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Abstract

We introduce a new concept, the Young measure on micro-patterns, to
study singularly perturbed variational problems which lead to multiple
small scales depending on a small parameter ε. This allows one to ex-
tract, in the limit ε → 0, the relevant information at the macroscopic
scale as well as the coarsest microscopic scale (say εα), and to eliminate
all finer scales.

To achieve this we consider rescaled functions R
ε
sx(t) := x(s + εαt)

viewed as maps of the macroscopic variable s ∈ Ω with values in a suit-
able function space. The limiting problem can then be formulated as a
variational problem on the Young measures generated by R

εx. As an
illustration we study a one-dimensional model that describe the compe-
tition between formation of microstructure and highest gradient regu-
larization. We show that the unique minimizer of the limit problem is a
Young measure supported on sawtooth functions with a given period.

1. Introduction

Many problems in science involve structures on several distinct length scales.
Two typical examples are the hierarchy of domains, walls and (Bloch) lines in fer-
romagnetic materials [16], [26] and the layers-within-layers pattern often observed
in fine phase mixtures induced by symmetry breaking solid-solid phase transitions
[6], [30], [43], [56].

An important feature in these examples is that the relevant length scales are not
known a priori, but emerge from an attempt of the system to reach its minimum
energy (or maximum entropy) or at least an equilibrium state. In ferromagnetic
materials, for example, the typical length scale of Bloch walls can be predicted
by dimensional analysis but the size of the domains is determined by a complex
interplay of specimen geometry, anisotropy and (nonlocal) magnetostatic energy.
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De Giorgi’s notion of Γ-convergence has proven to be very powerful to analyze
variational problems with one small length scale and the passage from phase field
models (with small, but finite, transition layers between different phases) to sharp
interface models (the rapidly growing literature begins with [37], [38], [36], recent
work includes [1], [8], where many further references can be found). More recently
an alternate approach, mostly for evolution problems, based on viscosity solutions
has been applied very successfully to situations where a maximum principle is
available (see for instance [7], [12], [21], [20], [27] [28]).

Much less is known for problems with multiple small scales. Matched asymp-
totics expansion, renormalization or intermediate asymptotics are powerful meth-
ods to predict the limiting behavior but few rigorous results are known.

In this paper, we propose a new approach for a rigorous analysis of variational
problems with two small scales, based on an extension of the Γ-convergence ap-
proach. As in formal asymptotics we begin by introducing a slow (i.e., order one)
and a fast scale. Instead of the original quantity vε(s), where ε represents a pa-
rameter that determines the smallness of the scales, we consider rescaled functions
R

ε
sv

ε(t) = ε−βvε(s+ εαt) of the two variables s and t, where εα represents the fast
scale and ε−β is a suitable renormalization. We then consider s 7→ R

ε
sv

ε as a map
from the original domain Ω to a function space K (which can be chosen compact
and metrizable). Finally we derive a variational problem for the Young measure
that arises as limit of the maps s 7→ R

ε
sv

ε.
The Young measure (see Section 2 for precise definitions and references) is a

map ν from Ω to the space of probability measures on K, and for each s ∈ Ω the
measure ν(s), often written as νs, represents the probability that R

ε
sv

ε assumes
a certain value in a small neighborhood of s in the limit ε → 0. In terms of
the original problem, νs gives the probability to find a certain pattern (i.e., an
element of the function space K) on the scale εα near the point s. We thus refer
to ν sometimes as a Young measure on (micro-) patterns, or a two-scale Young
measure. A precise description is given in Section 3 below.

To illustrate our concept and its application we consider the following one
dimensional problem which already shows a rather interesting two-scale behavior:
minimize

Iε(v) :=

∫ 1

0

ε2v̈2 + W (v̇) + a(s) v2 ds (1.1)

among one-periodic functions v : R → R, where v̇ and v̈ denote the first and second
derivative, respectively. A typical choice for the double-well potential W is

W (t) := (t2 − 1)2

but any other continuous function W that vanishes exactly at ±1 and is bounded
from below by c|v| at infinity will do.

If ε = 0 and a = 0 then there exist infinitely many minimizers, indeed any
sawtooth function with slope ±1 realizes the minimum. If ε > 0 is small and
a = 0 a unique (up to translation and reflection) minimizer is selected. It is very
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close to a sawtooth function with slope ±1 and two corners per period. Such a
result is a typical application of classical Γ-convergence; indeed for a = 0 the Γ-
limit of 1

εIε is only finite on sawtooth functions and counts the number of corners
(cf. the sketch of proof after Theorem 1.2).

If ε = 0 but a > 0 then no minimizers exist and minimizing sequences are
(essentially) given by highly oscillatory sawtooth functions with slope ±1 that
converge uniformly to 0 (more precisely, the Young measure generated by the
derivatives of any minimizing sequence is 1

2δ1 + 1
2δ−1 at almost every point).

If ε > 0 and a > 0 the excitation of oscillations due to a > 0 and their
penalization due to ε > 0 lead to the emergence of a new structure.

Theorem 1.1 (see [39]). Suppose that a is constant and strictly positive. Then, for
ε positive and sufficiently small, all minimizers of Iε among one-periodic functions
have minimal period

P ε = L0a
−1/3ε1/3 + O(ε2/3),

where L0 :=
(

96
∫ 1

−1

√
W

)1/3
.

The derivatives of minimizers exhibit indeed a structure with two fast scales:
transition layers of order ε are spaced periodically with the period P ε ∼ ε1/3, as
seen in Figure 1.1.

∼ε

−1

1

∼ε1/3

.
vε

s

Figure 1.1. Two scale structure of minimizers

This behavior was predicted by Tartar [53] on the basis of matched asymp-
totic expansions. It can equivalently be guessed by a formal application of Γ-
convergence. The purpose of our work is to create a framework in which such
reasoning can be made rigorous. As corollary of our new approach we obtain
the following result (see Section 3, and in particular Corollary 3.13, for precise
definitions and a more detailed statement).

Theorem 1.2. Suppose that a belongs to L∞ and is strictly positive a.e., let vε be
a sequence of minimizers of Iε, and take R

ε
sv

ε and the Young measure ν as above.
Then for a.e. s the measure νs is supported on the set of all translations of the
sawtooth function yh with slope ±1 and period h := L0(a(s))−1/3; see Figure 1.2.

Notice that when a is not constant, the minimizers vε are by no means periodic.
Yet, Theorem 1.2 says that close to a.e. point s (of approximate continuity for a)
vε “resembles” more and more as ε → 0 the periodic sawtooth function yh, with
h now depending on s. Thus the Young measure on patterns ν provides a way to
localize the result in Theorem 1.1. More importantly, it gives a precise meaning
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to the statement that vε is locally nearly periodic with a period which depends on
the point s.

h/2−h/2

yh

t

Figure 1.2. The sawtooth function yh

In addition to this, the main advantage of the new object ν is, in our view, the
possibility to make a formal reasoning rigorous.

Let us illustrate this in the context of Theorem 1.1. Denote by H2
per the

Sobolev space of functions on the interval (0, 1) whose periodic extension belongs
to H2

loc(R), and by
�

per the space of functions on (0, 1) whose periodic extension
are (continuous) sawtooth functions with slope ±1. Consider the functionals

Jε(v) :=

∫ 1

0

εv̈2 +
1

ε
W (v̇) if v ∈ H2

per,

J(v) :=
A0

2

∫ 1

0

|v̈| = A0 #
(

Sv̇ ∩ [0, 1)
)

if v ∈ �per,

where A0 := 2
∫ 1

−1

√
W , and Sv̇ denotes the set of points of discontinuity of v̇.

We know that Jε, extended to +∞ on W 1,1 \ H2
per, Γ-converges in the W 1,1

topology to J , extended to +∞ on W 1,1 \ �per (this easily follows from the one-
dimensional version of the result in [36]). Thus it is plausible to replace

Iε(v) = εJε(v) +

∫ 1

0

a v2ds (1.2)

by

Ĩε(v) := εJ(v) +

∫ 1

0

a v2ds. (1.3)

The minimization of Ĩε is a discrete problem since J is only finite on sawtooth
functions with a finite even numbers of corners 0 ≤ s1 < s2 < . . . < s2N < 1. A
short calculation yields the (sharp) bound

∫ si+1

si

v2ds ≥ 1

12
(si+1 − si)

3

and a convexity argument shows that for a given number 2N of corners the mini-
mum of Ĩε(v) is given by 2εA0N+ a

48N−2, and is achieved by the sawtooth function
with period 1/N and vanishing average. Finally minimization over N yields the
assertion

P ε =
1

N
∼

(48A0ε

a

)1/3

= L0a
−1/3ε1/3,
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while the energy of minimizers is

Eε ∼ E0a
1/3ε2/3 with E0 :=

(3

4
A0

)2/3

=
(3

2

∫ 1

−1

√
W

)2/3

. (1.4)

The main point is to justify the passage from (1.2) to (1.3). This hinges on fact
that the scale ε involved in the passage from Jε to J (removal of ε-transition layers)
is much smaller than ε1/3. By introducing the rescaling R

ε
sv(t) := ε−1/3v(s+ε1/3t)

and by replacing derivatives of v with respect to s by derivatives of R
ε
sv with respect

to t, we may represent Iε(v) as an integral over functionals in R
ε
sv

ε−2/3Iε(v) =

∫ 1

0

fε(Rε
sv) ds, (1.5)

where

fε(x) :=

∫ r

−r

ε2/3ẍ2 + ε−2/3W (ẋ) + a x2 dt

for a given positive r. Now we have that fε Γ-converge to f , where

f(x) :=
A0

2r
#

(

Sẋ ∩ (−r, r)
)

+ a

∫ r

−r

x2 dt

if x agrees with a sawtooth function on (−r, r), and is +∞ otherwise. We then
essentially have to show that the Γ-limit commutes with the integration in s in
(1.5). More precisely we reformulate all functionals in term of Young measures
and we show that the limiting (rescaled) energy ε−2/3Iε(vε) of a sequence (vε) is
given by

∫ 1

0

〈νs, f〉 ds, (1.6)

where ν is the Young measure (on patterns) generated by R
εvε.

To determine the minimizing Young measure we need to know which Young
measures arise as limits of R

εvε. This is not obvious since for finite ε the blowups
R

ε
sv

ε at different points s are not independent. In the limit, however, the measures
νs become independent and the only restriction is that νs be invariant under
translation in the space of patterns K (see Proposition 3.1 and Remark 3.2).
Thus the minimization of (1.6) can be done independently for each s and one
easily arrives at the conclusions of Theorem 1.2, at least for a constant. The
details of this argument are carried out in Section 3.

There are a number of other mathematical approaches to problems with small
scales. For sequences vε converging weakly to 0 in L2

loc(R
N ), Tartar [50] and

Gérard [23] introduced independently a measure on R
N × SN−1 (called the H-

measure or microlocal defect measure, respectively) that estimates how much en-
ergy (in the sense of squared L2-norm) concentrates at x ∈ R

N and high frequency
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oscillations with direction ζ ∈ SN−1. While this measure has no natural length
scale, there are variants with characteristic scale δ(ε) → 0 ([24]). An interesting is-
sue is to design similar objects for problems with multiple length scales; this is easy
if the oscillations are additively superimposed but, as Gérard and Tartar pointed
out, multiplicative interaction leads to new phenomena due to interference. The
H-measure and its variants can only predict the limits of quadratic expressions in
vε (the expression may, however, involve pseudodifferential operators) and hence
have no direct applications to the study of Iε.

The classical Young measure, by contrast, gives the limit of arbitrary (continu-
ous) nonlinearities but contains no information on patterns. For further discussion
of H-measures and their relation with Young measures see [51], [52].

Our work was inspired by the concept of two-scale convergence, although our
approach is ultimately rather different. Two-scale convergence was introduced in
[41] and employed by a number of researchers, cf. [2], [3], [17]. The main idea is
to recover additional structure in a weakly converging sequence vε by using test
functions of the form φ(s, s/εα), where φ is periodic in the last variable.

If vε is of the form vε(s) := v0(s) + v1(s, s/εα) + o(1), with v1 P -periodic in

the last variable and
∫ P

0
v1(s, t) dt = 0 for every s, and if one takes a test function

φ(s, t) := ψ(s) + η1(s) η2(t), where η2 is P -periodic and has vanishing average on
the period, then

∫ 1

0

φ
(

s,
s

εα

)

vε(s) ds →
∫ 1

0

ψ(s) v0(s) ds +

∫ 1

0

∫ P

0

η1(s) η2(t) v1(s, t) dt ds.

Thus both the weak limit v0 and the oscillatory term on the scale εα related to v1

can be retrieved.
If, however, the period or even the phase of the oscillatory part is not exactly

known, then this method cannot be applied. Consider for instance

vε(s) := v1

(

(1 + εβ)
s

εα

)

with 0 < β < α, v1 continuous, one periodic, and with vanishing average on the
period, and let φ be a test function as above. Then

∫ 1

0

φ
(

s,
s

εα

)

vε(s) ds → 0.

Since we do not know the precise period of the minimizers of Iε (and moreover
we cannot expect precise periodicity if a is not constant) two-scale convergence
does not suffice for our purposes.

The organization of the paper is as follows. In Section 2 we recall the notions of
Young measures (associated to sequences of functions with values in a metric space)
and Γ-convergence, We follow mainly [9] and [5], the omly new result concerns the
convergence of functionals defined on Young measures (Theorem 2.12). Section
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3 is the core of the paper, we obtain the Γ-limit of the functionals Iε defined
in (1.1) after suitable rescaling and extension to Young measures (Theorem 3.4).
As a corollary we obtain Theorem 1.2 above (see Corollary 3.13). The proof of
Theorem 3.4 is contained in Section 3 up to a density result to be discussed in
Sections 4 and 5. More precisely, in these sections we show that every translation
invariant measure on the space K of patterns can be approximated by a sequence of
invariant measures, each of them being supported on the class of all translations of
one-periodic function (see Theorems 4.4 and 4.15, and Corollary 5.11). In Section
6 we briefly sketch some extensions of our approach to other variational problems
with multiple scales.

2. Young Measures which take values in a metric space

Young measures are maps from a measure space Ω to a space of probability
measures on another space K. They arise naturally as limits of (usually rapidly
oscillating) sequences of maps from Ω to K, and provide a good framework for
existence of minimizers and optimal controls. Since L.C. Young’s pioneering work
[57], [58] there has been a large number of important contributions to this area,
often in settings that are much more general than the one discussed below. We
only mention here the fundamental papers of Berliocchi and Lasry [9] and Balder
[4], the recent reviews of Valadier [54], [55] and the book by Roubiček [44]. A
closely related but slightly different approach was pursued by Sychev [47], who
emphasizes the view of Young measures as measurable maps into a suitable metric
space and the use of selection theorems rather than the L1-L∞ duality. The theory
of Young measures gained important momentum from the connections with partial
differential equations and the theory of compensated compactness discovered by
Tartar ([48], [49], [15], [40]), and with fine phase mixtures that arise in phase
transitions modelled by nonconvex variational problems ([6], [13], [31], [32], [46],
[42], [34]).

Our approach is inspired by [5] (see also the comments in [9], p. 180). The
main new result concerns the convergence of functions defined on Young measures
(see Theorem 2.12(iv)). Our point of view is the following: one can obtain precise
information about the asymptotics of minimizers for a sequence of problems (such
as the singularly perturbed problems studied in [39]) that involve maps from Ω to
K by studying a limit problem defined on Young measures.

To proceed we first fix the notation. Throughout this paper, a measure on a
topological space X is a σ-additive function on the σ-algebra of Borel sets. Unless
stated differently, measurability always means Borel measurability.

In the rest of this section Ω is a locally compact separable and metrizable space,
endowed with a finite measure λ (however, most of the results can be extended
with some care to σ-finite measures). We often suppress explicit reference to λ.
The case of an open set Ω ⊂ R

n equipped with the Lebesgue measure suffices for
the applications we have in mind.
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We also consider a compact metric space (K, d), the class Meas(Ω, K) of all
measurable maps from Ω to K, the Banach space C(K) of all continuous real
functions on K, and the space � (K) of finite real Borel measures on K; � (K)
is identified with the dual of C(K) by the duality pairing 〈µ, g〉 :=

∫

K
g dµ for

µ ∈ � (K), g ∈ C(K), and is always endowed with the corresponding weak-star
topology. For every x ∈ K, δx is the Dirac mass at x; � (K) is the set of all
probability measure on K (that is, positive measures with mass equal to 1).

As far as possible we shall conform to the following notation: the letter s
denotes a point in Ω, and x a point in K, µ is a measure in � (K), k is a positive
integer, g, h, and f are real functions on K, on Ω, and on Ω×K, respectively; φ is
a map from Ω to C(K) and ν a map from Ω to � (K); we often use the notation
fs and νs to denote the function f(s, ·) and the measure ν(s) respectively.

By L1
(

Ω, C(K)
)

we denote the Banach space of all measurable maps φ : Ω →
C(K) such that ‖φ‖1 :=

∫

Ω
|φ(s)|C(K) ds is finite. The space L∞

w

(

Ω,� (K)
)

is
the Banach space of all weak-star measurable maps ν : Ω → � (K) which are λ-
essentially bounded, endowed with the obvious norm. More precisely, the elements
of L1

(

Ω, C(K)
)

and L∞
w

(

Ω,� (K)
)

are equivalence classes of maps which agree
a.e.; we usually do not distinguish a map from its equivalence class.

Remarks. Since C(K) is a separable Banach space, and Ω is endowed with
a σ-finite measure λ, then the Banach space L1

(

Ω, C(K)
)

is separable, while

L∞
w

(

Ω,� (K)
)

is never separable unless λ is purely atomic and K is a finite set.
By definition, a map ν : Ω → � (K) is weak-star measurable if the pre-image

of every set in the Borel σ-algebra generated by the weak-star topology of � (K)
is a Borel subset of Ω. Therefore the map ν is weak-star measurable if and only
if the function s 7→ 〈νs, g〉 is measurable for every g in (a dense subset of) C(K).
Since � (K) is not separable, there are many weak-star measurable maps that
are not strongly measurable; a typical example is the map which takes every s
in an interval I into δs ∈ � (I). Indeed the σ-algebra generated by the weak-
star topology and the one generated by strong topology do not agree (the strong
topology itself has cardinality strictly larger than the σ-algebra generated by the
weak-star topology).

The space L∞
w

(

Ω,� (K)
)

is isometrically isomorphic to the dual of of the space

L1
(

Ω, C(K)
)

via the duality pairing (see [18], sec. 8.18.1)

〈ν, φ〉L∞, L1 :=

∫

Ω

〈νs, φs〉� , C ds,

with ν ∈ L∞
w

(

Ω,� (K)
)

and φ ∈ L1
(

Ω, C(K)
)

. In the following we shall refer to

the weak-star topology of L∞
w

(

Ω,� (K)
)

as the topology induced by this duality

pairing. Since L1
(

Ω, C(K)
)

is a separable Banach space, every closed ball in

L∞
w

(

Ω,� (K)
)

endowed with the weak-star topology is compact and metrizable.

