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Functions with prescribed singularities

G. Alberti, S. Baldo, G. Orlandi

Abstract. The distributional k-dimensional Jacobian of a map u in the Sobolev space
W 1,k−1 which takes values in the the sphere Sk−1 can be viewed as the boundary of a
rectifiable current of codimension k carried by (part of) the singularity of u which is
topologically relevant. The main purpose of this paper is to investigate the range of
the Jacobian operator; in particular, we show that any boundary M of codimension k
can be realized as Jacobian of a Sobolev map valued in Sk−1. In case M is polyhedral,
the map we construct is smooth outside M plus an additional polyhedral set of lower
dimension, and can be used in the constructive part of the proof of a Γ-convergence
result for functionals of Ginzburg-Landau type, as described in [2].
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1. Introduction

Given a map u = (u1, u2) from a domain Ω ⊂ R
2 into R

2 which belongs to the Sobolev
class W 1,2, the Jacobian determinant of u is Ju := det(Du) (notice the absence of
modulus). This pointwise definition may not give an L1-function for less regular maps
u, but the Jacobian can be still defined in some cases using the identity

Ju =
∂

∂x1

(
u1

∂u2

∂x2

)
− ∂

∂x2

(
u1

∂u2

∂x1

)
. (1.1)

Indeed, the right-hand side of (1.1) makes sense, as a distribution, for all u of class
W 1,1 ∩ L∞; the two definitions clearly agree for maps of class W 1,2.

If we restrict our attention to maps u which take values in the unit circle S1,
for smooth u the area formula implies that Ju vanishes, because S1 has null two-
dimensional measure. In fact, the same holds for maps of class W 1,p when p ≥ 2, but is
no longer true when p < 2: for example, the (distributional) Jacobian of u(x) := x/|x|
defined by (1.1) is πδ0, where δ0 is the Dirac mass centered at the origin, while det(Du)
is almost everywhere null. More generally, if u is smooth except for finitely many
singular points xi, then Ju is a sum of Dirac masses centered at xi, endowed with
a multiplicity that can be recovered from the degree of the restriction of u to any
curve which winds around xi (see §3.6 below). The distributional Jacobian was first
applied in the context of nonlinear elasticity by J. Ball in [5] (see also [31]), while the
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relation with topological singularities and Dirac masses was pointed out by H. Brezis,
J.-M. Coron, and E. Lieb [14] in the context of harmonic maps and liquid crystal
theory.

For domains and target spaces of general dimension, the situation is quite similar.
Given a regular map u = (u1, . . . , uk) from Ω ⊂ R

n into R
k, it is convenient to define

the k-dimensional Jacobian as the pull-back according to u of the standard volume
form on R

k, that is, Ju := du1 ∧ · · · ∧ duk. This definition makes sense for all maps
of class at least W 1,k, and can be extended to maps of class W 1,k−1 ∩ L∞ using the
identity Ju = 1

k d
( ∑

(−1)i−1ui

∧
j 6=i duj

)
. As before, if u : Ω → Sk−1 is of class W 1,p

with p ≥ k, then Ju = 0, but this may be no longer true when p < k. More precisely,
if u is smooth outside a regular surface M of codimension k, then Ju is supported on
the set M , and can be reconstructed from M and the degree of the restriction of u
to any surface of dimension k − 1 which winds around M (cf. [28] and §3.7 below).
In this sense, we may say that Ju represent the part of the singularity of u which is
topologically relevant (1).

The previous observations on maps with regular singularity suggest the following
general structure theorem (see [27], [28]): if u : Ω → Sk−1 is of class W 1,k−1 and
Ju is a locally bounded measure, then Ju is concentrated on a set of (Hausdorff)
codimension k, and more precisely it can be identified (2) with a rectifiable current of
codimension k and without boundary. This result can also be obtained as a corollary
of Federer-Fleming boundary rectifiability theorem and the following slightly more
general statement (see Theorem 3.8 below): the Jacobian of a map u : Ω → Sk−1 of
class W 1,k−1 agrees with the boundary of a rectifiable current of codimension k − 1.
For k = 2, 4, 8 this theorem was proved independently in [32], using results from [21];
a similar statement for maps in the trace space W 1−1/k,k was given in [23] for any k.

The distributional Jacobian of maps in W 1,k−1(Ω, Sk−1) is particularly interesting
because is the obstruction to strong approximation by smooth maps (see [6], [7], and
also [32], [33], [34], where the Jacobian is known as topological singularity). In fact,
Ju is just the projection of the boundary of the graph of u, which plays an essential
rôle in the theory of cartesian currents developed by M. Giaquinta, G. Modica, and
J. Souček ([19], [20], [21]); in particular, the rectifiability of Ju can be recovered by
the product structure of this boundary (cf. Remark 7.10). More recently, R.L. Jerrard
and H.M. Soner [28] proposed a systematic study of the distributional Jacobian of
maps valued in R

k which underlines the analogy with the theory of BV functions.

The main purpose of this paper is to investigate which surfaces, or currents, can
be obtained as Jacobians of Sk−1-valued maps, that is to say, to construct maps with

(1) This statement must be taken with care: if h : S3 → S2 is the Hopf map—
namely the one that generates the third homotopy group of S2—and u : R

4 → S2

is given by u(x) := h(x/|x|), then u belongs to W 1,p(Ω, S2) for every p < 3, and in
particular Ju = 0; yet the singularity at the origin cannot be discarded as topologically
unrelevant (cf. [24]).

(2) The Hodge-type ? operator defined in §2.7 provides a canonical identification of
k-covectors and (n−k)-vectors; thus ?Ju is an (n−k)-current, although in general not
a rectifiable one. In the rest of this introduction we tacitly assume this identification.

a prescribed singularity. Our main result in this direction is the exact converse of
Theorem 3.8:

Main result (see Theorem 5.6) – Let Ω be an open set in R
n, and let M be the

boundary of a rectifiable current of codimension k − 1 in Ω. Then there exists a map
u ∈ W 1,k−1(Ω, Sk−1) whose Jacobian agrees, up to a canonical identification, with the
current M .

The proof of this result is based on a dipole construction much in the spirit of [14],
and a careful iteration argument. In §6.7 we sketch a very simple proof for the case
k = 2 based on the theory of BV functions.

Note that the previous statement, although very general, does not settle the ques-
tion completely. In particular, it is natural to ask how regular can be u when M is
a regular surface. In this direction, we can show that when M is a smooth surface of
codimension k = 2, then u can be taken of class W 1,p

loc for every p < 1∗ = n/(n − 1)
and smooth in the complement of M (see Theorem 4.4 and §6.4).

Such a result could not be proved for surfaces of codimension k > 2: as pointed
out in §6.5, constructing a map u smooth in the complement of M is quite close to
proving that M is the boundary of a smooth surface (and not just of a rectifiable
current) and even a complete intersection, and it is known that both statements may
not hold when the codimension of M is strictly larger than 2 (see [9]).

Nevertheless, u can be taken smooth in the complement of M ∪ S, where S is an
additional singular set of codimension k + 1 (see Theorem 5.10). Note that we have
preferred to state this result for polyhedral chains rather than smooth surfaces, the
reason being that polyhedral chains, and not smooth surfaces, are dense in the class of
integral currents. Indeed, the original motivation for this research was to provide an
upper bound for a Γ-convergence result for functionals of Ginzburg-Landau type, and
this required constructing a map u as above for every M in a suitably dense subclass
of integral currents (cf. [1], [2], see also [29] for related lower bound and compactness
results).

The paper is organized as follows. In Section 2 we set the notation and briefly recall
the notions of geometric measure theory which are needed throughout the paper, plus
some additional results which are not widely available in reference texts. Section 3
contains the definition of Jacobian and summarize some of the existing results, here
included the structure theorem for the Jacobians of Sk−1-valued maps (Theorem 3.8
and Corollary 3.10). In sections 4 and 5 we describe two constructions for maps with
prescribed singularity, or Jacobian, respectively in the case k = 2 and k arbitrary
(when k = 2, the special structure of S1 allows for a construction which is simpler
and more powerful than that for general k). In Section 6 we have gathered some
additional remarks on the results described in the previous sections, together with
some open problems. For the sake of a clear exposition, we have postponed to Section
7 some technical lemmas: a version of the coarea formula for Sobolev maps, the proof
of Theorem 3.8, and an approximation result for rectifiable currents.
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99.01699.CT01, and by MURST research project “Calcolo delle Variazioni”. During
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2. Notation and preliminary results

Throughout this paper Ω is an open subset of R
n with n ≥ 2; Sk−1 is the unit sphere in

R
k. The constant αk stands for the k-dimensional volume of the unit ball in R

k; thus
kαk is the (k − 1)-dimensional volume of Sk−1. The open ball of radius r and center
x is denoted by B(x, r), and we simply write B(r) if x is the origin; a k-dimensional
disk in R

n is an oriented isometric embedding of a closed ball in R
k, and is usually

denoted by E; we may write Ek to recall the dimension.

By k-surface in Ω we mean, if not otherwise specified, a smooth, oriented, closed
k-dimensional submanifold of Ω, possibly with boundary.

�
k stands for the k-

dimensional Hausdorff measure (and agrees with the usual k-dimensional volume on
every smooth k-surface), while � n is the n-dimensional Lebesgue measure; when no
doubts may arise, we omit any explicitly mention of the measure in integrals. Sets
and maps are always at least Borel measurable.

We write Du to denote indifferently the classical, the approximate, and the dis-
tributional derivative (or gradient) of u, the precise meaning being usually clear from
the context. We denote by Liploc(Ω) the class of all maps which are locally Lipschitz
on Ω. We say that a map is a Sobolev map when it belongs to W 1,1

loc ; we recall that
for such maps the distributional and the pointwise (approximate) derivative agree. As
usual, W 1,p(Ω, Sk−1) is the class of all u in the Sobolev space W 1,p(Ω, Rk) which take
values in Sk−1 almost everywhere. For the basic properties of Sobolev functions we
refer to [16].

Throughout this paper we will make frequent use of many elementary results and
notions from geometric measure theory and differential topology which are not widely
available in reference texts. In order to give precise definitions, and allow the reader
to verify all formulas, we summarize beforehand the basic notations about forms and
currents. We refer the reader to [17], [20], or [35] for detailed expositions of geometric
measure theory, and to [25], [22] for differential topology.

2.1. Vectors and covectors. – For k-vectors and k-covectors in R
n we follow

the standard notation (see for instance [35], §25, or [20], §2.2.1) and just recall here
some basic facts: {e1, . . . , en} is the canonical basis of R

n, and given a multi-index i

of order k, namely i := {i1, . . . , ik} with 1 ≤ i1 < i2 < · · · < ik ≤ n, we denote by ei

the k-vector ei1 ∧ · · · ∧ eik
, and by êi the (n− k)-vector associated to the complement

of i. The set of all ei with i ranging among all multi-indexes of order k is a basis of the
space ∧k(Rn) of all k-vectors in R

n. We denote by dxi the 1-covector (or linear form)
which takes x ∈ R

n into the i-th component xi, and define the k-covector dxi and the

(n − k)-covector d̂xi as above. The n-covector dx1 ∧ · · · ∧ dxn is sometimes simply
denoted by dx. The set of all dxi with i = 1, . . . , n is the canonical basis of the dual of
R

n (the space of 1-covectors ∧1(Rn)), and the set of all dxi with i ranging among all

multi-indexes of order k is a basis of the space ∧k(Rn) of all k-covectors (3). Vectors
and covectors are dual to each other via the duality pairing defined by dxi · ej := δij—
that is, 1 if i = j, and 0 otherwise.

