GMT 19/20 lecture 21 25/5/20
General currents (continued)
Recap:

$$
\begin{aligned}
\Phi^{k}\left(\mathbb{R}^{d}\right) & =\left\{k \text {-forms on } \mathbb{R}^{d} \text { of class } C_{c}^{\infty}\right\} \\
\Phi_{k}\left(\mathbb{R}^{d}\right) & =\left\{k \text {-diu. aurvents on } \mathbb{R}^{d}\right\} \\
& :=\left(\mathscr{L}^{k}\left(\mathbb{R}^{d}\right)\right)^{*} .
\end{aligned}
$$

\mathbb{R}^{d} can be replaced with Ω open set ii \mathbb{R}^{d} or M ot -dimensional Rim.
manifolded.
Given $T \in \mathscr{D}_{k}\left(\mathbb{R}^{d}\right)$, the bomedary $\partial T \in \mathscr{D}_{k-1}\left(\mathbb{R}^{d}\right)$ is defined by

$$
\partial T(\omega)=\langle\partial T, \omega\rangle:=\langle T, d \omega\rangle
$$

and the mass of T is

$$
M(T):=\sup \langle T, \omega\rangle
$$

If S is a closed, oriented k-surf. then T_{s} is defined by

$$
\left\langle T_{S} ; \omega\right\rangle:=\int_{S} \omega
$$

and

$$
\partial T_{S}=T_{\partial s} \text { (stokes th.) }
$$

and

$$
\mathbb{M}\left(T_{S}\right):=\operatorname{vol}_{k}(S)=\mathcal{H}^{k}(\delta) .
$$

move about this soon!
Topology on $\boldsymbol{D}^{k}\left(\mathbb{R}^{d}\right)$ and $क_{k}\left(\mathbb{R}^{d}\right)$
We work only with Locally convex vector spaces!!
$\forall K$ compact in \mathbb{R}^{d}, let

$$
\mathscr{D}^{k}(\mathbb{K}):=\left\{\omega \in \mathscr{D}^{k}\left(\mathbb{R}^{d}\right): \operatorname{supp}(\omega) \subset k\right\}
$$

This is a Frechet space with the Seminonus

$$
\|\omega\|_{c^{h}}:=\sum_{\underline{i}}\left\|\omega_{\underline{i}}\right\|_{e^{h}}=\sum_{\underline{\underline{j}}} \sum_{|\underline{j}| \leqslant K}\left\|D^{j} \omega_{\underline{i}}\right\|_{\infty}
$$

The topology on $\oiint^{k}\left(\mathbb{R}^{d}\right)$ is the weakest (the smallest) sit.

$$
i: \oiint^{k}(k) \longrightarrow \oiint^{k}\left(\mathbb{R}^{d}\right)
$$

is continuous $\forall K$ (that is, the so-called divect-limit topology).
$\mathscr{D}_{k}\left(\mathbb{R}^{d}\right):=\left\{\right.$ continuous linear fun ct. on $\left.\mathscr{D}^{k}\right\}$ is endowed with the weak* topology,

A sequence of currents T_{u} converges (in the sense of currants) to T iff

$$
\left\langle T_{u}, \omega\right\rangle \rightarrow\langle T, \omega\rangle \quad \forall \omega \in \mathscr{B}^{k}\left(\mathbb{R}^{d}\right)
$$

Prop. 1 If $T_{u} \rightarrow T$ then
(i) $\partial T_{u} \rightarrow \partial T_{j}$
(ii) $\mathbb{M}(T) \leqslant \lim _{u \rightarrow \infty} f \mathbb{M}\left(T_{u}\right)$.

Proof is immediate!