Remark 2.1. Given g ∈ C(K) and h ∈ L1(Ω), the map h ⊗ g which takes every
s ∈ Ω into h(s) · g ∈ C(K) belongs to L1

(

Ω, C(K)
)

, and the class of all h ⊗ g
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with g and h ranging in dense subsets of C(K) and L1(Ω), respectively, spans a
dense subspace of L1

(

Ω, C(K)
)

. Hence a bounded sequence (νk) in L∞
w

(

Ω,� (K)
)

weak-star converges to ν if and only if

∫

Ω

〈νk
s , g〉h(s) ds →

∫

Ω

〈νs, g〉h(s) ds (2.1)

for every g, h in dense subsets of C(K) and L1(Ω), respectively. In particular this
condition is immediately verified when νk

s −⇀∗ νs for almost every s ∈ Ω.
Furthermore, on every bounded subset of L∞

w

(

Ω,� (K)
)

the weak-star topol-
ogy is induced by the following norm:

Φ(ν) :=
∑

i,j

1

2i+jαi,j

∫

Ω

〈νs, gi〉hj(s) ds, (2.2)

where the functions gi, with i = 1, 2, . . ., are dense in C(K), the functions hj , with
j = 1, 2, . . ., are bounded and dense in L1(Ω), and αi,j := ‖gi‖∞ · ‖hj‖∞. In fact
one easily checks that Φ(νk − ν) tends to 0 if and only if (2.1) holds with g and h
replaced by gi and hj for all i, j.

Definition 2.2. We call any map ν in L∞
w

(

Ω,� (K)
)

such that νs is a probability
measure for a.e. s ∈ Ω a K-valued Young measure on Ω. The elementary Young
measure associated to a measurable map u : Ω → K is the map δu given by

δu(s) := δu(s) for s ∈ Ω.

We say that sequence of measurable maps uk : Ω → K generates the Young mea-
sure ν, if the corresponding elementary Young measures δuk converge to ν in the
weak-star topology of L∞

w

(

Ω,� (K)
)

.

We denote by YM (Ω, K) (resp. EYM (Ω, K)) the set all Young measures (resp.
elementary Young measures); YM (Ω, K) is always endowed with the weak-star
topology of L∞

w

(

Ω,� (K)
)

, and hence metrized by the norm Φ in (2.2).

Remarks. The map δu is weak-star measurable if and only if u is measurable,
and thus EYM (Ω, K) is exactly the set of all ν ∈ L∞

w

(

Ω,� (K)
)

such that νs is a
Dirac mass for a.e. s ∈ Ω.

Young measures are often defined as the weak-star closure of the class of el-
ementary Young measures in L∞

w

(

Ω,� (K)
)

. By Theorem 2.3(iii) below, this
definition turns out to be equivalent to ours when the measure λ is non-atomic.
In [9] and [4] Young measures are endowed with the so-called narrow topology,
which in the particular case we consider agrees with the weak-star topology of
L∞

w

(

Ω,� (K)
)

.
The following theorem characterizes YM (Ω, K) as the closure of EYM (Ω, K).

Theorem 2.3. Assume that the measure λ is non-atomic. Then
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(i) YM (Ω, K) is a weak-star compact, convex and metrizable subset of the
space L∞

w

(

Ω,� (K)
)

;
(ii) EYM (Ω, K) is the set of all extreme points of YM (Ω, K);
(iii) EYM (Ω, K) is weak-star dense in YM (Ω, K).

Proof. These three statements are given in [9], sec. II.2, as propositions 1 (p.
144), 3 (p. 146), and 4 (p. 148), respectively.

Remarks. Statement (i) holds when λ is not non-atomic too. Statements (i)
and (iii) show that from every sequence of measurable maps we can extract a
subsequence which generates a Young measure, and conversely all Young measures
are generated by sequences of measurable maps.

When the measure λ has atoms (namely, points with positive measure) it can
be decomposed in a unique way as the sum of a non-atomic measure λn and a
purely atomic measure λa (i.e., a countable linear combination of Dirac masses),
and statements (ii) and (iii) of Theorem 2.3 should be modified as follows: the
extreme points of YM (Ω, K) are the Young measures ν such that νs is a Dirac
mass for λn a.e. s, and the weak-star closure of EYM (Ω, K) is the set of all
ν ∈ YM (Ω, K) such that νs is a Dirac mass for λa a.e. s. The proof of this
generalization is left to the interested reader.

Theorem 2.4 – Fundamental theorem of Young measures. For every
sequence of measurable maps uk : Ω → K there exists a subsequence (not relabeled)
which generates a Young measure ν. Moreover ν has the following properties.

(i) If f : Ω × K → R is measurable, continuous with respect to the second
variable, and satisfies |f(s, x)| ≤ h(s) for some h ∈ L1(Ω), then

∫

Ω

f
(

s, uk(s)
)

ds −→
∫

Ω

〈νs, fs〉 ds as k → +∞. (2.3)

(ii) The maps uk converge in measure to some u : Ω → K if and only if ν is
the elementary Young measure associated to u.

(iii) Assume that K is a subset of a (separable) Banach space E, let Id denote
the identity map on E, and define u : Ω → E by

u(s) :=

∫

K

Id dνs. (2.4)

Then u(s) is well-defined and belongs to the convex hull of K for a.e.
s, and the maps uk weak-star converge to u in L∞

w (Ω, E), that is, the
functions s 7→ 〈Λ, uk(s)〉 weak-star converge to s 7→ 〈Λ, u(s)〉 in L∞(Ω)
for every Λ ∈ E∗.

Regarding statement (iii), it is necessary to embed K in a linear structure
in order to define the average (or expectation) u(s). Notice moreover that the
integral (2.4) is well-defined (e.g., as a Riemann integral) because K is compact
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and metrizable and Id is a continuous map on K. Moreover u is measurable
because one has 〈Λ, u(s)〉 = 〈νs,Λ|K〉, and Λ|K belongs to C(K) for every Λ ∈ E∗.

Proof. The existence of a subsequence of (uk) which generates a Young mea-
sure ν follows from the compactness and metrizability of YM (Ω, K) (Theorem
2.3(i)).

To prove (i), notice that the map s 7→ fs belongs to L1
(

Ω, C(K)
)

(cf. [9],
remark 5, sec. I.1, p. 135), and then (2.3) follows immediately from the definition
of weak-star convergence in L∞

w

(

Ω,� (K)
)

.
We assume now that the maps uk generate the Young measure δu, and we

apply statement (i) with f(s, x) := d
(

x, u(s)
)

. Then

∫

Ω

d
(

uk(s), u(s)
)

ds →
∫

Ω

d
(

u(s), u(s)
)

ds = 0,

and we deduce that uk converge to u in measure.
Conversely, assume that the maps uk converge to u in measure. Taking f

as above, the integrals
∫

f(s, uk(s))ds converge to 0 by the Lebesgue dominated
convergence theorem, and by (2.3) we obtain

∫

Ω

〈νs, fs〉 ds = 0. (2.5)

Since f is non-negative, (2.5) implies that for a.e. s ∈ Ω the measure νs is sup-
ported on the set of all x ∈ K such that fs(x) = 0, that is, on the point u(s).
Thus νs = δu(s), and statement (ii) is proved.

Finally (iii) follows by applying (i) with f(s, x) := h(s) 〈Λ, x〉 for h ∈ L1(Ω),
Λ ∈ E∗.

Before discussing functionals on YM (Ω, K), we add some elementary but useful
remarks.

Remark 2.5. If the functions uk generate a Young measure ν on Ω, then they
generate the same Young measure on every Borel subset of Ω, that is, δuk weak-star
converges to ν in L∞

(

A,� (K)
)

for every A ⊂ Ω. Consequently, if two sequences
(uk

1) and (uk
2) generate the Young measures ν1 and ν2, respectively, and the maps

uk
1 and uk

2 agree on a fixed Borel set A for k sufficiently large, then ν1 and ν2 agree
(a.e.) on A.

Remark 2.6. We say that the sequences (uk
1) and (uk

2) are asymptotically equiva-
lent when the functions s 7→ d

(

uk
1(s), uk

2(s)
)

converge in measure to 0 as k → +∞.
One easily checks, using the convergence criterion in Remark 2.1, that asymptot-
ically equivalent sequences generate the same Young measures.

Lemma 2.7. Let Ω ⊂ R
n be endowed with Lebesgue measure. Consider a sequence

of maps uk which generate the Young measure ν, and are defined on a fixed neigh-
borhood of Ω, and a sequence of vectors τk in R

n which converge to 0. Then the
translated maps uk(· − τk) also generate the Young measure ν.
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Proof. Take g ∈ C(K) and h ∈ L1(Ω), extended to 0 on R
n \ Ω. Then

∫

h(s) g
(

uk(s − τk)
)

ds

=

∫

h(s + τk) g
(

uk(s)
)

ds

=

∫

(

h(s + τk) − h(s)
)

g
(

uk(s)
)

ds +

∫

h(s) g
(

uk(s)
)

ds. (2.6)

Now the second integral in line (2.6) converges to
∫

h(s)〈νs, g〉 ds by assumption,
while the modulus of the first one is controlled by

∥

∥h(· + τk) − h(·)
∥

∥

1
·
∥

∥g(·)
∥

∥

∞
,

and since the first term tends to 0 for every h ∈ L1(Rn), we obtain

∫

h(s) g
(

uk(s − τk)
)

ds −→
∫

h(s) 〈νs, g〉 ds.

By Remark 2.1 this suffices to prove the assertion.

In the following we introduce integral functionals on the class of measurable
maps Meas(Ω, K), and we show how to extend them to all Young measures. Then
we discuss some semicontinuity properties of these extensions, and their behavior
with respect to relaxation and Γ-convergence (Theorem 2.12). In order to do this,
we briefly recall the definitions of relaxation and Γ-convergence (we refer to [14],
chaps. 3-8, for more general definitions and further details).

Definition 2.8 - Relaxation. Let X be a metric space and let F : X → [0,+∞].
The relaxation F of F on X is the lower semicontinuous envelope of F , that is, the
supremum of all lower semicontinuous functions which lie below F . Alternatively
F is characterized by the formula:

F (x) = inf
{

lim inf
k→∞

F (xk) : xk → x
}

. (2.7)

Definition 2.9 - Γ-convergence. Let X be a metric space. A sequence of
functions F ε : X → [0,+∞] Γ-converge to F on X, and we write F ε −→Γ F , if the
following two properties are fulfilled:

• lower bound inequality: ∀x ∈ X, ∀xε → x, lim inf F ε(xε) ≥ F (x);

• upper bound inequality: ∀x ∈ X, ∃xε → x s.t. limF ε(xε) = F (x).

We say that the functions F ε converge continuously to F on X if F ε(xε) →
F (x) whenever xε → x, and that they are equicoercive on X if every sequence (xε)
such that F ε(xε) is bounded is pre-compact in X.

Here and in the following we use the term “sequence” also to denote families
(of points of X) labelled by the continuous parameter ε, which tends to 0. A
subsequence of (xε) is any sequence (xεn) such that εn → 0 as n → +∞, and we say
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that (xε) is pre-compact in X if every subsequence admits a sub-subsequence which
converges in X. To simplify the notation we often omit to relabel subsequences,
and we say “a countable sequence (xε)” to mean a sequence defined only for
countably many ε = εn such that εn → 0.

Remark 2.10. Given a lower semicontinuous function F : X → [0,+∞], we
say that a set � is F -dense in X if for every x ∈ X with F (x) < +∞ there
exists a sequence (xk) ⊂ � such that xk → x and F (xk) → F (x). A simple
diagonal argument shows that the upper bound inequality in Definition 2.9 is
verified provided that for every x in some F -dense set � and every δ > 0 we can
find a sequence (xε) such that

lim sup
ε→0

d(xε, x) ≤ δ and lim sup
ε→0

F ε(xε) ≤ F (x) + δ. (2.8)

Proposition 2.11 (see [14], chaps. 6 and 7). We have the following:
(i) every Γ-limit F is lower semicontinuous on X;
(ii) the constant sequence F ε := F Γ-converge on X to F ;
(iii) F ε −→Γ F if and only if F

ε −→Γ F ;
(iv) if F ε −→Γ F and Gε → G continuously, then (F ε + Gε)−→Γ (F + G);
(v) assume that the functions F ε are equicoercive and Γ-converge to F on X,

and that X is continuously embedded in X ′: if we extend F ε and F to +∞
on X ′ \ X, then F ε −→Γ F on X ′;

(vi) if the points x̄ε minimize F ε for every ε, then every cluster point of the
sequence (x̄ε) minimizes F .

We next consider integral functionals on measurable maps from Ω to K and
their extension to Young measures. An integrand on Ω×K is a measurable function
f : Ω × K → [0,+∞]. Each integrand f defines a functional on Meas(Ω, K) via

u 7→
∫

f(s, u(s)) ds.

This can be viewed as a functional on elementary Young measures, and extended
to YM (Ω, K) in two natural ways: by +∞ or by linearity. More precisely, we set

�
f (ν) :=







∫

Ω
f
(

s, u(s)
)

ds if ν = δu for some u,

+∞ otherwise,

(2.9)

and

Ff (ν) :=

∫

Ω

〈νs, fs〉 ds for every ν ∈ YM (Ω, K). (2.10)

Clearly for every elementary Young measure δu we have

Ff (δu) =
�

f (δu) =

∫

Ω

f
(

s, u(s)
)

ds. (2.11)
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Theorem 2.12 below shows that the relaxation or the Γ-convergence of functionals
of type (2.9) always lead to functionals of type (2.10). We recall that the set
YM (Ω, K) is always endowed with the weak-star topology of L∞

w

(

Ω,� (K)
)

, which
makes it compact and metrizable.

Theorem 2.12. If the measure λ is non-atomic the following holds.
(i) If the integrand f satisfies f(s, x) ≤ h(s) for some h ∈ L1(Ω) and fs is

continuous on K for a.e. s ∈ Ω, then Ff is continuous and finite on
YM (Ω, K).

(ii) If fs is lower semicontinuous on K for a.e. s ∈ Ω then Ff is lower
semicontinuous on YM (Ω, K).

(iii) The relaxation of
�

f and Ff on YM (Ω, K) is the functional Ff̂ where f̂

is any integrand such that f̂s agrees with the relaxation of fs on K for a.e.
s ∈ Ω.

(iv) Assume that the integrands fε satisfy fε
s −→Γ fs on K for a.e. s ∈ Ω, and

that the envelope functions Efε defined by

Efε(s) := inf
x∈K

fε(s, x) for s ∈ Ω, (2.12)

are equi-integrable on Ω. Then
�

fε −→Γ Ff and Ffε −→Γ Ff on YM (Ω, K).

Remarks. Concerning statement (iii), we remark that such an integrand f̂ exists
in view of Lemma 2.14 below (this is a subtle point: the map (s, x) 7→ f̄s(x) may
be not Borel measurable on Ω × K).

In statement (iv), we notice that the assumption fε
s −→Γ fs for almost every

s ∈ Ω is quite strong, and far from necessary. Indeed the Γ-convergence of the
functionals may occur even with a more complicate asymptotic behavior of the
integrands (e.g., some kind of homogenization), but the analysis of such situations
is beyond the purposes of this paper.

If the functions Efε in (2.12) are not equi-integrable on Ω, some concentra-
tion effect occurs, and the Γ-convergence results may not hold. In particular, if
‖Efε‖1 → +∞ then

�
fε and Ffε Γ-converge to the constant functional +∞. On

the other hand, if there exist sets Bε ⊂ Ω such that |Bε| → 0, the restrictions of
Efε to the complements of Bε are equi-integrable on Ω, and

∫

Bε Efεds converge to
some constant c, then both

�
fε and Ffε Γ-converge to Ff + c (this generalization

of statement (iv) can be proved by suitably modifying the proof below). However,
both

�
fε and Ffε verify the lower bound inequality without any assumption on

Efε.
Finally we notice that the functions Efε are λ-measurable (see for instance

[11], lemma III.39) and therefore they agree a.e. with Borel functions.

Proof of statements (i) and (ii) of Theorem 2.12. Regarding (i), one
can easily verify that the map s 7→ fs belongs to L1

(

Ω, C(K)
)

(cf. [9], remark

5, sec. I.1, p. 135). Hence Ff belongs to the pre-dual of L∞
w

(

Ω,� (K)
)

, and is
therefore (weak-star) continuous on YM (Ω, K).
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Assertion (ii) is contained in [9], proposition 3, sec. II.1, p. 152, and theorem
2, sec. I.3, p. 138. Alternatively one can use (i) and the approximation from
below established in Lemmas 2.13 and 2.14 below.

To prove assertions (iii) and (iv) of Theorem 2.12 we need two lemmas on
approximation by continuous integrands and a density result for Young measures
ν with finite energy Ff (ν).

Lemma 2.13. Consider an integrand f and for every integer k set

fk(x, s) := k ∧ inf
x′∈K

[

f(x′) + k · d(x, x′)
]

for s ∈ Ω, x ∈ K (2.13)

(here a ∧ b denotes, as usual, the minimum of a and b). Then
(i) for every s, fk

s is k-Lipschitz on K and 0 ≤ fk
s ≤ k;

(ii) for every s, fk
s increases to the relaxation of fs as k ↗ +∞;

(iii) there exists a negligible set N ⊂ Ω such that each fk is measurable on
(Ω \ N) × K.

Proof. Statements (i) and (ii) follow by straightforward computations. State-
ment (iii) is slightly more subtle, and indeed fk may be not Borel measurable
on Ω × K. Let k be fixed. For every Borel function g on Ω × K the map
s 7→ inf

{

g(s, x) : x ∈ K
}

is λ-measurable (cf. [11], lemma III.39) and thus it
agrees a.e. in Ω with a Borel function. Hence for every x ∈ K we can find a
negligible Borel set Nk

x ⊂ Ω such that the map s 7→ fk(s, x) is Borel measurable
on Ω \ Nk

x (cf. (2.13)). Now we take Nk as the union of all Nk
x as x ranges in

a countable dense subset � of K, thus Nk is a negligible Borel set, fk is Borel
measurable in (Ω\Nk)×� , and then also on (Ω\Nk)×K because fk is continuous
in the second variable and � is dense in K. Finally we take N := ∪kNk.

Lemma 2.14. Consider an integrand f and let f̄s be the relaxation of fs for every
s ∈ Ω. Then there exists a negligible Borel set N ⊂ Ω such that f̄ is Borel-
measurable on (Ω \N)×K. In particular there exists an integrand f̂ such that f̂s

is the relaxation of fs for a.e. s ∈ Ω.

Proof. Take N as in statement (iii) of Lemma 2.13: all the functions fk are
Borel-measurable on (Ω \N)×K, and then the same holds for f̄ by statement (ii)
of Lemma 2.13.

Proposition 2.15 ([9], proposition 1, sec. II.2, p. 144). Assume that λ is non-
atomic. Consider an integrand f such that fs is lower semicontinuous on K for
a.e. s ∈ Ω, and the set

Mf :=
{

ν ∈ YM (Ω, K) : Ff (ν) ≤ 1
}

. (2.14)

Then EYM (Ω, K) ∩ Mf is dense in Mf .

Theorem 2.16. Take f as in Proposition 2.15. Then EYM (Ω, K) is Ff -dense
in YM (Ω, K), that is, for every ν ∈ YM (Ω, K) such that Ff (ν) < +∞ there exist
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a sequence of elementary Young measures νk such that νk −⇀∗ ν and Ff (νk) →
Ff (ν).

Proof. We may assume without loss of generality that Ff (ν) = 1. Then
ν ∈ Mf and by Proposition 2.15 we can find a sequence of elementary Young
measures (νk) ⊂ Mf which converge to ν. Then Ff (νk) ≤ Ff (ν) for every k, and
since Ff is lower semicontinuous, we deduce that Ff (νk) converge to Ff (ν).

Proof of statements (iii) and (iv) of Theorem 2.12. Statement (iii) of
Theorem 2.12 follows from statement (iv) and Proposition 2.11(ii).

To prove statement (iv), it suffices to prove the lower bound inequality for
the functionals Ffε , and then the upper bound inequality for the functionals

�
fε

(recall that Ffε ≤ �
fε).

