GMT 19/20 lecture 20 22/5/20
Now we construct a vector space (space of k-vectors on V) whose duvel is $\Lambda^{k}(V)$ so that sinuple k-vectors are naturally emubedeled in this space.

We vely on the canonical identification of V and $V^{* *}$ (V is finite dive.)
Def. $(\forall k=0,1,2, \ldots$.
The space of k-vectors on V is

$$
\begin{aligned}
\bigwedge_{k}(V): & =\text { space of } k \text {-correctors on } V^{*} \\
& =\Lambda^{R}\left(V^{*}\right)
\end{aligned}
$$

Then $\Lambda_{1}(V)=\left(V^{*}\right)^{*}=V$
And we have the wedge product

$$
\wedge: \Lambda_{h}(V) \times \Lambda_{k}(V) \longrightarrow \Lambda_{l+k}(V)
$$

Given a basis e_{1}, \ldots, e_{n} of V we conte

$$
\begin{gathered}
e_{\underline{i}}:=e_{i,} \wedge \ldots \wedge e_{i_{k}} \quad \forall \underline{i} \in I_{n, k} \\
\epsilon_{\wedge_{k}}(V)
\end{gathered}
$$

We already proved that $\left\{e_{\underline{i}}: \underline{i} \in I_{n, k}\right\}$ is a basis of $\Lambda_{k}(V)$

We define the duality paring $\langle;\rangle$ of $\Lambda^{k}(V)$ and $\Lambda_{k}(V)$ by setting

$$
\left\langle e_{\underline{i}}^{*} ; e_{\underline{j}}\right\rangle:=\delta_{\underline{\underline{i}} \underline{j}}
$$

(Thus $\left\{e_{i}^{*}\right\}$ is the dual basis assacusted to $\left\{e_{\underline{i}}\right\}$ that is, the \underline{i} cord. of $w \in \Lambda_{k}(V)$ ort $\left\{e_{i}\right\}$ is given by $\left\langle e_{i}^{t}, w\right\rangle$!)

Everything works as it should...
lenmee $7 \quad \forall \alpha \in \Lambda^{k}(V), v_{1}, \ldots, v_{k} \in V$ there holds

$$
\left\langle\alpha ; v_{1} \wedge \ldots \wedge v_{k}\right\rangle=\alpha\left(v_{1}, \ldots, v_{k}\right)(* *)
$$

Proof
(*) says that (*) holds for

$$
\alpha \in\left\{e_{\underline{i}}^{*}\right\}, \quad w_{j} \in\left\{e_{i}\right\}
$$

using linearity in α we get that ($* *$) holds for

$$
\alpha \in \Lambda^{k}(V), \quad v_{j} \in\left\{e_{i}\right\}
$$

using lineanty in each v_{j} we get that (**) holds for

$$
\alpha \in \Lambda^{k}(V), \quad v_{j} \in V
$$

Corollany 8
The duality pairing $\langle j\rangle$ does NOT depend on the clotice of the basis $\left\{e_{i}\right\}$

Corollary 9

$$
\begin{gathered}
\left(v_{1}, \ldots, v_{k}\right) \underset{\Uparrow}{\underset{\Downarrow}{~}}\left(\tilde{v}_{1}, \ldots, \tilde{v}_{k}\right) \\
V_{1} \wedge \ldots \wedge v_{k}
\end{gathered}=\widetilde{v}_{1} \wedge \ldots \wedge \widetilde{v}_{k} .
$$

Thus we identify $\frac{\left[v_{1}, \ldots, v_{k}\right]}{a}$ with $v_{1} \wedge \ldots \wedge v_{k}$ this notation disappears
Proof from now on!!

