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The contact angle of a drop in equilibrium on a solid is strongly affected by the roughness
of the surface on which it rests. We study the roughness-induced enhancement of the
hydrophobic or hydrophilic properties of a solid surface through homogenization theory.
By relying on a variational formulation of the problem, we show that the macroscopic
contact angle is associated with the solution of two cell problems, giving the minimal
energy per unit macroscopic area for a transition layer between the rough solid surface
and a liquid or vapor phase. Our results are valid for both chemically heterogeneous and
homogeneous surfaces. In the latter case, a very transparent structure emerges from the
variational approach: the classical laws of Wenzel and Cassie-Baxter give bounds for the
optimal energy, and configurations of minimal energy are those leading to the smallest
macroscopic contact angle in the hydrophobic case, to the largest one in the hydrophilic
case.
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1. Introduction

The study of the wetting properties of rough surfaces has attracted considerable attention
in the last few years, see [6], [13] and the many references quoted therein. Although some
key theoretical and experimental contributions are already a few decades old ([23], [8],
[15]), a noticeable surge of interest in the Soft Matter Physics literature seems correlated
with the recent studies on the superhydrophobic properties of the leaves of some plants,
see [18], [19]. The basic observation is that, when the surfaces of the leaves are rough at
a microscopic scale, macroscopic drops sitting on the leaves do not wet them (this effect
is displayed also by artificial surfaces—see, e.g., Figure 1 and [17]). The most basic route
towards explaining the observed shapes of equilibrium drops on rough surfaces is based
on energy minimization and separation of scales between the size of the drops and that
of the asperities.
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Figure 1. Drops of water on a carpet of vertically aligned carbon nanotubes at different magnifications. The

drop diameters are approximately 5 to 10 µm in the left panel, 5 mm in the right panel (micrographs courtesy

of Dr. J. Bico and Prof. G.H. McKinley through the Cambridge-MIT Institute).

Minimization of the total interfacial energy of a system composed of a liquid drop
(phase L), a solid substrate (phase S), and a vapor environment (phase V)

E = σSL|ΣSL| + σSV |ΣSV | + σLV |ΣLV |

leads to the classical Young law for the contact angle θ

cos θ =
σSV − σSL

σLV

,

see Figure 2 below. Here ΣAB is the interface between phases A and B, |ΣAB | is its area,
and σAB is the corresponding interfacial energy density. A hydrophobic (respectively,
hydrophilic) surface is one for which cos θ is negative (respectively, positive), and it is
commonly observed that, by micro-texturing a surface to increase its roughness, one
causes the contact angle to increase in the hydrophobic case, decrease in the hydrophilic
one. The effect of microscopic surface roughness on the macroscopic contact angle is
easily understood if one realizes that the actual (microscopic) area of contact may differ
from the one that is apparent at the macroscopic scale. To keep this into account, it is
necessary to renormalize the coefficients σSL and σSV . The macroscopic contact angle
θhom is thus given by

cos θhom =
σhom

SV − σhom
SL

σLV

,

where σhom
SV (respectively, σhom

SL ) represents the minimal energy per unit macroscopic
area for a transition layer between a microscopically rough solid and the vapor phase
(respectively, the liquid phase). Clearly, this argument lends itself to homogenization
theory, and this is precisely the approach followed in this paper. In fact, we show that
θhom can be characterized as the contact angle for a minimizer of the “homogenized”
energy

Ehom = σhom
SL |ΣSL| + σhom

SV |ΣSV | + σLV |ΣLV | .

The key step in the computation of cos θhom is thus the solution of two well defined
variational problems (cell problems), leading to the determination of the effective energy
densities σhom

SV and σhom
SL .

Seen from our perspective, the classical contributions from the Physics literature can
be interpreted as attempts to construct energy minimizing configurations based on a good

physical intuition of the possible geometries for the microscopic contacts. In fact, based
on two different hypotheses for the underlying contact mechanisms, two antagonistic
models have emerged, leading to two different predictions for the macroscopic contact
angle θhom. Assuming that contact between liquid and solid is maintained at every point
of the rough surface (complete contact), one obtains the so-called Wenzel law [23], which
in the hydrophobic case predicts an amplification of the contact angle which only depends
on the ratio R between actual (microscopic) and apparent (macroscopic) contact area.

Assuming instead that vapor fills the bottom of the asperities of a rough surface
(composite contact), one obtains the so called Cassie-Baxter law [8] which, unless cos θ
is sufficiently small, gives a less spectacular roughness-induced enhancement of the hy-
drophobicity of a surface when compared to Wenzel’s predictions. Only very recently
it has been recognized that, of the two proposed mechanisms, only one at a time can
lead to a minimum energy configuration [5], [20]. Actually, as an example of the results
that our homogenization approach easily delivers, it can be shown that the minimal
energy configuration is always the one corresponding to the most conservative estimate
of the roughness-induced enhancement of the hydrophobic or hydrophilic properties of
a surface,1 and that in certain cases, both Wenzel and Cassie-Baxter laws overestimate
this effect. These and other results of physical relevance are discussed in detail in Section
4.

