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A Note on the Theory of SBV Functions

Giovanni Alberti - Carlo Mantegazza

Sunto. – In questo articolo si fornisce una dimostrazione semplice e nuova
del teorema di compattezza per la classe SBV(Ω) di funzioni speciali a
variazione limitata

1. - Introduction

The space SBV (Ω) of special functions with bounded variation
was introduced by De Giorgi and Ambrosio [6] as a natural exten-
sion of the space of piecewise smooth functions, to provide a weak
formulation for some variational problems with free discontinuity (or
problems involving both “volume” and “surface” energies as well).
In particular this weak formulation was used by De Giorgi, Carriero
and Leaci [7] to prove the existence of a (weak) minimizer of a func-
tional proposed by Mumford and Shah [10] to approach an image
segmentation problem.

A general theory of SBV functions was developed by Ambrosio
[1-3] to find solutions to a large class of problems, via suitable com-
pactness and lower semicontinuity results. We recall that a function
u on an n-dimensional domain belongs to SBV when it has bounded
variation and the singular part of the derivative (with respect to
Lebesgue measure) is represented by an

�
n−1 summable function,

where
�

n−1 is the (n−1)-dimensional Hausdorff measure (see para-
graph 1.2 and Definition 1.3): roughly speaking, we ask that the
derivative may be written as sum of a volume” part and a “surface”
part.

The central point of the SBV theory is the compactness result
proved in [1] (see Theorem 1.4 below): originally this result was first
proved in dimension one and then extended to arbitrary dimension
by a rather complicated slicing technique. Since then different ap-
proaches to SBV functions have been studied in order to obtain sim-
pler proofs: in [4], the space SBV is characterized by an integration-
by-parts formula which leads to a new proof of compactness in a
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special case, while in this note we establish a characterization of the
singular part of the derivatives of BV functions (Proposition 2.3)
which leads to a simple proof of the compactness result in its full
generality.

We begin recalling some basic definitions and results.
�

n is the n-dimensional Lebesgue measure and
�

k is the k-
dimensional Hausdorff measure. We say that a set M in R

n is rec-
tifiable if there exists a countable partition (Mi) of M such that
�

n−1(M0) = 0 and, for every j ≥ 1, Mi is contained in an (n − 1)-
dimensional submanifold of R

n of class C1 (in GMT these sets are
usually called countably (

�
n−1, n − 1) rectifiable but here we do

not need the general definition). For
�

n−1 almost every point x of
M we may define a generalized normal ν(x) so that ν(x) is a unit
vector orthogonal to the tangent space of the submanifold Mi in the
point x for

�
n−1 a.e. x ∈ M ∩Mi; clearly the generalized normal is

determined
�

n−1 – a.e. up to a change of sign (see [11, chapter 3]).
Let Ω be a bounded open subset of R

n. By measure on Ω (or any
other topological space) we always mean a measure on the σ-field
of Borel subsets of Ω. When λ is a measure on Ω and E is a Borel
subset of Ω, we denote by λ E the restriction of λ to the set E,
i.e., the measure given by (λ E)(B) := λ(B ∩ E), for every Borel
set B ⊂ Ω.

When µ is a positive measure on Ω, Lp(µ, Rm) is the space of all
R

m-valued functions on Ω which are p-summable with respect to µ
(we will write Lp(Ω, Rm) when µ =

�
n Ω). When f belongs to

L1(Ω, Rm), we denote by f also the associated measure f
�

n Ω.
�

(Ω, Rm) is the space of all R
m-valued measures on Ω with finite

total variation. When m = 1, we omit to write R
m.

Definition 1.1 (The Space BV (Ω)). – BV (Ω) is the space of
all scalar functions with bounded variation on Ω, i.e., the space of all
u : Ω → R whose distributional derivative Du is (represented by) a
measure in

�
(Ω, Rn). For the general theory of BV functions we

refer essentially to Evans and Gariepy [8, chapter 5].

Remark 1.2 (Decomposition of Derivatives). – Let u be a func-
tion in BV (Ω); then, recalling Radon-Nikodym decomposition and
taking into account that the measure |Du| cannot charge any set
which is

�
n−1 negligible, we may decompose Du as sum of three

mutually singular measures (see for instance [1-3])

(1.1) Du = Dau + Dcu + Dju
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so that Dau (the Lebesgue part of Du) is the absolutely continuos
part of Du with respect to Lebesgue measures, Dju (the jump part
of Du) is a singular measure of the form Dju = f

�
n−1 where f

belongs to L1(
�

n−1 Ω, Rn), and Dcu (the Cantor part of Du)
is a singular measure which does not charge any set which is

�
n−1

σ-finite.
If ∇u denotes the density of Du with respect to Lebesgue mea-

sure, we have

(1.2) Dau = ∇u
�

n,

and it may be proved that for
�

n a.e. x ∈ Ω the vector ∇u(x) is the
approximate gradient of u at x (cf. [8, section 6.1]).