For the lower bound inequality, we begin with a simple remark: if gε −→Γ g on
K, then for every continuous function g′ such that g > g′ on K there holds gε ≥ g′

on K for every ε sufficiently small (this can be easily proved by contradiction).
We fix now an integer k and we take fk as in (2.13) (setting it equal to 0 in

the set N given in Lemma 2.13(iii) to make it Borel measurable). Since fs ≥ fk
s

on K (see Lemma 2.13(ii)), there holds fs > fk
s − 1/k, and since fk

s is continuous
on K (Lemma 2.13(i)), by the previous remark

fε
s ≥ fk

s − 1

k
(2.15)

for ε sufficiently small. Consider a sequence of Young measures νε which converge
to ν in YM (Ω, K). Then (2.15) yields

lim inf
ε→0

Ffε(νε) = lim inf
ε→0

∫

Ω

〈νε
s , fε

s 〉 ds ≥ lim inf
ε→0

∫

Ω

〈

νε
s .fk

s − 1

k

〉

ds

=

∫

Ω

〈νs, f
k
s 〉 ds − 1

k
λ(Ω), (2.16)

where the last equality follows from statement (i) of Theorem 2.12. Now we pass
to the limit in (2.16) as k → +∞, and by Lemma 2.13(ii) and the monotone
convergence theorem we deduce

lim inf
ε→0

Ffε(νε) ≥
∫

Ω

lim
k→∞

〈νs, f
k
s 〉 ds =

∫

Ω

〈νs, fs〉 ds = Ff (ν).

We consider now the upper bound inequality. Since EYM (Ω, K) is Ff -dense in
YM (Ω, K) (Theorem 2.16) and each

�
fε is finite only on EYM (Ω, K), by Remark

2.10 it suffices to show that every elementary Young measure can be approximated
in energy by a sequence of elementary Young measures; more precisely, for every
u ∈ Meas(Ω, K) we shall exhibit a sequence of maps uε which converge to u a.e.
in Ω and satisfy

lim
ε→0

∫

Ω

fε
(

s, uε(s)
)

ds =

∫

Ω

f
(

s, u(s)
)

ds. (2.17)
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Since fε
s −→Γ fs for a.e. s ∈ Ω, for every ε > 0 and a.e. s ∈ Ω we can choose

xε
s ∈ K so that

lim
ε→0

xε
s = u(s) and lim

ε→0
fε(s, xε

s) = f
(

s, u(s)
)

. (2.18)

By (2.12), for every ε > 0 and a.e. s ∈ Ω we can also choose yε
s so that

fε(s, yε
s) ≤ Efε(s) + 1. (2.19)

We thus define the approximating maps uε : Ω → K by

uε(s) :=







xε
s if fε(s, xε

s) ≤ f
(

s, u(s)
)

+ 1,

yε
s otherwise.

(2.20)

From (2.18) we deduce that for a.e. s ∈ Ω there holds uε(s) = xε
s for ε small

enough, and thus uε(s) → u(s) and fε
(

s, uε(s)
)

→ f
(

s, u(s)
)

. We claim that

the functions s 7→ fε
(

s, uε(s)
)

are equi-integrable, henceforth (2.17) follows from
Lebesgue’s dominated convergence theorem. To prove the claim, notice that by
(2.20) and (2.19)

fε
(

s, uε(s)
)

≤ Efε(s) + f
(

s, u(s)
)

+ 1,

and that the functions Efε are equi-integrable by assumption, while f
(

s, u(s)
)

is
summable.

To complete the proof of the upper bound inequality, we have to show that for
every fixed ε > 0 the maps s 7→ yε

s and s 7→ xε
s can be chosen Borel measurable.

In the first case, we modify Efε in a negligible set in order to make it Borel
measurable (cf. the remarks after Theorem 2.12); hence the set of all (s, y) ∈ Ω×K
which satisfy fε(s, y) ≤ Efε(s) + 1 is Borel measurable and the projection on Ω
is equal to Ω, and we can apply the Von Neumann-Aumann measurable selection
theorem (see [11], theorem III.22) to find a λ-measurable selection s 7→ yε

s (which
henceforth fulfills (2.19)); finally we modify such a map in a negligible set to make
it Borel measurable.

In the second case we need to refine the previous argument. First we set

hε(s) := inf
x∈K

[

∣

∣fε(s, x) − f(s, u(s))
∣

∣ + d(x, u(s))
]

;

the function hε is λ-measurable (see [11], lemma III.39), and thus we can modify it
in a negligible set to make it Borel measurable. Hence the set of all (s, x) ∈ Ω×K
which satisfy

∣

∣fε(s, x) − f(s, u(s))
∣

∣ + d(x, u(s)) ≤ hε(s) + ε (2.21)

is Borel measurable, its projection on Ω is equal to Ω, and can we proceed as
before to find a Borel measurable selection map s 7→ xε

s which satisfies (2.21) for
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a.e. s ∈ Ω. One readily checks that hε(s) → 0 for a.e. s ∈ Ω, and thus (2.18)
holds.

3. Application to a two-scale problem

In this section we apply the notion of Young measure developed in Section 2
to the two-scale problem presented in the introduction.

We first introduce some additional notation. As in Section 2, measurability
always means Borel measurability; for sequences we follow the convention intro-
duced after Definition 2.9. Throughout this section Ω is a bounded open interval
endowed with Lebesgue measure, the letter s denotes the (slow) variable in Ω and
v is a real function on Ω, periodically extended out of Ω; The letter x denotes
functions of the (fast) variable t ∈ R; the space of patterns K is the set of all
measurable functions x : R → [−∞,+∞] modulo equivalence almost everywhere,
and G is the group of functional translations on K. We represent G by R: for
every τ ∈ R and every function x ∈ K, Tτx is the translated function x(t − τ).
Thus a function x in K is h-periodic if Thx = x.

By identifying the extended real line [−∞,+∞] with the closed interval [−1, 1]
via the function x 7→ 2

π arctan(x), we can identify K with the closed unit ball
of L∞(R) and endow it with the weak-star topology. Thus K is compact and
metrizable (a distance is given in (5.1) taking n = 1) and G acts continuously on
K (cf. Proposition 5.3). If the functions xk converge to some x pointwise a.e., or
even in measure, then they converge to x also in the topology of K; in particular
the Fréchet space Lp

loc(R) embeds continuously in K for 1 ≤ p ≤ ∞. See Section
5 for more details and precise statements.

For every measure µ on K and every τ ∈ R, T#
τ µ is the push-forward of the

measure µ according to the map Tτ : K → K, that is, T#
τ µ(B) := µ(T−1

τ B) for
every measurable B ⊂ K. We say that a probability measure µ on K is invariant
if it is invariant under the action of the group G, namely if µ(TτB) = µ(B) for
every B ⊂ K and every τ ∈ R; � (K) is the class of all invariant probability
measures on K. The orbit of x ∈ K is the set � (x) of all translations of x; this set
is compact in K whenever x is periodic. In this case εx is the measure defined by

〈εx, g〉 =

∫ h

0

g(Tτx) dτ (3.1)

for every positive Borel function g on K (here h is the period of x); εx is the unique
invariant probability measure supported on � (x), and we call it the elementary
invariant measure associated to x (see Section 4, and in particular Lemma 4.10).

For every bounded open interval I, we write H2
per(I) (resp., W k,p

per (I)) to denote
the Sobolev space of all real functions on I, extended to R by periodicity, which
belong to H2

loc(R) (resp., to W k,p
loc (R)), and by

�
(I) the class of all functions

x ∈ K which are continuous and piecewise affine on the interval I with slope ±1
only (sawtooth functions); we denote by Sẋ the set of all points in R where x is
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not differentiable, and thus the points in S ∩ I are “corners” of x;
�

per(I) is the
class of all real functions on I extended to R by periodicity and of class

�
on

every bounded interval. The space
�

(I) can be characterized as the class of all
functions x ∈ K which are continuous on I and whose distributional derivative
ẋ is a BV function on I and takes values ±1 only; if Sẋ ∩ I consists of the
points t1 < t2 < . . . < tN , then ẍ = ±∑

(−1)i2δti
, and in particular the total

variation of the measure ẍ on I is twice the number of points of Sẋ ∩ I. In short
‖ẍ‖ = 2 #(Sẋ ∩ I).

For every function v and every s ∈ Ω the ε-blowup of v at s is defined by

R
ε
sv(t) := ε−1/3 v(s + ε1/3t) for t ∈ R. (3.2)

The ε-blowup of v is the map R
εv which takes every s ∈ Ω into R

ε
sv ∈ K.

As we explained in the introduction, our goal is to identify the Young measures
ν ∈ YM (Ω, K) generated as ε → 0 by ε-blowups of minimizers vε of the functionals

Iε(v) :=

∫

Ω

ε2v̈2 + W (v̇) + a v2 ds, (3.3)

where v ∈ H2
per(Ω), a ∈ L∞(Ω) is strictly positive a.e., and W is a continuous

non-negative function on R which vanishes at ±1 only and has growth at least
linear at infinity. Notice that the assumption a ∈ L∞(Ω) (see Theorem 1.2) can
be probably replaced by a ∈ L1(Ω); this would only require a modification of the
final part of the proof of the upper bound inequality in Theorem 3.4, and precisely
the proof of estimates (3.29 – 32).

The goal is achieved in several steps:
Step 1. Identify the class of all Young measures ν ∈ YM (Ω, K) which are

generated by sequences of ε-blowups of functions vε (Proposition 3.1 and
Remark 3.2).

Step 2. Write the rescaled functionals ε−2/3Iε(v) as
∫

Ω
fε

s (Rε
sv) ds for suit-

able functionals fε
s on K (cf. (3.6) and (3.7)).

Step 3. Identify the Γ-limit fs of fε
s as ε → 0 for a.e. s ∈ Ω (Proposition

3.3).
Step 4. Prove that the Γ-limit of the rescaled functionals ε−2/3Iε, viewed

as functionals of the elementary Young measures associated with ε-blowups
of functions, is given by F (ν) :=

∫

Ω
〈νs, fs〉 ds for all Young measures ν

described in Step 1 (Theorem 3.4).
Step 5. If ν is a Young measure generated by ε-blowups of minimizers vε of

Iε, use Step 4 to show that ν minimizes F (Corollary 3.11); then use this
fact to identify ν (Theorem 3.12 and Corollary 3.13).

Step 1. Admissible Young measures

The first step of our program consists in understanding which ν ∈ YM (Ω, K)
are generated by the ε-blowups R

εvε of functions vε. We have the following result:
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Proposition 3.1. Let ν ∈ YM (Ω, K) be a Young measure generated by the ε-
blowups R

εvε of a countable sequence of measurable functions vε. Then νs is an
invariant measure on K of a.e. s ∈ Ω.

Proof. Set uε := R
εvε for every ε > 0 and fix τ ∈ R. By (3.2) we have

Tτ

(

uε(s)
)

= uε(s − ε1/3τ). (3.4)

Since the functions uε generate the Young measure ν, the functions Tτuε generate
the Young measure T#

τ ν; on the other hand Lemma 2.7 shows that the functions
uε(· + ε1/3τ) generate the same Young measure as the functions uε, and thus
identity (3.4) yields T#ν = ν. Therefore we can find a negligible set Nτ ⊂ R such
that

T#
τ νs = νs for every s ∈ R \ Nτ .

Let now N be the union of Nτ over all rational τ . Then N is negligible,
and for every s ∈ Ω \ N there holds T#

τ νs = νs for every rational τ , and by
approximation also for every real τ (the map τ 7→ T#

τ µ is weak-star continuous
for every µ ∈ � (K)). Hence νs is an invariant measure.

Remark 3.2. The converse of Proposition 3.1 is also true: for every ν ∈ YM (Ω, K)
such that νs ∈ � (K) for a.e. s ∈ Ω we can find functions vε such that R

εvε

generate ν. The proof of this fact is more difficult, and is essentially included in
the proof of Theorem 3.4 below.

Step 2. Rewriting Iε(v) in term of R
ε
sv

We extend a by periodicity out of Ω and set aε
s(t) := a(s + ε1/3t) for every s

and t. We fix a function v ∈ H2
per(Ω) and set xs := R

ε
sv for every s ∈ Ω. Thus

xs(t) = ε−1/3v(s + ε1/3t),

ẋs(t) = v̇(s + ε1/3t),

ẍs(t) = ε1/3v̈(s + ε1/3t).

Hence

ε4/3v̈2 + ε−2/3W (v̇) + ε−2/3av2 = ε2/3ẍ2
s + ε−2/3W (ẋs) + aε

sx
2
s, (3.5)

where all functions on the left-hand side are computed at s + ε1/3t, and those on
the right-hand side are computed at t.

Now we fix r > 0 and for every x of class H2 on (−r, r) we set

fε
s (x) :=

∫ r

−r

ε2/3ẍ2 + ε−2/3W (ẋ) + aε
sx

2 dt. (3.6)

Therefore, taking the average of the right-hand side of (3.5) over all t ∈ (−r, r)
and then integrating over all s ∈ Ω we get

∫

Ω
fε

s (xs) ds. On the other hand, if we
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integrate the left-hand side of (3.5) over all s ∈ Ω we get ε−2/3Iε(v) for every t,
and nothing changes if we take the average over all t ∈ (−r, r). Therefore

ε−2/3Iε(v) =

∫

Ω

fε
s (xs) ds. (3.7)

Step 3. Asymptotic behavior of fε
s

We fix now s ∈ Ω and consider the Γ-limit on K of the functionals fε
s defined

in (3.6).

Proposition 3.3. Let s be a point in Ω such that the function a is L1-
approximately continuous at s. Then the functionals fε

s , extended to +∞ on all
functions x ∈ K which are not of class H2 on (−r, r), Γ-converge on K to

fs(x) :=











A0

2r
#

(

Sẋ ∩ (−r, r)
)

+ a(s)

∫ r

−r

x2 dt if x ∈ � (−r, r)

+∞ otherwise,

(3.8)

where A0 := 2
∫ 1

−1

√
W .

Proof. This proposition is an immediate consequence of the following theorem
by L. Modica and S. Mortola (see [37], [38], [36]): for every bounded open set Ω ⊂
R

n the functionals given by
∫

Ω
ε|∇y|2+ 1

εW (y) for all y ∈ H1(Ω), such that |y| ≤ 1
– and extended to +∞ elsewhere – are equicoercive on L1(Ω) and Γ-converge to
the functional given by A0 ‖Dy‖ when y is a function of bounded variation on Ω
which takes only the values ±1 a.e., and +∞ otherwise. We immediately deduce
that the functionals

∫ r

−r

ε2/3ẍ2 + ε−2/3W (ẋ)

Γ-converge on on W 1,1(−r, r) to the functional given by A0

2r #
(

Sẋ ∩ (−r, r)
)

, if
x ∈ � (−r, r), and by +∞ otherwise.

The assumption that a is L1-approximately continuous at s implies that the
rescaled functions aε

s(t) := a(s + ε1/3t) converge in L1
loc(R) to the constant

value a(s). Thus the functionals
∫ r

−r
aε

sx
2 converge to a(s)

∫ r

−r
x2 continuously

on W 1,1(−, r, r).
Hence the functionals fε

s are equicoercive on W 1,1(−r, r) and Γ-converge to fs.
Now it suffices to take into account that W 1,1(−r, r) embeds continuously in K
and apply Proposition 2.11(v).

Step 4. The main Γ-convergence result

Using identity (3.7), we can view the rescaled functionals ε−2/3Iε(v) as func-
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tionals on YM (Ω, K). More precisely we set

F ε(ν) :=











∫

Ω
〈νs, f

ε
s 〉 ds if ν is the elementary Young measure

associated to R
εv for some v ∈ H2

per(Ω),

+∞ otherwise.

(3.9)

Hence F ε(ν) is finite if and only if ν is the elementary Young measure associated
with the ε-blowup R

εv of some v ∈ H2(Ω), and (cf. (3.7))

F ε(ν) = ε−2/3Iε(v). (3.10)

Propositions 3.1 and 3.3 clearly suggest the Γ-limit of F ε, and indeed we have:

Theorem 3.4. The functionals F ε in (3.9) Γ-converge on YM (Ω, K) to

F (ν) :=

{

∫

Ω
〈νs, fs〉 ds if νs ∈ � (K) for a.e. s ∈ Ω,

+∞ otherwise.

(3.11)

Remark. If x belongs to
�

per(0, h), and εx is the associated elementary invariant
measure, a simple computation yields (cf. (5.8))

〈εx, fs〉 =
A0

h
#

(

Sẋ ∩ [0, h)
)

+ a(s)

∫ h

0

x2 dt. (3.12)

Hence the value of 〈µ, fs〉 does not depend on the the constant r which appears in
(3.6) and (3.8) when µ is an elementary invariant measure, and the same conclusion
holds by density for every invariant measure (cf. Corollary 5.11). Therefore also
F does not depend on r.

Proof of Theorem 3.4

In view of future applications we will try to present a proof of Theorem 3.4
as much independent as possible of the particular example we have considered so
far. In fact, one could be tempted to view Theorem 3.4 as a particular case of
the following general result: if the functionals F ε are defined as in (3.9) for some
integrands fε

s which Γ-converge on K to fs, then they Γ-converge on YM (Ω, K) to
the functional F defined in (3.11). Unfortunately the convergence of the integrands
alone seems not sufficient to guarantee the convergence of the functionals (cf., for
instance, Theorem 2.12(iv)).

Remark 3.5 – Essential ingredients of the proof. The proof of Theorem
3.4 below can be adapted to a large class of problems with few modifications (even
though this is not always case, see Section 6). In order to make its structure clear
we have gathered here all the relevant properties of fε

s and fs. Indeed the whole



  

VARIATIONAL PROBLEMS WITH MULTIPLE SCALES 23

proof will be derived by these properties, with the only exception of estimates
(3.30 − 32), where we use more specific arguments based on the definition of fε

s .
In what follows, B(s, ρ) denotes the open ball of center s and radius ρ, that is, the
open interval (s − ρ, s + ρ).

(1) Pointwise convergence of the integrands: for a.e. s ∈ Ω, fε
s −→Γ fs on K.

This condition is verified in Proposition 3.3, and is one of the basis upon
which we propose Theorem 3.4, the other being Proposition 3.1).

(2) Existence of a “nice” dense subset of � (K): for a.e. s ∈ Ω, every invariant
measure µ ∈ � (K) can be approximated in the weak-star topology of
� (K) with elementary invariant measures εx associated with functions
x ∈ �per(0, h) for some h > 0, so that 〈εx, fs〉 approximates 〈µ, fs〉. Both
Sections 4 and 5 are devoted to the approximation of invariant measures
by elementary invariant measures, and in Corollary 5.11 we prove that
condition (2) is verified by every fs of the form (3.8).

(3) Uniformity in s of fs: there exists a negligible set N ⊂ Ω such that, for ev-
ery h > 0 and x ∈ �per(0, h), the function s 7→ 〈εx, fs〉 is L1-approximately
upper semicontinuous at every point of Ω \ N . More precisely, formula
(3.12) shows that s 7→ 〈εx, fs〉 is L1-approximately continuous at every
point where a is L1-approximately continuous. We expect that this condi-
tion is easily verified in many cases (cf., however, the situation described
in Section 6.3).

(4) Uniformity in s of the Γ-convergence of fε
s : for every h > 0, x ∈ �per(0, h),

and a.e. s̄ ∈ Ω there exist functions xε ∈ H2
per(0, h) which converge to x

in K and satisfy

lim sup
ε→0

∫

τ∈[0,h]
s∈B(s̄,ρ)

fε
s (Tτxε) dτ ds ≤

∫

τ∈[0,h]
s∈B(s̄,ρ)

fs(Tτx) dτ ds + η(ρ), (3.13)

where the error η(ρ) tends to 0 as ρ → 0. Moreover one can assume
|ẋε| ≤ 1.