2.2. Rectifiable sets. – A set M is k-rectifiable if it has locally finite
�

k

measure, and can be covered, up to an
�

k-negligible subset, by a countable family
of k-dimensional surfaces of class C1. For such sets the tangent space Tan(M, x)
is well-defined in a measure theoretic sense at

�
k-almost every point x ∈ M ; an

orientation τ is any Borel map which associates to x a simple unit k-vector τ(x) which
spans Tan(M, x) for

�
k-a.e. x ∈ M (cf. [17], §3.2.14-16, or [20], §2.1.4). If M is

an orientable k-surface, then the orientation is always taken to be continuous, and
induces a canonical orientation on ∂M (so that η ∧ τ∂M = τM , where η is the unit
outer normal to ∂M).

2.3. Currents and forms. – A k-form ω on Ω is a map (or even a distribution)
which takes values in k-covectors, and dω denotes its (external) differential; the action
of a smooth oriented k-surface in Ω on a k-form is given by the usual integration
(cf. §2.5).

A k-dimensional current on Ω is a distribution which takes values in k-vectors,
or equivalently, an element of the dual of the space of smooth k-forms with compact
support. The action of a current T on a form ω is sometimes denoted by T [ω]. The
boundary of T is defined in order to satisfy Stokes theorem, that is, ∂T [ω] := T [dω]
for every k-form ω of class C∞

c .

The mass ‖T‖ of T is its total variation (as a distribution); therefore T has (locally)
finite mass if and only if it can be represented as a (locally) bounded measure valued
in k-vectors, that is, as the product of a (locally) bounded positive measure µ and an
orientation τ , namely a ∧k(Rn)-valued map such that |τ | = 1 µ-a.e. The measure µ is
called variation of T , and denoted by |T |.

2.4. Basic operations on currents and forms. – Given a proper map f :
Ω → Ω′, the pull-back of k-form ω on Ω′ according to f is the k-form on Ω defined
by f ]ω(x) := (Df(x))]ω(f(x)) (4), while the push-forward f]T of a k-current T on Ω
is the k-current on Ω′ defined by the obvious duality (that is, f] is the adjoint of f ]).
Recall that d(f ]ω) = f ](dω) and ∂(f]T ) = f](∂T ).

The cartesian product of a k1-current T1 in R
n and a k2-current T2 in R

m is a
(k1+k2)-current T1×T2 in R

n×R
m. In particular, if T1 = τ1 ·µ1 and T2 = τ2 ·µ2, then

(3) We endow ∧k(Rn) and ∧k(Rn) with the euclidean norms associated to the previ-
ous basis. These are different from the usual mass and co-mass, but sometimes more
convenient. On the other hand, the euclidean norm and the mass agree for simple
vectors (those which can be written as a wedge product of 1-vectors), and therefore
the difference is not relevant to most of this paper.

(4) Given a linear map L : R
n → R

m, then L] : ∧k(Rm) → ∧k(Rn) is defined by
L](β1 ∧ · · · ∧ βk) := β1L ∧ · · · ∧ βkL for simple k-covectors, and then extended by
linearity.
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T1×T2 = τ ·µ where µ is the product measure µ1×µ2, and τ(x, y) := τ1(x)∧τ2(y) (5).

2.5. Integral and polyhedral currents. – Given a rectifiable set M equipped
with an orientation τM and a multiplicity σM (namely a real function which is locally
summable on M), we can define a current T by

T [ω] :=

∫

M

σM (ω · τM ) d
� k for every k-form ω of class C∞

c . (2.1)

In other words, T is the k-vector-valued measure given by σM · τM ·� k M (the last
term stands for the restriction of the measure

�
k to the set M). Thus the variation of

T is the positive measure |T | = |σM | ·� k M , and the mass is ‖T‖ =
∫

M
|σM | d� k,

that is, the measure of the set M counted with multiplicity.
We may occasionally denote this current simply by M .
When M is a regular k-surface, the current canonically associated to M is given

by formula (2.1) with the multiplicity σM set equal to 1 everywhere.
A current T is called rectifiable if it can be represented as in (2.1) with an integer

multiplicity σM , and integral if both T and ∂T are rectifiable. A polyhedral current
in R

n is a finite sum of k-dimensional oriented simplexes Si endowed with constant
integer multiplicities σi. It is also usually assumed that Si ∩ Sj is either empty or a
common face (of any dimension) of Si and Sj .

Note that polyhedral currents are just the usual simplicial chains of algebraic topol-
ogy, and the boundary coincides with the usual algebraic object; they are particularly
relevant because they are dense in the class of integral currents (with respect to flat
convergence with convergence of masses).

Remark 2.6. – Every integral k-current M in R
n with finite mass, bounded

support, and no boundary is the boundary of an integral current N with finite mass,
e.g., the cone over M with vertex at the origin (more precisely, the push-forward of
the product current M × (0, 1) in R

n × R according to the map (x, t) 7→ tx). Then
when M is a polyhedral current, N is polyhedral, too.

2.7. Further operations on vectors and covectors. – There is a canonical
way to identify k-covectors and (n − k)-vectors, namely the operator ? which takes
every k-covector β into the (n − k)-vector ?β defined by the identity (6)

α · ?β = (α ∧ β) · (e1 ∧ · · · ∧ en) for every α ∈ ∧n−k(Rn).

Thus ? takes k-forms into (n−k)-currents; moreover the exterior derivative is conjugate
to the boundary operator via ?, in the sense that

?(dω) = (−1)n−k∂(?ω) . (2.2)

(5) Here one tacitly identifies multi-vectors in R
n and R

m with those in R
n × {0}

and {0} × R
m, respectively.

(6) A direct definition is ?dxi := σ(i′, i) êi for every multi-index i of order k, where i′

is the set of indices not contained in i and σ(i′, i) is the sign of the permutation (i′, i).
Up to the identification of k-vectors and k-covectors induced by the scalar product, ?
is the usual Hodge operator.

If we apply an h-covector β to a k vector v with k < h, we get an (h − k)-covector,
denoted by β v, which is defined by the identity (7).

(β v) · w = β · (v ∧ w) for every w ∈ ∧h−k(Rn).

One easily checks that
?(β v) = (?β) ∧ v . (2.3)

2.8. Convolution of currents and forms. – The convolution of two maps
U : R

n → ∧h(Rn) and T : R
n → ∧k(Rn) (resp. an h- and a k-current) is defined by

U ∗ T (x) :=

∫

Rn

U(x − y) ∧ T (y) dy . (2.4)

Since |U ∗T | ≤ |U | ∗ |T |, all the usual inequalities for the convolution of real functions
hold in this case, too. For instance, U ∗ T is a well-defined map in, say, L1 if both
U and T belong to L1, and ‖U ∗ T‖1 ≤ ‖U‖1‖T‖1. Moreover definition (2.4) can
be extended, as for the usual convolution, to the case both T and U are bounded
measures, or to the case T is a distribution and U is of class C∞

c .
Since U ∗T is the push-forward of the product current U ×T according to the map

Φ : R
n × R

n → R
n which takes (x, y) into x + y, the well-known formula ∂(U × T ) =

∂U × T + (−1)hU × ∂T gives

∂(U ∗ T ) = ∂U ∗ T + (−1)hU ∗ ∂T , (2.5)

provided all convolution products in (2.5) are well-defined (at least as distributions).
The convolution of an h-form ω : R

n → ∧h(Rn) and a k-current T : R
n → ∧k(Rn)

is defined by the obvious analogous of (2.4)—with the ∧-product replaced by the -
product—and enjoys the same basic properties. In particular, identity (2.3) yields
?(ω ∗ T ) = (?ω) ∗ T , and then (2.5) implies

d(ω ∗ T ) = (−1)k[dω ∗ T + ω ∗ ∂T ] . (2.6)

2.9. Forms on manifolds and submanifolds. – An h-form on a smooth k-
dimensional manifold M is a map which associates to every y ∈ M an h-covector on
Tan(M, y) (8). The restriction of an h-covector α in R

n to a k-dimensional subspace T
of R

k is the h-covector on T which represents the restriction of the dual map v 7→ α ·v
to h-vectors v in ∧h(T ). Accordingly, if M is a k-surface in R

n, the restriction of an
h-form ω on R

n to M is the map which takes every y ∈ M into the restriction of

(7) A direct definition is the following: given multi-indexes i and j of order h and
k respectively, then dxi ej := 0 if j 6⊂ i, and dxi ej := σ(j, i′) dxi′ otherwise, where
i′ := i \ j is the set of indices in i not contained in j. Up to a sign, this is the “elbow”
interior multiplication of [17], §1.5.1.

(8) To be precise, this is a section of the h-cotangent bundle of M .
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ω(y) to Tan(M, y); we say that the h-form ω on R
n extends the h-form ω′ on M if ω′

agrees with the restriction of ω to M . For forms of class C1 the exterior differential
commutes with the restriction, that is, dω′ is the restriction of dω.

A particularly relevant (k − 1)-form on R
k is

ω0(y) :=
k∑

i=1

(−1)i−1yid̂yi . (2.7)

Indeed dω0 = k dy1 ∧ · · · ∧ dyk = k dy, while the restriction of ω0 to the unit sphere
Sk−1 is the standard volume form on Sk−1.

2.10. Brouwer degree and area formula. – Given k-dimensional oriented
manifolds M and M ′, M compact and M ′ without boundary, and a continuous map
f : M → M ′, then deg(f, M, M ′, y) denotes the Brouwer degree of f at the point
y ∈ M ′ \ f(M) (see [25], Chapter 5, and [22], Chapter 3).

If f is of class C1 and y is a regular value of f , then deg(f, M, M ′, y) is the number
of points x ∈ f−1(y) where the derivative Df(x) is orientation-preserving, minus the
number of those where the derivative is orientation-reversing. We recall that the degree
is constant on each connected component of M ′ \ f(∂M); in particular, if ∂M = ∅,
deg(f, M, M ′, y) does not depend on y, and we simply write deg(f, M, M ′), or even
deg(f).

Using the degree we can write an “oriented” version of the area formula: for every
k-form ω on M ′

∫

M

(f ]ω) · τM d
� k =

∫

M ′

deg(f, M, ·) ω · τM ′ d
� k .

The following fact will be needed later: if M ′ = R
k, and f maps ∂M into Sk−1, then

deg(u, M, Rk, y) = 0 for |y| > 1 and

deg(u, M, Rk, y) = deg(f, ∂M, Sk−1) for |y| < 1. (2.8)

Indeed deg(u, M, ·) is constant on both components of R
k \ Sk−1, and must vanish

in the unbounded one. Moreover, denoting by d its value on the unit ball of R
k and

taking ω0 as in (2.7),

αk d =

∫

Rk

deg(f, M, Rk, y) dy =

∫

M

f ](dy) · τM d
� k

=

∫

M

1

k
df ](ω0) · τM d

� k

=

∫

∂M

1

k
f ](ω0) · τ∂M d

� k−1 = αk · deg(f, ∂M) ,

where the second and fifth equalities follow from the area formula, the third one from
the identity dy = 1

kdω0, and the fourth one from Stokes theorem.

2.11. Intersection and linking numbers. – Let M and M ′ be surfaces in R
n

with dimensions n − k and k, respectively, endowed with (locally constant) multiplic-
ities σM and σM ′ . If M and M ′ are transversal and ∂M ∩ M ′ = M ∩ ∂M ′ = ∅,
then the intersection number of M and M ′, int(M, M ′), is defined as the sum over all
x ∈ M ∩ M ′ of ±σM (x) · σM ′(x), where the sign is + if τM (x) ∧ τM ′(x) agrees with
e1 ∧ · · · ∧ en, and is − if the opposite holds (cf. [25], Section 5.2, or [22], §3.5).

If M ′′ is a (k−1)-surface in R
n endowed with multiplicity σM ′′ , and ∂M , ∂M ′′ and

M ∩ M ′′ are all empty, the linking number of M and M ′′, link(M, M ′′), is defined as
the degree—computed taking the multiplicities into account—of the map that takes
(x, y) ∈ M × M ′′ into (x − y)/|x − y| ∈ Sn−1 (cf. [25], Section 5.1, Exercise 7).

