FLAT NORM
let T be a k-current in \mathbb{R}^{d}. We define \downarrow flat non

$$
\mathbb{F}(T):=\operatorname{uif}\left\{M(R)+M(S): T=\begin{array}{c}
\left.\uparrow+\partial^{\prime} S\right\} \\
k n e u m e n t ~
\end{array}\right\}
$$

Rems

- $\mathbb{F}(T) \leqslant \mathbb{M}(T) \quad$ (= holds if $K=d)$
- \mathbb{F} is clearly a seminorm (possibly with value $+\infty$) and also a norm: Indeed $\forall \omega \in \nexists^{k}$

$$
\begin{aligned}
&\langle T, \omega\rangle=\langle R+\partial S, \omega\rangle \\
&=\langle R, \omega\rangle+\langle S, d \omega\rangle \\
& \leqslant M(R)\|\omega\|_{\infty}+\mathbb{M}(S) \cdot\|d \omega\|_{\infty} \\
& \leqslant(\mathbb{M}(R)+\mathbb{M}(S)) \cdot\left(\|\omega\|_{\infty}+\|d \omega\|_{\infty}\right) \\
& \Rightarrow \quad|\langle\tau, \omega\rangle| \leqslant \mathbb{F}(T)\left(\|\omega\|_{\infty}+\|d \omega\|_{\infty}\right)
\end{aligned}
$$

Thus $\mathbb{F}(T)=0 \Rightarrow\langle T, \omega\rangle=0 \quad \forall \omega \in \mathscr{B}^{k}$.

- $\mathbb{F}\left(T_{u}-T\right) \rightarrow 0 \Rightarrow T_{u} \rightarrow T$
$\left(T_{u} \underset{\mathbb{F}}{\rightarrow} T\right) \quad\left(\begin{array}{l}\text { i..e. } \\ \left.\left\langle T_{u}-T, \omega\right\rangle \rightarrow 0\right)\end{array}\right.$
"convergence in \mathbb{F} miphies corr. in the sense of currents,
- \mathbb{F} metizes convergence in the sense of eurrents in the sense that
Pop let T_{u} be sit.
- supp $\left(T_{u}\right) \subset E$ bounded
- $\mathbb{M}\left(T_{u}\right), \mathbb{M}\left(\partial T_{u}\right) \leqslant C<+\infty$

Then $T_{u} \rightarrow T$ iff $\mathbb{F}\left(T_{u}-T\right) \rightarrow 0$ (proof, follows from polyhedral def. Th.) of the "only ifs part

- \mathbb{F} cam be (easily) estimated fran above and then is a useful tool to prove conn. (is the sense of euments)
- $\delta_{x}, \delta_{x_{0}}$ O-euments (meosures)

Then

$$
\mathbb{F}\left(\delta_{x}-\delta_{x_{0}}\right) \leqslant \min \left\{2 ;\left|x-x_{0}\right|\right\}
$$

(in particular $x \rightarrow x_{0} \Rightarrow \delta_{x_{\vec{F}}} \delta_{x_{0}}$

$$
\left.\Rightarrow \delta_{x} \rightarrow \delta_{x_{0}}\right) .
$$

$$
\mathbb{F}\left(T-T_{0}\right) \leqslant(e+2) \delta
$$

In rentienlar $\delta \rightarrow 0$ uniplies

$$
T \xrightarrow{\mathbb{H}} T_{0} \Rightarrow T \longrightarrow T_{0}
$$

proof

$$
\mathbb{F}\left(T-T_{0}\right) \leqslant \mathbb{M}(S)+\mathbb{M}(R) \leqslant e \delta+2 \delta
$$

$$
\begin{aligned}
& T_{u}:=\left[E_{u}, \tau_{u}, 1\right] \\
& M\left(T_{u}\right)=\pi \\
& \mathbb{F}\left(T_{u}\right) \leqslant \frac{\pi}{4 n^{2}} \\
&\left(\Longrightarrow T_{u} \rightarrow 0 \text { ans } u \rightarrow+\infty\right)
\end{aligned}
$$

