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Abstract. This paper is concerned with the fine properties of monotone func-
tions on R

n. We study the continuity and differentiability properties of these
functions, the approximability properties, the structure of the distributional
derivatives and of the weak Jacobians. Moreover, we exhibit an example of
a monotone function u which is the gradient of a C1,α convex function and
whose weak Jacobian Ju is supported on a purely unrectifiable set.

Introduction

This paper is devoted to a systematic analysis of the properties of monotone
functions defined on a finite dimensional space R

n. The initial motivation
of our work is the following: in the last years, several questions concern-
ing the “right” definitions of Jacobian determinant and of graph area for a
nonsmooth function (e.g., belonging to a Sobolev space) have been debated
(see for instance [Ba], [GMS1], [GMS2], [Mu1], [Mu2], [Muc]). We will see
that for maximal monotone functions there is a natural and completely sat-
isfactory way to introduce these concepts, getting continuity properties and
strong approximability by smooth functions. We notice that the monotonic-
ity property allows discontinuities and the existence of “vertical parts” in the
graph; however, maximal monotone functions are in some sense very smooth,
because for them several weak objects are univocally defined and there is a
good description of the singularities.

Our paper has also been conceived as a review on the fine properties
of monotone functions, such as continuity, differentiability, structure of the
distributional derivative. Our review collects many results scattered in the
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literature (see for instance [A1], [Ale], [AG], [AK], [Be], [Br], [Mi], [Mig]) and
is, as far as possible, self-contained. We will assume only well-known results
on Lipschitz functions, namely Rademacher’s and Kirszbraun’s theorems, and
the area formula.

Our starting point is the one to one correspondence, observed and used by
Minty in [Mi], between graphs of monotone functions and graphs of 1-Lipschitz
functions. Specifically, the Cayley transformation

(x, y) 7→ 1√
2
(x + y,−x + y) (x, y) ∈ R

n × R
n

(a clockwise rotation of π/4 if n = 1) transforms the graph

Γu = {(x, y) ∈ R
n × R

n : y ∈ u(x)}

of a monotone function u in the graph of a 1-Lipschitz function. We will
see that this correspondence is extremely useful to unify and simplify several
proofs existing in the literature: for instance, Rademacher’s differentiability
theorem for Lipschitz functions leads to an analogous property for monotone
functions and Kirszbraun’s extension theorem for Lipschitz functions leads to
a characterization of maximal monotone functions as those monotone func-
tions u such that u+I is surjective. We also notice that the theory of cartesian
currents developed in [GMS1] is strongly founded in the identification between
a function and its (generalized) graph.

Now we briefly describe in a more detailed way the content of our paper;
bibliographical and historical comments will be given after the statements of
main theorems.

In the first section we fix our notations and we prove in Proposition 1.1 the
above mentioned correspondence between graphs of monotone functions and
graphs of 1-Lipschitz functions. After the statement of some classical proper-
ties of monotone functions (Proposition 1.2 and in Corollaries 1.3, 1.4, 1.5) we
define a natural topology on the space

�
on of maximal monotone functions

which is related to the Kuratowski convergence of the associated graphs. In
Proposition 1.7 we prove that any sequence (uh) of maximal monotone func-
tions either admits a convergent subsequence or “goes to infinity” (i.e., the
intersection of the graph of uh with any bounded set in R

n ×R
n is empty for

sufficiently large h).
In the second section (Theorem 2.2) we prove that the singular sets

Σk(u) =
{
x ∈ R

n : dimu(x) ≥ k
}

for k = 1, . . . , n,

are countably � n−k-rectifiable, i.e., � n−k-almost all of Σk(u) can be covered
by a sequence of C1 surfaces of dimension (n − k). We notice that u is
continuous outside Σ1(u).
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In the third section we prove a uniform estimate on the area of the graph
Γu of a monotone function u (see Proposition 3.1)

� n
(
Γu ∩ B(x, r)

)
≤ 2n/2ωnrn , (1)

and we infer, using the area formula and Rademacher’s theorem, the following
differentiability property (see Theorem 3.2): for almost every x̄ ∈ Dm u\Σ1(u)

lim
x→x̄

y∈u(x)

y − u(x̄) −∇u(x̄) · (x − x̄)

|x − x̄| = 0 , (2)

here Dm u is the set of all points where u has non-empty value, and then
Dm u \ Σ1(u) is the set of all points x̄ such that the set u(x̄) consist of one
point, which is then identified with u(x̄).

In section 4 we associate to any maximal monotone function u a n-current
Tu in R

n × R
n without boundary associated to the integration on the graph

Γu. Indeed, by Minty’s correspondence with graphs of 1-Lipschitz functions,
Γu can be oriented in such a way that Stokes’s theorem holds

∫

Γu

dω = 0 ∀ω ∈ � n−1(Rn × R
n) .

The mapping u 7→ Tu enjoys natural continuity properties which are a direct
consequence (after performing the Cayley transformation) of the continuity
properties of f 7→ Tf in the class of functions satisfying an equi-Lipschitz
condition.

In section 5 we prove that the representation of the graph of u as a n-
current implies, among other things, that any mononotone function is of class
BVloc in the interior of Dm u (Proposition 5.1). Moreover, the monotonic-
ity property is characterized in Dm u by the positivity of the distributional
derivative Du (Theorem 5.3). Consequently, we analyze the structure of Du,
splitting it into three parts: the absolutely continuous part Dau, the jump
part Dju, and the Cantor part Dcu (paragraph 5.6). We present in Theo-
rem 5.10 a very simple proof of the rank-one property of the measures Dju,
Dcu, based on the area estimate (1) and on Reshetnyak’s continuity theorem
(this proofs seems to work for monotone functions only and the proof of the
rank-one property for a general BV function is much harder, cf. [A1]).

For any maximal monotone function u we can also define the weak Jaco-
bian Ju, as the positive measure given by

Ju(B) := � n

(
u(B)

)

for any bounded Borel set B contained in the interior of Dm u (cf. Definition
5.12). It turns out that the map u 7→ Ju is continuous with respect to the
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natural topologies, and that Ju coincides with the measure det(∇u)·� n when
u is a C1 function. Furthermore,

∫
φ(x) dJu(x) = Tu

(
φ(x) dy1 ∧ . . . ∧ dyn

)

for any smooth function φ with support contained in the interior of Dm u.
In section 6 we prove that any maximal monotone function u may be

approximated by a canonical sequence of 1/ε-Lipschitz maximal monotone
functions uε (the so-called Yosida approximation of u) so that uε → u, Tuε →
Tu and |Tuε| → |Tu| (see Theorem 6.2 for precise statements). The function
uε is given by (εI + u−1)−1 and its graph Γuε is given by

Γuε =
{
(x + εy, y) : (x, y) ∈ Γu

}
.

Hence, the graph of uε is, for small ε, a slight deformation of the graph of u.
The convergence of Tuε to Tu implies, in particular, the convergence of the
distributional derivatives Duε to Du. We also notice that the convergence
|Tuε| → |Tu| (often called convergence in area) is a quite strong property and
implies, via Reshetnyak’s theorem, that |Duε| → |Du|, that is, the conver-
gence in variation of the derivatives.

If we choose uε to be the standard mollified functions, then the conver-
gence in variation of the derivatives still holds, but we don’t know whether uε

converge in area to u or not (see Remark 6.4). The difficulty comes from the
nonlinearities involved in the computations of the determinants of all minors
of ∇uε.

In section 7 we confine our attention to a special class of monotone func-
tions, the subgradients ∂f of convex and lower semicontinuous functions
f : R

n →] − ∞,+∞]. Using the differentiability property (2) we quickly
recover the Aleksandrov’s theorem on the almost everywhere second order
differentiability of a convex function (more precisely, we prove the existence
almost everywhere of a second order Taylor expansion, see Theorem 7.10).
Moreover, in Proposition 7.13 we show that setting u := ∂f , the approximat-
ing functions uε of section 6 are exactly the gradients of the inf-convolutions

fε(x) := min
x′∈Rn

{
f(x′) +

1

2ε
|x′ − x|2

}
.

Section 8 is completely dedicated to the construction of an example of
maximal monotone function u whose weak Jacobian has a nontrivial structure.
Indeed, we find a Hölder continuous monotone function u : R

2 → R
2 such

that the weak Jacobian Ju is supported on a Lebesgue negligible, purely
unrectifiable set A and such that det(∇u) = 0 a.e. in R

2. Moreover, u is the
gradient of a convex function of class C1 ∩ W 2,p for every p < 2.
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We will obtain u by a method related to the construction of Hutchinson’s
self-similar fractals. The requirement of being the gradient of convex function
is a source of difficulties (see the discussion in paragraph 8.8) and forces us
to choose a countable family of similitudes Ψi taking the unit ball B(0, 1) to
balls B(xi, ri) which cover almost all B(0, 1).

It turns out that the Hausdorff dimension of A is related to the so-called
packing exponent of this covering, and is never lower than 1 (see paragraph
8.10 and Remark 8.11). In paragraph 8.12 we discuss some conjectures about
the “dimension” of the measure Ju. In particular, we believe that the param-
eters of our construction can be arranged in such a way that the dimension
of Ju is any prescribed number in ]0, 2[.

Finally, in paragraph 8.15 we discuss the possibility of closure theorems
for special classes of monotone functions (e.g. monotone functions on the
plane whose distributional derivative and weak Jacobian can be written as
a sum of integer dimensional measures) in analogy with the theory of SBV
functions. We modify the construction of the function u (see Definition 8.13
and Proposition 8.14) to exhibit a sequence of monotone functions which
shows that no analogous of the closure theorem for SBV functions holds for
monotone functions.

Acknowledgement. The first author gratefully acknowledges the hospitality and the support
of Institute for Mathematics and its Applications of the University of Minnesota, where part
of this paper was written.

1. Preliminary definitions and basic results

We first recall some basic notation. We denote by � n the Lebesgue measure
in R

n; |B| := � n(B) for every Borel set B in R
n and ωn is the Lebesgue

measure of the unit ball; in addition, � n is the n-dimensional Hausdorff
measure (on any metric space). By measure we always mean a measure on
Borel sets. The restriction of a measure µ to a Borel set E is denoted by
µ E, i.e., µ E(B) := µ(E ∩ B) for any Borel set B; we also set

fµ(B) :=

∫

B

f(x) dµ(x)

provided that the integral at the right hand side is defined. We say that µ
charges E when |µ|(E) > 0, and µ is supported on E when the restriction of
µ to the complement of E is zero.

For every function f , we denote by Df the distributional derivative of f ,
and by ∇f(x) the gradient at the point x (both in the classical sense and in
the approximate sense).
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An n × n matrix A is termed positive if it is positively semi-definite, that
is, if 〈Av, v〉 ≥ 0 for every v ∈ R

n, and it is termed symmetric if A = At. We
say that a matrix-valued function f is positive (resp. symmetric) if f(x) is
always a positive (resp. symmetric) matrix. A matrix-valued distribution Λ
is positive (resp. symmetric) if 〈Λ, φ〉 is a positive (resp. symmetric) matrix
for every positive real valued test function φ.

For every set B in R
n, IntB and ConvB denote respectively the interior

and the closed convex hull of B.

In this paper we deal with set-valued maps u : R
n → R

n (that is, maps
which take every point x ∈ R

n in some set u(x) ⊂ R
n). We call these maps

multifunctions (on R
n), or simply functions when no ambiguities may arise.

We denote by I both the identity function on R
n and the n×n identity matrix.

We say that u is univalued on some set B if u(x) consists of at most one
point for every x ∈ B, and that u is k-Lipschitz if |y1 − y2| ≤ k|x1 − x2| for
every xi ∈ R

n, yi ∈ u(xi), i = 1, 2 (clearly every Lipschitz multifunction is
univalued).

Let be given multifunctions u, v, real numbers λ, µ ∈ R and a set B ⊂ R
n.

For all x ∈ R
n we set

domain of u, Dm u := {x : u(x) 6= ø} ,

image of u, Im u := {y : ∃ x, y ∈ u(x)} ,

graph of u, Γu := {(x, y) ∈ R
n × R

n : y ∈ u(x)} .

inverse of u, [u−1](x) := {y : x ∈ u(y)} ,

[λu + µv](x) := {λy + µy′ : y ∈ u(x), y′ ∈ v(x)} ,

u(B) := {y : ∃x ∈ B, y ∈ u(x)} .

We write u ⊃ v when the graph of u includes the graph of v, i.e., when
u(x) ⊃ v(x) for all x. We say that u is monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 ∀xi ∈ R
n, yi ∈ u(xi), i = 1, 2 . (1.1)

A monotone function u is called maximal when it is maximal with respect to
inclusion in the class of monotone functions, i.e., if the following implication
holds:

v ⊃ u, v monotone ⇒ v = u .

Clearly for any monotone function u there exists a maximal monotone function
ū which includes u. We remark that u is a (maximal) monotone function if
and only if u−1 is a (maximal) monotone function. It is also immediate that
the class of monotone functions is a cone.

The definition of (maximal) monotone function can be readily extended
to multifunctions on Hilbert spaces. Monotonicity can be defined also for
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multifunctions from a Banach space X into its dual X∗, but there exists also
a notion of accretive function for multifunctions from X into X; these two
notions agree on Hilbert spaces (see for instance [Br], section II.1).

Monotone functions in Hilbert spaces play an essential rôle in evolution
equations and in many other fields of functional analysis, but in this paper we
are concerned essentially with the finite dimensional case. For further details
and references about monotone functions we refer to [Br], chapter II.

Following [Mi], we prove that the graph of a maximal monotone function
u is a Lipschitz submanifold without boundary of R

n × R
n. Moreover, there

exists a one-to-one correspondence between the class of maximal monotone
functions on R

n and the class of 1-Lipschitz functions from R
n to R

n.
Let Φ : R

n ×R
n → R

n ×R
n be the Cayley transformation, i.e., the linear

isometry defined by

Φ : (x, y) 7−→ 1√
2
(x + y,−x + y) ∀(x, y) ∈ R

n × R
n . (1.2)

Then we have the following result (first proved in [Mi], Lemma 3 and Theorem
4):

Proposition 1.1. Let u be a maximal monotone function. Then (u + I)−1

is defined on the whole R
n and Φ(Γu) is the graph of the 1-Lipschitz function

Fu : R
n → R

n given by

Fu : z 7→
[
z −

√
2(u + I)−1(

√
2z)

]
∀z ∈ R

n . (1.3)

Conversely, for any 1-Lipschitz function φ : R
n → R

n the set Φ−1(Γφ) is the
graph of a maximal monotone function on R

n.

Proof. Let u be a monotone function, and let Fu be the multifunction whose
graph is Φ(Γu). We claim that Fu satisfies (1.3) and that Fu is 1-Lipschitz
in its domain (and in particular it is univalued).

Let z ∈ R
n. By (1.2), we have that v belongs to Fu(z) if and only if there

exist x ∈ R
n and y ∈ u(x) such that z = 1√

2
(x + y) and v = 1√

2
(−x + y), or,

equivalently, x = 1√
2
(z − v) and y = 1√

2
(z + v). This means that v ∈ Fu(z)

if and only if
z + v√

2
∈ u

(z − v√
2

)
(1.4)

and then v ∈ z −
√

2(u + I)−1(
√

2z). Let z′ ∈ R
n and v′ ∈ Fu(z′). By

applying (1.4) both to (z, v) and (z′, v′), and taking the monotonicity of u
into account, we infer

〈
(v + z) − (v′ + z′), (z − v) − (z′ − v′)

〉
≥ 0
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which yields |v − v′|2 ≤ |z − z′|2. This shows that Fu is a 1-Lipschitz
function.

The same argument shows that Φ−1 maps graphs of 1-Lipschitz functions
in graphs of monotone functions. Assuming now that u is maximal monotone,
we claim that the domain of Fu is R

n. Indeed, were this not true we could
use Kirzsbraun’s theorem (see for instance [Fe1], 2.10.43) to extend Fu to a 1-
Lipschitz function L defined on all R

n and then Φ−1(ΓL) provides a monotone
extension of u, which contradicts the maximality of u.

Proposition 1.2. Let u be a monotone function. Then

(1) if u is maximal, Γu is closed, and u(x) is a convex, closed (possibly empty)
set for every x ∈ R

n;
(2) u is maximal if and only if (u+ I) is onto, i.e., if and only if the domain

of (u + I)−1 is R
n;

(3) (u+I) and (u+I)−1 are monotone functions and (u+I)−1 is 1-Lipschitz;
(4) for any set X ⊂ Dm u, x̄ in the interior of ConvX and ȳ ∈ u(x̄) we have

|ȳ| ≤ C

dist
(
x̄, Rn \ ConvX

) (1.5)

where C :=
[

sup
x∈X

inf
y∈u(x)

|y|
]
· diam(X).