The relation between intersection and linking number is given by the following
formula: if M and M ′ are as above, and M has no boundary, then

int(M, M ′) = (−1)klink(M, ∂M ′) . (2.9)

Take indeed g : M × M ′ → [0, 1] such that g(x, y) = 1 when (x, y) ∈ M × ∂M ′,
g(x, y) > 0 unless x = y, and g(x, y) = |x − y| for |x − y| sufficiently small. Set
Φ(x, y) := g(x, y) · (x− y)/|x− y| for all (x, y) ∈ M ×M ′. Then link(M, ∂M ′) is equal
to deg(Φ, M × ∂M ′, Sk−1) which is equal to deg(Φ, M × ∂M ′, Rk, 0) by (2.8), and it
is easily verified that the latter is (−1)kint(M, M ′).

3. Jacobians of Sobolev maps

In this section we recall the basic definitions and main results about the Jacobian of
Sobolev maps (see [28] for further details).

3.1. Differentials and Jacobians. – The differential of a scalar function u on Ω
is, as usual, the 1-form du :=

∑n
1 Diu dxi, where Di denotes the i-th partial derivative.

For k ≤ n, the k-dimensional Jacobian of a (smooth) map u = (u1, . . . , uk) : R
n → R

k

is the pull-back according to u of the volume form dy on R
k, that is

Ju := u](dy) = du1 ∧ · · · ∧ duk , (3.1)

and since dy = 1
kdω0, where ω0 is given in (2.7), then

Ju =
1

k
du](ω0) =

1

k
d

( k∑

i=1

(−1)i−1uid̂ui

)
. (3.2)

While (3.1) makes sense for maps u with gradient in Lk, (3.2) makes sense (as a
distribution) as long as the products within brackets are well-defined, e.g. for bounded
maps u with gradient in Lk−1. This motivates the following definition (cf. [28]):

Definition 3.2. – The Jacobian of a map u : Ω → R
k of class L∞

loc ∩ W 1,k−1
loc is

the k-form with distributional coefficient Ju defined in (3.2).
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Remark 3.3. – For many purposes it is sometimes more convenient to consider,
instead of the k-form Ju, the (n − k)-current ?Ju, where ? is the operator defined in
§2.7. Since Ju is an exterior differential (cf. (3.2)), then ?Ju is always a boundary,
and in particular ∂(?Ju) = 0.

Remark 3.4. – The Jacobian operator J , although nonlinear, is continuous, in
the sense that given any bounded closed set E ⊂ R

k and a sequence of maps uj ∈
W 1,k−1(Ω, E) which converge strongly to u, then the Jacobians Juj converge to Ju
in the sense of distributions: in fact, the expression within brackets at the right-hand
side of (3.2) converges strongly in the L1-norm (9). It follows that (3.1) and (3.2) agree

for all maps of class W 1,k
loc , and in particular

Ju =
∑

det(Diu) dxi , (3.3)

where the sum is taken over all multi-indexes i of order k, and Diu denotes the k × k
matrix with columns Di1u, . . . , Dik

u.

Remark 3.5. – Assuming that u is sufficiently regular (say, of class W 1,k), the
notion of Jacobian is better understood in some special cases:

◦ for k = 1, Ju is just the differential of u;
◦ for k = 2 and n = 3, ?Ju is the vector product Du1 × Du2;
◦ for k = n, Ju = det(Du) dx and ?Ju = det(Du).

If k = n and u is a map of class L∞ ∩ W 1,n−1, then ?Ju is the distributional
determinant introduced in [5], and usually denoted by Det(Du). Although Det(Du)
may not agree with the pointwise determinant det(Du) for maps in W 1,p with p < k,
it was proved in [31] that if Det(Du) is a measure, then its absolutely continuous part
(with respect to Lebesgue measure) is represented by det(Du). Using this result and
a standard slicing technique (cf. [28], Section 5), it is easy to show that if Ju has
bounded mass then its absolutely continuous part is represented by the k-form at the
right-hand side of (3.1) or (3.3).

Sk-1-valued maps

For the rest of this paper we confine our attention to maps with values in the sphere
Sk−1. First of all we remark that for any u ∈ W 1,k

loc (Ω, Sk−1) the Jacobian Ju is just
pointwise defined as the pull-back of the standard volume form on R

k (cf. Remark
3.4) and therefore is 0, because � k(Sk−1) = 0.

The situation is different if we consider maps u ∈ W 1,k−1(Ω, Sk−1). For simplicity,
let us first assume that u is regular (say, locally Lipschitz) in the complement of a closed
singular set S. The previous argument shows that the restriction of the distribution
Ju to Ω \ S vanishes, that is, Ju is supported on S. If in addition the singular set S

(9) This result still holds if we replace strong convergence in W 1,k−1 by weak conver-

gence in W 1,k+ε
loc for some ε > 0, and even ε = 0 when k = 2. This stronger statement

can be proved by induction on k.

is a regular surface of codimension k, then Ju can be expressed in terms of S and the
degree of the singularity of u at S, as shown in the paragraphs below.

3.6. Maps with regular singularities, case n = k. – When S = {xi} is a
finite set, it is not difficult to show that ?Ju is a linear combination of Dirac masses
centered at the points xi. Moreover, if we take for every i a ball Bi which contains xi

and no other point of S, and set di := deg(u, ∂Bi, S
k−1), then

?Ju = αk

∑
di · δxi

. (3.4)

This formula can be found in [14] (see also [28], Example 3 of Section 3). A sketch
of proof is the following: knowing that ?Ju is of the form

∑
βi δxi

, and denoting by
τBi

= e1 ∧ · · · ∧ ek the standard orientation of Bi, then

βi =

∫

Bi

Ju · τBi
=

∫

∂Bi

1

k
u](ω0) · τ∂Bi

=
1

k

� k−1(Sk−1) di = αk di ,

where the second equality follows from Stokes theorem and definition (3.2), and the
third one from the area formula and the fact that ω0 is the volume form on Sk−1.

3.7. Maps with regular singularities, case n > k. – If u belongs to
W 1,k−1(Ω, Sk−1) and is regular outside a Lipschitz surface S with codimension k
and no boundary in Ω, then (cf. [28], Example 4 of Section 3)

?Ju = αk · M ,

where M is the integral current associated to S and to the multiplicity σ defined for
every x ∈ S by the formula

σ(x) = deg(u, ∂E, Sk−1) , (3.5)

where E is a k-dimensional disk in Ω which satisfies S ∩ Ex = {x}, is transversal to
S, and oriented so that τS(x) ∧ τE(x) = e1 ∧ · · · ∧ en.

Note that ?Ju has no boundary and is supported on a regular surface S with same
dimension and no boundary, and therefore σ must be constant on every connected
component of S (e.g., by the constancy theorem—see [20], §2.2.3). Formula (3.5) can
be derived from (3.4) using a dimension reduction argument based on slicing formulas
for the Jacobian (see [28], Section 5).

We can generalize formula (3.5) using the notions introduced in §2.11: for every
k-surface A relatively compact in Ω which is transversal to S and such that ∂A ∩
S = ∅, the intersection number of S, endowed with multiplicity σ, and A is equal to
deg(u, ∂A, Sk−1). Moreover, if Ω = R

n, formula (2.9) yields

int(S, A) = (−1)klink(S, ∂A) = deg(u, ∂A, Sk−1) (3.6)
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 A

S

σ=1 σ=2

int(S,A)=link(S,∂A)=1

Figure 1

Identity (3.6) completely characterizes the multiplicity σ, and therefore also ?Ju (see
Figure 1 for an example with n = 3, k = 2).

Paragraphs 3.6 and 3.7 show that the current ?Ju is related to the part of the
singular set of u which is topologically meaningful. In fact, the same conclusions holds
also for maps in W 1,k−1 which are continuous in the complement of a finite sum of
Lipschitz surfaces with codimension k and no boundary (a discrete set in the case
n = k).

Of course, not all maps in W 1,k−1 are so regular. Yet, for n = k, the Jacobian Ju
can still be represented as in (3.4) for suitable xi ∈ Ω and di ∈ Z (cf. [28], Proposition
1 of section 5), although in this case it is more difficult to interpret the integers di as
degrees and the points xi as singularities. In the general case we have the following
structure theorem (cf. [23] for maps of class W 1−1/k,k):

Theorem 3.8. – If u belongs to W 1,k−1(Ω, Sk−1), then ?Ju can be represented as
?Ju = αk ∂N , where N is a rectifiable current with codimension k − 1 in Ω. More
precisely, we can take N = (−1)n−k+1Ny where Ny is any regular level set of u (in
the sense of §7.5), and we can choose y so that

‖N‖ ≤ 1

kαk

∫

Ω

|Du|k−1 . (3.7)

Corollary 3.9. – If u ∈ W 1,k−1(Ω, Sk−1) and φ is a Lipschitz map of Sk−1 into
itself, then the Jacobian of the composition φ ◦ u is J(φ ◦ u) = deg(φ) Ju.

Corollary 3.10 (see [27]). – If u belongs to W 1,k−1(Ω, Sk−1) and Ju has locally
finite mass, then

?Ju = αk M

where M is an integral current in Ω with codimension k and no boundary.

The proof of Theorem 3.8 has been postponed to Section 7. For smooth φ, Corol-
lary 3.9 follows immediately by the characterization of ?Ju as boundary of any regular
level set of u and the definition of degree, while the general case is obtained by ap-
proximation. Corollary 3.10 is a straightforward consequence of Theorem 3.8 and the
boundary rectifiability theorem of Federer and Fleming (see [35], Theorem 30.3, or
[17], Theorem 4.2.16(2)).

In [28] the rectifiability of Jacobian is proved by a dimension-reduction argument
based on a rectifiability criterion by slicing proved in [37], [26]. Alternatively, one can
use the product structure of the boundary of graphs with finite mass ([21], §4.2.1) and,
again, the boundary rectifiability theorem (cf. Remark 7.10).

S1-valued maps

In this subsection we fix some notation for the case k = 2. If we identify R
2 with the

complex field, the map θ 7→ exp(2πiθ) is an isometry (up to a scaling factor 2π) of the
quotient space R/Z into S1. Therefore for every map u : Ω → S1 there exists exactly
one map θ : Ω → R/Z such that u = exp(2πiθ).

Furthermore, for every C1 function θ, dθ is a well-defined 1-form (10), and

2π dθ = u1du2 − u2du1 = −iū du and 2π|dθ| = |Du| . (3.8)

Based on these identities, we say that θ is of class W 1,p when u is so (11). However,
since θ is not a real-valued function, d(dθ) may not vanish, and indeed the first identity
in (3.8) implies

π d(dθ) =
1

2
d(u1du2 − u2du1) =

−i

2
d(ū du) = Ju . (3.9)

3.11. Lifting Sobolev maps. – When can we lift a map θ : Ω → R/Z to a map
with values in R? If we disregard regularity, this is clearly always possible. On the
other hand, if θ is of class W 1,1 and we look for a lifting with the same regularity, then
it must be d(dθ) = 0.

If Ω is simply-connected, this condition is also sufficient (and the lifting is uniquely
determined up to integer constants). Hence a map u ∈ W 1,1(Ω, S1) can be written as
u = exp(2πiθ) for some θ ∈ W 1,1(Ω, R) if and only if Ju = 0 as a distribution (cf. [15],
see also [8], [11] for more general results). In fact, this is an immediate consequence of
the following classical lemma on exact forms/conservative vectorfields: if Ω is simply
connected, a 1-form ω ∈ L1(Ω) is the differential of a real-valued function θ ∈ W 1,1(Ω)
if and only if dω = 0 (as a distribution).

(10) The tangent space to R/Z at every point is identified with R.

