Versione: 20 settembre 2021

Università di Pisa Corso di laurea in Ingegneria Gestionale

PROVE SCRITTE DELL'ESAME DI

Analisi Matematica I (158AA), a.a. 2020-21 Testi e soluzioni

GIOVANNI ALBERTI Dipartimento di Matematica Università di Pisa largo Pontecorvo 5 56127 Pisa

http://pagine.dm.unipi.it/alberti

Gli scritti d'esame per il corso di Analisi Matematica I per Ingegneria Gestionale si compongono di due parti: una prima parte con otto domande relativamente semplici a cui si deve dare solo la risposta, ed una seconda con tre problemi a cui si deve invece dare una soluzione articolata in dettaglio. Il tempo a disposizione è di un'ora per la prima parte e di due ore per la seconda. Per ottenere la sufficienza sono solitamente richieste almeno cinque risposte corrette nella prima parte, ed un problema completamente risolto nella seconda.

Questa raccolta contiene i testi e le soluzioni degli scritti di tutti gli appelli dell'a.a. 2020-21, incluse le prove in itinere. Degli scritti di cui sono state preparate più varianti qui viene riportata solo la prima.

Programma del corso [versione: 20 dicembre 2020]. Sono riportati in corsivo gli argomenti non fondamentali.

1. Funzioni e grafici

- o Richiamo delle nozioni di base di trigonometria. Coordinate polari di un punto nel piano.
- \circ Funzioni elementari: funzioni lineari, potenze, esponenziali, logaritmo (in base e), funzioni trigonometriche (seno, coseno, tangente), funzioni trigonometriche inverse.
- o Funzioni: dominio, codominio, immagine, grafico; funzione inversa; funzioni pari e dispari.
- o Operazioni sui grafici di funzioni. Risoluzione "grafica" di equazioni e disequazioni.

2. Limiti di funzioni e continuità

- o Limiti di funzioni; calcolo dei limiti elementari; forme indeterminate.
- o Funzioni continue.

3. Derivate

- Derivata di una funzione. Significato geometrico come pendenza della retta tangente al grafico. Altre applicazioni del concetto di derivata: velocità (scalare e vettoriale) e accelerazione di un punto in movimento.
- o Derivate delle funzioni elementari e regole per il calcolo delle derivate.
- o Funzioni asintoticamente equivalenti (vicino ad un punto assegnato). Trascurabilità di una funzione rispetto ad un altra. Notazione di Landau ("o piccolo" e "o grande"). Parte principale di una funzione all'infinito e in zero. Principio di sostituzione nel calcolo dei limiti e delle parti principali.
- o Teorema di de l'Hôpital. Confronto tra i comportamenti asintotici di esponenziali, potenze e logaritmi all'infinito e in zero.
- Valore massimo e minimo di una funzione; punti di massimo e di minimo (assoluti e locali); estremo superiore ed inferiore dei valori di una funzione. Esistenza del punti di minimo e di massimo per una funzione continua su un intervallo chiuso (teorema di Weierstrass, senza dimostrazione). Individuazione dei valori e dei punti di massimo e di minimo di una funzione definita su un'unione finita di intervalli (aperti o chiusi, limitati e non).
- o Teoremi di Rolle, Lagrange e Cauchy e dimostrazione (parziale) del teorema di de L'Hôpital.
- Sviluppo di Taylor (in zero) di una funzione ed espressione del resto come "o grande" e nella forma di Lagrange. Sviluppi di Taylor di alcune funzioni fondamentali. Formula del binomio di Newton. Uso degli sviluppi di Taylor per il calcolo dei limiti e delle parti principali.
- o Funzioni crescenti e decrescenti; caratterizzazione in termini di segno della derivata. Funzioni convesse e concave; caratterizzazioni in termini di segno della derivata seconda. Applicazioni al disegno del grafico di una funzione.

4. Elementi di analisi astratta

- o Numeri interi, razionali e reali.
- o Estremo superiore ed inferiore di un insieme qualunque di numeri reali. Esistenza dell'estremo inferiore e superiore (completezza dei numeri reali).
- o Teorema di esistenza degli zeri. Algoritmo di bisezione per la determinazione dello zero di una funzione.

5. Integrali

- o Definizione di integrale (definito) di una funzione su un intervallo in termini di area. Primitiva di una funzione e teorema fondamentale del calcolo integrale.
- o Calcolo delle primitive (integrali indefiniti) e degli integrali.
- Approssimazione dell'integrale tramite somme finite. La distanza percorsa da un punto in movimento come integrale del modulo della velocità. Parametrizzazione di una curva e calcolo della lunghezza.
- Calcolo delle aree delle figure piane. Calcolo dei volumi delle figure solide, e in particolare dei solidi di rotazione.

6. Integrali impropri

- o Integrali impropri semplici: definizione e possibili comportamenti.
- o Criterio del confronto e del confronto asintotico (per funzioni positive); criterio della convergenza assoluta (per funzioni a segno variabile).
- $\circ\,$ Integrali impropri non semplici.

7. Serie numeriche e serie di potenze

- o Successioni e limiti di successioni. Collegamento con i limiti di funzioni.
- o Serie numeriche: definizione e possibili comportamenti. La serie geometrica.
- o Criterio del confronto con l'integrale. La serie armonica generalizzata.
- Criteri per determinare il comportamento di una serie: del confronto, del confronto asintotico, della convergenza assoluta, della radice e del rapporto.
- \circ Serie di potenze, e raggio di convergenza. Serie di Taylor. Coincidenza della serie di Taylor con la funzione per alcune funzioni elementari. Espressione del numero e come serie.
- o Definizione di esponenziale complesso e quistificazione della formula $e^{ix} = \cos x + i \sin x$.

8. Equazioni differenziali

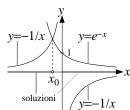
- o Equazioni differenziali del primo ordine: definizione e fatti generali. Risoluzione delle equazioni lineari e delle equazioni a variabili separabili.
- Equazioni differenziali del secondo ordine: definizione e fatti generali. Equazioni lineari del secondo ordine a coefficienti costanti, omogenee e non omogenee. Risoluzione delle equazioni a coefficienti costanti omogenee, e ricerca della soluzione particolare per quelle non omogenee per alcune classi di termini noti.
- Esempi di equazioni differenziali tratti dalla fisica: equazione di decadimento, equazione dell'oscillatore armonico e dell'oscillatore armonico smorzato.

TESTI E SOLUZIONI

PRIMA PARTE, AULE A-D (prima variante)

- 1. Determinare l'insieme di definizione della funzione $f(x) := \sqrt{\log 7 \log(x 3)} + \frac{1}{x^2 + 16}$. Soluzione. $3 < x \le 10$.
- 2. Calcolare le derivate di: a) $\frac{x^2 1}{x^2 + 1}$, b) $\log \left(\frac{7}{\exp(3x^2 4)} \right)$, c) $\arcsin(1 x^4)$. <u>SOLUZIONE</u>. a) $\frac{4x}{(x^2 + 1)^2}$, b) -6x, c) $\frac{-4x}{\sqrt{2 - x^4}}$.
- 3. Calcolare i seguenti limiti: a) $\lim_{x\to 0} \frac{x+\log(1+x)}{2x+\sin x}$, b) $\lim_{x\to -\infty} \frac{x^4+\cos x}{x^5-3}$, c) $\lim_{x\to \pi^-} \frac{e^x}{\sin x}$. Soluzione. a) 2/3, b) 0, c) $+\infty$.
- 4. Trovare la parte principale per $x \to 0$ della funzione $f(x) := \frac{\sin(x^2 x^4)}{x^3 \log(1 + x^3)}$. Soluzione. $2/x^4$.
- 5. Dire se esistono, e in caso affermativo calcolare, i punti di massimo e minimo assoluti della funzione $f(x) := x^3 3x^2$ relativamente alla semiretta $x \le 3$.

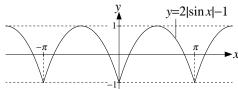
 Soluzione. Punti di massimo: 0 e 3; punti di minimo: non esistono.
- 6. Per quali $a \in \mathbb{R}$ si ha che $\frac{x^2 x^5}{1 + \log x} = o(x^a)$ per $x \to +\infty$. Soluzione. $a \ge 5$.
- 7. Trovare i punti x in cui la tangente al grafico di $f(x) := \cos\left(x \frac{\pi}{2}\right)$ ha pendenza 1/2. Soluzione. $x = \pm \frac{\pi}{3} + 2k\pi$ con $k \in \mathbb{Z}$.
- 8. Risolvere graficamente la disequazione $e^{-x} \ge -\frac{1}{x}$. Soluzione.



PRIMA PARTE, AULE E-H (prima variante)

- 1. Trovare le soluzioni $x \in [0, \pi/3]$ della disequazione $\tan(3x) \le \sqrt{3}$. Soluzione. $x \in [0, \pi/9] \cup (\pi/6, \pi/3]$.
- 2. Dire per quali $a \in \mathbb{R}$ la seguente funzione è continua $f(x) := \begin{cases} a\cos x + \sin x & \text{se } x \leq 0, \\ a^2\sqrt{x+4} & \text{se } x > 0. \end{cases}$ $\underbrace{\text{Soluzione}}_{} a = 0, \, \frac{1}{2}.$
- 3. Calcolare i seguenti limiti: a) $\lim_{x\to +\infty} \frac{1-3^x}{x2^x+1}$, b) $\lim_{x\to 0} \frac{x^2-\sin x}{e^x-1}$, c) $\lim_{x\to +\infty} \cos(2^{-x})$. Soluzione. a) $-\infty$, b) -1, c) 1.
- 4. Scrivere il polinomio di Taylor (in 0) di ordine 4 della funzione $f(x) := \cos(x^3 + x)$. Soluzione. $1 \frac{1}{2}x^2 \frac{23}{24}x^4$.
- 5. Dire se esistono, e in caso affermativo calcolare, i punti di massimo e minimo assolutidella funzione $f(x) := -x^3 + 6x^2$ relativamente alla semiretta $x \le 2$.

 Soluzione. Punti di massimo: non esistono; punto di minimo: 0.
- 6. Scrivere dominio, immagine e inversa della funzione $f(x) := \log_3(x+1)$. Soluzione. Dominio: $(-1, +\infty)$; immagine: \mathbb{R} ; inversa: $f^{-1}(y) = 3^y 1$.
- 7. Dire per quali $a \in \mathbb{R}$ la funzione $f(x) := \frac{a}{6}x^3 + \frac{a}{4}x^2 + x$ risulta essere crescente su tutto \mathbb{R} . Soluzione. $0 \le a \le 8$.
- 8. Disegnare il grafico della funzione $y=2|\sin x|-1.$ Soluzione.



PRIMA PARTE, AULE I-M (prima variante)

1. Calcolare le coordinate polari dei seguenti punti espressi in coordinare cartesiane, scegliendo l'angolo α nell'intervallo $(-\pi,\pi]$: a) (0,-2); b) (-1,0); c) $(-\sqrt{3},1)$.

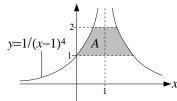
$$\underline{\text{Soluzione}}. \quad \text{a) } r=2, \, \alpha=-\frac{\pi}{2} \,\, ; \ \, \text{b) } r=1, \, \alpha=\pi \,\, ; \ \, \text{c) } r=2, \, \alpha=\frac{5\pi}{6} \,\, .$$

- 2. Determinare l'immagine della funzione $f(x) := 2\sin(\pi/6 3x) + 2$. Soluzione. [0,4].
- 3. Calcolare i seguenti limiti: a) $\lim_{x\to 0^+} x^2(e^x + \log x)$, b) $\lim_{x\to 0} \frac{1-\exp(x^2)}{\sin^3 x}$, c) $\lim_{x\to +\infty} x^{-\log x}$. Soluzione. a) 0, b) non esiste, c) 0.
- 4. Riordinare le funzioni che seguono in modo da ottenere un'affermazione corretta per $x \to +\infty$:

$$4^{-x} \ll (1-x^2) 2^x \ll \frac{2^x+3}{3^x} \ll (1+x) 2^x$$

Soluzione.
$$4^{-x} \ll \frac{2^x + 3}{3^x} \ll (1 + x) 2^x \ll (1 - x^2) 2^x$$
.

- 5. Trovare la parte principale per $x\to 0$ della funzione $f(x):=1+3x^2-\sqrt{1+2x^2}$. Soluzione. $2x^2$.
- 6. Scrivere l'equazione della retta tangente al grafico di $f(x) := 2 \sin x + \frac{\pi}{2\sqrt{2}}$ nel punto $x = \frac{\pi}{4}$. Soluzione. $y = \sqrt{2}x + \sqrt{2}$.
- 7. Dire in quali intervalli la funzione $f(x):=(x^2-2)\exp(x^2)$ è convessa. SOLUZIONE. $\left(-\infty,-\frac{1}{\sqrt{2}}\right]$ e $\left[\frac{1}{\sqrt{2}},+\infty\right)$.
- 8. Disegnare l'insieme A dei punti (x,y) nel piano tali che $1 \le y \le 2$ e $y \le \frac{1}{(x-1)^4}$. Soluzione.



SECONDA PARTE (prima variante)

$\boxed{\mathbf{1}}$ Dire per quali $a \geq 0$ è vero che

$$\exp(x^2) \ge a\left(x - \frac{3}{2}\right)^2 \quad \text{per ogni } x \in \mathbb{R}.$$
 (*)

<u>SOLUZIONE</u>. Osservo che la disequazione (*) è sempre verificata per x = 3/2, cioè quando si annulla il termine di destra. Per gli altri x riscrivo questa disequazione (*) come

$$\underbrace{\left(x - \frac{3}{2}\right)^{-2} \exp(x^2)}_{f(x)} \ge a \quad \text{per ogni } x \ne 3/2,$$

e chiaramente questa disequazione vale se solo se min $f(x) \ge a$ (se il minimo non esiste va sostituito con l'estremo inferiore dei valori).

Calcolo ora il valore minimo di f(x). Osservo per cominciare che f(x) è ben definita e derivabile per ogni $x \in \mathbb{R}$ tranne $x = \frac{3}{2}$, vale a dire sull'unione degli intervalli $\left(-\infty, \frac{3}{2}\right)$ e $\left(\frac{3}{2}, +\infty\right)$, e che la derivata

$$f'(x) = (2x^2 - 3x - 2)\left(x - \frac{3}{2}\right)^{-3} \exp(x^2)$$

si annulla per $x = -\frac{1}{2}$ e x = 2. Come visto a lezione, per trovare il valore minimo di f(x) (o l'estremo inferiore) confronto i valori di f in questi due punti con i limiti agli estremi degli intervalli di definizione

$$f\left(-\frac{1}{2}\right) = \frac{1}{4} e^{1/4} \simeq 0.32 \,, \ f(2) = 4e^4 \simeq 218.4 \,, \ \lim_{x \to \pm \infty} f(x) = +\infty \,, \ \lim_{x \to 3/2} f(x) = +\infty \,.$$

Così facendo ottengo che

$$\min f(x) = f(-\frac{1}{2}) = \frac{1}{4} e^{1/4},$$

e dunque (*) è vera se e solo se $a \leq \frac{1}{4} e^{1/4}$.

OSSERVAZIONI. In alternativa il valore minimo di f può essere trovato studiando il segno della derivata ed individuando gli intervalli di monotonia della funzione: in questo caso si trova che f decresce negli intervalli $\left(-\infty,-\frac{1}{2}\right]$ e $\left(\frac{3}{2},2\right]$, e cresce in $\left[-\frac{1}{2},\frac{3}{2}\right)$ e in $[2,+\infty)$: queste informazioni bastano a dire che $f(-\frac{1}{2})$ è il valore minimo di f nella semiretta $\left(-\infty,\frac{3}{2}\right)$, e che f(2) è il valore minimo di f nella semiretta $\left(\frac{3}{2},+\infty\right)$; e confrontando questi due valori si ottiene infine che il minimo è $f\left(-\frac{1}{2}\right)$.

$|\mathbf{2}|$ Dato $a \in \mathbb{R}$ consider la funzione

$$f(x) := (x+3a)^a + (x-1)^a - 2x^a.$$

Trovare la parte principale di f(x) per $x \to +\infty$ nei seguenti casi:

a) $a \neq 0, \frac{1}{3};$

b)
$$a = \frac{1}{3}$$
.

<u>SOLUZIONE</u>. Siccome p.p. $((x+3a)^a) = x^a$ e p.p. $((x-1)^a) = x^a$ per $x \to +\infty$, le parti principali dei tre addendi che formano f(x) si cancellano e devo quindi utilizzare uno sviluppo più preciso dei primi due addendi.

Raccogliendo x all'interno di ciascuna delle parentesi ottengo

$$f(x) = (x+3a)^a + (x-1)^a - 2x^a = x^a \left[\left(1 + \frac{3a}{x} \right)^a + \left(1 - \frac{1}{x} \right)^a - 2 \right]. \tag{1}$$

Siccome 3a/x e -1/x tendono a 0 per $x \to +\infty$ posso applicare ai primi due addendi tra le parentesi quadre lo sviluppo di Taylor

$$(1+t)^a = 1 + at + \frac{a(a-1)}{2}t^2 + O(t^3).$$
 (2)

(Ho scelto lo sviluppo all'ordine 2 in vista del punto b); per il punto a) basta infatti lo sviluppo all'ordine 1.)