Proof. The proof of statement (1) is trivial, while (2) follows from Proposition
1.1.

About (3), it is easy to see that (u + I) is monotone, and thus (u + I)−1

is monotone too. For any choice of xi ∈ R
n and yi ∈ u(xi) (i = 1, 2) we have

|x1 − x2|2 ≤
〈
(y1 − y2) + (x1 − x2), x1 − x2

〉

≤
∣∣(y1 + x1) − (y2 + x2)

∣∣ |x1 − x2| ,
(1.6)

so that |x1 − x2| ≤ |(y1 + x1) − (y2 + x2)|. In particular, when y1 + x1 =
y2 + x2 then x1 = x2, and this means that (u + I)−1 is univalued. Thereafter
(u + I)−1(yi + xi) = xi, and (1.6) yields the Lipschitz property of (u + I)−1.

Eventually we prove (4). We may assume with no loss in generality that
x̄ = 0. We take ȳ ∈ u(0), and a positive number d < dist

(
0, Rn \ ConvX

)
.

We set z := dȳ/|ȳ|. Then z belongs to the interior of the convex hull of X,
and we can find finitely many points xi ∈ X and positive real numbers αi

such that ∑

i

αi = 1 ,
∑

i

αixi = z .
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Moreover we take m so that

m >
[

sup
x∈X

inf
y∈u(x)

|y|
]

.

Since X ⊂ Dm u and xi ∈ X, we can find yi ∈ u(xi) so that m ≥ |yi| for all
i. By the monotonicity of u we infer 〈ȳ, xi〉 ≤ 〈yi, xi〉, and then

d|ȳ| = 〈ȳ, z〉 =
∑

i

αi〈ȳ, xi〉 ≤
∑

i

αi〈yi, xi〉 ≤ m · sup
i

|xi| ≤ m · diamX .

Inequality (1.5) follows by taking the supremum over all admissible d and the
infimum over all admissible m.

Corollary 1.3. Let u be a maximal monotone function. Then

(1) u is upper semicontinuous, i.e., if xh → x, yh → y and yh ∈ u(xh) then
y ∈ u(x);

(2) the domain of u contains the interior of its convex hull, that is,

Int Conv (Dm u) ⊂ Dm u ⊂ Conv (Dm u) ; (1.7)

(3) for any B relatively compact in the interior of Dm u, the image u(B) is
bounded;

(4) if u(x) consists of exactly one point y, then x belongs to the interior
of Dm u, and u is continuous at x, i.e., xh → x and yh ∈ u(xh) yield
yh → y.

Proof. Property (1) is a restatement of the closure of the graph of u (Propo-
sition 1.2(1)).

Take x̄ in the interior of the convex hull of Dm u. We claim that x̄ ∈ Dm u;
this would prove statement (2).

By the choice of x̄ we may find finitely many points xi ∈ Dm u, i ∈ I, so
that x̄ belongs to the interior of the convex hull of X := {xi : i ∈ I}. For
every i ∈ I we choose yi ∈ u(xi), and for every ε > 0 we set uε := (εI+u−1)−1

(cf. Definition 6.1).
Since u−1 is maximal, then εI + u−1 is surjective (cf. Proposition 1.2(2)),

and then the domain of uε is R
n. Therefore we can choose yε ∈ uε(x̄) for every

ε > 0. Every cluster point y of the sequence (yε) belongs to u(x̄): indeed
yε ∈ uε(x̄) implies yε ∈ u(x̄ − εyε), and passing to the limit as ε → 0 we
obtain y ∈ u(x̄) (apply statement (1)). Hence the claim is proved if we show
that the sequence (yε) is definitively bounded, which is obtained by a suitable
application of estimate (1.5). For any ε > 0 we set Xε := {xi + εyi : i ∈ I};
since yi ∈ uε(xi + εyi) for every i, then

sup
x∈Xε

inf
y∈uε(x)

|y| ≤ sup
i∈I

|yi| < +∞ .
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Since x̄ belongs to the interior of ConvX, then there exists d such that
dist(x̄, Rn \ ConvX) > d > 0, and then dist(x̄, Rn \ ConvXε) > d defini-
tively in ε. Hence we may apply inequality (1.5) with yε instead of ȳ and Xε

instead of X to prove that (yε) is definitively bounded.

About statement (3), we recall that for every set B relatively compact in
the interior of Dm u, there exists a finite set X ⊂ Dm u such that B ⊂ ConvX.
Hence we may apply Proposition 1.2(4) (notice that the right hand side of
inequality (1.5) is finite whenever X is a finite set).

About statement (4), we first prove that if u(x) is a singleton, then x
belongs to the interior of Dm u. Take indeed x in the boundary of Dm u. Then
x belongs to the boundary of Conv (Dm u), because the interior of Conv (Dm u)
is included in the interior of Dm u (statement (2)). Therefore Hahn-Banach
theorem yields a non-trivial e ∈ R

n such that 〈e, x〉 ≥ 〈e, x′〉 for all x′ ∈ Dm u;
if we take y ∈ u(x), x′ ∈ Dm u and y′ ∈ u(x′) we obtain

〈(y + e) − y′, x − x′〉 = 〈y − y′, x − x′〉 + 〈e, x − x′〉 ≥ 0 .

This means that y + e belongs to u(x) because u is maximal, and then u(x)
is not a singleton. The rest of statement (4) follows immediately by (1) and
(3).

Remark. About statement (2) of Corollary 1.3, we remark that the domain
of u may be not convex. Indeed let u be the function on R

2 defined by
u(±1, 0) := (±1, 0), u(0, t) = (0, log t) for every t > 0. It may be easily
verified that u is monotone, and if we take any maximal extension ū of u,
then Dm ū contains the points (±1, 0), but the point (0, 0) never belongs to
Dm ū: assume by contradiction that (y1, y2) ∈ ū(0, 0), then the monotonicity
condition yields

(log t − y2)t ≥ 0 for every t > 0,

that is, y2 ≤ log t for any t > 0, which is impossible.

Corollary 1.4. Let u be a monotone function which is upper semicontinu-
ous and whose values are closed and convex. Then u agrees in the interior
of its domain with every maximal monotone function which includes u. In
particular every continuous univalued monotone function with domain R

n is
maximal.

Proof. Let u be a monotone function, let ū be a monotone function which
includes u, and let x be a point in the interior of Dm u such that u is upper
semicontinuous at x, and u(x) is closed and convex. We claim that u(x) =
ū(x).
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Take r such that B(x, r) ⊂ Dm u. Take y ∈ ū(x), and assume by contra-
diction that y /∈ u(x). Since u(x) is convex and closed, Hahn-Banach theorem
yields a unitary vector e ∈ R

n and ε > 0 such that 〈y′ − y, e〉 ≥ ε for all
y′ ∈ u(x). Therefore, if we take yt ∈ u(x + te) for every t with 0 < t < r,

|yt − y′| ≥ 〈yt − y′, e〉 =
1

t
〈yt − y, te〉 + 〈y − y′, e〉 ≥ ε ∀ y′ ∈ u(x) .

This means that the points yt do not converge to u(x) when t → 0, which
contradicts the assumption that u is upper semicontinuous at x.

Corollary 1.5. Let be given maximal monotone functions u and v and an
open convex set A so that u(x)∩ v(x) 6= ø for every x in a dense subset of A.
Then u(x) = v(x) for every x in A.

Proof. Let w the monotone function which takes every x ∈ R
n in the set

u(x) ∩ v(x); thus w(x) is always closed and convex (cf. Proposition 1.2(1)),
and w is upper semicontinuous (cf. Corollary 1.3(1)).

Let D := Dm w. By assumption we have that Dm u and Dm v contain D,
and since D is dense in A we deduce that Dm u and Dm v contain A. Hence
both u and v are locally bounded on A, therefore the same holds for w, and
recalling that w is upper semicontinuous we deduce that w(x) is non-empty
for every x ∈ A, that is, D ⊃ A. Now we can apply Corollary 1.4 to obtain
that w(x) = u(x) = v(x) for every x ∈ A.

Eventually we want to endow the class of all maximal monotone functions
with a suitable topology. It turns out that the “natural” topology is related
with the Hausdorff distance between closed sets. For more general results and
details on the Hausdorff distance, Kuratowski convergence and related topics
we refer to [CV], chapter II.

Let (E, d) be a metric space. We say that a sequence of closed sets Ch ⊂ E
converges to C in the sense of Kuratowski when the following two conditions
are satisfied:

xh ∈ Ch ⇒ every cluster point of (xh) belongs to C, (1.8)

∀x ∈ C, ∃xh ∈ Ch such that xh → x. (1.9)

We remark that C is uniquely determined by (1.8) and (1.9). When C = ø,
(1.9) is always verified and (1.8) is equivalent to say that any compact set
K ⊂ E intersects finitely many Ch only.

For every couple of closed sets C, C ′ ⊂ E we define the Hausdorff distance

δ(C, C ′) := sup
x∈C

dist(x, C ′) ∨ sup
x′∈C′

dist(x′, C) . (1.10)
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When E is compact the Hausdorff distance δ induces the Kuratowski con-
vergence, and the class of all closed subsets of E is a compact metric space.
Thereafter, taking into account that the empty set is an isolated point, we
have that any sequence of non-empty closed sets admits a subsequence which
converges to a non-empty closed set (see [CV], section II.4).

Definition 1.6. Let X be the class of all closed subsets of R
n × R

n, let
E =

(
R

n ×R
n
)
∪{∞} be the one-point compactification of R

n ×R
n (endowed

with a suitable metric) and let δ be the Hausdorff distance on the class of all
closed subsets of E. Let i be the map which associates to any C ∈ X the set
C ∪ {∞} ⊂ E, and set

d(C, C ′) := δ
(
i(C), i(C ′)

)
∀C, C ′ ∈ X . (1.11)

It may be easily checked that d is a distance inducing the Kuratowski con-
vergence in X, and then X is compact. In the following we identify maximal
monotone functions with their graphs, and denote by

�
on the class of all

maximal monotone multifunctions on R
n. By Proposition 1.2(1) the graph of

a maximal monotone function is closed subset of R
n × R

n. Hence
�

on is a
subset of X and we endow it with the distance d defined in (1.11). Then the
following proposition holds:

Proposition 1.7.
�

on∪{ø} is a closed subset of X. Since X is compact, this
means that for every sequence (uh) ⊂ �on either we may find a subsequence
which converges to some u ∈ �on , or (uh) converges to ∞, which means that
for every compact set K ⊂ R

n

inf
{
|y| : y ∈ uh(x), x ∈ K

}
→ +∞ as h → +∞.

Proof. It is enough to prove that for every sequence (Ch) ⊂ �
on which

converges to C 6= ø there holds C ∈ �on . Let uh be the maximal monotone
multifunctions whose graphs are Ch, and let u be the multifunction whose
graph is C, i.e.,

u(x) :=
{
y ∈ R

n : (x, y) ∈ C
}

∀x ∈ R
n.

We first prove that u is monotone. Let be given xi ∈ Dm (u) and yi ∈ u(xi),
i = 1, 2; by (1.9) we can find sequences (xi,h, yi,h) ∈ Ch converging to (xi, yi).
Hence

〈y1 − y2, x1 − x2〉 = lim
h→∞

〈y1,h − y2,h, x1,h − x2,h〉 ≥ 0 ,

by the monotonicity of uh.



  

Monotone functions in R
n 13

In order to show that u is maximal, according to Proposition 1.2(2) it is
enough to prove that Dm (u + I)−1 = R

n. By Proposition 1.2(2) and (3) the
functions (uh + I)−1 are 1-Lipschitz functions defined on R

n, and we claim
that they converge to (u+I)−1 uniformly on compact sets, which would imply
Dm (u + I)−1 = R

n (hence the maximality of u).
Notice that our claim is proved if we show that there always exists a

subsequence which converges to some 1-Lipschitz function v uniformly on
compact sets, because this would imply v = (u + I)−1. Now, since the func-
tions (uh + I)−1 are equi-continuous, it is enough to find a bounded sequence
zh ∈ R

n such that (uh + I)−1(zh) is bounded and then apply Ascoli-Arzelà
theorem. Since we assumed C non-empty, we can take (x, y) ∈ C and by
(1.9) we may find (xh, yh) ∈ Ch which converges to (x, y). Eventually we
set zh := xh + yh; the points zh converge to x + y, and (u + I)−1(zh) = xh

converge to x, and then both sequences are bounded.

Remark. The mapping u 7→ Fu considered in Proposition 1.1 is an homeo-
morphism of

�
on in the space of all 1-Lipschitz functions from R

n into R
n,

endowed with the topology of uniform convergence on compact sets.

2. Rectifiability of the singular sets

In this section we are concerned with the structure of singular sets of a mono-
tone function, that is, sets of points where the function is not univalued.

Definition 2.1. Let u be a maximal monotone function and k = 1, . . . , n an
integer. We define

Σk(u) :=
{
x ∈ R

n : dimu(x) ≥ k
}

. (2.1)

where dimu(x) is the dimension of the set u(x).

(By Proposition 1.2(1) u(x) is a convex set, and thus its dimension is the
dimension of the affine space spanned by it). We note that

Σn(u) ⊂ Σn−1(u) ⊂ . . . ⊂ Σ1(u) .

The following theorem provides an upper bound on the Hausdorff dimension
of Σk(u).

Theorem 2.2. The Hausdorff dimension of the set Σk(u) is at most (n−k).
More precisely Σk(u) is countably � n−k-rectifiable, and this means that we
can find countably many C1 submanifolds Γi ⊂ R

n of dimension (n−k) which
cover � n−k-almost all of Σk(u), i.e.,

� n−k
(
Σk(u) \

⋃
Γi

)
= 0 . (2.2)
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In particular Σn(u) is at most countable.

Proof. It is clear that Σk(u) = Σk(u + I). Let G(n, n− k) be the Grassmann
manifold of (unoriented) (n − k)-planes in R

n, let S be a countable dense
subset of R

n and F a countable dense subset of G(n, n − k). We claim that

Σk(u + I) ⊂ (u + I)−1
( ⋃

y∈S
P∈F

y + P
)

=
⋃

y∈S
P∈F

(u + I)−1(y + P ) .

Indeed, if x ∈ Σk(u + I) then (u + I)(x) contains a closed convex set of
dimension greater than k, so that we can find y ∈ S and P ∈ F such that
(y + P ) ∩ (u + I)(x) 6= ø. In particular, x ∈ (u + I)−1(y + P ).

Since the class of countably � n−k-rectifiable sets is stable under countable
union, it is enough to show that the set (u+ I)−1(y +P ) is countably � n−k-
rectifiable for any y ∈ R

n and any P ∈ G(n, n − k). Since (u + I)−1 is a
Lipschitz function (cf. Proposition 1.2(3)), this follows by the fact that the
image of an affine (n − k)-plane through a Lipschitz function is countably
� n−k-rectifiable (cf. [Si], section 11).

Remark 2.3. As a particular case of this theorem we have proved that for
every (maximal) monotone function u the set of all points x ∈ Dm u such that
u(x) contains more than one element (that is, Σ1(u)) has dimension (n − 1)
and is σ-finite with respect to � n−1.

The proof we have given allows for a slight refinement of the statement
of Theorem 2.2: for every k, the set Σk can be covered by countably many
Lipschitz images of (n − k)-planes. In fact, Σk may be covered by countably
many sets which are graphs of Lipschitz functions from R

n−k into R
k. This

strong form of Theorem 2.2 was first proved by Zaj́ıček in [Z1].

Our proof can be extended to the case of monotone functions defined on a
separable Hilbert space, while the technics used in [Z1] apply also to monotone
functions on Banach spaces with separable dual. Another proof (of the strong
form of Theorem 2.2) can be obtained by modifying the argument given in
[AAC] for the rectifiability of the singular sets of subdifferential of semi-convex
functions.

Theorem 2.2 is not optimal: Zaj́ıček conjectured that the singular set
Σk(u) can be covered by countably many (c-c)-surfaces of codimension k,
namely, graphs of functions g : R

n−k → R
k such that each component of

g is the difference of two convex functions. In particular this would imply
that Σk can be covered (up to an � n−k-negligible set) by countably many
surfaces of codimension k and class C2. This conjecture is proved in the case
n = 2, k = 1 (see [Ve]) and when u agrees with the subdifferential of a convex
function (see paragraph 7.9). As far as we know, the general case is still open.
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3. Differentiability properties

Using Proposition 1.1 we give in this section a simple proof of the fact that a
monotone function is almost everywhere differentiable. Moreover, we estimate
the Hausdorff n-dimensional measure of the graphs of (maximal) monotone
functions.

Proposition 3.1. For any monotone function u and for any ball B ⊂ R
n×R

n

of radius r we have
� n(Γu ∩ B) ≤ 2n/2ωnrn , (3.1)

and for every Borel set A ⊂ R
n

� n
(
Γu ∩ (A × R

n)
)
≤ 2n/2ωn

[
diamA + osc(u, A)

]n
, (3.2)

where osc(u, A) stands for the supremum of |y1 − y2| over all y1, y2 ∈ u(A).