(11) Since the distributional derivative of a Sobolev function agrees with the ap-
proximate derivative, dθ is still a well-defined 1-form of class Lp; in other words, the
complex 1-form −iū du has no imaginary part. This is no longer true for BV func-
tions; the point is that the distributional derivative of a R/Z-valued function cannot
be defined independently of the embedding of R/Z in some euclidean space.
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4. Maps with prescribed singularity:

construction for k=2

In this section we address the converse of Theorem 3.8 in codimension two, that is, we
construct an S1-valued map u with prescribed Jacobians M (Theorem 4.4). For the
rest of this section we assume that Ω = R

n. We begin with an elementary geometric
construction.

4.1. Geometric construction. – Let M be an oriented, boundaryless smooth
surface with codimension two (and multiplicity 1) in R

n. As explained in §3.7, a map
u : R

n → S1 which is smooth in the complement of M satisfies ?Ju = πM if (and
only if)

deg(u, γ, S1) = link(M, γ) for every closed curve γ in R
n \ M . (4.1)

If we write u = exp(2πiθ) with θ : R
n \ M → R/Z smooth, and denote by ωM the

differential of θ, condition (4.1) can be re-written in terms of ωM as

∫

γ

ωM · τγ = link(M, γ) for every closed curve γ in R
n \ M . (4.2)

Let now be given a smooth 1-form ωM on R
n \ M which satisfies (4.2). Then the

integral of ωM on every closed curve in R
n \M is an integer, which implies that ωM is

the differential of a smooth map θ : R
n \ M → R/Z (12), and the map u := exp(2πiθ)

satisfies ?Ju = πM .
It remains to construct such a form ωM . Recall that link(M, γ) = deg(Φ, M ×

γ, Sn−1), where Φ(x, y) := (x − y)/|x − y| for every x 6= y ∈ R
n. On the other hand,

denoting by ω̃ the pull-back of the volume form on Sn−1 according to Φ, by the area
formula nαn deg(Φ, M × γ, Sn−1) is the integral of ω̃ on M × γ, and then (cf. §2.7)

nαn link(M, γ) =

∫

M×γ

ω̃(x, y) · (τM (x) ∧ τγ(y))

=

∫

γ

[ ∫

M

ω̃(x, y) τM (x)

]
· τγ(y) . (4.3)

Hence the 1-form defined by the integral within square brackets in (4.3) satisfies (4.2)
up to a factor nαn, and therefore we just set

ωM (y) :=
1

nαn

∫

M

ω̃(x, y) τM (x) for every y ∈ R
n \ M . (4.4)

(12) A continuous 1-form ω on a connected open set Ω ⊂ R
n is the differential of a

map θ : Ω → R/Z of class C1 if and only if the integral of ω along any closed curve in
Ω is an integer. To construct such a θ it suffices to fix a base-point x0 ∈ Ω, and set,
for every x ∈ Ω, θ(x) :=

∫
γ

ω · τγ , where γ is any path connecting x0 and x.

When the surface M is replaced by a less regular surface, or by a rectifiable current,
the construction described above must be suitably re-interpreted. Notice that the map
Φ(x, y) used to define ω̃(x, y) in §4.1 depends only on x − y, and this suggests that
the right-hand side of (4.4), and ultimately also θ, can be re-written as convolution
products (in the sense of §2.8). We show in §4.3 below that this is indeed the case.
To this purpose, we first recall some basic facts about BV functions.

4.2. Differentials of BV functions. – The measure which represents the
distributional differential of a real-valued BV function v can be uniquely decomposed
as (see [3], Section 3.9)

dv = dav + dcv + djv

where the term dav is absolutely continuous with respect to � n, the term dcv (called
“Cantor” part of dv) is singular and does not charge any

�
n−1-finite set, and the

term djv (called “jump” part of dv) is concentrated on a rectifiable set of codimension
one. Furthermore the density of dav with respect to � n agrees with the approximate
differential of v, and djv can be written as djv = [v] η

�
n−1 Sv, where Sv is the

singular set (set of point of approximate discontinuity) of v, and is (n− 1)-rectifiable,
η is the 1-covector associated to an orientation τ of Sv via the ? operator (cf. §2.7),
and the jump [v] is the difference between the traces v+ and v− of θ′ on the two sides
of S. When the Cantor part dcv vanishes, v is called an SBV function.

4.3. Construction of for general M . – Let M be an integral (n−2)-current
with finite mass in R

n, and take an integral (n−1)-current N with finite mass such that
M = ∂N (cf. Remark 2.6). By formula (3.9), in order to solve the equation ?Ju = π M
it suffices to construct a function θ ∈ W 1,1

loc (Rn, R/Z) such that ?d(dθ) = M and take
u := exp(2πiθ). As suggested before, such a θ can be obtained as a suitable convolution
product—which is just formula (4.4) re-written.

Let ω be the pull-back on R
n \{0} of the standard volume form on Sn−1 according

to the projection x 7→ x/|x|, that is

ω(x) =
n∑

i=1

(−1)i−1 xi

|x|n d̂xi . (4.5)

Thus ω ∈ Lp
loc(R

n) for every p < 1∗ := n/(n − 1), and

dω = nαn δ0 dx , (4.6)

where, as usual, dx = dx1 ∧ · · · ∧ dxn (13). We set

θ′ :=
−1

nαn
ω ∗ N , (4.7)

(13) Indeed dω is an n-form, smooth outside the origin, whose integral on any open
set A with smooth boundary is, by Stokes theorem, the integral of ω on ∂A, that is,
nαn (the volume of Sn−1) if the origin belongs to A and 0 otherwise.
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and, denoting by π the canonical projection of R onto R/Z,

θ := π(θ′) . (4.8)

The usual estimates for the convolution product show that θ′ is a well-defined real-
valued function (0-form) in Lp

loc(R
n) for every p < 1∗, and using (4.7), (2.6), and (4.6),

we obtain

dθ′ =
(−1)n

nαn

[
dω ∗ N + ω ∗ ∂N

]
= (−1)n

[
dx N +

1

nαn
ω ∗ M

]
. (4.9)

Thus θ′ is a function of class BVloc whose differential is the sum of a term absolutely
continuous with respect to Lebesgue measure, ω ∗ M , and a jump term of the form
dx N . Since N has integer multiplicity, the jump of θ′ is always integer, and therefore
θ has no jump; thus θ is of class W 1,1

loc (14) and dθ is given by

dθ =
(−1)n

nαn
ω ∗ M . (4.10)

Since ω is smooth outside the origin, dθ, and θ as well, are smooth outside the support
of M . Moreover, using (2.6), (4.6), and taking into account that ∂M = ∂2N = 0,

d(dθ) =
1

nαn

[
dω ∗ M + ω ∗ ∂M

]
= dx M ,

and recalling (2.3),

?d(dθ) = M . (4.11)

The following statement summarizes what we have obtained so far.

Theorem 4.4. – Let M be a codimension-two integral current with finite mass
and no boundary in R

n, and set u := exp(2πiθ), where θ is defined in (4.8). Then u
belongs to W 1,p

loc (Rn, S1) for every p < 1∗, it is smooth outside the support of M , and
satisfies ?Ju = πM .

(14) More precisely, the differential of the complex-valued SBV function u :=
exp(2πiθ′) con be computed by the chain-rule for BV functions (see for instance [3],
Section 3.10):

du = 2πi · exp(2πiθ′) · daθ
′ + (exp(2πiθ′+) − exp(2πiθ′−)) · η · � n−1 Sθ′ .

By (4.9) the singular set Sθ′ is N , and the jump θ′+ − θ′− is the multiplicity of N .
Since the latter is integer, exp(2πiθ′+)−exp(2πiθ′−) = 0. Thus u is a function of class
W 1,1, and so is θ.

5. Maps with prescribed singularity:

construction for arbitrary k

In this section we address the converse of Theorem 3.8 in arbitrary codimension,
namely the construction of a map u : Ω → Sk−1 with prescribed Jacobian ?Ju =
αk M , where M is the boundary of a rectifiable current N of codimension k − 1 in
Ω. In Proposition 5.2 we give a simple construction for special M , akin to the dipole
construction of [14] (see also [21], §4.2.3), that will provide the building blocks for the
construction in the general case. In Theorem 5.6 we prove that any boundary M of a
rectifiable current is the Jacobian of a map of class W 1,k−1. After this general result
we examine what further regularity can be obtained on u when M is a polyhedral
current (see Theorem 5.10).

5.1. Additional notation. – For the rest of this section we fix a point yN ∈ Sk−1

(called “north pole”) and a family of smooth maps φσ : Sk−1 → Sk−1 for every σ ∈ Z

with the following properties: φ0 takes constant value yN , φ1 is the identity, φ−1 is
a reflection with respect to an hyperplane which contains yN , each φσ has degree σ,
maps yN into itself, and has Lipschitz constant lower than 2|σ| (15).

Proposition 5.2. – Let P be an oriented (n− k + 1)-dimensional affine subspace
of R

n, let N be the current in R
n associated with a bounded Lipschitz domain of P ,

endowed with constant multiplicity 1, and assume that M := ∂N is connected.

Then there exists u ∈ W 1,k−1
loc (Rn, Sk−1) such that ?Ju = αk M . Moreover u is

locally Lipschitz in R
n \ M and constant outside a bounded neighbourhood of N , Du

belongs to Lp(Rn) for every p < k and satisfies |Du(x)| = O(1/dist(x, M)).

Proof. We fix two positive parameters δ and γ, and set

U = U(N, δ, γ) :=
{

x : dist(x, N) ≤ min
{

δ, γ√
1+γ2

dist(x, ∂N)
}}

. (5.1)

Now we identify P with R
n−k+1, R

n with the product R
n−k+1 × R

k−1, and denote a
point in R

n as x = (x′, x′′). Thus U can be written as (cf. Figure 2 below)

U =
{
x : x′ ∈ N, |x′′| ≤ g(x′)

}
, (5.2)

where

g(x′) := min
{
δ, γ dist(x′, ∂N)

}
. (5.3)

(15) For example, write R
k ' C × R

k−2, where C is the complex field, take yN of
the form yN = (0, y) and, for σ 6= 0,

φσ(z, y) :=

{
(zσ|z|1−σ, y) for z 6= 0,
(0, y) for z = 0.
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Let Bk−1 be the closed unit ball in R
k−1 with center 0, and let π be the usual iden-

tification of Bk−1 into the sphere Sk−1 which takes the boundary of Bk−1 into the
north pole yN and preserves the orientation (16), and set

u(x) :=





π

(
x′′

g(x′)

)
for x ∈ U \ ∂N ,

yN elsewhere in R
n.

(5.4)

Thus u is constant on the complement of U .

Rn−k+1

Rk−1

N M=∂Nδ/γ

δA

level sets of u

u=yN on ∂U

x− x+v− U

Figure 2

Since g is a real Lipschitz function which vanishes only on ∂N and π is a Lipschitz
map from the closed unit ball Bk−1 to Sk−1, then the restriction of u to U \ ∂N is
locally Lipschitz. Moreover π takes unit vectors in yN , and since |x′′| = g(x′) for all
x ∈ ∂U , then u maps ∂U into yN , and consequently u ∈ Liploc(R

n \ ∂N).
To give a precise estimate of the pointwise derivative |Du|, we notice that Dg(x′) =

0 when γ dist(x′, ∂N) > δ, and then |D(x′′/g(x′))| ≤ 1/δ. On the other hand, if
γ dist(x′, ∂N) < δ, then g(x′) = γ dist(x′, ∂N) and |Dg(x′)| = γ, which imply

∣∣D(x′′/g(x′))
∣∣ ≤

(
1

γ
+ 1

)
1

dist(x′, ∂N)
≤ (1 + γ)2

γ dist(x, ∂N)

(here we have used that dist(x, ∂N) ≤ dist(x′, ∂N) + |x′′| ≤ (1 + γ) dist(x′, ∂N),
cf. (5.2)). Together with the previous estimate and (5.4), this yields

|Du(x)| ≤ ‖Dπ‖∞ max

{
1

δ
,

(1 + γ)2

γ dist(x, ∂N)

}
, (5.5)

and the pointwise derivative Du is p-summable for every p < k by Lemma 7.1. Since
u is locally Lipschitz in R

n \ ∂N , then the pointwise derivative Du agrees with the
distributional derivative on R

n\∂N , and since it is 1-summable and N has codimension
strictly larger than one, Du agrees with the distributional derivative on R

n, too. In
other words, u is a Sobolev map on R

n.
It remains to verify that ?Ju = αk M , up to a sign that can be corrected by

changing the identification of P and R
n−k+1. Since u is continuous in the complement

(16) For example, take π(x) :=
(
sin(π|x|) · x/|x|, cos(π|x|)

)
for every x ∈ Bk−1, and

identify R
k−1 × R with R

k so that yN = (0,−1).

of the Lipschitz connected (n− k)-surface M = ∂N , as remarked in §3.7 the Jacobian
?Ju is supported on M , and is of the form αkσ M where σ is an integer. In view of
formula (3.6), to prove that σ = ±1 if suffices to exhibit a k-surface A transversal to
M such that A ∩ M consists just of one point and deg(u, ∂A, Sk−1) = ±1.