In particolare ponendo t = 3a/x in (2) ottengo

$$\left(1 + \frac{3a}{x}\right)^a = 1 + \frac{3a^2}{x} + \frac{9a^3(a-1)}{2x^2} + O\left(\frac{1}{x^3}\right),$$

e ponendo t = -1/x ottengo

$$\left(1 - \frac{1}{x}\right)^a = 1 - \frac{a}{x} + \frac{a(a-1)}{2x^2} + O\left(\frac{1}{x^3}\right).$$

Usando queste ultime due formule la (1) diventa

$$f(x) = a(3a-1)x^{a-1} + \frac{a(a-1)(9a^2+1)}{2}x^{a-2} + O(x^{a-3}).$$
 (3)

Posso ora rispondere alle due domande dell'esercizio:

a) per $a \neq 0, \frac{1}{3}$ il primo termine nello sviluppo (3) non si annulla e quindi

p.p.
$$(f(x)) = a(3a-1) x^{a-1};$$

b) per $a = \frac{1}{3}$ il primo termine nello sviluppo (3) si annulla e resta il secondo:

$$p.p.(f(x)) = -\frac{2}{9} x^{-5/3}$$
.

- **3** Dato a > 0 considero la funzione $f : \mathbb{R} \to \mathbb{R}$ data da $f(x) := (x^2 + a) e^{ax}$.
 - a) Determinare l'immagine di f.
 - b) Ponendo il codominio di f uguale all'immagine, dire per quali a esiste l'inversa $f^{-1}(y)$.
 - c) Per a come al punto b) trovare una funzione g(y) data da una formula esplicita e asintoticamente equivalente a $f^{-1}(y)$ per $y \to +\infty$.
 - d) Per a come al punto b) trovare una funzione h(y) data da una formula esplicita tale che $f^{-1}(y) h(y)$ tende a 0 per $y \to +\infty$.

SOLUZIONE. a) La funzione f(x) è definita per ogni $x \in \mathbb{R}$ e strettamente positiva, e quindi l'immagine è contenuta in $(0, +\infty)$; inoltre

$$\lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to +\infty} f(x) = +\infty,$$

e quindi l'immagine di f(x) deve essere tutto $(0, +\infty)$.

b) Siccome ho imposto che il codominio di f coincide con l'immagine, f è automaticamente surgettiva e quindi la funzione inversa esiste se (e solo se) f è iniettiva. Studio quindi il segno della derivata

$$f'(x) = \underbrace{(ax^2 + 2x + a^2)}_{p(x)} e^{ax}.$$

Osservo che tale segno coincide con quelle del polinomio di secondo grado p, che ha discriminante $\Delta = 4(1-a^3)$. Si presentano quindi tre casi:

- se 0 < a < 1 allora $\Delta > 0$ e p ha due radici distinte x_1 e x_2 ; quindi f è strettamente crescente negli intervalli $(-\infty, x_1)$ e $(x_2, +\infty)$, ed è strettamente decrescente in $(x_1, x_2]$), e questo pertanto f e disegnando il grafico si vede che f non è iniettiva e dunque l'inversa non esiste;
- se a=1 allora $\Delta=0$ e p ha un'unica radice x_1 ed è positivo altrove; quindi f è strettamente crescente sia nell'intervallo $(-\infty, x_1)$ che in $(x_1, +\infty)$, e quindi è strettamente crescente anche su tutto \mathbb{R} ; in particolare f è iniettiva e l'inversa esiste;
- se a>1 allora $\Delta<0$ e p è sempre strettamente positivo; quindi f è strettamente crescente su $\mathbb R$ ed in particolare è iniettiva e l'inversa esiste.

Riassumendo: l'inversa f^{-1} esiste per $a \ge 1$ e non esiste per 0 < a < 1.

c) Nel resto dell'esercizio le variabili x e y sono collegate dalla relazione y=f(x), o equivalentemente $x=f^{-1}(y)$; in particolare $y\to +\infty$ quando $x\to +\infty$ e viceversa. Riscrivo la relazione y=f(x) come

$$y = e^{ax} x^2 \left(1 + \frac{a}{x^2} \right);$$

passando al logaritmo ottengo

$$\log y = ax + 2\log x + \log\left(1 + \frac{a}{x^2}\right) \tag{4}$$

e sic
come per $x \to +\infty$ la funzione a destra dell'uguale è asintoticamente equivalente a
dax,ho che

$$\frac{1}{a}\log y \sim x \tag{5}$$

per $x \to +\infty$ e quindi anche per $y \to +\infty$, e siccome $x = f^{-1}(y)$ questa formula equivale a

$$f^{-1}(y) \sim \frac{1}{a} \log y \quad \text{per } y \to +\infty.$$

La funzione cercata è quindi

$$g(y) := \frac{1}{a} \log y$$
.

d) Riscrivo la relazione (5) come

$$\frac{\log y}{ax} \to 1$$

per $y \to +\infty$, e passando al logaritmo ottengo

$$\log\log y - \log a - \log x \to 0 \tag{6}$$

Inoltre posso riscrivere l'equazione (4) come

$$ax - \log y + 2\log x = -\log\left(1 + \frac{a}{x^2}\right)$$

e sommando ad entrambi i termini l'espressione $2(\log\log y - \log a - \log x)$ ottengo

$$ax - \log y + 2\log\log y - 2\log a = 2(\log\log y - \log a - \log x) - \log\left(1 + \frac{a}{x^2}\right).$$
 (7)

Usando la (6) si vede subito che il termine di sinistra di questa uguaglianza tende a 0 per $y \to +\infty$, e quindi anche il termine di destra tende a 0:

$$ax - \log y + 2\log\log y - 2\log a \to 0$$
;

dividendo per a e usando che $x = f^{-1}(y)$ ottengo infine che

$$f^{-1}(y) - \frac{1}{a} \left[\log y - 2 \log \log y + 2 \log a \right] \to 0.$$

La funzione cercata è quindi

$$h(y) := \frac{1}{a} \left[\log y - 2 \log \log y + 2 \log a \right].$$

PRIMA PARTE (prima variante)

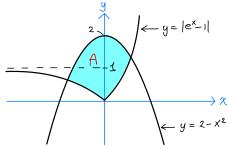
- 1. Calcolare i seguenti limiti: a) $\lim_{x \to -\infty} x^3 2^x$, b) $\lim_{x \to 2^+} \frac{x^2 5x}{x 2}$, c) $\lim_{x \to 0} \frac{\log(1 + x^4)}{\cos(x^2) 1}$. Soluzione. a) 0, b) $-\infty$, c) -2.
- 2. Calcolare il polinomio di Taylor di ordine 4 in 0 di $f(x) := (2 + 2x^4) \exp(x^2)$. Soluzione. Usando lo sviluppo di Taylor $e^t = 1 + t + \frac{1}{2}t^2 + O(t^3)$ con $t = x^2$ ottengo $f(x) = (2 + 2x^4) \left(1 + x^2 + \frac{1}{2}x^4 + O(x^6)\right) = 2 + 2x^2 + 3x^4 + O(x^6)$, e quindi $P_4(x) = 2 + 2x^2 + 3x^4$.
- 3. Il punto P si muove con legge oraria $P=(t\cos t,\,t\sin t)$; calcolare il modulo della velocità. Soluzione. La velocità di P è $\vec{v}=(\cos t-t\sin t,\,\sin t+t\cos t)$; il modulo è $|\vec{v}|=\sqrt{1+t^2}$.
- 4. Calcolare $\int_0^{\pi} x^2 \sin x \, dx$.

 Soluzione. Integrando due volte per parti si ottiene $\int_0^{\pi} x^2 \sin x \, dx = \pi^2 4$.
- 5. Dire per quali a>0 l'integrale improprio $\int_0^1 \frac{x^2+x^4}{(1-\cos x)^a} \, dx \text{ converge ad un numero finito.}$ $\frac{\text{Soluzione}}{\text{per } x\to 0} \text{ L'integrale è improprio in 0 e usando il fatto che } x^2+x^4\sim x^2 \text{ e } 1-\cos x\sim \frac{1}{2}x^2$ $\text{per } x\to 0 \text{ si ottiene che}$ $\int_0^1 \frac{x^2+x^4}{(1-\cos x)^a} \, dx \approx \int_0^1 \frac{dx}{x^{2a-2}} \, ,$ e quindi l'integrale di partenza converge per 2a-2<1, vale a dire a<3/2.
- 6. Calcolare il raggio di convergenza della serie di potenze $\sum_{n=1}^{+\infty} \frac{x^n}{3^n + n^4}$. <u>SOLUZIONE</u>. I coefficienti sono $a_n := \frac{1}{3^n + n^4} \sim 3^{-n}$ e applicando il criterio della radice per le serie di potenze si ottiene R = 3.
- 7. Determinare la soluzione dell'equazione differenziale $\dot{x} = 3t^2(x^2 + 1)$ che soddisfa x(0) = 1. Soluzione. Si tratta di un'equazione a variabili separabili:

$$\frac{\dot{x}}{1+x^2} = 3t^2$$
, $\int \frac{dx}{1+x^2} = \int 3t^2 dt$, $\arctan x = t^3 + c$;

inoltre la condizione iniziale è soddisfatta per $c = \arctan(1) = \frac{\pi}{4}$ e quindi $x = \tan\left(t^3 + \frac{\pi}{4}\right)$.

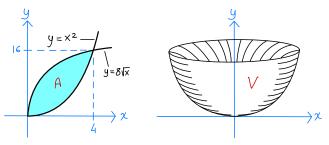
8. Disegnare l'insieme A dei punti (x,y) nel piano tali che $|e^x-1| \leq y \leq 2-x^2$. Soluzione.



SECONDA PARTE (prima variante)

- I Sia A l'insieme dei punti (x, y) nel piano tali che $x \ge 0$ e $x^2 \le y \le 8\sqrt{x}$ e sia V il solido ottenuto facendo ruotare A attorno all'asse delle y.
 - a) Disegnare A e calcolarne l'area.
 - b) Disegnare V e calcolarne il volume.

SOLUZIONE. a) x^2 e $8\sqrt{x}$ sono funzioni elementari ben note i cui grafici si intersecano, oltre che nell'origine, nel punto P la cui ascissa x che soddisfa l'equazione $x^2 = 8\sqrt{x}$, cioè $x^{3/2} = 8$, cioè $x = 8^{2/3} = 4$. L'insieme A è disegnato nella figura sotto (dove le proporzioni non sono rispettate):



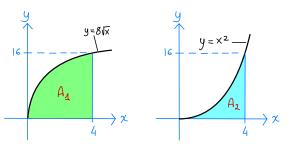
L'area di A è data dall'integrale per x compreso tra 0 e 4 della lunghezza $\ell(x)$ della sezione verticale A_x ; chiaramente $\ell(x) = 8\sqrt{x} - x^2$, e quindi

$$\operatorname{area}(A) = \int_0^4 \ell(x) \, dx = \int_0^4 8\sqrt{x} - x^2 \, dx = \left| \frac{16 \, x^{3/2}}{3} - \frac{x^2}{3} \right|_0^4 = \frac{64}{3} \, .$$

b) Il solido V è disegnato nella figura sopra. Per calcolarne il volume considero gli insiemi

$$A_1 := \{(x,y) : 0 \le x \le 4, \ 0 \le y \le 8\sqrt{x}\},\$$

$$A_2 := \{(x,y) : 0 \le x \le 4, \ 0 \le y \le x^2\},\$$



ed osservo che A si ottiene sottraendo A_2 da A_1 . Indicando con V_1 e V_2 i solidi ottenuti ruotando gli insiemi A_1 ed A_2 (rispettivamente) attorno all'asse y, osservo che V si ottiene sottraendo V_2 da V_1 e quindi, calcolando i volumi di V_1 e V_2 con la seconda formula per i volumi dei solidi di rotazione,

$$volume(V) = volume(V_1) - volume(V_2)$$

$$= 2\pi \int_0^4 8x^{3/2} dx - 2\pi \int_0^4 x^3 dr = 2\pi \left| \frac{16 x^{5/2}}{5} \right|_0^4 - 2\pi \left| \frac{x^4}{4} \right|_0^4 = \frac{384 \pi}{5}.$$

OSSERVAZIONI. Prima soluzione alternativa di b). Come visto a lezione, il volume di V è dato anche dall'integrale per r che varia da 0 a 4 dell'area della sezione cilindrica V_r , vale a dire l'insieme dei punti di V che distano r dall'asse delle y. Siccome V_r è la superficie laterale di un cilindro di raggio di base r e altezza $\ell(r) = 8\sqrt{r} - r^2$, la sua area è

$$a(r) = 2\pi r \ell(r) = 2\pi (8r^{3/2} - r^3),$$

e quindi

volume(V) =
$$\int_0^4 a(r) dr = 2\pi \int_0^4 8r^{3/2} - r^3 dr = 2\pi \left| \frac{16 r^{5/2}}{5} - \frac{r^4}{4} \right|_0^4 = \frac{384 \pi}{5}$$
.

Seconda soluzione alternativa di b). Il volume di V è anche dato dall'integrale per y che varia da 0 a 16 dell'area della sezione orizzontale di V ad altezza y. Osservo che questa sezione è una corona circolare con raggio esterno $r_e = \sqrt{y}$ (funzione inversa di x^2) e raggio interno $r_i = \frac{1}{64}y^2$ (funzione inversa di $8\sqrt{x}$) e quindi l'area è data da

$$a(y) = \pi r_e^2 - \pi r_i^2 = \pi \left(y - \frac{1}{2^{12}} y^4 \right),$$

e quindi

$$\text{volume}(V) = \int_0^{16} a(y) \, dy = \pi \int_0^{16} y - \frac{1}{2^{12}} y^4 \, dy = \pi \left| \frac{1}{2} y^2 - \frac{1}{5 \cdot 2^{12}} y^5 \right|_0^{2^4} = \frac{384 \, \pi}{5} \, .$$

2 Dato $a \in \mathbb{R}$ consideriamo l'equazione differenziale

$$\ddot{x} - 2a\dot{x} + (a^2 - a + 1)x = 1 + e^{3t} \tag{*}$$

- a) Trovare la soluzione generale di (*) per $a \neq 2, 5$.
- b) Trovare la soluzione generale di (*) per a = 2, 5.
- c) Per ogni a > 1 dire quante sono le soluzioni x(t) di (*) tali che $x(t) = O(e^{3t})$ per $t \to +\infty$.

<u>SOLUZIONE</u>. a), b) Com'è noto dalla teoria delle equazioni differenziali lineari del secondo ordine, la soluzione generale di (*) è data da

$$x(t) = x_{om}(t) + x_1(t) + x_2(t)$$

dove

- (i) x_{om} è la soluzione generale dell'equazione omogenea $\ddot{x} 2a\dot{x} + (a^2 a + 1)x = 0$,
- (ii) x_1 è una soluzione particolare di $\ddot{x} 2a\dot{x} + (a^2 a + 1)x = 1$,
- (iii) x_2 è una soluzione particolare di $\ddot{x} 2a\dot{x} + (a^2 a + 1)x = e^{3t}$.

Calcolo di x_{om} . L'equazione caratteristica dell'equazione omogenea è

$$\lambda^2 - 2a\lambda + a^2 - a + 1 = 0 \tag{1}$$

e le soluzioni sono

$$\lambda_{1,2} = a \pm \sqrt{a-1} \,.$$

Abbiamo quindi diversi casi:

• a > 1: le soluzioni λ_1, λ_2 sono reali e distinte e

$$x_{\text{om}}(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} \quad \text{con } c_1, c_2 \in \mathbb{R};$$

a=1: le soluzioni $\lambda_1,\,\lambda_2$ sono reali e coincidenti, $\lambda_1=\lambda_2=1,$ e

$$x_{\text{om}}(t) = e^t(c_1 + c_2 t) \quad \text{con } c_1, c_2 \in \mathbb{R},$$

• a < 1: le soluzioni λ_1, λ_2 sono complesse coniugate, e posto $\omega := \sqrt{1-a}$ vale che

$$x_{\text{om}}(t) = e^{at} (c_1 \sin(\omega t) + c_2 \cos(\omega t)) \quad \text{con } c_1, c_2 \in \mathbb{R}.$$

Calcolo della soluzione particolare x_1 . Poiché il termine noto è la funzione costante 1, cerco una soluzione particolare della forma x_1 = costante, ed ottengo

$$x_1 = \frac{1}{a^2 - a + 1}$$

(notare che il denominatore $a^2 - a + 1$ non si annulla mai).

Calcolo della soluzione particolare x_2 . Il termine noto è e^{3t} ; per vedere per quali a l'esponente 3 risolve l'equazione caratteristica, sostituisco 3 al posto di λ nella (1) ed ottengo

$$a^2 - 7a + 10 = 0$$
,

ovvero a = 2, 5. Distinguo ora tre casi:

• $a \neq 2$, 5: cerco una soluzione della forma $x_2 = ce^{3t}$; sostituendo questa espressione nell'equazione in (iii) ottengo l'identità $c(a^2 - 7a + 10)e^{3t} = e^{3t}$ che è soddisfatta per $c = \frac{1}{a^2 - 7a + 10}$, e dunque

$$x_2(t) = \frac{1}{a^2 - 7a + 10}e^{3t}$$
 per $a \neq 2, 5$.

• a=2: in questo caso 3 è una delle due soluzioni dell'equazione caratteristica e quindi cerco una soluzione della forma $x_2=cte^{3t}$; sostituendo questa espressione nell'equazione in (iii) ottengo l'identità $2ce^{3t}=e^{3t}$ che è soddisfatta per $c=\frac{1}{2}$, e dunque

$$x_2(t) = \frac{1}{2}te^{3t}$$
 per $a = 2$.

• a=5: come nel caso precedente cerco una soluzione della forma $x_2=cte^{3t}$ e sostituendo questa espressione nell'equazione in (iii) ottengo $c=-\frac{1}{4}$, e dunque

$$x_2(t) = -\frac{1}{4}te^{3t}$$
 per $a = 5$.

c) Caso a = 2. La soluzione di (*) è

$$x(t) = c_1 e^{3t} + c_2 e^t + \frac{1}{3} + \frac{1}{2} t e^{3t}$$

quindi per $t \to +\infty$ si ha che $x(t) \sim \frac{1}{2}te^{3t}$ e dunque x non è mai $O(e^{3t})$.

