F.-F. elosure/compactness theorem

Let T_{u} be integral currents (in $\left.\mathbb{R}^{d}, \Omega, \ldots ..\right)$
s.t.

$$
\mathbb{M}\left(T_{u}\right) ; \mathbb{M}\left(\partial T_{u}\right) \leqslant C<+\infty .
$$

Then T_{u} convenge (up to subsea.) to T untegnal [prosef is havd]
Boundary Reetifiability Theorem
let T be rectificiable aurnent with nitegral multeplicity ($u \mathbb{R}^{d}, \Omega, \ldots .$.) s.t. $M(\partial T)<+\infty$. Then ∂T is reetif. + integral multiplietty $(\Rightarrow T$ is initegral).
[proof is hard]
Reu

- There are T rectef. + integral multiplicity with $M(\partial T)=+\infty$.
stantard ovieut of \mathbb{R}, $e=1$
In \mathbb{R}, let $T=[E, e, 1]$ where

$$
E=\bigcup_{n=0}^{\infty}\left[\frac{1}{2 \cdot 4^{n}}, \frac{1}{4^{n}}\right]
$$

$\left(\begin{array}{c}\text { prove that } M(\partial T)=+\infty, \text { that is, } \\ \sup _{\phi \in e_{c}^{\infty}}\langle\partial T, \phi\rangle=+\infty \\ \phi \in\end{array}\right)$

- F.-F. Th. eau be restated as follows: Let T_{u} be rectifibuble ${ }^{k}$-首urrents with integral multiplicity sit.

$$
\mathbb{M}\left(T_{u}\right), \mathbb{M}\left(\partial T_{u}\right) \leqslant e<+\infty
$$

Then, up to subseq., $T_{n} \rightarrow T$ rectif. + integral nultiplicity.

- F.F. Th. am be uiproved as Lollows (Ambrasio-Kirchheim, Jerrard) :
Let T_{n} be rectifibuble ${ }^{k-}$ eurvents with $\left|m_{n}\right| \geqslant \delta>0 \quad$ sit.
multiph. $\boldsymbol{M}\left(T_{u}\right), \mathbb{M}\left(\partial T_{u}\right) \leqslant c<+\infty$. of T_{u}

Then, up to subseq., $T_{n} \rightarrow T$ rectif. + multiplieity m s.t. $|m| \geqslant \delta$.

Approximation of currents
(two reasons for having good approx. results!)
Def. A K-polyhedral current (or chain) in \mathbb{R}^{d} is a current of the form

$$
T:=\sum_{\prod i}\left[S_{i}, \tau_{i}, m_{i}\right]
$$

finite sum!
whew: S_{i} is a k-dim. Simplex (convex envelope of $k+1$ affinely indep. points in \mathbb{R}^{d})
τ_{i} is a constant orientation of S_{i}
m_{i} is a constant multiplicity in \mathbb{R} or \mathbb{Z}
$\underline{\varepsilon}$.

$$
k=1
$$

$$
k=2
$$

(Slightly diff. def. $y^{6} \mathbb{R}^{d}$ is replaced by Ω oil)

Theorem (approx. by polyhedral chains)
(i) If T is an integral current in $\mathbb{R}^{d}(\ldots$. then $\exists T_{n}$ integral polyhedral chains sit.

$$
\begin{aligned}
& T_{u} \rightarrow T \quad \& \quad \mathbb{M}\left(T_{u}\right) \rightarrow \mathbb{M}(T) \\
& \partial T_{u} \rightarrow \partial T \quad \& \quad M\left(\partial T_{u}\right) \rightarrow \mathbb{M}(\partial T)
\end{aligned}
$$

(ii) If T is normal the same holds with T_{u} real polyhedral chains.

Rems

- For statement (ii) it is essential that M is defined using man and camass norm for (and not the Euclidean nome) norm for k-veetovs and k-convectors.
Think about this case: $T=r . \mu$ where $\mu=\mathscr{L}^{d} L Q, Q=[0,1]$, r is a constant non-sinple k-veetor. ($2 \leqslant k \leqslant d-2$)
To emstruct T_{n} (by hands) you will
mod to covite $r=\sum \lambda_{i} \tau_{i}$ with τ_{i} simple and $|r| \cong \sum \lambda_{i}\left|\tau_{i}\right|$
- You lur uiprove the approx. Result in many ways. $\varepsilon \rho$, if $\partial T=0$ then you con equine that $\partial T_{u}=0$ And also that T_{u} is cobordant to T, that is $T_{n}-T$ is a boundary $\left(T_{n}-T=\partial U\right)$
ambient space M

T has no boundary but is
$[S, 2,1]$ not a boundary (u, M)

- Approximation with regular surfaces is delicate.