Take then x̄ ∈ M , and v ∈ R
n−k+1, and let A be the cylinder in R

n−k+1 × R
k−1

given by the segment [x̄ − v, x̄ + v] times the closed ball rBk−1, where r := γ|v| (see
Figure 2 above). If we have chosen x̄ and v so that (x̄, x̄+v] is contained in N , [x̄−v, x̄)
is contained in the complement of N , and x is the projection of x̄ + v onto N , then
one easily checks that u is equal to yN on the whole boundary of A except the face
{x̄ + v}× rBk−1, where it agrees, up to rescaling, with the injective map π. Thus the
deg(u, ∂A, Sk−1) = ±1, and the proof is complete.

Corollary 5.3. – When the surface N in the statement of Proposition 5.2 is an
(n − k + 1)-dimensional disk E with center x and radius r, we may also require that
u is constant on the complement of the ball B(x, r) and satisfies

∫

Rn

|Du|k−1 ≤ C‖E‖ , (5.6)

where C is a constant which depends only on n and k.

Proof. Let u0 be the map given by Proposition 5.2 when N is a fixed disk E0 with
center 0 and radius 1. If the parameters δ and λ in the definition of U (cf. (5.1) and
(5.2)) have been chosen sufficiently small, then U is included in B(1), and therefore
u0 is constant on the complement of B(1). Now it suffices to take u := u0 ◦ψ, where ψ
is an affine similitude—a composition of an isometry and a homothety—with scaling
factor r which maps E onto E0 preserving the orientation.

Construction for general rectifiable currents

We begin with a Lemma for pasting together Sk−1-valued maps. In this subsection Ω
is an open subset of R

n.

Lemma 5.4. – Let u0, u1 be maps in W 1,k−1
loc (Ω, Sk−1), let F0, F1 be disjoint closed

sets in Ω, and set Ω′ := Ω \ (F0 ∪ F1). If dist(F0, F1) > 0 and

|u0 − u1| ≤ 1 a.e. on Ω′, (5.7)

then there exists u ∈ W 1,k−1
loc (Ω, Sk−1) such that u = u0 in F0, u = u1 in F1. If Du0

and Du1 are essentially bounded in the “transition zone” Ω′, then Du is essentially
bounded on Ω′ and

‖Du‖L∞(Ω′) ≤
2√
3

[‖u0 − u1‖L∞(Ω′)

dist(F0, F1)
+ ‖Du0‖L∞(Ω′) + ‖Du1‖L∞(Ω′)

]
. (5.8)

If the Jacobians of u0 and u1 are supported on F0 and F1, respectively, then Ju =
Ju0 + Ju1.
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Proof. Let π be the projection of R
k \ {0} onto Sk−1, that is, π(x) := x/|x|,

and take a Lipschitz function λ which agrees with 0 on F0 and with 1 on F1, and has
Lipschitz constant smaller than dist−1(F0, F1), e.g.,

λ(x) := min

{
1,

dist(x, F0)

dist(F0, F1)

}
.

Then set
u := π

(
λu1 + (1 − λ)u0

)
. (5.9)

Given x ∈ Ω′, |u0(x)| = |u1(x)| = 1, while |u0(x) − u1(x)| ≤ 1 by assumption. Thus
the angle spanned by the vectors u0(x) and u1(x) is smaller than 60◦, and then every
convex combination of u0(x) and u1(x) has norm larger than

√
3/2. This shows that

the argument of π in formula (5.9) is always contained in R
k \ Bk(

√
3/2), where π

has Lipschitz constant 2/
√

3. Thus u belongs to W 1,k−1
loc too, and a straightforward

computation gives (5.8). The last part of the statement is trivial.

Remark 5.5. – In the proof of Theorem 5.6 we will apply Lemma 5.4 with F1 =
B(x, r) and F0 = R

n\B(x, 2r), u1 constant on the complement of F1, u0 continuous in
Ω′ = B(x, 2r) \B(x, r) and equal to u1 at some point of Ω′. Under these assumptions
we have

‖u0 − u1‖L∞(Ω′) ≤ osc(u0, Ω
′) ≤ 4r‖Du0‖L∞(B(x,2r)) .

Hence condition (5.7) is implied by

r ≤
(
4‖Du0‖L∞(B(x,2r))

)−1
, (5.10)

while inequality (5.8) yields ‖Du‖L∞(Ω′) ≤
10√

3
‖Du0‖L∞(B(x,2r)), and then

∫

Ω′

|Du|k−1 ≤
(

10√
3
‖Du0‖L∞(B(x,2r))

)k−1

2nαnrn ≤ Crn−k+1 , (5.11)

where the last inequality follows from (5.10), and C is a constant which depends on n
and k only.

The following statement contains the exact converse of Theorem 3.8; for k = 2
there exists a simpler proof which is briefly sketched in §6.7.

Theorem 5.6. – Let Ω be an open set in R
n, and M the boundary of a rectifiable

current N in Ω with finite mass and codimension k − 1. Then there exists u in
W 1,k−1

loc (Ω, Sk−1) such that
?Ju = αk M . (5.12)

Moreover ‖Du‖k−1 ≤ C‖N‖, where C depends only on n and k. In particular u
belongs to W 1,k−1(Ω, Sk−1) when Ω has finite measure.

Proof. We define, by induction on j, a sequence of maps uj ∈ W 1,k−1(Ω, Sk−1)
which are locally Lipschitz on the complement of a closed sets Sj ⊂ Ω of codimension

k, and rectifiable currents Rj in Ω of codimension k − 1 so that R0 = N , Du0 = 0,
S0 = ∅ and

?Juj = αk(M − ∂Rj) , (5.13)

‖Duj − Duj−1‖k−1 ≤ C‖Rj−1‖1/(k−1) , (5.14)

‖Rj‖ ≤ (1 − 2k−n−2)‖Rj−1‖ , (5.15)

where C depends only on n and k.
We first show that (5.13–5.15) allow us to conclude the proof. Inequality (5.15)

implies ‖Rj‖ ≤ (1 − 2k−n−2)j‖R0‖, which is a summable sequence in j. Hence (5.14)
shows that the derivatives Duj form a Cauchy sequence in Lk−1 and therefore the
maps uj converge (up to subsequence) to some map u in the strong topology of

W 1,k−1
loc (Ω, Sk−1). Hence Juj converge to Ju in the sense of distributions (cf. Re-

mark 3.4). On the other hand, identity (5.13) shows that ?Juj converge to αk M
in the sense of currents (because Rj converge to 0 in norm), and (5.12) is proved.
The estimate on ‖Du‖k−1 follows from (5.14), (5.15) and the fact that R0 = N and
Du0 = 0.

Description of the inductive procedure. – Given uj−1, Sj−1, and Rj−1,
we construct uj , Sj , and Rj . Since Sj−1 is closed, for every x ∈ Ω \ Sj−1 we can find
rj = rj(x) > 0 such that B(x, rj) is relatively compact in Ω\Sj−1. Since uj−1 is locally
Lipschitz on the complement of Sj−1, |Duj−1| is essentially bounded in B(x, rj). We
choose ρj : Ω → [0,+∞) so that ρj(x) = 0 for x ∈ Sj−1 and

0 < ρj ≤ min

{
rj

2
,

1

4‖Duj−1‖L∞(B(x,rj))

}
for x ∈ Ω \ Sj−1. (5.16)

Since Sj−1 is
�

n−k+1-negligible, we can apply Corollary 7.13 with h := n − k + 1,
N := Rj−1 and ρ := ρj , and get finitely many disks Eji, with centers xji ∈ Ω and
radii rji < ρj(xji), and rectifiable currents Rj and Pj which satisfy statements (i)–(iv)
of Corollary 7.13. In particular (iii) implies (5.15).

Then for every i we take a map uji according to Corollary 5.3 for N := Eji. Thus
uji is constant on the complement of B(xji, rji), and, possibly composing uji by a
suitable isometry of Sk−1, we can assume that this constant agrees with the value of
uj−1 at some point of the annulus B(xji, 2rji) \ B(xji, rji). Now we use Lemma 5.4
to construct a map uj such that

uj = uji on B(xji, rji) for every i, and uj = uj−1 on Ω \ ⋃
i B(xji, 2rji).

Indeed, the balls B(xji, 2rji) are disjoint by statement (iv) of Corollary 7.13, the in-
equalities rji < ρj(xji) and (5.16) imply that uj−1 satisfies condition (5.10) in Remark
5.5, while uji is constant on the complement of B(xji, rji) by construction, and then
Lemma 5.4 can be applied.

Verification of the properties of uj. – By construction, the map uj belongs

to W 1,k−1
loc (Ω) and is locally Lipschitz on the complement of

Sj := Sj−1 ∪
( ⋃

i

∂Eji

)
.
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Moreover (cf. Lemma 5.4)

Juj = Juj−1 +
∑

i

Juji . (5.17)

On the other hand, we have chosen uji so that ?Juji = αk ∂Eji (cf. Proposition
5.2), while

∑
∂Eji = ∂Rj−1 − ∂Rj by condition (i) of Corollary 7.13 and ?Juj−1 =

αk(M −∂Rj−1) by the inductive assumption (5.13) for j−1. Thus (5.17) yields (5.13)
for j.

It remains to prove (5.14). If we denote by Ω′ the union of all transition zones
B(xji, 2rji) \ B(xji, rji), then uj satisfies

∫

Ω′

|Duj |k−1 ≤ C
∑

i

rn−k+1
ji ≤ C

αn−k+1

∑

i

‖Eji‖ ≤ C2k−n

αn−k+1
‖Rj−1‖ , (5.18)

where the first inequality follows from (5.11), and the third one from statement (ii) of
Corollary 7.13 (with Rj−1 playing the rôle of N). On the other hand, estimate (5.6)
and the fact that uj = uji on B(xji, rji) yield

∑

i

∫

B(xji,rji)

|Duj |k−1 ≤ C
∑

i

‖Eji‖ ≤ C2k−n‖Rj−1‖ , (5.19)

while (5.16) and the fact that rji ≤ ρ(xji) give

∑

i

∫

B(xji,2rji)

|Duj−1|k−1 ≤ αn2n−2k+2
∑

i

rn−k+1
ji

=
αn2n−2k+2

αn−k+1

∑

i

‖Eji‖ ≤ αn22−k

αn−k+1
‖Rj−1‖ .

(5.20)

Estimates (5.18–5.20) imply (5.14).

Construction for polyhedral currents

When M is a polyhedral current, we can use Proposition 5.2 to construct a map u
which is more regular than that provided by Theorem 5.6. To this end we need the
following:

Lemma 5.7. – Let p ≥ k − 1, and let be given finitely many maps ui ∈
W 1,p

loc (Rn, Sk−1) which are locally Lipschitz in the complement of closed sets Si and
equal to the north pole yN in the complement of bounded open sets Ωi.