Remarks
(1) ∂ is the adjoint of d, i.e.

$$
\langle\partial T, \omega\rangle=\langle T, d \omega\rangle
$$

(2) $\forall \omega \in e^{2}, \quad d^{2} \omega=0$

Proof $d^{2} \omega=d\left(\sum_{j=1}^{d} d x_{j} \wedge \frac{\partial \omega}{\partial x_{j}}\right)$

$$
\begin{aligned}
& =\sum_{e=1}^{d} \sum_{j=1}^{d} d x_{e} \wedge d x_{j} \wedge \frac{\partial}{\partial x_{e}}\left(\frac{\partial \omega}{\partial x_{j}}\right) \\
& =\sum_{1 \leqslant e<j \leqslant d} d x_{e} \wedge d x_{j} \wedge \frac{\partial^{2} \omega}{\partial x_{e} \partial x_{j}} \\
& \quad+d x_{j} \wedge d x_{e} \wedge \frac{\partial^{2} \omega}{\partial x_{j} \partial x_{e}} \\
& =0
\end{aligned}
$$

(3) $\forall T \in \mathscr{B}_{k}\left(\mathbb{R}^{d}\right), \quad \partial^{2} T=0$ Proof: $(i)+(i i)$.

Signifieant (?) subclasses of currents (no symbols given)
11 Currents with finite mass

$$
\{T: M(T)<+\infty\}
$$

For such τ,

$$
|\langle T, \omega\rangle| \leqslant M(T)\|\omega\|_{\infty} \quad \forall \omega \in \mathscr{O}^{k}
$$

- hence T can be extented by density t_{0} all $\omega \in E_{0}\left(\mathbb{R}^{d}, \Lambda^{k}\left(\mathbb{R}^{d}\right)\right)$
- hence T can be represended by a measure with values in $\lambda_{k}\left(\mathbb{R}^{d}\right)$: $\exists \mu$ positive (bally) finite measure on \mathbb{R}^{d}

$$
\begin{aligned}
\exists r: & \mathbb{R}^{d} \rightarrow \Lambda_{k}\left(\mathbb{R}^{d}\right) \in L^{y}(\mu) \text { sit. } \\
& \langle T, \omega\rangle:=\int_{\mathbb{R}^{d}}\langle\tau(x) ; \omega(x)\rangle d \mu(x)
\end{aligned}
$$

Then

$$
\mathbb{M}(T)=\sup _{\substack{\omega \in \mathcal{D}^{k} \\\|\omega\|_{\infty} \leqslant 1}}\langle T, \omega\rangle=\sup _{\substack{\omega \in \varepsilon_{0} \\\|\omega\|_{\infty} \leqslant 1}}\langle T, \omega\rangle=\int_{\mathbb{R}^{d}}^{|\tau(x)|} d \mu(x)
$$

Notation: I write $T=\tau \mu$.
τ and μ are miquely eletermined if you request that $|r(x)| z 1 \quad \mu$-ave.
Rem if $T=T_{S}$ with S compact C! surface then $T=\tau_{S} \cdot H^{k} L S$ and $M(T)=H^{k}(S)$.

Prop. 2 (compactness): If $M\left(T_{u}\right) \leqslant C<+\infty$ then (up to subseq.) T_{u} converges to sene T (in the sense of currents) with

$$
\begin{aligned}
& M(T) \leqslant \operatorname{limif}_{u \rightarrow \infty} M\left(T_{u}\right)<+\infty \\
& \text { hided }\left\langle T_{u}, \omega\right\rangle \rightarrow\langle T, \omega\rangle \quad \forall \omega \in \varepsilon_{0}\left(\mathbb{R}^{d}, \ldots\right) \text {. }
\end{aligned}
$$

2 Normal arrests if $k \geqslant 1$, for $k=0$ no wal currents are just currents evita MM (T) < to
$T \in \mathscr{P}_{k}\left(\mathbb{R}^{d}\right)$ is normal if $\mathbb{M}(T), \mathbb{M}(ग)<+\infty$.

$$
\left(T=r \mu, \partial T=\tau^{\prime} \mu^{\prime} \ldots\right)
$$

Prop. 3 (Compactness): if $M\left(T_{n}\right), M\left(\partial T_{u}\right) \leqslant C<+\infty$ then (u pto subset.) Tu converges to a nomad current T.