Proof. Let Fu be the function in Proposition 1.1. Estimate (3.1) follows by
the fact that the Cayley transformation Φ in (1.2) is an isometry and by
the fact that the Lipschitz constant of z 7→ (z, Fu(z)) does not exceed

√
2.

Inequality (3.2) follows from (3.1) because Γu∩ (A×R
n) is included in a ball

of R
n × R

n of radius r =
[
diamA + osc(u, A)

]
.

Now, using essentially Rademacher’s differentiability theorem for Lipschitz
functions and the area formula we can prove the following differentiability
property of monotone functions.

Theorem 3.2. Let u be a maximal monotone function and let D be the set
of points x such that u(x) is a singleton (that is, u(x) consists of exactly one
point which we still denote by u(x)). Then, u is differentiable at almost every
x̄ ∈ D, that is, there exists an n × n matrix ∇u(x̄) such that

lim
x→x̄

y∈u(x)

y − u(x̄) −∇u(x̄) · (x − x̄)

|x − x̄| = 0 . (3.3)

Moreover, the determinants of all minors of ∇u are integrable on every
bounded set B such that u(B) is bounded.

Remark 3.3. We already proved in Corollary 1.3(4) that every x where u
is a singleton belongs to the interior of Dm u, and that u is continuous at x,
and in Theorem 2.2 we proved that u(x) is a singleton for all x ∈ Dm u except
the (n − 1) dimensional set Σ1(u).

To our knowledge, this result was originally proved in [Mig]. Since the
gradient of a convex function is a monotone function (see section 7), the above
theorem can be viewed as an extension of a classical differentiability theorem
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by Aleksandrov (see [Ale]) to monotone functions. We will see in Theorem
7.10 that Aleksandrov’s theorem is an easy consequence of this result.

Proof of Theorem 3.2.
Since the graph of u is an n-dimensional Lipschitz manifold without bound-

ary in R
n × R

n (Proposition 3.1), it admits an n-dimensional tangent space
Tan(v) for all points v ∈ Γu outside an exceptional set N which is � n-
negligible (this is an immediate and well-known corollary of Rademacher’s
differentiability theorem for Lipschitz functions).

Let π be the projection of the product R
n × R

n on the first R
n, and let

S be the set of points v ∈ Γu \ N so that the restriction of π to Tan(v) is
one-to-one (in other words, so that the projection of Tan(v) has dimension
n). The proof of Theorem 3.2 will be achieved by proving the following two
claims:

(i) if (x, y) ∈ S, then x ∈ D and u is differentiable at x;

(ii) π(S) has full measure in Dm u.

Proof of claim (i).
With no loss in generality we may assume that x = 0, y = 0. We denote

by M the tangent space Tan(0, 0).
Assume by contradiction that u(0) is not a singleton. Thus there exists y ∈

u(0) such that y 6= 0, and then u(0) contains the interval [0, y] by Proposition
1.2(1). Hence the tangent space M contains the vector (0, y), which belongs
to the kernel of π, and this contradicts the assumption that π is one-to-one
on M .

We denote by p be the projection of R
n × R

n onto M and by π̄ the
restriction of π to M . Since π̄ : M → R

n is one-to-one, there exists an n by
n matrix A such that x 7→ (x, Ax) is the inverse of π̄. Therefore for every
v = (x, y) ∈ R

n × R
n there holds

(0, y − Ax) =
(
I − π̄−1π

)
v =

(
I − π̄−1π

)
(v − p(v)) . (3.4)

Take xh ∈ R
n, xh → 0, and yh ∈ u(xh). Then yh → 0 because u is continuous

at 0 (cf. Corollary 1.3(4)), and if we denote by vh the points (xh, yh), (3.4)
becomes

|yh − Axh| ≤
∥∥I − π̄−1π

∥∥ |vh − p(vh)| . (3.5)

Now, by the definition of tangent space, we have that |vh − p(vh)| = o
(
|vh|

)
,

and it may be verified that |vh| = O
(
|xh|

)
(indeed, if this were not true we

could find a non-zero vector v in M such that π(v) = 0). Hence (3.5) yields

|yh − Axh| = o
(
|xh|

)
,

and (3.3) follows with ∇u(0) := A.
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Proof of claim (ii).
Let N1 be the set of all points in Γu \ N such that the projection π is

not one-to-one on the tangent space. Then the set Dm u \ π(S) is given by
π(N∪N1). Since N is � n-negligible, so is π(N) (recall that π is 1-Lipschitz).
Moreover by area formula (see [Fe1], 3.2.22, or [Si], Chapt. 2) we get

� n(π(N1)) ≤
∫

N1

J(v) d� n(v)

where J stands for the determinant of the restriction of π to the tangent space
Tan(v) of Γu in v. Since by definition the restriction of π to Tan(v) is never
one-to-one, then J(v) = 0 for every v ∈ N1, and then π(N1) is � n-negligible
too, proving the claim.

Eventually we remark that the integrability of the determinants of all
minors Mα∇u of ∇u follows by the area formula and (3.2), taking into account
that

∫

B∩π(S)

( ∑

α

(
det(Mα∇u)

)2
)1/2

d� n ≤ � n
(
Γu ∩ (B × u(B))

)
. (3.6)

Inequality (3.6) follows by the area formula and the fact that π(S) can be
covered by a sequence of sets Dh so that the restriction of u to each Dh is
Lipschitz (see [Fe1], 3.1.8, or [GMS3]).

4. The current associated to a graph

In this section we show that the graph of a maximal monotone function u may
be endowed with the structure of an n-dimensional current Tu in R

n × R
n,

and that the maps which takes each u in the current Tu is continuous. Since
Proposition 1.1 shows that the graph of a maximal monotone function agrees,
up to an isometry of R

n × R
n, with the graph of a 1-Lipschitz function, we

begin with recalling the canonical way to endow the graph of a Lipschitz
function with the structure of an n-current.

In the rest of this section k denotes a positive integer, π denotes the
projection of R

n ×R
k onto R

n and f = (f1, . . . , fk) : R
n → R

k is a Lipschitz
function. An n-dimensional current in R

n×R
k is a continuous linear functional

on the space � n(Rn ×R
k) of all smooth n-forms in R

k with compact support
(we refer to [Fe1] or to [Si], [Mo] for the general results and notations in
current theory).

Definition 4.1. Given an n-dimensional Lipschitz submanifold Γ of some
euclidean space which is closed, oriented, and without boundary, we define
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a current T by integrating n-forms on Γ. More precisely, since Γ admits a
tangent space Tan(Γ, y) for all y ∈ Γ except an � n-negligible set N (this is
an immediate corollary of Rademacher’s differentiability theorem for Lipschitz
functions), for all y ∈ Γ \N we can choose an orthonormal basis {e1, . . . , en}
of Tan(Γ, y) which preserves the orientation, and we denote by σ(y) the n-
covector e1 ∧ . . . ∧ en. Thus we set

T (ω) :=

∫

Γ

〈ω, σ〉d� n ∀ω ∈ � n(Rn × R
k) . (4.1)

The graph Γf of a Lipschitz function f : R
n → R

k is an n-dimensional
Lipschitz submanifold of R

n×R
k, and we may orient it so that the orientation

induced on R
n by the projection is the usual one (that is, for every point

x ∈ Γf where f is differentiable we choose a basis
{
e1, . . . , en

}
of the tangent

space Tan(Γf, x) so that
{
π(e1), . . . , π(en)

}
is a positively oriented basis of

R
n). We denote by Tf the current associated to the graph of f .

The linear functional T in (4.1) is an n-current without boundary by
Stokes’s theorem; more precisely in Geometric Measure Theory T is called
a multiplicity one integral current without boundary. For any Borel set
B ⊂ R

n × R
k we have

|T |(B) = � n(Γ ∩ B) , (4.2)

where T is viewed as a vector measure on R
n ×R

k, and the positive measure
|T | is its total variation.

In order to prove convergence results, the following representation of Tf
is often useful. Let’s denote a point of R

n × R
k as y = (y1, . . . , yn+k), where

(y1, . . . , yn) ∈ R
n and (yn+1, . . . , yn+k) ∈ R

k, and let I(n, n + k) be the set of
all strictly increasing functions

α :
{
1, . . . , n

}
→

{
1, . . . , n + k

}
.

The set of all n-covectors dyα(1)∧ . . .∧dyα(n) with α ∈ I(n, n+k) is a basis of

the space of all n-covectors in R
n×R

k. Hence every n-form ω ∈ � n(Rn×R
k)

may be canonically decomposed as

ω =
∑

α∈I(n,n+k)

ωα(y) dyα(1) ∧ . . . ∧ dyα(n) . (4.3)

For every α ∈ I(n, n + k) we denote by Jαf the Jacobian determinant of the
map

x = (x1, . . . , xn) 7−→
(
xα(1), . . . , xα(k), fα(k+1)−n, . . . , fα(n)−n

)
,
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where k is the maximal h such that α(h) ≤ n. Then the following represen-
tation formula holds:

Proposition 4.2. Let f : R
n → R

k be a Lipschitz functions and let Tf be
the n-current associated to the graph of f . Then

Tf(ω) =
∑

α

∫

Rn

ωα(x, f(x))Jαf(x) d� n(x) ∀ω ∈ � n(Rn × R
k) . (4.4)

Moreover, for any Borel set B ⊂ R
n × R

k there holds

|Tf |(B) = � n(B ∩ Γf) =

∫

π(B)

( ∑

α

(Jαf)2
)1/2

d� n . (4.5)

Proof. Equality (4.4) is essentially a consequence of the area formula, which
allows to carry the integration from Γf to the domain of f (see for instance
[GMS1], [GMS3]). The second equality in (4.5) easily follows from (4.4).

Remark. Notice that the integral representation of Tf given in (4.1) (or the
one given in (4.4) as well) provides an extension of Tf to compactly supported
n-forms with bounded Borel coefficients.

The continuity properties of the mapping T are given in the following
proposition.

Proposition 4.3. Let fh : R
n → R

k be equi-Lipschitz functions which uni-
formly converge on compact sets to some Lipschitz function f . Then Tfh

converge to Tf in the sense of currents, i.e.,

Tfh(ω) → Tf(ω) ∀ω ∈ � n(Rn × R
k) (4.6)

(In fact this holds for any continuous n-form ω with compact support).

Proof. Taking formula (4.4) into account, this proposition follows from
the continuity of determinants of minors of derivatives as maps from
W 1,∞

loc (Rn, Rk), endowed with the weak* topology, into L∞
loc(R

n), endowed
with the weak* topology (see [Da], section 4.2.2, Theorem 2.6).

Using the results above and Proposition 3.1 we can define the current Tu
for every maximal monotone function u.

Definition 4.4. Let Φ be the isometry of R
n × R

n given in (1.2), and u a
maximal monotone function. By Proposition 1.1, Φ(Γu) is the graph of the
Lipschitz function Fu : R

n → R
n and is oriented as in Definition 4.1, and
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then Γu is a Lipschitz submanifold of R
n × R

k equipped with the orientation
induced by Φ (that is, for � n a.e. y ∈ Γu we choose an orthonormal basis
{e1, . . . , en} of Tan(Γu, y), so that

{
πΦ(e1), . . . , πΦ(en)

}
is a positively ori-

ented basis of R
n). We denote by Tu the current associated to the graph of

u.

It may be checked that this definition of current associated to the graph
of a function is consistent with the one given in Definition 4.1: one has sim-
ply to verify that for every function u which is Lipschitz and monotone, the
orientation of Γu given in Definition 4.1 agrees with the one given in before.

Remark 4.5. The currents Tu and T (Fu) are connected by the following
(immediate) formula:

Tu(ω) = T (Fu)(ω(Φ)) ∀ω ∈ � n(Rn × R
n) , (4.8)

and then |Tu|(B) = |T (Fu)| (Φ(B)) for all Borel sets B ⊂ R
n × R

n. In ad-
dition, we observe that T is as a local operator, i.e., for any pair of max-
imal monotone functions u, v which agree on some open set Ω we have
Tu(ω) = Tv(ω) for all smooth n-forms ω with support included in Ω × R

n

(more generally, when u and v agree on some Borel set B, then Tu(ω) = Tv(ω)
for every compactly supported n-form ω with bounded Borel coefficients which
are 0 out of B × R

n).

The operator T maps the space
�

on of all maximal monotone function
into the space �n(Rn ×R

n) of all n-currents on R
n ×R

n continuously. More
precisely, the following statement holds:

Theorem 4.6. If (uh) is a sequence of maximal monotone functions converg-
ing to u in the sense specified in Definition 1.6, then Tuh converges to Tu in
the sense of currents, i.e.,

lim
h→∞

Tuh(ω) = Tu(ω) ∀ω ∈ � n(Rn × R
n) .

Proof. We know from the proof of Proposition 1.7 that the functions (uh+I)−1

converge in R
n to (u + I)−1 uniformly on compact sets; then the maps Fuh

given in (1.3) converge to Fu uniformly on compact sets, and since their
Lipschitz constants do not exceed 1, we may apply Proposition 4.3, which
yields that the currents T (Fuh) converge to T (Fu). Hence the currents Tuh

converge to Tu by formula (4.8).

5. Distributional derivatives
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In this section we are concerned with the structure of the distributional deriva-
tive of a monotone function.

Let be given a monotone function u, and an open set Ω relatively compact
in the interior of Dm u. By Corollary 1.3(3) and Remark 2.3, u is bounded
and almost everywhere univalued in Ω, and then we may consider it as an
element of L∞(Ω, Rn). The following theorem holds:

Proposition 5.1. The function u, viewed as an element of L∞(Ω, Rn), be-
longs to BV (Ω, Rn). Moreover

∫

Ω

|Du| ≤ Cn

[
diam Ω + osc(u, Ω)

]n
, (5.1)

where Cn is a constant which depends on n only, and osc(u, Ω) is defined as
in Proposition 3.1.

Proof. Take integers i and j such that 1 ≤ i, j ≤ n. We want to prove that
the distributional derivative Diuj is (represented by) a Borel measure on Ω.

We denote points of R
n × R

n as (x, y) with x = (x1, . . . , xn) and y =

(y1, . . . , yn). We denote by dx the n-covector dx1 ∧ . . . ∧ dxn, and by d̂xi

the (n − 1)-covector dx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn. Take a function
φ ∈ C1

c (Ω), and let ω be the form given by

ω(x, y) := φ(x) yj d̂xi . (5.2)

Then ω is an (n − 1)-form of class C1 with compact support in R
n × R

n.
Since the graph of u is a Lipschitz manifold without boundary, we may apply
Stokes’s theorem to get ∫

Γu

dω = 0 . (5.3)

By (5.2) we obtain that

dω = (−1)i−1(Diφ) yj dx + φ dyj ∧ d̂xi

and then (5.3) yields

∫

Ω

(Diφ) uj d� n =

∫

Γu

(Diφ) yj dx = (−1)i

∫

Γu

φ dyj ∧ d̂xi . (5.4)

Thus, denoting by M the intersection of Γu with Ω × R
n,

∣∣∣
∫

Ω

(Diφ) uj d� n

∣∣∣ ≤ ‖φ‖∞� n(M) . (5.5)
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Now, since u is bounded on Ω, by inequality (3.2) we obtain that the � n(M)
is finite, and then (5.5) implies that the partial derivative Diuj is a bounded
measure on Ω with total variation

‖Diuj‖ ≤ � n(M) ≤ 2n/2ωn

[
diam Ω + osc(u, Ω)

]n
,

and (5.1) immediately follows for a suitable constant Cn.

Remark 5.2. A careful examination of this proof shows that inequality
(5.1) can be improved; in fact there holds

∫

Ω

|Du| ≤ Cn

(
diam Ω

)n−1
osc(u, Ω) ,

where Cn is a constant which depends on n only.
Proposition 5.1 is a particular case of the following more general result

(which may be proved in the same way). Let u : Ω → R
m a bounded function,

and let T a rectifiable n-current with multiplicity 1 in Ω×R
m and boundary

with finite mass which is supported on a � n-rectifiable set S. For every
x ∈ Ω, let Sx be the set of all y ∈ R

m such that (x, y) ∈ S. If Sx consists of
the point u(x) only for a.e. x ∈ Ω, then u belongs to BV (Ω, Rm).

The following theorem characterizes monotone functions in term of distri-
butional derivatives.

Theorem 5.3. Let Ω be an open convex set in R
n.

(i) If u is a (maximal) monotone function such that Dm u ⊃ Ω, then u ∈
BVloc(Ω, Rn), and Du is a positive (matrix-valued and locally bounded)
measure.