Proposition 3.6. The integrands fε
s defined in (3.6) satisfy condition (4) above.

Proof. We prove a stronger assertion: for every s̄ ∈ Ω and ρ > 0, the func-
tional given by the average on the left-hand side of (3.13) for all 1-Lipschitz func-
tions x in H2

per(0, h), and extended to +∞ elsewhere, Γ-converges on W 1,1
per(0, h)

to the functional equal to the average on the right-hand side of (3.13) for
x ∈ �per(0, h), and to +∞ elsewhere.

Hence, for every x ∈ �
per(0, h) we could find 1-Lipschitz functions xε which

converge to x in W 1,1
per(0, h), and thus in K, and satisfy (3.13) with η(ρ) ≡ 0.

To prove the claim, we first notice that for every x ∈ H2
per(0, h) the average on

the left-hand side of (3.13) can be written as

∫ h

0

[

ε2/3ẍ2 + ε−2/3W (ẋ)
]

+

∫

τ∈[0,h]
s∈B(s̄,ρ)

[

∫ r

−r

aε
s (Tτx)2

]

dτ ds, (3.14)
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and for every function x ∈ �per(0, h) the integral on the right-hand side of (3.13)
can be written as

A0

h
#

(

Sẋ ∩ [0, h)
)

+

∫

τ∈[0,h]
s∈B(s̄,ρ)

[

a(s)

∫ r

−r

(Tτx)2
]

dτ ds. (3.15)

Now we proceed as in the proof of Proposition 3.3: the first integral in (3.14)
Γ-converge on W 1,1

per(0, h) to the first integral in (3.15), while the second integral
in (3.14) converge continuously on W 1,1

per(0, h) to the second integral in (3.15) for
every s̄, ρ.

Remark. Given positive functions fε
s on a metric space X which Γ-converge to

fs for every parameter s, it may be not true that the average of the functions
fε

s (with respect to a fixed probability distribution on the space of parameters s)
Γ-converges to the average of fs (consider for instance the situation described in
Section 6.3: any non-trivial average of fs there is identically equal to +∞, because
the functionals fs have pairwise disjoint supports).

In particular, condition (1) above does not yield condition (4). In fact, condi-
tion (1) implies that for every x ∈ K, τ ∈ R, and a.e. s ∈ Ω there exists a sequence
(xε), depending on x, s and τ , such that xε → x in K and fε

s (Tτxε) → fs(Tτx),
while in (4) we essentially require that such a sequence can be chosen independent
of τ ∈ [0, h] and of s in a neighborhood of a given s̄.

We now give the proof of Theorem 3.4, starting with the lower bound inequality,
namely that lim inf F ε(νε) ≥ F (ν) whenever νε → ν in YM (Ω, K). We may
assume that the left-hand side of this inequality is finite (otherwise there is nothing
to prove), and, possibly passing to a subsequence, that the liminf is actually a
limit. By the definition of F ε, each νε has to be the elementary Young measures
associated to some ε-blowup, which in view of Proposition 3.1 implies that νs is
an invariant measure for a.e. s. By the definition of F we are left to show that

lim inf
ε→0

∫

Ω

〈νε
s , fε

s 〉 ds ≥
∫

Ω

〈νs, fs〉 ds. (3.16)

Since fε
s −→Γ fs on K for a.e. s ∈ Ω (condition (1) of Remark 3.5), then (3.16)

follows from Theorem 2.12(iv). We remark that since we only use the lower bound
part of the convergence result stated in Theorem 2.12, as remarked after that
theorem we do no need to verify the equi-integrability of the envelope functions in
(2.12).

While the proof of the lower bound inequality follows from a quite general and
relatively simple convergence result for functionals on Young measures, the proof
of the upper bound inequality is definitely more delicate. The first step is to find
a set � of Young measures with relatively simple structure which is F -dense in
YM (Ω, K) (cf. Remark 2.10).
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Definition 3.7. Let � be the class of all Young measures ν ∈ YM (Ω, K) which
satisfy the following condition: there exist countably many disjoint intervals which
cover almost all of Ω, and on every such interval ν agrees a.e. with an elementary
invariant measure εx, with x ∈ �per(0, h) and h > 0 (depending on the interval).

Lemma 3.8. The set � is F -dense in YM (Ω, K), that is, for every ν ∈ YM (Ω, K)
such that F (ν) is finite there exist νk ∈ � such that νk → ν in YM (Ω, K), and
lim supF (νk) ≤ F (ν).

Proof. We first recall that there exists a norm φ on the space of all measures
� (K) which induces the weak-star topology on every bounded subset, and in
particular on � (K) (cf. Proposition 4.8).

Take ν ∈ YM (Ω, K) such that
∫

〈νs, fs〉 ds is finite, and fix η > 0. By condition
(2) of Remark 3.5, for a.e. s̄ ∈ Ω we can find h(s̄) > 0 and xs̄ ∈ �per(0, h(s̄)) so
that

φ(εxs̄
− νs̄) ≤ η and 〈εxs̄

, fs̄〉 ≤ 〈νs̄, fs̄〉 + η. (3.17)

For a.e. s̄ ∈ Ω we can also take ρ(s̄) > 0 such that, for every ρ ≤ ρ(s̄) there holds

∫

B(s̄,ρ)

φ(νs̄ − νs) ds ≤ η and 〈νs̄, fs̄〉 ≤
∫

B(s̄,ρ)

〈νs, fs〉 ds + η, (3.18)

and (cf. condition (3) of Remark 3.5)

∫

B(s̄,ρ)

〈εxs̄
, fs〉 ds ≤ 〈εxs̄

, fs̄〉 + η. (3.19)

Putting together (3.17 − 19) we get

∫

B(s̄,ρ)

φ(εxs̄ − νs) ds ≤ 2η,

∫

B(s̄,ρ)

〈εxs̄ , fs〉 ds ≤
∫

B(s̄,ρ)

〈νs, fs〉 ds + 3η.

(3.20)

By the Besicovitch covering theorem (see [19], chap. 2), we can find countably
many disjoint intervals Bi = B(s̄i, ρi) with ρi ≤ ρ(s̄i) which cover almost all of Ω.
For every i we set xi := xs̄i , fi := fs̄i , and finally we define νη ∈ � by

νη
s := εxi if s ∈ Bi for some i.

Then νη belongs to � , and (3.20) yields

∫

Ω

φ(νη
s − νs) ds ≤

∑

i

∫

Bi

φ(εxi − νs) ds ≤
∑

i

2η|Bi| = 2η|Ω|, (3.21)
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and

∫

Ω

〈νη
s , fs〉 ds =

∑

i

∫

Bi

〈εxi , fs〉 ds ≤
∑

i

[

∫

Bi

〈νs, fs〉 ds + 3η|Bi|
]

=

∫

Ω

〈νs, fs〉 ds + 3η|Ω|. (3.22)

Inequality (3.21) shows that φ(νs−νη
s ) converge in measure to 0 as η → 0, and then

pointwise a.e. provided that we pass to a suitable subsequence. Hence νη
s weak-

star converge to νs for a.e. s ∈ Ω, and νη converge to ν in YM (Ω, K) (cf. Remark
2.1). Inequality (3.22) yields lim supF (νη) ≤ F (ν), and the proof is complete.

According to Remark 2.10, to prove the upper bound inequality for the func-
tionals F ε – thus completing the proof of Theorem 3.4 – it suffices to show that
every ν ∈ � can be approximated (in energy) by ε-blowups of functions on Ω.
We first construct the approximating sequence for a constant Young measure ν,
and then we show how to localize such a construction to adapt to a general Young
measure in � .

Let be given a bounded interval I, a function x ∈ �per(0, h) with h > 0, and a
sequence of functions xε ∈ H2

per(0, h) which converge to x in K and satisfy

lim sup
ε→0

∫

τ∈[0,h]
s∈I

fε
s (Tτxε) dτ ds ≤

∫

s∈I

〈εx, fs〉 ds + η. (3.23)

For every ε > 0 we choose τ ε ∈ [0, h] and we set

vε(s) := ε1/3xε(ε−1/3s − τ ε) for every s ∈ R. (3.24)

Lemma 3.9. The functions vε in (3.24) belong to H2
per(0, hε1/3), and the ε-blowups

R
εvε generate on I the constant Young measure εx. Moreover the numbers τ ε in

(3.24) can be chosen so that

lim sup
ε→0

∫

I

fε
s

(

R
εvε

)

ds ≤
∫

I

〈εx, fs〉 ds + η. (3.25)

Proof. Let ν be a Young measure on I generated by a subsequence of R
εvε.

For every s ∈ R we have (cf. (3.2))

R
ε
sv

ε = T(τε−ε−1/3s)x
ε. (3.26)

Since xε tends to x in K, R
ε
sv

ε tends to the orbit � (x) for every s ∈ Ω, and then ν̄s

is supported on �(x) for a.e. s. Thus ν̄s = εx because ν̄s is invariant (Proposition
3.1), and the only invariant probability measure supported on �(x) is εx.
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Let us consider the second part of the assertion. By identity (3.26) we get

∫

I

fε
s

(

R
εvε

)

ds =

∫

I

fε
s (T(τε−ε−1/3s)x

ε) ds.

Now we choose τ ε so that the integral on the right-hand side is not larger than
the average of

∫

I
fε

s (T(τ−ε−1/3s)x
ε) ds over all τ ∈ [0, h], and taking into account

that xε is h-periodic we get

∫

I

fε
s

(

R
εvε

)

ds ≤
∫ h

0

[

∫

I

fε
s (T(τ−ε−1/3s)x

ε) ds
]

dτ =

∫ h

0

[

∫

I

fε
s (Tτxε) ds

]

dτ.

Finally we pass to the limit as ε → 0 and apply inequality (3.23).

We have thus shown that the ε-blowups of the functions vε defined in (3.24)
converge in energy to the constant Young measure νs = εx, provided that the
functions xε fulfill (3.23). Using condition (4) in Remark 3.5 we can show that
such approximating sequence exist “locally” for every ν ∈ � .

Lemma 3.10. Let be given ν ∈ � and η > 0. Then there exist finitely many
intervals Ii with pairwise disjoint closures which cover Ω up to an exceptional set
with measure less than η, so that the following statements hold for every i:

(i) there exist hi > 0 and xi ∈
�

per(0, hi) such that νs = εxi for a.e. s ∈ Ii;
(ii) for every ε > 0 there exist 1-Lipschitz function xε

i ∈ H2
per(0, hi) which con-

verge to xi in K and satisfy (3.23) (with I, h, x, xε replaced by Ii, hi, xi, x
ε
i ).

Proof. Since ν belongs to � , for almost every point s̄ ∈ Ω we can find a
function x ∈ �per(0, h) with h > 0 and an interval I of the form I = B(s̄, ρ) ⊂ Ω
so that νs = εx for a.e. s ∈ I. Moreover, by the uniformity assumption (4) in
Remark 3.5, for almost every such s̄ ∈ Ω and for ρ sufficiently small we can find
functions xε ∈ H2

per(0, h) which converge to x in K and satisfy inequality (3.13) or,
equivalently, (3.23). (Notice that the right-hand sides of (3.13) and (3.23) agree
because I = B(s̄, ρ) and 〈εx, fs〉 is the average of fs(Tτx) over all τ ∈ [0, h]).

We apply now Besicovitch covering theorem to find finitely many intervals of
the type above whose closures are pairwise disjoint and cover Ω up to an excep-
tional set with measure less than η.

We can now complete the proof of the upper bound inequality.
Since � is F -dense in YM (Ω, K), by Remark 2.10 it suffices to construct, for

every δ > 0 and ν ∈ � , functions vε ∈ H2
per(Ω) so that the elementary Young

measures νε associated with the ε-blowups R
εvε satisfy (cf. (2.8))

lim sup
ε→0

Φ(νε − ν) ≤ δ,

lim sup
ε→0

∫

Ω

fs(R
ε
sv

ε) ds ≤
∫

Ω

〈νs, fs〉 ds + δ,
(3.27)
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where Φ is the norm which metrizes YM (Ω, K) defined in (2.2).
We fix ν ∈ � , δ > 0 and η > 0 (which will be later chosen in order to get

(3.27)). We take Ii, xi, hi and xε
i as in Lemma 3.10, and define vε

i as in (3.24),
namely

vε
i (s) := ε1/3xε

i (ε
−1/3s − τ ε

i ) for every s ∈ R,

where τ ε
i are chosen as in Lemma 3.9. We denote the intervals Ii by (ai, bi),

ordered so that ai < bi < ai+1 < bi+1, and set

vε(s) := vε
i (s) if s ∈ (ai + rε1/3, bi − rε1/3) for some i, (3.28)

where r is the constant which appears in the definition of fs (see (3.6)). It remains
to extend the function vε out of the union of the intervals (ai + rε1/3, bi − rε1/3).

Take a positive number M (larger than 1 and r) such that |xi(t)| + 1 ≤ M
for every i and every t ∈ R. Since the functions xε

i converge to xi in K and
are 1-Lipschitz, then they also converge uniformly; in particular, for ε sufficiently
small, |xε

i (t)| ≤ M for every i, t, and thus |vε(s)| ≤ Mε1/3 for every s where it is
defined. Notice that M depends on the choice of xi, and ultimately on η; therefore
the dependence on M cannot be neglected in the estimates below.

Mε1/3

ε1/3

extension of vε on J
vε out of J

bi −rε1/3 ai+1+rε1/3

∼Mε1/3 ∼ε1/3 ∼ε ∼Mε1/3

s

Figure 3.1. Construction of vε in J := [bi − rε1/3, ai+1 + rε1/3]

For ε sufficiently small, we extend vε to the interval [bi − rε1/3, ai+1 + rε1/3] as
shown in Figure 3.1. More precisely, v̇ε takes alternately the values +1 and −1 in
a sequence of intervals with length of order ε1/3 (except the first and the last one,
which have length of order Mε1/3); two consecutive intervals are separated by a
transition layer (marked in grey in the figure above) with length of order ε where
v̈ε is of order ε−1. The value of vε is of order ε1/3 in each interval except the first
and the last one where it is of order Mε1/3.

Let us prove the first inequality in (3.27).
Let ν̄ be a Young measure generated by any subsequence (not relabeled) of

the ε-blowups R
εvε. Since vε and vε

i agree on (ai + rε1/3, bi − rε1/3) (cf. (3.28)),
given a point s ∈ Ii = (ai.bi), the ε-blowups R

ε
svε and R

ε
sv

ε
i agree on the larger

and larger intervals

(

− (s − ai)ε
−1/3 + r, (bi − s)ε−1/3 − r

)

,

and therefore their distance in K vanishes as ε → 0 (Proposition 5.1).
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Hence R
εvε and R

εvε
i generate on Ii the same Young measure (see Remark

2.6), that is, ν̄s = εxi for a.e. s ∈ Ii (see Lemma 3.9). On the other hand εxi = νs

for a.e. s ∈ Ii by construction (cf. Lemma 3.10), and then ν and ν̄ agree on the
union of the intervals Ii; taking into account that the complement in Ω of this
union has measure less than η, by the definition of Φ in (2.2) we get Φ(ν̄ − ν) ≤ η.
This gives the first inequality in (3.27), provided we choose η smaller than δ.

Let us consider now the second inequality in (3.27). If s belongs to the interval
(ai + 2rε1/3, bi − 2rε1/3) for some i, the function R

ε
sv

ε agrees with R
ε
sv

ε
i on the

interval (−r, r), and then (cf. (3.28), (3.6))

fε
s (Rε

sv
ε) = fε

s

(

R
ε
sv

ε
i

)

. (3.29)

If s belongs to (bi+Mε1/3, ai+1−Mε1/3), R
ε
sv

ε agrees on (−r, r) with the ε-blowup
of the extension described in figure 2, and then it is of order 1, while its derivative
is always +1 or −1 apart a number – not exceeding 2r + 1 – of transition layers
with size ε2/3, where the second derivative is of order ε−2/3. A direct computation
gives the estimate

fε
s (Rε

sv
ε) = O(1). (3.30)

If s belongs to (ai − Mε1/3, ai) or (bi, bi + Mε1/3), then R
ε
sv

ε agrees on (−r, r)
with the ε-blowup of the extension described in figure 2, but it is now of order M ,
and reasoning as before we get

fε
s (Rε

sv
ε) = O(M2). (3.31)

Finally, if s belongs to (ai, ai +2rε1/3) or (bi − 2rε1/3, bi), then R
ε
sv

ε agrees partly
with the ε-blowup of vε

i and partly with the ε-blowup of the extension described
in Figure 3.1. By coupling estimates (3.29) and (3.30), we get

fε
s (Rε

sv
ε) ≤ fε

s

(

R
ε
sv

ε
i

)

+ O(M2). (3.32)

Now we put together (3.29− 32), and since the measure of the complement of the
union of all Ii is less than η, we obtain

∫

Ω

fε
s (Rε

sv
ε) ds ≤

∑

i

∫

Ii

fε
s

(

R
ε
sv

ε
i

)

ds + O(1) · η + O(M3) · ε1/3.

Passing to the limit as ε → 0, and recalling inequality (3.25), we get

lim sup
ε→0

∫

Ω

fε
s (Rε

sv
ε) ds ≤

∑

i

[

∫

Ii

〈εxi , fs〉 ds + η|Ii|
]

+ O(1) · η

≤
∫

Ω

〈νs, fs〉 ds + O(1) · η,

which gives the second inequality in (3.27) if we choose η small enough.
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Step 5. Minimizers of F

An immediate consequence of Theorem 3.4 is the following:

Corollary 3.11. For every ε > 0, let vε be a minimizer of Iε on H2
per(Ω), and let

ν be a Young measure in YM (Ω, K) generated by a subsequence of the ε-blowups
R

εvε. Then ν minimizes the functional F in (3.11), which means that for a.e.
s ∈ Ω the measure νs minimizes 〈µ, fs〉 among all invariant probability measures
µ on K.

Proof. Apply Proposition 2.11(vi) and Theorem 3.4, taking into account
(3.10) and (3.11).

Now we want to show that every Young measure generated by the ε-blowups of
the minimizers of Iε is uniquely determined by the minimality property established
in the previous corollary. For every h > 0, let yh be the h-periodic function on R

given by

yh(t) := |t| − h/4 for t ∈ (−h/2, h/2] (3.33)

(cf. Figure 1.2). We have the following.

Theorem 3.12. Fix s ∈ Ω and let fs be given in (3.8). If µ̄ minimizes 〈µ, fs〉
among all µ ∈ � (K), then µ̄ is the elementary invariant measure associated with
the function yh(s) where

h(s) := L0(a(s))−1/3, (3.34)

and L0 := (48A0)
1/3 = (96

∫ 1

−1

√
W )1/3.

Taking Corollary 3.11 into account, we immediately deduce the following, which
concludes our analysis of the asymptotic behavior of the minimizers of Iε.

Corollary 3.13. For every ε > 0, let vε be a minimizer of Iε on H2
per(Ω). Then

the ε-blowups R
εvε generate a unique Young measure ν ∈ YM (Ω, K), and, for

a.e. s ∈ Ω, νs is the elementary invariant measure associated with the sawtooth
function yh(s).

Proof of Theorem 3.12

Throughout this subsection s ∈ Ω is fixed, and for simplicity we write h̄, ȳ
instead of h(s), yh(s). We begin with a computation which shows the optimality
of ȳ.

Lemma 3.14. The measure εȳ minimizes 〈µ, fs〉 among all invariant measures µ.