Hint There exist namitold M and polys. K-chair T in M cohieh is not
cobordent to any k-dim. surface in M.

- In all this theory, mass generalizes the volume "with multiplicity, of polyhedral chains, which is not the volume.

This has some censequanees
EX 1 $\partial T_{0}:=$ sum of four biracs

Sol. of Plateau Pb. with bound ave Jo is

$\varepsilon_{\times 2}$

sol. of PI. Pr.

Ex 3 ∂T_{0}

S is not orientable

- there is no current supp. by S with boundary dato

Next lectures

- Constancy lemur
- elementary operations on currents
with (product, push-forward, homothopy formula)
some
details
- flat distance (useful tool)
- Polyhedral deformation theorem (basic tool for approximation results)
just \int - Slicing, characterization of rectifiability
sketched $\left\{\begin{array}{l}\text { by slicing, proof of closure th. } \\ \text { and beery rectif. Th. }\end{array}\right.$

Constancy lemma and related results
Const. Lama (basic version)
Let T be a d-dimensional current in \mathbb{R}^{d} and $\partial T=0$. Then $T=\left[\mathbb{R}^{d}, e, m\right]$

Proof

$$
e_{1} \wedge e_{2} \wedge \ldots \wedge e_{d}
$$ standard orient. of \mathbb{R}^{d}

I associate to T a distribution Λ on \mathbb{R}^{d} :

$$
\langle\Lambda, \underset{\substack{\bigotimes_{c}^{\infty}\left(\mathbb{R}^{d}\right)}}{\varphi\rangle}:=\langle T ; \varphi \cdot \underbrace{d x_{1} \wedge \cdots \wedge d x_{d}}_{d x}\rangle
$$

Thee

$$
\begin{aligned}
& \partial T=0 \Leftrightarrow D^{L} \wedge=0 \\
& \Leftrightarrow\left(\frac{d i s t r i b u t i a n ~}{D} \Lambda=0\right. \\
&\left(\frac{\partial \Lambda}{\partial x_{1}}, \cdots, \frac{\partial \Lambda}{\partial x_{d}}\right)
\end{aligned}
$$

Take indeed $\phi \in \varphi_{c}^{\infty}\left(\mathbb{R}^{d}\right), i=1, \ldots, d$, and let

$$
\omega:=\phi \widehat{d x_{i}} \in \oiint^{d-1}\left(\mathbb{R}^{d}\right)
$$

ii
Then

$$
d \omega=d \phi \wedge \widehat{d x_{i}}=\sum_{j} \frac{\partial \phi}{\partial x_{j}} \cdot d x_{j} \wedge \widehat{d x_{i}}=\frac{\partial \phi}{\partial x_{i}}(-1)^{i-1} d x
$$

$$
\begin{aligned}
& \partial T=0 \quad \lambda_{j \neq i} d x_{j} \\
& 0 \stackrel{v}{=}\langle\partial T, \omega\rangle=\langle T, d \omega\rangle \quad d x_{1}, \cdots \cdots d x_{d}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle T, \frac{\partial \phi}{\partial x_{i}}(-1)^{i-1} d x\right\rangle \\
& =\left\langle\Lambda,(-1)^{i-1} \frac{\partial \phi}{\partial x_{i}}\right\rangle \\
& =\left\langle\frac{\partial \Lambda}{\partial x_{i}},(-1)^{i} \phi\right\rangle \\
& =\left\langle(-1)^{i} \frac{\partial \Lambda}{\partial x_{i}}, \phi\right\rangle
\end{aligned}
$$

then $(-1)^{i} \frac{\partial \Lambda}{\partial x_{i}}=0 \quad \forall i$
Known feet: $D \Lambda=0 \Rightarrow \Lambda$ is (represented by) a constant m, that is

$$
\begin{aligned}
&\langle\Lambda, \phi\rangle= \int_{\mathbb{R}^{d}} m \cdot \phi d x \\
&\langle T, \phi \\
&\langle\phi d x\rangle \int_{\mathbb{R}^{d}}^{\prime \prime} m\langle\phi d x ; e\rangle d x \\
& \\
&\left\langle\left[\mathbb{R}^{d}, e, m\right], \phi d x\right\rangle
\end{aligned}
$$

By-produet of this proof
Proposition 1
let T be a decurrent on \mathbb{R}^{d} (or $\stackrel{\mathbb{R}^{d}}{\Omega}$ or M^{d}) with $\mathbb{M}($ OT) $<+\infty$.
Then $T=\left[\mathbb{R}^{d}, e, m\right]^{\text {or }}$ or M^{d} with

$$
m \in B V_{\operatorname{Coc}}\left(\mathbb{R}^{d} \Omega_{\text {or }} \dot{M}^{d}\right.
$$