(ii) Conversely, if u ∈ L1
loc(Ω, Rn) and Du is a positive (matrix-valued) dis-

tribution on Ω, then there exists a maximal monotone function v such
that Dm v ⊃ Ω and v = u a.e. in Ω. Therefore Du is a locally bounded
measure by statement (i).

Remark 5.4. We remark that when Λ is a positive matrix-valued distribu-
tion, then the symmetric part of Λ, 1

2

(
Λ+Λt

)
, is a locally bounded measure,

but nothing can be said about the skew-symmetric part of Λ. Statement (ii)
of Theorem 5.3 shows that when Λ is a (distributional) derivative, then also
the skew-symmetric part of Λ is a locally bounded measure (the proof we
give actually works for derivatives of locally summable functions, but this
hypothesis may be easily removed).

Remark 5.5. For every function u ∈ L1
loc(Ω, Rn), let Eu denote the sym-

metric part of the derivative, that is, Eu = 1
2

(
Du + Dtu

)
. By Korn’s
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inequalities, if Eu belongs to Lp for some p ∈]1,+∞[, then Du belongs to Lp

too.
Korn’s inequality does not hold when p = 1: there exists a function u,

smooth out of a point singularity, such that Eu ∈ L1 and Du /∈ L1 (see
for instance Example 7.7 in [ACD]). On the other hand we have just stated
that this can never happen when u is monotone and bounded. Therefore the
following question arises: is it possible to prove some Korn type inequality for
monotone functions? in other words, we want to find a constant C (depending
on the set Ω only) such that ‖Du‖ ≤ C‖Eu‖ for every monotone function u
with Dm u ⊃ Ω. A simple application of Baire’s theorem shows that such a
constant C exists if (and only if) ‖Du‖ is finite whenever ‖Eu‖ is finite.

Proof of Theorem 5.3.
Statement (i) follows immediately from Proposition 5.1.
The converse is proved as follows. For every ε > 0, let Ωε the set of all

x ∈ Ω such that the ball B(x, ε) is relatively compact in Ω (then Ωε is convex
and open), and take positive smooth mollifiers ρε so that ρ1 has support
included in the ball B(0, 1).

The mollified function uε := u∗ρε is well-defined in Ωε, and Duε = Du∗ρε

is a positive matrix-valued smooth function on Ωε. Therefore uε is monotone:
indeed, for every x, h such that x and x + h belong to Ωε, there holds

〈uε(x + h) − uε(x), h〉 =

∫ 1

0

〈
Duε(x + th) · h, h

〉
dt ≥ 0 .

Now, for every ε > 0, let vε a maximal monotone function which includes
uε. By Proposition 1.7, possibly passing to a subsequence we may assume
that the functions vε converge to some maximal monotone function v (in the
sense given in Definition 1.6). Moreover u(x) ∈ v(x) for every x such that
uε(x) → u(x) (cf. condition (1.5)), and since this happens for every Lebesgue
point x of u, we deduce that u(x) ∈ v(x) for a.e. x ∈ Ω.

Now we want to examine the structure of the distributional derivative of
u. In order to do this, we recall some well-known facts about (vector-valued)
BV functions.

5.6. Decomposition of derivatives of BV functions

Let Ω be an open subset of R
n, k a positive integer, and v a function

in BV (Ω, Rk). Then the distributional derivative Dv is (represented by) a
bounded Borel measure on Ω which takes values in n × k matrices.

According to [Am1], [Am2], Dv can be split into three parts: the absolutely
continuous part, the jump part, the Cantor part. Indeed, let Dav, Dsv be
respectively the absolutely continuous and the singular part of Dv with respect
to Lebesgue measure, let Sv be the complement of Lebesgue points of v. Then,
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the jump part Djv is defined as the restriction of Dsv to Sv, and the Cantor
part Dcv is defined as the restriction of Dsv to Ω \ Sv. In this way we have
Dv = Dav + Dcv + Djv.

The function v is almost everywhere approximately differentiable (see [CZ],
or [EG], section 6.1), and the approximate gradient ∇v agrees almost every-
where with the density of Dav (and then of Dv) with respect to Lebesgue
measure, that is, Dav = ∇v · � n.

The set Sv is countably � n−1-rectifiable, and for � n−1-almost every
x ∈ Sv, v admits one sided traces v+(x), v−(x) with respect to a suitable
direction ν(x), i.e., the functions vρ defined by vρ(y) := v(x + ρy) when
x + ρy ∈ Ω, and 0 otherwise, converge in L1

loc(R
n, Rk) as ρ ↘ 0 to the step

function

v0(y) :=






v+(x) if 〈y, ν(x)〉 > 0,

v−(x) if 〈y, ν(x)〉 < 0.
(5.6)

Vol’pert proved in [Vo] that the jump part of the derivative Djv can be written
in term of the traces v+, v−, and of the direction ν (see also [Fe1], 4.5.9):

Djv = (v+ − v−) ⊗ ν · � n−1 Su . (5.7)

Very little is presently known about the Cantor part of derivative. In [Am1]
the second author proved that |Dcv|(B) = 0 for any Borel set B such that
� n−1(B) < +∞. Hence the (n − 1)-dimensional part of the derivative is
given by Djv only, and the derivative does not charge any set which is � n−1-
negligible.

Remark 5.7. When u is a maximal monotone function, then u belongs to
BV (Ω, Rn) for every open set Ω relatively compact in Dm u (Proposition 5.1).
Moreover Su = Σ1(u)∩Ω and

[
u−(x), u+(x)

]
= u(x) for � n−1-almost every

x ∈ Su (in fact, for every x ∈ Σ1(u) \ Σ2(u)).
The inclusion Su ⊂ Σ1(u) is immediate because u is continuous in the

complement of Σ1(u) (cf. Definition 2.1 and Corollary 1.3(4)), while the
opposite inclusion is slightly more delicate. Take indeed x̄ ∈ (Σ1(u)\Su)∩Ω,
and let ȳ be the approximate value of u in x̄. We may assume x̄ = 0 and
ȳ = 0. Since u(0) is not a singleton, we may find y′ ∈ u(0) such that y′ 6= 0.
Let C be the cone of all x such that 〈x, y′〉 ≥ |x| |y′|/2. The monotonicity of
u yields 〈y, x〉 ≥ 〈y′, x〉 for every x ∈ R

n and y ∈ u(x), and if in addition x
belongs to C then

|y| ≥ 〈y, x〉
|x| ≥ 〈y′, x〉

|x| ≥ |y′|
2

> 0 .

Since C has positive density in 0, this contradicts the assumption that u has
approximate limit equal to 0 at 0.
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5.8. Rank-one property of derivatives of BV functions

Identity (5.7) shows that the density of the jump part of the derivative Djv
with respect to its total variation |Djv| is a rank-one matrix for |Djv|-almost
every point. The first author proved in [A1] that the same property holds for
the Cantor part too, that is, the density of the singular part of the derivative
Dsv with respect to its total variation |Dsv| is a rank-one matrix for |Dsv|-
almost every point.

Using the rank-one property and a blow-up argument one can show that
any vector BV function asymptotically depends only on one variable in the
neighborhood of |Dsv|-almost every point. In the analysis of functionals de-
fined in spaces of vector-valued BV functions this information is crucial (see
[AD], [FM]).

The original proof of the rank-one property for a general BV function
is very long and complicated. In Theorem 5.10 below we present a simple
proof which works for monotone functions (and then for gradients of a convex
functions as well, cf. section 7). A partial result in this direction was also
obtained in [AG]. Our proof of the rank property is mainly based on the
estimate (3.4) and on the following version of Reshetnyak’s continuity theorem
(see [Re1], or the appendix of [LM]):

Theorem 5.9. Let Ω ⊂ R
N be an open set and let (µh) be a sequence of

vector measures in Ω with p components, weakly converging to µ in Ω, and
assume that

lim
h→∞

|µh|(Ω) = |µ|(Ω) .

Then

lim
h→∞

∫

Ω

g
(
x,

µh

|µh|
(x)

)
d|µh|(x) =

∫

Ω

g
(
x,

µ

|µ| (x)
)

d|µ|(x)

for any bounded continuous function g : Ω × Sp−1 → R.

Here µ
/
|µ| stands for the density of the measure µ with respect to its

total variation |µ|.

Theorem 5.10. Let u be a monotone function on R
n, and let Ω be an open

set such that u belongs to BV (Ω, Rn). Then the density of the singular part
of the derivative Dsu with respect to its total variation |Dsu| is a rank-one
matrix for |Dsu|-almost every x ∈ Ω.

Proof. We assume Ω = R
n, the proof of the general case being a straightfor-

ward generalization.
For all ε > 0 let ρε be positive smooth mollifiers. Set uε := u ∗ ρε, and let

f be the density of Du with respect to |Du|. For any n × n matrix A we set

M(A) :=
( ∑

B

|det B|2
)1/2

(5.8)
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where the sum is taken over all 2 × 2 minors B of the matrix A. We remark
that a matrix A has rank 1 or 0 if and only if M(A) = 0.

The proof depends on the following two properties:

(a) for any ball B such that |Du|(∂B) = 0 the total variations |Duε|(B)
converge to |Du|(B);

(b) for any compact set K ⊂ R
n there exists a constant CK such that

∫

K

M(Duε) d� n ≤ CK ∀ ε ∈ (0, 1) .

The first property is well-known. Indeed, if B = B(x, r), and we take r̄ so
that B(0, r̄) includes the support of ρ1, it may be easily verified that

∫

B

|Duε| =

∫

B

|Du ∗ ρε| ≤
∫

B(x,r+εr̄)

|Du| .

We deduce that

lim sup
ε→0

∫

B

|Duε| ≤ |Du|(B) = |Du|(B) ,

and the liminf inequality follows by the lower semicontinuity of v 7→ |Dv|(B)
in the L1

loc(B) convergence.
The second property follows by the estimate (3.2) on the area of the graph

of a monotone function by remarking that the functions uε are smooth, mono-
tone and uniformly bounded on every compact set of R

n.
Now, let us fix a ball B such that |Du|(∂B) = 0 and a continuous function

g ∈ Cc(B). By (a) the measures Duε converge to Du in variation, as matrix-
valued measures on the ball B. Since the function (x, A) 7→ g(x)

√
M(A) is

uniformly continuous on B×R
n×n, and 1-homogeneous in the second variable,

by Theorem 5.9 we infer

lim
ε→0

∫

B

g
√

M(∇uε) d� n =

∫

B

g
√

M(f) d|Du| . (5.9)

Since (5.9) holds for every g ∈ Cc(B), we obtain that

√
M(∇uε) · � n →

√
M(f) · |Du| weakly* (5.10)

as positive Borel measures on B.
On the other hand, by (b) the functions

√
M(∇uε) are uniformly bounded

in L2(B). Therefore (5.10) implies that the measure
√

M(f) · |Du| belongs to
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L2(B), and then it has no singular part. This means that
√

M(f) is almost
everywhere 0 on B with respect to |Dsu|, and then f(x) is a rank-one matrix
for |Dsu|-almost every x ∈ B. Since the collection of all open balls B such
that |Du|(∂B) = 0 covers R

n, the proof is achieved.

In the last part of this section we briefly discuss “the right way” to extend
the definition of Jacobian determinant to monotone functions. Taking into
account section 4, the “natural” approach is to use the fact that the graph of
u is a Lipschitz manifold without boundary (clearly this construction works
as well for the determinant of every minor of the derivative of u).

Let Ω a bounded open convex set in R
n; we denote by J the operator

which takes every function u ∈ C1(Ω, Rn) in the Jacobian determinant Ju :=
det (∇u), considered as a real valued locally bounded measure in

�
loc(Ω).

We denote by
�

on (Ω) the class of all functions on Ω which agree almost
everywhere with some (maximal) monotone function whose domain includes
Ω. Since every monotone function is locally bounded in the interior of its
domain (cf. Corollary 1.3(3)), we may regard any function in

�
on (Ω) as an

element of L∞
loc(Ω, Rn).

Thus J is well-defined on the subset C1 ∩ �on (Ω), and the following
theorem provides an extension of J to the whole of

�
on (Ω).

Theorem 5.11. The operator J : C1 ∩�on (Ω) → �
loc(Ω) admits a unique

continuous extension, which we still denote by J , from
�

on (Ω), endowed with
the L1

loc topology, to
�

loc(Ω), endowed with the weak* topology.
For every u ∈ �on (Ω), Ju is a locally bounded positive measure, and if

ū is any maximal monotone function whose domain includes Ω and which
agrees a.e. with u in Ω, then for every Borel set B relatively compact in Ω
the following generalization of the area formula holds:

Ju(B) =

∫

Γū

1B×Rn dy1 ∧ . . . ∧ dyn = |ū(B)| . (5.11)

Eventually, J is a local operator, that is, for every couple of functions u, v ∈�
on (Ω) which agree a.e. on the open set A, the measures Ju and Jv agree

on A.

Before proving this theorem, we remark that it provides a definition of
Jacobian determinant for maximal monotone functions so that area formula
holds (cf. (5.11)), and then the following definition is clearly justified:

Definition 5.12. For every function u in
�

on (Ω) we define the weak Ja-
cobian of u as the positive measure Ju ∈ � loc(Ω), where J is the extended
operator given in Theorem 5.11, that is

Ju(B) := |ū(B)| for every Borel set B ⊂ Ω.
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Proof of Theorem 5.11:
The uniqueness of the extension follows from the density of C1 ∩�on (Ω)

in
�

on (Ω), which can be easily proved by mollification (see also Theorem 6.2
and Remark 6.3).

For every u ∈ �
on (Ω), let ū be a maximal monotone f unction whose

domain includes Ω, and which agrees a.e. with u, and let µu be the set
function given by

µu(B) :=

∫

Γū

1B×Rn dy1 ∧ . . . ∧ dyn ∀B ⊂⊂ Ω . (5.12)

The µu is a well-defined locally bounded measure (use inequality (3.2) recalling
that u is bounded on any set relatively compact in Ω by Corollary 1.3(3)).

First of all we claim that given u, v ∈ �
on (Ω) which agree a.e. on a

convex open set A ⊂ Ω, then the measures µu and µv agree on A (this shows
implicitly that µu does not depend on the choice of the maximal monotone
function ū, and that u 7→ µu is a local operator). More precisely, we claim
that given maximal monotone functions ū and v̄ corresponding to u and v
respectively, then ū(x) = v̄(x) for every x ∈ A. Indeed, since u = v a.e. in A,
then ū(x) = v̄(x) a.e. in A (recall that ū and v̄ are a.e. univalued), and then
ū(x) = v̄(x) for every x ∈ A by Corollary 1.5.

Now, since µu = Ju for every function u of class C1, the existence of the
continuous extension and the first identity in (5.11) will be proved once we
have shown that

u 7→
∫

Ω

g dµu

is a continuous map on
�

on (Ω) for every continuous test function g with
compact support in Ω.

Now, let (uh) a sequence converging to u in
�

on (Ω), and let ūh the cor-
responding maximal monotone functions. Possibly passing to a subsequence
we may assume that the functions uh converge to u a.e. in Ω, and the func-
tions ūh converge to some maximal monotone function v (in the sense given
in Proposition 1.7), and then u(x) ∈ v(x) for a.e. x. Therefore the domain of
v includes Ω and u(x) = v(x) a.e. in Ω.

Hence by (5.12) and Theorem 4.6 we obtain that

∫

Ω

gydµuh
=

∫

Γūh

g(x) dy1 ∧ . . . ∧ dyn = 〈T ūh, ω〉 →

→ 〈Tv, ω〉 =

∫

Γv

g(x) dy1 ∧ . . . ∧ dyn =

∫

Ω

g dµu
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where ω(x, y) := g(x) dy1∧. . .∧dyn (actually ω does not have compact support
in R

n × R
n, and the above convergence can be derived from Theorem 4.6 by

recalling that the functions ūn are uniformly bounded on the support of the
test function g).

Eventually we prove the second equality in (5.11). We denote by π the
function which takes each (x, y) ∈ Γū into y ∈ R

n, then π is a Lipschitz func-
tion from the n-dimensional oriented Lipschitz manifold without boundary
Γū into R

n, and for every Borel set B ⊂ Ω there holds

∫

Γū

1B×Rn dy1 ∧ . . . ∧ dyn =

∫

Rn

deg(π, B × R
n, y) d� n(y) , (5.13)

where deg(π, B ×R
n, y) is the Brower degree of the function π relative to the

open set B × R
n and the point y (see for instance [Fe1], 4.1.26, or [GMS3]).

By Theorem 2.2, Σ1(ū−1) is Lebesgue negligible, and then π−1(y) consists of
one point for a.e. y. Hence deg(π, B × R

n, y) = 0 for every y /∈ ū(B) and∣∣ deg(π, B ×R
n, y)

∣∣ = 1 for a.e. y ∈ ū(B), and taking into account our choice
of the orientation of Γū (see Definition 4.4), we obtain deg(π, B × R

n, y) = 1
for a.e. y ∈ ū(B). Thus deg(π, B × R

n, ·) agrees a.e. with the characteristic
function of the set ū(B). Hence (5.13) becomes

∫

Γū

1B×Rn dy1 ∧ . . . ∧ dyn = |ū(B)| .

