GMT 19/20
lectuve 25
Setting: $\quad f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$
Giveu $\omega, k$-forme on $\mathbb{R}^{m}, f^{\sharp} \omega$ is defined by (same reg. of $f$ rea.)

$$
f^{\#} \omega(x):=\left(d_{x} f\right)^{\#} \cdot \omega(f(x)) .
$$

Then

$$
\underset{\substack{\text { comass } \\ \text { normu }}}{ }\left\|f^{\#} \omega(x)\right\| \underset{\substack{\text { operator } \\ \text { homin }}}{\leqslant}\left\|d_{x} f\right\|_{\substack{k \\ \text { Comass } \\ \text { normi }}}^{k \omega(f(x)) \|}
$$

Ine particular
(1)

$$
\left\|f^{\#} \omega\right\|_{\infty} \leqslant(\operatorname{lip}(f))^{k}\|\omega\|_{\infty}
$$

Moveover
( 2 )

$$
d\left(f^{\#} \omega\right)=f^{\#}(d \omega)
$$

If $T$ is a $k$-current in $R^{d}$, then $f_{\#} T$ is the k-aurnent in $\mathbb{R}^{m}$ given by

$$
\langle f \#, \quad \omega\rangle:=\left\langle T, f^{\#} \omega\right\rangle
$$

Some regulenty of $f$ is required, and also that $f$ is PROPER.

Latter ass. is not needed if $T$ has compact support.

7 I will assume that $T$ has compact - support for the rest of this lecture.

7 Thu e (1) gives
answer $M(T)<+\infty$

$$
\begin{gathered}
\begin{array}{c}
\text { sswee } M(T \mid<+\infty \\
T= \\
f \in e^{\mid}
\end{array}
\end{gathered}
$$

and

$$
\begin{aligned}
\left|\left\langle f_{H} T, \omega\right\rangle\right| & \leqslant \int\left\|f^{\#} \omega(x)\right\| \cdot\|r(x)\| d \mu(x) \\
& \left.\leqslant \int\left\|f_{x}\right\|^{k}\|\omega(x)\|\|\tau(x)\| d \mu()\right)
\end{aligned}
$$

and

$$
\begin{aligned}
M\left(f_{\#} T\right) & \leqslant \int\left\|d_{\gamma} f\right\|^{k} d \mu \quad, M(T) \\
& \left.\leqslant\left(\sup _{x \in \operatorname{spt}(\mu)}\left\|d_{x} f\right\|\right)^{k}\|\mu\|\right) \\
& \leqslant\left(\operatorname{lip}_{p}(f)\right)^{k} M(T)
\end{aligned}
$$

From (2) we get

$$
\partial\left(f_{\#} T\right)=f_{\#}(\partial T)
$$

Push-forward of a rectif. Current.
Let $T=[E, r, m]$ with $E k$ reetif. \& bounded Let $\tilde{E}:=f(E) \quad(\tilde{E}$ is k-rectif. !! ! )
let $\widetilde{C}$ be any orientation of $\tilde{E}$. Then
(3) $f_{\forall} T=\left[\tilde{E}_{n}, \widetilde{c}, \widetilde{u}\right]$
where $\tilde{m}$ is given by
(4) $\quad \tilde{M}(y):=\sum_{x \in \bar{f}^{\prime}(y) \cap E} \pm m(x) \quad$ for $\not^{k}$ a.e.ey $\in \tilde{E}$
$\tilde{E}=f(E)$
where the signs is + if $d_{x} f: T_{x} E \rightarrow T_{y} \widetilde{E}$ preserves orient. and is - otherwise.
(cf. def. of degree of a map)
Rems (Assure for simplicity thant $\mathcal{H}^{k}(E)<+\infty$ )
(1) Recall the area formula:

$$
\int_{y \in \widetilde{E}} \#\left(f^{-1}(y) \cap E\right) d \Re^{k}(y)=\int_{E} J_{T} f(x) d Z^{k}(x)<+\infty
$$

Thur $\bar{f}^{\prime}(y) \cap E$ is finite for $\lambda^{k}$-are. y and the def. of $\tilde{\mu}(y)$ is well-posed
(2) Let $S:=\left\{x \in E: \begin{array}{r}d_{x} f: T_{x} E \rightarrow T_{f(x)} \tilde{E} \\ \\ \text { is Not surjectove }\end{array}\right\}$

Then by the ana formula above $H^{k}(f(s))=0 \Rightarrow$ for $x_{k}$ are. $y \in \widetilde{E}$
and ween $x \in f^{-1}(y) n E, d_{x} f$ is surjective ( $=$ maximal rank)

Roos of (3) $\forall k$-form $\omega \in \ldots$

$$
\begin{aligned}
& \left\langle f_{\#} T, \omega\right\rangle:=\left\langle T, f^{\#} \omega\right\rangle \\
& =\int_{E}\left\langle f^{\#} \omega(x), \tau_{\|}(x)\right\rangle \omega(x) d A^{k}(x) \\
& =\int_{E}\left\langle\omega(f(x)) ; d_{x} f \cdot \tau_{1}(x) \wedge \cdots \wedge d_{x} f \cdot r_{k}(x)\right\rangle u d \xi^{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\langle[\tilde{E}, \tilde{\varepsilon}, \tilde{u}] ; \omega\rangle \text {. }
\end{aligned}
$$

Hence $f_{\#} T=[\widetilde{E}, \widetilde{c}, \widetilde{u}]$.
Note that (3) inubles that if $T$ is reet. So is $f_{\#} T$, and if $T$ is integnal so is $f_{\#} T$.

