GMT 19/20 lecture 22 28/5/20 (Relevant) classes of currents (continuation) 1) currents with finite mass, M(T)<+6 ⇒ T = 2pe (not geometrically relevant) 2] normal currents: M(T), M(2T) <+00 (geometrically velevant) 3 Rectifiable currents. Let E k-dim. rectif. set in Rd. let 2 be au orientation of E. i.e., $\mathcal{T}: E \longrightarrow \Lambda_k(\mathbb{R}^d)$ s.t. $\mathcal{C}(\mathcal{K})$ is an orientation of TXE for HKa.e.X that is, $\mathcal{C}(x) = \mathcal{C}(x) \wedge \dots \wedge \mathcal{C}_{k}(x)$ is simple, $|\mathcal{Z}(x)| = 1$, span $(\mathcal{Z}(x)) := span \{\mathcal{Z}_1(x), ..., \mathcal{Z}_k(x)\} =$ $= T_{x}^{w} E$ let $m \in L'(\mathcal{H}^{k}LE)$ be a "multiplicity". Then let T = [E, z, m] be the current $(*) \quad \langle \mathsf{T}, \omega \rangle := \int \langle \omega(\mathsf{x}), \mathsf{T}(\mathsf{x}) \rangle \cdot \mathsf{M}(\mathsf{x}) \, d\mathcal{H}^{\mathsf{k}}(\mathsf{x})$

or equiv. T= c.m.HKLE

If T can be written is in (*) for some E, Z, M, we say that T is rectifiable. If moreover in takes values in \mathbb{Z} , we say that T has integral multiplicity.

Reu.

- If T = [E, z, w] then $M(T) = \int |m(x)| d\mathcal{H}^{k}(x)$
- · Given Treetif., E, Z, m [[m]]_{L'(144E)} 2ve NOT uniquely determined. However, if you additionally require that M>O 91Ka.e., then E, Z, m are uniquely determined (up to 92Kmill sets) (this is an ex.)
- Note that the dimension of T is the Same as the dimension of E.
- Natural example: Cet S be a k-dim. oriented surface in R^d with HK(S)<+20.

Then
$$T_S = [S, Z_S, 1]$$
 is rectifiable.
($S < T_S, W > := \int_S < \omega(x), Z(X) d H^{L}(X)$
• More interesting example : $E = avve of elan C^{1}$
 $of elan C^{1}$
 $V_X = vir R^2$
 $X_0 = X_1 = C discontinuous orientation
Then $T := [E, Z, S]$ is a rectife.
 $1 - current$ (with integral multipl.)
 $avd = T = 2S_{X_1} - S_{X_0} - S_{X_2}$.
• More general : let E be carve of clars C^{1} with C on timeous orientation Z .
(at $M : E \rightarrow R$ be preceive C^{1} .
Compute the boundary of $T := [E, Z, w]$
• If S is the Höbbus strip in R^3
you can choose a disc. orient. Z
so that $T = [S, Z, X]$ is $1 - dim$ curvent.$

What is at?

41 Integral currents We say that T is an integral K-current if both T and ST are rectificable with integral multiplicity Por k >1 (bor k=0, T is rectuf. with integral multiplicity that is $T = \sum_{i} m_{i} S_{X_{i}}, m_{i} \in \mathbb{Z} \right).$ Thus J E, z, m; E', z', m' s.t. $T = [E, z, w], \quad \partial T = [E', z', w']$

There should be a geometric rel. between E and E'. But it is only known for k=d.

 $T_{u} \rightarrow T$ by F.F. T is a niminizer.

Renewks

- There is no counterport of F.-F. for rectifiable sets on rectifiable measures.
- o The ars. (*) in F_F are the natural ones for application to Platean Problem.

2) Let The le 1-current in R given by Tu: = [En, en, 1] <- uitegral M(Tu) = 1 $\xrightarrow{\mathcal{C}_{i}}$ $M(\partial T_n) = 2h^2$ $E_n := union of M^2 hoviz.$ segments with length 1 NOT integral Then Th -> T := elipe with $\mu = \mathcal{L}^2 L \mathcal{Q}$ with $\mathcal{Q} := [0,1]^2$. (prove it) This proves that the ass. M(OTu) < CK+00 in F.-F. Th. is needed!

Then $T_{\mu} \longrightarrow T = e_{\mu}$ and $\mu := \&^{2} L Q$, which is not even certifiable.

This shows that in F.F. Th the ass. of integral multiplicity is need!

