GMT 19/20 lecture 24
Proposition 1 If T is a d-current in \mathbb{R}^{d} and $M(\partial T)<+\infty$ then

$$
T=\left[\mathbb{R}^{d}, e, m\right]
$$

Staudard onet.

$$
\text { of } \mathbb{R}^{d} \text {, e, } \cdots \cdots e_{d}
$$

where $m \in B V_{\text {loc }}\left(\mathbb{R}^{d}\right) \subset L_{\text {loc }}^{p}\left(\mathbb{R}^{d}\right)$ with $p=\frac{d}{d-1}$
Moveover m is locally constant in $\mathbb{R}^{d} \backslash \operatorname{spt}(J T)$
spt (U) := smallest elosed set C s.t.

$$
\operatorname{spt}(\omega) \cap C=\phi \Rightarrow\langle U, \omega\rangle=0
$$

Sketch of proof
Defince $\langle\Lambda, \phi\rangle:=\left\langle T, \phi d_{n}\right\rangle$.

$$
\varepsilon_{c}^{\infty}\left(\mathbb{R}^{d}\right) \quad d x_{1}^{n} \cdots 1 d x_{d}
$$

Then $M(\partial T)<+\infty \Longrightarrow D \Lambda$ is a measure. Conelude by the followiug: distrinutional gradient

Lemma If Λ is a distribution or \mathbb{R}^{d} s.t. DA is a measure, then $\frac{d}{d-1}$ Λ is a function in $B V_{\operatorname{loc}}\left(\mathbb{R}^{d}\right) \subset L_{\text {bloc }}^{p}\left(\mathbb{R}^{d}\right)$ (Λ is represented by a function...)

Proposition 2 Let \sum be a closed, oriented k-dizen. surface in \mathbb{R}^{d}, and let T be a k-dim. current un \mathbb{R}^{d} with $\operatorname{spt}(T) \subset \sum$ (i.e. $\langle T, \omega\rangle=0$ if $\operatorname{spt}(\omega) \cap \Sigma=\phi)$ and $M(\partial T)<+\infty$.
Then $T=\left[\Sigma, \tau_{\Sigma}, m\right]$ with $m \in B V_{\operatorname{loc}}(\Sigma) \subset L_{\text {Co }}^{p}(\Sigma)$, and m is locally constant in $\sum 1 \operatorname{spt}(\partial T)$.

In pereticular the support of a nomad keurrent T cannat be a negligible subset of k-surface...

Basic operation on currents (and forms)
Product of currents
(extends the notion of Cartesian product of surfaces)

Let $T=r \mu$ be a k-current with finite mass in \mathbb{R}^{d}, let $\tilde{T}=\tilde{\tau} \tilde{\mu}$ be a \widetilde{k}-eurnent \cdots in $\mathbb{R}^{\widetilde{d}}$.

Then $T_{x} \widetilde{T}$ is the $(k+\tilde{k})$-current with finte was in $\mathbb{R}^{d} \times \mathbb{R}^{\tilde{d}} \simeq \mathbb{R}^{d+\tilde{d}}$ deferined by

$$
T \times \tilde{T}:=(\tau \wedge \tilde{c}) \cdot(\underbrace{\mu \times \tilde{\mu}})
$$

where
product measure

$$
r \wedge \tilde{r}(x, \tilde{x}):=r(x) \wedge \tilde{r}(\tilde{x})
$$

k-vectors in \mathbb{R}^{d} are identified with k-vectors in $\mathbb{R}^{d} \times \mathbb{R}^{\text {d }}$ storting frame the Canonical identify. of \mathbb{R}^{d} with $\mathbb{R}^{d} \times\{0\}$.

Remarks

1) Example

2) Note that $\left\langle T x \tilde{T}, \phi d x_{\underline{i}} \wedge d \tilde{x}_{\underline{j}}\right\rangle=0$ unless $\underline{i} \in I(d, k)$ and $\underline{j} \in I(\tilde{d}, \tilde{k})$.
3) $\mathbb{M}(T \times \tilde{T})=\mathbb{M}(T) \cdot \mathbb{M}(\tilde{T})$ because $|\tau \wedge \tilde{r}|=|\tau| \cdot|\tilde{\tau}|$ if r, \tilde{e} are multivectors in \mathbb{R}^{N} supported on orthogonal supspares (if 1.1 is either the Euclidean nom or the mass norm).
4) You can define $T \times \widetilde{T}$ also if T and \widetilde{T} ane general eurvents
5) If $T=[E, \tau, m], \tilde{T}=[\widetilde{E}, \tilde{c}, \tilde{u}]$ are rectifiable, then $T \times \tilde{T}$ is also rectifiable, aud

$$
T \times \tilde{T}:=[E \times \tilde{E}, \underbrace{r \wedge \tilde{m}}, m \cdot \tilde{m}]
$$

wit. simple $(k+\pi)$-vector!
key point is that

$$
\left(H^{k} L E\right) \times\left(\not^{\tilde{k}} L \tilde{E}\right)=H^{k+\tilde{k}} L(E \times \tilde{E})
$$

in particurkav

$$
भ^{k}(E) \cdot H^{\tilde{k}}(\tilde{E})=\not^{k+\tilde{n}}(E \times \tilde{E})
$$

which holds because E, \widetilde{E} ane rectifiable (not in general)