Resus / Exereises
(1) Cet $f: \mathbb{R} \rightarrow \mathbb{R}, \quad f: x \mapsto e^{x}$ swooth,
a) let $T:=\sum_{0}^{\infty} \delta_{-u}$ O-eumant propere

$$
\left(\langle T, \phi\rangle=\sum_{0}^{\infty} \phi(-u)\right)
$$

Heur $f_{\#} T$ should be $\sum_{0}^{\infty} \delta_{e^{-u}}$, but this is not a well-def. eument.

Actually $f_{\#} T$ is NOT well-defined!!
b) Let $T:=[(-\infty, 0), e, 1]$ (gectif. 1-curv.)

Then $f_{\#} T:=[(0,1), e, 1]$
BUT $\partial\left(f_{\#} T\right)=\delta_{1}-\delta_{0} \neq f_{H}(\partial T)=\delta_{1}$.
Note that $f: x \mapsto e^{x}, f: \mathbb{R} \rightarrow(0,+\infty)$ is PROPGR!
Then everything should work in al aub b) (check it out!!)


$f: \mathbb{R} \rightarrow \mathbb{R}$
let $T:=[I, e, 1]$
What is $f_{\#} T$ ?
shave if Re 3
E×3] Let $T_{i}:=T_{\delta^{2}}=\left[s^{2}, \tau_{s^{2}}, 1\right]$ in $\mathbb{R}^{3}$
rect. 2-eurnant with ompecet support
Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, \quad x=\left(x_{1}, \ldots, x_{3}\right) \rightarrow\left(x_{1}, x_{2}\right)$
$f$ smooth e (nest proper)
What is $f_{\#} T$ ? Should be $f_{\#} T=0 \ldots$


App. of pusk-forward
Th. 1 Let $T=$ ere be a normal $k$-current in $\mathbb{R}^{d}$. $(|c|=1)^{r}$ Then

$$
\mu \ll y^{k} \ll भ^{k}
$$

citikegral geometric wean
in particular (if $T \neq 0$ ) $\operatorname{dime}_{H}(\operatorname{supp} \mu) \geqslant K$.

Idea of proof (assume $T$ has compact supp.) I must show that $\underbrace{J^{k}(E)=0}_{\Uparrow} \Rightarrow \mu(E)=0$.

$$
\mathcal{H}^{k}\left(P_{V}(E)\right)=0
$$

for are. $v \in \mathcal{C}_{1}(u, k)$
Take $V$ sit. $R^{k}\left(P_{V}(E)\right)=0$.
Then $T_{V}=\left(P_{V}\right)_{\#} T$ is a $k$-nomual current $\dot{u} V \simeq \mathbb{R}^{k}$.
Then $T_{V}=\left[\mathbb{R}^{k}, e, m\right]$ with m $\in B V_{b e}\left(\mathbb{R}^{k}\right)$
Then $T_{V}\left(p_{V}(E)\right)=\left\langle T_{V}, 1_{p_{V}(E)} \cdot d x\right\rangle=0$

$$
\Rightarrow T(E)=\int_{E} \breve{c} d \mu=0
$$

$<$ as a vector nuannue

$$
\nRightarrow \mu(E)=0
$$

Application 2: Howothory formula
$T$ is a $k$-cement in $\mathbb{R}^{d}$ with rampart support and $\partial T=0$.

Let fo, $f_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be homothopic maps, i.e., $\exists F:[0,1] \times \mathbb{R}^{d} \longrightarrow \mathbb{R}^{m}$ with $F(0, x)=f_{0}(x), F(1, x)=f_{1}(x)$.
(same regubrity of $f_{0}, f_{1}, F$ is needed!)
let $T_{0}:=\left(f_{0}\right)_{\#} T, \quad T_{1}:=\left(f_{1}\right)_{\#} T$.
Then

$$
T_{1}-T_{0}=\partial S
$$


where $S:=F_{\#}(\widetilde{I \times T})$
where $I:=T_{[0,1]}=[[0,1], e, 1] 1$-current in $\mathbb{R}$
Proof

$$
\begin{aligned}
\partial S & =\partial F_{\#}(I \times T) \\
& =F_{\#}(\partial(I \times T)) \\
& =F_{\#}\left(\partial I \times T-I \times \partial \partial^{1} T\right) \\
& =F_{\#}\left(\left(\delta_{1}-\delta_{0}\right) \times T\right) \\
& =F_{\#}\left(\delta_{1} \times T\right)-F_{\#}\left(\delta_{0} \times T\right)=T_{1}-T_{0} .
\end{aligned}
$$

Rems
(1) If $\mathbb{M}(T)$ (we cam take $f_{0}, f, t$ of Class $P^{\prime}$ ) then $S$ has finite mas
/uitegnal
(2) If $T$ is rectif. then $S$ is Eectifiable/integral.
Application of honothopy formula.
Th. If $T$ is a k-curnat in $\mathbb{R}^{d} k \geqslant 1$ with $\partial T=0$ ( $M(T)<+\infty$ \& compact rupert) (T react. /intis) the $T=\partial S\left(\mathbb{H}^{(S)}(S)<+\infty \&\right.$ sompaet supp.) (S rect. /int.) Roofer (cone constr.) an $^{x_{0}}$


Take $x_{0} \in \mathbb{R}^{d}$, take $F:[0,1] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$
sit. $F(1, x)=x \& F(0, x)=x_{0}$
$=f_{1}(x) \quad F(0, x)=x_{0} f_{0}(x)$
egg. $F(t, x)=t x+(1-t) x_{0}$.
Take $S_{i}=F_{\#}(I \times T)$.
Then $\partial S=\underbrace{\left(f_{1}\right)_{\#} T}_{T}-\underbrace{\left(f_{0}\right)_{\#} T}_{0}=T$.

Ex Constawey leman + pushforvord of rectef curvents + honothopy formula
$\Downarrow$
Theony of degree for maps between orreuted maingolds.