Proof. Fix x ∈ �per(0, h) with h > 0. Up to a suitable translation, we may
assume that Sẋ ∩ [0, h] consists of the points t0 = 0 < t1 < t2 < . . . < tn = h and
n = #

(

Sẋ∩ [0, h)
)

is an even number. For every i = 1, . . . , n, let Ii be the interval
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(ti−1, ti), hi := |Ii| = ti − ti−1, and pi be the average of x on Ii. Thus, recalling
(3.12) and taking into account that ẋ is constant ±1 on each Ii, we get

〈εx, fs〉 =
A0

h
n + a(s)

∫ h

0

x2 dt =

n
∑

i=1

1

h

[

A0 + a(s)

∫

Ii

x2 dt
]

=

n
∑

i=1

hi

h

[A0

hi
+ a(s)

∫ hi/2

−hi/2

(t + pi)
2dt

]

=

n
∑

i=1

hi

h

[A0

hi
+

a(s)

12
h2

i + a(s) p2
i

]

.

We rewrite the last identity as

〈εx, fs〉 =

n
∑

i=1

hi

h
g(hi, pi), (3.35)

where we have set

g(h, p) :=
A0

h
+

a(s)

12
h2 + a(s) p2. (3.36)

A simple computation shows that (h̄/2, 0) is the unique minimum point of g.
Furthermore, for x := ȳ we have n = 2, h1 = h2 = h̄/2, p1 = p2 = 0, and (3.35)
becomes

〈εȳ, fs〉 = g(h̄/2, 0) = min g. (3.37)

On the other hand, (3.35) and the fact that
∑

hi/h = 1 yield, for a general x,

〈εx, fs〉 =

n
∑

i=1

hi

h
g(hi, pi) ≥ min g = 〈εȳ, fs〉.

We have thus proved that εȳ minimizes 〈µ, fs〉 among all elementary invariant
measures µ. We conclude by a density argument based on Corollary 5.11.

A careful examination of the previous proof leads to the conclusion that no
other elementary invariant measure minimizes 〈µ, fs〉 among all µ ∈ � (K). But
proving Theorem 3.12 means showing that no other invariant measure minimizes
〈µ, fs〉, and this requires a more refined argument.

Since we know that every invariant measure can be approximated by elemen-
tary invariant measures, we first look for general criteria which ensure that a se-
quence of elementary invariant measures converges to a given elementary invariant
measure.

Lemma 3.15. Let x̃ ∈ �
per(0, h̃) be given with h̃ > 0, and, for k = 1, 2, . . .,

xk ∈ �
per(0, hk) with hk > 0. Then the elementary invariant measures εxk

weak-star converge to εx̃ if (and only if) the probability that τ ∈ (0, hk) satisfies
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d
(

Tτxk, �(x̃)
)

> ε vanishes as k → +∞ for every ε > 0 (here d is the distance in
K and � (x̃) is the orbit of x̃).

Proof. Let µ be an invariant measure on K. Since εx̃ is the only invariant
measure supported on the orbit of x̃, µ is equal to εx̃ if (and only if) µ is supported
on the compact set � (x̃), that is to say, µ(Aε) = 0 for every ε > 0, where Aε is
the open set of all x ∈ K such that d

(

x, �(x̃)
)

> ε.
Now, if µ is the limit of (a subsequence of) the measures εxk , which in turn are

the averages of the Dirac masses centered at Tτxk over all τ ∈ (0, hk) (see (4.6)),
then

µ(Aε) ≤ lim inf
k→∞

εxk(Aε) ≤ lim inf
k→∞

1

hk

∣

∣{τ ∈ (0, hk) : Tτxk ∈ Aε}
∣

∣.

Since the last term in the previous line vanishes by assumption, it follows that
µ = εx̃, and the assertion is proved (the converse is immediate).

The criterion in the previous lemma can be consistently improved when x̃ is of
the form x̃ = yh̃ for some h̃ > 0 (cf. (3.33)). For every k, we define nk, Ik

i , hk
i , pk

i

as in the proof of Lemma 3.14 (replacing x and h by xk and hk), and consider the
probability measures λk on (0,+∞) × R given by

λk :=
∑

i

hk
i

hk
δ(hk

i
,pk

i
). (3.38)

We would expect that εxk converge to εx̃ if the numbers hk
i and pk

i converge, in
the limit k → +∞, to h̃/2 and 0, respectively, at least “in probability”. That is, if
the measures λk converge to the Dirac mass centered at (h̃/2, 0). In fact, we need
a slightly stronger requirement:

Lemma 3.16. Assume that there exists h̃ such that

lim
k→∞

∫

C

(

1 +
1

h

)

dλk(h, p) = 0 (3.39)

for every closed set C ⊂ (0,+∞) × R which does not contain the point (h̃/2, 0).
Then εxk weak-star converge to εx̃ with x̃ := yh̃.

Proof. In view of Lemma 3.15, it suffices to show that for every ε > 0 the
probability that τ ∈ (0, hk) satisfies d

(

Tτxk, � (x̃)
)

> ε vanishes as k → +∞.
Let ε > 0 be fixed. We can assume with no loss in generality that hk → +∞

as k → +∞ (if x is h-periodic then it is also nh-periodic for every positive integer
n). We also use the fact that, since the distance on K is the one in (5.1) for n = 1,
by Remark 5.2 there exists m such that

d(x1, x2) ≤ ε/2 + ‖x1 − x2‖L∞(−m,m) for x1, x2 ∈ K. (3.40)
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The proof is now divided in two steps.

Step 1.

Consider δ > 0 and τ ∈ (0, hk) such that

(a) τ belongs to (m, hk − m);

(b) for every index i such that Ik
i and (τ − m, τ + m) intersect, there holds

|hk
i − h̃/2| ≤ δ;

(c) there exists an index j such that Ik
j and (τ − m, τ + m) intersect, and

|pk
j | ≤ δ.

We claim that for a suitable choice of the parameter δ (depending on ε, but not
on τ and k), there holds

d
(

T−τxk, �(x̃)
)

≤ ε. (3.41)

More precisely, in case that xk has slope −1 in Ik
j , we prove that xk is close to

Ttj x̃ (the case when xk has slope +1 in Ik
j can be treated in a similar way). We

set x̄ := Ttj x̃, and notice that xk(tj) = pk
j − hk

j /2 and x̄(tj) = x̃(0) = −h̃/4; by
assumptions (b) and (c) we infer

∣

∣xk(tj) − x̄(tj)
∣

∣ ≤ |pk
j | +

1

2
|hk

j − h̃/2| ≤ 2δ. (3.42)

We label the points of S ˙̄x as t̄i, so that t̄i−1 < t̄i for every i and t̄j = tj (tj belongs
to S ˙̄x because 0 belongs to S ˙̃x), and we let Īi denote the interval (t̄i−1, t̄i).

τ+mτ−m

tj=tj
−

x k x− ti ti
−

t

Figure 3.2. The functions xk and x̄ := Ttj x̃ in (τ − m, τ + m)

Thus xk and x̄ have the same derivative in Īi ∩ Ik
i for every i (cf. Figure 3.2);

since tj = t̄j by construction, assumption (b) implies that the measure of Īi \ Ik
i is

less than δ when i = j, j + 1, less than 2δ when i = j − 1, j + 2, less than 3δ when
i = j − 2, j + 3, and so on.

Taking into account that the total number of indexes i such that Īi and (τ −
m, τ + m) intersect does not exceed N := 1 + 4m/h̃, we obtain that |Īi \ Ik

i | ≤ Nδ
for all such i, and then the derivatives of xk and x̄ agree in (τ − m, τ + m)
minus a set with measure less than N2δ. Using (3.42) we deduce that for every
t ∈ (τ − m, τ + m)

∣

∣xk(t) − x̄(t)
∣

∣ ≤
∣

∣xk(tj) − x̄(tj)
∣

∣ +

∫ t

tj

∣

∣ẋk − ˙̄x
∣

∣ ≤ 2(1 + N2) δ.
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Therefore, if we choose δ so that 2(1 + N2) δ ≤ ε/2, by (3.40) we get

d
(

T−τxk, Ttj−τ x̃
)

= d
(

T−τxk, T−τ x̄
)

≤ ε/2 + ‖xk − x̄‖L∞(τ−m,τ+m) ≤ ε,

which implies (3.41).

Step 2.

We show that the probability that τ ∈ (0, hk) does not satisfy assumption (a),
(b) or (c) above vanishes as k → +∞.

The probability that (a) fails amounts to 2m/hk, which vanishes as k → +∞
because hk → +∞.

The points τ ∈ (m, hk −m) which do not satisfy (b) belong to the union of all
interval (tki−1 − m, tki + m) over all indexes i such that |hk

i − h̃/2| ≥ δ; therefore
they occur with probability not exceeding

∑

i such that
|hk

i
−h̃/2|≥δ

hk
i + 2m

hk
=

∫

C

(

1 +
2m

h

)

dλk(h, p),

where the measures λk are defined in (3.38) and C is the set of all (h, p) such
that |h − h̃/2| ≥ δ. The integral on the right-hand side vanishes as k → +∞ by
assumption (3.39).

The points τ ∈ (0, hk) which do not satisfy (c) certainly belong to the union
of the intervals (ti−1, ti) over all indexes i such that |pk

i | ≥ δ; therefore they occur
with probability not exceeding

∑

i such that
|pk

i
|≥δ

hk
i

hk
=

∫

C

dλk(h, p),

where C is the set of all (h, p) such that |p| ≥ δ, and again the integral on the
right-hand side vanishes as k → +∞ by (3.39).

We can now conclude the proof of Theorem 3.12.
Let µ̄ minimize 〈µ, fs〉 among all µ ∈ � (K). By Lemma 3.14 and equality

(3.37) we deduce that 〈µ̄, fs〉 = 〈εȳ, fs〉 = min g, with g given in (3.36). By
applying Corollary 5.11 we find elementary invariant measures εxk , with xk ∈
�

per(0, hk) for some hk > 0, which converge weak-star to µ̄ and satisfy

〈εxk , fs〉 → 〈µ̄, fs〉 = min g. (3.43)

Hence, to prove the assertion of Theorem 3.12, namely that µ̄ = εȳ, it suffices to

show that assumption (3.39) of Lemma 3.16 is verified when h̃ is equal to h̄.
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Possibly passing to a subsequence, we may assume that the measures λk weak-
star converge on [0,+∞]×[−∞,+∞] to a probability measure λ. Since g, extended
to +∞ at the boundary of (0,+∞)×R, is a positive lower semicontinuous function,
(3.35) and (3.43) yield

min g ≤ 〈λ, g〉 ≤ lim inf
k→∞

〈λk, g〉 = lim
k→∞

〈εxk , fs〉 = min g.

Hence 〈λ, g〉 = min g, which implies that λ is supported on the set of all minimum
points of g, that is, λ is the Dirac mass centered at (h̄/2, 0).

Moreover 〈λk, g〉 → 〈λ, g〉, which implies that the measures g ·λk converge weak
star and in variation to g · λ, which is supported at the point (h̄/2, 0). Therefore,
for every closed set C which does not contain (h̄/2, 0) there holds

lim
k→∞

∫

C

g dλk = 0.

This implies (3.39) because, up to a suitable multiplicative constant, the function
g(h, p) is larger than the function 1 + 1/h.

4. Approximation of invariant measures on abstract spaces

In this section we will focus on the approximation properties of probability
measures on a compact metric space K which are invariant under the action of a
certain group G of transformations of K. In the applications we have in mind K is
a space of functions on R

n and G is the group of translations (cf. Section 3); this
specific case is discussed in detail in Section 5. Since the case of a non-commutative
group G presents some additional difficulties which would make the exposition of
the results more technical, we restrict our attention to the commutative case; the
non-commutative case is briefly discussed at the end of this section.

We first fix some notation. Throughout this section (K, d) is a compact metric
space, � (K) is the Banach space of finite real Borel measures on K and � (K)
is the subset of all probability measures; we usually denote by the letter x a point
of K, and by the letter µ a measure on K. If K ′ is a locally compact topological
space, µ is a measure on K, and f is a Borel map from K to K ′, then the push-
forward of µ on K ′ via f is the measure f#µ given by (f#µ)(B) := µ(f−1(B)) for
every Borel set B ⊂ K ′.

A topological group G is also given, that is first countable and locally compact,
and acts on K via the continuous left action (T, x) 7→ Tx; every element of G is
regarded as an homeomorphism of K onto itself, and is usually denoted by the
capital letter T . Given a map g and a measure µ defined on K, gT and T#µ denote
the composed function g◦T and the push-forward of µ according to T , respectively.
Notice that T#δx = δTx for every x ∈ K, and

∫

K
g d(T#µ) =

∫

K
gT dµ for every

µ, g. A measure µ on K is called invariant if it is invariant under the action of
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G, that is, if T#µ = µ for every T ∈ G; � (K) denotes the class of all invariant
probability measures on K.

If H is a subgroup of G, G/H is the left quotient of G, and [T ] is the equivalence
class in G/H which contains T . If H is closed then G/H is a Hausdorff locally
compact space; if in addition G/H is compact we say that H is co-compact. The
orbit of a point x ∈ K is the set �(x) :=

{

T (x) : T ∈ G
}

(notice that G is not
assumed to act transitively on K). The point x has a period T if Tx = x; the set
of all periods of x is denoted by P (x). Thus P (x) is always a closed subgroup of
G, and P (x) = P (x′) whenever x and x′ belong to the same orbit. We distinguish
some cases:

• when P (x) is not co-compact we say that x is non-periodic;
• when P (x) is co-compact we say that x is periodic;
• when P (x) includes a co-compact subgroup H we say that x is H-periodic.

Notice that the map [T ] 7→ Tx is continuous and one-to-one from G/P (x) to
� (x). If P (x) is co-compact, then �(x) is compact and homeomorphic to G/P (x).

We assume now that G is commutative. Thus the quotient G/P (x) is also a
group, and if in addition x is periodic, G/P (x) is a compact group which acts
continuously and transitively on the orbit of x. Therefore there exists a unique
probability measure εx, called the elementary invariant measure associated to x,
which is supported on � (x) and is invariant under the action of G/P (x) (see for
instance [45], theorem 5.14, or [22], sec. 2.7; cf. also Lemma 4.10 below, and the
remarks on the non-commutative case at the end of this section). It may be easily
verified that εx is also invariant under the action of G, and that εx = εx′ when x
and x′ belong to the same orbit.

The elementary invariant measures are the simplest invariant probability mea-
sures we can construct on K, and within the class of invariant probability measures,
they play a rôle similar to Dirac masses within the class of all probability measures
(cf. Remark 4.7). So the following question naturally arises.

Problem. Under which hypotheses is it possible to approximate (in the weak-
star topology of � (K)) every invariant probability measure by convex combina-
tions of elementary invariant measures?

When G is a compact group, such an approximation is easily obtained by
exploiting the existence of a finite Haar measure on G (see Remark 4.6). When G
is not compact we can obtain this approximation under some additional hypotheses
on G and K, to state which we need some more definitions.

Let H be a co-compact subgroup of G and let π : G → G/H be the canonical
projection of G onto G/H. Since G/H is a compact group, there exists a unique
(left) Haar probability measure Φ on G/H, that is, a probability measure which
is invariant under the left action of G/H on itself (see [45], theorem 5.14, or [22],
sec. 2.7).

Definition 4.1. Let H be a co-compact subgroup of G, and let ΦG/H denote the
unique Haar probability measure on G/H. We say that a Borel set A ⊂ G is a
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representation of the quotient G/H if A is pre-compact in G and π is one-to-one
from A to G/H. We denote by ΦA the push-forward of the measure ΦG/H onto A
according to the inverse of π restricted to A.

Notice that such an inverse is a Borel measurable map, and then ΦA is well-
defined; in fact π#ΦA = ΦG/H . In the following G/H and A are always endowed
with the measures ΦG/H and ΦA given above. When no confusion may arise, we
omit to write explicitly the measure ΦA (resp. ΦG/H) in integrals on A (resp. on
G/H).

The existence of a representation is guaranteed by the following result.

Proposition 4.2. A representation A of G/H exists for every co-compact sub-
group H.

Proof. Since the topology of G is first countable, it can be metrized by a
distance dG which satisfies dG(T1, T2) = dG(ST1, ST2) for every T1, T2, S ∈ G (cf.
[29], chap. 6, exercise O, or [10]). Thus G/H can be metrized by the quotient
distance

dG/H

(

[T1], [T2]
)

:= inf
{

dG(ST1, T2) : S ∈ H
}

for [T1], [T2] ∈ G/H.

The first step is to construct a compact set K ⊂ G such that π(K) = G/H.
Since G/H is compact, then it is totally bounded with respect to the quotient

distance, and for every integer k ≥ 0 we can find finitely many points yk
i in G/H

(the total number of which depends on k) so that the balls with radius 2−(k+2)

centered at these points cover G/H. We choose a representative T k
i in every

equivalence class yk
i by the following inductive procedure: if k = 0, we just take

T 0
i in π−1(y0

i ); if k > 0, for every yk
i there exists yk−1

j such that dG/H(yk
i , yk−1

j ) ≤
2−(k+1), and by the definition of dG/H we can choose T k

i in π−1(yk
i ) such that

dG(T k
i , T k−1

j ) ≤ 2−k. According to this procedure, for every T k
i and every integer

h < k, there exists Th
j such that

dG(T k
i , Th

j ) ≤ 2−k + 2−k+1 + . . . + 2−(h+1) ≤ 2−h.

Let K be the closure of the collection of T k
i for all k, i. Thus K is closed and

totally bounded (because for every h > 0 it is covered by the closed balls with
radius 2−h centered at the points T h̄

i with h̄ ≤ h, which are finitely many), and
therefore compact. Hence π(K) is compact too, and contains all points yk

i , and
since these are dense in G/H, π(K) = G/H.

Finally we consider the multifunction which takes every y ∈ G/H into the
non-empty closed set π−1(y) ∩ K. Since the graph of this multifunction is closed
in (G/H) × K, by theorem III.6 in [11] we can find a Borel selection, namely, a
Borel map σ : G/H → K such that π(σ(y)) = y for every y ∈ G/H. We conclude
by taking A equal to the image of σ (which is Borel measurable because G/H is
compact and σ is one-to-one, cf. [22], sec. 2.2.10).
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Definition 4.3. A set X ⊂ K is called uniformly approximable if for every ε > 0
there exists a co-compact subgroup H and a representation A of G/H such that
for every point x ∈ X we may find an H-periodic point x̄ ∈ K which satisfies

∫

A

d(Tx, T x̄) dΦA(T ) ≤ ε. (4.1)

Roughly speaking this definition means that we can approximate every point
x ∈ X by a periodic point x̄ so that not only x̄ is close to x, but also T x̄ is close
to Tx for “most” T . Moreover we ask that this approximation is in some sense
uniform in x. Using the compactness of K it may be proved that the notion of
uniform approximability depends only on the topology of K (and on the action of
G) but not on the specific choice of the distance d.

We can now state the main result of this section.

Theorem 4.4. If K is uniformly approximable in the sense of Definition 4.3,
then every invariant probability measure µ on K can be approximated (in the weak-
star topology of � (K)) by a sequence of convex combinations µk of elementary
invariant measures. More precisely, each µk can be taken the form

∑

i σiεx̄i where
all points x̄i are H-periodic for some co-compact group H that depends only on
k.

Comments and remarks on Theorem 4.4

We do not know if the uniform approximability assumption in Theorem 4.4
is necessary or not. In particular we do not know if it suffices to assume that
periodic points are dense in K (which would already give a large class of elementary
invariant measures).

