GMT 19/20 lecture 22 28/5/20
(Relevant) classes of currents (Continuation)

1) currents with finite mass, $M(T)<t s_{0}$
$\Rightarrow T=r \mu$ (not geometrically relevant)
2] normal currents: $M(T), M(\partial T)<+\infty$ (geometrically relevant)
2) Rectifiable currents.

Let $E \quad k$-dim. rectify. set in \mathbb{R}^{d}.
Let r be an orientation of E.

$$
\text { i.e., r: } E \rightarrow \Lambda_{k}\left(\mathbb{R}^{d}\right) \text { sit. } r(x)
$$

is an orientation of $T_{x}^{W} E$ for HKa.e.x that is, $r(x)=r_{1}(x) \wedge \ldots \wedge r_{k}(x)$ is simple, $|\tau(x)|=1, \quad \operatorname{span}(\tau(x)):=\operatorname{span}\left\{\tau_{1}(x), \ldots, \tau_{k}(x)\right\}=$ $=T_{x}^{w} E$
Let $m \in L^{\prime}\left(H^{k} L E\right)$ be a "multiplicity".
Then let $T=[E, \tau, m]$ be the current
(*) $\langle T, \omega\rangle:=\int_{E}\langle\omega(x), r(x)\rangle \cdot m(x) d H^{k}(x)$
or equiv. $T=r \cdot m \cdot \not H^{k} L E$
If T can be written as in (*) for some E, τ, m, we say that T is rectifiable.

If moreover m takes values u in \mathbb{Z}, we say that T has integral multiplicity.

Rem.

- If $T=[E, r, m]$ then $M(T)=\int_{E}|m(x)| d y^{k}(x)$
- Given Trectíf., E, ε, m ave NOT uniquely determined.
However, if you additionally require that $m>0$ orka.e,, then E, τ, m are uniquely determined (up to Do k mill sets) (this is an ex.)
- Note that the dimension of T is the same as the dimension of E.
- Natural example: Let S be a k-dim. oriented surface in \mathbb{R}^{d} with $\mathcal{H}^{k}(S)<+\infty$.

Then $T_{S}=\left[S, \tau_{S}, 1\right]$ is rectifiable.

$$
\rightarrow \quad\left\langle T_{S}, \omega\right\rangle:=\int_{S}\left\langle\omega(x), z_{S}(x)\right\rangle d \gamma^{k}(x)
$$

- Move nitevesting example: $E=$ curve of Class C^{\prime} $\omega \mathbb{R}^{2}$
 τ discontinuous Orientation
Then $T:=[E, \tau, s]$ is a rectif.
1-current (with integral multipl.)
and

$$
\partial T=2 \delta_{x_{1}}-\delta_{x_{0}}-\delta_{x_{2}}
$$

are

- Move general: Let E be curse of class C^{\prime} wi $\mathbb{R}^{2} \ldots$ with continuous orientation r.
Let $m: E \rightarrow \mathbb{R}$ be piecewise e^{1}.
Compute the boundary of $T:=[E, z, u]$
- If S is the Mobile strip in \mathbb{R}^{3} you can choose a disc. orient. 工 so that $T=[S, \tau, 1]$ is 1 -dim. currant,

What is at?

4 Integral currents
We say that T is an integral k-current if both T and ∂T are rectifiable with integral multiplicity
for $k \geqslant 1$ (for $k=0, T$ is rector. with nitegral multiplicity that is

$$
\left.T=\sum_{i} m_{i} \delta_{x_{i}}, m_{i} \in \mathbb{Z}\right)
$$

finite sum
Thus $\exists E, \tau, m ; E^{\prime}, \tau^{\prime}$, mi sit. $^{\prime}$

$$
T=\left[E, \tau, m^{\prime}\right], \quad \partial T=\left[E^{\prime}, \tau^{\prime}, m^{\prime}\right]
$$

There should be a geometric vel. between E and E^{\prime}. But it is only known for $k=d$.