 $Caso\ a = 5$. La soluzione di (*) è

$$x(t) = c_1 e^{7t} + c_2 e^{3t} + \frac{1}{21} - \frac{1}{4} t e^{3t}$$
,

quindi per $t \to +\infty$ vale che $x(t) \sim c_1 e^{7t}$ se $c_1 \neq 0$, e $x(t) \sim -\frac{1}{4}te^{3t}$ se $c_1 = 0$; in entrambi i casi x non è $O(e^{3t})$.

Caso a > 1 e $a \neq 2$, 5. La soluzione di (*) è

$$x(t) = \underbrace{c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}}_{x_{\text{om}}} + \underbrace{\frac{1}{a^2 - a + 1} + \frac{1}{a^2 - 7a + 10} e^{3t}}_{x_1 + x_2}$$

e siccome $x_1 + x_2 = O(e^{3t})$ per $t \to +\infty$, la domanda diventa: quante soluzioni x_{om} sono (e^{3t}) ? Si vede subito che $x_{om} = O(e^{3t})$ per $c_1 = c_2 = 0$; resta da vedere se ce ne sono altre, e quante sono. Detta λ_2 la più piccola della due soluzioni di (1), cioè $\lambda_2 = a - \sqrt{a-1}$, si presentano due casi:

- se $\lambda_2 > 3$ allora $x_{om}(t) = O(e^{3t})$ solo se $c_1 = c_2 = 0$;
- se $\lambda_2 \leq 3$ allora $x_{\text{om}}(t) = O(e^{3t})$ per $c_1 = 0$ e c_2 qualunque, e queste soluzioni sono infinite.

Osservo infine che la condizione $\lambda_2 > 3$ si traduce nella disequazione $a - \sqrt{a-1} > 3$, e risolvendola ottengo a > 5.

Riassumendo, il numero delle soluzioni x di (*) che soddisfano $x(t) = O(e^{3t})$ è

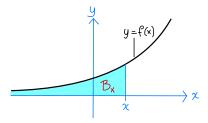
$$\begin{cases} 0 & \text{se } a = 2, 5, \\ 1 & \text{se } a > 5, \\ \text{infinito} & \text{se } 1 < a < 5 \text{ e } a \neq 2. \end{cases}$$

Data una funzione $f: \mathbb{R} \to \mathbb{R}$ continua e positiva, per ogni $x \in \mathbb{R}$ indico con B_x l'insieme dei punti del piano compresi tra l'asse delle x e il grafico di f e con ascissa minore o uguale a x. Considero quindi la seguente proprietà:

$$\operatorname{area}(B_x) = f(x) \quad \text{per ogni } x \in \mathbb{R}.$$
 (P)

- a) Trovare una funzione f che soddisfa (P).
- b) Trovare tutte le funzioni f che soddisfano (P). [Suggerimento: considerare la funzione $F(x) := area(B_x)$ e scrivere la condizione (P) in termini di F e della sua derivata.]

SOLUZIONE. Svolgo direttamente il punto b).



Siccome l'insieme B_x è quello dato nella figura sopra, l'area di B_x , che indico appunto con F(x), è data da

$$F(x) = \int_{-\infty}^{x} f(t) dt; \qquad (2)$$

dunque per il teorema fondamentale del calcolo integrale vale che

$$F'(x) = f(x), (3)$$

e pertanto la condizione (P) equivale a

$$F'(x) = F(x) .$$

Questo significa che F risolve l'equazione differenziale del primo ordine $\dot{y}=y$. Scrivendo questa equazione nella forma $\dot{y}-y=0$ si vede che è lineare, omogenea e con coefficienti costanti, e che l'equazione caratteristica è $\lambda-1=0$. Quindi $\lambda=1$ e le soluzioni dell'equazione sono $y=ce^x$ con $c\in\mathbb{R}$.

Pertanto F(x) deve essere della forma $F(x) = ce^x$, da cui segue che f = F' deve essere della forma $f(x) = ce^x$; inoltre la costante c soddisfa $c \ge 0$ perchè per ipotesi f è positiva.

Per concludere dobbiamo verificare che effettivamente tutte le funzioni $f(x) = ce^x$ con $c \ge 0$ soddisfano la proprietà (P), ma questo è un semplice calcolo:

$$\operatorname{area}(B_x) = \int_{-\infty}^x ce^t dt = \left| ce^t \right|_{-\infty}^x = ce^x.$$

OSSERVAZIONI. A prima vista la verifica che le funzioni del tipo $f(x) = ce^x$ soddisfano la proprietà (P) non sembra essere necessaria. Per capire che in realtà lo è pensate alla variante del problema in cui si considera solo $x \ge 0$ e B_x è l'insieme dei punti compresi tra il grafico di f e l'asse delle x, con ascissa compresa tra 0 e x (invece che minore di x). Procedendo come sopra si ottiene di nuovo che f deve essere della forma $f(x) = ce^x$, ma poi si scopre che la proprietà (P) vale solo se c = 0.

 $^{^{1}}$ Uso la lettera y per l'incognita perché la lettera x indica la variabile indipendente.

² In effetti il ragionamento fatto in precedenza dimostra che se f soddisfa (P) allora f è della forma $f(x) = ce^x$, ma non che tutte le f di questa forma soddisfano (P). Il punto delicato è il seguente: l'equazione (2) implica l'equazione (3) ma in generale non vale il viceversa.

PRIMA PARTE (prima variante)

1. Per ciascuno dei seguenti punti aggiungere le coordinate mancanti, polari o cartesiane (per quelle polari l'angolo α va preso in $[0, 2\pi)$):

$$P_1 \ \begin{cases} x=0 & y=-2 \\ r= & \alpha= \end{cases} , \qquad P_2 \ \begin{cases} x= & y= \\ r=\sqrt{2} & \alpha=\frac{3\pi}{4} \end{cases} , \qquad P_3 \ \begin{cases} x=-\sqrt{3} & y=-3 \\ r= & \alpha= \end{cases} .$$

Soluzione. P_1 : $r=2, \ \alpha=\frac{3\pi}{2}; \ P_2$: $x=-1, \ y=1; \ P_3$: $r=2\sqrt{3}, \ \alpha=\frac{4\pi}{3}$.

- 2. Calcolare i seguenti limiti: a) $\lim_{x\to 0} \frac{1-\sqrt{1+x^4}}{\sin^4 x}$, b) $\lim_{x\to +\infty} \cos(x\,2^{-x})$, c) $\lim_{x\to +\infty} \frac{9^x}{(1+2^x)^3}$. Soluzione. a) -1/2, b) 1, c) $+\infty$.
- 3. Trovare i punti di massimo e di minimo di $f(x) := \frac{x}{(x-1)^2}$, specificando se non esistono. Soluzione. L'unico punto di minimo è -1 e non esistono punti di massimo.
- 4. Calcolare la primitiva $\int 4x^3 \exp(x^2) dx$.

Soluzione. Utilizzando il cambio di variabile $y = x^2$ e poi integrando per parti si ottiene

$$\int 4x^3 \exp(x^2) dx = \int 2y e^y dy = 2y e^y - \int 2e^y dy$$
$$= (2y - 2) e^y + c = (2x^2 - 2) \exp(x^2) + c.$$

5. Dire per quali $a \in \mathbb{R}$ la serie $\sum_{n=1}^{\infty} \frac{2n^2 + n^4}{(1+n^2)^a}$ converge ad un numero finito.

<u>Soluzione</u>. Per $n \to +\infty$ si ha che $2n^2 + n^4 \sim n^4$ e $(1+n^2)^a \sim n^{2a}$, e quindi, per il secondo criterio del confronto asintotico,

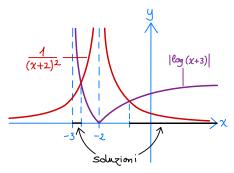
$$\sum_{n=1}^{\infty} \frac{2n^2 + n^4}{(1+n^2)^a} \approx \sum_{n=1}^{\infty} \frac{1}{n^{2a-4}} \, .$$

Pertanto la serie converge ad un numero finito se e solo se 2a-4>1, cioè $a>\frac{5}{2}$.

- 6. Dire per quali $a \in \mathbb{R}$ la funzione $x(t) := \exp(at^2)$ risolve l'equazione differenziale $\dot{x}^2 t^2x^2 = 0$. Soluzione. Per $x = \exp(at^2)$ l'equazione diventa $(4a^2 1)t^2 \exp(2at^2) = 0$, ed è verificata per ogni t se e solo se $4a^2 1 = 0$, vale a dire $a = \pm \frac{1}{2}$.
- 7. Determinare la soluzione dell'equazione $\ddot{x} 4\dot{x} + 4x = 0$ tale che x(0) = 0 e $\dot{x}(0) = 2$.

 Soluzione. La soluzione generale dell'equazione è $x(t) = e^{2t}(c_1 + c_2t)$; imponendo le condizioni iniziali ottengo $x(t) = 2te^{2t}$.
- 8. Risolvere graficamente la disequazione $|\log(x+3)| \ge \frac{1}{(x+2)^2}$

SOLUZIONE.



SECONDA PARTE (prima variante)

1 Consideriamo la funzione

$$f(x) := \frac{xe^{8x}}{3x+2}.$$

- a) Disegnare il grafico di f.
- b) Discutere al variare di $a \in \mathbb{R}$ il numero di soluzioni dell'equazione f(x) = a.
- c) Per ogni $a \in \mathbb{R}$ sia x(a) la più piccola delle soluzioni dell'equazione f(x) = a (ammesso che ne esista almeno una): determinare il dominio della funzione x(a), i punti di discontinuità, ed i limiti per $a \to 0^+$ e $a \to 0^-$.

SOLUZIONE. a) La funzione f(x) è definita per ogni $x \neq -\frac{2}{3}$, vale 0 per x = 0, è positiva per x > 0 e $x < -\frac{2}{3}$, negativa per $-\frac{2}{3} < x < 0$. I limiti significativi sono:

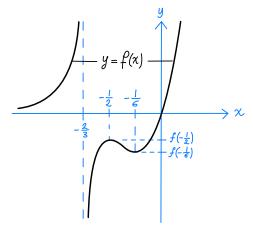
$$\lim_{x \to -\infty} f(x) = 0, \quad \lim_{x \to +\infty} f(x) = +\infty, \quad \lim_{x \to \left(-\frac{2}{3}\right)^{\pm}} f(x) = \mp \infty.$$

Studiando il segno della derivata

$$f'(x) = \frac{e^{8x}}{(3x+2)^2} (24x^2 + 16x + 2)$$

si vede che la funzione cresce negli intervalli $x<-\frac{2}{3},\ -\frac{2}{3}< x\le -\frac{1}{2},\ x\ge -\frac{1}{6},$ e decresce nell'intervallo $-\frac{1}{2}\le x\le -\frac{1}{6}$ (in particolare $x=-\frac{1}{2}$ è un punto di massimo locale e $x=-\frac{1}{6}$ è un punto di minimo locale).

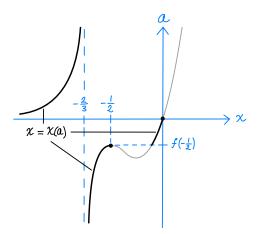
Usando queste informazioni traccio il disegno del grafico qui sotto (le proporzioni non sono rispettate).



b) Detto N(a) il numero di soluzioni dell'equazione f(x) = a, partendo dal grafico dato sopra ottengo che:

$$N(a) = \begin{cases} 1 & \text{per } a < f\left(-\frac{1}{6}\right) = -\frac{1}{9}e^{-4/3} \simeq -0.029; \\ 2 & \text{per } a = f\left(-\frac{1}{6}\right) \text{ (una delle due soluzioni è } -\frac{1}{6}); \\ 3 & \text{per } f\left(-\frac{1}{6}\right) < a < f\left(-\frac{1}{2}\right) = -e^{-4} \simeq -0.018; \\ 2 & \text{per } a = f\left(-\frac{1}{2}\right) \text{ (una delle due soluzioni è } -\frac{1}{6}); \\ 1 & \text{per } f\left(-\frac{1}{2}\right) \leq a \leq 0; \\ 1 & \text{per } a = 0 \text{ (la soluzione è 0)}; \\ 2 & \text{per } a > 0. \end{cases}$$

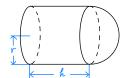
c) Lo schema al punto b) dice l'equazione f(x) = a ammette almeno una soluzione per ogni $a \in \mathbb{R}$, e questo significa che la funzione x(a) è definita per ogni $a \in \mathbb{R}$. Partendo dal grafico di f ottengo quella della funzione x(a) qui sotto (ho messo la variabile indipendente a al posto della y nell'asse verticale, lasciando la variabile dipendente x sull'asse orizzontale; di nuovo, le proporzioni non sono rispettate).



In particolare si vede che x(a) è discontinua per a=0 e $a=f\left(-\frac{1}{2}\right)$, e che

$$\lim_{a \to 0^+} x(a) = -\infty \,, \quad \lim_{a \to 0^-} x(a) = x(0) = 0 \,.$$

Devo costruire un serbatoio di volume π (non specifico l'unità di misura) con la forma di un cilindro con attaccata una semisfera, come nel disegno accanto.



- a) Se voglio che il serbatoio abbia la superficie più piccola possibile, che misure devo prendere?
- b) È possibile fare in modo che la superficie del serbatoio sia pari a 1000?

Soluzione. a) Indico con r il raggio di base del cilindro e con h l'altezza.

Il volume del serbatoio è dato dalla somma del volume del cilindro, $\pi r^2 h$, e del volume della semisfera, $\frac{2}{3}\pi r^3$, e imponendo che tale somma sia π ottengo

$$\pi r^2 h + \tfrac23 \pi r^3 = \pi \,,$$

da cui ricavo

$$h = \frac{1}{r^2} - \frac{2r}{3} = r\left(\frac{1}{r^3} - \frac{2}{3}\right). \tag{1}$$

Inoltre la superficie S del serbatoio è data dalla somma dell'area di base del cilindro πr^2 , della sua superficie laterale $2\pi rh$, e dalla superficie della semisfera $2\pi r^2$, ovvero

$$S = 3\pi r^2 + 2\pi r h \,,$$

e utilizzando la formula (1) ottengo

$$S = \frac{5\pi r^2}{3} + \frac{2\pi}{r} = \frac{\pi}{r} \left(\frac{5}{3}r^3 + 2 \right).$$

Voglio ora trovare il minimo della funzione S=S(r) fra tutti i valori ammissibili di r, vale a dire tutti gli r>0 per cui $h\geq 0$; risolvendo la disequazione $h=\frac{1}{r^2}-\frac{2r}{3}\geq 0$ ottengo che l'insieme degli r ammissibili è

$$0 < r \le r_0 := \sqrt[3]{\frac{3}{2}} \simeq 1.14$$
.

Osservo ora che la derivata $S'(r) = \frac{10\pi r}{3} - \frac{2\pi}{r^2}$ si annulla in

$$r_1 := \sqrt[3]{\frac{3}{5}} \simeq 0.84$$
,

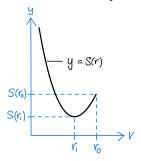
e confrontando il valore di S(r) per $r=r_1$ con i valori/limiti agli estremi dell'intervallo degli r ammissibili, vale a dire

$$S(r_1) = \pi \sqrt[3]{45} = \simeq 11.17, \quad S(r_2) = \pi \sqrt[3]{\frac{243}{4}} \simeq 12.35, \quad S(0^+) = +\infty,$$
 (2)

ottengo che r_1 è il punto di minimo assoluto di S; in tal caso l'altezza è h è uguale a r_1 .

b) Studiando il segno della derivata ottengo che S(r) decresce nell'intervallo $0 < r \le r_1$ e cresce nell'intervallo $r_1 \le r \le r_0$; usando queste informazioni e i valori in (2) ottengo il disegno del

grafico di S riportato sotto (le proporzioni non sono rispettate):



Quindi che l'immagine di S è la semiretta $[S(r_1), +\infty)$ e siccome $S(r_1) \simeq 11,17$ è minore di 1000, esiste r per cui l'area del contenitore vale 1000.

- 3 Dato a > 0 consideriamo l'integrale improprio $I := \int_0^{\pi} \frac{1}{(\sin x)^a} \frac{1}{x^{3/2}} dx$.
 - a) Dire in quali punti Iè improprio.
 - b) Determinare la parte principale della funzione integranda $f(x) := \frac{1}{(\sin x)^a} \frac{1}{x}$ per $x \to 0$.
 - c) Discutere il comportamento di I.

SOLUZIONE. a) Affinché f(x) sia definita è necessario che x e sin x siano strettamente positivi (le potenze al denominatore siano ben definite, e diverse da zero). Da questa osservazione segue che f(x) non è definita per x=0 e $x=\pi$, ed è definita e continua per $x\in(0,\pi)$. Quindi l'integrale è improprio in 0 e π .

b) Siccome $\sin x \sim x$ per $x \to 0$, ho che $(\sin x)^{-a} \sim x^{-a}$ e quindi

$$\text{p.p.}(f(x)) = \text{p.p.}((\sin x)^{-a} - x^{-3/2}) = \begin{cases} -x^{-3/2} & \text{per } a < \frac{3}{2}, \\ x^{-a} & \text{per } a > \frac{3}{2}. \end{cases}$$

Per $a = \frac{3}{2}$ la parte principale di $(\sin x)^{-a}$ si cancella con $x^{3/2}$ e serve quindi uno sviluppo più preciso di $(\sin x)^{-a}$.