The debate over which model, whether Wenzel’s or Cassie-Baxter’s is the appropri-
ate one, is just one example of issues on which a general consensus of opinion has not
yet emerged in the literature. Other examples are the question of whether the relation
between cos θhom and cos θ should be symmetric when going from the hydrophilic to the
hydrophobic regime (see, e.g., [4]), or the claim that a fractal surface with a hierarchy
of roughness scales may lead to further enhancement of hydrophobicity, and even make
hydrophobic a surface made of a hydrophilic material [14]. Some of these statements
arise from the need of explaining experimental observations, while others are of a more
speculative nature. Our results show that, within the class of energy minimizing config-
urations, the relation between cos θhom and cos θ is always symmetric and, moreover, it
is not possible to turn a hydrophilic surface into a hydrophobic one by simply tuning its
roughness (see the discussion in Subsection 4.7). Of course, these statements should be
taken with a grain of salt. While equilibrium configurations which are not energy min-
imizers are only metastable, and hence somewhat volatile, they are actually observable.
By examining the consequences that can be deduced from energy minimization and sep-
aration of scales, we hope to help clarifying which aspects of the available experimental
evidence are associated with energetics, and which ones should be instead attributed to
different mechanisms (switching among multiple equilibria, metastability and hysteresis,
dynamic effects). In particular, we can conclude that both the experimentally observed
lack of symmetry in the relation between cos θhom and cos θ, and the fact that drops
sitting on hydrophilic rough surfaces may exhibit large contact angles are manifestations
of metastability.

It is worth emphasizing that our approach is entirely based on minimization of the
total interfacial energy, while most of the Physics literature is based on constructing
equilibrium configurations satisfying the contact angle condition given by Young’s law
(a different point of view, based on Statistical Mechanics is also being pursued, see e.g.

1A similar conclusion is reached in [20]. There, only Wenzel and Cassie-Baxter configurations are compared

while, in our analysis, arbitrary test configurations are allowed to compete for minimal energy.



 

4 Giovanni Alberti and Antonio DeSimone Wetting of rough surfaces: a homogenization approach 5

[22]). There is clearly no difference in the underlying physical model, in the sense that
the equilibrium configurations mentioned above are exactly the critical points of the en-
ergy we use, see the discussion in Section 2. In restricting attention to energy minimizers
we accept to overlook metastable equilibria (even though some of our homogenization
results should remain valid even in this context). The reason for our choice is that the
variational structure is extremely useful in building a coherent conceptual framework of
the phenomena under study. First, it gives us a precise formulation of the problem to be
solved for situations, such as that of a rough and chemically heterogeneous solid, where
an approach based on direct geometric constructions would be unfeasible. Even more im-
portantly, for the easier case of a chemically homogeneous solid, the variational approach
is very effective in reducing the essentials of the problem to a few, very transparent basic
facts, which are summarized below.

Through a straightforward renormalization of the interfacial energy, one shows that
| cos θhom| is the energy per unit apparent area of the optimal transition layer between
a rough solid and a liquid (hydrophobic case) or a vapor (hydrophilic case) phase. By
looking for bounds for the optimal energy through the use of trial configurations (e.g.,
based on models for the geometry of the microcontacts), the classical results from the
Physics literature can be recovered in a systematic way. The conditions under which
the Wenzel ansatz of complete contact, or the Cassie-Baxter ansatz of composite contact
provide energetically optimal configurations can be scrutinized. The criterion that lowest
energy is associated with smallest | cos θhom| (i.e., with the most conservative estimate
of the roughness-induced enhancement of the hydrophobic or hydrophilic properties of a
surface) emerges naturally.

Finally, we point out that our mathematical result consists in computing a limit
energy as a certain parameter ε, representing the length–scale of roughness relative to
that of the droplets, tends to 0. The resulting model should be applicable to drops that
are large compared to the typical size of the asperities, but we have no quantitative
estimate of the scale at which the limit model becomes reliable. Even the micron–
sized droplets of Figure 1 seem to conform well to the predictions based on the limit
energy. There are, however, recent observations of sub–micron droplets where super–
hydrophobicity seems suppressed ([9], see also [21]). For these, the model based on the
limit energy is no longer applicable.

The rest of this paper is organized as follows. In Section 2 the variational formu-
lation of the problem and the corresponding necessary conditions for critical points are
reviewed. In Section 3 a non-technical statement of our homogenization result is given,
and its physical implications are discussed in Section 4. Section 5 contains the rigorous
mathematical statements of our results and the corresponding proofs.

2. Energy and equilibrium conditions

We denote by S, L, and V the three regions of R
d (d = 2, 3) occupied by solid, liquid,

and vapor phase. The first one is a given, nice closed set, possibly unbounded. The other
two are the unknowns of the problem.