Moreover $\partial T_{n} \rightarrow \partial T, M(T) \leqslant \liminf _{u \rightarrow \infty} M\left(T_{n}\right)$,

$$
\mathbb{M}(\partial T) \leq \operatorname{limin}_{n \rightarrow \infty} \mathbb{M}\left(\partial T_{w}\right)
$$

Proof Apply Rrop. 2 \& Rop.1.
Covoll. (Solution of Platean Probleu in the elass of nomal curreuts). Fix T_{0} nomal k-curreut: then

$$
\min \left\{\mathbb{M}(T) ; \quad T_{\Lambda} \text { s.t. } \partial T=\partial T_{0}\right\}
$$

exists. normal

NOT SATISFACTORY, beeause the class of nomal curvents is too lange! Examples of nonual (and not) cumants 1) \sum compacts surface of class $P 1$ $\Rightarrow T_{\Sigma}$ is nomal, $M\left(T_{\Sigma}\right)=\AA^{k}(\Sigma)$, $M\left(\partial T_{\Sigma}\right)=H^{k-1}(\partial \Sigma), T=\tau_{\Sigma} \cdot H^{K} L \Sigma$

2
in \mathbb{R}^{2}

$$
\begin{aligned}
& \mu:=\mathscr{L}^{2} L R \\
& e_{1}:=(1,0)
\end{aligned}
$$

then $T=e_{1} \cdot \mu$ is a normal 1-dimensional currant
Indeed $e_{e} t I^{ \pm}:=\{ \pm 1\} \times[0,1]$,
then $\partial T=\mathcal{H}^{1} L I^{+}-\mathcal{H}^{\prime} L I^{-}$

$$
\begin{gathered}
=\tau^{\prime} \mu^{\prime} \text { with } \mu^{\prime}:=\mathcal{H}^{\prime} L\left(I^{+} \cup I^{-}\right) \\
\tau^{\prime}:= \begin{cases}+1 & \text { on } I^{+} \\
-1 & \text { on } I^{-}\end{cases}
\end{gathered}
$$

Direct proof: it's an exeverse: $\langle T, d \phi\rangle=$
Sane proof in different word: $=\int_{R}\left\langle e_{1}, d \phi\right\rangle d y^{2}$
$\forall t \in[0,1]$, let $\left.I_{t}:=[-1,1] \times\{t\}\right]=\int_{R} \frac{\partial \phi}{\partial x_{1}} d E^{2}$
oriented by e_{1}, let T_{t} be the
a ssociated 1-curvent.
$T_{\left(I_{t}\right)}$
Then

$$
T=\int_{0}^{1} T_{t} d t \quad\left(i . e .\langle T, \omega\rangle=\int_{0}^{1}\left\langle T_{t}, \omega\right\rangle d t\right)
$$

and

$$
\partial T=\int_{0}^{1} \partial T_{t} d t
$$

then

$$
\begin{aligned}
\partial T & =\int_{0}^{1} \delta_{(1, t)}-\delta_{(-1, t)} d t \\
& =H^{1} L I^{+}-H^{\prime} L I^{-}
\end{aligned}
$$

(bill the details!!)
2bis) What if ?

3) Let T be the 1-curvant on \mathbb{R} given by $T=e \cdot \delta_{0}$ where e is the standard orient. (basis?) of \mathbb{R} : $e=1$
Then ∂T is NOT a measure! Indeed let φ be a 0 -form on \mathbb{R} that is, a (scalar) function. Then

$$
\begin{aligned}
& \langle\partial T, \varphi\rangle=\langle T, d \varphi\rangle=\int_{\mathbb{R}} \underbrace{e, d \varphi}_{\varphi}\rangle \\
& \text { and }
\end{aligned}
$$

$$
M(\partial T)=\sup _{\left||\varphi| \|_{\infty \leqslant \mid}\langle\delta T, \varphi\rangle\right.}\left\langle\partial \sup _{\substack{\varphi \in C_{c}^{\infty} \\|\varphi| \leqslant \mid}} \dot{\varphi}(0)=+\infty .\right.
$$

4) Iu \mathbb{R}^{2} let T_{1}, T_{2} be the 1- coments defened loy

$$
\begin{aligned}
& T_{1}:=e_{1} \cdot \delta_{0}, \quad T_{2}:=e_{1} \cdot H^{\prime} L_{i} J \\
& \xrightarrow{\substack{\rightarrow \\
\rightarrow \\
e_{1}}} \\
& \{0\} \times[0,1]
\end{aligned}
$$

In both cases $M\left(\partial T_{i}\right)=+\infty 1$
Indeed let $T:=r^{L}$. $\mathcal{H}^{\prime} L I$: intimons vectore. if $M(\partial T)<+\infty$ then r is TANGGNT to I!!