Usando lo sviluppo di Taylor $\sin x = x - \frac{1}{6}x^3 + O(x^5)$ ottengo

$$(\sin x)^{-3/2} = \left(x - \frac{1}{6}x^3 + O(x^5)\right)^{-3/2} = x^{-3/2} \left(1 - \frac{1}{6}x^2 + O(x^4)\right)^{-3/2};$$

usando poi lo sviluppo di Taylor $(1+t)^b=1+bt+O(t^2)$ con $b:=-\frac{3}{2}$ e $t:=-\frac{1}{6}x^2+O(x^4)$ ottengo

$$(\sin x)^{-3/2} = x^{-3/2} (1+t)^{-3/2}$$

$$= x^{-3/2} \left(1 - \frac{3}{2}t + O(t^2)\right)$$

$$= x^{-3/2} \left(1 + \frac{1}{4}x^2 + O(x^4)\right) = x^{-3/2} + \frac{1}{4}x^{1/2} + O(x^{5/2})\right).$$

Quindi $f(x)=\frac{1}{4}x^{1/2}+O(x^{5/2}),$ da cui segue che

p.p.
$$(f(x)) = \frac{1}{4}x^{1/2}$$
 per $a = \frac{3}{2}$.

c) Siccome l'integrale è improprio in 0 e π , per studiarne il comportamento devo scomporlo come somma di due integrali impropri semplici, il primo improprio in 0 e il secondo improprio in π :

$$I = \int_0^{\pi} f(x) \, dx = \underbrace{\int_0^1 f(x) \, dx}_{I_1} + \underbrace{\int_1^{\pi} f(x) \, dx}_{I_2}.$$

Grazie al secondo criterio del confronto asintotico e a quanto fatto al punto b) ottengo che

- per $a < \frac{3}{2}$, I_1 si comporta come $\int_0^1 -\frac{1}{x^{3/2}} dx$ e quindi diverge a $-\infty$,
- $\bullet\,$ per $a=\frac{3}{2},\,I_1$ si comporta come $\int_0^1 x^{1/2}\,dx$ (che non è improprio) e quindi converge,
- per $a > \frac{3}{2}$, I_1 si comporta come $\int_0^1 \frac{1}{x^a} dx$ e quindi diverge a $+\infty$.

Per studiare il comportamento di I_2 osservo innanzitutto che per $x \to \pi$ la parte principale di f(x) è $(\sin x)^{-a}$, e usando il cambio di variabile $x = \pi - t$ e l'identità $\sin(\pi - t) = \sin t$ ottengo

$$I_2 \approx \int_1^{\pi} (\sin x)^{-a} dx = \int_0^{\pi - 1} (\sin t)^{-a} dt \approx \int_0^{\pi - 1} \frac{1}{t^a} dt$$

e quindi

- per a < 1, I_2 converge,
- per $a \ge 1$, I_2 diverge a $+\infty$.

Mettendo insieme i comportamenti di \mathcal{I}_1 ed \mathcal{I}_2 ottengo infine che

- $\bullet\,$ per $a<1,\,I_1$ diverge a $-\infty$ e I_2 converge, quindi I diverge a $-\infty,$
- per $1 \le a < \frac{3}{2}$, I_1 diverge a $-\infty$ e I_2 diverge a $+\infty$, quindi I non esiste,
- per $a \ge \frac{3}{2}$, I_1 diverge $a + \infty$ oppure converge e I_2 diverge $a + \infty$, quindi I diverge $a + \infty$.

PRIMA PARTE, GRUPPO A (prima variante)

- 1. Determinare l'insieme di definizione della funzione $f(x) := \log \left(\sin(2x) \frac{1}{2} \right)$. Soluzione. Deve essere $\sin(2x) > \frac{1}{2}$ vale a dire $\frac{\pi}{12} + k\pi < x < \frac{5\pi}{12} + k\pi$ con k intero.
- 2. Dire per quali $a \in \mathbb{R}$ la funzione $f(x) := \exp(x^3 + ax^2 + x)$ è crescente su tutto \mathbb{R} . <u>SOLUZIONE</u>. Deve essere $f'(x) = \exp(\cdots)(3x^2 + 2ax + 1) \ge 0$ per ogni x, ovvero il discriminante Δ di $3x^2 + 2ax + 1$ deve soddisfare $\Delta \le 0$, cosa che si verifica per $-\sqrt{3} \le a \le \sqrt{3}$.
- 3. Mettere le seguenti funzioni nel giusto ordine rispetto alla relazione \ll per $x \to +\infty$:

$$\underbrace{x^{10} - 2^x}_{a}$$
, $\underbrace{\frac{1}{1 + \log x}}_{b}$, $\underbrace{\frac{2^x \log x}{1 + 1/x}}_{c}$, $\underbrace{\frac{1}{x + x^2}}_{d}$.

Soluzione. $d \ll b \ll a \ll c$.

- 4. Calcolare il polinomio di Taylor di ordine 6 in 0 della funzione $f(x) := (3 2x^4) \log(1 + 2x^2)$. SOLUZIONE. Usando lo sviluppo di Taylor $\log(1+t) = t - \frac{1}{2}t^2 + \frac{1}{3}t^3 + O(t^4)$ con $t = 2x^2$ ottengo $f(x) = (3 - 2x^4) \left(2x^2 - 2x^4 + \frac{8}{3}x^6 + O(x^8)\right) = 6x^2 - 6x^4 + 4x^6 + O(x^8)$, e quindi $P_6(x) = 6x^2 - 6x^4 + 4x^6$.
- 5. Il punto P si muovo con legge oraria $P=(2t+2,1-\cos t,\sin t)$. Calcolare la distanza d percorsa tra l'istante t=0 e t=4.

SOLUZIONE. La velocità di $P \ \dot{v} = (2, \sin t, \cos t)$, quindi $|\vec{v}| = \sqrt{5} \ e \ d = \int_0^4 |\vec{v}| \ dt = 4\sqrt{5}$.

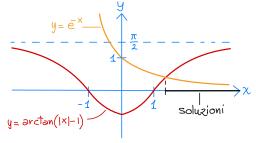
6. Dire per quali a>0 la serie $\sum_{n=1}^{\infty} \frac{\exp(n^{-a})-1}{1+\sqrt{n}}$ converge ad un numero finito.

Soluzione. Usando lo sviluppo $e^t-1\sim t$ per $t\to 0$ con $t=n^{-a}$ ottengo

$$\sum_{n=1}^{\infty} \frac{\exp(n^{-a}) - 1}{1 + \sqrt{n}} \approx \sum_{n=1}^{\infty} \frac{1}{n^{a+1/2}},$$

e quindi la serie converge per $a > \frac{1}{2}$.

- 7. Risolvere l'equazione differenziale $\dot{x}=(9x^2+1)\cos t$. SOLUZIONE. Equazione a variabili separabili: in forma integrale diventa $\int \frac{1}{9x^2+1} dx = \int \cos t \, dt$, vale a dire $\arctan(3x)=3\sin t+c$, e infine $x=\frac{1}{3}\tan(3\sin t+c)$ con $c\in\mathbb{R}$.
- 8. Risolvere graficamente la disequazione $e^{-x} \leq \arctan(|x|-1)$. SOLUZIONE.



PRIMA PARTE, GRUPPO B (prima variante)

- 1. Trovare le soluzioni della disequazione $2\cos(2x) \ge -\sqrt{2}$ nell'intervallo $0 \le x \le \pi$. Soluzione. Le soluzioni sono $0 \le x \le \frac{3\pi}{8}$ e $\frac{5\pi}{8} \le x \le \pi$.
- 2. Trovare l'inversa della funzione $y = \frac{3x+1}{2-x}$.

Soluzione. Esplicitando x nella relazione $y = \frac{3x+1}{2-x}$ ottengo $x = \frac{2y-1}{y+3}$.

3. Determinare la parte principale per $x \to 0$ della funzione $f(x) := \frac{\exp(x^2)}{1 - x^2} - 1$.

SOLUZIONE. Usando gli sviluppi $e^t = 1 + t + O(t^2)$ con $t = x^2$ e $(1+t)^{-1} = 1 - t + O(t^2)$ con $t = -x^2$ ottengo

$$f(x) = \exp(x^2) (1 - x^2)^{-1} - 1$$

= $(1 + x^2 + O(x^4))(1 + x^2 + O(x^4)) - 1 = 2x^2 + O(x^4) \sim 2x^2$.

4. Mettere le seguenti funzioni nel giusto ordine rispetto alla relazione \ll per $x \to 0$:

$$\underbrace{\log x}_{a}, \quad \underbrace{x^{2} \log x}_{b}, \quad \underbrace{\frac{\log(1+2x^{2})}{e^{x}}}_{c}, \quad \underbrace{\frac{x+\log x}{\sin x}}_{d}.$$

Soluzione. $c \ll b \ll a \ll d$.

5. Calcolare $\int_0^2 \frac{1}{4+x^2} dx$

Soluzione. Usando il cambio di variabile x = 2y ottengo

$$\int_0^2 \frac{1}{4+x^2} dx = \frac{1}{2} \int_0^1 \frac{1}{1+y^2} dy = \frac{1}{2} \arctan(1) = \frac{\pi}{8}.$$

6. Dire per quali a > 0 l'integrale improprio $\int_0^1 \frac{x^a}{(1-x)^{2a}} dx$ è finito.

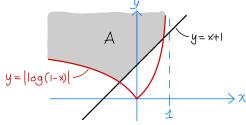
Soluzione. L'integrale è improprio in 1, e usando il cambio di variabile x = 1 - y ottengo

$$\int_0^1 \frac{x^a}{(1-x)^{2a}} dx \approx \int_0^1 \frac{1}{(1-x)^{2a}} dx = \int_0^1 \frac{1}{y^{2a}} dy$$

e quindi l'integrale è finito per $a < \frac{1}{2}$.

7. Risolvere l'equazione differenziale $\dot{x} + x \cos t = 2t \exp(-\sin t)$. Soluzione. Equazione lineare del primo ordine: $x = (t^2 + c) \exp(-\sin t)$ con $c \in \mathbb{R}$.

8. Disegnare l'insieme A dei punti (x,y) tali che $y \ge x+1$ e $y \ge |\log(1-x)|$. Soluzione.



SECONDA PARTE (prima variante)

$\boxed{\mathbf{1}}$ Dato $a \in \mathbb{R}$ consideriamo la funzione

$$f(x) := (\cos x)^a - \exp(-2x^2)$$
.

Calcolare la parte principale di f(x) per $x \to 0$, cominciando se opportuno dal caso $a \neq 4$.

SOLUZIONE. Entrambi gli addendi della funzione valgono 1 per x=0 e quindi la funzione tende a 0. Per trovare la parte principale uso lo sviluppo $\cos x = 1 - \frac{1}{2}x^2 + O(x^4)$ e lo sviluppo $e^t = 1 + t + O(t^2)$ con $t = -2x^2$, e ottengo

$$f(x) = \left(1 - \frac{1}{2}x^2 + O(x^4)\right)^a - \left(1 + t + O(t^2)\right)$$
$$= \left(1 - \frac{1}{2}x^2 + O(x^4)\right)^a - 1 + 2x^2 + O(x^4)$$

(nel secondo passaggio ho usato che $O(t^2) = O(x^4)$).

Per il primo addendo uso adesso lo sviluppo $(1+t)^a = 1 + at + O(t^2)$ con $t = -\frac{1}{2}x^2 + O(x^4)$ e ottengo

$$f(x) = at + O(t^2) + 2x^2 + O(x^4) = \left(2 - \frac{1}{2}a\right)x^2 + O(x^4) \tag{1}$$

(nel secondo passaggio ho usato che $O(t^2) = O(x^4)$ perchè $t = O(x^2)$). Pertanto

p.p.
$$(f(x)) = (2 - \frac{1}{2}a) x^2$$
 per $a \neq 4$.

Per a=4 la (1) diventa $f(x)=O(x^4)$ e non basta a determinare la parte principale di f. Servono quindi sviluppi di ordine superiore a 4: usando $\cos x=1-\frac{1}{2}x^2+\frac{1}{24}x^4+O(x^6)$ e $e^t=1+t+\frac{1}{2}t^2+O(t^3)$ con $t=-2x^2$ ottengo

$$f(x) = \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)\right)^4 - 1 + 2x^2 - 2x^4 + O(x^6),$$

usando quindi lo sviluppo $(1+t)^4 = 1 + 4t + 6t^2 + O(t^3)$ con $t = -\frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)$ ottengo

$$f(x) = 4t + 6t^2 + O(t^3) + 2x^2 - 2x^4 + O(x^6)$$

= $-2x^2 + \frac{1}{6}x^4 + O(x^6) + 6(-\frac{1}{2}x^2 + O(x^4))^2 + 2x^2 - 2x^4 = -\frac{1}{2}x^4 + O(x^6)$

e quindi

p.p.
$$(f(x)) = -\frac{1}{3}x^4$$
 per $a = 4$.

2 Consideriamo la funzione

$$f(x) := \int_0^{x^2} t - \frac{2t^9}{t^8 + 1} dt.$$

- a) Scrivere la derivata di f(x).
- b) Disegnare il grafico di f(x).
- c) Trovare la parte principale di f(x) per $x \to +\infty$.

Soluzione. a) Indico con g la funzione da integrare nella definizione di f, vale a dire

$$g(t) := t - \frac{2t^9}{t^8 + 1} = \frac{t(1 - t^8)}{t^8 + 1} \,.$$

Per una formula vista a lezione, la derivata di f è

$$f'(x) = g(x^2)(x^2)' = \frac{2x^3(1-x^{16})}{x^{16}+1}.$$
 (2)

b) L'insieme di definizione di f è tutto \mathbb{R} perché l'integrale che definisce f(x) è un integrale in senso proprio per ogni $x \in \mathbb{R}$. Inoltre la funzione f è chiaramente pari (sostituendo x con -x l'estremo di integrazione x^2 non cambia) e quindi basta studiarla per $x \geq 0$.

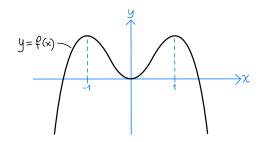
Osservo che a meno di non trovare una formula esplicita per la primitiva di g, cosa che sembra complicata, non è possibile studiare il segno di f.

Per $t \to +\infty$ vale che $g(t) \sim -t$, quindi $\lim g(t) = -\infty$ e siccome $-\infty$ è negativo ottengo che

$$\lim_{x \to +\infty} f(x) = \int_0^{+\infty} g(t) dt = -\infty.$$

Osservo adesso che il segno di f'(x) dipende solo dal segno del fattore $1-x^{16}$, che è positivo per $x^{16} \le 1$, vale a dire $0 \le x \le 1$. Dunque f(x) cresce nell'intervallo $0 \le x \le 1$ e decresce nella semiretta $x \ge 1$; in particolare 1 è il punto di massimo assoluto (ma in mancanza di una primitiva di g non posso calcolare esplicitamente il valore massimo f(1)), mentre 0 è un punto di minimo locale; inoltre f(0) = 0 perché per x = 0 gli estremi di integrazione nella definizione di f(x) coincidono.

Sulla base di queste informazioni traccio il disegno sotto (le proporzioni non sono rispettate):



c) Il fatto che $g(t) \sim -t$ per $t \to +\infty$ suggerisce che, per $x \to +\infty$,

$$f(x) = \int_0^{x^2} g(t) dt \sim \int_0^{x^2} -t dt = -\frac{1}{2}x^4 \quad \Rightarrow \quad \text{p.p.}(f(x)) = -\frac{1}{2}x^4.$$

Dimostro rigorosamente questa formula usando il teorema di de L'Hôpital e la formula per f' data in (2):

$$\lim_{x \to +\infty} \frac{f(x)}{-x^4/2} = \lim_{x \to +\infty} \frac{f'(x)}{-2x^3} = \lim_{x \to +\infty} \frac{1 - x^{16}}{-1 - x^{16}} = 1.$$

OSSERVAZIONI. Osservo che la derivata seconda di f(x) è

$$f''(x) = \frac{2x^2(3 - 16x^{16} - 3x^{32})}{(x^{16} + 1)^2}$$

e studiandone il segno per $x \ge 0$ ottengo che f è convessa nell'intervallo $0 \le x \le x_0$ e concava nella semiretta $x \ge x_0$, dove

$$x_0 := \sqrt[16]{\frac{\sqrt{265} - 16}{3}} \simeq 0.86.$$

 $\fbox{\bf 3}$ Dato a>0, considero l'insieme A dei punti (x,y) tali che x>1 e $x^{3/2}\leq y\leq f(x)$ dove

$$f(x) := \frac{(x^3+1)^{a+1/2}}{(x^3-1)^a}$$
.

- a) Disegnare l'insieme A.
- b) Dire per quali a l'area di A è finita.

<u>Soluzione</u>. a) Osservo innanzitutto che la funzione f(x) è definita solo per x > 1. Infatti le potenze coinvolte hanno esponente reale e positivo, e quindi le basi devono essere positive: dunque deve essere $x^3 + 1 \ge 0$, cioè $x \ge -1$, e $x^3 - 1 > 0$ (non è ammissibile avere 0 al denominatore), cioè x > 1. Inoltre

$$f(x) > x^{3/2}$$
 per ogni $x > 1$, (3)

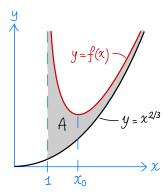
infatti il numeratore della frazione che dà f(x) soddisfa $(x^3 + 1)^{a+1/2} > (x^3)^{a+1/2} = x^{3a+3/2}$, mentre il denominatore soddisfa $(x^3 - 1)^a < (x^3)^a = x^{3a}$.

Osservo poi che la funzione f(x) è sempre positiva e tende a $+\infty$ sia per $x \to +\infty$ che per $x \to 1^+$. Studiando inoltre il segno della derivata

$$f'(x) = \frac{3}{2}(x^3 + 1)^{a - 1/2}(x^3 - 1)^{-a - 1}x^2(x^3 - 4a - 1)$$

ottengo che f(x) è decrescente per $1 < x \le x_0$ e crescente per $x \ge x_0 := \sqrt[3]{4a+1}$; in particolare x_0 è il punto di minimo assoluto di f(x) per x > 1.