We are interested in minimizing the following interfacial energy

E = σSL|ΣSL| + σSV |ΣSV | + σLV |ΣLV | + [a.t.], (2.1)

where [a.t.] indicates the fact that additional integral terms or constraints may be present;
ΣAB is the interface of phases A and B, |ΣAB | denotes its measure. The (positive)
material parameters σAB (called surface tensions, or interfacial energies densities) satisfy
the wetting condition

|σSL − σSV | ≤ σLV . (2.2)

2.1. Additional terms and constraints. - A typical example of [a.t.] is the
potential energy due to gravity, namely

γ

∫

L

h (2.3)

where γ > 0 is the difference between the specific gravities of L and V , and h(x) is the
height of point x. Another example is a constraint on the volume of L, namely

|L| = l (2.4)

with l a given positive number.
It is important to notice that the analysis that follows is not affected by the presence

of such terms (cf. §2.4)

2.2. Chemically heterogeneous surfaces. - For a solid S with a chemically
heterogeneous surface, σSL and σSV are functions defined on ∂S (and satisfying (2.2)).
In this case, the interfacial energy becomes

E :=

∫

ΣSL

σSL +

∫

ΣSV

σSV + σLV |ΣLV | + [a.t.]. (2.5)

2.3. Energy renormalization. - Since |ΣSV | + |ΣSL| = |∂S| is fixed, if needed,
we can always renormalize the energy E in (2.1) by subtracting a constant c times
|ΣSV | + |ΣSL|, In other words, the configurations of minimal energy are unaffected by
the substitution

(σLV , σSV , σSL) → (σLV , σSV − c, σSL − c) .

The same argument applies to the energy in (2.5); in fact we can even subtract a non-
constant function c. Moreover the minimizers of E are also invariant under the substi-
tution

(σLV , σSV , σSL) → (ασLV , ασSV , ασSL)

where α is any positive real number (in this case, the eventual additional term [a.t.] must
be modified accordingly).

Assume now that σSV and σSL are constant, and define the angle θ ∈ [0, π] by

cos θ :=
σSV − σSL

σLV

(2.6)

(the right-hand side of (2.6) belongs to [−1, 1] because of the wetting condition (2.2),
and therefore the angle θ is well-defined; its physical meaning is explained in §2.4 below).
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So, if σSV ≥ σSL, we can use the substitution (σLV , σSV , σSL) → (1, cos θ, 0) and reduce
to an interfacial energy of the form

Ẽ = cos θ |ΣSV | + |ΣLV | + [a.t.] (2.7)

Similarly, if σSV ≤ σSL, we substitute (σLV , σSV , σSL) → (1, 0, | cos θ|) and reduce to

Ẽ = | cos θ| |ΣSL| + |ΣLV | + [a.t.] (2.8)

These renormalized energies show that, besides the physical parameters appearing in
[a.t.], the only relevant physical parameter in the problem is cos θ. When cos θ is positive,
energy minimization promotes maximization of the area of ΣSL at the expenses of ΣSV

and ∂S is called a hydrophilic surface. When cos θ is negative, energy minimization
promotes minimization of ΣSL and ∂S is called hydrophobic.

We now proceed towards reviewing some classical (equilibrium) conditions which are
necessarily satisfied by critical points of E (see, e.g., [11]). To keep technical details to a
minimum, we will tacitly assume that the sets S, L, and V are as regular as needed to
grant a meaning to the notions of interface normal, curvature, etc.

2.4. Contact angle and Young’s law. - The vapor-liquid interface ΣV L meets
the solid surface ∂S with a contact angle which is equal to the angle θ given by (2.6)—see
Figure 2, left. This relation is known as Young’s law.

θ L

S

V θ L

S

V

π−θ

Figure 2. Geometry of S-V -L contact, and Young’s law.

It may happen that the contact line where ΣV L meets ∂S coincides (partly) with a convex
edge of ∂S; in this case the contact angle belongs to the interval described in Figure 2,
right. On the other hand, ΣV L never meets ∂S along a concave edge (more precisely,
the contact line and a concave edge can only intersect transversally). We emphasize
that Young’s law is valid with or without a volume constraint, and with or without the
presence of a potential energy.

2.5. Curvature equation. - The mean curvature H of the vapor-liquid interface
ΣV L satisfies

2H = λ +
γh

σV L

(2.9)

where the scalar λ is a constant Lagrange multiplier, which is present only in association
with the volume constraint (2.4), while the second summand on the right-hand side is
present only in association with the potential energy (2.3).

3. The homogenization formula

We assume that the solid surface is macroscopically flat and coincides with the “horizon-
tal” plane xd = 0, and it is rough at a scale ε, where ε is a positive scaling parameter.
More precisely, we assume that Sε is of the form

Sε := {εx : x ∈ S1} , (3.1)

where S1 is a closed set in R
d such that {xd ≤ 0} ⊂ S ⊂ {xd ≤ a} for some a > 0, it

is r-periodic in the first d − 1 directions for some r > 0 (i.e., invariant under translation
by rei for i = 1, . . . , d − 1), and symmetric with respect to the coordinate planes xi = 0
for i = 1, . . . , d − 1. For example, one can take S1 equal to the subgraph of a positive
bounded function f of the first d − 1 variables which is r-periodic and even, so that

Sε =
{

xd ≤ εf(x1/ε, . . . , xd−1/ε)
}

. (3.2)

In the limit ε → 0, the sets Sε converge to the half-space S := {xd ≤ 0}, and energy
minimizing configurations are obtained by minimizing the homogenized energy

Ehom := σhom
SL |ΣSL| + σhom

SV |ΣSV | + σLV |ΣLV | + [a.t.]; (3.3)

the energy density σhom
SL is obtained by solving the cell problem

σhom
SL := inf

V

E(V, Cr)

|Qr|
, (3.4)

where Qr is the square of all x in the plane xd = 0 such that −r/2 < xi < r/2 for
i = 1, . . . , d− 1, Cr is the open cylinder Qr × R, E(V, Cr) denotes the energy associated
to a test set V within the periodicity cell Cr, with no additional term, and the infimum
is taken over all bounded sets V contained in Cr \ S1 which are symmetric with respect
to the coordinate planes xi = 0 for i = 1, . . . , d − 1. Similarly, σhom