Let indeed $S_{u}:=[U$ blue dives, $e, 1]$
Then $T_{u}=\partial S_{u} \Rightarrow \mathbb{F}\left(T_{u}\right) \leqslant \mathbb{H}\left(S_{u}\right)=\frac{\pi}{4 n^{2}}$.
Prove that same holds if

$$
T_{u}=\left[U_{i}{ }_{i}^{\text {closed }} \text { curves } C_{n, i}, \tau_{y} 1\right]
$$

and $\sum H^{\prime}\left(C_{u}, i\right)=L_{n} \leqslant e<+\infty$

$$
\sup _{i} \mathcal{H}^{\prime}\left(e_{n, i}\right) \longrightarrow 0
$$

- Estimate for the homothopy formula

$$
f_{0}, f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}
$$

homotopie via $F: I \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$
$\left[a_{0}, a_{1}\right]$
Given a K-current T,

$$
\left.\begin{array}{cc}
\text { a k-curvent } 1, \\
T_{1}-T_{0} \\
\prime \prime= & \partial S \\
\left(f_{1}\right)_{\#} T & \left(f_{0}\right)_{\#} T \\
& F(I \times T)
\end{array}\right\} \begin{gathered}
\text { homoth. } \\
\text { forme }
\end{gathered}
$$

Then

$$
\mathbb{F}\left(T_{1}-T_{0}\right) \leqslant \mathbb{M}(\mathbb{S}) \leqslant\left(l_{i p} F\right)^{k+1}\left(a_{1}-a_{0}\right) M(1)
$$

 between f_{0} and f_{1}, that is

$$
F(t, x)=\frac{t}{\delta} f_{1}(x)+\left(1-\frac{t}{\delta}\right) f_{0}(x)
$$

then

$$
\mathbb{F}\left(T_{1}-T_{0}\right) \leq\left\|f_{1}-f_{0}\right\|\left(\operatorname{lip} f_{0}+\operatorname{lip}_{p} f_{1}\right)^{k} \mathbb{M}(T)
$$

- varants of Plat noovm
(a) if I am untersted in euvents T which are boundantes then it is cenvemient to use

$$
\widetilde{F}(T):=\operatorname{liof}\{\mathbb{M}(S): T=\partial S\}
$$

Under same cess. On the alubient space \mathbb{F} and \mathbb{F} are equivalunt novens
(b) if I em witerested in nitegral currents T is is converwhon to defolve $\widehat{\mathbb{F}}(T)$ ars $\mathbb{F}(T)$ with the vestr. that R and S are uitegral
F defieves a distance (but is reot a novu).
Not know if this is equivalut to the dist. unduced by $\#$

Polyhedral deformation Theorem
Clive a k-current T in R^{d} I want to find P poyhedval sit. P is close to T (in flat conn).
Co ustruction in the case $\partial T=0$ (and $M(T)<+\infty$).
Fix a δ-grid $\dot{\text { in }}$ the space \mathbb{R}^{d}

for every Q cute in the grid choose γ_{Q}.
let $f: \mathbb{R}^{d} \backslash\left\{x_{Q}: Q \in \cdots\right\}$ be the onap that on each Q agrees with the retraction of $Q \backslash\left\{x_{Q}\right\}$ onto ∂Q (as in picture!)

Cousidev $f_{\#} T$. defenvation of T on the (d-1)-dim. $\partial\left(f_{\#} T\right)=f_{\#}(\partial T)=0$ skeleton L_{d-1}

If $k=d_{-1}$ then $f_{\#} T$ is a (d-1)-cervent with bdivy $=0$ on L_{d-1}

Then the Censtancy lenvea suggerts theat the "restrietion" of $f_{\#} T$ to each face F of L_{d-1} should be $\left[F, r_{F}, \mu_{F}\right]$ constant ovient. of F

That is τ censtant!

$$
\begin{aligned}
& f_{\#} T=\underbrace{\sum_{F \in \ldots}\left[F, \tau_{F}, u_{F}\right]}_{\text {polyheolval! }} \\
& \left.\begin{array}{c}
\text { (at eeast if } T \text { has } \\
\text { cempert support }
\end{array}\right)
\end{aligned}
$$

"Expected estivates,

$$
M\left(f_{\#} T\right) \leqslant c \cdot M(T)
$$

and hovothopy formea gives

$$
f_{\#} T-T=\partial S
$$

when $S=F_{\#}^{\#}(I \times T)$ and in partic.
linean homorthopy of f and ideutity

$$
\mathbb{F}\left(f_{\sharp} T-T\right) \leqslant M(S) \leqslant C \delta M(T)
$$

Diffrealties

1) What if k is avbilivary?