Remark 5.13. Notice that the weak Jacobian Ju may not agree with
the pointwise determinant det(∇u). Take indeed u(x) := x/|x| on R

2: by
approximating u with smooth monotone functions and using the continuity of
J , we obtain that Ju is the Dirac mass concentrated in 0. On the other hand a
direct computation shows that det(∇u) = 0 almost everywhere. Nevertheless
the pointwise determinant is connected to the weak Jacobian by the following
relation:

Proposition 5.14. For every monotone function u ∈ �
on (Ω), the abso-

lutely continuous part of the measure Ju with respect to Lebesgue measure
is represented by the pointwise determinant det(∇u) (recall that u is almost
everywhere differentiable by Theorem 3.2).

This statement was originally proved by S. Müller for the distributional
determinant DetDu of a Sobolev function (provided that DetDu is defined
and is a measure), but the proof in that case is remarkably more difficult (see
[Mu2], Theorem 1 and following remarks).

Proof. Since u is of class BVloc(Ω), then we may find an increasing sequence
of Borel sets Dh which cover almost all of Ω and such that u agrees in Dh
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with a function uh of class C1 (see for instance [EG], section 6.6). Hence for
every h, ∇u = ∇uh a.e. in Dh, and Γu∩ (Dh ×R

n) = Γuh ∩ (Dh ×R
n), and

then for every Borel set B ⊂ Dh there holds

∫

B

det(∇u) d� n =

∫

B

det(∇uh) d� n

=

∫

Γuh

1B×Rn dy1 ∧ . . . ∧ dyn =

∫

Γu

1B×Rn dy1 ∧ . . . ∧ dyn = Ju(B)

(the second equality holds because uh is a function of class C1, while the fourth
one follows from the definition of Ju). Hence for every Borel set B ⊂ Dh there
holds

∫
B

det(∇u) d� n = Ju(B). Moreover this equality may be extended to
every Borel set B included in the union of the sets Dh, and since this union
cover almost all of Ω the proof is complete.

Remark 5.15. We recall that det(∇u) ∈ L1
loc(Ω) for every u ∈

W 1,n
loc (Ω, Rn), and u 7→ det(∇u) is continuous with respect to the correspond-

ing strong topologies (see [Da], section 4.2.2); on the other hand DetDu is
a well-defined distribution on Ω for every locally bounded u ∈ W 1,n−1

loc , and
is continuous with respect to the natural topologies (see for instance [Ba],
[Mu1]). Clearly det(∇u) = DetDu for every u ∈ W 1,n

loc .
Using the continuity of the extended operator J and a density argument,

we deduce that Ju agrees with the pointwise determinant det(∇u) for every
monotone function u which belongs to W 1,n

loc (Ω, Rn), and with the distribu-
tional determinant DetDu for every monotone function u which belongs to
W 1,n−1

loc (Ω, Rn).

6. Approximation by smooth functions

In this section we approximate a maximal monotone function u by Lipschitz
maximal monotone functions defined in R

n in such a way that Tuh converge
to Tu and the measures |Tuh| converge to |Tu|. Simple examples show that,
in general, the convergence of Tuh to Tu does not imply the convergence of
the variations |Tuh| to |Tu|.

Definition 6.1. For every ε > 0 we set Ψε(x, y) := (x + εy, y) for all
(x, y) ∈ R

n × R
n, and for every maximal monotone function u we define uε

as the multifunction whose graph is Ψε(Γu), that is, Γuε =
{
(x + εy, y) :

(x, y) ∈ Γu
}
. Hence

uε := (εI + u−1)−1 . (6.1)
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Then we have the following result (cf. [Br], section 2.4, or [At], section
3.7.1):

Theorem 6.2. Let u be a maximal monotone function, and let uε be given
as in Definition 6.1. Then

(1) uε is a 1/ε-Lipschitz maximal monotone function on R
n for every ε > 0;

(2) uε converges to u as ε → 0 in the sense specified in Definition 1.6;
(3) Tuε converges to Tu as ε → 0 in the sense of currents (cf. section 4);
(4) |Tuε| converges to |Tu| as ε → 0, in the sense of measures, i.e.,

∫
g d|Tuε| →

∫
g d|Tu| ∀ g ∈ Cc(R

n × R
n) ;

(5) for every convex open set Ω ⊂ Dm u, Duε → Du and |Duε| → |Du| in
the sense of measures on Ω (cf. Theorem 5.3), i.e.,

∫
g Duε d� n →

∫
g d(Du)

∫
g |Duε| d� n →

∫
g d|Du| ∀ g ∈ Cc(Ω).

Remark 6.3. Theorem 6.2 shows that we may approximate any maximal
monotone function u with Lipschitz maximal monotone functions uε (with
domain R

n) so that properties (1)–(5) hold. Clearly we may also ask that the
functions uε are smooth (regularize the approximating Lipschitz functions
by convolution), and that they are diffeomorphisms (add to each smooth
approximating function the term εI).

Remark 6.4. Notice that when u is a C1 function with domain R
n, then

the standard regularization by convolution provides a good approximation of
u with smooth functions uε (and good means in particular that Tuε → Tu
and |Tuε| → |Tu|).

When u is not a C1 functions, this trick does not work, even when the
domain of u is R

n. In fact, we may still define the regularized functions
uε = u ∗ ρε; the functions uε are still smooth maximal monotone functions
and Tuε → Tu, but we are able neither to prove that |Tuε| → |Tu| nor to
find counterexamples showing that this convergence might not hold.

Proof of Theorem 6.2.

By (6.1) we obtain that uε = 1
ε

(
I+ 1

εu−1
)−1

. Since u−1 is maximal, u−1/ε

is maximal too, and then
(
I+u−1/ε

)−1
is a 1-Lipschitz function defined on R

n

(by statements (2) and (3) of Proposition 1.2). Hence uε is a (1/ε)-Lipschitz
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function on R
n, and then it is maximal (Corollary 1.4), and statement (1) is

proved.

To prove statement (2) we show that conditions (1.8) and (1.9) holds. Let
be given sequences (εh) and (xh, yh) ∈ Γuεh

such that εh → 0 and (xh, yh) →
(x, y). Since (xh−εhyh, yh) belongs to Γu (by definition of uε) and Γu is closed,
we get (x, y) ∈ Γu, and then (1.8) is verified. Conversely, given (x, y) ∈ Γu,
the points (x + εy, y) belongs to Γuε and converge to (x, y) as ε → 0, hence
(1.9) holds.

Statement (3) follows by Theorem 4.6 and statement (2).

By formula (4.2) we have that for any Borel set B ⊂ R
n × R

n,

|Tuε|(B) = � n(Γuε ∩ B) = � n(Ψε(Γu) ∩ B) .

Therefore statement (4) follows by Lemma 6.5 below (recall that Γu has locally
finite � n measure). In particular

|Tuε|(A) → ‖Tu‖(A) (6.2)

for any bounded open set A such that |Tu|(∂A) = 0.

Finally we prove statement (5). By formula (5.4) we obtain the following
representation of the partial derivative Diuj :

〈φ, Diuj〉 =

∫

Γu

(−1)i+1φ dyj ∧ d̂xi ∀ g ∈ Cc(Ω) ,

so that, denoting by T iju the (i, j)-th component of Tu which appears at the
right hand side,

|Diuj |(B) = |T iju|(B × R
n)

for any Borel set B ⊂ Ω. Therefore Duε → Du weakly* in
�

loc(Ω, Rn×n) by
statement (3), and |Duε| → |Du| weakly* in

�
loc(Ω) by statement (4), (6.2)

and Theorem 5.9.

Lemma 6.5. Let be given integers k, n with k ≥ n, and a set M ⊂ R
k with

locally finite � n measure. Let Ψh : R
k → R

k be C1 diffeomorphisms such
that Ψh(y) → y and DΨh(y) → I uniformly on compact sets. Then for every
continuous function g with compact support in R

k there holds

∫

Ψh(M)

g d� n →
∫

M

g d� n . (6.3)

Proof. By the assumptions we deduce that the maps Ψ−1
h converge to the

identity map uniformly on compact sets, and since also DΨh converge to I
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uniformly on compact sets, for every ε > 0, R > 0, there exist h̄ such that
|Ψ−1

h (y)−y| ≤ R and |DΨh(y)− I| ≤ ε for every h ≥ h̄, y ∈ B(0, 2R). Hence,
for every h ≥ h̄, and every set A ⊂ B(0, 2R),

(1 − ε) diamA ≤ diam Ψh(A) ≤ (1 + ε) diamA .

By the definition of Hausdorff measures this yields, for every Borel set A ⊂
B(0, 2R),

(1 − ε)n � n(A) ≤ � n(Ψh(A)) ≤ (1 + ε)n � n(A) . (6.4)

Moreover for every set C ⊂ B(0, R), Ψ−1
h (C) ⊂ B(0, 2R) and then (6.4) yields

(1−ε)n � n
(
Ψ−1

h (C)∩M
)
≤ � n

(
C∩Ψh(M)

)
≤ (1+ε)n � n

(
Ψ−1

h (C)∩M
)

.

Hence for every positive Borel function g with support included in B(0, R) we
get

(1 − ε)n

∫

M

g(Ψh) d� n ≤
∫

Ψh(M)

g d� n ≤ (1 + ε)n

∫

M

g(Ψh) d� n . (6.5)

Taking into account that ε and R are arbitrarily taken, (6.5) shows that for
every positive Borel function g with compact support

lim
h→∞

∫

Ψh(M)

g d� n = lim
h→∞

∫

M

g(Ψh) d� n . (6.6)

If in addition g is continuous, by the dominated convergence theorem we get

lim
h→∞

∫

M

g(Ψh) d� n =

∫

M

g d� n . (6.7)

Equalities (6.6) and (6.7) yield (6.3).

7. Convex functions

An important class of monotone functions is represented by the gradients
(subdifferentials) of convex functions. In this section we examine some prop-
erties of convex functions and extend the results previously established for
monotone functions to the gradients of convex functions.

Definition 7.1. We denote by �onv the class of all lower semicontinuous
convex functions f : R

n →] − ∞,+∞]. For every f ∈ �onv , we denote by
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Dm f the set of points x ∈ R
n such that f(x) < +∞ and we say that y ∈ R

n

is a subgradient of f at x if

x ∈ Dm f , f(x′) ≥ f(x) + 〈y, x′ − x〉 ∀x′ ∈ R
n . (7.1)

We denote by ∂f the subdifferential of f , i.e., the multifunction which takes
each x ∈ R

n in the set of all subgradients of f at x.

Unless differently stated, throughout this section by convex function we
mean a function in �onv .

Remark 7.2. It follows immediately from definition that x is a minimum
point of f if and only if 0 ∈ ∂f(x).

A convex function f is differentiable at the point x if and only ∂f(x) is
a singleton, and in this case ∂f(x) consists exactly of the gradient of f at x,
which we denote by ∇f(x).

Notice moreover that for every x ∈ Dm f , y belongs to ∂f(x) if and only
if (7.1) holds for all x′ in some neighborhood of x, and this yields that the
subdifferential is a local operator on open sets, i.e., given convex functions f
and g which agree on some open set Ω, then ∂f and ∂g agree on Ω.

Remark 7.3. By applying the Hahn-Banach theorem to the epigraph of f
(which is a closed convex set in R

n ×R), we obtain that ∂f(x) is never empty
when x is in the interior of domain of f , and then

Dm f ⊃ Dm (∂f) ⊃ Int Dm f .

Notice that both inclusions may be strict, and Dm ∂f may be not even convex
(cf. Corollary 1.3(2) and the following remark).

Moreover ∂f is a maximal monotone function unless f ≡ +∞ (cf. [Br],
example 2.3.4). Indeed, the monotonicity of ∂f is an easy consequence of
the convexity, and by Proposition 1.2, the maximality is equivalent to the
subjectivity of (∂f + I). Let y ∈ R

n be given, and take x ∈ R
n the (unique)

minimizer of the coercive lower semicontinuous function

x 7→ f(x) +
1

2
|x|2 − 〈y, x〉 .

Then 0 is a subgradient of this function at x; hence y ∈ ∂
(
f(x) + |x|2/2

)
=

(∂f + I)(x), and the subjectivity of (∂f + I) is proved.
The subdifferentials of convex functions have been characterized as maxi-

mal cyclically monotone functions (cf. [Br], section II.7).

Remark 7.4. Since ∂f is monotone, then it is bounded on every open
set relatively compact in the interior of its domain (Corollary 1.3(3)), and
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by Remark 7.3 Int Dm f = Int Dm (∂f). Using the non-smooth version of the
mean value theorem (see [Cl], Theorem 2.3.7), we deduce that every convex
function f is locally Lipschitz in the interior of its domain.

7.5. A notion of convergence in �onv
We may associate to every convex function f its epigraph Ef :=

{
(x, t) ∈

R
n × R : t ≥ f(x)

}
, and Ef is a closed convex set; accordingly we say that

a sequence of convex functions (fh) converges to f in the sense of epigraphs
if the (Efh) converge to Ef in the sense of Kuratowski as h → +∞. This
yields a compact metrizable topology on the class of all lower semicontinuous
convex functions �onv (cf. section 1, Definition 1.6 and Proposition 1.7).
Note that if fh → f and K is relatively compact in the interior of Dm f , then
K ⊂ Int (Dm fh) for h large enough and fh converge to f uniformly on K.

The convergence of epigraphs of lower semicontinuous (convex) functions
in the sense of Kuratowski has been widely studied in the infinite dimensional
case (namely when R

n is replaced by some functional space) and is equivalent
to the notion of Γ-convergence for the corresponding functions (see for instance
[DM], chapter 4, and [At]). This notion is particularly relevant from the
variational viewpoint, since it carries over the convergence of minimizers: this
means that if the convex functions fn converge to f in the sense of epigraphs
and xn is a minimizer of fn, then every cluster point of the sequence (xn) is
a minimizer of f .

Remark 7.6. Let Ω ⊂ R
n be an open convex set, and let �onv (Ω) be the

space of all convex functions f : Ω → R. We endow as usual �onv (Ω) with
the (metrizable) topology of uniform convergence on compact subsets of Ω.
Thus a set of functions in �onv (Ω) is relatively compact if and only if the
functions are locally uniformly bounded.

We may extend a function f ∈ �onv (Ω) to a convex function f̃ ∈ �onv
by setting

f̃(x) :=






f(x) if x ∈ Ω,

lim inf
x′→x

f(x′) if x ∈ Ω \ Ω,

+∞ if x ∈ R
n \ Ω.

(7.2)

This extension is a continuous map from �onv (Ω) (endowed with the topology
of uniform convergence on compact sets) to �onv (endowed with the topology
of convergence of epigraphs).

Theorem 7.7. Let (fh) be a sequence of convex functions which converges
to f and assume that f 6≡ +∞. Then (∂fh) converges to ∂f (cf. Definition
1.6).

Proof. By Proposition 1.7, we may assume that ∂fh converge to some u where
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u is a monotone function. We claim that u ⊃ ∂f . Were this true, we would
get u = ∂f because ∂f is maximal. Take (x, y) ∈ ∂f ; we want to show that y
belongs to u(x). We may assume with no loss in generality that (x, y) = (0, 0).
Then 0 is the (unique) minimum point of x 7→ f(x) + |x|2. For each h, let xh

be the unique minimum point of x 7→ fh(x)+|x|2; then 0 ∈ ∂fh(xh)+2xh, i.e.,
−2xh ∈ ∂fh(xh), and moreover xh → 0 because minimum points converge to
minimum points (cf. Remark 7.5). Hence (xh,−2xh) belongs to Γ(∂fh) and
converge to (0, 0), and by (1.8) this means that (0, 0) belongs to Γu.

Notice that the following converse holds: if ∂fh converge to some non-
empty multifunction, then there exist constants ch such that fh + ch converge
to some convex function f , and hence ∂fh → ∂f .

Remark 7.8. Let T be the operator which associates to the graph of a
maximal monotone function u the current Tu (cf. Definition 4.4). It follows
immediately from Theorem 7.7 that the mapping f 7→ T (∂f) is continuous,
i.e., that for any sequence of convex functions fh which converge to f in the
sense of Remark 7.5 (or in Remark 7.6 as well), the currents T (∂fh) converge
to T (∂f) in the sense of n-currents of R

n × R
n.