SV is given by the cell
problem

σhom
SV := inf

L

E(L, Cr)

|Qr|
. (3.5)

The macroscopic contact angle is then given by the formula

cos θhom =
σhom

SV − σhom
SL

σLV

. (3.6)

3.1. Remarks. - (i) Formula (3.3) will be rigorously justified in term of Γ-convergence
in Theorem 5.2.

(ii) In the minimization problem (3.4) amounts to finding the (energetically) more
convenient way to interpose a vapor layer between the given solid phase S1 and the
liquid phase, within the periodicity cell Cr (see Figure 3 below). Similarly, problem (3.4)
amounts to finding the more convenient way to make a transition from solid to vapor.
In the hydrophilic case the best transition from solid to liquid is obtained for V empty,
that is, it is not convenient to insert any vapor layer, while in the hydrophobic case the
best transition from solid to vapor is obtained for L empty.
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(iii) Let Pa be a closed half-space of the form xd ≤ a that contains S1. It is easy to
show that the total capillary energy of V ∩Pa is not larger than that of V , and therefore
one can freely add to the cell problem (3.4) the constraint V ⊂ Pa. The same for the cell
problem (3.5).

(iv) The energy densities σhom
SL and σhom

SV satisfy the wetting condition

|σhom
SL − σhom

SV | ≤ σLV .

Hence the right-hand side of (3.6) belongs to [−1, 1] and θhom is a well-defined angle
between 0 and π. Indeed, given a configuration which makes the transition from solid to
liquid (the one tested in (3.5)), by adding a flat interface from liquid to vapor, we obtain
a new configuration which makes the transition from solid to vapor, and whose energy is
that of the previous configuration plus σLV |Qr|. Hence σhom

SV ≤ σhom
SL +σLV . In a similar

way we prove that σhom
SL ≤ σhom

SV + σLV .
(v) The periodicity assumption on S1 and the scaling formula (3.1)) encode our idea

of a flat surface with roughness on a small scale. The symmetry assumption on S1 has
a purely technical meaning; if removed, the formulas for the homogenized coefficients
becomes more complicated (cf. Theorem 5.2).

(vi) Formulas (3.4) and (3.5) hold even for surfaces which are chemically heteroge-
neous on the same scale of the roughness. More precisely, we assume that the solid-liquid
and the solid-vapor energy densities depend on ε and are of the form

σε
SL(x) := σSL(x/ε) , σε

SV (x) := σSV (x/ε) , (3.7)

where σSL and σSV are r-periodic even functions defined on S1. In case S1 is flat (no
roughness), the minima in (3.4) and (3.5) are achieved respectively for V and L empty,
and therefore σhom

SL and σhom
SV are the average of σSL and σSV on the periodicity cell.

3.2. Explicit computations in dimension d = 2. - The homogenized coefficients
are in general hard to compute. However, we notice that the infimum in (3.4) (resp.,
(3.5)) is always achieved, and the optimal V satisfy Young’s law and the liquid-vapor
interface ΣLV has zero mean curvature (in the cell problem (3.4), the volume of V is
not constrained). In dimension d = 2, this means that ΣLV is made of line segments
which meet the solid surface with given angle θ. In general, this allows only for a finite
number of possible configurations, that can be easily guessed and checked one by one for
optimality (see Figure 3).

S1

L

V

θ
θ

S1

L

V

S1

L

V

r

Figure 3. Possible optimal configurations for a two-dimensional geometry (hydrophobic case).

In dimension d = 3, these computations become unfeasible because there are many more
surfaces with zero mean curvature than just planes.

4. Discussion of the physical implications

A typical way of investigating experimentally the wetting properties of rough surfaces is
to determine, for a fixed surface, the macroscopic contact angle for various liquids in a
controlled atmosphere. This amounts to plotting cos θhom as a function of cos θ, at fixed
S1.

A first result of our analysis is that such diagram is symmetric, that is, cos θhom is an
odd function of cos θ. This is because the solution corresponding to a sign change of cos θ
can be obtained by exchanging the role of L and V in (3.4) and (3.5). The two values of
σhom

SL and σhom
SV are thus exchanged, leading to a change of sign of cos θhom. The physical

implication is that deviations from symmetry of experimental plots of cos θhom vs. cos θ
cannot be attributed to energy minimizing properties of rough surfaces, but rather to
the fact that experimental measurements are affected by multiplicity of metastable equi-
librium configurations, hysteresis, dynamical effects.

In the rest of this section, we will restrict our attention to the case of chemically ho-
mogeneous solid phase, described by (3.2), and satisfying symmetry condition described
in Section 3. This is the case that has received most attention in the Physics literature.
A crucial parameter is then the ratio R between effective and apparent area of the solid
surface, that is

R :=
|∂S1 ∩ Cr|

|Qr|
, (4.1)

where Qr and Cr are defined as in Section 3. If S1 is the subgraph of a sufficiently regular
function f (see (3.2)), then R is given by the formula

R =
1

|Qr|

∫

Qr

√

1 + |∇f |2 ,

Thus R gives a quantitative measure of the roughness of the reference surface ∂S1 and
of all its scaled copies ∂Sε.

