GHT 19/20 lecture 24
$$1/6/20$$

Proposition 1 If T is a d-current in
IR^d and M(dT) <+ to then
 $T = [R^d, e, m]$
standard orbet.
 $of R^d, e.m.red$
where $m \in BV_{bc}(R^d) \subset L_{bc}^p(R^d)$ with $p = \frac{d}{d-1}$
Moreover m is locally constant in R^d i spt(dT)
spt(u) := smallest closed set C s.t.
 $spt(\omega) \cap C = \phi \implies \langle U, \omega \rangle = 0$

Sketch of proof
Defence
$$\langle \Lambda, \phi \rangle := \langle T, \phi d_X \rangle$$
.
 $\mathcal{E}_{c}^{\infty}(\mathbb{R}^d)$ $d_{X_1, \dots, nd_{X_d}}$
Then $\mathbb{M}(\partial T) \langle +\infty \Rightarrow D\Lambda$ is a measure
 $\mathcal{E}_{c}^{\infty}(\mathbb{R}^d) = \mathcal{E}_{c}^{\infty}(\mathbb{R}^d)$ $\mathcal{E}_{c}^{\infty}(\mathbb{R}^d)$ $\mathcal{E}_{c}^{\infty}(\mathbb{R$

Lenna If A is a distribution of Rd <u>d</u> d-1 s.t. DA is a measure, then Λ is a function in BVec (Rd) ⊂ Lpm (Rd) (À is represented by a function ...) Proposition 2 let 2 be a closed, Oriented k-dim. surface in Rd, and let T be a k-dien. Current ui Rd with $spt(T) C \ge (i.e. \langle T, \omega \rangle = 0$ if $spt(\omega) \cap \mathbb{Z} = \phi$ and $\mathbb{M}(\partial T) < t \omega$. Then $T = [\Sigma, z_{\xi}, m]$ with $M \in BV_{esc}(\Sigma) \subset L^{p}_{esc}(\Sigma)$, and m is locally constant in Z \ spt(DT).

Yu poseticular the support of a momal kenrent T cannot be a negligible subset of k-surface...

Basic operation on currents (and forms)
Product of currents
(extends the notion of cortesion product
of surfaces)
let
$$T = z\mu$$
 be a k-current with fruite
was in \mathbb{R}^d , let $\widetilde{T} = \widetilde{z}\widetilde{\mu}$ be a \widetilde{k} -current
.... in \mathbb{R}^d .
Then $T \times \widetilde{T}$ is the $(k+\widetilde{k})$ -current with
finite was in $\mathbb{R}^d \times \mathbb{R}^d \simeq \mathbb{R}^{d+\widetilde{d}}$ defined
by $T \times \widetilde{T} := (z \wedge \widetilde{\epsilon}) \cdot (\mu \times \widetilde{\mu})$
where product measure
 $\mathscr{E} \wedge \widetilde{\epsilon} (x, \widetilde{x}) := z(x) \wedge \widetilde{\epsilon}(x)$
 $\mathbb{R}^d \times \mathbb{R}^d$
k-vectors in \mathbb{R}^d are identified with
k-vectors in $\mathbb{R}^d \times \mathbb{R}^d$ starting from
the commical identified of \mathbb{R}^d with $\mathbb{R}^d \times \{\delta\}$.