The jump set of u is the set Su of all points x ∈ Ω such that u
has no approximate limit at x (see [8, section 1.7] for the definition
of approximate limit). We define the precise representative of u as
the function ũ which takes every x ∈ Ω\Su in the approximate limit
of u at x, and every x ∈ Su in 0 (Su is always a Borel set, and ũ a
Borel function).

The set Su is rectifiable [8, section 5.9], and we denote by νu(x)
the generalized normal to Su in the point x (for

�
n−1 a.e. x ∈ Su),

and by H+(x) and H−(x) the half-spaces of all y ∈ R
n such that

〈y − x, νu(x)〉 > 0 and 〈y − x, νu(x)〉 < 0 respectively. Then the
following result holds: for

�
n−1 almost every x ∈ Su, there exist

the approximate limits at x of u restricted to H+(x) and H−(x), and
we denote such approximate limits as u+(x) and u−(x) respectively
(cf. [8, section 5.9]); this means that

lim
ρ→0

ρ−n

∫

H±(x)∩B(x,ρ)

∣

∣u(y) − u±(x)
∣

∣ d
�

n(y) = 0.

Moreover the jump part of Du may be written in term of Su, νu,
u+, and u−:

(1.3) Dju = (u+ − u−) νu

� n−1 Su

(cf. [8, section 5.9]), then (1.1) becomes

(1.4) Du = ∇u
�

n + Dcu + (u+ − u−) νu

� n−1 Su.

Definition 1.3 (The Space SBV (Ω)). – We recall that the space
SBV (Ω) of special functions with bounded variation is defined as the
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subspace of all u ∈ BV (Ω) without Cantor part, i.e., the space of all
u such that Dcu = 0. Then, for every u ∈ SBV (Ω), formula (1.4)
becomes

(1.5) Du = ∇u
�

n + (u+ − u−) νu

� n−1 Su.

Now we can state the compactness theorem for SBV functions (see
for instance Ambrosio [1, Theorem 2.1]).

Theorem 1.4 (SBV Compactness Theorem). – Let (uh) be a
sequence of functions in SBV (Ω), and assume that

(i) the functions un are uniformly bounded in the BV norm
(i.e., they are relatively compact with respect to the weak* topology
of BV (Ω)),

(ii) the approximate gradients ∇uh are equi-integrable (i.e, they
are relatively compact with respect to the weak topology of L1(Ω, Rn)),

(iii) there exists a function f : [0,∞[→ [0,∞] such that
f(t)/t → ∞ as t → 0, and

(1.6)

∫

Suh

f
(

|u+
h − u−

h |
)

d
� n−1 ≤ C < ∞ ∀h .

Then we may extract a subsequence (uk) = (uhk
) which converges

to some u ∈ SBV (Ω). Moreover the Lebesgue part and the jump
part of the derivatives converge separately, i.e., Dauk → Dau and
Djuk → Dju weakly* in

�
(Ω, Rn).

This theorem is proved in Section 2 as an immediate corollary of
Proposition 2.5.

This compactness result may be applied together with suitable
semicontinuity theorems to prove the existence in SBV (Ω) of the
minimizers of certain integral functionals. We refer for precise state-
ments and proofs to Ambrosio [2], [3].

2. - Proof of the SBV Compactness Theorem

We begin recalling the chain-rule formula for BV functions.

Remark 2.1 (Chain-rule). – When u belongs to BV (Ω), and
φ : R → R is a Lipschitz function, then the composition function
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φ(u) is a BV function too. Moreover, if φ is of class C1, the following
formula holds:

(2.1) D(φ(u)) = φ′(ũ) (Dau+Dcu) +
(

φ(u+)−φ(u−)
)� n−1 Su.

This formula may be easily proved by coarea formula for piecewise
linear φ and then by approximation for all φ of class C1. A similar
formula holds in general for Lipschitz φ, but the proof is slightly
more difficult (see for instance Volpert [12] and Ambrosio-Dal Maso
[5]).

Definition 2.2. – Now, let f : [0,∞[→ [0,∞] be an increasing
function such that

(2.2) lim
t→0

f(t)

t
= +∞,

and define X(f) as the class of all C1 functions φ : R → R with
bounded derivative which satisfy

(2.3)
∣

∣φ(t′) − φ(t)
∣

∣ ≤ f
(

|t′ − t|
)

for all t, t′ ∈ R.

Then formula (2.1) immediately yields the following inequality:
(2.4)

sup
φ∈X(f)

∥

∥D(φ(u)) − φ′(ũ) (Dau + Dcu)
∥

∥ ≤
∫

Su

f
(

|u+ − u−|
)

d
� n−1.

This inequality characterizes in some sense the measure Dau + Dcu;
more precisely we have the following result:

Proposition 2.3. – Let f and X(f) be given as in Definition 2.2.
Let u be a function in BV (Ω), and let λ be an R

n-valued measure
on Ω such that |λ|(Su) = 0 and

(2.5) sup
φ∈X(f)

∥

∥D(φ(u)) − φ′(ũ) λ
∥

∥ < ∞.