The hydrophilic case

Throughout this subsection, we assume cos θ ≥ 0, and replace the interfacial energy
E with the renormalized energy Ẽ in (2.7). Thus the energy that appears in the cell
problems (3.4) and (3.5) is

Ẽ(L, Cr) = Ẽ(V, Cr) = cos θ |ΣSV | + |ΣLV | ,

and one immediately verifies that the infimum in (3.4) is achieved for V empty, that is,
σ̃hom

SL = 0 (see Remark 3.1(ii)). Hence (3.5) becomes

cos θhom = σ̃hom
SV = inf

L

1

|Qr|
Ẽ(L, Cr) . (4.2)

4.1. Roughness enhances hydrophily. - For hydrophilic surfaces, roughness de-
creases the contact angle, that is,

cos θ ≤ cos θhom .
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This inequality is a consequence of the following estimate: for every admissible set L for
the minimum problem (4.2) there holds

Ẽ(L, Cr) = cos θ|ΣSV | + |ΣLV |
≥ cos θ

(

|ΣSV | + |ΣLV |
)

≥ cos θ
(

|Π(ΣSV )| + |Π(ΣLV )|
)

≥ cos θ|Qr| ,

where Π denotes the orthogonal projection of R
d onto the horizontal plane xd = 0, the

second inequality follows from the fact that orthogonal projections reduce area, and the
last inequality follows by the fact that the projections of ΣSV or ΣLV cover Qr, that is,
every vertical line passing through Qr meets either ΣSV or ΣLV at least once.

4.2. Upper bounds for cos θhom. - By formula (4.2), the energy of an admissible
test configuration Ltrial gives an upper bound on cos θhom, and precisely

cos θhom ≤ Ẽ(Ltrial, Cr)

|Qr|
. (4.3)

We show below that Wenzel and Cassie-Baxter laws correspond to particular choices
of the test configuration Ltrial, and therefore give two upper bounds for cos θhom. As
pointed out in §4.6, for certain geometries none of these bounds is attained, and both laws
overestimate the enhancement of hydrophilicity (or hydrophobicity) due to roughness.

4.3. Wenzel bound. - By taking Ltrial empty, we get Ẽ(Ltrial, Cr) equal to
cos θ |∂S1 ∩ Cr| = cos θ R|Qr|, which gives the Wenzel bound

cos θhom ≤ R cos θ .

This bound is achieved when there is perfect contact between the solid and vapor phases,
which is the assumption of Wenzel’s model. This is indeed the case for cos θ small enough
(see §4.5 and §4.6).

4.4. Cassie-Baxter bound. - Let m be the maximal height for a point in S1, that
is, Pm := {x : xd ≤ m} is the smallest horizontal half-space that contains S1. Now we
take the configuration Ltrial := (Pm \ S1) ∩ Cr (see Figure 4) to obtain an upper bound
for cos θhom as in (4.3).

r/2
S1

V
L

−r/2

m

xd

x1... xd−1

Figure 4. Trial configuration for the Cassie-Baxter bound (hydrophilic case).

In this case ΣSV and ΣLV are a partition of the square Qr (translated to height m), and
hence |ΣSV | + |ΣLV | = |Qr|. Setting

φs :=
|{x ∈ Qr : f(x) = m}|

|Qr|
, (4.4)

we have Ẽ(Ltrial, Cr) = cos θ |ΣSV | + |ΣLV | =
(

φs cos θ + 1 − φs

)

|Qr|. Hence we obtain
the Cassie-Baxter bound

cos θhom ≤ φs cos θ + 1 − φs .

For special geometries, this bound is actually achieved if cos θ is large enough (see §4.6).

The hydrophobic case

All the arguments used in the previous subsection have a natural counterpart in the
hydrophobic case, cos θ ≤ 0. We give a complete review of the results for the convenience
of the reader, but we will omit proofs since these are immediately obtained from those
in the hydrophilic case by replacing cos θ with | cos θ|, and exchanging the role of the
phases L and V .

Using the renormalized energy Ẽ given in (2.8), we obtain the formula

− cos θhom = | cos θhom| = σ̃hom
SL = inf

V

1

|Qr|
Ẽ(V, Cr) , (4.5)

where the class of admissible V is the same as for the cell problem (3.5), see Section 3.
As before, roughness always enhances hydrophobicity, namely,

| cos θ| ≤ | cos θhom| .

An upper bound for | cos θhom| can be obtained from (4.5) by using an arbitrary ad-
missible test configuration V trial. Taking for V trial, respectively, the empty set and the
configuration obtained from Figure 4 by exchanging the roles of L and V we obtain the
Wenzel and Cassie-Baxter bounds

| cos θhom| ≤ R| cos θ| and | cos θhom| ≤ φs| cos θ| + 1 − φs ,

where the geometric parameters R and φs are defined in (4.1) and (4.4).

Further remarks

4.5. Achievement of the Wenzel bound. - Let S1 be the subgraph of a regular
function f (cf. (3.2)). Then the Wenzel bound is achieved for

| cos θ| ≤ 1√
1 + m2

where m := max
x∈Qr

|∇f(x)| .