Remark 4.5. When G is the additive group R
n and H is a subgroup of the form

(aZ)n with a > 0, a representation of G/H is given by the cube A := (0, a)n

endowed with Lebesgue measure �n suitably renormalized. In particular K is
uniformly approximable when the following condition holds: for every ε > 0 there
exists a > 0 such that for every x ∈ K we may find an (aZ)n-periodic point x̄
which satisfies

∫

T∈(0,a)n

d(Tx, T x̄) d�n(T ) ≤ ε.

Remark 4.6. If G is compact it is always possible to approximate an invariant
probability measure by convex combinations of elementary invariant measures.
A simple direct proof of this fact can be obtained by considering a (left) Haar
probability measure Φ on G. To every µ ∈ � (K) we can associate an invariant
probability measure Pµ by taking the average of all T#µ with respect to the
measure Φ, that is

〈Pµ, g〉 :=

∫

G

〈T#µ, g〉 dΦ(T ) =
〈

µ,

∫

G

gT dΦ(T )
〉

∀ g ∈ C(K) . (4.2)
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Thus P is a projection of � (K) onto � (K) that is continuous with respect to the
weak-star topology, and takes every Dirac mass δx into the elementary invariant
measure εx (recall that every point of K is periodic because G is compact). Let
now µ be an invariant measure on K, and let µk be convex combinations of Dirac
masses which converge to µ. Then the measures Pµk are convex combinations of
elementary invariant measures, and converge to Pµ = µ.

Remark 4.7. The set � (K) of all invariant probability measures on K is weak-
star compact and convex, thus it is natural to look for its extreme points: indeed
every point in a compact convex subset C of a separable locally convex space (in
our case, � (K) endowed with the weak-star topology) can be approximated by
convex combinations of extreme points of C by the Krein-Millman theorem (cf.
[45], theorem 3.21). It may be proved that µ is an extreme point of � (K) if and
only if every Borel set invariant under the action of G has either full measure or
zero measure (see [35], chap. II, proposition 2.5, when G is the group generated by
one transformation). Clearly every elementary invariant measure εx is an extreme
point of � (K), but in general the converse is not true, even if periodic points are
dense in K (consider for instance the product K := (R/Z) × (N ∪ {∞}) and the
group G generated by the transformation T (x, k) := (x + ak, k) where all ak with
finite k are rational numbers and converge to a∞ irrational).

The situation simplifies when G is compact. In this case the quotient K/G is
a compact metrizable space, and for every µ ∈ � (K) we may define the push
forward π#µ ∈ � (K/G), where π is the canonical projection of K into K/G.
Then π# is a weak-star continuous operator which maps � (K) into � (K/G)
bijectively, and takes elementary invariant measures into Dirac masses. Hence the
extreme points of � (K) are the elementary invariant measures only. If G is not
compact, K/G may be neither metric nor even Hausdorff, that is, the quotient
topology may not separate points (cf. the remark after Proposition 5.3).

Proof of Theorem 4.4

It is convenient to introduce the following norm on � (K): we take a sequence
(gk) of Lipschitz functions which is dense in C(K), we let αk := ‖gk‖∞ + Lip(gk),
and set

φ(µ) :=

∞
∑

k=1

∣

∣〈µ, gk〉
∣

∣

2kαk
. (4.3)

It can be easily shown (cf. Proposition 4.8 below) that φ induces the weak-star
topology on every bounded subset of � (K). For the rest of this section we only
consider measures in the class � (K), that is always endowed with the weak-star
topology of � (K). Therefore, in the following the notions “approximation” or
“distance” always refer to φ.

Proposition 4.8. The function φ given in (4.3) has the following properties:
(i) φ is a norm on � (K), and φ(µ) ≤ ‖µ‖ for every µ;
(ii) φ induces on every bounded subset of � (K) the weak-star topology;
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(iii) for every x, y ∈ K one has φ
(

δx − δy

)

≤ d(x, y).

Proof. The function φ is clearly a norm, and for every µ ∈ � (K) there holds

φ(µ) =

∞
∑

1

∣

∣〈µ, gk〉
∣

∣

2kαk
≤

∞
∑

1

‖µ‖ · ‖gk‖∞
2kαk

≤
∞
∑

1

‖µ‖
2k

≤ ‖µ‖.

Regarding statement (ii), it may be easily verified that φ(µi − µ) → 0 if and
only if 〈µi, gk〉 converge to 〈µ, gk〉 for every k. Since the functions gk are dense in
C(K), and the sequence (µi) is bounded, this implies weak-star convergence.

We finally prove (iii):

φ(δx − δy) =

∞
∑

1

∣

∣gk(x) − gk(y)
∣

∣

2kαk

≤
∞
∑

1

Lip(gk) · d(x, y)

2kαk
≤

∞
∑

1

d(x, y)

2k
≤ d(x, y).

The idea of the proof of Theorem 4.4 is roughly the following. We first define
the notion of average for a family of measures, and show that for an H-periodic
point x the average of δTx over all T in a representation A of the quotient G/H is
the elementary invariant measure εx. Then we notice that the operator P which
associates to every µ ∈ � (K) the average of the translated measures T#µ over all
T ∈ A is continuous. Finally we approximate an invariant probability measure µ
by convex combinations µk of Dirac masses at H-periodic points, and then apply
the averaging operator P : the measures Pµk are then convex combination of
elementary invariant measures, and approximate Pµ, which agrees with µ because
µ is invariant.

Definition 4.9. Let B be a bounded Borel set of a locally compact space and
let λ be a probability measure supported on B. Let {µt : t ∈ B} be a family of
measures in � (K) parametrized by t ∈ B and assume that this parametrization
is measurable, that is, t 7→ 〈µt, g〉 is a Borel real function for every g ∈ C(K).
The average of the measures µt over all t ∈ B (weighted by λ) is the measure
µ ∈ � (K) defined by

〈µ, g〉 :=

∫

B

〈µt, g〉 dλ(t) ∀ g ∈ C(K) , (4.4)

and is denoted by
∫

µt dλ(t).

The previous definition is well-posed because the right-hand side of (4.4) is a
well-defined bounded linear functional on C(K). Notice moreover that the class
F of all bounded function g : K → R such that the map t 7→ 〈µt, g〉 is Borel
measurable contains C(K) by definition, and is closed with respect to pointwise
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convergence; thus F contains all bounded Borel functions, and identity (4.4) can
be extended to every bounded Borel function g : K → R.

Fix now µ ∈ � (K) and consider the push-forward measures T#µ with T ∈
G. The identity 〈T#µ, g〉 = 〈µ, gT 〉 immediately shows that the parametrization
T 7→ 〈T#µ, g〉 is measurable in T , and for every probability measure Φ on G and
every g ∈ C(K) one has

〈

∫

G

T#µ dΦ(T ) , g
〉

=

∫

G

〈µ, gT 〉 dΦ(T ) = 〈µ, g̃〉, (4.5)

where g̃(x) :=
∫

G
g(Tx) dΦ(T ) for every x ∈ K.

Lemma 4.10. Let H be a co-compact subgroup of G, and let A be a representation
of G/H. Then the elementary invariant measure εx associated with an H-periodic
point x is given by

εx =

∫

A

T#δx dT =

∫

A

δTx dT. (4.6)

Proof. Obviously the two integrals in (4.6) define the same probability mea-
sure µ on K, which is supported on �(x), and since εx is the only invariant
measure supported on �(x), it suffices to verify that µ is invariant. To this end
we recall that [T ] 7→ [T ]x := Tx is a well-defined continuous map from G/H to
� (x), and that the push-forward of the canonical measure on A by the canonical
projection of G onto G/H is (by definition) the Haar probability measure on G/H
(see Definition 4.1). Hence for every function g ∈ C(K) and every S ∈ G we have

〈S#µ, g〉 = 〈µ, gS〉 =
〈

∫

A

δTx dT , gS
〉

=

∫

T∈A

g(STx) dT

=

∫

[T ]∈G/H

g
(

[S][T ]x
)

d[T ] =

∫

[T ]∈G/H

g
(

[T ]x
)

d[T ].

This shows that for every g ∈ C(K) the value of 〈S#µ, g〉 is independent of S, and
thus µ is invariant.

Lemma 4.11. Let Φ be any probability measure on G. Then every µ ∈ � (K) can
be approximated by convex combination µk of Dirac masses so that

lim
k→∞

φ
(

∫

G

T#µ dΦ(T ) −
∫

G

T#µk dΦ(T )
)

= 0. (4.7)

Proof. For every µ ∈ � (K), let Pµ be the average of T#µ over all T ∈ G
weighted by the measure Φ, that is, Pµ :=

∫

G
T#µ dΦ(T ). Thus P is a continuous

operator from � (K) into � (K) (use for instance identity (4.5)). Now we take
any sequence of convex combinations µk of Dirac masses which converge to µ; thus
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Pµk converge to Pµ, and by Proposition 4.8(ii) we get φ(Pµk − Pµ) → 0, which
is (4.7).

Lemma 4.12. Assume that K is uniformly approximable, consider ε > 0 and
a co-compact subgroup H as in Definition 4.3, and let A be a representation of
G/H. Then for every µ ∈ � (K) we may find a convex combination of elementary
invariant measures µ̄ =

∑

σiεx̄i so that all x̄i are H-periodic and

φ
(

∫

A

T#µ dT − µ̄
)

≤ 2ε. (4.8)

Proof. By applying Lemma 4.11 with Φ replaced by ΦA we may find a convex
combination of Dirac masses µ̂ =

∑

i σi δxi so that

φ
(

∫

A

T#µ dT −
∫

A

T#µ̂ dT
)

≤ ε. (4.9)

Now we exploit the fact that the subgroup H was chosen according to Definition
4.3, and we approximate every xi with an H-periodic point x̄i so that (4.1) holds.
Therefore, recalling statement (iii) of Proposition 4.8, we obtain

φ
(

∫

A

T#δxi dT −
∫

A

T#δx̄i dT
)

≤
∫

A

φ
(

T#δxi − T#δx̄i

)

dT

≤
∫

A

d(Txi, T x̄i) dT ≤ ε. (4.10)

By Lemma 4.10 the average of the measures T#δx̄i over all T ∈ A is the elementary
invariant measure εx̄i (recall that x̄i is H-periodic). Hence we set

µ̄ :=
∑

i

σi εx̄i ,

and by (4.10) we get

φ
(

∫

A

T#µ̂ dT − µ̄
)

≤
∑

i

σiφ
(

∫

A

T#δxi dT −
∫

A

T#δx̄i dT
)

≤
∑

i

σiε = ε. (4.11)

Inequalities (4.9) and (4.11) yield (4.8).

We can now prove Theorem 4.4. Let µ be an invariant probability measure
and fix ε > 0. Apply Lemma 4.12 to find a convex combination µ̄ of elementary
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invariant measures such that (4.8) holds. Since µ = T#µ for every T ∈ G, (4.8)
becomes

φ(µ − µ̄) ≤ 2ε.

Approximation in energy

In the applications we have in mind, K is a function space endowed with some
“natural” lower semicontinuous functional f : K → [0,+∞]. In this situation
we may need to approximate an invariant probability measure µ on K by con-
vex combinations µk of elementary invariant measures which verify the additional
constraint

lim
k→∞

〈µk, f〉 = 〈µ, f〉. (4.12)

In the following we modify Definition 4.3 and Theorem 4.4 in order to incorporate
such constraint.

Remark 4.13. Notice that the map µ 7→ 〈µ, f〉 is well-defined and weak-star lower
semicontinuous on � (K) because f is non-negative and lower semicontinuous.
Therefore (4.12) holds whenever lim sup〈µk, f〉 ≤ 〈µ, f〉.
Definition 4.14. A set X ⊂ K is called f -uniformly approximable if for every
ε > 0 there exists a co-compact subgroup H and a representation A of G/H such
that for every point x ∈ X we may find an H-periodic point x̄ ∈ K which satisfies

∫

A

d(Tx, T x̄) dT ≤ ε, (4.13)

∫

A

f(T x̄) dT ≤
∫

A

f(Tx) dT + ε. (4.14)

Theorem 4.15. If K is f-uniformly approximable, then every invariant probabil-
ity measure µ on K can be approximated by convex combinations µk of elementary
invariant measures so that (4.12) holds.

The proof of this theorem is obtained by adapting the proof of Theorem 4.4.
To this end we have to modify Lemmas 4.11 and 4.12.

Lemma 4.16. Let Φ be a probability measure on G. Then every µ ∈ � (K) can be
approximated by convex combinations µk of Dirac masses which satisfy (4.7) and

〈

∫

G

T#µk dΦ(T ), f
〉

≤
〈

∫

G

T#µ dΦ(T ), f
〉

for every k. (4.15)

Proof. For every µ ∈ � (K) we consider Pµ :=
∫

G
T#µ dΦ(T ) as in the

proof of Lemma 4.11. We claim that every µ ∈ � (K) may be approximated by
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a sequence (µk) of convex combinations of Dirac masses so that (4.15) holds, that
is, 〈Pµk, f〉 ≤ 〈Pµ, f〉 for every k. Once this claim is proved, the rest of the proof
of Lemma 4.16 follows that of Lemma 4.11.

Fix now µ ∈ � (K) and set a := 〈Pµ, f〉. With no loss of generality we may
assume that a is finite, and then set

C :=
{

λ ∈ � (K) : 〈Pλ, f〉 ≤ a
}

. (4.16)

By (4.5) we have that 〈Pλ, f〉 = 〈λ, f̃〉 where f̃(x) :=
∫

f(Tx) dΦ(T ) for every

x ∈ K, and since f̃ is lower semicontinuous and positive, the set C is convex and
compact. Moreover the extreme points of C are convex combinations of two Dirac
masses (see [9], proposition 2, sec. II.2, p. 145). Since µ belongs to C, we can
apply the Krein-Milman theorem to approximate µ with convex combinations µk

of extreme points of C, and thus (4.15) follows from (4.16).

Lemma 4.17. Assume that K is f-uniformly approximable, consider ε > 0 and
a co-compact subgroup H as in Definition 4.14, and let A be a representation of
G/H. Then for every µ ∈ � (K) we may find a convex combination of elementary
invariant measures µ̄ =

∑

i σiεx̄i so that each x̄i is H-periodic, (4.8) holds and

〈µ̄, f〉 ≤
〈

∫

A

T#µ dT, f
〉

+ ε. (4.17)

Proof. We proceed as in the proof of Lemma 4.12: we apply Lemma 4.16 to
find a convex combination of Dirac masses µ̂ =

∑

i σi δxi
so that (4.9) holds and

〈

∫

A

T#µ̂ dT, f
〉

≤
〈

∫

A

T#µ dT, f
〉

. (4.18)

Now we can exploit the choice of H and approximate every xi with an H-periodic
point x̄i so that (4.13) and (4.14) hold. We define µ̄ :=

∑

σiεx̄i , and hence (4.8)
follows as in the proof of Lemma 4.12. On the other hand by identity (4.6) and
inequality (4.14) we get

〈µ̄, f〉 =
∑

i

σi

∫

A

f(T x̄i) dT ≤
∑

i

σi

∫

A

f(Txi) dT + ε

=
〈

∫

A

T#µ̂ dT, f
〉

+ ε,

which, together with inequality (4.18), implies (4.17).

We can now prove Theorem 4.15. As in the proof of Theorem 4.4 we fix a real
number ε > 0 and an invariant probability measure µ on K such that 〈µ, f〉 is
finite. Then we apply Lemma 4.17 to get a convex combinations of elementary
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invariant measures µ̄ so that both (4.8) and (4.17) hold. Since µ is invariant (4.8)
and (4.17) become respectively

φ(µ − µ̄) ≤ 2ε and 〈µ̄, f〉 ≤ 〈µ, f〉 + ε.

By Remark 4.13 this concludes the proof of Theorem 4.15.

Extension to the non-commutative case

Theorems 4.4 and 4.15 hold also when the group G is a non-commutative. In
this case, however, some of the previous definitions need to be modified. We first
remark that if x is a periodic point but P (x) is not a normal subgroup, then the
quotient G/P (x) is not a group.

Therefore our construction of the elementary invariant measure εx fails, and
in fact the orbit of x, although compact, may support no invariant probability
measure. Consider for instance the following example: K is the projective line
R ∪ {∞} and G the group of all projective transformations of K, that is, trans-
formations of the form x 7→ (ax + b)

/

(cx + d) with ad − bc 6= 0. Then the orbit
of any point x is K, G/P (x) is homeomorphic to K and then P (x) is co-compact,
but K supports no invariant measures (since translations x 7→ x + b are projec-
tive transformations, any invariant measure should be supported at ∞, but this is
impossible, too, because G acts transitively on K).

The previous example motivates the following definition: we say that a co-
compact subgroup H of G is a W -subgroup if there exists a probability measure
on G/H which is invariant under the left action of G.

This probability measure is unique (see [22], theorem 2.7.11(2)), and is denoted
by ΦG/H . A co-compact subgroup H is a W -subgroup if and only if it satisfies the
so-called Weil’s condition, namely that the modular functions of G and H agree
on H; in particular Weil’s condition is verified when H is normal, or when G is
compact (see [22], theorem 2.7.11 and sec. 2.7.12, or [25], sec. 15). Notice that if
H is a W -subgroup, then also every co-compact subgroup H ′ which includes H is a
W -subgroup. When x is a periodic point, the map [T ] 7→ Tx is a homeomorphism
of G/H into � (x), and then �(x) supports an invariant probability measure if
and only if P (x) is a W -subgroup.

Therefore the following modifications should be introduced to adapt the results
of this section to the non-commutative case: the elementary invariant measures
can be defined only for periodic points x such that P (x) is a W -subgroup, and
in Definitions 4.1, 4.3, 4.14, and Proposition 4.2, it must be required that H is a
W -subgroup.

5. Approximation of invariant measures on function spaces

In this section we present in detail the case where K is a space of functions on
R

n, and show that the assumptions of Theorem 4.4 are verified. Then we restrict
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our attention to the particular situation considered in Section 3, we show that
the assumptions of Theorem 4.15 are satisfied, and obtain the approximation in
energy used in the proof of Theorems 3.4 and 3.12.

We conform to the notation of Section 4, with the only difference that K is
now the set of all Borel functions x : R

n → [−∞,+∞] modulo equivalence almost
everywhere, and G is the group of functional translations, and is represented by
R

n: for every τ ∈ R
n and every x ∈ K, Tτx is the translated function x(t − τ).

By identifying the extended real line [−∞,+∞] with the closed interval [−1, 1]
via the function x 7→ 2

π arctan(x), we can identify K with the closed unit ball of
L∞(Rn) and endow it with the weak-star topology of L∞(Rn). Thus K is compact
and metrizable. In particular we can consider the following distance: let (yk) be a
sequence of bounded functions which are dense in L1(Rn), and such that each yk

has support included in the cube (−k, k)n; for every x1, x2 ∈ K set

d(x1, x2) :=

∞
∑

k=1

1

2kαk

∣

∣

∣

∫

Rn

yk

( 2

π
arctanx1 −

2

π
arctanx2

)

d�n

∣

∣

∣
, (5.1)

where αk := ‖yk‖1 + ‖yk‖∞.
It follows immediately from (5.1) that when the functions xk converge to x

locally in measure, then they converge to x also in the distance d. Hence Lp
loc(R

n)
embeds continuously in K for 1 ≤ p ≤ ∞. Moreover, (5.1) yields, for every
p ∈ [1,∞],

d(x1, x2) ≤
∞
∑

k=1

1

2kαk

∫

Rn

|yk| |x1 − x2|

≤
∞
∑

k=1

‖yk‖q‖x1 − x2‖p

2k
(

‖yk‖1 + ‖yk‖∞
) ≤ ‖x1 − x2‖p. (5.2)

(The first inequality follows from the fact that 2
π arctan is 1-Lipschitz, the second

one is Hölder’s, and the last one follows from the interpolation ‖yk‖q ≤ ‖yk‖1 +
‖yk‖∞).