Usando il grafico della funzione elementare $x^{3/2}$, che è noto, le informazioni date sopra a proposito del grafico di f(x) e la disuguaglianza (3) ottengo il disegno di A riportato sotto (le proporzioni non sono rispettate):



b) L'area di A è data da

$$\operatorname{area}(A) = \int_{1}^{+\infty} \underbrace{f(x) - x^{3/2}}_{g(x)} dx.$$

Osservo adesso che questo integrale è improprio sia a $+\infty$ che in 1 (ricordo che f(x) non è definita per x = 1) e vale $+\infty$ oppure un numero finito e positivo perché l'integranda g(x) è positiva. Per capire quando è finito lo spezzo come somma di due integrali impropri semplici,

$$\operatorname{area}(A) = \underbrace{\int_{1}^{2} g(x) \, dx}_{I_{1}} + \underbrace{\int_{2}^{+\infty} g(x) \, dx}_{I_{2}},$$

e quindi l'area di A è finita quando I_1 e I_2 sono entrambi finiti.

Per studiare il comportamento di I_1 osservo che, per $x \to 1$,

$$g(x) = \frac{(x^3+1)^{a+1/2}}{(x^2+x+1)^a(x-1)^a} - x^{3/2} \sim \frac{2^{a+1/2}}{3^a(x-1)^a}$$

(nel secondo passaggio ho usato la scomposizione $x^3 - 1 = (x^2 + x + 1)(x - 1)$, nel terzo ho usato il fatto che $x^3 + 1 \rightarrow 2$ e $x^2 + x + 1 \rightarrow 3$).

Usando ora il secondo criterio del confronto asintotico ottengo

$$I_1 = \int_1^2 g(x) dx \approx \int_1^2 \frac{1}{(x-1)^a} dx = \int_0^1 \frac{1}{y^a} dy$$

(nel secondo passaggio ho usato il cambio di variabile x=y+1, in modo da ricondurmi ad un integrale improprio in 0) e dunque

$$I_1 < +\infty$$
 per $a < 1$.

Per studiare il comportamento di I_2 trovo la parte principale di g(x) per $x \to +\infty$:

$$g(x) = (x^{3} + 1)^{a+1/2}(x^{3} - 1)^{-a} - x^{3/2}$$

$$= x^{3/2} (1 + x^{-3})^{a+1/2} (1 - x^{-3})^{-a} - x^{3/2}$$

$$= x^{3/2} \left(1 + \left(a + \frac{1}{2} \right) x^{-3} + O(x^{-6}) \right) \left(1 + ax^{-3} + O(x^{-6}) \right) - x^{3/2}$$

$$\sim \left(2a + \frac{1}{2} \right) x^{-3/2}$$

(nel secondo passaggio ho raccolto x^3 nelle basi $x^3 + 1$ e $x^3 - 1$, e nel terzo ho usato due volte lo sviluppo $(1 + t)^b = 1 + bt + O(t^2)$).

Quindi, per il secondo criterio del confronto asintotico,

$$I_2 = \int_2^{+\infty} g(x) dx \approx \int_1^{+\infty} \frac{1}{x^{3/2}} dx < +\infty$$
 per ogni a .

Concludo infine che A ha area finita se e solo se a < 1.

PRIMA PARTE, GRUPPO A (prima variante)

1. Calcolare l'area del triangolo T delimitato dagli assi e dalla retta tangente al grafico della funzione e^{-x} nel punto di ascissa x=1.

Soluzione. La retta tangente è $y=\frac{1}{e}(2-x)$, l'altezza e la base di T sono $\frac{2}{e}$ e 2, l'area è $\frac{2}{e}$.

- 2. Determinare l'insieme di definizione della funzione $f(x) := \sqrt{\log(4^x 1)}$. Soluzione. Deve essere $4^x 1 \ge 1$, vale a dire $x \ge \frac{1}{2}$.
- 3. Scrivere il polinomio di Taylor in 0 all'ordine 4 di $f(x) := \exp(2x^2)\cos(2x)$. Soluzione. $P_4(x) := 1 \frac{4}{3}x^4$.
- 4. Dire per quali a vale che $x^2 \log(2 + e^{-x}) = o(x^a)$ per $x \to +\infty$. Soluzione. a > 2.
- 5. Dire per quali a>0 l'integrale improprio $\int_0^\infty \frac{a^x}{1+x^2}\,dx \ \ \text{è finito}.$ Soluzione. $0< a\leq 1.$
- 6. Dire per quali $x \in \mathbb{R}$ la serie di potenze $\sum_{n=1}^{+\infty} \frac{x^n}{1+\sqrt{n!}}$ converge ad un numero finito.

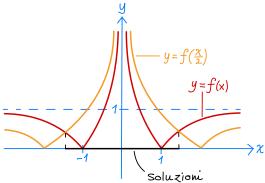
SOLUZIONE. Applicando il criterio del rapporto per le serie di potenze si ottiene

$$L := \lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \sqrt{\frac{n!}{(n+1)!}} = \lim_{n \to +\infty} \sqrt{\frac{1}{n+1}} = 0,$$

e quindi il raggio di convergenza è $R=1/L=+\infty$; la serie converge per ogni x.

- 7. Trovare la soluzione dell'equazione differenziale $\dot{x} = \frac{1}{x(4+t^2)}$ tale che x(2) = 1.

 Soluzione. Equazione a variabili separabili: $x(t) = \sqrt{\arctan\left(\frac{t}{2}\right) + 1 \frac{\pi}{4}}$.
- 8. Sia $f(x) := \left| \frac{1}{x^2} 1 \right|$. Risolvere graficamente la disequazione $f(x) \le f(\frac{1}{2}x)$. [Nel disegno indicare i punti $x = \pm 1$.] Soluzione.



PRIMA PARTE, GRUPPO B (prima variante)

- 1. Dire per quali $\alpha \in [0, 2\pi)$ e r > 0 vale l'identità $\sin x \sqrt{3}\cos x = r\sin(x + \alpha)$. Soluzione. r = 2, $\alpha = \frac{5\pi}{3}$.
- 2. Mettere le seguenti funzioni nel giusto ordine rispetto alla relazione \ll per $x \to +\infty$:

$$\underbrace{\frac{1}{x} + 2\log x}_{a}, \quad \underbrace{\frac{6}{2^{x}}}_{b}, \quad \underbrace{\frac{\log x}{\log(\log x)}}_{c}, \quad \underbrace{\frac{2^{x}(x+1)}{4^{x} + x}}_{d}.$$

Soluzione. $b \ll d \ll c \ll a$

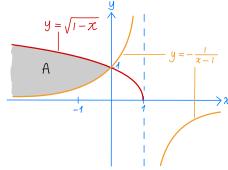
- 3. Trovare la parte principale per $x \to 0$ di $f(x) := \frac{\log(1+x^4)-x^4}{\exp(x^2)}$. Soluzione. p.p. $(f(x)) = -\frac{1}{2}x^8$.
- 4. Data la funzione $f(x) := \int_0^{x^2} \frac{dt}{2 + \cos t}$, calcolare $f'(\sqrt{\pi})$.

 Soluzione. La derivata è $f'(x) = \frac{2x}{2 + \cos(x^2)}$ e quindi $f'(\sqrt{\pi}) = 2\sqrt{\pi}$.
- 5. Dire per quali a > 0 l'area compresa tra gli assi e il grafico di $f(x) := \frac{1}{1 + a^x}$ è finita. Soluzione. L'area è data dall'integrale improprio $\int_0^\infty \frac{dx}{1 + a^x}$ ed è finita per a > 1.
- 6. Calcolare il valore della serie $\sum_{n=2}^{\infty} 2^n x^n$ (per gli x per cui converge).

Soluzione. Ci si riconduce alla serie geometrica: la serie converge per $|x|<\frac{1}{2}$ e vale che

$$\sum_{n=2}^{\infty} 2^n x^n = \sum_{n=2}^{\infty} (2x)^n = \frac{1}{1-2x} - 1 - 2x = \frac{4x^2}{1-2x}.$$

- 7. Trovare una soluzione particolare dell'equazione differenziale $\ddot{x} \dot{x} + x = t^2$ <u>Soluzione</u>. Cerco una soluzione del tipo $x(t) = at^2 + bt + c$ e trovo $x(t) = t^2 + 2t$.
- 8. Disegnare l'insieme A dei punti (x,y) tali che $-\frac{1}{x-1} \le y \le \sqrt{1-x}$. [Nel disegno indicare i punti $x=\pm 1$.] SOLUZIONE.



SECONDA PARTE (prima variante)

1 Dato a reale e positivo, consideriamo l'equazione differenziale

$$\ddot{x} + 4a\dot{x} + (a^4 + 4)x = e^t + e^{-2\sqrt{2}t} \tag{*}$$

- a) Risolvere (*) per ogni $a \neq \sqrt{2}$.
- b) Risolvere (*) per $a = \sqrt{2}$.
- c) Per $a = \sqrt{2}$, trovare la soluzione di (*) che soddisfa $x(0) = \dot{x}(0) = 0$.

Soluzione. a), b) Ricordo che la soluzione generale dell'equazione (*) è

$$x = x_{\rm om} + x_1 + x_2$$

dove

- (i) x_{om} è la soluzione generale dell'equazione omogenea $\ddot{x} + 4a\dot{x} + (a^4 + 4)x = 0$;
- (ii) x_1 è una soluzione particolare dell'equazione non omogenea $\ddot{x} + 4a\dot{x} + (a^4 + 4)x = e^t$;
- (iii) x_2 è una soluzione particolare dell'equazione non omogenea $\ddot{x} + 4a\dot{x} + (a^4 + 4)x = e^{-2\sqrt{2}t}$.

 $Passo~1:~calcolo~di~x_{om}.$ L'equazione caratteristica dell'equazione omogenea in (i) è

$$\lambda^2 + 4a\lambda + a^4 + 4 = 0.$$

e le soluzioni sono

$$\lambda_{1,2} = -2a \pm \sqrt{4a^2 - a^4 - 4} = -2a \pm \sqrt{-(a^2 - 2)^2}$$

Distinguo quindi due casi:

• se $a^2-2=0$, ovvero se $a=\sqrt{2}$ (ricordo che a è sempre positivo), ho che $\lambda_1=\lambda_2=-2\sqrt{2}$, e quindi,

$$x_{\text{om}}(t) = e^{2\sqrt{2}t}(c_1 + c_2t) \quad \text{con } c_1, c_2 \in \mathbb{R};$$

• se $a \neq \sqrt{2}$ ho che $\lambda_{1,2} = -2a \pm i(a^2 - 2)$ e quindi, posto $\omega := a^2 - 2$,

$$x_{\text{om}}(t) = e^{-2at} (c_1 \sin(\omega t) + c_2 \cos(\omega t)) \quad \text{con } c_1, c_2 \in \mathbb{R}.$$

Passo 2: calcolo di x_1 . Siccome 1 non è mai soluzione dell'equazione caratteristica, posso sempre trovare una soluzione particolare dell'equazione in (ii) della forma $x_1 = ce^t$. Sostituendo questa espressione nell'equazione ottengo che quest'ultima è soddisfatta se $c(a^4 + 4a + 5) = 1$, e quindi

$$x_1(t) = \frac{1}{a^4 + 4a + 5} e^t$$
.

(Il fatto che il denominatore $a^4 + 4a + 5$ non si annulli per alcun a segue dalla teoria, ma non è affatto evidente.)

Passo 3: calcolo di x_2 per $a \neq \sqrt{2}$. Il coefficiente $-2\sqrt{2}$ non è mai una soluzione dell'equazione caratteristica per $a \neq \sqrt{2}$, e quindi posso sempre trovare una soluzione particolare dell'equazione in (iii) della forma $x_2 = ce^{-2\sqrt{2}t}$. Sostituendo questa espressione nell'equazione ottengo che quest'ultima è soddisfatta se $c(a^4 - 8\sqrt{2}a + 12) = 1$, e quindi

$$x_2(t) = \frac{1}{a^4 - 8\sqrt{2}a + 12}e^{-2\sqrt{2}t}$$
.

Passo 4: calcolo di x_2 per $a=\sqrt{2}$. In questo caso il coefficiente $-2\sqrt{2}$ coincide con le due soluzioni dell'equazione caratteristica, e quindi posso trovare una soluzione particolare dell'equazione in (iii) della forma $x_2=ct^2e^{-2\sqrt{2}t}$. Sostituendo questa espressione nell'equazione ottengo che quest'ultima è soddisfatta se 2c=1, e quindi

$$x_2(t) = \frac{1}{2}t^2e^{-2\sqrt{2}t}.$$

Riassumendo, per $a \neq \sqrt{2}$ la soluzione generale di (*) è

$$x(t) = e^{-2at} \left(c_1 \sin(\omega t) + c_2 \cos(\omega t) \right) + \frac{1}{a^4 + 4a + 5} e^t + \frac{1}{a^4 - 8\sqrt{2}a + 12} e^{-2\sqrt{2}t}$$

con $c_1, c_2 \in \mathbb{R}$, mentre per $a = \sqrt{2}$ è

$$x(t) = e^{-2\sqrt{2}t} \left(c_1 + c_2 t + \frac{1}{2}t^2\right) + \frac{1}{9+4\sqrt{2}}e^t$$
.

c) Per $a \neq \sqrt{2}$ si ha inoltre che

$$x(t) = e^{-2\sqrt{2}t} \left(c_2 - 2\sqrt{2}c_1 + (1 - 2\sqrt{2}c_2)t - \sqrt{2}t^2 \right) + \frac{1}{9+4\sqrt{2}}e^t ,$$

e quindi, imponendo che $x(0) = \dot{x}(0) = 0$ si ottiene il sistema

$$\begin{cases} c_1 + \frac{1}{9+4\sqrt{2}} = 0\\ c_2 - 2\sqrt{2}c_1 + \frac{1}{9+4\sqrt{2}} = 0 \end{cases}$$

da cui si ottiene infine $c_1=-\frac{1}{9+4\sqrt{2}}$ e $c_2=-\frac{1+2\sqrt{2}}{9+4\sqrt{2}}.$

2 Dato a reale e positivo, consideriamo la funzione

$$f(x) := \frac{1}{x(x+1)^a - x^{a+1}},$$

e indichiamo con A la figura piana costituita dai punti (x,y) tali che $x \ge 1$ e $0 \le y \le f(x)$, e con V il solido ottenuto ruotando A attorno all'asse verticale di equazione x = 1.

- a) Per a=2, disegnare A e V e calcolare l'area di A.
- b) Dire per quali a l'area di A è finita.
- c) Dire per quali a il volume di V è finito.

SOLUZIONE. a) Tenendo conto della definizione di A, come prima cosa studio la funzione

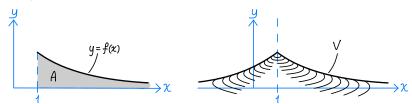
$$f(x) = \frac{1}{x(x+1)^2 - x^3} = \frac{1}{x(2x+1)}$$

limitatamente alla semiretta $x \ge 1$: osservo che f(x) è ben definita e positiva per ogni $x \ge 1$, tende a 0 per $x \to +\infty$, e poiché la derivata

$$f'(x) = -\frac{4x+1}{(2x^2+x)^2}$$

è chiaramente negativa per $x \ge 1$, la funzione è sempre decrescente.

Sulla base di queste informazioni traccio i disegni riportati sotto (al solito, le proporzioni non sono rispettate).



L'area di A è data quindi dall'integrale improprio semplice

$$\operatorname{area}(A) = \int_{1}^{\infty} f(x) \, dx \,. \tag{1}$$

Poiché

$$f(x) = \frac{1}{x(2x+1)} \sim \frac{1}{2x^2} \text{ per } x \to +\infty,$$

questo integrale improprio è finito. Per capire quanto vale devo trovare una primitiva di f(x), e per farlo cerco una scomposizione di f(x) della forma

$$f(x) = \frac{A}{x} + \frac{B}{2x+1};$$

facendo i conti ottengo A=1e B=-2e quindi

$$\int f(x) dx = \int \frac{1}{x} - \frac{2}{2x+1} dx = \log x - \log(2x+1) + c = \log\left(\frac{x}{2x+1}\right) + c.$$

Pertanto

$$\operatorname{area}(A) = \int_{1}^{\infty} f(x) \, dx = \left| \log \left(\frac{x}{2x+1} \right) \right|_{1}^{\infty}$$
$$= \lim_{x \to +\infty} \log \left(\frac{x}{2x+1} \right) - \log \left(\frac{1}{3} \right)$$
$$= \log \left(\frac{1}{2} \right) - \log \left(\frac{1}{3} \right) = \log \left(\frac{3}{2} \right) \simeq 0,405 \,.$$

b) Dato a > 0 la funzione f(x) è ben definita e strettamente positiva per ogni $x \ge 1$, e quindi l'area di A è data, di nuovo, dall'integrale improprio semplice in (1).

Per capire come si comporta questo integrale cerco la parte principale di f(x) per $x \to +\infty$: ricordando che $(1+t)^a - 1 \sim at$ per $t \to 0$ ottengo

$$f(x) = \frac{1}{x(x+1)^a - x^{a+1}} = \frac{1}{x^{a+1} \left[\left(1 + \frac{1}{x} \right)^a - 1 \right]} \sim \frac{1}{ax^a} \quad \text{per } x \to +\infty.$$

Quindi

$$\operatorname{area}(A) = \int_{1}^{\infty} f(x) \, dx \approx \int_{1}^{\infty} \frac{1}{x^{a}} \, dx$$

e in particolare l'area di A è finita se e solo se a>1

c) Voglio utilizzare la nota formula per il volume del solido ottenuto per rotazione attorno all'asse x = 0. Per farlo devo traslare A verso sinistra di 1, cioè devo applicare detta formula alla funzione f(x + 1):

volume(V) =
$$\int_{0}^{\infty} 2\pi x f(x+1) dx = \int_{1}^{\infty} 2\pi (y-1) f(y) dy \approx \int_{1}^{\infty} \frac{dy}{y^{a-1}}$$
,

e quindi il volume di V è finito se e solo se a>2 (nel secondo passaggio ho usato il cambio di variabile y=x+1, e nel terzo ho usato che $f(y)\sim \frac{1}{ay^a}$ e $y-1\sim y$ per $y\to +\infty$).