Proposition 3 If T, \widetilde{T} are normal then $T \times \widetilde{T}$ is nomad and

$$
\partial(T \times \widetilde{T})=\partial T \times \widetilde{T}+(-1)^{k} \cdot T \times \partial \widetilde{T}
$$

(Leibniz rule, not so easy to prove)

Rem If ω_{1}, ω_{2} are $h_{1}-, h_{2}$-forms of class C^{\prime} un \mathbb{R}^{N} then

$$
\begin{aligned}
& d\left(\omega_{1} \wedge \omega_{2}\right)=d \omega_{1} \wedge \omega_{2}+(-1)^{h_{1}} \omega_{1} \wedge d \omega_{2} \\
& \text { (easy to prove) }
\end{aligned}
$$

Pull-back of forms, push-forwared of currents Purpose: define the image of a current T mi \mathbb{R}^{u} through a map $f: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}$.

Pull-back of a k-convector
Let $\alpha \in \Lambda^{k}(W), T: V \longrightarrow W$ linear.
Then $T^{\# \#} \alpha \in M^{k}(V)$ is defined by:
called
"pull-bock $T^{\#} \alpha\left(v_{1}, \ldots, v_{k}\right):=\alpha\left(T v_{1}, \ldots, T v_{k}\right)$ of α accord.

$$
\begin{array}{ll}
\text { of } \alpha \text { accord. } & v_{i} \in V
\end{array} \quad T_{i} \in W
$$

If V, W are endowed with scalar products then

$$
\left\|T^{\#} \alpha\right\| \leqslant\|T\|^{k}\|\alpha\|
$$

where IITII is the operator norm of T (that is, the lipselitiz constant of T) $\|\alpha\|$ is the Comes norm of α $\left[\begin{array}{ll}\text { Proof } & \text { uses that } \\ & \left|T_{v}, \wedge \cdots \wedge T v_{k}\right| \leqslant\|T\|^{k}\left|v_{1} \wedge \ldots \wedge v_{k}\right|\end{array}\right]$

Rem 1) If $k=1, \quad T^{\#}$ is the adjoint T^{*} 2) $T^{\#}(\alpha \wedge \tilde{\alpha})=\left(T^{\#} \alpha\right) \wedge\left(T^{\#} \tilde{\alpha}\right)$

Push-forwand of a k-veetor
$T: V \rightarrow W$ linean, $V \in \Lambda_{k}(V)$
then $T_{\#} V \in \Lambda_{k}(W)$ defined by called
"push-forwornd of V acc. $t_{0} T_{\text {, }}$,

$$
\left\langle T_{\# v}, \alpha\right\rangle:=\left\langle v, T_{\alpha}^{\#}\right\rangle
$$

$$
\forall_{\alpha \in \Lambda^{k}(W)}
$$

Rem 1) $T_{\#}(v \wedge \tilde{v})=\left(T_{\#} v\right) \wedge\left(T_{\#} \widetilde{v}\right)$ in pouticuldr, if $V=V_{1} \wedge \ldots \Lambda V_{k}$ is simple

$$
T_{H}\left(v_{1} \wedge \ldots \wedge v_{k}\right)=T v_{1} \wedge \ldots \wedge T v_{k}
$$

If moneover V, W are endowed with spalar poroductis

$$
\left\|T_{\#} \cup\right\| \leqslant\|T\|^{k}\|v\|
$$

whene $\|T\|:=$ operstor norm of T $\|v\|=$ mass norm of v.

Pull-back of forms (on \mathbb{R}^{d})
let $f: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{m} \in \varepsilon^{h+1}$
and let ω be a k-forme on $\mathbb{R}^{m} \in E^{k}$
Then $f^{\#} \omega$ is the k form of $\mathbb{R}^{d} \in e^{k}$
"pullback defined by $\mathscr{L}\left(\mathbb{R}^{d}, \mathbb{R}^{m}\right) \Lambda^{k}\left(\mathbb{R}^{m}\right)$ of ω ace. to f"

$$
\left(f^{\#} \omega\right)(\underset{\substack{(x) \\ \mathbb{R}^{d}}}{ }:=(\overbrace{d_{x} f}^{\psi})^{\#} \overbrace{\left.\underset{\mathbb{R}^{m}}{\left(\omega_{(}^{f(x))}\right.}\right)}^{u}) .
$$

Then

$$
d\left(f^{\#} \omega\right)=f^{\#}(d \omega)
$$

if f and ω are e^{\prime}.
Pusk-forcoand of currents let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ be e^{∞} and proper and T be a k-current on \mathbb{R}^{d}
Then $f_{\#} T$ is the k-current on \mathbb{R}^{k} push-forno. defined by

> of T acc.dif

$$
\forall \omega \in A^{k}\left(\mathbb{R}^{\omega}\right)
$$

Then

$$
f_{\#}(\partial T)=\partial\left(f_{\#} T\right)
$$

Rem 1) If T has finite mass then $f_{\#} T$ is well-defined if f is e^{1} and proper
2) If T has Compact support then $f_{\#} \tau$ is well-defined of f is C^{∞} (but not proper)