Remark. Embedding into K may be no longer continuous if we consider weaker
forms of convergence. For instance, if the functions xk : R

n → {a, b} weak-star
converge to the constant function 1

2 (a + b) in L∞(Rn), then they converge on K
to the constant function tan

(

1
2 (arctan a + arctan b)

)

.

The main feature of the distance d is the following locality property, which in
fact is shared by every distance which metrizes K.

Proposition 5.1. For every ε > 0 there exists m > 0 such that the following
implication holds for x1, x2 ∈ K:

(x1 ∧ m) ∨ −m = (x2 ∧ m) ∨ −m a.e. in (−m, m)n ⇒ d(x1, x2) ≤ ε. (5.3)
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(Here a ∧ b and a ∨ b denote respectively the minimum and the maximum of a
and b.)

Proof. Fix a positive real number m and take x1, x2 such that the hypothesis
of (5.3) holds. Then

∣

∣ arctanx1(t) − arctanx2(t)
∣

∣ ≤ π/2 − arctanm for a.e. t ∈
(−m, m)n, and since spt yk ⊂ (−k, k)n, for k ≤ m we have

∣

∣

∣

∫

Rn

yk

(

arctanx1 − arctanx2

)

d�n

∣

∣

∣
≤ ‖yk‖1

(π

2
− arctanm

)

,

while for k > m the integral on the left-hand side is controlled by π‖yk‖1. Hence,
recalling formula (5.1) and that αk ≥ ‖yk‖1,

d(x1, x2) ≤
m

∑

k=1

1

2k

(π

2
− arctanm

)

+

∞
∑

k=m+1

π

2k
≤ π

2
− arctanm +

π

2m
.

To finish the proof it suffices to choose m large enough.

Remark 5.2. Given x1, x2 ∈ K, let x be the function which agrees with x1 in
the cube (−m, m)n, and with x2 elsewhere. Hence d(x1, x2) ≤ d(x1, x) + d(x, x2),
and if we estimate d(x1, x) by (5.3), and d(x, x2) by (5.2), we obtain the following
useful inequality:

d(x1, x2) ≤ ε + ‖x1 − x2‖Lp((−m,m)n) for x1, x2 ∈ K, (5.4)

where m and ε are taken as in Proposition 5.1, and p is any number in [1,+∞].

Proposition 5.3. The group of functional translations G acts continuously on
K, and K is uniformly approximable. Thus Theorem 4.4 applies, and every in-
variant probability measure on K can be approximated by convex combinations of
elementary invariant measures.

Proof. We prove that G acts continuously on K by showing that the group of
translations act (sequentially) continuously on L∞(Rn) endowed with the weak-
star topology. Consider τk → τ in R

n, xk −⇀∗ x in L∞(Rn), and y ∈ L1(Rn). Then
T−τk

y → T−τy in L1(Rn) and thus

〈Tτk
xk − Tτx, y〉 = 〈xk, T−τk

y〉 − 〈x, T−τy〉 −→ 0.

Since this holds for every y ∈ L1(Rn) we deduce that Tτk
xk −⇀∗ Tτx in L∞(Rn).

Let us show that K is uniformly approximable. Fix ε > 0, take m so that
implication (5.3) holds, and then choose a so that aε ≥ m. For every x ∈ K, let
x̄ be the function on R

n which agrees with x on the cube (0, a)n and is extended
periodically to the whole of R

n. Then x̄ is (aZ
n)-periodic, and x̄(t− τ) = x(t− τ)

whenever t ∈ (−m, m)n and τ ∈ (m, a − m)n. Hence (5.3) yields d(Tτ x̄, Tτx) ≤ ε
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for every τ ∈ (m, a − m)n; on the other hand the distance d is never larger than
one, and recalling that aε ≥ m we obtain

∫

(0,a)n

d(Tτ x̄, Tτx) d�n(τ) ≤ ε an + 2nm an−1

an
≤ (1 + 2n)ε.

Remark. Notice that there exist points x ∈ K whose orbits are dense in K. In
other words �(x) is an element of the quotient space K/G which is dense in K/G,
and then the topology of K/G is not Hausdorff, and not even T0. To construct
such a function x, we take a sequence (xk) which is dense in K, and for every k we
choose the positive real number mk corresponding to ε = 1/k in Proposition 5.1;
then we take pairwise disjoint open cubes Ck = −τk + (−mk, mk)n, and choose as
x any function which agrees with T−τk

xk on each cube Ck. Hence Tτk
x = xk in

(−mk, mk)n for every k, and (5.3) yields d(Tτk
x, xk) ≤ 1/k for every k. Hence the

orbit of x is dense in K.
A similar argument can be used to prove that every convex combination of

elementary invariant measures can be approximated by elementary invariant mea-
sures. Together with Proposition 5.3, this would yield that every invariant prob-
ability measure on K is in fact the limit of a sequence of elementary invariant
measures. In Lemma 5.10 we prove this fact, and something more, for n = 1.

A one-dimensional example

We apply now Theorem 4.15 to the choice of K and f considered in Section 3.
Thus G and K are given as before with n = 1, and in particular G is represented by
R. Every proper co-compact subgroup of R is of the form hZ for some h > 0, and
a representation is given by the interval (0, h), endowed with Lebesgue measure,
suitably renormalized.

For the rest of this section the letter h will be mainly used to denote periods
of elements of X. The spaces

�
(I) and

�
per(0, h) are defined at the beginning

of Section 3, while
�

per,0(0, h) denotes the space of all x ∈ �
per(0, h) such that

x(0) = x(h) = 0; r is a fixed positive real number and we set (cf. (3.8))

f(x) :=







1

2r
#

(

Sẋ ∩ (−r, r)
)

+

∫ r

−r

x2(t) dt if x ∈ � (−r, r),

+∞ otherwise.

(5.5)

Proposition 5.4. The function f is lower semicontinuous on K.

Proof. Let be given functions xk that converge to x in K such that the
values f(xk) are uniformly bounded. Then the functions xk belong to

�
(−r, r)

for every k, they are 1-Lipschitz on (−r, r) and uniformly bounded in L2(−r, r).
Hence they converge to x uniformly in (−r, r). This implies that the distributional
derivatives ẋk converge to ẋ weak-star in BV (−r, r), hence x belongs to

�
(−r, r),
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and lim inf f(xk) ≥ f(x) (recall that 2#
(

Sẋ ∩ (−r, r)
)

is the total variation of ẍ
on (−r, r)).

Now we want to prove that K is f -uniformly approximable (recall Definition
4.14). To this end we need some preliminary lemmas and definitions. In what
follows, ∗ denotes the usual convolution products, 1B is the characteristic function
of the set B, and we set

ρ(t) :=
1

2r
1[−r,r](t) for t ∈ R. (5.6)

Lemma 5.5. Let x ∈ K satisfy
∫ h

0
f(Tτx) dτ < +∞. Then x ∈ � (I) for every I

relatively compact in (−r, h + r) and

∫ h

0

f(Tτx) dτ =
1

h

[

∑

t∈Sẋ

(ρ ∗ 1[0,h])(t) +

∫

R

(ρ ∗ 1[0,h]) x2 dt
]

(5.7)

(notice that the convolution product ρ ∗ 1[0,h] vanishes outside (−r, h− r)). More-
over, if x is h-periodic, then x ∈ �per(0, h) and

〈εx, f〉 =

∫ h

0

f(Tτx) dτ =
1

h

[

#
(

Sẋ ∩ [0, h)
)

+

∫ h

0

x2dt.
]

(5.8)

Proof. As
∫ h

0
f(Tτx) dτ < +∞, f(Tτx) is finite for a.e. τ ∈ (0, h), which

implies x ∈ �
(τ − r, τ + r), and since every interval I relatively compact in

(−r, h + r) can be covered by finitely many such intervals (τ − r, τ + r), then
x ∈ � (I).

To obtain (5.7), we consider the measure µ given by µ(B) := #
(

B ∩ Sẋ ∩
(−r, h + r)

)

+
∫

B
x2 dt, and thus we write f(Tτx) as

f(Tτx) =

∫

R

ρ(t − τ) dµ(t).

Integration over τ ∈ (0, h) yields (5.7). The second part of the assertion follows
from the fact that on R modulo h there holds ρ ∗ 1[0,h] = ρ ∗ 1 = 1.

Definition 5.6. For every h > 2r and every x ∈ K, the h-periodic function Rhx
is defined as follows (see Figure 5.1):

• for 0 ≤ t < r, Rhx(t) := t ∧ (−t + r);
• for r ≤ t < h/2), Rhx(t) is set equal to x(t) if |x(t)| ≤ t − r, to t − r if

x(t) > t − r, and to −(t − r) if x(t) < −(t − r);
• for h/2 ≤ t < h − r, Rhx(t) is set equal to x(t) if |x(t)| ≤ h − r − t, to

h − r − t if x(t) > h − r − t, and to −(h − r − t) if x(t) < −(h − r − t);
• for h − r ≤ t < h), Rhx(t) := (t − h + r) ∨ (−t + h).
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0 r h/2
h−r

h

R hx in [0,h)

x

t

Figure 5.1. The function Rhx

Lemma 5.7. Let h, x and Rhx as in Definition 5.6. Thus Rhx is h-periodic and
Rhx(0) = Rhx(h) = 0 by construction. Moreover

(i) for every m > 0 and t ∈ (m + r, h − m − r), either x(t) = Rhx(t), or
x(t) ≥ Rhx(t) ≥ m, or x(t) ≤ Rhx(t) ≤ −m;

(ii) if x ∈ �
(r, h − r) then Rhx ∈ �

per,0(0, h) and Sẋ ∩ (r, h − r) contains
S(Rhx)′ ∩ [0, h) except at most six points.

Proof. Straightforward (see Figure 5.1).

Proposition 5.8. For every ε > 0 there exists h > 0 such that for every x ∈ K

∫ h

0

d(Tτx, TτRhx) dτ ≤ 2ε,

∫ h

0

f(TτRhx) dτ ≤
∫ h

0

f(Tτx) dτ + ε.

(5.9)

In particular, K is f-uniformly approximable (recall Definition 4.14).

Proof. Fix m > 0 such that implication (5.3) holds, and take h > 2(m + r).
Then statement (i) of Lemma 5.7 and (5.3) imply that d(Tτx, TτRhx) ≤ ε for
every τ ∈ (m + r, h − m − r). Hence, taking into account that d ≤ 1,

∫ h

0

d(Tτx, TτRhx) dτ ≤ ε +
2(m + r)

h
,

and the first inequality in (5.9) is recovered by choosing h ≥ 2(m+r)
ε .

Consider now the second inequality in (5.9). We can assume that the integral
∫ h

0
f(Tτx) dτ is finite (otherwise there is nothing to prove). Therefore Rhx ∈

�
per,0(0, h), and

• #
(

S(Rhx)′ ∩ [0, h)
)

≤ #
(

Sẋ ∩ (r, h − r)
)

+ 6 (see Lemma 5.7(ii)),

• |Rhx| ≤ |x| in (r, h − r) (see Lemma 5.7(i)),

• |Rhx| ≤ r/2 in (0, r) and (h − r, h) (by construction).
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Hence, by (5.8),

∫ h

0

f(TτRhx) dτ =
1

h

[

#
(

S(Rhx)′ ∩ [0, h)
)

+

∫ h

0

(

Rhx
)2

dt
]

≤ 1

h

[

#
(

Sẋ ∩ (r, h − r)
)

+ 6 +

∫ h−r

r

x2 dt +
r2

2

]

and since ρ ∗ 1[0,h] = 1 in (r, h − r),

≤ 1

h

[

∑

t∈Sẋ

(ρ ∗ 1[0,h])(t) +

∫

R

(ρ ∗ 1[0,h])x2 dt +
12 + r2

2

]

and by (5.7),

=

∫ h

0

f(Tτx) dτ +
12 + r2

2h
.

The second inequality in (5.9) is thus recovered by choosing h ≥ 12+r2

2ε .

Corollary 5.9. Every invariant probability measure µ on K can be approximated
by a sequence of convex combinations µk of elementary invariant measures so
that (4.12) holds. Moreover, if 〈µ, f〉 is finite, each µk can be taken of the form
µk =

∑

σiεx̄ki
with x̄ki ∈

�
per,0(0, hk) for every i and a suitable hk > 0.

Proof. By Proposition 5.8 the space K is f -uniformly approximable, and then
the first part of Corollary 5.9 follows from Theorem 4.15. Furthermore Proposition
5.8 shows that for every x ∈ K the approximating point x̄ in Definition 4.14 can be
taken equal to Rhx, and if we examine the construction of the measure µ̄ described
in the proof of Lemma 4.17, we see that µ̄ can be taken of the form

∑

σiεx̄i with
x̄i = Rhxi, and then x̄i is h-periodic and x̄i(0) = x̄i(h) = 0.

Thus the same holds for the approximating measures µk given in Theorem 4.15.
Moreover 〈µ, f〉 < +∞ implies that 〈µk, f〉 is finite (for k large enough). Hence
〈εx̄ki

, f〉 is also finite for every i, and Lemma 5.5(ii) yields x̄ik ∈ �per,0(0, hk).

We can refine the statement of Corollary 5.9 by showing that µ can be directly
approximated by elementary invariant measures.

Lemma 5.10. Given ε > 0, h > 0 and µ =
∑N

1 σiεxi such that xi ∈
�

per,0(0, h)
for every i = 1, . . . , N , we can find h̄ > 0 and x ∈ �per,0(0, h̄) such that

φ(µ − εx) ≤ 2ε and
∣

∣〈µ, f〉 − 〈εx, f〉
∣

∣ ≤ ε. (5.10)

Proof. First of all, notice that all σi can be assumed rational (by a standard
density argument). We fix m > 0 such that implication (5.3) holds, and we write
every σi as σi = pi/q with positive integers q and pi. Notice that q can be taken
arbitrarily large.
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We set q0 := 0, qi := qi−1 + pi for i = 1, . . . , N (in particular qN = q), and we
take x ∈ �per,0(0, qh) defined by

x(t) := xi(t) for every t ∈ [qi−1h, qih) and i = 1, . . . , N . (5.11)

In other words x is equal to x1 in the first p1 periods of length h, it is equal to x2

in the following p2 periods, and so on for a total of q periods; cf. Figure 5.2.

x1 h x2 h

t
0 4h 10 h

h σ1=4/10

σ2=6/10

Figure 5.2. Construction of x for N = 2, q = 10, p1 = 4, p2 = 6

By formula (4.6) we get

εx =
1

qh

∫ qh

0

δTτ xdτ, εxi =
1

h

∫ h

0

δTτ xidτ =
1

pih

∫ qih

qi−1h

δTτ xidτ.

Hence

µ − εx =
(

∑

i

σiεxi

)

− εx =

N
∑

i=1

1

qh

∫ qih

qi−1h

(

δTτ xi − δTτ x

)

dτ,

and by Proposition 4.8(iii)

φ(µ − εx) ≤
N

∑

i=1

1

qh

∫ qih

qi−1h

d(Tτx, Tτxi) dτ. (5.12)

Thus we need to estimate the distance d(Tτx, Tτxi). From (5.11) we deduce that
for every τ ∈ (qi−1h+m, qih−m) and every i there holds x = xi in (τ −m, τ +m),
and then d(Tτx, Tτxi) ≤ ε by (5.3). Hence inequality (5.12) becomes (recall that
d ≤ 1)

φ(µ − εx) ≤
N

∑

i=1

1

qh
(pihε + 2m) =

N
∑

i=1

piε

q
+

2mN

qh
= ε +

2mN

qh
,

and the first inequality in (5.10) is recovered by choosing q ≥ 2mN
qε .

Let us prove the second inequality in (5.10). From (5.11) we get Sẋ ∩
(qi−1h, qih) = Sẋi ∩ (qi−1h, qih) for every i, and then #

(

Sẋ ∩ [0, qh)
)

≤ N +
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∑

i #
(

Sẋi ∩ [qi−1h, qih)
)

. Hence (5.8) yields

〈εx, f〉 =
1

qh

[

#
(

Sẋ ∩ [0, qh)
)

+

∫ qh

0

x2(t) dt
]

≤ N

qh
+

∑

i

[ 1

qh
#

(

Sẋi ∩ [qi−1h, qih)
)

+
1

qh

∫ qih

qi−1h

x2
i (t) dt

]

=
N

qh
+

∑

i

[ pi

qh
#

(

Sẋi ∩ [0, h)
)

+
pi

qh

∫ h

0

x2
i (t) dt

]

=
N

qh
+

∑

i

σi〈εxi , f〉 =
N

qh
+ 〈µ, f〉,

and the second inequality in (5.10) is recovered by choosing q ≥ N
hε .

Corollary 5.11. Every invariant probability measure µ on K which satisfies
〈µ, f〉 < +∞ can be approximated by a sequence of elementary invariant measures
(εxk

) so that xk ∈ �per,0(0, hk) for some hk > 0 and

lim
k→∞

〈εxk
, f〉 = 〈µ, f〉.

Proof. Apply Corollary 5.9 and Lemma 5.10.

6. Overview of further applications

In this section we briefly sketch some extensions of our approach to other
variational problems with multiple scales. We begin with some variations of the
one-dimensional problem studied in Section 3.

6.1 Boundary conditions

The periodicity constraint imposed in the study of the functional Iε (see (3.3))
can be replaced by any reasonable boundary condition (Dirichlet, natural, or even
none at all) without changing the limit problem. In other words, the Γ-limit F
defined in (3.11) is independent of boundary conditions.

Indeed, the presence of different boundary conditions only affects the formu-
lation of fε

s for all s whose distance from the boundary is less than rε1/3 (cf. the
paragraph “Rewriting Iε(v) in term of R

ε
sv” in Section 3, and particularly formula

(3.6)). Thus, given s ∈ Ω, for every ε sufficiently small fε
s is the same as before,

and so is the Γ-limit fs; moreover one can easily adapt the proof of Theorem 3.4
to include this “vanishing” perturbation.

This is not surprising, since we already know from the form of F that in the
limit ε → 0 there are no correlations between different values of the slow variable s
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(and indeed the minimization of F reduces to a family of independent minimization
problems parametrized in s – cf. Corollary 3.11), which implies in particular that
the effect of the boundary condition on the behaviour of minimizers near any point
s vanishes as ε → 0.

6.2 Additional externally imposed scales

The only property of the lower order term
∫

av2 in Iε (cf. (3.3)) used in the
proof is that the rescaled functionals

∫ r

−r
aε

sx
2 converge continuously for a.e. s ∈ Ω

as ε → 0 (see Definition 2.9). More precisely we need that the integrals
∫ r

−r

a(s + ε1/3t)(xε(t))2dt

converge for any sequence xε which converges strongly in W 1,1(−r, r).
Thus the proof of Theorem 3.4. can be extended (with almost no modifications)

to more complex lower order terms. In particular we can consider highly oscillatory
coefficients. For example, we can take (cf. (3.3))

Iε :=

∫

Ω

ε2v̈2 + W (v̇) + a(ε−βs) v2 ds,

where the function a is a bounded, strictly positive and periodic, and has average
ā.

If β > 1
3 , i.e., if the externally imposed scale εβ is shorter than the fast scale

ε1/3 used in our blow-up procedure, then Theorem 3.4 holds true, provided that
we replace a(s)

∫ r

−r
x2 with ā

∫ r

−r
x2 in (3.8). This requires no modifications in the

proof, since the rescaled functions aε
s(t) := a(ε−βs + ε1/3−βt) converge weakly to

the constant function ā, and then the functionals
∫ r

−r
aε

s(t)x
2 converge continuously

to ā
∫ r

−r
x2.