3 Dato a reale e positivo, consideriamo la serie

$$S(a) := \sum_{n=4}^{\infty} \frac{(-1)^n n}{a^n + 1}.$$

- a) Discutere il comportamento di questa serie al variare di a.
- b) Calcolare S(4) con errore inferiore a 10^{-4} .

SOLUZIONE. a) Indico con a_n l'addendo n-esimo della serie S(a), e con $S_N(a)$ la somma parziale N-esima, vale a dire

$$a_n := \frac{(-1)^n n}{a^n + 1}, \quad S_N(a) := \sum_{n=4}^N a_n = \sum_{n=4}^N \frac{(-1)^n n}{a^n + 1}.$$

Osservo che questi addendi hanno segno variabile (il numero $(-1)^n$ vale 1 quando n è pari e -1 quando n è dispari) e quindi non posso usare nessuno dei criteri che funzionano solo per le serie a segno costante, come ad esempio i criteri di confronto asintotico.

Osservo per cominciare che per a<1 vale $a^n\to 0$ per $n\to +\infty$ e quindi

$$|a_n| = \frac{n}{a^n + 1} \sim n \,,$$

mentre per a=1 vale $a^n=1$ per ogni n e quindi

$$|a_n| = \frac{n}{2};$$

in entrami i casi a_n non tende a 0 per $n \to \infty$, e quindi la serie non può convergere ad un numero finito (ma non so specificare se diverge a $+\infty$, a $-\infty$, oppure non esiste).

Per capire il comportamento per a>1 uso il criterio del rapporto: in questo caso $a^n\to +\infty$ per $n\to +\infty$, quindi $a^n+1\sim a^n$ e

$$\frac{|a_{n+1}|}{|a_n|} = \frac{n+1}{a^{n+1}+1} \cdot \frac{a^n+1}{n} \sim \frac{n}{a^{n+1}} \cdot \frac{a^n}{n} = \frac{1}{a},$$

e siccome $\frac{1}{a} < 1$ la serie converge.

b) Fissato a = 4, considero la funzione $f(x) := x 4^{-x}$ e osservo che

$$|a_n| = \frac{n}{4^n + 1} \le \frac{n}{4^n} = f(n)$$
 per ogni n intero;

inoltre studiando il segno della derivata $f'(x) = (1 - x \log 4) 4^{-x}$ trovo che f(x) è decrescente per $x \ge 1$, e di conseguenza vale la seguente stima, vista a lezione:

$$|S(4) - S_N(4)| \le \int_N^\infty f(x) dx = \int_N^\infty x 4^{-x} dx = \underbrace{\left(\frac{N}{\log 4} + \frac{1}{(\log 4)^2}\right) 4^{-N}}_{e(N)}$$

(nell'ultimo passaggio ho integrato per parti).

Uso ora la calcolatrice per calcolare e(N) a partire da N=5, e scopro che $e(8)<10^{-4}$. Quindi la somma parziale $S_8(4)$ approssima il valore della serie S(4) con errore inferiore a 10^{-4} . Sempre usando la calcolatrice ottengo che

$$S_8(4) = \sum_{n=4}^{8} a_n = \frac{4}{4^4 + 1} - \frac{5}{4^5 + 1} + \frac{6}{4^6 + 1} - \frac{7}{4^7 + 1} + \frac{8}{4^8 + 1} = 0,011845 \pm 10^{-6},$$

e quindi

$$S(4) = 0.011845 \pm 10^{-4}$$
.

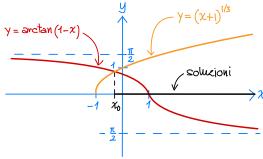
OSSERVAZIONI. È possibile dimostrare che per $a \leq 1$ la serie S(a) non solo non converge ad un numero finito, ma più precisamente non esiste. Si riesce infatti a far vedere che la successione delle somme parziali S_N con N pari diverge a $+\infty$, mentre la successione S_N con N dispari diverge a $-\infty$.

PRIMA PARTE (prima variante)

- 1. Determinare l'insieme di definizione della funzione $f(x) := \log (x \sqrt{x+2})$. Soluzione. La funzione è definita per x > 2.
- 2. Calcolare i seguenti limiti: a) $\lim_{x \to +\infty} \frac{\sin(1/x)}{\arctan x}$; b) $\lim_{x \to +\infty} \frac{\sqrt{\log x}}{\log(\log x)}$; c) $\lim_{x \to 0} \frac{x^4 e^x}{x^2 + \log(1 x^2)}$. Soluzione. a) 0; b) $+\infty$; c) -2.
- 3. Dire in quali intervalli la funzione $f(x):=\exp(-2x^2+4x+2)$ è concava. Soluzione. $\frac{1}{2} \le x \le \frac{3}{2}$.
- 4. Usando il fatto che $\int_{-\infty}^{+\infty} \exp(-t^2) dt = \sqrt{\pi}$, calcolare $\int_{-\infty}^{+\infty} \exp(-9(x+3)^2) dx$. Soluzione. $\frac{\sqrt{\pi}}{3}$.
- 5. Dire per quali a > 0 l'integrale improprio $\int_{1}^{+\infty} \frac{\log\left(1 + \frac{1}{x^{a}}\right)}{x^{a} + x^{2a}} dx$ è finito. Soluzione. $a > \frac{1}{3}$.
- 6. Calcolare il valore della serie $\sum_{n=0}^{\infty} \frac{x^{2n} 1}{2^n}$ per ogni $x \in \mathbb{R}$.

SOLUZIONE.
$$\sum_{n=0}^{\infty} \frac{x^{2n} - 1}{2^n} = \sum_{n=0}^{\infty} \left(\frac{x^2}{2}\right)^n - \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{1 - \frac{x^2}{2}} - \frac{1}{1 - \frac{1}{2}} = \frac{2x^2 - 2}{2 - x^2}$$

- 7. Trovare la soluzione dell'equazione differenziale $\dot{x} = \frac{2te^x}{1+t^2}$ che soddisfa x(0) = 0. Soluzione. Equazione a variabili separabili: $x(t) = -\log(1 \log(1 + t^2))$.
- 8. Risolvere graficamente la disequazione $\arctan(1-x) \le (x+1)^{1/3}$. Soluzione.



SECONDA PARTE

- 1 Consideriamo la famiglia di funzioni $f(x) := x^4 15x^2 + ax + b$, con $a, b \in \mathbb{R}$.
 - a) Trovare a, b in modo tale che il grafico della funzione f(x) sia tangente nel punto x = 1 alla retta di equazione y = -26x + 52.
 - b) Disegnare la funzione trovata al punto a) ristretta all'intervallo $\left[0,\frac{3}{2}\right]$.
 - c) Considerare tutti i rettangoli R con assi paralleli agli assi coordinati, un vertice nell'origine, ed il vertice opposto sul grafico della funzione f trovata al punto a) ristretta all'intervallo I; tra questi rettangoli trovare quello di area massima.

SOLUZIONE. a) Dire che i grafici delle funzioni f(x) e di g(x) := -26 x + 52 sono tangenti per x = 1 equivale a dire che i grafici si intersecano in questo punto, cioè f(1) = g(1), e che le rette tangenti hanno la stessa pendenza, cioè f'(1) = g'(1). Svolgendo i calcoli la prima condizione diventa a + b - 14 = 26, vale a dire a + b = 40, e la seconda diventa a - 26 = -26, cioè a = 0. Pertanto la funzione cercata è quella corrispondente ai parametri a = 0 e b = 40, ovvero

$$f(x) = x^4 - 15x^2 + 40.$$

Da qui in poi f indica questa specifica funzione.

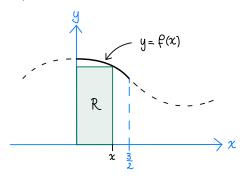
b) Indico con I l'intervallo $[0, \frac{3}{2}]$; la funzione f è definita su tutto I; la derivata

$$f'(x) = 4x^3 - 30 x = 2x(x^2 - 15)$$

è negativa in I e quindi f è decrescente in questo intervallo, e la derivata seconda

$$f''(x) = 12x^2 - 30 = 6(2x^2 - 5)$$

è negativa in I e quindi f è concava. Usando queste informazioni traccio il grafico sotto (le proporzioni non sono rispettate).



c) Dato un rettangolo R come richiesto (in verde nella figura sopra), indico con x l'ascissa del vertice che sta sul grafico di f, e quindi la base di R è x mentre l'altezza è f(x) (notare che x e f(x) sono positivi), e pertanto l'area di R è

$$a(x) = x f(x) = x^5 - 15 x^3 + 40 x$$
.

Si tratta ora di trovare il punto di massimo di a(x) al variare di x nell'intervallo I. Per farlo confronto i valori di a negli estremi di I, cioè 0 e $\frac{3}{2}$, e nei punti di I dove si annulla la derivata

$$a'(x) = 5x^4 - 45x^2 + 40,$$

vale a dire x=1 (per risolvere l'equazione a'(x)=0 applico la sostituzione $t=x^2$ e ottengo un'equazione di secondo grado con soluzioni t=1 e t=8, e quindi $x=\pm 1$ e $x=\pm 2\sqrt{2}$; di queste soluzioni solo x=1 appartiene a I). Siccome a(0)=0, a(1)=36 e $a(3/2)=17\pm 0.5$, il valore massimo di a(x) per $x\in I$ vale 36 e viene raggiunto per x=1.

 $|\mathbf{2}|$ a) Scrivere lo sviluppo di Taylor all'ordine 3 in 0 della funzione $\tan x$.

b) Per ogni a > 0 trovare la parte principale per $x \to 0$ di $f(x) := \tan(x^a) - \tan(\sin x)$.

SOLUZIONE. a) Calcolo lo sviluppo di Taylor cercato direttamente a partire dalla definizione:

$$(\tan x)' = 1 + \tan^2 x,$$

$$(\tan x)'' = (1 + \tan^2 x)' = 2 \tan x (\tan x)' = 2 \tan x + 2 \tan^3 x,$$

$$(\tan x)''' = (2 \tan x + 2 \tan^3 x)' = (2 + 6 \tan^2 x) (\tan x)' = (2 + 6 \tan^2 x) (1 + \tan^2 x).$$

e quindi per x=0 vale che $(\tan x)'=1$, $(\tan x)''=0$ e $(\tan x)'''=2$; ne segue che lo sviluppo di Taylor di $\tan x$ all'ordine 3 in 0 è

$$\tan x = x + \frac{1}{3}x^3 + O(x^4). \tag{1}$$

(Siccome la funzione $\tan x$ è dispari, potrei sostituire il resto $O(x^4)$ con $O(x^5)$, ma questo non dà particolari vantaggi nel seguito.)

b) Per x che tende a 0 vale che $\tan x \sim x$, quindi

$$\tan(x^a) \sim x^a$$
, $\tan(\sin x) \sim \sin x \sim x$,

e quindi

$$\text{p.p.}(f(x)) = \text{p.p.}\left(\tan(x^a) - \tan(\sin x)\right) = \begin{cases} x^a & \text{se } a < 1, \\ -x & \text{se } a > 1. \end{cases}$$

Invece per a=1 le parti principali dei due addendi che formano f si cancellano, e ho bisogno di sviluppi più precisi. Usando lo sviluppo (1) con sin x al posto di x e ottengo

$$\tan(\sin x) = \sin x + \frac{1}{3}(\sin x)^3 + O((\sin x)^4),$$

usando poi gli sviluppi $\sin x = x - \frac{1}{6}x^3 + O(x^5)$, $\sin x = x + O(x^3)$ e $\sin x \sim x$ ottengo

$$\tan(\sin x) = \left(x - \frac{1}{6}x^3 + O(x^5)\right) + \frac{1}{3}\left(x + O(x^3)\right)^3 + O(x^4)$$
$$= x - \frac{1}{6}x^3 + O(x^5) + \frac{1}{2}\left(x^3 + O(x^5)\right) + O(x^4) = x + \frac{1}{6}x^3 + O(x^4)$$

(nel secondo passaggio ho sviluppato $(x + O(x^3))^3$ tramite la formula del binomio di Newton). Grazie a (1) e a quest'ultima formula ottengo infine che, per a = 1,

$$f(x) = \tan x - \tan(\sin x) = \frac{1}{6}x^3 + O(x^4),$$

e quindi p.p. $(f(x)) = \frac{1}{6}x^{3}$.

<u>OSSERVAZIONI</u>. Lo sviluppo di $\tan x$ (punto a)) può essere ottenuto anche partendo dagli sviluppi (noti) di $\sin x$, $\cos x$ e $(1+t)^{-1}$:

$$(\cos x)^{-1} = \left(1 \underbrace{-\frac{1}{2}x^2 + O(x^4)}_{t}\right)^{-1} = 1 - t + O(t^2) = 1 + \frac{1}{2}x^2 + O(x^4),$$

e quindi

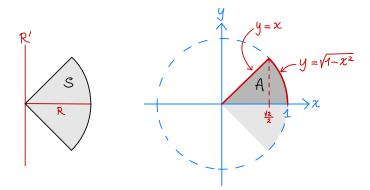
$$\tan x = \sin x (\cos x)^{-1} = \left(x - \frac{1}{6}x^3 + O(x^5)\right) \left(1 + \frac{1}{2}x^2 + O(x^4)\right) = x + \frac{1}{3}x^3 + O(x^5).$$

- Sia S un quarto di un cerchio di raggio 1, sia R il raggio che divide S in due, e sia R' la retta ortogonale a R che passa per il centro del cerchio.
 - a) Disegnare S, R ed R'.
 - b) Calcolare il volume del solido V ottenuto facendo ruotare S attorno al raggio R.
 - c) Calcolare il volume del solido V' ottenuto facendo ruotare S attorno alla retta R'.

<u>Soluzione</u>. a) S, R ed R' sono disegnati sotto a sinistra; a destra li ridisegno facendo coincidere il centro del cerchio con l'origine degli assi, R' con l'asse delle y, e R con il segmento [0,1]

¹ La funzione f(x) è definita per $x \ge 0$.

sull'asse delle x.



b) Come si vede dalla figura sopra a destra, il solido V può essere ottenuto ruotando attorno all'asse delle x la figura piana A delimitata dall'asse delle x e dal grafico della funzione f data da

$$f(x) := \begin{cases} x & \text{per } 0 \le x \le \frac{\sqrt{2}}{2}, \\ \sqrt{1 - x^2} & \text{per } \frac{\sqrt{2}}{2} < x \le 1. \end{cases}$$

Usando la prima formula sul volume dei solidi di rotazione vista a lezione ottengo

$$volume(V) = \pi \int_0^1 \pi (f(x))^2 dx$$

$$= \pi \int_0^{\sqrt{2}/2} x^2 dx + \pi \int_{\sqrt{2}/2}^1 (1 - x^2) dx$$

$$= \pi \left| \frac{x^3}{3} \right|_0^{\sqrt{2}/2} + \pi \left| x - \frac{x^3}{3} \right|_{\sqrt{2}/2}^1 = \frac{(2 - \sqrt{2})\pi}{3}.$$

c) Il volume del solido V' è il doppio di quello del solido ottenuto facendo ruotare A attorno all'asse delle y, che a sua volta può essere calcolato tramite la seconda formula sul volume dei solidi di rotazione:

$$volume(V') = 4\pi \int_0^1 x f(x) dx$$

$$= 4\pi \int_0^{\sqrt{2}/2} x^2 dx + 4\pi \int_{\sqrt{2}/2}^1 x \sqrt{1 - x^2} dx$$

$$= 4\pi \left| \frac{x^3}{3} \right|_0^{\sqrt{2}/2} + 4\pi \left| -\frac{1}{3} (1 - x^2)^{3/2} \right|_{\sqrt{2}/2}^1 = \frac{2\sqrt{2}\pi}{3}.$$

(Nel terzo passaggio ho trovato la primitiva di $x\sqrt{1-x^2}$ usando il cambio di variabile $t=1-x^2$.)

OSSERVAZIONI. Il volume di V' può essere calcolato a partire da quello di V osservando che V' è uguale ad una sfera S di raggio 1 a cui sono stati tolti due solidi uguali a V, e quindi

volume(V') = volume(S) - 2 volume(V) =
$$\frac{4\pi}{3} - 2 \frac{(2-\sqrt{2})\pi}{3} = \frac{2\sqrt{2}\pi}{3}$$
.

Un approccio alternativo ai punti b) e c) è questo: si fa coincidere la retta R' con l'asse delle x, il raggio R con il segmento [0,1] sull'asse delle y, e si considera la figura piana E delimitata a destra dall'asse delle x, sopra dal grafico di $f(x) := \sqrt{1-x^2}$, e sotto dal grafico di g(x) = x. In questo caso V coincide con il solido ottenuto ruotando E attorno all'asse delle y, e quindi

$$volume(V) = \int_0^{\sqrt{2}/2} 2\pi x f(x) dx - \int_0^{\sqrt{2}/2} 2\pi x g(x) dx = \cdots,$$
 (2)

mentre V' è il doppio del solido ottenuto ruotando E attorno all'asse delle x, e quindi

$$volume(V') = 2 \left[\int_0^{\sqrt{2}/2} \pi(f(x))^2 dx - \int_0^{\sqrt{2}/2} \pi(g(x))^2 dx \right] = \cdots$$
 (3)

36

PRIMA PARTE (prima variante)

1. Consideriamo la funzione $f(x) := \frac{e^x + 1}{e^x - 1}$. Trovare la formula della funzione inversa $f^{-1}(y)$.

SOLUZIONE. $f^{-1}(y) = \log\left(\frac{y+1}{y-1}\right)$.

2. Trovare i valori massimi e minimi della funzione $f(x) := \frac{x^2 - 28}{(x+1)^4}$, e se non esistono gli estremi inferiori e superiori dei valori.