7.9. Singular sets of convex functions

As we did for monotone functions (cf. Definition 2.1), for every f ∈ �onv and
every integer k = 1, 2, . . . , n we denote by Σk(f) the set of all points x ∈ Dm f
such that ∂f has dimension greater than or equal to k. From Theorem 2.2
we obtain that Σk(f) is a countably � n−k-rectifiable set. This kind of result
was first proved by Anderson and Klee ([AK], see also [Be]).

This rectifiability property is not optimal: Σk(f) is actually a countably
� n−k-rectifiable set of class C2, i.e., we can find countably many C2 sub-
manifolds of dimension (n− k) in R

n which cover � n−k-almost all of Σk(f).
This was proved by the first author in [A2], but it is also an immediate corol-
lary of Theorem 1 in [Z2]. In fact in both papers a slightly more precise
result is proved: Σk(f) can be covered by countably many graphs of functions
g : R

n−k → R
k such that each component of g is the difference of two convex

functions.

Notice that Theorem 2 in [Z2] generalizes this result to lower semicontinu-
ous convex functions on a separable Banach space. In [AAC] the rectifiability
of singular sets is proved for semi-convex functions.

We proved in Theorem 3.2 that a monotone function is differentiable at
almost every point of the domain. If we apply this result to the subdifferential
of a convex function f , we obtain that for almost every x̄ ∈ Dm f where f
is differentiable (i.e., where ∂f is a singleton, cf. Remark 7.2) there exists a
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matrix ∇2f(x̄) such that

lim
x→x̄

y∈∂f(x)

y −∇f(x̄) −∇2f(x̄) · (x − x̄)

|x − x̄| = 0 . (7.3)

Using (7.3) we can recover Aleksandrov’s differentiability theorem for convex
function (see [Ale]); simple proofs were also given in [CIL], Theorem A.2, and
in [BCP]. Notice that Fréchet and Gateaux (first order) differentiability of
convex functions on Banach spaces have been widely investigated (see [Asp],
[PZ]; see also [Ph] for a survey on this topic),

Theorem 7.10. Let x be a point where (7.3) holds. Then, f has a second
order differential at x, i.e.,

lim
h→0

f(x + h) − f(x) − 〈∇f(x), h〉 − 1
2 〈∇2f(x) h, h〉

|h|2 = 0 . (7.4)

Proof. It is not restrictive to assume x = 0, f(x) = 0 and ∇f(x) = 0.
Let A be the matrix ∇2f(0). Let φ(h) := f(h) − 1

2 〈Ah, h〉. We have to
prove that φ(h) = o(|h|2).

Let be given h 6= 0. By the non-smooth version of the mean value theorem
(see [Cl], Theorem 2.3.7) there exist y in the segment joining 0 to h, and
p ∈ ∂φ(y), such that φ(h) − φ(0) = 〈p, h〉, i.e.,

φ(h) = 〈q − Ay, h〉 (7.5)

for some vector q ∈ ∂f(y). From (7.3) we infer

|q − Ay| = o(|y|) = o(|h|) ,

and in conjunction with (7.5) this implies φ(h) = o(|h|2).
As we did in Theorem 5.3 for monotone functions, we can characterize

convex functions in term of distributional derivatives (this is a well-known
result, see for instance [Du], [Re2]).

Proposition 7.11. Let Ω a convex open set of R
n. If f : Ω → R is convex,

then Df is monotone, and D2f is a positive and symmetric (matrix-valued
and locally bounded) measure. Conversely if f ∈ L1

loc(Ω) and D2f is a positive
(matrix-valued) distribution on Ω, then f agrees almost everywhere on Ω with
a convex function g such that Ω ⊂ Dm g.

The proof of this proposition is the same as Theorem 5.3 and we omit it.
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A standard way to approximate from below a l.s.c. convex function is the
inf-convolution, also known as Moreau-Yosida approximation (see for instance
[Br], section 2.7, or [At], section 2.7):

Definition 7.12. Given f ∈ �onv , for every ε > 0, x ∈ R
n, we set

fε(x) := min
x′∈Rn

{
f(x′) +

1

2ε
|x′ − x|2

}
. (7.6)

The function fε is well-defined and finite for every x ∈ R
n because x′ 7→

f(x′) + 1
2ε |x′ − x|2 is lower semicontinuous and coercive, moreover it may be

easily verified that the functions fε converge to f in the sense of epigraphs
(see paragraph 7.5).

This approximation is tightly connected to the approximation of monotone
functions given in section 6, as shown in the following statement (cf. [Br],
Proposition 2.11).

Proposition 7.13. For any ε > 0, fε is a C1,1 convex function and ∂(fε) =
(∂f)ε, where (∂f)ε is given in Definition 6.1.

Proof. A simple computation shows that fε is convex. Hence fε is of class
C1,1 once proved that ∂(fε) = (∂f)ε, because (∂f)ε is a Lipschitz function
(Theorem 6.2(1)).

Since (∂f)ε is maximal monotone, we need only to show that the inclusion
(∂f)ε(x) ⊂ ∂(fε)(x) holds for every x. Let x and y ∈ (∂f)ε(x) be fixed. Since
(x − εy, y) belongs to Γ(∂f), we have

f(x′) ≥ f(x − εy) + 〈y, x′ − x + εy〉 ∀x′ ∈ R
n . (7.7)

On the other hand, the Cauchy inequality yields |ε y|2+|x′′−x′|2 ≥ 2〈ε y, x′′−
x′〉, and then

1

2ε
|x′′ − x′|2 ≥ −ε

2
|y|2 + 〈y, x′′ − x′〉 ∀x′, x′′ ∈ R

n . (7.8)

By summing (7.7) and (7.8) side by side, we obtain

f(x′) +
1

2ε
|x′ − x′′|2 ≥ f(x− εy) +

ε

2
|y|2 + 〈y, x′′ − x〉 ∀x′, x′′ ∈ R

n . (7.9)

Now, setting x′′ := x in (7.9) yields

f(x′) +
1

2ε
|x′ − x|2 ≥ f(x − εy) +

ε

2
|y|2 ∀x′ ∈ R

n ,
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so that, taking (7.6) and equality ε
2 |y|2 = 1

2ε |(x − εy) − x|2 into account, we
get

fε(x) = f(x − εy) +
ε

2
|y|2 . (7.10)

If we replace (7.10) in the right hand side of (7.9) we get

f(x′) +
1

2ε
|x′ − x′′|2 ≥ fε(x) + 〈y, x′′ − x〉 ∀x′, x′′ ∈ R

n ,

and taking the infimum over all x′ we obtain

fε(x
′′) ≥ fε(x) + 〈y, x′′ − x〉 ∀x′′ ∈ R

n .

This proves that y ∈ ∂fε(x).

8. An example

In this section we give an example of monotone function whose weak Jacobian
(see Definition 5.12 and following remarks) has a non-trivial structure. In fact
we exhibit a function u : R

2 → R
2 so that

(1) u is Hölder continuous and belongs to W 1,p
loc for every p < 2; moreover u

is the gradient of a convex function of class C1;
(2) the weak Jacobian Ju is supported on a purely unrectifiable and Lebesgue

negligible set A, and det(∇u) = 0 a.e. in R
2.

Our example is given in dimension 2, but similar constructions can be general-
ized to higher dimensions. We obtain u as the limit of a sequence of functions
uk. The construction and the description of the approximating functions uk

is divided into several steps (from paragraph 8.2 to Lemma 8.5), and in The-
orem 8.6 we show that these functions converge to a limit u, and describe the
main features of u (see also paragraphs 8.8 – 8.12). We conclude this section
by constructing another sequence of subdifferentials of convex functions which
converges to u (see Definition 8.13 and Proposition 8.14) and then we discuss
some consequences of this example (see paragraph 8.15 and Remark 8.16).

Other examples of Sobolev functions with Jacobian determinant supported
on (fractal) sets of arbitrary dimension were constructed in [Mu3] and, with
a slightly different viewpoint, in [Po].

8.1. Some notation

Throughout this section the capitol letter B always denotes an open ball in
R

2, and B = B(x, r) is the open ball with center x and radius r. For every
a > 0, aB denotes the rescaled ball with same center and radius multiplied
by a, that is, aB := B(x, ar).
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A similitude is an affine map Ψ : R
2 → R

2 such that for every couple of
points x, y ∈ R

2, there holds
∣∣Ψ(x) − Ψ(y)

∣∣ = a |x − y|, where a ∈ (0,+∞) is
the scaling factor of Ψ.

We say that a set is purely unrectifiable if its intersection with any Lips-
chitz curve is � 1-negligible. We remark that by the coarea formula (see for
instance [EG], section 5.5), the derivative of a BV function can never charge
a purely unrectifiable set.

8.2. Construction parameters

Our construction basically depends on the following parameters: α > 1 is
a fixed real number, and

{
Bi : i ∈ I

}
is a countable collection of pairwise

disjoint open balls which cover almost all of the ball B(0, 1). We denote by
ρi the radius of each ball Bi, and by ρ the maximum of all ρi (thus ρ < 1).
The family

{
Bi : i ∈ I

}
is called basic cover.

Definition 8.3. For every i ∈ I, we denote by Ψi the similitude which takes
the unit ball B(0, 1) into 1

αBi, that is, the map given by

Ψi(x) := xi +
ρi

α
(x − xi) for x ∈ R

2

(here xi is the center of Bi). For every integer k = 1, 2, . . . and every i =
(i1, . . . , ik) ∈ Ik we set (cf. figure 1 below)

Bk
i

:=
(
Ψi1 ◦ · · · ◦ Ψik

)(
B(0, 1)

)
(8.1)

(in particular B1
i = 1

αBi for every i ∈ I). Then we set A0 := B(0, 1) and

Ak :=
⋃

i∈Ik

Bk
i

, A :=
∞⋂

k=1

Ak . (8.2)

(A) (B) (C)

 f2   f1

Fig. 1 (A): in grey, the set A2, i.e., the union of the balls
{
B2

i
: i ∈ I2

}
;

(B): in grey, the set A1, covered by the balls
{
αB2

i
: i ∈ I2

}
; (C): in grey,

the set A0 = B(0, 1), covered by the balls
{
Bi = αB1

i : i ∈ I
}
.
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Let us fix k ≥ 1 and i ∈ Ik, and let Ψi := (Ψi1 ◦ · · · ◦ Ψik
); then Bk

i
=

Ψi(B(0, 1)) and Bk+1
(i,i) = Ψi

(
1
αBi

)
for every i ∈ I, and moreover Ψi is a

similitude with scaling factor α−kρi1 · · · ρik
, and then Bk

i
is a ball with radius

α−kρi1 · · · ρik
. Since the balls

{
Bi : i ∈ I

}
are pairwise disjoint and cover

almost all of B(0, 1), then the balls
{
αBk+1

(i,i) : i ∈ I
}

are pairwise disjoint

and cover almost all of Bk
i
. We deduce that for every k the balls

{
αBk+1

i
:

i ∈ Ik+1
}

are pairwise disjoint and cover almost all of Ak, and then we
immediately derive the following result:

Proposition 8.4. The following facts hold:

(1) the sets {Ak} are a decreasing sequence of open sets with intersection A;
(2) for every k > 0, the balls

{
αBk

i
: i ∈ Ik

}
cover almost all of Ak−1;

(3) each set Ak has measure πα−2k, and A has measure 0;
(4) each ball Bk

i
has radius α−kρi1 · · · ρik

≤ (ρ/α)k.

Now, we briefly outline the construction of the function u. First we con-
struct for every k a map fk : R

2 → R
2 which takes each ball Bk

i
onto αBk

i
for

every i ∈ Ik. Thus fk takes Ak onto the union of the balls αBk
i

for i ∈ Ik,
and by Proposition 8.4(2) this implies that fk(Ak) covers almost all of Ak−1.

Then we set uk := f0 ◦ · · · ◦ fk, and hence uk(Ak) covers almost all of
A0. Using the area formula we show that the Jacobian determinant of uk is
therefore supported on the set Ak and has integral always equal to π, while
the measure of Ak decreases to 0 (cf. Proposition 8.4(3)).

Eventually we define u as the limit of the functions uk as k → +∞, and we
show that the weak Jacobian of u is a positive measure with mass π supported
on the set A, which is negligible and purely unrectifiable. Moreover we show
that u, like the functions uk, is the gradient of a convex function and belongs
to W 1,p

loc for every p < 2.
This construction is divided in several steps.

Step 1. For every ball B = B(x̄, r) we set

fB(x) :=






x̄ + α(x − x̄) if |x − x̄| ≤ r,

x̄ + αr
x − x̄

|x − x̄| if |x − x̄| ≥ r.
(8.3)

Then function fB satisfies the following (immediate) properties:

(1) fB takes B onto αB linearly, takes αB \B onto ∂(αB), and agrees with
the identity on the boundary of αB;

(2) fB is α-Lipschitz on R
2, and agrees in B with a similitude with scaling

factor α;
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(3) ∇fB(x) is a positive symmetric matrix for a.e. x ∈ B. In fact, fB is the
gradient of the convex function F defined by

F (x) :=

{ 〈x̄, x〉 + α
2 |x − x̄|2 if |x − x̄| ≤ r,

〈x̄, x〉 + αr|x − x̄| − αr2

2 if |x − x̄| ≥ r.

Step 2. For every integer k = 1, 2, . . . , we set

fk(x) :=

{
f(Bk

i
)(x) if x ∈ αBk

i
for some i ∈ Ik,

x otherwise.

(8.4)

Then the functions fk satisfy the following properties:

(1) fk(A0) ⊂ A0, fk(Ak) cover almost all of Ak−1, and fk(x) = x for
x ∈ R

2 \ Ak−1;
(2) fk is α-Lipschitz in R

2, and everywhere differentiable in Ak and in R
2 \

Ak−1;
(3)

∣∣fk(x) − fk(y)
∣∣ ≤ |x − y| + 4α1−kρk for every x, y ∈ R

2;
(4) ∇fk(x) = αI for every x ∈ Ak;
(5) ∇fk(x) is a positive symmetric matrix for a.e. x ∈ R

2.

Proof. Once recalled that the union of the balls
{
Bk

i
: i ∈ Ik

}
is Ak and that

the balls
{
αBk

i
: i ∈ Ik

}
cover almost all of Ak−1, all statements but (3)

easily follow from the properties of the functions fB stated in Step 1.

The proof of (3) is slightly more delicate. Take indeed x ∈ R
2. If x does

not belong to the union of the balls αBk
i
, then fk(x) = x, while if x belongs

to αBk
i

for some i ∈ Ik, then fk(x) belongs to αBk
i

too (cf. (8.4) and Step 1,
statement (1)). In both cases there holds

∣∣fk(x) − x
∣∣ ≤ 2αr, where r is the

supremum of the radii of the balls Bk
i
, and since r ≤ (ρ/α)k by Proposition

8.4(4), ∣∣fk(x) − x
∣∣ ≤ 2α1−kρk ∀x ∈ R

2 . (8.5)

Therefore for every x, y ∈ R
2 we obtain

∣∣fk(x)− fk(y)
∣∣ ≤ |x− y|+

∣∣fk(x)− x
∣∣ +

∣∣fk(y)− y
∣∣ ≤ |x− y|+ 4α1−kρk .

Step 3. We define f0 by setting f0(x) := x if |x| ≤ 1 and f0(x) := x
/
|x| if

|x| > 1. Then for every integer k = 0, 1, . . . we set

uk := f0 ◦ · · · ◦ fk . (8.6)

The functions uk enjoy the following properties:
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(1) uk(R2) ⊂ A0 and uk(Ak) covers almost all of A0, uk(x) = uh(x) for
every x ∈ R

2 \Ah and every h < k, and uk(x) = f0(x) = x
/
|x| for every

x ∈ R
2 \ A0;

(2) uk is (αk)-Lipschitz;
(3) for every x, y ∈ R

2 and every h, k there holds

∣∣uk(x) − uk(y)
∣∣ ≤ αh|x − y| + 4ρh+1

1 − ρ/α
; (8.7)

(4) ∇uk(x) = αkI for every x ∈ Ak and ∇uk(x) = αk−1∇fk(x) for almost
every x ∈ Ak−1;

(5) ∇uk(x) is a positive symmetric matrix for a.e. x ∈ R
2.

Proof. Statements (1) and (2) follow from the definition of uk and statements
(1) and (2) of Step 2 respectively.

Let us prove (3). Take x, y ∈ R
2; if k < h then (8.7) follows by statement

(2). Assume then that k ≥ h ≥ 0: we claim that

∣∣uk(x) − uk(y)
∣∣ ≤ αh

(
|x − y| + 4ρ

k−1∑

i=h

(ρ/α)i
)

. (8.8)

This inequality may be proved by induction on k: the case k = h reduces
to

∣∣uk(x) − uk(y)
∣∣ ≤ αk|x − y|, which follows from statement (2), and the

inductive step may be easily proved using statement (3) of Step 2 and the
recursive formula uk = uk−1 ◦ fk. Now inequality (8.7) follows from (8.8)

by replacing the finite sum
∑k−1

h (ρ/α)i at the right hand side of (8.8) with∑∞
h (ρ/α)i.