Then λ = Dau + Dcu, that is, Du = λ + Dju.

Proof. – Set µ := Dau+Dcu−λ. We have to prove that µ = 0.
Since |Dau|, |Dcu| and |λ| do not charge the set Su, we obtain

that µ and
�

n−1 Su are mutually singular, hence (2.1) and (2.5)
yield

∞ > sup
φ∈X(f)

∥

∥φ′(ũ) µ +
(

φ(u+) − φ(u−)
)� n−1 Su

∥

∥(2.6)

≥ sup
φ∈X(f)

∥

∥φ′(ũ) µ
∥

∥ = sup
φ∈X(f)

∫

Ω

∣

∣φ′(ũ)
∣

∣ d|µ|.
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Now, if we denote by σ the positive measure on R given by σ(B) =
|µ|

(

ũ−1(B)
)

for all Borel sets B ⊂ R, inequality (2.6) yields

∞ > sup
φ∈X(f)

∫

Ω

∣

∣φ′(ũ)
∣

∣ d|µ| = sup
φ∈X(f)

∫

R

|φ′| dσ,

and by Lemma 2.4 below we obtain that σ, and µ as well, are trivial.

Lemma 2.4. – Let f and X(f) be given as in Definition 2.2, and
let σ be a non-trivial positive measure on R. Then

sup
φ∈X(f)

∫

R

|φ′| dσ = +∞.

Proof. – Let M ≥ 2 be fixed. Since f satisfies condition (2.2),
there exists ε > 0 such that f(t) ≥ Mt when 0 ≤ t ≤ ε, and since f
is increasing, f(t) ≥ Mε when t ≥ ε. Hence

(2.7) f(t) ≥ Mt ∧ Mε ≥ Mt ∧ 2ε for all t.

Set φ(t) := ε sin(Mt/ε) for every t: φ is an M -lipschitz function,
|φ| ≤ ε for every t, and then φ belongs to X(f) by (2.7). One readily
checks that |φ′(t)| ≥ M/

√
2 when t belongs to the set

A :=
⋃

k∈Z

[ ε

M

(

− 1

4
+ k

)

π ,
ε

M

(1

4
+ k

)

π
]

,

and then
∫

|φ′| dσ ≥ M√
2

σ(A).

Furthermore, if we denote by ϕ the translation of φ by επ/(2M),
then ϕ belongs to X(f), |ϕ′(t)| ≥ M/

√
2 when t belongs to R \ A,

and
∫

|ϕ′| dσ ≥ M√
2

σ(R \ A).

Hence either
∫

|φ′| dσ or
∫

|ϕ′| dσ have to be greater than M‖σ‖
divided by 2

√
2, and since M can be taken arbitrarily large, the

proof is complete.
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We use Proposition 2.3 to prove the following closure result for
SBV functions; Theorem 1.4 will follow as an immediate corollary.

Proposition 2.5. – Let f be given as in Definition 2.2. Let (uh)
be a sequence of SBV functions which converges to u in the weak*
topology of BV (Ω), and assume that the approximate gradients ∇uh

converge to some g weakly in L1(Ω, Rn), and that
∫

Suh

f
(

|u+
h − u−

h |
)

d
� n−1 ≤ C < ∞ ∀h.

Then u belongs to SBV (Ω), and the Lebesgue part and the jump
part of the derivatives converge separately, i.e., Dauh → Dau and
Djuh → Dju weakly* in

�
(Ω, Rn).

Proof. – We remark that it is enough to prove that Dau+Dcu =
g
�

n.

Take φ ∈ X(f). Then, taking into account inequality (2.4) and
the fact that uh ∈ SBV for every h, we get

(2.8) C ≥
∫

Suh

f
(

|u+−u−|
)

d
� n−1 ≥

∥

∥D(φ(uh))−φ′(uh)∇uh

�
n

∥

∥.

Now, with no loss in generality, we may assume that uh converge
to u almost everywhere in Ω. The functions φ(uh) converge to φ(u)
in the weak* topology of BV (Ω), and then the measures D(φ(uh))
converge to D(φ(u)) in the weak* topology of measures. Since φ′ is
bounded and continuous, the functions φ′(uh) are uniformly bounded
and converge to φ′(u) a.e. Moreover the functions ∇uh converge to
g weakly in L1(Ω, Rn) by hypothesis. Hence φ′(uh)∇uh converge to
φ′(u) g weakly in L1(Ω, Rn), and then

[

D(φ(uh)) − φ′(uh)∇uh

�
n

]

−→
[

D(φ(u)) − φ′(u) g
�

n

]

weakly* in
�

(Ω, Rn). Now (2.8) yields

C ≥ lim inf
h→∞

∥

∥D(φ(uh))− φ′(uh)∇uh

�
n

∥

∥ ≥
∥

∥D(φ(u))− φ′(u) g
�

n

∥

∥.

Eventually, if we take the supremum over all φ ∈ X(f), and apply
Proposition 2.3, we get Dau + Dcu = g

�
n.
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