antichains are C-Lipschitz surfaces. Since E lies in a O(1/N)
neighbourhood of the set of the centres of the cubes, it is covered by o(Nn−1)
’tubes’ going in the direction C and by o(N) Lipschitz slabs of width O(1/N), i.e.
by tubes of arbitrary small total cross-sectional volume and by slabs of arbitrary
small total width. The set covered by tubes meets C-Lipschitz surfaces in a set
of small Hn−1 measure, and the set covered by slabs meets curves going in the
direction C in small length.
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This decomposition leads to a weak (n− 1)-tangent field as we let the angle of
C tend to a halfspace and its direction run through a dense set of directions. For
other results we would need to cover by slabs only, and we do not know if this
is always possible, except for the 2-dimensional case where there is no difference
between tubes and slabs.

Many results presented here are connected to a possibility of decomposing certain
small sets, or perhaps even all Lebesgue null sets, in a way reminiscent of the
decompositions of finite sets in combinatorial results. As we have seen above, the
existence of a weak (n− 1)-tangent field is a direct corollary of Dilworth Theorem.
For other problems we need a much finer, continuous version of the combinatorial
results whose proofs also use techniques that are not available in the discrete world,
they are purely analytic.

There are also problems that could be solved using discrete decomposition re-
sults, but we do not know if the discrete versions are true. Matoušek conjectured
a higher dimensional variant of the Erdős-Szekeres Theorem that would fully solve
Laczkovich’s problem. This conjecture was disproved by Tardos. One can however
modify his conjecture so that it would imply a positive answer to our main problem
(all Lebesgue null sets would belong to Nn,n−1):

Conjecture 3.1. For any set M ⊂ R
n having mn points there is a function

ψ : Rn−1 → R with Lip(ψ) ≤ Cn and an orthonormal system of coordinates such
that the set

{(x1, . . . , xn) ∈ M : xn = ψ(x1, . . . , xn−1)}

has at least cnm
n−1 points.

This problem is open. We only show that, unlike in the plane, the coordinate
systems cannot be restricted to permutations of the standard coordinate system,
not even in R

3:

Theorem 3.2. For every Lipschitz constant L and for every ε > 0 there exists a
finite set M ⊂ R

3 of m3 points, such that for every φ : R2 → R with Lip(φ) < L, in
the standard coordinate system in R

3, all the three graphs x = φ(y, z), y = φ(x, z)
and z = φ(x, y) contain less than εm2 points of M .

However, the dyadic analogue of Conjecture 3.1 is true in any dimension, even
in the standard coordinate-system for Lipschitz mappings with constant 1.

Consider the unit cube Q = [0, 1]n ⊂ R
n. A cube in Q is called a dyadic cube

of size 1/2k, if it is obtained by dividing Q to 2kn subcubes of equal sizes in the
obvious manner. Let Q0 be the set of points that are not on the boundary of any
dyadic cube. The dyadic distance of two points x, y ∈ Q0 is the size of the smallest
dyadic cube that contains both x and y. This defines a metric on Q0. In a current
work M. Csörnyei and P. Jones showed that:

Theorem 3.3. (i) For any set M ⊂ Q0 ⊂ R
n having mn points there is a

function ψ : Rn−1 → R with dyadic Lipschitz constant 1 and there is a
coordinate-direction xk (k = 1, 2, . . . , n) such that the set

{(x1, . . . , xn) ∈ M : xk = ψ(x1, . . . , xk−1, xk+1, . . . , xn)}

has at least mn−1 points.
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(ii) Every set E ⊂ Q0 ⊂ R
n of Lebesgue measure m can be covered by dyadic

Lipschitz slabs of total width at most m1/n.
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