<u>Soluzione</u>. Il valore massimo è $f(-7) = \frac{21}{6^4} \simeq 0.016$; il valore minimo non esiste e l'estremo inferiore è $-\infty$.

3. Mettere le seguenti funzioni nell'ordine corretto rispetto alla relazione \ll per $x \to +\infty$:

$$\underbrace{\sqrt{\frac{x^7}{x^2+1}}}_{a}, \underbrace{\frac{2^x+1}{8^x+1}}_{b}, \underbrace{\frac{1}{6^x+3}}_{c}, \underbrace{x^2 \log(1+e^x)}_{d}.$$

Soluzione. $c \ll b \ll a \ll d$.

4. Trovare il polinomio di Taylor di ordine 6 (in 0) della funzione $f(x) := \frac{1+x^3}{\sqrt{1+4x^3}}$. Soluzione. $P_6(x) = 1-x^3+4x^6$.

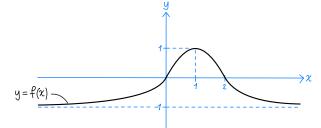
5. Calcolare velocità e accelerazione di un punto con legge oraria $P = (\exp(t^2), t^3 + 1)$. Soluzione. $\vec{v} = (2t \exp(t^2), 3t^2); \vec{a} = ((2+4t^2) \exp(t^2), 6t)$.

6. Dire per quali $a \in \mathbb{R}$ la serie $\sum_{n=1}^{+\infty} \frac{2^{-n}}{n^{2a}(1+n)}$ converge a un numero finito.

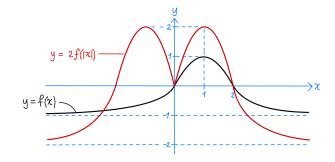
Soluzione. La serie si comporta come $\sum_{n=1}^{+\infty} \frac{1}{2^n n^{2a+1}}$ e converge per ogni $a \in \mathbb{R}$.

- 7. Trovare la soluzione dell'equazione differenziale $\dot{x} + 2tx = \exp(t t^2)$.

 Soluzione. Equazione differenziale lineare del primo ordine: $x(t) = e^{-t^2}(e^t + c)$ con $c \in \mathbb{R}$.
- 8. Nella figura sotto è disegnato il grafico della funzione f(x). Aggiungere il grafico di 2 f(|x|).



SOLUZIONE.



Seconda Parte

 $\boxed{\mathbf{1}}$ Per ogni a > 0, trovare la soluzione generale dell'equazione differenziale

$$a\ddot{x} + 4\dot{x} + 4x = 8t + e^{-2t} \,. \tag{*}$$

[Fare attenzione al caso a = 1.]

<u>SOLUZIONE</u>. L'equazione (*) è una equazione differenziale del secondo ordine lineare a coefficienti costanti, e la soluzione generale di (*) si scrive come

$$x = x_{\rm om} + x_1 + x_2$$

dove

- (i) x_{om} è la soluzione generale dell'equazione omogenea $a\ddot{x} + 4\dot{x} + 4x = 0$;
- (ii) x_1 è una soluzione particolare dell'equazione non omogenea $a\ddot{x}+4\dot{x}+4x=8t;$
- (iii) x_2 è una soluzione particolare dell'equazione non omogenea $a\ddot{x} + 4\dot{x} + 4x = e^{-2t}$.

Passo 1: calcolo di x_{om}. L'equazione caratteristica dell'equazione omogenea in (i) è

$$a\lambda^2 + 4\lambda + 4 = 0, (1)$$

e le soluzioni sono

$$\lambda_{1,2} = \frac{-2 \pm 2\sqrt{1-a}}{a} \,.$$

Sulla base del segno del discriminante distinguo tre casi:

• se 0 < a < 1 le soluzioni λ_1, λ_2 sono reali e positive, e quindi

$$x_{\text{om}}(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} \quad \text{con } c_1, c_2 \in \mathbb{R};$$

• se a=1 ho che $\lambda_1=\lambda_2=-2$, e quindi

$$x_{\text{om}}(t) = (c_1 + c_2 t) e^{-2t} \quad \text{con } c_1, c_2 \in \mathbb{R};$$

• se a > 1 ho che $\lambda_{1,2} = -\frac{2}{a} \pm \omega i$ con $\omega := \frac{2}{a} \sqrt{a-1}$, e quindi

$$x_{\text{om}}(t) = e^{-2t/a} \left(c_1 \sin(\omega t) + c_2 \cos(\omega t) \right) \quad \text{con } c_1, c_2 \in \mathbb{R}.$$

Passo 2: calcolo di x_1 . Posso sempre trovare una soluzione particolare dell'equazione in (ii) della forma $x_1 = bt + c$. Sostituendo questa espressione nell'equazione ottengo che quest'ultima è soddisfatta se 4b = 8 e 4b + 4c = 0, cioè b = 2 e c = -2, e quindi

$$x_1(t) = 2t - 2$$
.

Passo 3: calcolo di x_2 . Per trovare x_2 devo prima capire per quali a il coefficiente -2 nel termine noto e^{-2t} risolve l'equazione caratteristica (1): sostituendo -2 al posto di λ , la (1) diventa 4a - 4 = 0, ovvero a = 1. Distinguo quindi due casi:

• se $a \neq 1$ posso trovare una soluzione particolare dell'equazione in (iii) della forma $x_2 = ce^{-2t}$; Sostituendo questa espressione nell'equazione ottengo che quest'ultima è soddisfatta se c(4a-4)=1, e quindi

$$x_2(t) = \frac{1}{4a-4}e^{-2t} \,.$$

• se a=1 il coefficiente -2 coincide con *entrambe* le soluzioni dell'equazione caratteristica (1), e quindi posso trovare una soluzione particolare dell'equazione in (iii) della forma $x_2 = ct^2e^{-2t}$; sostituendo questa espressione nell'equazione ottengo che quest'ultima è soddisfatta se 2c=1, e quindi

$$x_2(t) = \frac{1}{2}t^2e^{-2t}$$
.

Riassumendo, per 0 < a < 1 la soluzione generale di (*) è

$$x(t) = \begin{cases} c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} + 2t - 2 + \frac{1}{4a - 4} e^{-2t} & \text{per } 0 < a < 1, \\ \left(c_1 + c_2 t + \frac{1}{2} t^2 \right) e^{-2t} + 2t - 2 & \text{per } a = 1, \\ e^{-2t/a} \left(c_1 \sin(\omega t) + c_2 \cos(\omega t) \right) + 2t - 2 + \frac{1}{4a - 4} e^{-2t} & \text{per } a > 1. \end{cases}$$

Una ditta deve organizzare la spedizione di 100 scatoloni uguali ad un certo destinatario. Per farlo si serve di due compagnie di spedizione: la compagnia A offre furgoni che possono trasportare 5 scatole per volta, ad un prezzo di 200 euro a furgone, mentre la compagnia B offre furgoni che possono trasportare 10 scatole per volta ad un prezzo base di 200 euro a furgone, a cui però va aggiunto un sovrapprezzo complessivo pari a $15 n^2$ euro, dove n è il numero totale di furgoni affittati.

Quanti furgoni conviene affittare dalla compagnia A e quanti dalla compagnia B?

 $\underline{\text{SOLUZIONE}}.$ Supponiamo di affittare x furgoni dalla compagnia A e y da B. Dovendo trasportare 100 scatole, deve valere che

$$5x + 10y = 100$$
,

vale a dire

$$x = 20 - 2y. (2)$$

Osservo che sia x che y devono essere interi e maggiori o uguali a zero. Osservo poi che, per via della (2), se y è intero lo è automaticamente anche x, e la condizione $x \ge 0$ equivale a $y \le 10$. Sempre tenendo conto della (2), il costo complessivo (in euro) della spedizione così organizzata è uguale a

$$c = 200 x + 200 y + 15 y^{2} = 200 (20 - 2y) + 200 y + 15 y^{2}$$
$$= 4.000 - 200 y + 15 y^{2}.$$

Devo quindi cercare il minimo di $c(y) = 4.000 - 200 y + 15 y^2$ tra tutti i numeri interi y compresi tra 0 e 10.

Studiando il segno della derivata c'(y) = -200 + 30 y ottengo che c(y) decresce per $0 \le y \le y_0$ con $y_0 := \frac{20}{3} \simeq 6,67$, e cresce per $y_0 \le y \le 10$. Quindi il valore minimo di c(y) viene raggiunto per y = 6 oppure y = 7. Siccome c(6) = 3.340 e c(7) = 3.335, il costo è minimo per y = 7, e in questo caso x = 6.

In conclusione conviene affittare 6 furgoni dalla compagnia A e 7 dalla compagnia B.

- 3 a) Determinare l'insieme di definizione della funzione $f(x) := x^{\log x} 1$, e disegnarne il grafico.
 - b) Dire dov'è improprio l'integrale

$$I := \int_{1}^{+\infty} \frac{dx}{f(x)}$$

e studiarne il comportamento.

Soluzione. a) La funzione f(x) è definita per ogni x > 0. Riscrivendola come

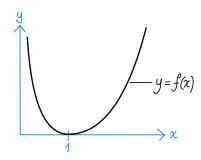
$$f(x) = (e^{\log x})^{\log x} - 1 = e^{\log^2 x} - 1$$

ottengo che $f(x) \ge 0$ se e solo se $\log^2 x \ge 0$, cioè sempre, e f(x) = 0 se e solo se $\log x = 0$, cioè x = 1; inoltre $f(x) \to +\infty$ per $x \to 0^+$ e per $x \to +\infty$. Studiando poi il segno della derivata

$$f'(x) = (e^{\log^2 x} - 1)' = \frac{2\log x}{x}e^{\log^2 x}$$

ottengo che f'(x) decresce per $0 < x \le 1$ e cresce per $x \ge 1$.

Sulla base di quanto appena detto traccio il grafico sotto (le proporzioni non sono rispettate).



b) La funzione integranda 1/f(x) è ben definita e continua per $x \neq 1$ ma non è definita per

x=1, e quindi l'integrale I è improprio in 1 e in $+\infty$. Inoltre, la funzione integranda è positiva e quindi I esiste e vale un numero finito (positivo) oppure $+\infty$.

Studio il comportamento di I spezzandolo come somma di due integrali impropri semplici:

$$I = \underbrace{\int_{1}^{2} \frac{dx}{f(x)}}_{I_{1}} + \underbrace{\int_{2}^{+\infty} \frac{dx}{f(x)}}_{I_{2}}$$

Comincio con lo studio dell'integrale I_1 : siccome questo integrale è improprio in 1, come prima cosa uso il cambio di variabile x = 1 + t per passare ad un integrale improprio in 0:¹

$$I_1 = \int_0^1 \frac{dt}{f(1+t)} \,.$$

Osservo ora che, per t che tende a 0,

$$f(1+t) = \exp((\log(1+t))^2) - 1 \sim (\log(1+t))^2 \sim t^2$$

(nel secondo passaggio ho usato che $e^x-1\sim x$ per $x\to 0$ con $x:=(\log(1+t))^2$, mentre nel terzo passaggio ho usato che $\log(1+t)\sim t$ per $t\to 0$). Pertanto

$$I_1 = \int_0^1 \frac{dt}{f(1+t)} \approx \int_0^1 \frac{dt}{t^2} = +\infty.$$

Siccome $I_1 = +\infty$ e l'integrale I_2 esiste e non è $-\infty$, posso già concludere che $I = +\infty$.

OSSERVAZIONI. Anche se non è necessario farlo, si può dimostrare che I_2 è finito. Usando infatti che $\log x \ge 2$ per x sufficientemente grande, ottengo che $f(x) = x^x - 1 \ge x^2 - 1$ e quindi

$$I_2 \le \int_2^{+\infty} \frac{dx}{x^2 - 1} \approx \int_2^{+\infty} \frac{dx}{x^2} < +\infty.$$

 $^{^{1}}$ Lo faccio perché ho più strumenti per studiare gli integrali impropri in 0.

Prima parte

- 1. Trovare le soluzioni della disequazione $\tan\left(\frac{\pi}{2} x\right) \ge -1$ nell'intervallo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Soluzione. Le soluzioni sono $-\frac{\pi}{2} \le x \le -\frac{\pi}{4}$ e $0 < x \le \frac{\pi}{2}$.
- 2. Dire per quali $a \in \mathbb{R}$ la funzione $f(x) := (x+a) \exp(x^2)$ è crescente su tutto \mathbb{R} . <u>SOLUZIONE</u>. La derivata $f'(x) = (2x^2 + 2ax + 1) \exp(x^2)$ è positiva o nulla per ogni $x \in \mathbb{R}$ se il discriminante di $2x^2 + 2ax + 1$ è negativo o nullo, vale a dire se $-\sqrt{2} \le a \le \sqrt{2}$.
- 3. Scrivere lo sviluppo di Taylor di ordine 3 (in zero) della funzione $f(x) := e^{-2x} \log(1+x)$. Soluzione. $f(x) = x - \frac{5}{2}x^2 + \frac{10}{3}x^3 + O(x^4)$.
- 4. Calcolare il valore dell'integrale improprio $\int_0^{+\infty} x \exp(1-2x^2) dx$.

Soluzione. Usando il cambio di variabile $y = 1 - 2x^2$ ottengo

$$\int_0^{+\infty} x \exp(1 - 2x^2) \, dx = \int_1^{-\infty} e^y \left(-\frac{1}{4} \right) dy = \left| \frac{e^y}{4} \right|_{-\infty}^1 = \frac{e}{4} \, .$$

5. Dire per quali a>0 è finito l'integrale improprio $\int_0^1 \frac{dx}{(1-x^2)^{2a}}.$

Soluzione. L'integrale è improprio in 1; usando il cambio di variabile y = 1 - x ottengo

$$\int_0^1 \frac{dx}{(1-x^2)^{2a}} = \int_0^1 \frac{dy}{(2y-y^2)^{2a}} \approx \int_0^1 \frac{dy}{y^{2a}} < +\infty \quad \text{per } 0 < a < \frac{1}{2}.$$

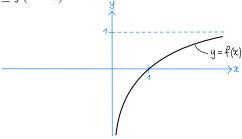
6. Calcolare il valore della serie $\sum_{n=2}^{\infty} \frac{x^{n+1}}{2^n}$ per gli x per cui converge.

SOLUZIONE. Mi riconduco alla serie geometrica:

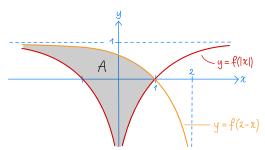
$$\sum_{n=2}^{\infty} \frac{x^{n+1}}{2^n} = \frac{x^3}{4} \left(1 + \frac{x}{2} + \left(\frac{x}{2} \right)^2 + \left(\frac{x}{2} \right)^3 + \dots \right) = \frac{x^3}{4} \cdot \frac{1}{1 - x/2} = \frac{x^3}{4 - 2x} \,.$$

- 7. Trovare la soluzione dell'equazione differenziale $\dot{x}=xe^t$ tale che x(0)=-1.

 Soluzione. Equazione lineare del primo ordine: la soluzione generale è $x(t)=c\exp(e^t)$ con $c\in\mathbb{R}$, e quindi $x=-\frac{1}{e}\exp(e^t)$.
- 8. Nella figura sotto è riportato il grafico della funzione f(x). Disegnare l'insieme A dei punti (x,y) tali che $f(|x|) \le y \le f(2-x)$.



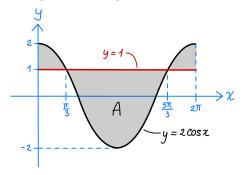
SOLUZIONE.



Seconda Parte

- $\lfloor \mathbf{1} \rfloor$ Sia A l'insieme dei punti (x,y) con $0 \le x \le 2\pi$ compresi tra la retta di equazione y=1 e il grafico della funzione $2\cos x$, e sia V il solido ottenuto ruotando A attorno alla retta y=1.
 - a) Disegnare l'insieme A e calcolarne l'area.
 - b) Disegnare l'insieme V e calcolarne il volume.

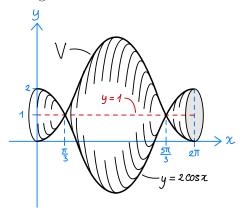
 $\underline{Soluzione}$. a) L'insieme A è disegnato nella figura sotto.



Osservo che $2\cos x \le 1$ per $\frac{\pi}{3} \le x \le \frac{5\pi}{3}$, mentre $2\cos x \ge 1$ per $0 \le x \le \frac{\pi}{3}$ e $\frac{5\pi}{3} \le x \le 2\pi$. Pertanto l'area di A è data da

$$\operatorname{area}(A) = \int_0^{\pi/3} 2\cos x - 1 \, dx + \int_{\pi/3}^{5\pi/3} 1 - 2\cos x \, dx + \int_{5\pi/3}^{2\pi} 2\cos x - 1 \, dx$$
$$= \left| 2\sin x - x \right|_0^{\pi/3} + \left| x - 2\sin x \right|_{\pi/3}^{5\pi/3} + \left| 2\sin x - x \right|_{5\pi/3}^{2\pi} = 4\sqrt{3} + \frac{2\pi}{3} \, .$$

b) L'insieme V è disegnato nella figura sotto.



Indico con A' l'insieme ottenuto spostando A verso il basso di 1 e con V' il solido ottenuto ruotando A' attorno all'asse delle x. Chiaramente il volume di V è uguale a quello di V', e quest'ultimo può essere calcolato tramite la formula vista a lezione partendo dal fatto che A' è delimitato dal grafico della funzione $2\cos x - 1$ e l'asse delle x:

$$volume(V) = volume(V')$$

$$= \pi \int_0^{2\pi} (2\cos x - 1)^2 dx$$

$$= \pi \int_0^{2\pi} 4\cos^2 x - 4\cos x + 1 dx$$

$$= \pi \int_0^{2\pi} 2\cos(2x) - 4\cos x + 3 dx = \pi \left| \sin(2x) - 4\sin x + 3x \right|_0^{2\pi} = 6\pi^2$$

(nel terzo passaggio ho usato l'identità $\cos^2 x = \frac{1}{2}(\cos(2x) + 1)$).