Since the sets Ak are a decreasing sequence of open sets (cf. Proposition
8.4(1)), from statement (4) of Step 2 we immediately deduce that ∇uk(x) =
αkI everywhere in Ak. The rest of statement (4) follows from the identity
uk = uk−1 ◦ fk.

Statement (5) is proved by induction on k. For k = 0, u0 = f0 and
then statement (5) follows by explicit computation. Take now k > 0. From
statement (4) we know that ∇uk(x) = αk−1∇fk(x) for almost every x ∈ Ak−1

and then statement (5) of Step 2 yields that ∇uk(x) is a positive symmetric
matrix a.e. in Ak−1. On the other hand uk agrees with uk−1 a.e. in R

2 \Ak−1

(statement (1)), and then ∇uk agrees a.e. in R
2 \Ak−1 with ∇uk−1, which is

a positive symmetric matrix by the inductive hypothesis.

Now we can prove the following result:

Lemma 8.5. The functions uk defined in Step 3 are Lipschitz and enjoy the
following properties:
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(1) uk(R2) ⊂ A0 and uk(Ak) covers almost all of A0, uk(x) = uh(x) for
every x ∈ R

2 \Ah and every h < k, and uk(x) = f0(x) = x
/
|x| for every

x ∈ R
2 \ A0;

(2) for k ≥ 1, the functions uk satisfy the inequality

∣∣uk(x)−uk(y)
∣∣ ≤

(
1+

4

1 − ρ/α

)
|x−y|γ whenever |x − y| ≤ 1, (8.9)

with γ := log ρ/ log(ρ/α);
(3) the gradients ∇uk are uniformly bounded in Lp(Ω) for every p < 2 and

every bounded open set Ω ⊂ R
2;

(4) the functions uk are gradients of convex functions.

Proof. Statement (1) is statement (1) of Step 3, and statement (4) follows from
statement (5) of Step 3 and Proposition 7.11. Let us proved statement (2).
Fix k ≥ 0 and x, y ∈ R

2 such that |x− y| ≤ 1, and let h be the largest integer
below log |x−y|

/
log(ρ/α). Then h ≥ 0 and h >

(
log |x−y|

/
log(ρ/α)

)
−1,

and by statement (3) of Step 3 there holds

∣∣uk(x) − uk(y)
∣∣ ≤ αh|x − y| + 4ρh+1

1 − ρ/α
≤

(
1 +

4

1 − ρ/α

)
|x − y|γ .

Concerning statement (3), since ∇uk(x) = ∇
(
x
/
|x|

)
for every x ∈ R

2\A0,

and ∇
(
x
/
|x|

)
is bounded in R

2 \ A0, then it is enough to prove that the
gradients ∇uk are uniformly bounded in Lp(A0). By Step 3, statement (2),
|∇uk(x)| ≤ αk a.e. in R

2, and by Step 3, statement (1), ∇uk(x) = ∇uk−1(x)
a.e. in R

2 \ Ak−1. Hence

∫

A0

∣∣∇uk(x)
∣∣p d� 2 ≤ αkp|Ak−1| +

∫

A0\Ak−1

∣∣∇uk−1(x)
∣∣p d� 2

≤ πα2+(p−2)k +

∫

A0

∣∣∇uk−1(x)
∣∣p d� 2 .

Therefore by induction on k we obtain

∫

A0

|∇uk|pd� 2 ≤ π αp
k−1∑

0

α(p−2)i ≤ π α2

α2−p − 1
.

Lemma 8.5 implies the convergence of the functions uk. More precisely,
we have the following theorem:

Theorem 8.6. The functions uk converge uniformly on compact sets to a
continuous function u : R

2 → R
2. Moreover
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(1) u(R2) ⊂ A0 and u(A) covers almost all of A0;
(2) u ∈ C0,γ with γ := log ρ

/
log(ρ/α);

(3) u ∈ W 1,p
loc (R2) for every p < 2;

(4) u is the gradient of a convex function of class C1;
(5) the weak Jacobian Ju is a positive singular measure supported on the set

A, and det(∇u) = 0 a.e. in R
2;

(6) the set A is purely unrectifiable.

Remark 8.7. Since ρ < 1 and α > 1, we have that 0 < γ < 1. Moreover we
can choose α and ρ so that γ is any prescribed real number between 0 and 1.
We remark that the set A is a decreasing intersection of open sets. Therefore
it is not immediate to prove that A is non-empty: indeed this follows from
the fact that the measure Ju is non-trivial and supported on A.

Proof. By Lemma 8.5(1), the sequence (uk(x)) is definitively constant for
every x /∈ A, and this set has measure 0 (Proposition 8.4(3)). Hence the
functions uk converge almost everywhere, and then we have the uniform con-
vergence on compact sets because the functions uk are equi-continuous (cf.
(8.9)). Hence statements (1)–(4) follow immediately from (1)–(4) of Lemma
8.5, respectively.

Since u is the gradient of a convex function of class C1, it is a maximal
monotone function (cf. Remark 7.3), and then Ju is a positive Borel measure
on R

2 which satisfies Ju(B) =
∣∣u(B)

∣∣ for every Borel set B ⊂ R
2 (cf. Theorem

5.11 and Definition 5.12). Taking statement (1) into account we get Ju(R2) =
Ju(A) = π. Therefore Ju is supported on the negligible Borel set A. In
particular this implies that det(∇u) = 0 a.e. in A0 (cf. Proposition 5.14).

Let us prove that A is purely unrectifiable. This means that for every
Lipschitz curve C in R

2 there holds � 1(A ∩ C) = 0. In fact it is enough to
prove this statement when C is a curve which agrees (up to an isometry) with
the graph of a Lipschitz function g : R → R, and thus the proof relies on the
following fact (which we shall prove below): if B is a ball in R

2 and αB is the
corresponding rescaled ball, then

� 1(B ∩ C) ≤ δ� 1(αB ∩ C) , (8.10)

where δ is strictly lower than 1 and depends on α and the Lipschitz constant
of g only. Assume for the moment that (8.10) holds. For every k > 0 and
every i ∈ Ik, the balls

{
αBk+1

(i,i) : i ∈ I
}

are pairwise disjoint and included in

Bk
i
, and then (8.10) yields

∑

i∈I

� 1
(
Bk+1

(i,i) ∩ C
)
≤ δ

∑

i∈I

� 1
(
αBk+1

(i,i) ∩ C
)
≤ δ� 1

(
Bk

i
∩ C

)
.
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Taking the sum over all i ∈ Ik we obtain

� 1(Ak+1 ∩ C) ≤ δ� 1(Ak ∩ C) ,

and by iterating this inequality,

� 1(A ∩ C) ≤ � 1(Ak+1 ∩ C) ≤ δk� 1(A1 ∩ C) ,

and then � 1(A ∩ C) = 0 by passing to the limit as k → +∞.
Finally we prove (8.10). Assume that αB ∩ C is not empty. Let c be the

Lipschitz constant of g, let r be the radius of the ball B, and let E the set
of all t ∈ R such that (t, g(t)) ∈ B. The set E is included in an interval of
length 2r, and then

� 1(B ∩ C) =

∫

E

√
1 + (ġ)2 ≤ 2r

√
1 + c2 . (8.11)

Since the curve C touches both the ball B and the boundary of the rescaled
ball αB, the intersection of C and αB \ B has length (α − 1)r at least, and
by (8.11) we get

� 1
(
(αB \ B) ∩ C

)
≥ (α − 1) r ≥ α − 1

2
√

1 + c2
� 1(B ∩ C) ,

and then

� 1(αB ∩ C) = � 1
(
(αB \ B) ∩ C

)
+ � 1(B ∩ C)

≥
(
1 +

α − 1

2
√

1 + c2

)
� 1(B ∩ C) . (8.12)

Inequality (8.10) follows from (8.12) by letting δ :=
(
1 + α−1

2
√

1+c2

)−1

.

Now we want to discuss some details about the function u. In particular
we address the following questions:

(a) Do we need such a complicate construction?
(b) What can be said about the dimension of the set A?
(c) What can be said about the dimension of the measure Ju?

8.8. Why such a complicate construction?

The construction of the function u is rather complicate, and it is not imme-
diately clear whether it can be simplified or not. For example, one of the key
point of this construction is the choice of the basic cover (cf. paragraph 8.2):
obviously we had better take a finite cover rather than a countable one, but
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this seems impossible. Indeed the balls {Bi : i ∈ I} must cover almost all
of the unit ball, otherwise the set A would support no part of the Jacobian
determinant Ju, and it is clear that finitely many pairwise disjoint balls can
never cover almost all of a ball.

On the other hand, we may consider the possibility of replacing the ball
with any other plane figure C which can be covered, up to a negligible subset,
by finitely many pairwise disjoint rescaled copies of C (e.g., rectangles, or
triangles). But in this case the construction of the equivalent of the function
fB in Step 1 would fail: C has to be a polygon, and it may be proved that
this being the case there is no continuous monotone function f which takes
C into C, agrees with the identity on ∂C, and takes a smaller copy of C onto
C.

Nevertheless if we drop the monotonicity assumption on the functions uk

and u, we are allowed to replace the basic cover in the construction with a finite
one (e.g., by taking four squares which cover the unit square), and in this case
u is an example of function in W 1,p

loc ∩C0,γ whose weak Jacobian determinant
is supported on A, and A is a compact self-similar fractal in the sense of
Hutchinson [Hu]; moreover we can choose the construction parameter α so
that the dimension of A is any fixed number between 0 and 2 (cf. paragraph
8.10). Similar examples were described in [Mu3].

If we drop the assumption that u is a Sobolev function, and we simply
look for a convex function whose subdifferential u has weak Jacobian Ju
supported on a purely unrectifiable set, then we can consider the following
simpler construction (cf. [Am3]).

8.9. A simple construction

Take a finite non-atomic positive measure µ on R which is supported on
a Lebesgue negligible compact set C. Let v be a continuous function on R

whose distributional derivative is µ, and let g be a function whose derivative
is v, e.g.

v(x) := µ
(
] −∞, x]

)
, g(x) :=

∫ x

−∞
(x − y) dµ(y) ∀x ∈ R .

Then v is a continuous increasing function and g is a convex function of class
C1.

Now we set f(x, y) := g(x) + g(y) and u(x, y) :=
(
v(x), v(y)

)
. Then f

is a convex function of class C1 on the plane, u is the gradient of f and
D1u1 = µ ⊗ � 1, D2u2 = � 1 ⊗ µ, D1u2 = D2u1 = 0. Moreover we claim
that Ju = µ⊗ µ (and then it is supported on C ×C). Take indeed Borel sets
B, B′ ⊂ R. Thus u(B × B′) = v(B) × v(B′), and then

Ju(B × B′) =
∣∣u(B × B′)

∣∣ = |v(B)| · |v(B′)| = µ(B) · µ(B′) ,
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and the claim is proved.
We remark that the set C ×C has negligible projection on both axes, and

therefore is purely unrectifiable. Moreover if C is a self-similar fractal in the
sense of Hutchinson (e.g. a Cantor type set), and µ is a self-similar measure
on C, then the same holds for C ×C and Ju, and we may choose C and µ so
that the dimension of Ju is any prescribed real number between 0 and 2 (cf.
paragraphs 8.10 and 8.12).

8.10. The dimension of the set A
We have proved in Theorem 8.6 that A is a purely unrectifiable set. Now

we want to compute its Hausdorff dimension. We begin by recalling that A
satisfies the identity A = T (A) where T : P(R2) → P(R2) is defined by

T (C) :=
⋃

i∈I

Ψi(C) for all C ⊂ R
2. (8.13)

According to Hutchinson [Hu], if
{
Ψi : i ∈ I

}
is a finite family of similitudes

with scaling factor ri < 1 and there exists a bounded open set D such that the
sets

{
Ψi(D) : i ∈ I

}
are pairwise disjoint and included in D, then the map

T admits only one compact fixed point C ⊂ D. The set C is a self-similar
fractal with Hausdorff dimension d, where d is the (unique) solution of the
equation ∑

i

rd
i = 1 . (8.14)

(In fact there holds a stronger result: 0 < � d(C) < +∞, and also the box-
counting dimension of C is equal to d. For a good exposition of Hutchinson’s
results see also [Fa1], section 8.3, or [Fa2], chapter 9).

Our case is slightly different: the set A is not closed, and
{
Ψi : i ∈ I

}
is a

countable family of similitudes with scaling factor ρi/α. Nevertheless similar
conclusions holds for A. Indeed let Φ be defined by

Φ(t) :=
∑

i

(ρi/α)t for every t ≥ 0. (8.15)

Then Φ is convex, lower semicontinuous, decreasing, and Φ(0) = +∞, Φ(2) =∑
(ρi/α)2 = 1/α2 < 1 (since the balls Bi cover almost all of the unit ball,

then
∑

ρ2
i = 1). We claim that A has dimension

d := inf
{
t : Φ(t) ≤ 1

}
. (8.16)

Proof. Take t such that Φ(t) ≤ 1 and fix δ > 0. Now choose a positive integer
k so that 2(ρ/α)k ≤ δ. Then the balls

{
Bk

i
: i ∈ Ik

}
cover A (cf. (8.2))
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and have diameters equal to 2α−kρi1 · · · ρik
≤ 2(ρ/α)k ≤ δ (cf. Proposition

8.4(4)). Hence

� t
δ (A) ≤ ωt

2t

∑

i∈Ik

(
diamBk

i

)t
= ωt

∑

i∈Ik

(
ρi1 · · · ρik

α−k
)t

= ωt

( ∑

i∈I

(ρi/α)t
)k

= ωt

(
Φ(t)

)k ≤ ωt

(here � t
δ is the t-dimensional Hausdorff pre-measure, and ωt is a renormal-

ization factor which agrees with the measure of the unit ball in R
t when t is

integer).
Since δ is arbitrarily taken, we obtain that � t(A) ≤ ωt and then dim(A) ≤

t, and since this holds for every t such that Φ(t) ≤ 1, by the definition of d
we deduce that dim(A) ≤ d.

It remains to prove the opposite inequality. Take s < d. Then Φ(s) > 1,
and so there exists a finite subset J of I such that

∑

i∈J

(ρi/α)s ≥ 1 . (8.17)

Let TJ : P(R2) → P(R2) be the map associated to the finite family of simil-
itudes

{
Ψi : i ∈ J

}
as in (8.13). Notice that each Ψi has scaling factor

ri := ρi/α, and if we set D := B(0, 1), then the balls
{
Ψi(D) : i ∈ J

}
are

pairwise distant and included in D. Hence TJ admits a closed fixed point
C ⊂ D, and the dimension of C is the unique solution of the equation

∑

i∈J

(ρi/α)t = 1 , (8.18)

so that dim(C) ≥ s by (8.17). Moreover C is given by (see [Hu])

C =
∞⋂

k=1

( ⋃

i∈Jk

(
Ψi1 ◦ · · · ◦ Ψik

)
(D)

)
=

∞⋂

k=1

( ⋃

i∈Jk

Bk
i

)
,

and since Bk
i

⊂ αBk
i

⊂ Ak for every k and every i ∈ Ik, we obtain that
C ⊂ A, and then dim(A) ≥ dim(C) ≥ s. Since s is any real number smaller
than d, we have proved that dim(A) ≥ d.

Remark 8.11. In (8.16) we give an explicit formulation for the Hausdorff
dimension d of the set A, and d depends both on the choice of the parameter
α and of the basic cover {Bi : i ∈ I} (cf. the definition of the function Φ in
(8.15)), but it is not clear which values d can actually assume.
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In particular we remark that the basic cover {Bi} may be taken so that∑
i ρt

i = +∞ for every t < 2, hence Φ(t) = +∞ for every t < 2 (regardless of
the value of α), and then dim(A) = 2 even if A is negligible (cf. (8.15) and
(8.16)).

It turns out that the dimension of A is tightly connected with the so-
called exponent of the packing {Bi : i ∈ I}. Let us recall some notation: a
(spherical) packing of a closed domain Ω in the plane is any family {Bh : h ∈
N} of closed balls included in Ω with pairwise disjoint interiors which cover
almost all of Ω; a packing is called osculatory if the ball Bh+1 is chosen in
order to maximize the radius among all closed balls contained in the closure of
Ω\

(
B1 ∪ · · ·∪Bh

)
; the residual set of the packing is the set E = Ω\∪Bh; the

exponent of the packing is the infimum e of all real numbers t such that the
radii ρh of the balls Bh are t-summable, that is, e := inf

{
t ≥ 0 :

∑
h ρt

h <

+∞
}
. When Ω is a closed ball, it is known that e ≥ dim(E) ≥ 1.03 for every

packing, and 1.315 ≥ e = dim(E) ≥ 1.300 for every osculatory packing.