I itevate the proeedurve, by taking a retraction of L_{d-1} ento L_{d-2} ther a vetraction of L_{d-2} onto L_{d-3} and so on mitie I get a k-eurvent with no bodvy on L_{k}
2) f is not e^{1} ?
and not even continuous
(it is "singular " at each $x_{Q}!!$)
So $f_{\#} t$ is not well defined and the estimates do not work.
let me foens on the estivate $M\left(f_{\#} T\right) \quad\left(\mathbb{F}\left(f_{\#} T-T\right)\right.$ is similar)

$$
\begin{aligned}
\mathbb{M}\left(f_{\mathbb{\#}} T\right) & \leqslant \int_{\mathbb{R}^{d}}\left\|d_{x} f\right\|^{k} d \mu(x) \\
& \lesssim \int_{\mathbb{R}^{d}}|g(x)|^{k} d \mu(x)
\end{aligned}
$$

Where $g(x)=\frac{\delta}{\left(x-x_{Q} \mid\right.}$ in Each Q

Key lemma positive fence measure on \mathbb{R}^{d} Given μ. I con choose the points x_{Q} so that
(*) $\quad \int_{\mathbb{R}^{d}} \mid g(x)^{k} d \mu(x) \lesssim M(\mu)$
Proof $\forall Q$ cube of sidelength δ
Claim

$$
\int_{\bar{x} \in Q}\left(\int_{x \in Q}\left(\frac{\delta}{|x-\bar{x}|}\right)^{k} d \mu(x)\right) d \bar{x} \lesssim \mu(Q)
$$

then I can choose $x_{Q}=\bar{x}$ sit.

$$
\int_{x \in \mathbb{Q}}\left(\frac{\delta}{|x-\bar{x}|}\right)^{k} d \mu(x) \leqslant \mu(\mathbb{Q})
$$

and this proves ($*$).

Proof of Claim

$$
\begin{aligned}
& f_{\bar{x} \in Q}\left(\int_{x \in Q}\left(\frac{s}{|x-\bar{x}|}\right)^{k} d \mu(x)\right) d \bar{x} \\
& =\delta^{k-n} \int_{x \in Q}\left(\int_{\bar{x} \in Q} \frac{1}{|x-\bar{z}|^{k}} d \bar{x}\right) d \mu(x) \\
& \leqslant \delta^{k-k} \int_{x \in Q}\left(\int_{\bar{x} \in B(x), \sqrt{d} \cdot \delta)} \frac{1}{\left(x-\bar{x} k^{k}\right.} d \bar{x}\right) d \mu(x) \\
& \lesssim \delta^{k-n} \int_{x \in Q} \underbrace{\left(\int_{0}^{\sqrt{d} \delta} \frac{1}{\rho^{k}} \rho^{d-1} d \rho\right)}_{\delta^{1 / k}} d \mu(x) \\
& \lesssim \int_{x \in Q} d \mu(\gamma)=\mu(Q)
\end{aligned}
$$

Using this Bean you prove that $f_{\#} T$ is well-defined and

$$
\mathbb{M}\left(f_{\#} T\right) \leqslant C \mathbb{M}(T)
$$

then in a similar way you also prove that - linear homes. between
$S:=F(I \times I)$ id and f
is well-definad and

$$
\mathbb{F}\left(f_{\#} T-T\right) \leqslant C \delta \mathbb{M}(T)
$$

Polyhedral def. Th. (case $\partial T \neq 0$) let T be a k-current un \mathbb{R}^{d} (with compact support) $\partial T=0, M(T)<+\infty$. Choose a δ-grid. Then there exists

$$
P=\sum_{F k-\operatorname{div} .}\left[F, \tau_{F}, u_{F}\right]
$$

face of the grid
sit. $\hat{\partial P}=0$

- $M(P) \leqslant C M(T)$
- $P-T=\partial S, \quad M(S) \leqslant C \delta M(T)$
in panticulor $\mathbb{F}(P-T) \leqslant C \delta M(T)$. If T is utegral, so is P.