If the sets Ωi are disjoint and u is the map which agrees with ui on each Ωi,
and takes the value yN elsewhere in R

n, then u belongs to W 1,p
loc (Rn, Sk−1), is locally

Lipschitz in the complement of ∪Si, and Ju =
∑

i Jui.

Proof. It is clear that u is locally Lipschitz on R
n \ ∪Si. The rest of the state-

ment is trivial if the sets Ωi have disjoint closures, and the general case follows by
approximation.

Proposition 5.8. – Let M be the boundary of a polyhedral current N of codi-
mension k − 1 in R

n, and denote by Σ the union of the faces of N of codimension k.
Then there exists a map u ∈ W 1,k−1

loc (Rn, Sk−1) such that ?Ju = αk M . Moreover u
is locally Lipschitz in R

n \Σ and constant outside a bounded neighbourhood of N , and
Du belongs to Lp(Rn) for every p < k and satisfies |Du(x)| = O(1/dist(x,Σ)).

Proof. Write N as the finite sum
∑

σiNi, where each Ni is a simplex (endowed
with multiplicity 1), and σi is an integer. We assume as usual that Ni ∩ Nj is either
empty or a common face of Ni and Nj , and then we can find δ, γ > 0 such that the
sets Ui := U(Ni, δ, γ) defined in (5.1) have pairwise disjoint interiors (see Figure 3).

NiUi

M=∂N

σ=−1

σ=+2

σ=+1

σ=−2

+1

+2

−2

−2

+1

S\M

N
σ=−1

Figure 3

For every i, take ui according to Proposition 5.2 for N := Ni, set ũi := φσi
◦ ui

where φσi
is taken as in §5.1, and let u be the map which agrees with ũi on the interior

of each Ui, and with yN elsewhere in R
n. By Corollary, 3.9, ?Jũi = αkσi ∂Ni for every

i, and ?Ju = αk

∑
σi Ni = αk M by Lemma 5.7.

The previous result gives a map u with Jacobian ?Ju = αk M , which is singular
on the union Σ of the (n − k)-dimensional faces of N . Notice that Σ contains the
support of M = ∂N , but in general can be larger (see Figure 3). In other words,
part of the singularity of u supports no Jacobian. In the next paragraph we describe a
procedure to remove some (but not all) of this “unnecessary” singularity, and optimize
the singularity around M .

5.9. Optimization of singularities. – Let M , N , Σ and u be given as in the
proof of Proposition 5.8. Let F be an (n − k)-dimensional face of N , endowed with
some orientation, and σ the multiplicity of M = ∂N on F (thus σ = 0 if F is not
contained in the support of ∂N).

In the following we identify R
n with the product R

n−k × R
k, denoting a point in

R
n as x = (x′, x′′), and assume that F lies on R

n−k. Then we set (cf. (5.2) and (5.3))

U ′ = U ′(F, δ′, γ′) := {x : x′ ∈ F, |x′′| ≤ g′(x′)} , (5.21)

where g′(x′) := min
{
δ′, γ′ dist(x′, ∂F )

}
, and the parameters δ′, γ′ > 0 are chosen small

enough to have δ′ < δ/γ, where δ, γ are the parameters in the proof of Proposition
5.8, and (see Figure 4 below)

dist(x,Σ) = dist(x, F ) for every x ∈ U ′. (5.22)
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F
U'

Ni

Nj

Ui

Figure 4

We claim that within U ′, the map u depends only on x′′/|x′′|, that is, it can be
written as u(x) := φ′(x′′/|x′′|) for some Lipschitz map φ′ : Sk−1 → Sk−1. Let indeed
Ni be any of the (n− k + 1)-faces of N whose boundary contains F , and let Ui be the
corresponding set defined in (5.1). In U ′ ∩Ui, u is defined by formula (5.4) (17). Now,
the inner normal to ∂Ni agrees on F with a vector which lies in {0}×R

k, and we can
freely assume that it agrees with the (n − k + 1)-th element of the canonical basis of
R

n. Hence, writing x′′ ∈ R
k as x′′ = (x′′

1 , x′′
2) ∈ R × R

k−1, formula (5.4) becomes

u(x) = π

(
x′′

2

g(x′, x′′
1)

)
for all x ∈ U ′ ∩ Ui.

Moreover, (5.22) implies g(x′, x′′
1) = γ dist(x, ∂Ni) = γ dist(x, F ) = γx′′

1 for every
x ∈ U ′, therefore u(x) = π(γ−1 x′′

2/x′′
1), and the claim is proved.

σ1=σ2=σ3=1

F U' N1 U1N2 U2

N3 U3

u=yN level sets of u

δ/γ 
u'=yN

δ'

level sets of u'

Figure 5

Since ?Ju = αk M and M has multiplicity σ on F , then the degree of φ′ must be
σ (recall §3.7). And since the degree classifies the homotopy classes of maps from any
(k − 1)-dimensional compact manifold without boundary into Sk−1 (Hopf theorem,
see for instance [25], Chapter 5, Theorem 1.10), then φ′ must be homotopic to φσ,
that is, there exists a Lipschitz map Φ : Sk−1 × [0, 1] → Sk−1 such that Φ(·, 0) = φσ(·)
and Φ(·, 1) = φ′(·). Obviously, we can also require that Φ(·, t) = φσ(·) for all t ≤ 1/2.
Finally we set (cf. Figure 5)

u′(x) :=






u(x) when |x′′| > g′(x′),

Φ

(
x′′

|x′′| ,
|x′′|

g′(x′)

)
when |x′′| ≤ g′(x′).

(5.23)

(17) Note that the variables x′ and x′′ in formula (5.4) have a different meaning than
here.

Thus u′ agrees with u on the complement of U ′, and with φσ(x′′/|x′′|) on U ′′ :=
U ′(F, δ′/2, γ′/2) (see definition (5.21)). In particular, if σ = 0 then u′ is constant on
this set. As in the proof of Proposition 5.2, one easily verifies that u′ is a Sobolev
map from R

n → Sk−1 which is locally Lipschitz on the complement of Σ when σ 6= 0,
and on the complement of (Σ \ F ) ∪ ∂F when σ = 0. The derivative of u′ satisfies
Du′ ∈ Lp(Rn) for every p < k and |Du′| = O(1/dist(x,Σ)) when σ 6= 0, |Du′| =
O(1/dist(x, (Σ \ F ) ∪ ∂F )) when σ = 0. Finally, ?Ju′ = ?Ju = αk M .

If we iterate this construction for all (n−k)-dimensional faces of N we immediately
obtain the following improved version of Proposition 5.8:

Theorem 5.10. – Let M be the boundary of a polyhedral current N of codimension
k − 1 in R

n, and let S denote the union of the faces of N of codimension k + 1. Then
there exists u ∈ W 1,k−1

loc (Rn, Sk−1) such that ?Ju = αk M , u is locally Lipschitz in the
complement of M ∪S and constant outside a bounded neighbourhood of N , Du belongs
to Lp(Rn) for every p < k and satisfies |Du(x)| = O(1/dist(x, M ∪ S)).

Moreover, given a face F of M of codimension k, if we identify the affine plane
of codimension k which contains F with R

n−k, and write x ∈ R
n as a x = (x′, x′′) ∈

R
n−k × R

k, then

u(x) = φσ

(
x′′

|x′′|

)
for all x ∈ U ′(F, δ, γ),

where σ is the multiplicity of M on F , φσ is defined in §5.1, and U ′(F, δ, γ) is defined
as in (5.21) for suitable δ and γ.

6. Additional remarks and open problems

We collect in this section, with no precise order, some remarks and questions related to
the previous sections. We being with an open problem on the structure of Jacobians.

6.1. Pointwise characterization of the Jacobian. – There is a clear analogy
between Corollary 3.10 and the structure theorem for finite perimeter sets of De Giorgi.
Indeed, for k = 1 the maps from Ω into Sk−1 reduce to characteristic functions of sets,
while the Jacobian is just the distributional derivative. To this regard, we recall that
the rectifiable set which carries the derivative of the characteristic function of a finite
perimeter set E can be pointwise characterized as the measure-theoretic boundary
of E, namely the set of points where E has neither density 1 nor density 0 (see for
instance [3], Theorem 3.61, or [17], Theorem 4.5.6(3)—in fact, finite perimeter sets
can be characterized via the measure of their measure-theoretic boundary, cf. [17],
Theorem 4.5.11).

It would be interesting to know if there exists an analogous characterization of the
rectifiable set which carries the Jacobian of an Sk−1-valued map.

6.2. Algebraic structure of the Jacobian. – The space W 1,1(Ω, S1) is a
group under complex multiplication, and it is easy to check that the operator ?J
defines, up to a factor π, a homomorphism of this group into the group of boundaries
of rectifiable currents in Ω with finite mass (use the isomorphism of W 1,1(Ω, S1) onto
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W 1,1(Ω, R/Z), identity (3.9), and the fact that θ 7→ d(dθ) is obviously additive).
Theorem 5.6 shows that this homomorphism is also surjective.

Notice moreover that in §4.3 we (almost) construct an explicit right-inverse of the
homomorphism ?J : indeed the map which takes M into dθ described in (4.10) is linear
and satisfies ?d(dθ) = M , and therefore the map which takes M into u := exp(2πiθ)—
modulo multiplication by a unit complex number—is a homomorphism, and satisfies
?Ju = πM , that is, it is a right inverse of ?J (but it may be not defined when M has
not locally finite mass, cf. §6.3).

In the next paragraphs we examine the regularity properties of the map u in
Theorem 4.4. Thus M , θ and u are defined as in §4.3 and Theorem 4.4.

6.3. Relation with the Laplace equation. – If ω is the (n−1)-form in (4.5),
then the vectorfield ?ω agrees, up to some constant, with the gradient of the function
|x|n−2 (log |x| for n = 2), which is the fundamental solution of the Laplace equation on
R

n. Therefore, if we identify N with a vector measure µ via the Hodge operator, the
function θ′ in (4.7) agrees, up to some constant, with the divergence of the solution v
of ∆v = µ.

Now it is well-known that if v solves the Laplace equation with measure or even
L1 right-hand side, then the second derivative D2v may be not a measure, and the
best Sobolev regularity one can expect is, in general, v ∈ W 1,p for every p < 1∗ (see
[4] for examples in the context of measure forms).

This remark suggests (but does not prove) that without the assumption that M =
∂N has finite mass, the gradient Dv, and perhaps also θ′ = div v, may be not BV
functions. In particular, the function θ in (4.8) may be not W 1,1, and then the
construction in §4.2 fails. On the other hand, if M has finite mass, the same argument
applied to the convolution product at the right-hand side of (4.10) shows that the
Sobolev regularity we have obtained for θ and u is probably optimal.

6.4. Behaviour close to the singularity. – Let M be a plane of codimension
two; if we identify M with R

n−2, and write x ∈ R
n as x = (x′, x′′) ∈ R

n−2 × R
2, then

an explicit computation shows that the map u in Theorem 4.4 agrees, up to a rotation
in S1 which depends on the choice of N , with x′′/|x′′|.

Using this fact one can show that when M is a smooth surface, u displays a
similar behaviour in the proximity of M . In particular, it is possible to modify u in a
neighbourhood of M so that it remains smooth in the complement of M , and for every
x0 ∈ M there exist a neighbourhood U of x0 and a diffeomorphism Ψ which maps U
into the product M ×R

2, so that u(x) = x′′/|x′′| for all x ∈ U , where (x′, x′′) = Ψ(x).

6.5. Geometric consequences. – Let u be the map modified as in the previous
paragraph, and y a regular value of u, then M is the boundary of the smooth hyper-
surface N := u−1(y). Moreover, if (y1, y

′
1) and (y2, y

′
2) are two couples of antipodal

regular values of u, then N1 := u−1(y1)∪u−1(y′
1) and N2 = u−1(y2)∪u−1(y′

2), suitably
oriented, are smooth, transversal hypersurfaces without boundary, and M = N1 ∩N2.