We prove this assertion in the hydrophilic case. Consider an admissible test configuration
L for the minimum problem in (4.2). Then

cos θ |ΣSL| ≤
|ΣSL|√
1 + m2

=
1√

1 + m2

∫

Π(ΣSL)

√

1 + |∇f |2

≤ |Π(ΣSL)| = |Π(ΣLV )| ≤ |ΣLV | ,
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where Π is the projection onto the plane xd = 0, the last equality follows from the fact
that ΣSL and ΣLV have the same projection, and the last inequality from the fact that
orthogonal projections reduce the area. Using the inequality above,

Ẽ(L, Cr) = cos θ |ΣSV | + |ΣLV |
= cos θ

(

|∂S1 ∩ Cr| − |ΣSL|
)

+ |ΣLV |
≥ cos θ|∂S1 ∩ Cr| = R cos θ |Qr| ,

which implies, by (4.2), cos θhom ≥ R cos θ, that is, Wenzel bound is achieved.

4.6. Examples. - Depending on the geometry and on cos θ, the macroscopic coeffi-
cient cos θhom can agree with the Wenzel bound, with the Cassie-Baxter bound, or with
none of the two. Examples of these situations in the hydrophobic case and for d = 2 are
described in Figure 5. For the geometry in (A) or (B), the Wenzel bound is attained
when

a

b
≤ 1 − | cos θ|

2| cos θ| ,

(and the geometric parameter R is equal to 1 + 4a/r) while the Cassie-Baxter bound is
attained in the remaining cases (and φs = 1 − 2b/r).

a

b

r

a

b

(A) (B) (C)
L

S1
S1

L

V

b

S1

L

V

a

a'
b'

Figure 5. Examples of optimal configurations in the hydrophobic case:

(A) Wenzel, (B) Cassie-Baxter, (C) mixed.

The geometry in (C) leads to a more interesting behavior.2 The configuration displayed
in the figure mixes features of Wenzel’s (complete contact on tall asperities) with features
of the Cassie-Baxter ones (composite contact on short asperities). To simplify computa-
tions, it is convenient to estimate its energy from above by replacing the slightly tilted
liquid-vapor interfaces in Figure 5(C) with horizontal ones. It is then easy to show that
the mixed configuration is the optimal one if

a′

b′
≤ 1 − | cos θ|

2| cos θ| ≤ a

b
.

If this is the case, the Wenzel and Cassie-Baxter laws overestimate the value of | cos θhom|,
respectively by

4a| cos θ| − 2b(1 − | cos θ|)
r

and
b′(1 − | cos θ|) − 2a′| cos θ|

r
.

2Cassie-Baxter law is usually discussed for rough surfaces with only one type of asperities. For surfaces

mixing tall and short asperities, there is not a unique way of realizing a composite contact. Our definition

of Cassie-Baxter configurations aims at ensuring that the parameter φs appearing in the Cassie-Baxter laws

for the contact angle depend only on the geometry of the surface, and not on features of the equilibrium

configuration (which is a–priori unknown).

4.7. Conclusions. - The results of this section are summarized in Figure 6 below.
In contrast with statements that are found in the literature, the plot shows that it is not
possible to turn a hydrophilic surface into a hydrophobic one by tuning its roughness.
Of course, this does not exclude that a drop on a rough hydrophilic surface may exhibit
a contact angle larger than π/2. Configurations of this type are actually observed [16],
but our results show that they are only metastable. Notice also that the graph in Figure
6 is symmetric under change of sign of cos θ, while calculations leading to non-symmetric
diagrams are often reported in the literature. Also for this discrepancy, the explanation
lies in metastability: The equilibrium configurations analyzed, e.g., in [4], leading to a
non-symmetric relation cos θ 7→ cos θhom, are not energy minimizing in the small cos θ
regime where the Wenzel bound is always attained (this fact is actually confirmed by the
experiments in [16]). Finally, another interesting consequence of our analysis is a selection
criterion for energy optimality: lowest energy is associated with smallest | cos θhom|,
i.e., with the most conservative estimate of the roughness-induced enhancement of the
hydrophobic or hydrophilic properties of a surface.

cosθ hom

cosθ
1

1

−1

Wenzel
trial

1/R
−1/R−1

Figure 6. Plot of a typical relation cos θ 7→ cos θhom for a given geometry (dotted curve). Points corresponding

to minimum energy configurations must lie in the shaded area, delimited by the bounds given in the text.

5. Rigorous mathematical result

We define Qr, Cr, and Sε as in Section 3, except that we do not assume any symmetry
for S1. The solid-liquid and solid-vapor interfacial energy densities are functions on ∂Sε

which depends on ε as described in (3.7).

The ambient space is a bounded open set Ω of R
d; each configuration of the system

associated to Sε is described by a subset L of Ω which does not intersects Sε, or by its
complement V := Ω \ (Sε ∪ L). The energy of a configuration L within the container Ω
is

Eε(L) = Eε(L,Ω) :=

∫

ΣSL∩Ω

σε
SL +

∫

ΣSV ∩Ω

σε
SV + σLV |ΣLV ∩ Ω| . (5.1)

For technical reasons, it is convenient to encode the constraint L ∩ Sε = ∅ in the func-
tional, by setting Eε(L) := +∞ for all sets L ⊂ Ω that intersect Sε.
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5.1. Additional requirements and remarks. - (i) Volume and volume integrals
are computed in term of the Lebesgue measure

�
d, while surface areas and surface

integrals, like those in (5.1), are computed in terms of the (d− 1)-dimensional Hausdorff
measure � d−1. Sets and functions are always assumed to be Borel measurable.