- **2** a) Dire se è vero che $x^4 + 8 \ge \frac{1}{4}(x+1)^4$ per ogni $x \ge 0$.
 - b) Trovare i numeri m > 0 per cui vale che $x^4 + 8 \ge m(x+1)^4$ per ogni $x \ge 0$.
 - c) Trovare i numeri M > 0 per cui vale che $x^4 + 8 \le M(x+1)^4$ per ogni $x \ge 0$.

<u>SOLUZIONE</u>. Risolvo i punti b) e c) insieme, mentre la risposta al punto a) segue da quella al punto b).

Dividendo le diseguaglianze in b) e c) per $(x+1)^4$, queste domande possono essere riformulate come segue: per quali costanti positive m e M vale che

$$m \le \frac{x^4 + 8}{(x+1)^4} \le M \quad \text{per ogni } x \ge 0?$$

Chiaramente la risposta è

$$m \le \min_{x \ge 0} f(x)$$
, $M \ge \max_{x \ge 0} f(x)$, dove $f(x) := \frac{x^4 + 8}{(x+1)^4}$,

(il minimo e il massimo, se non esistono, vanno sostituiti rispettivamente con l'estremo inferiore e l'estremo superiore dei valori).

Cerco i valori minimo e massimo di f(x) relativamente alla semiretta $x \ge 0$ seguendo la solita procedura vista a lezione. Per prima cosa cerco i punti $x \ge 0$ in cui si annulla la derivata

$$f'(x) = \frac{4(x^3 - 8)}{(x+1)^5},$$

e ottengo x=2. Quindi confronto i valori di f in x=2 e negli estremi della semiretta $x\geq 0$, vale a dire 0 e $+\infty$:

$$f(0) = 8$$
, $f(2) = \frac{8}{27}$, $f(+\infty) = \lim_{x \to +\infty} \frac{x^4 + 8}{(x+1)^4} = 1$,

ed ottengo che

$$\min_{x \ge 0} f(x) = f(2) = \frac{8}{27}, \quad \max_{x \ge 0} f(x) = f(0) = 8.$$

Dunque i valori cercati di m e M sono quelli per cui

$$m \le \frac{8}{27}, \quad M \ge 8;$$

in particolare la risposta al punto a) è affermativa perché $\frac{1}{4}<\frac{8}{27}.$

Consideriamo $f(x) := x^2 e^x$. Dire quali punti P del grafico di f sono "visibili direttamente dall'origine O", cioè il segmento che congiunge P e O interseca il grafico di f solo negli estremi.

SOLUZIONE. Dato $a \in \mathbb{R}$ indico con P_a il punto del grafico di f di ascissa a, cioè $P_a := (a, f(a))$. Considero ora una generica retta passante per l'origine: questa retta ha equazione y = mx dove m è la pendenza, e osservo che P_a appartiene a questa retta se e solo se a risolve l'equazione

$$m = \frac{f(x)}{x} = xe^x \,. \tag{1}$$

Ma allora il punto P_a è visibile dall'origine se non esiste alcun a' strettamente compreso tra 0 e a tale che $P_{a'}$ appartiene alla stessa retta, cioè a' risolve l'equazione (1).

Per capire quali punti P_a sono visibili dall'origine devo quindi studiare le soluzioni dell'equazione (1) al variare di $m \in \mathbb{R}$, e per farlo disegno il grafico della funzione

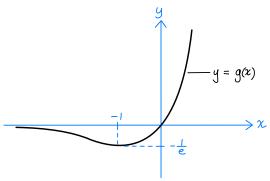
$$g(x) := xe^x$$
.

Osservo che g(x) è positiva per $x \ge 0$ e negativa altrimenti, e g(x) tende a 0 per $x \to -\infty$, e a $+\infty$ per $x \to -\infty$. Studiando inoltre il segno della derivata

$$g'(x) = (x+1)e^x$$

ottengo che g decresce per $x \le -1$ e cresce per $x \ge 1$, ed in particolare x = -1 è il punto di minimo assoluto, e il valore minimo è $g(-1) = -\frac{1}{e}$.

Sulla base di queste informazioni disegno il grafico riportato sotto (le proporzioni non sono rispettate):



Partendo da questo grafico ottengo che

- per $m \ge 0$ l'equazione (1), cioè g(x) = m, ammette un'unica soluzione e questa soluzione è positiva, e quindi il punto del grafico di f corrispondente è visibile dall'origine;
- per $-\frac{1}{e} < m < 0$ l'equazione (1) ammette due soluzioni, una minore di -1 ed una compresa tra -1 e 0; quindi il punto corrispondente alla prima soluzione non è visibile dall'origine, mentre quello corrispondente alla seconda lo è;
- \bullet per $m=-\frac{1}{e}$ l'equazione (1) ammette un'unica soluzione, e il punto corrispondente è visibile dall'origine;
- per $m < -\frac{1}{e}$ l'equazione (1) non ammette soluzioni.

Riassumendo, i punti P_a con $a \ge -1$ sono visibili dall'origine, mentre i punti P_a con a < -1 non lo sono.

Prima parte

- 1. Scrivere le coordinate polari dei seguenti punti del piano (espressi in coordinate cartesiane) scegliendo l'angolo α in $(-\pi, \pi]$: $P_1 = (-\sqrt{2}, \sqrt{2})$; $P_2 = (5, -5\sqrt{3})$; $P_3 = (0, -2)$. Soluzione. $P_1: r=2, \alpha=\frac{3\pi}{4}$; $P_2: r=10, \alpha=-\frac{\pi}{3}$; $P_3: r=2, \alpha=-\frac{\pi}{2}$.
- 2. Scrivere l'equazione della retta tangente al grafico della funzione $f(x) := \log(1/x)$ nel punto di ascissa $x = 1/\sqrt[3]{e}$.

Soluzione. $y = -\sqrt[3]{e} x + \frac{4}{3}$.

3. Dire per quali $a, b \in \mathbb{R}$ la funzione

$$f(x) := \begin{cases} ax^2 + b & \text{per } x < 0\\ \exp(x^2) & \text{per } x \ge 0 \end{cases}$$

è continua e derivabile.

<u>SOLUZIONE</u>. Le funzioni $ax^2 + b$ e $\exp(x^2)$ devono coincidere per x = 0, e così pure le derivate 2ax e $2x \exp(x^2)$: la prima equazione vale se b = 1, la seconda vale sempre. Quindi deve essere b = 1, a qualunque.

- 4. Scrivere la parte principale per $x \to 0$ di $f(x) := x + \log(1 x + x^2)$.

 SOLUZIONE. Usando lo sviluppo $\log(1 + y) = y \frac{1}{2}y^2 + O(y^3)$ con $y = -x + x^2$ ottengo $f(x) = x + (-x + x^2) \frac{1}{2}(-x + x^2)^2 + O(x^3) = \frac{1}{2}x^2 + O(x^3) \sim \frac{1}{2}x^2$.
- 5. Calcolare $\int_0^3 \frac{dx}{\sqrt{9-3x}}$

Soluzione. Utilizzando il cambio di variabile y = 9 - 3x ottengo

$$\int_0^3 \frac{dx}{\sqrt{9-3x}} = \frac{1}{3} \int_0^9 y^{-1/2} dy = \frac{1}{3} \left| 2y^{1/2} \right|_0^9 = 2.$$

6. Dire per quali a > 0 la serie $\sum_{n=1}^{+\infty} \frac{3^{-n} + n^3}{n^{2a}(1+n)}$ converge ad un numero finito.

<u>Soluzione</u>. La serie si comporta come $\sum_{n=1}^{+\infty} \frac{1}{n^{2a-2}}$ e quindi deve essere 2a-2>1, cioè $a>\frac{3}{2}$.

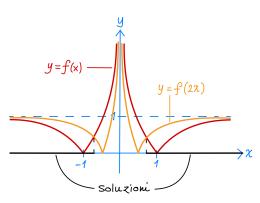
7. Trovare la soluzione dell'equazione differenziale $\dot{x} = x^3 \sin t$ tale che x(0) = 1.

Soluzione. Equazione a variabili separabili: $-\frac{1}{2x^2} = -\cos t + c$ con $c = \frac{1}{2}$, quindi

$$x(t) = \frac{1}{\sqrt{2\cos t - 1}}.$$

8. Sia $f(x) := \left| \frac{1}{x^2} - 1 \right|$. Risolvere graficamente la disequazione $f(x) \le f(2x)$.

SOLUZIONE



SECONDA PARTE

 $\boxed{\mathbf{1}}$ Dato a > 0 consideriamo l'equazione differenziale

$$\ddot{x} - 2a\dot{x} + 4x = 8t. \tag{*}$$

- a) Trovare la soluzione generale di (*).
- b) Per quali a esiste almeno una soluzione x di (*) tale che $x(t) \gg e^{4t}$ per $t \to +\infty$?

SOLUZIONE. a) Ricordo che la soluzione generale di (*) è data da

$$x(t) = x_{\rm om}(t) + \tilde{x}(t)$$

dove x_{om} è la soluzione generale dell'equazione omogenea associata alla (*) e \tilde{x} è una soluzione particolare di (*).

Calcolo di x_{om} . Le soluzioni dell'equazione caratteristica $\lambda^2 - 2a\lambda + 4 = 0$ sono

$$\lambda_{1,2} = a \pm \sqrt{a^2 - 4}$$

ed in particolare devo considerare i seguenti tre casi:

(i) se a > 2 allora λ_1 e λ_2 sono reali e distinte, e quindi

$$x_{\text{om}}(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t} \quad \text{con } c_1, c_2 \in \mathbb{R}.$$

(ii) se a=2 allora $\lambda_1=\lambda_2=2$ e quindi

$$x_{\text{om}}(t) = e^{2t}(c_1 + c_2 t) \quad \text{con } c_1, c_2 \in \mathbb{R}.$$

(iii) se 0 < a < 2 allora $\lambda_{1,2} = a \pm \omega i$ con $\omega := \sqrt{4 - a^2}$, e quindi

$$x_{\text{om}}(t) = e^{at} (c_1 \cos(\omega t) + c_2 \sin(\omega t)) \quad \text{con } c_1, c_2 \in \mathbb{R}.$$

Calcolo di \tilde{x} . Cerco \tilde{x} tra le funzioni del tipo $\tilde{x}(t) = b_1 t + b_2$ con $b_1, b_2 \in \mathbb{R}$. Sostituendo questa espressione nell'equazione (*) ottengo l'identità

$$4b_1t + 4b_2 - 2ab_1 = 8t,$$

che è soddisfatta per ogni t se e solo se $4b_1=8$ e $4b_2-2ab_1=0$, vale a dire $b_1=2$ e $b_2=a$. Pertanto la soluzione particolare cercata è

$$\tilde{x}(t) = 2t + a$$
.

b) Osservo che la soluzione particolare $\tilde{x} = 2t + a$ soddisfa $\tilde{x}(t) \ll e^{4t}$ per $t \to +\infty$. Pertanto esiste una soluzione di (*) che soddisfa la proprietà che $x(t) \gg e^{4t}$ se e solo esiste una soluzione dell'equazione omogenea con questa proprietà.

Le formule per x_{om} nei casi (i) e (ii) mostrano che per $a \leq 2$ si ha $x_{\text{om}}(t) = o(e^{4t})$ per ogni possibile scelta dei coefficienti c_1, c_2 , e quindi per questi valori di a non esiste alcuna soluzione di (*) che si comporta come richiesto.

Resta da vedere cosa succede per a>2. In questo la formula per $x_{\rm om}$ mostra che è possibile scegliere i coefficienti c_1,c_2 in modo che $x_{\rm om}(t)\gg e^{4t}$ a patto che almeno una delle radici caratteristiche λ_1,λ_2 sia strettamente maggiore di 4, ovvero che lo sia la più grande delle due, vale a dire

$$a + \sqrt{a^2 - 4} > 4.$$

Risolvendo questa disequazione ¹ ottengo $a > \frac{5}{2}$.

- **2** a) Trovare la parte principale per $x \to 0$ della funzione $f(x) := 1 \sqrt[3]{\cos x}$.
 - b) Per ogni $a \in \mathbb{R}$, trovare la parte principale per $x \to 0$ di $f(x) + ax^2$.

<u>Soluzione</u>. La domanda a) corrisponde alla b) per a = 0; rispondo quindi alla domanda b).

Usando lo sviluppo $\cos x = 1 - \frac{1}{2}x^2 + O(x^4)$ e poi lo sviluppo

$$(1+t)^{1/3} = 1 + \frac{1}{3}t + O(t^2)$$
 con $t = -\frac{1}{2}x^2 + O(x^4)$

¹ Riscrivo la disequazione come $\sqrt{a^2-4} > 4-a$ e distinguo due casi: se 4-a < 0 la disequazione è sempre verificata, se invece $4-a \ge 0$ elevo al quadrato entrambi i termini arrivando a una disequazione di primo grado in a.

ottengo

$$f(x) = 1 - \left(1 - \frac{1}{2}x^2 + O(x^4)\right)^{1/3}$$

= 1 - (1 + t)^{1/3} = -\frac{1}{3}t + O(t^2) = -\frac{1}{3}\left(- \frac{1}{2}x^2 + O(x^4) \right) + O(x^4) \simeq \frac{1}{6}x^2,

e quindi, per $a \neq -\frac{1}{6}$,

p.p.
$$(f(x) + ax^2) = (\frac{1}{6} + a) x^2$$
.

Per $a = -\frac{1}{6}$ la parte principale di f(x) si cancella con ax^2 , e quindi devo trovare uno sviluppo più preciso di f(x). Procedo come prima, usando stavolta gli sviluppi cos $x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)$

$$(1+t)^{1/3} = 1 + \frac{1}{3}t - \frac{1}{9}t^2 + O(t^3)$$
 con $t = -\frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)$,

ed ottengo

$$f(x) = 1 - \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)\right)^{1/3}$$

$$= 1 - (1+t)^{1/3}$$

$$= -\frac{1}{3}t + \frac{1}{9}t^2 + O(t^3)$$

$$= -\frac{1}{3}\left(-\frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^6)\right) + \frac{1}{9}\left(-\frac{1}{2}x^2 + O(x^4)\right)^2 + O(x^6)$$

$$= \frac{1}{6}x^2 - \frac{1}{72}x^4 + O(x^6) + \frac{1}{9}\left(\frac{1}{4}x^4 + O(x^6)\right) + O(x^6)$$

$$= \frac{1}{6}x^2 + \frac{1}{72}x^4 + O(x^6).$$

Pertanto

p.p.
$$(f(x) - \frac{1}{6}x^2) = \frac{1}{72}x^4$$
.

- $\boxed{\mathbf{3}}$ a) Trovare lo sviluppo di Taylor al primo ordine in 0 della funzione $\arctan x$.
 - b) Dimostrare che la funzione $g(x) := x \log(1+x)$ è strettamente positiva per ogni x > 0.
 - c) Dato $a \in \mathbb{R}$, dire dove è improprio l'integrale

$$I = \int_0^{+\infty} \frac{\arctan(1/x)}{(g(x))^a} dx,$$

e discuterne il comportamento.

<u>Soluzione</u>. a) Usando definizione del polinomio di Taylor ottengo arctan $x = x + O(x^2)$.

b) Osservo che la derivata

$$g'(x) = \frac{x}{1+x}$$

è strettamente positiva per x > 0, e quindi la funzione g è strettamente crescente per x > 0. Inoltre g vale zero per x = 0 e quindi deve essere strettamente positiva per x > 0.

c) Usando quanto fatto al punto b) si vede che la funzione integranda è ben definita e continua per x > 0 e non è definita per x = 0, e quindi l'integrale I è improprio in 0 e $+\infty$.

Inoltre la funzione integranda è sempre positiva, e quindi I esiste per qualunque a, e si tratta quindi di stabilire se è finito oppure no. Per farlo spezzo I come somma di due integrali impropri semplici, che studio separatamente:

$$I = \underbrace{\int_0^1 \frac{\arctan(1/x)}{(g(x))^a} dx}_{I_1} + \underbrace{\int_1^{+\infty} \frac{\arctan(1/x)}{(g(x))^a} dx}_{I_2}.$$

Comportamento di I_1 . Questo integrale è improprio in 0, e quindi serve trovare il comportamento della funzione integranda per $x \to 0$. A questo scopo osservo che $\arctan(1/x) \to \frac{\pi}{2}$, e usando lo sviluppo di Taylor di ordine 2 di $\log(1+x)$ ottengo che, per $x \to 0$,

$$g(x) = x - \log(1+x) \sim \frac{1}{2}x^2$$
,

da cui segue che

$$\frac{\arctan(1/x)}{(g(x))^a} \sim \frac{2^{a-1}\pi}{x^{2a}}.$$

Quindi, per il criterio del confronto asintotico per gli integrali impropri, $I_1 \approx \int_0^1 \frac{1}{x^{2a}} dx$, e pertanto I_1 è finito se e solo se 2a < 1, cioè $a < \frac{1}{2}$.

Comportamento di I_2 . Questo integrale è improprio in $+\infty$, e quindi serve trovare il comportamento della funzione integranda per $x \to +\infty$. Osservo ora che $\arctan(1/x) \sim \frac{1}{x}$ (per via del punto a)) e $g(x) = x - \log(1+x) \sim x$, da cui segue che

$$\frac{\arctan(1/x)}{(g(x))^a} \sim \frac{1}{x^{a+1}} \,.$$

Quindi, per il criterio del confronto asintotico per gli integrali impropri, $I_2 \approx \int_1^\infty \frac{1}{x^{a+1}} dx$, e pertanto I_2 è finito se e solo se a+1>1, cioè a>0.

Comportamento di I. Mettendo insieme quanto fatto per I_1 e I_2 ottengo infine che I è finito se e solo se $0 < a < \frac{1}{2}$.