In other words, every smooth surface of codimension two and without boundary
in R

n is the boundary of a smooth hypersurface, and even more, it is a complete

intersection; notice that these results do not hold in codimension larger than two (see
[9], and references therein).

The next paragraphs are devoted to the construction described in Section 5.

Remark 6.6. – The construction in the proof of Proposition 5.2 can be extended,
with few straightforward modifications, to every surfaces N of class C1 with trivial
normal bundle in R

n (18), and yields a map u which satisfies ?Ju = αk M and is smooth
in the complement of M—cf. Theorem 5.10. This triviality condition is automatically
satisfied by every oriented surface N of codimension one, and such an N can be found
for every M of codimension two (cf. §6.5).

6.7. A simple proof of Theorem 5.6 for k = 2. – Let M be the boundary
in Ω of a rectifiable current N of codimension one. Then there exists a real function
θ′ ∈ SBV (Ω) whose differential can be decomposed as ?dθ′ = ?ω + (−1)nN , where
ω is a suitable 1-form in L1(Ω) (19). Now we set θ := π(θ′), where π is the canonical
projection of R onto R/Z. Since N has integral multiplicity, the jump of θ′ is integer,
and then θ has no jump. Hence θ belongs to W 1,1(Ω, R/Z) and ?dθ = ?ω = ?(dθ′) +
(−1)n−1N , and therefore, using (2.2) and recalling that ∂N = M and d2θ′ = 0,

?d(dθ) = ?d(dθ′) + ∂N = M .

By (3.9), the map u = exp(2πiθ) satisfies ?Ju = π d(dθ) = π M .

6.8. Is it possible to reduce the singular set of u? – The singular set of
the map u in Theorem 5.10 is the union of the datum M and an additional polyhedral
set S of codimension k + 1 (disjoint from M). It is then natural to ask if S can
be removed, or at least replaced by a set of lower dimension. To this end, it is
conceivable to adapt the procedure described in Paragraph 5.13: given a face F of
dimension n − k + 1 of S, we take a set U ′ as in (5.21), so that u is continuous on
U ′ \F , and try to replace u inside U ′ \∂F with a continuous extension of its restriction
to ∂U ′ \ ∂F . Now U ′ \ ∂F is homeomorphic to the product F ′ × Bk+1, where F ′ is
the interior of F and Bk+1 is the unit closed ball in R

k+1, and the problem becomes
to find a continuous extension of u : F ′ × ∂Bk+1 → Sk−1 to F ′ × Bk+1. Since F ′ is a
contractible space, this can be done if and only if, taken an arbitrary point x′ ∈ F ′,
the restriction of u to {x′} × ∂Bk+1 (which is homeomorphic to Sk) is homotopic to

(18) The triviality of the normal bundle implies that some neighbourhood of N is
diffeomorphic to the product N × R

k−1.
(19) This claim is a particular case of the following statement: given an oriented

(n − 1)-rectifiable set S in Ω and a real function g in L1(
�

n−1 S), there exists
an SBV function v such that Sv = S, [v] = g and ‖dav‖ ≤ 2‖g‖1 (cf. [17], §4.1.18).
Indeed, when S is (contained in) the boundary of a domain A of class C1 relatively
compact in Ω, it suffices to apply a well-known result of E. Gagliardo [18] to find
v ∈ W 1,1(A) with ‖dv‖1 ≤ 2‖g‖1 and trace equal to g on ∂A, and then extend v to
0 on the rest of Ω. The general case can be reduced to this one by covering S with
countably many boundaries of class C1.
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a constant map. Unfortunately, the k-th homotopy group of Sk−1 is not trivial for
k > 2 (20), and therefore such a homotopy may not exist (for a general overview of
topological obstruction problems, see for instance [36], Part III).

Thus we do not know if, and at which cost (in terms of regularity) S can be
removed. However, we know that for k > 2 there cannot always exists a map u which
is smooth in the complement of M and behaves close to the singularity M as regularly
as the one in §6.4, because the geometric consequences described in §6.5 do not hold
in codimension larger than two.

7. Appendix

We begin this section with a statement on the integrability of certain singular func-
tions. Then we define the notion of Jacobians for Sobolev maps valued in some man-
ifold, and give a version of the coarea formula for such maps; this is the key lemma
in the proof Theorem 3.8. We conclude with an approximation result for rectifiable
currents.

Lemma 7.1. – Let S ⊂ R
n be (contained in) a finite union of Lipschitz surfaces of

codimension h. Then, given a bounded set E ⊂ R
n,

∫

E

dx

[dist(x, S)]p
< +∞ for every p < h.

Proof. Let M be the supremum of dist(x, S) for x ∈ E, and for every t > 0
denote by St the t-neighbourhood of S, and by 1t its characteristic function. Then

1

[dist(x, S)]p
= M−p + p

∫ M

0

t−(p+1)1t(x) dt for every x ∈ R
n.

Since � n(St) ≤ Cth for some finite C (see [17], §3.2.39),

∫

E

dx

[dist(x, S)]p
= � n(E)M−p +

∫ M

0

p

tp+1
� n(St) dt

≤ � n(E)M−p + Cp

∫ M

0

th−1−pdt < +∞ .

7.2. Pull-back according to Sobolev maps. – Let Ω be an open subset of R
n,

and ω a fixed smooth h-form in R
k, with h ≤ k ≤ n. For every C1 map u : Ω → R

k,
we denote by Jωu the pull-back of ω according to u (we adopt this notation to mark
the analogy with the Jacobian). Since

|Jωu(x)| ≤ |ω(u(x))| · |Du(x)|h , (7.1)

(20) In particular π3(S
2) = Z and πk(Sk−1) = Z2 for k ≥ 3, see for instance [13],

Chapter VII, Theorem 8.3.

this pointwise definition makes sense (almost everywhere) for every bounded map
of class W 1,p with p ≥ h, and Jωu belongs to Lp/h. Moreover the operator Jω is
continuous, in the sense that given a sequence of uniformly bounded maps uj that
converge to u strongly in W 1,p, the Jacobians Jωuj converge to Jωu strongly in Lp/h.

The pull-back according to a map u of class C2 commutes with the exterior differ-
ential, that is

Jdωu = d(Jωu) , (7.2)

and therefore, if ψ is the differential of an h-form ω, for all u of class C2 there holds

Jψu = d(Jωu) . (7.3)

Since Jωu is well-defined for all bounded maps of class W 1,h, formula (7.3) allows
us to define Jψu as a distribution for all such maps (21), and not only for those of
class W 1,h+1. The continuity of Jψ (and Jω) ensures that distributional and pointwise
definition of Jψ agree for all bounded maps of class W 1,h+1 (and of course identity
(7.2) holds too).

7.3. Integration of maps valued in a Banach space. – Let E be the dual of
a separable Banach space, X a subset of some euclidean space endowed with a finite
positive measure µ, and f a map in L1

∗(X, E)—that is, a Borel map from X into E,
endowed with the weak* topology, such that ‖f‖1 :=

∫
X
|f |E dµ is finite. Then the

integral of f on X is the element of E defined by 〈e, v〉 =
∫

X
〈f, v〉 dµ for every v in

the pre-dual of E.
We say that f is approximately continuous in the weak* sense at x̄ ∈ X if: (a)

the function x 7→ |f(x)|E is approximately continuous at x̄ (22), and (b) the function
x 7→ 〈f(x), v〉 is approximately continuous at x̄ for every v in the pre-dual of E. It is
easy to see that in this case, the averages of f(x) over x ∈ B(x̄, r) converge to f(x̄) in
the weak* topology of E, and also their norms converge. More generally, the integrals∫

X
f ρi dµ converge weakly* to f(x̄) if the real functions ρi converge to a Dirac mass

at x̄, and are sufficiently well-distributed around x̄, e.g., for every i there exists ri > 0
such that ρi is supported in B(x, ri) and |ρi| ≤ C/µ(B(x̄, ri)) for some finite constant
C. Note that every f in L1

∗(X, E) is approximately continuous in the weak* sense at
almost every x̄ ∈ X (23).

In §7.4 and §7.5 we apply these notions when E is the space of bounded measures
on Ω—dual of C0(Ω), space of continuous functions vanishing at ∂Ω—or the space of d-
dimensional currents with finite mass in Ω—dual of C0(Ω,∧d(Rn)), space of continuous
d-forms vanishing at ∂Ω. Notice that neither spaces are separable or have the Radon-
Nikodym property, i.e., there are functions in L1

∗(X, E) which cannot be integrated in

(21) The Jacobian Ju agrees with Jψu = dJω0
u where ψ(y) = dy = dy1 ∧ · · · ∧ dyk

is the standard volume form on R
k, and ω0 is given in (2.7) divided by k.

(22) Approximate continuity of g at x̄ is intended in the usual L1 sense, namely that
the average of |g(x) − g(x̄)| over all x ∈ B(x̄, r) tends to 0 as r → 0.

(23) Indeed, if x̄ satisfies (a), then (b) holds for all v in the pre-dual of E if (and
only if) it holds for all v in a given countable dense subset of the pre-dual of E.
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the sense of Bochner and are nowhere approximately continuous in the usual (strong)
sense.

Oriented and unoriented coarea formula

For the rest of this subsection M is a smooth oriented h-surface in R
k without bound-

ary, and ω is the standard volume form on M .

7.4. Coarea formula for Lipschitz maps. – The usual coarea formula (see
[17], Theorem 3.2.22) says that for every Lipschitz map u : Ω → M , every Borel set
A ⊂ Ω, and every continuous function ρ : M → R there holds

∫

A

|Jωu| · |ρ(u)| d� n =

∫

M

� n−h(Ny ∩ A) · |ρ(y)| d� h(y) , (7.4)

where Ny is the level set u−1(y) for every y ∈ M . Moreover Ny is (n − h)-rectifiable
for
�

h-a.e. y ∈ M .
If A is the complement of the set of all x such that u is differentiable at x and

Jωu(x) 6= 0, then the integral of |Jωu| on A vanishes, and applying formula (7.4) with
ρ(y) ≡ 1 we deduce that, for

�
h-a.e. y ∈ M , the map u is differentiable at

�
n−h-a.e.

x in Ny, and the (n − h)-vector ?Jωu(x) does not vanish. Hence ?Jωu(x) is a simple
vector which spans the tangent space to Ny at any such point x.

Now we equip each rectifiable level set Ny with the orientation ?Jωu/|?Jωu| and
the multiplicity 1, and make it a rectifiable current with finite mass, still denoted by
Ny. Since |ω| = 1 on M , for ρ ≡ 1 inequality (7.1) and formula (7.4) yield

∫

M

‖Ny‖ d
� h(y) =

∫

Ω

|Jωu| d� n ≤
∫

Ω

|Du|h d� n . (7.5)

Hence, taking into account that ρ(u)Jωu = Jρωu, identity (7.4) can be rewritten as a
decomposition of the measure |?Jρωu| as a weighted average over the parameter y of
the measures |Ny|, that is,

|?Jρωu| =

∫

M

|Ny| · |ρ(y)| d� h(y) , (7.6)

where the integral is intended in the sense of §7.3 (the map y 7→ |Ny| is summable
by (7.5); we omit checking that it is also weak* Borel measurable). From (7.6) we
immediately derive the analogous decomposition for the current ?Jρωu in terms of the
currents Ny (oriented coarea formula):

?Jρωu =

∫

M

Ny · ρ(y) d
� h(y) . (7.7)

7.5. Coarea formula for Sobolev maps. – Formulas (7.4–7.7) can be ex-
tended with some care to maps u in W 1,h(Ω, M). The key step is to establish a
suitable version of (7.4).

We first choose finitely many smooth h-surfaces Mi, which are diffeomorphic to
closed balls in R

h and cover M . Let now E be the set of all points where u is not
approximately differentiable: then E is Lebesgue negligible, and Ω \E can be covered
by a countably many sets Bj where u agrees with a Lipschitz map (cf. [17], Theorem
3.1.8). We also require that the sets Bj are pairwise disjoint and u(Bj) is contained
in one of the surfaces Mi.