5) If $T_{z}[E, z, w]$, $\tilde{T}_{z}[\tilde{E}, \tilde{z}, \tilde{w}]$ ave vectifiable, then TxT is also rectifiable, and $T_X \tilde{T} := \begin{bmatrix} E \times \tilde{E}, & e \wedge \tilde{e}, & m \cdot \tilde{m} \end{bmatrix}$ unit. simple (K+E)-vector! key point is that $(\mathcal{H}^{\mathsf{K}} \sqcup \mathsf{E}) \times (\mathcal{H}^{\widetilde{\mathsf{K}}} \sqcup \widetilde{\mathsf{E}}) = \mathcal{H}^{\mathsf{K}+\widetilde{\mathsf{K}}} \sqcup (\mathsf{E}\times\widetilde{\mathsf{E}})$ in particular $\mathcal{H}^{k}(\boldsymbol{\epsilon}) \cdot \mathcal{H}^{\widetilde{k}}(\widetilde{\boldsymbol{\epsilon}}) = \mathcal{H}^{k+\widetilde{k}}(\boldsymbol{\epsilon}\times\widetilde{\boldsymbol{\epsilon}})$ which holds because E, E are veetifiable (not in general) Proposition 3 If T, T are normal then TXT is normal dus $\partial(\mathsf{T}_{\times}\tilde{\mathsf{T}}) = \partial\mathsf{T}_{\times}\tilde{\mathsf{T}}_{+(-1)}\mathsf{T}_{\times}\tilde{\mathsf{T}}$ (Leibniz rule, not so easy to prove)

Rem If w, , wz are h, -, hz-forms of class C' in RN then $d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^{\kappa_1} \omega_1 \wedge d\omega_2$ (easy to prove)

Pull-back of forms, push-forward of currents <u>Purpose</u>: define the image of a current T in \mathbb{R}^{μ} through a map $f: \mathbb{R}^{\mu} \to \mathbb{R}^{\mu}$.

Pull-back of a k-covector
Let
$$\alpha \in \Lambda^{k}(W)$$
, $T: V \rightarrow W$ linear.
Then $T^{*}\alpha \in \Lambda^{k}(V)$ is defined by:
called $T^{*}\alpha \in \Lambda^{k}(V)$ is defined by:
 $T^{*}\alpha \in \Lambda^{k}(V)$ is defined to the formula of T
 $T^{*}\alpha \in \Lambda^{k}(V)$ is the constant of T
 $T^{*}\alpha \in \Lambda^{k}(V)$ is defined by:
 $T^{*}\alpha \in \Lambda^{k}(V)$ is defined by:

2) $T^{\#}(\alpha \wedge \widetilde{\alpha}) = (T^{\#}\alpha) \wedge (T^{\#}\widetilde{\alpha})$

Push-forward of a k-vector

$$T: V \rightarrow W$$
 linear, $V \in \Lambda_{k}(V)$
then $T_{\#} V \in \Lambda_{k}(W)$ defined by
called
"puole forward $\langle T_{\#} V, \alpha \rangle := \langle V, T^{\#} \alpha \rangle$
of V acc. to T, $\forall \alpha \in \Lambda_{k}(W)$
Rem 1) $T_{\#} (V \wedge \tilde{V}) = (T_{\#} V) \wedge (T_{\#} \tilde{V})$
in particular, if $V = V_{1} \wedge \dots \wedge V_{k}$ is simple
 $T_{\#} (V_{1} \wedge \dots \wedge V_{k}) = TV_{1} \wedge \dots \wedge TV_{k}$
If moreover V, W are endowed with
spalar product's
 $\|T_{\#} V\| \leq \|T\|^{k} \|V\|$
where $\|T\| := Operator norm of T$
 $\|AO\| = mass norm of V.$

Pull-back of forms (on Rd) let f: Rd ~ R' E Ehti and let where a k-form on RM E Eh Then ft w is the k-form of Rd EEh defined beg $\mathcal{L}(\mathbb{R}^d,\mathbb{R}^m)$ $\bigwedge^{k}(\mathbb{R}^m)$ "pull-back of wace. $\left(f^{\#} \omega \right) (x) := \left(d_{x} f \right)^{\#} \left(\widetilde{\omega} \left(f (x) \right) \right) .$ Rd Then $d(f^{\#}\omega) = f^{\#}(d\omega),$ if f and w are C'. Ê'(K) compact VK compact Push-forward of currents let f: IRd Ru be Cas and proper and T be a k-auvent on Rd Then fit is the k-envent on Rue push-form. defined by of Tace. dif $\langle f_{\mu}T, \omega \rangle := \langle T, f^{*}\omega \rangle$ V WE DK(RM)