(ii) We denote by � the class of all Borel subsets of Ω. On this class, we consider
the distance given by the volume of the symmetric difference, that is

dist(A, B) := |A \ B| + |B \ A| . (5.2)

In this context, we identify sets which differ by a Lebesgue-null subset.
(iii) The solid-liquid interface ΣSL is intended as the essential common boundary of

the sets Sε and L, namely the set of all points in Ω where both sets have strictly positive
lower d-dimensional density. The interfaces ΣSV and ΣLV are defined in a similar way.
We also assume that the essential boundary of the set S1, namely the set of all points
in R

d where both S1 and its complement have strictly positive lower density, has locally
finite area.

(iv) The interfaces ΣSL and ΣSV are contained in the essential boundary of Sε, and
therefore have always finite area. If the liquid-vapor interface ΣLV has finite area, or,
equivalently, if the energy Eε(L,Ω) is finite, then L is a set with finite perimeter in Ω
in the sense of Caccioppoli, and the perimeter agrees with the sum of the areas of the
solid-liquid and liquid-vapor interfaces (cf. [10], §5.8, Lemma 1).

(v) When the boundary of L is piecewise smooth, the notion of interface given above
agrees with the familiar one. However, since our variational approach is based on com-
pactness and semicontinuity methods, it is convenient to consider a class of sets L which
is large enough to enjoy some “easy” compactness property, such as the class of finite
perimeter sets. From this viewpoint, the right notion of area of an interface is exactly
the (d− 1)-dimensional Hausdorff measure of the essential common boundary of the two
phases. Indeed, the perimeter of L, and the total interfacial energy Eε(L) are lower semi-
continuous on � (the semicontinuity of Eε requires that the interfacial energy densities
satisfy the wetting condition (2.2), cf. [2], Remark 2.5). In particular, it follows from the
standard compactness theorem for finite perimeter sets (cf. [3], Theorem 3.39) that the
minimum of Eε among all sets L with prescribed volume l is achieved; the same holds
even if we add to Eε an additional term which is lower semicontinuous on � , such as
the potential energy (2.3).

5.2. Theorem. - (i) The functionals Eε are uniformly coercive on � , i.e., every
sequence of sets (Lε) with bounded energies Eε(Lε) is pre-compact in � .

(ii) As ε → 0, Eε Γ-converge on � to the functional Ehom given by

Ehom(L) := σhom
SL |ΣSL| + σhom

SV |ΣSV | + σLV |ΣLV |

for every L ∈ � which does not intersects S := {xd ≤ 0}, and extended to +∞ otherwise,
where

σhom
SL := lim inf

n→∞

{

inf
V

E1(V, Cnr)

|Qnr|

}

, σhom
SV := lim inf

n→∞

{

inf
L

E1(L, Cnr)

|Qnr|

}

(5.3)

and the infima are taken over all bounded sets V (respectively, L) contained in Cnr which
do not intersect S1.

(iii) If the set S1 is symmetric with respect to the coordinate planes xi = 0 for i =
1, . . . , d − 1, then σhom

SL and σhom
SV are given by formulas (3.4) and (3.5), respectively.

(iv) For every ε > 0, let Lε be a minimizer of Eε(L) with prescribed volume |L| = l.
Then the sequence (Lε) is pre-compact in � , and every limit point is a minimizer of
Ehom(L) with prescribed volume |L| = l.

5.3. Remarks. - (i) For details on the notion of Γ-convergence and its applications,
we refer the reader to [1], [7].

(ii) Statement (i) is an immediate consequence of the standard compactness result
for finite perimeter sets, cf. §5.1(v).

(iii) The existence of minimizers in statement (iv) is ensured by standard lower semi-
continuity and compactness arguments, provided that l < |Ω \ Sε|, cf. §5.1(v). Their
compactness follows from statement (i), while the convergence to a minimizer of Ehom

is a standard corollary of the Γ-convergence of the energies. More precisely, we need
the Γ-convergence of Eε to Ehom on the subclass of all L ∈ � with prescribed volume
|L| = l. We omit to prove this easy variant of statement (ii).

(iv) Since Γ-convergence is stable under continuous perturbations, statement (ii) and
(iv) holds even if we add to the energies an additional term which is continuous on � ,
such as the potential energy (2.3).

The rest of this section is devoted to the proof of statements (ii) and (iii); since they
are quite standard, we only sketch them. Statement (ii) consists of two separate parts:
the lower bound inequality and the upper bound inequality.

