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Approximation of currents

( two reasons for having good approx .

results ! )
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Theorem ( approx . by polyhedral chains)
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Next lectures

• Constancy burned

• elementary operations on currents

oqgiytgh.ge) ( product , push- forward , homotopy formula)
• flat distance ( useful tool )
• Polyhedral deformation theorem
( basic tool for approximation results)

just • Slicing ,
characterization of reatifiability

by slicing , proof of closure th .Sketched}
and bothy vedif . Th '



Constancy leaned and related results
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