For a complete survey of the results about plane spherical packings, and
for detailed references as well, we refer to the remarks at the end of section
8.4 in Falconer [Fa1]. For recent results about general packings in arbitrary
dimension see also [Gr].

Now let e be the exponent of the basic cover {Bi : i ∈ I}, and fix any
real number t such that e < t < 2. Then

∑
ρt

i < +∞, and we may choose
the parameter α so that Φ(t) = α−t

∑
ρt

i = 1. Hence dim(A) = t. On the
other hand Φ(t) = +∞ for every t < e (regardless of the value of α), and
then dim(A) ≥ e. Taking the previous estimates on e into account, we deduce
that for every choice of the basic cover {Bi : i ∈ I} and of the parameter α,
dim(A) ≥ 1.03, and if the basic cover is an osculatory packing, then we may
choose α so that dim(A) is any number between 1.315 and 2.

Eventually we give a simple example of packing with exponent strictly
lower than 2 which was suggested to us by E. De Giorgi. Let Ω be any bounded
open set in R

2 with smooth boundary, and take a, b so that 0 < b < 1 and
0 < a < 1/2. Now let C0 := R

2 \ Ω, and let F1 be the family of all closed
balls B(x, ab) whose center x belongs to the lattice bZ2 and whose distance
from C0 is not lower than b. Now let C1 be the union of C0 and all balls
in F1, and let F2 be the family of all closed balls B(x, ab2) whose center x
belongs to the lattice b2

Z
2 and whose distance from C1 is not lower than b2.

Define Fh in the same way for h = 3, 4, . . . and let F be the union of all
families Fh. It is not difficult to prove that F is a packing of Ω provided that,
say, b ≤ (1 − 2a)(

√
2 + 2 − 2a)−1, and that the exponent of F is lower than

2 − log(1 − a2/8)
/

log b (both inequalities are far from optimal).

8.12. The dimension of the measure Ju

The pointwise dimension of a finite positive measure µ is defined at every
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point x in the support of µ as the following limit (if it exists)

lim
r→0

log µ
(
B(x, r)

)

log r
, (8.19)

and we say that µ has dimension d if it has pointwise dimension equal to d
for µ-almost every point (the number d is unique, but it does not necessarily
exist).

Let µ be a measure with dimension d. It follows immediately from the
previous definition that the t-dimensional density of µ is µ-a.e. equal to +∞
if t > d, and µ-a.e. equal to 0 if t < d. Therefore by Proposition 4.9 in [Fa2],
we obtain that

(i) for every Borel set B, dim(B) < d implies µ(B) = 0;
(ii) there exists a Borel set E with dim(E) = d which supports µ.

(We remark that (i) and (ii) do not imply that µ may be represented as f ·� d

for some f ∈ L1(� d); in order to obtain such representation we would need
that the d-dimensional upper density of µ is finite and strictly positive µ-a.e.).

In general a measure µ has no specific dimension. Yet the dimension is
well-defined, and more or less explicitly computable, for a large class of “self-
similar” measures. As in paragraph 8.10, let be given finitely many similitudes
{Ψi : i ∈ I} with scaling factor ri, let D be a bounded open set such that
the sets

{
Ψi(D) : i ∈ I

}
are pairwise distant and included in D, and let

C be the compact set such that T (C) = C, where T : P(R2) → P(R2) is
defined as in (8.13). Fix now positive numbers {pi : i ∈ I} so that

∑
pi = 1.

Then there exists a unique probability measure µ supported on C such that
µ(B) = pi µ

(
Ψi(B)

)
for every Borel set B ⊂ C (which is therefore referred to

as the self-similar probability measure associated with the families {Ψi : i ∈ I}
and {pi : i ∈ I}). This measure is determined by the condition

µ
(
Ψi1 ◦ · · · ◦ Ψik

(D)
)

= pi1 · · · pik

for every k = 1, 2, . . . and (i1, . . . , ik) ∈ Ik,
(8.20)

and it may be proved that µ has dimension equal to

dim(µ) =

∑
pi log pi∑
pi log ri

. (8.21)

In particular we obtain that µ and C have the same dimension if and only
if the ratio log ri

/
log pi does not depend on i, otherwise dim(µ) < dim(C).

Moreover, we conjecture that the measure µ can be represented as f ·� d for
some d and some f ∈ L1(� d) if and only if dim(µ) = dim(C) (this fact is
proved when I consists of two elements).
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The equality (8.21) seems to be a well-known result, but somehow hidden
in the literature about multifractal decomposition: for example it may be
found in [CM], putting together Remark 2.12 and Theorem 3.3 (in the notation
of that paper ρ plays the rôle of µ, ti of ri, and α(1) = f(α(1)) turns out to
be equal to the right hand side of (8.21)).

Now we want to show that the measure Ju may be regarded as an example
of self-similar measure in the above sense. We already remarked that Ju is
supported on A, and that A is the fixed point of the map T associated in (8.13)
with the countable family of similitudes {Ψi : i ∈ I} given in Definition 8.3.
Moreover each Ψi has scaling factor ρi/α, and it may be verified that for every
k = 1, 2, . . . and i = (i1, . . . , ik) ∈ Ik, the map u (in fact, the map uh for every
h ≥ k) takes the ball Bk

i
into a ball of radius ρi1 · · · ρik

, and then Ju satisfies
the following analogous of (8.20):

Ju(Bk
i
) =

∣∣u(Bk
i
)
∣∣ = π

(
ρi1 · · · ρik

)2
for every k and i ∈ Ik. (8.22)

Thus in this case ρi/α plays the rôle of ri and ρ2
i plays the rôle of pi, and

therefore we conjecture that, at least when
∑

ρ2
i log ρi is finite, the dimension

of Ju is given by the following analogous of (8.21):

dim(Ju) =

∑
ρ2

i log(ρ2
i )∑

ρ2
i log(ρi/α)

=
2

∑
ρ2

i log ρi

− log α +
∑

ρ2
i log ρi

. (8.23)

Notice that when α ranges in (1,+∞) the right hand side of (8.23) takes all
values between 0 and 2. For technical reasons we have carried out the proof
of (8.21) only when I is a finite index set, and so identity (8.23) is only a
conjecture.

We conclude this section by showing that the function u given in The-
orem 8.6 is also the limit of a sequence of monotone functions (ūk) whose
derivatives and Jacobians have a particular structure (see Definition 8.13 and
Proposition 8.14), and then we use this example to discuss the possibility of
an equivalent of the SBV theory for monotone functions, which involves also
the weak Jacobian (paragraph 8.15). A certain knowledge of the SBV theory
is requested.

Throughout the rest of this section we assume α ≤ 1/ρ.

Definition 8.13. For every ball B = B(x̄, r) and every σ < 1, we define the
multifunction f̄(σ,B) on R

2 by setting

f̄(σ,B)(x) :=






x̄ if |x − x̄| < σr,

x̄ +
[
0, r x−x̄

|x−x̄|

]
if |x − x̄| = σr,

x̄ + r x−x̄
|x−x̄| if |x − x̄| > σr.

(8.24)
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For every k = 1, 2 . . . and every i ∈ Ik, we set ri := α−kρi1 · · · ρik
, and

σi := α2kri
/
2. Thus ri is the radius of the ball Bk

i
(cf. proposition 8.4(4)),

and σi ≤ 1/2 (because we assumed α ≤ 1/ρ). Hence the following definitions
are well-posed:

f̄k(x) :=





f̄(σi,Bk

i
)(x) if x ∈ Bk

i
for some i ∈ Ik,

x otherwise,

(8.25)

and
ūk := uk ◦ f̄k , Dk :=

⋃

i∈Ik

∂
(
σiB

k
i

)
. (8.26)

Notice that f̄k and ūk are multifunctions.
The function f̄(σ,B) takes the rescaled ball σB into the center of B, takes

∂(σB) onto B, and B \ σB onto the boundary of B, and f̄(σ,B)(x) = x for
every x ∈ ∂B. Moreover f̄(σ,B) is the subdifferential of the convex function

〈x̄, x〉 + r max
{
σ; |x − x̄|

}
, it is smooth in every point out of ∂(σB), and

Σ1f(σ,B) = ∂(σB) while Σ2f(σ,B) is empty (cf. Definition 2.1).

Proposition 8.14. The functions ūk given in (8.26) enjoy the following
properties:

(1) the sequence (ūk) converges to u uniformly on compact sets;
(2) ūk is the subdifferential of a convex function, Σ1ūk = Dk and Σ2ūk is

empty;
(3) the distributional derivative of ūk has no Cantor part (cf. paragraph 5.6),

and since the singular set of ūk is Dk, this means that

Dūk = ∇ūk · � n + (ū+
h − ū−

k ) ⊗ ν · � 1 Dk ; (8.27)

moreover |∇ūk| ≤ |∇uk| a.e., and |ū+
h − ū−

k | = αkri ≤ ρk in Dk;
(4) the weak Jacobian of uk is given by Juk = � 1 Dk, and � 1(Dk) = π

for every k.
(5) the gradients |∇ūk| are uniformly bounded in Lp(Ω) for every bounded

open set Ω and every p < 2,

Proof. Take x ∈ R
2. If x does not belong to Ak then f̄k(x) = x, and if x

belongs to Bk
i

for some i ∈ Ik then f̄k(x) ⊂ Bk
i
. Hence for every z ∈ f̄k(x)

there holds |z − x| ≤ 2(ρ/α)k (because the diameter of Bk
i

is lower than
2(ρ/α)k), and then

∣∣uk(z) − uk(x)
∣∣ ≤ 2ρk because uk is (αk)-Lipschitz (cf.

Step 3, statement (2)). This means that for every x ∈ R
2 and every y ∈ ūk(x)

we have
∣∣uk(x)−y

∣∣ ≤ 2ρk, and since the functions uk converge to u uniformly
on compact sets, the same holds for the functions ūk. Statement (1) is proved.
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Let k be fixed. In order to prove statement (2) we consider the functions
f̄ε

k defined as in (8.25) by replacing f̄(σ,B) with

f̄ε
(σ,B) :=






x̄ if |x − x̄| < (1 − ε)σr,

x̄ + r
ε

(
1 − (1−ε)σ

|x−x̄|

)
(x − x̄) if (1 − ε)σr ≤ |x − x̄| ≤ σr,

x̄ + r x−x̄
|x−x̄| if |x − x̄| > σr.

It may be checked that f̄ε
k is a Lipschitz function whose gradient is a symmetric

matrix for almost every point, and reasoning as in the proof of statement (5)
of Step 3, we obtain that also uk ◦ f̄ε

k is a Lipschitz function whose gradient
is a symmetric matrix for almost every point, and then uk ◦ f̄ε

k is the gradient
of a convex function gε of class C1,1.

Moreover when ε tends to 0 the functions uk ◦ f̄ε
k converge to uk ◦ f̄k = ūk

with respect to the Kuratowski convergence of graphs (cf. Definition 1.6),
and then ūk is the subdifferential of a convex function (more precisely, the
subdifferential of the limit of the functions gε, cf. Theorem 7.7), and the rest
of statement (2) follows by recalling that uk is Lipschitz, Σ1f̄k = Dk, and
Σ2f̄k is empty.

To prove statement (3) we take an increasing sequence of finite sets Jkh

whose union is Ik, and consider the functions f̄kh defined as in (8.25) with Ik

replaced by Jkh. Then f̄kh and uk ◦ f̄kh are of class W 1,∞ in the complement
of the set Dkh given by the union of the circles ∂(σiB

k
i
) over all i ∈ Jkh (notice

that Dkh is closed because is a finite union of closed circles).

Then the distributional derivative of uk ◦ f̄kh has no singular part in
R

2 \ Dkh, and since Dkh is rectifiable, then it has no Cantor part at all (cf.
paragraph 5.6). Moreover it may be verified that when h tends to infinity, the
functions uk ◦ f̄kh converge to uk ◦ f̄k = ūk in the BV norm on every bounded
open set, and then Dūk has no Cantor part. The rest of statement (3) follows
from statement (4) in Step 3, paragraph 5.6 and formulas (8.24) and (8.25).

From equality (5.13) we obtain that Jūk(B) = |ūk(B)| for every Borel set
B, and moreover, for every i ∈ Ik, f̄k takes the circle ∂(σiB

k
i
) onto Bk

i
, and

uk takes Bk
i

onto a ball of radius αkri (recall that by statement (4) in Step
3, uk agrees on Bk

i
with a similitude with scaling factor αk). Hence

Jūk(∂(σiB
k
i
)) =

∣∣ūk(∂(σiB
k
i
))

∣∣ =
∣∣uk(Bk

i
)
∣∣ = π(αkri)

2 = 2πσiri

Moreover it is clear from the construction that the measure Jūk is uniformly
distributed on the circle ∂(σiB

k
i
), which has radius σiri, and then Jūk

∂(σiB
k
i
) = � 1 ∂(σiB

k
i
). Hence

Jūk Dk = � 1 Dk . (8.28)



  

Monotone functions in R
n 55

Eventually we remark that Jūk(Dk) = |ūk(Dk)| = |uk(Ak)| = π and
Jūk(R2) = |ūk(R2)| = |A0| = π (cf. Lemma 8.5(1)). Hence Jūk is sup-
ported on the set Dk, and then (8.28) implies statement (4). Statement (5)
follows from Lemma 8.5(3) and statement (3).

8.15. About special classes of monotone functions

The class BV of all functions with no Cantor part in the derivative (see
paragraph 5.6), the so-called SBV space, has been widely used in the recent
years to study variational problems involving volume and surface energies
(see for instance [Am1], [Am2] and references therein). The basic theorem of
the theory of SBV functions is essentially a closure result: if we denote by
G(p, C) the class of all SBV functions on a bounded open set Ω satisfying the
condition ∫

Ω

|∇u|p d� n + � n−1(Su) ≤ C < +∞ , (8.29)

then the closure of G(p, C) with respect to the weak convergence in BV (Ω) is
contained in SBV provided that p > 1 (a more general version of this theorem
was given by the second author in [Am1], see also [AM] for a simple proof).

Roughly speaking, the point of this closure theorem is the following: given
a sequence (uh) in SBV which converges weakly in BV (Ω), condition (8.29)
forces the absolutely continuous part of derivatives Dauh and the jump parts
Djuh to converge respectively to an n-dimensional and a (n− 1)-dimensional
measure, which turn out to be the absolutely continuous part and the jump
part of the derivative of the limit function, which has therefore no Cantor
part.

At least for n = 2 we would like to define the analogous of the SBV class
for monotone functions as a class of functions in

�
on (Ω) whose distributional

derivatives and weak Jacobians belong to a restricted class of measures. This
would be a first step towards theorems for more general classes of functions.

There are different possible definitions: for example we can introduce the
class

�
on 1(Ω) of all monotone functions in SBV (Ω) whose weak Jacobian

is a sum of a 2-dimensional and a 1-dimensional part, that is, Ju may be
represented as (cf. Proposition 5.14)

Ju = det(∇u) · � 2 + Φ1
u · � 1 , (8.30)

where Φ1
u is an � 1-summable function (we may assume in addition that Φ1

u

is supported on a countably � 1-rectifiable set). We can also define the class�
on 2(Ω) of all monotone functions in SBV (Ω) whose weak Jacobian is a

sum of h-dimensional parts with h = 0, 1, 2, that is, Ju may be represented
as

Ju = det(∇u) · � 2 + Φ1
u · � 1 + Φ0

u · � 0 , (8.31)
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where Φ1
u and Φ0

u are respectively � 1 and � 0-summable.
Now the sequence (ūk) given in Definition 8.13 shows that for both classes

there holds no analogous of the closure theorem for SBV functions. Indeed the
sequence (ūk) is included in G(p, C) for every p < 2 for suitable C (statements
(3) and (5) of Proposition 8.14), and the weak Jacobians can be written as
Jūk = � 1 Dk where the sets Dk are � 1-rectifiable and the measure
� 1(Dk) are uniformly bounded (statement (4) of Proposition 8.14), while
the weak Jacobian of the limit u can be written neither in the form (8.30) nor
in the form (8.31) (cf. statement (6) of Theorem 8.6; see also paragraphs 8.10
and 8.12).

Remark 8.16. The conclusions of the previous paragraph hold even if we
restrict our attention to subdifferentials of convex functions (cf. Proposition
8.14(2)).

We remark here that given a convex function f on the plane, the distri-
butional derivative and the weak Jacobian of the subdifferential are tightly
connected with the weak definitions of the second fundamental form and the
Gaussian curvature of the graph of f , viewed as a 2-dimensional convex sur-
face in the space (see [Fe2] for a precise definition of curvature measures),
and paragraph 8.15 is therefore related to the existence of closure theorems
for special classes of convex surfaces (e.g., surfaces whose curvature measures
can be written as a sum of integer dimensional measures) considered in [AO],
section 5 (see also [Os]).
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