If β < 1
3 then this convergence no longer holds. We expect that minimizers

of the ε-problem are locally well approximated by periodic sawtooth functions
with period L0(a(ε−βs))−1/3ε1/3 and generate the homogeneous two-scale Young
measure

νs =

∫

εxq dq for a.e. s ∈ (0, 1),

where xq is the sawtooth function with period hq := L0a
−1/3(q) defined in (3.33),

and the average is taken over a period of the function a.
The (rescaled) limiting energy is thus given by E0

(∫

a1/3(q)dq
)

(cf. (1.4)). In
this case the Γ-limit F (if it exists) cannot have the simple form (3.11), in fact it
cannot be affine on the affine set defined by the condition νs ∈ � (K) a.e. This
follows from the fact that for the homogeneous two-scale Young measure νs = εx,
where x is an h-periodic sawtooth function, one has (cf. (3.12))

F (ν) =
A0

h
#(Sẋ ∩ [0, h)) + ā

∫ h

0

x2 dt.
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Hence if F was affine the minimal energy would involve ā1/3 = (
∫

a)1/3 rather
than the smaller value

∫

a1/3. In this case a more natural representation of the
limit might be achievable by performing a (hierarchical) blow-up with two small
scales εβ and ε1/3 and looking at the corresponding Young measures and limit
functionals. A detailed implementation of this idea (and the verification of the
statements above) is left to the courageous reader.

The case β = 1
3 is particularly interesting since in this case the externally

imposed scale and the internally created scale are of the same order and relative
phases may play an important role. Note that the formula for the (rescaled)
limiting energy changes discontinuously at β = 1

3 , since it is given by E0(
∫

a)1/3

for β > 1
3 (cf. (1.4)), and by E0(

∫

a1/3) for β < 1
3 .

6.3 Additional penalizing term

A natural modification of the energy in (1.1) is obtained by replacing the term
a(s) v2 with the penalization a(v−u)2, where u is a given function and a a positive
constant, that is,

Iε(v) :=

∫

Ω

ε2v̈2 + W (v̇) + a(v − u)2 ds. (6.1)

By analogy with the case u = 0, we expect that when |u̇| ≤ 1, the minimizers
vε of Iε get closer and closer to u as ε → 0, while the derivatives v̇ε take values
closer and closer to ±1 (because of the term W (v̇) and present a “microstructure”
at the scale ε1/3 which is once again induced by the term ε2v̈2. Both the local
volume fractions of the + and the − “phase” and the typical length-scale of the
microstructure we expect to depend on u̇(s), with the length-scale approaching +∞
(measured in units of ε1/3) as |u̇(s)| approaches 1. A totally different behavior is
expected where |u̇| > 1, because a function with derivative larger than 1 cannot
be approximated by sawtooth functions with derivative ±1.

To proceed, we assume that u is of class C1 and |u̇| < 1. The effect we want
to analyze is captured by the following ε-blowups (cf. (3.2)):

R
ε
sv(t) := ε−1/3

(

v(s + ε1/3t) − u(s) − u̇(s)ε1/3t
)

. (6.2)

The program outlined in Section 3 may be carried out, with some modifications,
in this case too.

The first step consists in proving that if ν is the Young measure generated by
the ε-blowups associated to any sequence of functions vε, then νs is an invariant
measure on K for a.e. s. With the usual notation xε

s := R
ε
sv

ε, for a given h ∈ R

we get

τhxε
s−xε

s+ε1/3h =

= ε−1/3
(

u(s + ε1/3h) − u(s) − u̇(s)ε1/3h
)

+
(

u̇(s + ε1/3h) − u̇(s)
)

t.
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Using the fact that u is of class C1 it is not difficult to verify that the distance
between τhxε

s and xε
s+ε1/3h

tends to 0 as ε → 0 for (almost) every s. Therefore
the two sequences generate the same Young measure. On the other hand, the first
sequence generates (by definition) the Young measure τhνs, while the second one
generates νs, and this suffices to prove that νs is invariant for a.e. s (cf. the proof
of Proposition 3.1).

In order to rewrite the functionals Iε(v) in (6.1) in term of the ε-blowups R
ε
sv,

we define

bs := u̇(s) and aε
s(t) := ε−1/3

(

u(s + ε1/3t) − u(s) − u̇(s)ε1/3t
)

.

Then
v − u = ε1/3(xs + aε

s), v̇ = ẋs − bs, v̈ = ε−1/3ẍs,

where all the left-hand sides are computed at s+ε1/3t, and all the right-hand sides
are computed at t. Proceeding as in Section 3, we get

ε−2/3Iε(v) =

∫

Ω

fε
s (xs) ds,

where the functionals fε
s are defined by (cf. (3.6))

fε
s (x) :=

∫ r

−r

ε2/3ẍ2 + ε−2/3W (ẋ − bs) + a(x + aε
s)

2 dt,

and since aε
s → 0 in L2

loc(R) for every s, they Γ-converge on K to

fs(x) :=











A0

2r
#

(

Sẋ ∩ (−r, r)
)

+ a

∫ r

−r

x2 dt if x ∈ � s(−r, r)

+∞ otherwise,

(6.3)

where A0 := 2
∫ 1

−1

√
W (as usual) and

�
s(−r, r) is the class of all functions x ∈ K

which are continuous and piecewise affine on the interval (−r, r) with slope bs + 1
or bs − 1 (cf. Proposition 3.3).

Now the Γ-convergence result in Theorem 3.4 can be restated without modifi-
cations.

However, a modification is needed in the proof of the upper bound inequality,
due to the fact that the required uniformity of fs in s (cf. Remark 3.5) cannot
be achieved unless u is piecewise affine (notice for instance that the domain of
fs is

� s, and
� s ∩ � s′

= ø when u̇(s) 6= u̇(s′)). The F -dense class � of
Young measures for which we actually construct an approximation in energy by
ε-blowups (cf. Definition 3.7 and following lemmas) has to be defined in a different
way. To begin with, we denote by

� s
per the class of all periodic and piecewise affine

functions in K with slope bs ± 1, and we say that a family of functions xs in
�

s
per

are invariant in s when
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• the functions have the same period h,

• the singular sets Sẋs ∩ [0, h) have the same cardinality n and consist of
points ts0 = 0 < ts1 < ts2 < . . . < tsn = h so that each xs has negative slope
in [0, ts1],

• tsi and xs(t
s
i ) do not depend on s for even index i (notice that every

function in
�

s
per is uniquely determined by the position of even singular

points and the corresponding value of the function – cf. the Figure 6.1.)

t
h=t10

x1

t20=t0

x2

t4 t6 t8
Figure 6.1. Example of functions x1 and x2 in

� s1
per and

�
s2

per, with bs1
= 1/2 and bs2

= 0, which are invariant in s.

t
h/2−h/2

yh,b
bh

Figure 6.2. The asymmetric sawtooth function yh,b.

Then � is defined as the class of all young measures ν ∈ YM (Ω, K) such that
νs is the elementary invariant measure associated to a function xs ∈ � s

per for a.e. s
and there exists countably many pairwise disjoint intervals which cover almost all
of Ω so that the functions xs are invariant for s running through each such interval
(cf. Definition 3.7). It is not difficult to check that � is F -dense in YM (Ω, K) (cf.
Lemma 3.8). Then one can construct an approximation in energy by ε-blowups
for each ν ∈ � following the procedure described for the proof of Theorem 3.4 in
Section 3 (from Lemma 3.9 to the end of that subsection).

In the last step of our program we show (cf. Theorem 3.12) that for every
s the only invariant measure which minimizes 〈µ, fs〉 is the elementary invariant
measure associated with the periodic function yh,b given in Figure 6.2 with

b = bs := u̇(s) and h = hs := (48A0/a)1/3(1 − b2)−2/3 (6.4)

In particular, the Young measure ν generated by the ε-blowups of a sequence of
minimizers vε of Iε is given by this elementary invariant measure for a.e. s (cf.
Corollary 3.13).

To prove this minimality result one can argue as in the proof of Theorem
3.12, with a slight modification in the first part, and more precisely in the proof of
Lemma 3.14. From (6.3) we derive an explicit formula for the integral 〈µ, fs〉 when
µ is the elementary invariant measure εx associated with an h-periodic function
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x ∈ � s
per (cf. (3.12))

〈εx, fs〉 =
A0

h
#

(

Sẋ ∩ [0, h)
)

+ a

∫ h

0

x2 dt. (6.5)

We may assume that Sẋ ∩ [0, h) consists of the points t0 = 0 < t1 < t2 < . . . <
t2n = h, and that the slope of x in the interval [t0, t1] is bs − 1. Now one can see
that within each interval Ii := [t2i, t2i+2] the function f is uniquely determined
by the length hi of Ii, the average mi of x on Ii, and the difference between the
average of x on [t2i+1, t2i+2] and the average on [t2i, t2i+1], which we denote by
dihi. Consequently the integral of x2 on Ii can be expressed in terms of such
quantities. Indeed a long but straightforward computation yields

∫

Ii

x2dt = h2
i

[ (1 − b2)2

48
+

1 − b2

2
d2

i +
4b

3
d3

i − d4
i

]

+ m2
i .

Thus we can rewrite the right-hand side of (6.5) as an average (cf. (3.35)):

〈εx, fs〉 =

n
∑

i=1

hi

h
g(hi, di, mi)

with

g(h, m, d) :=
2A0

h
+ ah2

[ (1 − b2)2

48
+

1 − b2

2
d2 +

4b

3
d3 − d4

]

+ am2.

Finally, a direct computation shows that the minimum of g over all admissible
(h, m, d), and precisely h > 0, m ≥ 0, and b+1

2 ≥ d ≥ b−1
2 , is achieved only for m =

0, d = 0, and h = (48A0/a)1/3(1 − b2)−2/3 (cf. (6.4)). Now we proceed as in the
proof of Lemma 3.14 and show that the εx minimizes 〈µ, fs〉 among all (elementary)
invariant measure, if and only if mi = di = 0 and hi = (48A0/a)1/3(1− b2)−2/3 for
all i, that is, if and only if x is the function yh,b described above. The rest of the
proof, namely that there are no other minimizers among all invariant measures,
can be obtained as in Section 3.

6.4 Nonlocal terms, H1/2-norm

A one-dimensional ansatz for a two-dimensional model of an austenite finely-
twinned martensite phase boundary leads to a functional which involves the ho-
mogeneous H1/2-norm rather than the L2-norm (see [33]):

Iε(v) :=

∫

Ω

ε2v̈2 + W (v̇)ds + ‖v‖2

H
o

1/2
. (6.6)

The minimization is taken over functions in v ∈ H2
per(Ω) with zero average, and

Ω = (−1, 1).
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In the Fourier expansion v =
∑

v̂(k)eπiks, the homogeneous H1/2-norm is
given by

‖v‖2

H
o

1/2
:= 2π

+∞
∑

k=−∞

|k||v̂|2 =
2

π

+∞
∑

k=−∞

1

|k| |
ˆ̇v|2,

and can be written as

‖v‖2

H
o

1/2
=

∫

Ω×Ω

g(s − s′) (v(s) − v(s′))2ds′ds

=

∫

Ω×Ω

h(s − s′) v̇(s) v̇(s′) ds′ds,

(6.7)

where we have set

g(t) :=
π

4(1 − cos(πt))
, h(t) := − 1

2π

[

ln 2 + ln(1 − cos(πt))
]

. (6.8)

(Notice that the second identity in (6.7) makes sense for functions of class W 1,1+ε

only).

The scheme developed in Section 3 applies to this functional, too, but again
some essential modifications are required. First one easily checks that the fast
scale is now ε1/2 rather than ε1/3 (see, e.g., [33]). Second the functional is invari-
ant under the addition of constants and therefore it is more natural to look for the
Young measures generated by the blow-up of the derivative rather than the func-
tion itself (for the latter choice it is easy to construct minimizing sequences whose
Young measure on micropatterns is concentrated both at the function that is iden-
tically +∞ and at the function that is identically −∞). Let therefore consider the
blowup

R
ε
sv̇ := v̇(s + ε1/2t). (6.9)

The competitors for the limit problem will be all Young measures ν ∈ YM (Ω, K)
generated by sequences R

ε
sv̇

ε. As in Section 3, these Young measures are charac-
terized as those ν such that νs is an invariant measure on K for a.e. s ∈ Ω (cf.
Proposition 3.1).

The second step in the program developed in Section 3 consists in rewriting
Iε(v) in terms of the ε-blowups. To avoid problems with integrals over unbounded
domains we choose a smooth positive function ρ on R such that

∫

ρ(t) dt = 1. For
v ∈ H2

per(Ω) we set

xs := ε−1/2v(s + ε1/2t).

Thus
ẋs = v̇(s + ε1/2t) = R

ε
sv̇ and ẍs = ε1/2v̈(s + ε1/2t).

Setting s′′ := s + ε1/2t, s′ := s + ε1/2(t + τ) we get

ε2v̈2(s′′) + W (v̇(s′′) +

∫

Ω

g(s′′ − s′) (v(s′′) − v(s′))2ds′

= εẍ2
s(t) + W (ẋs(t)) +

∫ ε−1/2

−ε−1/2

εg(ε1/2τ) (xs(t + τ) − xs(t))
2dτ.
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Integrating in s ∈ Ω and then taking the average over all t ∈ R with respect to
the weight ρ we obtain

ε−1/2Iε(v) =

∫

Ω

fε(ẋs), (6.10)

where

fε(ẋ) :=

∫

R

(

ε1/2ẍ2 + ε−1/2W (ẋ)
)

ρ(t) dt

+

∫

R×R

gε(τ)(x(t + τ) − x(t))2ρ(t) dt dτ,

(6.11)

and

gε(τ) :=

{

εg(ε1/2τ) if |τ | ≤ ε−1/2,

0 otherwise.
(6.12)

Note that fε is invariant under addition of constants, and then only depends on
x through ẋ.

From (6.8) we have that g(τ) ' 1/2πτ2, then the functions gε(τ) converge to
1/2πτ2, and we claim that fε Γ-converge on K to the functional f given by

f(ẋ) := A0

∑

t∈Sẋ

ρ(t) +

∫

R×R

1

2πτ2
(x(t + τ) − x(t))2ρ(t) dt dτ (6.13)

for x ∈ �
loc(R), and +∞ elsewhere (here we view fε and f as functionals of

ẋ ∈ K). To prove the claim, we proceed as for Proposition 3.3: the functionals

∫

(

ε1/2ẍ2 + ε−1/2W (ẋ)
)

ρ (6.14)

are equicoercive and Γ-converge on W 1,1
loc (R) – and therefore also in K – to the first

term on the right-hand side of (6.13), while the double integrals on the right-hand
side of (6.11) converge to the double integral on the right-hand side of (6.13) for
all sequences xε which converge to x uniformly on R, and are uniformly Lipschitz.
Unfortunately such a convergence is not implied by convergence in W 1,1

loc (R), and
one has to be more careful: given functions ẋε → ẋ such that fε(ẋε) is bounded,
we have ẋε → ẋ in L1

loc(R), and, modulo addition of suitable constants, xε → x in

W 1,1
loc (R). Then a careful application of Fatou’s lemma, and the fact that g and ρ

are positive functions, give the lower-bound inequality. To prove the upper-bound
inequality for x, it suffices to construct functions xε which converge uniformly to x,
are uniformly Lipschitz, and satisfy the upper-bound inequality for the functionals
in (6.14).

Now we can proceed as in Section 3, and prove a suitable version of Theo-
rem 3.4. which leads to the following equivalent of Corollary 3.11: Suppose that
the functions vε minimize Iε and the ε-blowups R

εv̇ε generate a Young measure
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ν. Then, for a.e. s ∈ Ω, the measure νs minimizes 〈µ, f〉 among all invariant
measures µ ∈ � (K).

We have not been able to carry out the last step of our program, the charac-
terization of the minimizing measures µ. We conjecture that minimality implies
that the measure is supported on the orbit of the derivative of a single periodic
sawtooth function like in Figure 1.2.

Indeed, for every x ∈ �per(0, h) one has (cf. (3.12))

〈εẋ, f〉 =
A0

h
#

(

Sẋ ∩ [0, h)
)

+

∫ h

0

[

∫ ∞

−∞

1

2πτ2
(x(t + τ) − x(t))2dτ

]

dt.

It can be verified that the minimum of 〈εẋ, f〉 over all x ∈ �
per(0, h) and h > 0

is strictly positive, and hence the minimum of 〈µ, f〉 over all µ ∈ � (K) is also
strictly positive. This shows in particular that the minima of energies Iε in (6.6)
are exactly of order ε1/2.

As a first step in the characterization of minimizing measures µ, one should
prove that the minimum of 〈εẋ, f〉 over all x ∈ �per(0, h) with h and 2n := #(Sẋ∩
[0, h)) fixed is given by the sawtooth function yh/n (see (3.33)). Then one could
determine the optimal one by minimization over all h > 0. As discussed in Section
3 this is, however, only the first step in the proof of the conjecture stated above.

6.5 Concentration effects

A suitable modification of the Young measure on micropatterns which uses the
energy density rather than the Lebesgue measure as background measure can also
capture certain concentration effects that occur, for example, in the passage from
diffuse interface models to sharp interface models. The simplest possible example
is the minimization of the one-dimensional functional (already introduced in the
proof of Proposition 3.3)

Jε(v) =

∫ 1

0

εv̇2 +
1

ε
W (v)ds,

subject to periodic boundary conditions and volume constraint
∫

v = 0. As ε → 0
minimizers vε converge to a piecewise constant function v with two equidistantly
spaced jumps. The corresponding energy density

eε = εv̇2 +
1

ε
W (v)

converges (in the weak-star sense) to a measure µ = A0δa + A0δb, where a and b

are the positions of the jumps and A0 := 2
∫ 1

−1

√
W .

We consider now the ε-blowups R
ε
sv

ε(t) := vε(s+εt), and define the associated
measures νε on Ω × K by

νε =

∫

Ω

(δs × νε
s) eε(s) ds,
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where νε
s is the Dirac mass concentrated at R

ε
sv

ε for every s. Then the measures νε

converge, up to a subsequence, to a limit measure ν on Ω×K. Since the projection
of each νε on Ω is the measure associated to the energy density eε, the projection
of ν is the limiting energy measure µ, and we can thus write ν as

ν = A0δa × µa + A0δb × µb,

where µa and µb care probability measures on K which capture the asymptotic
behavior of minimizers vε near the jumps a and b resp. If we assume that the
limit v of the minimizers vε jumps from −1 to 1 at a, and denote by x the optimal
profile for the transition between the two minima of W , namely the solution of

2ẍ = W ′(x), lim
t→±∞

x(t) = ±1,

(which is unique up to translations), and by e = ẋ2 + W (x) the associated energy
density, then one can prove that

µa =
1

A0

∫

R

δTτ x e(t) dt,

and a similar result holds for µb.
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[43] Pitteri, M.; Zanzotto, G.: Continuum models for phase transitions and twinning in crystals.
Chapman and Hall, to appear.
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[46] Šverák, V.: Lower-semicontinuity of variational integrals and compensated compactness.
Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994),
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(Grado, 1993), edited by Aljoša Volčič. Rend. Istit. Mat. Univ. Trieste 26 (1994), suppl.,
349–394

[56] Wechsler, M.S.; Liebermann, D.S.; Read, T.A.: On the the theory of the formation of
martensite. Trans. AIME J. Metals 197 (1953), 1503-1515.

[57] Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the
calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie
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