5.4. Proof of the lower bound inequality. - In the following we will freely
pass to subsequence without relabelling. We must show that if Lε converge to L in � ,
then

lim inf
ε→0

Eε(Lε) ≥ Ehom(L) . (5.4)

We can assume that the lower limit is finite, and is actually a limit. We denote by λε

the energy distributions in Ω associated to the energies Eε and the configurations Lε.
Up to subsequence, λε converge in the sense of measures to some finite measure λ, and
by a standard argument (first given in [12]), to prove (5.4) it suffices to show that the
(d − 1)-dimensional density of λ satisfies

densd−1(λ, x) ≥ σLV for a.e. x ∈ ΣLV , (5.5)

densd−1(λ, x) ≥ σhom
SV for a.e. x ∈ ΣSV , (5.6)

densd−1(λ, x) ≥ σhom
SL for a.e. x ∈ ΣSL. (5.7)

Inequality (5.5) is a straightforward consequence of the lower semicontinuity of perimeter.
The proof of inequality (5.6) is more delicate. Let U(x, ρ) denote the d-dimensional cube
with center x, side of length ρ, and axis parallel to the coordinate axis. For a.e. x ∈ ΣSV ,
the (d − 1)-dimensional density of λ at x is given by

densd−1(λ, x) = lim
i→∞

λ(U(x, ρi))

ρd−1
i

,

where ρi is any sequence converging to 0. By choosing ρi so that λ(∂U(x, ρi)) = 0, we
have that λ(U(x, ρi)) is the limit as ε → 0 of λε(U(x, ρi)) = Eε(Lε, U(x, ρi)), and by a
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standard diagonal argument we can choose εi so that εi → 0 and

densd−1(λ, x) = lim
i→∞

Eεi
(Lεi

, U(x, ρi))

ρd−1
i

. (5.8)

We can also choose εi so that εi ¿ ρi, and ρi/εi is a number of the form nir with ni

integer (converging to +∞). Let now Ti be an homothety with scaling factor 1/εi which
takes U(x, ρi) into Ui := U(0, nir), and set L′

i := Ti(Lεi
) ∩ Ui. Then

Eεi
(Lεi

, U(x, ri))

ρd−1
i

=
E1(L

′

i, Ui)

(nir)d−1
. (5.9)

Since the d-dimensional density L at x is 0 for a.e. x ∈ ΣSV , we can choose the numbers
ρi and εi so that, in addition, |L′

i| ¿ |Ui| = (nir)
d. Therefore, taking the truncated sets

L′′

i := L′

i ∩ {xd ≤ ti} with suitably chosen 0 < ti < nir/2, the total interfacial energy
associated to L′′

i satisfies

E1(L
′′

i , Cnir) = E1(L
′′

i , Ui) = E1(L
′

i, Ui) + o((nir)
d−1) . (5.10)

Putting together (5.8), (5.9), (5.10), and the definition of σhom
SV in (5.3), we obtain

densd−1(λ, x) = lim
i→∞

E1(L
′′

i , Cnir)

(nir)d−1
≥ σhom

SV .

The proof of (5.7) is identical.

5.5. Proof of the upper bound inequality. - By standard arguments, proving
the upper bound inequality reduces to show the following: given a positive number δ and
a set L in Ω \S with piecewise smooth boundary such that ΣLV meets ∂S transversally,
there exists a sequence of sets (Lε) converging to L such that

lim sup
ε→0

Eε(Lε) ≤ Ehom(L) + δ .

By the definition of homogenized coefficients, we can choose m and Vδ ⊂ Cmr \ S1, and
n and Lδ ⊂ Cnr \ S1, so that

E1(Vδ, Cmr)

|Qmr|
≤ σhom

SL + δ ,
E1(Lδ, Cnr)

|Qnr|
≤ σhom

SV + δ .

For ε sufficiently small we construct the configuration Lε by perturbing L as shown in
Figure 7 below.

mr

Sε

Vδ
Lε~L

Lδ

nr copy of Lδ scaled by ε copy of Vδ scaled by ε

Figure 7. Construction of Lε by scaled copies of Vδ and Lδ .

Clearly Lε converge to L as ε → 0, and a simple computation yields the estimate
lim supEε(Lε) ≤ Ehom(L) + O(δ).

5.6. Proof of statement (iii). - We have to show that the right-hand side of (3.4)
is equal to the right-hand side of the first equality in (5.3). It is clear that the former is
not larger than the latter. To prove the opposite inequality, it suffices to show that for
every integer n and every set V ⊂ Cnr \ S1, we can find a symmetric set V ′ in Cr \ S1

such that
E(V ′, Cr)

|Qr|
≤ E(V, Cnr)

|Qnr|
. (5.11)

To this end, we subdivide Cnr into (2n)d−1 pairwise disjoint parallel copies C of the
cylinder (0, r/2)d−1×R (a quarter of the periodicity cell Cr), and among them we choose
the one which minimizes the energy E(V, C). Hence E(V, C) ≤ E(V, Cnr)/(2n)d−1. By
taking the union of 2d−1 copies of V ∩ C, suitably reflected and translated, we obtain a
symmetric set V ′ in Cr \ S1 such that E(V, Cr) = 2d−1E(V, C) ≤ E(V, Cnr)/nd−1, and
therefore V ′ satisfies (5.11).

In a similar way, one proves that the right-hand side of (3.5) is equal to the right-hand
side of the second equality in (5.3).
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[2] G. Alberti, G. Bouchitté, P. Seppecher: Phase transition with line-tension effect. Arch. Rational Mech.

Anal., 144 (1998), 1–46.

[3] L. Ambrosio, N. Fusco, D. Pallara: Functions of bounded variation and free discontinuity problems. Oxford

Mathematical Monographs. Oxford Science Publications, Oxford, 1999
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