$$
\begin{aligned}
&\left(v_{1}, \ldots, v_{k}\right) \underset{\Uparrow}{\sim}\left(\tilde{v}_{1}, \ldots, \widetilde{v}_{k}\right) \\
& \alpha\left(v_{1}, \ldots, v_{k}\right)= \alpha\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{k}\right) \quad \forall \alpha \in \Lambda^{k}(v) \\
& \Uparrow \\
&\left\langle\alpha, v_{1} \wedge \ldots \lambda v_{k}\right\rangle=\left\langle\alpha, \tilde{v}_{1} \Lambda \ldots \wedge \tilde{v}_{k}\right\rangle \quad \forall \alpha \in \Lambda^{k}(v) \\
& \Uparrow\left(\text { use that } \Lambda^{k} \text { is dual to } \Lambda_{k}\right) \\
& v_{1} \Lambda \ldots \wedge v_{k}=\widetilde{v}_{1} \wedge \ldots \wedge \tilde{v}_{k}
\end{aligned}
$$

Assume now that V is endowed with a scalar product (•) aud e_{1}, \ldots, e_{n} is an orthonormal basis.

Then we can endow $\Lambda^{k}(V)$ and $\Lambda_{k}(V)$ with scalar products s.t. $\left\{e_{\underline{i}}^{*}\right\}$ and $\left\{e_{\underline{i}}\right\}$ are outhonormal basis.

I never use these scalar products, only the associated norm (on $\left.\Lambda_{k}(V)\right)$
$\begin{array}{cl}\text { Given } & w=\sum_{i} \\ & w_{\underline{i}} \\ & \Lambda_{k}(V) \\ & \left\langle e_{\underline{i}}\right. \\ & \left\langle e_{\underline{i}}^{*}, w\right\rangle\end{array}$
then

$$
|w|:=\sqrt{\sum_{\underline{i}} w_{\underline{i}}^{2}}
$$

Preposition 10

Roof

$$
\begin{array}{r}
\left|v_{1} \wedge \cdots \wedge v_{k}\right|= \\
2^{k}\left(R\left(v_{1}, \ldots, v_{k}\right)\right) \\
\left|\left[v_{1}, \ldots, v_{k}\right]\right|
\end{array}
$$

two lectures ago:

$$
\underline{v} \sqrt{\sum_{\dot{i}}\left(e_{\underline{i}}^{*}\left(v_{1}, \ldots, v_{k}\right)\right)^{2}}
$$

$$
\begin{aligned}
& W:=\begin{array}{l}
\text { matrix of } \\
\text { coordinates of } v_{1, \ldots}, v_{k} \\
\sum_{\underline{i}}\left(\operatorname{det}\left(W_{\underline{i}}\right)\right)^{2} \\
W_{\underline{i}}:=\text { minor of } W \text { corvesp. } \\
\\
\\
\text { to vows } e_{1}, \ldots, i_{k}
\end{array} \sqrt{\operatorname{det}\left(W^{t} W\right)}
\end{aligned}
$$

to vows ii,..., i_{k} Bine formula
T linear map $=$ given by

$$
\begin{array}{r}
T: \widehat{e}_{i} \rightarrow v_{i} \\
\mathbb{R}^{k} \quad \hat{n}
\end{array}
$$

$$
\begin{aligned}
& =|\operatorname{det} T| \cdot \operatorname{ve} e_{k}\left(R\left(\hat{e}_{1}, \ldots, \hat{e}_{k}\right)\right) \\
& =H^{k}\left(T\left(R\left(\hat{e}_{i}, \ldots, \hat{e}_{k}\right)\right)\right. \\
& =H^{k}\left(R\left(v_{1}, \ldots, v_{k}\right)\right) .
\end{aligned}
$$

Concluding remarks
(1) There are two natural choices of norm on $\Lambda_{k}(V)$:
a)" Euclidean norm, defined above: $1 \cdot 1$
b) "mass norm, ϕ, namely the largest norm of $\Lambda_{k}(V)$ sit.

$$
\Phi\left(v_{1} \wedge \ldots \wedge v_{k}\right)=\left|v_{1} \wedge \ldots \wedge v_{k}\right| \quad \forall v_{j} \in V
$$

that is, convex envelope of the restriction of 1.1 to simple k-vectors

$$
\phi(w):=\inf \left\{\sum t_{i}\left|w_{i}\right|: \quad w=\frac{\left.\sum t_{i} w_{i}\right\}}{\uparrow}\right\}
$$