Since each Mi is diffeomorphic to a closed ball in R
h, we can use Kirszbraun’s

extension theorem (for maps into a closed convex subset of R
h) to find a Lipschitz

map uj : Ω → Mi which agrees with u on Bj . Thus formula (7.4) holds for uj , and
since u agrees with uj in Bj and Du agrees with Duj a.e. in Bj , formula (7.4) holds
also for u provided A ⊂ Bj for some j. As the sets Bj cover Ω \E, (7.4) can be made
true for every u and every set A ⊂ Ω by re-defining Ny as

Ny := u−1(y) \ E for every y ∈ M . (7.8)

Since u agrees with uj on each Bj , each Ny is rectifiable for
�

k-a.e. y ∈ M and
?Jωu/|?Jωu| is an orientation of Ny. Now we can proceed as in the previous para-
graph and endow Ny with the structure of rectifiable current, and show that the
decomposition formulas (7.6) and (7.7), and estimate (7.5) hold.

Since y 7→ Ny is an L1
∗ map from M into the Banach space of (n−h)-currents with

finite mass, as pointed out in §7.3, it is approximately continuous in the weak* sense
at
�

h-a.e. y ∈ M . We call such y regular values, and the corresponding Ny regular
level sets. In the following we use the notation Ny only for regular level sets.

Remark 7.6. – Formula (7.4) holds also for maps u of class W 1,1, provided that
the level sets Ny are defined as in (7.8), and |Jωu| is defined in the pointwise sense.
The assumption that u is of class W 1,h is used to prove that

�
n−k(Ny) is finite for

a.e. y ∈ M and that the map y 7→ ‖Ny‖ is summable (cf. (7.5)), which in turn is
needed to ensure that the integrals at the right-hand sides of (7.6) and (7.7) make
sense (cf. §7.3).

Remark 7.7. – If we define the level sets Ny of a map u ∈ W 1,1(Ω, M) simply
as u−1(y)—that is, we do not remove the points of non-differentiability of u—then
formula (7.4) remains valid provided that u satisfies the following version of the (N)
property: for every null set E ⊂ R

n,
�

n−h(u−1(y) ∩ E) = 0 for
�

h-a.e. y ∈ M .
Formula (7.4), with A replaced by E, shows that every Lipschitz map u satisfies the
(N) property. It has been recently proved in [30] that the same is true when u is the
precise representative of a map of class W 1,p for some p > h.

Remark 7.8. – If M is the boundary of an (h+1)-surface M ′ and u is sufficiently
regular, and precisely of class W 1,h+1, then ∂Ny = 0 for every regular value y ∈ M .
Indeed, taken any extension of the form ω to M ′, formulas (7.7) and (2.2) yield, for
every smooth function ρ,

∫

M

∂Ny · ρ(y) d
� h(y) = ∂(?Jρωu) = (−1)n−h?Jd(ρω)u ,
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and since u takes values in a negligible subset of M ′, the (h+1)-form Jd(ρω)u—the pull-
back of d(ρω) according to u—must vanish. Thus the integral in the formula above
vanishes for every ρ, which proves that ∂Ny = 0 for a.e. y ∈ M , and by continuity for
every regular value y.

Proof of Theorem 3.8

The geometric idea behind the proof of Theorem 3.8 is very simple: if we assume that
u is smooth outside a singular set S of codimension k, then, up to a factor αk and
some integer multiplicity σ, the current ?Ju agrees with S (see §3.7), and, as shown
in Figure 6 below, S is the boundary of every level set Ny := u−1(y), which is indeed
a surface of codimension k − 1.

We claim that the same is true, in some sense, also for maps in W 1,k−1. The key
observation is that not only Ju = 1

kd(Jω0
u) where ω0 is the standard volume form

on Sk−1, but in fact Ju = 1
kd(Jρω0u) for any smooth function ρ with average one

(Proposition 7.9). Therefore we can use the coarea formula to represent ?Ju as the
boundary of the integral combination

∫
Ny ρ(y) d

�
k−1(y), and then pass to the limit

as the functions ρ converge to a Dirac’s mass at some regular value y.

S

S

Ω

level sets of u

n=2, k=2 n=3, k=2

Ω

Figure 6

In the following statement we consider a compact, oriented h-surface M without
boundary. Notice that in this case any smooth h-form on M can be written as ρω
where ω is the standard volume form on M , and ρ is a real function on M .

Proposition 7.9. – If M is connected and ρ : M → R is a smooth function with
average 1, then

d(Jωu) = d(Jρωu) for every u ∈ W 1,h(Ω, M). (7.9)

Proof. It suffices to show that Jωu − Jρωu = J(1−ρ)ωu is the differential of an
(h − 1)-form.

The h-form (1 − ρ)ω has vanishing integral over M , and since the h-th De Rham
cohomology group of a connected h-dimensional manifold M is R, and the cohomology
class of an h-form is determined by the integral over M (cf. [10], Corollary 5.8), then
(1 − ρ)ω belongs to the class 0, i.e., it is an exact form. Thus there exists an (h − 1)-
form ϕ on M such that dϕ = (1−ρ)ω. If we extend ϕ to the rest of R

k in an arbitrary

way, then dϕ is an extension of (1 − ρ)ω, and for every u of class W 1,h there holds
(cf. (7.2))

J(1−ρ)ωu = Jdϕu = dJϕu .

Proof of Theorem 3.8. – By Definition 3.2, the Jacobian of u is Ju = 1
kd(Jω0

u),
where ω0 is the standard volume-form Sk−1. Let ρ be a smooth function on Sk−1 with
average 1, that is, with integral kαk. Then, Ju = 1

kd(Jρωu) by Proposition 7.9, and
recalling (2.2),

?Ju = (−1)n−k+1 1

k
∂(?Jρ0ωu) . (7.10)

As discussed in §7.5, decomposition formula (7.7) applies to ?Jρω0
u, too, and therefore

(7.10) becomes

?Ju = (−1)n−k+1 1

k
∂

[ ∫

Sk−1

Ny · ρ(y) d
� k−1(y)

]
, (7.11)

where the currents Ny are the y-level set of u, as defined in §7.5.

If ȳ is a regular value of u, namely a point of approximate continuity (in the weak*
sense) of the map y 7→ Ny, and we properly choose a sequence of smooth functions ρ
which converge to the Dirac’s mass kαkδȳ, then the integral between square brackets
at the right-hand side of (7.11) converge in the sense of currents to kαkNȳ (cf. §7.3),
and then

?Ju = (−1)n−k+1αk ∂Nȳ .

If in addition we have chosen ȳ so that ‖Nȳ‖ is smaller than the average of ‖Ny‖ over
all y ∈ Sk−1, inequality (7.5) yields (3.7).

Remark 7.10. – The key lemma in the proof of Theorem 3.8, namely Proposition
7.9, is a rephrasing of a known fact on the structure of the boundary of graphs with
finite area. Let u be a map in W 1,h(Ω, M), and let Gu be the regular part of the
graph of u, namely, the set of all (x, u(x)) such that u is approximately continuous
and approximately differentiable at x. One easily checks that Gu is an n-rectifiable set
with finite measure (and according to [20], §3.2.1, we write u ∈ A1(Ω, M)), and the
canonical orientation induced by the projection on Ω makes it a rectifiable n-current.
Moreover, if M is connected, ∂Gu can be represented as a product T ×M , where T is a
current of dimension n−h−1 in Ω (see, e.g., [21], §4.2.1, for a special case), and using
the coarea formula one can prove that T remains unchanged if we replace the volume
form on M by any other form with same integral. If M = Sk−1, the relation with the
Jacobian is given by the identity ?Ju = 1

k

(
π](∂Gu ω0)

)
, where π is the projection of

Ω × Sk−1 onto Ω, and ω0 is the (k − 1)-form in (2.7). In particular ?Ju = αkT .
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Approximation of rectifiable currents

The main result in this subsection is Theorem 7.12 below, which is a fairly simple
consequence of Theorem 4.2.22 in [17].

Definition 7.11. – Given two rectifiable h-currents N1 and N2 in Ω, we consider
the distance d(N1, N2) defined by

d(N1, N2) := inf(‖R‖ + ‖P‖) (7.12)

where the infimum is taken over all rectifiable currents R and P of dimension h and
h + 1, respectively, such that N1 − N2 = R + ∂P (24). In the following we say that a
sequence of rectifiable currents Ni converge in the flat metric with convergence of the
masses to N if d(Ni, N) → 0 and ‖Ni‖ → ‖N‖.

Theorem 7.12. – Let N be an h-dimensional rectifiable current in Ω with finite
mass. Then N can be approximated in the flat metric with convergence of masses by
finite sums

∑
Ei, where each Ei is an oriented h-dimensional disk with center xi and

radius ri, endowed with constant multiplicity 1.
Moreover, given a function ρ on Ω which is strictly positive

�
h-a.e., we may

require that the radii ri satisfy ri < ρ(xi), and the balls B(xi, ri) are pairwise disjoint
and contained in Ω.

Proof. By Theorem 4.2.22 in [17], there is no loss of generality in assuming that
N is a polyhedral current compactly supported in N .

Moreover, we may also assume that the multiplicity of N is 1 on each face of the
polyhedron. Indeed, if some face of N was initially assigned a multiplicity σ > 0, it
can be replaced by σ copies of itself (where each of the copies is translated by a small
vector, and equipped with multiplicity 1): this operation does not change the mass of
N , and the resulting current can be made arbitrarily close to N in the flat distance.

To prove the theorem for this special class of currents, it suffices to use Besicovitch
covering theorem to cover each face S of N with finitely many pairwise disjoint disks
Ei of center xi and radius ri which cover all of S except a subset with small measure
and satisfy ri < ρ̄(xi), where ρ̄(x) is the minimum between ρ(x) and half the distance
between x and N \ S. This choice of ρ̄ implies the second part of the statement.

Corollary 7.13. – Let N be an h-dimensional rectifiable current in Ω with finite
mass, and ρ a function on Ω which is strictly positive

�
h-a.e. Then there exist finitely

many oriented h-disks Ei with centers xi and radii ri < ρ(xi), rectifiable currents R
and P of dimension h and h + 1, respectively, so that

(i) N =
∑

i Ei + R + ∂P ;

(ii)
∑

i ‖Ei‖ ≤ 21−h‖N‖;
(iii) ‖R‖ + ‖P‖ ≤ (1 − 2−1−h)‖N‖;
(iv) the balls B(xi, 2ri) are pairwise disjoint.

(24) Thus d is a modification of the usual flat metric—see [17], §4.1.12, or [35], §31.

Proof. Let ε > 0 be fixed for the time being (to be properly chosen later).
By Theorem 7.12 (and Definition 7.11) we can find disjoint disks E′

i, and rectifiable
currents R′ and P ′ such that

N =
∑

i

E′
i + R′ + ∂P ′ ,

∑

i

‖E′
i‖ ≤ (1 + ε)‖N‖ , ‖R′‖ + ‖P ′‖ ≤ ε‖N‖ . (7.13)

Let now Ei be a copy of E′
i scaled by a factor 1/2 and concentric to E′

i, P := P ′ and
R :=

∑
(E′

i − Ei) + R′. Then the first identity in (7.13) yields (i), the first inequality
in (7.13) yields (ii) (at least for for ε ≤ 1), and

‖R‖ + ‖P‖ ≤
∑

i

‖E′
i − Ei‖ + ‖R′‖ + ‖P ′‖

≤ (1 − 2−h)
∑

i

‖E′
i‖ + ε‖N‖

≤
[
(1 − 2−h)(1 + ε) + ε

]
‖N‖ ,

which gives (iii) if we choose ε small enough to have (1− 2−h)(1 + ε) + ε ≤ 1− 2−h−1.
Finally, if the disks E′

i satisfy the second part of Theorem 7.12, then (iv) holds.
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