Fedever - Fleming Competness Theorem let T_{u} be sequence of integral k-currents in $\mathbb{R}^{d}(0 \leqslant k \leqslant d)$ sit.

$$
(*) \quad M\left(T_{u}\right), M\left(\partial \tau_{w}\right) \leqslant C<+\infty \text {. }
$$

Thea, up to subsea., The converges to T integral k-current.

Corollary (Existence of solution of Plateau Problem for integral currents)
let To be au integral current in \mathbb{R}^{d}. Then the minimum

$$
\min \left\{\mathbb{M}(T): T \text { integral, } \partial T=\partial T_{0}\right\}
$$

is achieved.
Roof let T_{u} be a mimithiting seq. then $M\left(T_{u}\right) \leqslant \mathbb{M}\left(T_{0}\right)<+\infty, \mathbb{M}\left(\partial T_{u}\right)=M\left(\partial T_{0}\right)<+\infty$. $T_{u} \rightarrow T$ by F.F. T is a mimi mizar.

Remarks

- The proof of F.F. Compactness is hard.
- Under (*) we already know that (up to subset.) Tu converges to a normal current T (soft statement). The hard part is proving that T is an integral current!!
(Thus $F-F$ compactness theorem is often called "F-F. closure theorem,.)
- There is no Counterpart of F.-F. for rectifiable sets on rectifiable measures.
- The ass. (*) in F_F are the natural ones far application to Plateau Probleus.

Examples (showing the assumptions in F.-F. theorem are all needed)

1) F.F does not hold if we replace litegral currents with nitegral currents with multiplicity s,

$$
\begin{aligned}
& T_{u}:= {\left[E_{n}, e_{1}, 1\right] } \\
& \partial T_{u}:= \text { sum of } \\
& \text { four Divac } \\
& \text { masses }
\end{aligned}
$$

Then $\mathbb{M}\left(T_{u}\right)=2, \quad \mathbb{M}\left(\partial T_{u}\right)=4$

$$
T_{u} \rightarrow T:=\left[I, e_{1}, 2\right]
$$

Also solutions of Pl. Pb. Way have multiplicity different from

$$
\partial T_{0}:=\delta_{x_{4}}+\delta_{x_{3}}-\delta_{x_{2}}-\delta_{x_{1}}
$$

Then sol. of P.P. is

$$
T=\left[I, e_{1}, m\right]
$$

2) Let T_{n} be 1-current in \mathbb{R} given by $T_{n}:=\left[E_{n}, e_{1}, 1\right] \lessdot$ nitegral

$$
\xrightarrow{e_{1}}
$$

$$
\begin{aligned}
& M(T u)=1 \\
& M\left(\partial T_{u}\right)=2 u^{2}
\end{aligned}
$$

of n^{2} hoviz.
segments with length $\frac{1}{n^{2}}$
NOT integral
Then $T_{n} \rightarrow T:=e_{1} \mu$
with $\mu=\mathscr{L}^{2} L Q$ with $Q:=[0,1]^{2}$.
(prove it)
This proves that the ass. $M\left(\partial T_{w}\right) \leqslant C<+\infty$ in F-F. Th. is needed!
3) $T_{u}: z\left[E_{n}, e_{1}, \frac{1}{n}\right]$ 1-eurrent is \mathbb{R}^{2}

$$
\begin{aligned}
& M\left(T_{u}\right)=1 \\
& M\left(\partial T_{u}\right)=2
\end{aligned}
$$

Then $T_{u} \rightarrow T=e_{1} \mu$ and $\mu:=\mathscr{L}^{2} L Q$. Which is not even rectifiable.

This shows that in F.-F. The the ass. of integral multiplicity is need!
4) $T_{u}:=\left[E_{u}, \tau_{u}, 1\right]$ 1-curnent in \mathbb{R}^{2}

$$
\begin{aligned}
& M\left(T_{u}\right)=\pi \\
& \partial T_{u}=0 \\
& \mathcal{H}^{\prime} L E_{n} \rightarrow \pi \cdot \mathscr{L}^{2} L Q
\end{aligned}
$$

What is $\lim _{u \rightarrow \infty} T_{u}=$?