- the dual hon is called "comes" :

$$
\begin{aligned}
\phi^{*}\binom{\alpha}{\underset{\sim}{n}}:= & \sup _{\phi(w) \leqslant 1}^{\wedge^{k}(v)}\langle \\
= & \sup \langle\alpha, w\rangle \\
& \left|V_{1} \wedge \ldots \wedge v_{k}\right| \leqslant 1
\end{aligned}
$$

There only a couple of results whore yore see the difference between Euclidean horn and mass (or commas)
(2) Are there non-simple k-vectors?

Yes: $e_{1} \wedge e_{2}+e_{3} \wedge e_{4} \quad(i n v$, $\operatorname{dim}(\geqslant \geqslant 4)$ (exercise)
If $\quad u_{i}=\operatorname{dim}(v)$,
1-veetors are all simple (obvious)
$(n-1)$-vectors are all simple (not so obvious)
k-vectors with $1<k<n-1$ are never all simple

Theory of general currents (de Rham) Definition similar to that of "generalized functions" or "distributions".

BASIC OBSERVATION (S)
let \sum be a closed, oriented k-dim. surface of els C^{\prime} in \mathbb{R}^{n}. Then

$$
T_{\Sigma}: \omega \mapsto \int_{\Sigma} \omega
$$

is a linear functional on the space of K-fornus (continuous 4 compact support)
Moreover

1) Σ is uniquely determined by T_{Σ}

$$
\left(\Sigma \neq \tilde{\Sigma} \Rightarrow T_{\Sigma} \neq T_{\tilde{\Sigma}}\right)
$$

2) Stokes theorem becomes

$$
T_{\partial \Sigma}(\omega)=T_{\Sigma}\binom{d \omega}{\uparrow}
$$

k-1 form $k n$ form $\omega \in C_{c}^{\infty}$
3) $\operatorname{vol}_{k}(\Sigma)=\sup \left\{T_{\Sigma}(\omega):\left|\omega \in C_{c}^{\infty},|⿱(\omega x)| \leqslant\right| \forall x\right\}$

$$
\begin{aligned}
& T_{\Sigma}(\omega)=\int_{\Sigma} \omega:=\int_{\Sigma}\langle\omega(x) ; r(x)\rangle d \gamma \gamma^{k}(x) \\
& \leqslant \int_{\Sigma}^{\Sigma}|\omega(x)| \cdot\left|\tau^{\prime \prime}(x)\right|^{1} d x^{k}(x) \\
& \text { if }|\omega(x)| \leqslant 1>\int_{\Sigma} 1
\end{aligned}
$$

and you get $=$ if $\omega(x)$ is such that

$$
\langle\omega(x) ; \tau(x)\rangle=|\tau(x)|=1 \quad \forall x .
$$

such $\omega(x)$ exists for all x (and is cent.)
Definition
endowed with the strict. of Cecally cavrex
Denote by $\mathscr{D}^{k}\left(\mathbb{R}^{n}\right)$ the space to i. ofpertor space smooth k-forms with compact support on \mathbb{R}^{h} The space of k-currents on \mathbb{R}^{l}, $\mathscr{D}_{k}\left(\mathbb{R}^{u}\right)$, is defoned/as the ditual of $\mathcal{D}^{k}\left(\mathbb{R}^{u}\right)$ (space of cent. boundary ofT linear fut) oriented $\forall T \in \oiint_{k}\left(\mathbb{R}^{u}\right)$, ∂T k-surfaels", is defined as $\partial T(\omega):=T(d \omega)$

The mass (k-dim. volume) of T is

$$
\mid M(T):=\sup \left\{T(\omega): \begin{array}{r}
\omega \in \mathcal{D}^{k}\left(\mathbb{R}^{u}\right) \\
k(x) \mid \leqslant 1 \forall x
\end{array}\right\}
$$

