GMT 19/20, lecture 3, 19/3/20

version: 28/4/2020

Review of Basic Measure Theory (continued).

2.2 Vector-valued (Borel) measures

Let be given: • a positive (Borel) measure μ on X, • a finite dimensional normed space F, • a map $p: X \rightarrow F$ in L'(μ). We denote by $\rho\mu$ the F-valued measure on X defined by $[\rho\mu](E) := \int_{E} \rho \ d\mu$.

Theorem 1 Every F-valued Borel measure λ on X can be represented as $\lambda = \rho\mu$ for suitable ρ , μ as above.

Notation Given
$$\lambda = \rho\mu$$
 as above, we define
(a) the variation $|\lambda| := |\rho|_{\tau} \cdot \mu$ (a positive measure on X);
(b) the mass $M(\lambda) = ||\lambda|| := |\lambda| (\chi) = \int_{\chi} |\rho|_{\tau} d\mu = ||\rho||_{L'(\mu)}$.
(c) $M(\chi, F)$ the space of all F-valued measures on X.
We write $M(\chi)$ for $M(\chi, R)$.
The representation $\lambda = \rho\mu$ is not unique, but $|\lambda|$ and $M(\lambda)$
do NOT depend on the choice of the representation.
Theorem 1 does not hold if F is infinite dimensional.

<u>Proposition 2</u> The space $\mathcal{M}(X,F)$ endowed with the norm $|M(\lambda) = ||\lambda||$ is a Banach space.

Riesz Theorem

Given $\lambda = \rho\mu \in \mathcal{M}(X,F)$ and a bounded (Borel) function $g: X \to F^*$ set $T_{\lambda}(g) := \int g d\lambda := \int \langle g(x); p(x) \rangle d\mu(x)$ action of $g(x) \in F^*$ on $p(x) \in F$. Assume now that X is compact: Proposition 3 T_{λ} is a bounded linear functional on $\mathcal{E}(X,F^*)$ and $\|T_{\lambda}\| = \mathbb{M}(\lambda)$. This means $\sup_{\|g\|_{\infty} \leq 1} \int_{X} \langle g; p \rangle d\mu = \|p\|_{L^{1}(\mu)}$ Space of continuous functions from X to F^* . Control supremum norm $\|\cdot\|_{\infty}$ Theorem 4 (Riesz Th.) The operator $\lambda \mapsto T_{\lambda}$ is a linear isometry from $\mathcal{M}(X,F)$ onto the dual of $\mathcal{E}(X,F^*)$. The nortrivial (and fundamental) part is the surjectivity.

The nontrivial (and fundamental) part is the surjectivity. The rest of the statement is contained in Proposition 3.

If X is locally compact we only consider g in $\mathcal{E}_0(X, F^*)$. That is, the space of all continuous $g: X \to F^*$ s.t. $\lim_{X \to \infty} g(X) = 0$ endowed with the supremum norm.

This limit is understood in the seuse of the one-point (or Alexandrov) compactification of X; it means that $\forall \varepsilon > 0 \exists K \text{ compact in } X \text{ s.t. } |g(x)|_{F^*} \leq \varepsilon \quad \forall x \in X \setminus K.$

Theorem 5 (Riesz Th.) The operator $\lambda \mapsto T_{\lambda}$ is a linear isometry from $\mathcal{M}(X,F)$ onto the dual of $\mathcal{E}_{0}(X,F^{*})$.

Weak * convergence of measures

2.2.1 Weak * topology and convergence The identification of $\mathcal{M}(X,F)$ and the dual of $\mathcal{E}(X,F^*)$ (or $\mathcal{E}_o(X,F^*)$)

induces a weak * topology on $\mathcal{M}(X,F)$, and a sequence of measures λ_{μ} converge to λ iff

$$\int_{X} g \, d\lambda_n \longrightarrow \int_{X} g \, d\lambda \quad \text{for every } g \in \mathcal{E}(X, \#).$$

We say that " λ_n converge to λ in the sense of measures," and write $\lambda_n \stackrel{*}{\longrightarrow} \lambda$.

This topology is not metrizable, but its restriction to any any bounded subset of $\mathcal{M}(X,F)$ is metrizable. In practice, this is the most relevant topology on $\mathcal{M}(X,F)$, much more than the norm topology.

2.2.2 Compactness

If λ_n is a bounded sequence in $\mathcal{M}(X,F)$, that is, $|\mathcal{M}(\lambda_n) \leq C < +\infty$, then, up to subsequence, λ_h converge weakly* to some λ . This is an immediate consequence of Banach-Alaoglu theorem.

2.2.3 Lower semicontinuity of the mass
If
$$\lambda_n \neq \lambda$$
 in $\mathcal{M}(X, F)$ then $\underset{n \to \infty}{\text{Ciminf }} |\mathcal{M}(\lambda_n) \ge |\mathcal{M}(\lambda)$

This is an immediate consequence of the weak* semicontinuity of the norm of the dual. Or (equivalently) of the fact that the mass can be written as sup of weakly* continuous linear functionals:

 $|\mathsf{M}(\lambda) = \sup \left\{ \mathsf{T}_{\lambda} g : g \in \mathcal{E}(\mathsf{X}, \mathsf{F}^*), \|g\|_{\infty} \leq 1 \right\}.$

- 2.2.4 Weak* convergence and non-continuous test functions. I Assume that X is compact, μ_n are positive finite measures, $\mu_n \xrightarrow{*} \mu$, and $g: X \rightarrow \mathbb{R}$ is Borel but NOT continuous, e.g. $g=1_E$. What can we say about $\int_{X} g d\mu_n$?
 - (a) g bounded below and l.s.c. $\Rightarrow \underset{u \to \infty}{\lim \inf} \int_{X} g d\mu_n \ge \int_{X} g d\mu_j$ in particular A open in $X \Rightarrow \underset{u \to \infty}{\lim \inf} \mu_n(A) \ge \mu(A);$
 - (b) g bounded above and u.s.c. $\Rightarrow \underset{u \to \infty}{\underset{u \to \infty}{\lim }} \underset{X}{\underset{x}{gd\mu_{h}}} \ge \int \underset{X}{gd\mu_{j}} ;$ in particular C closed in $X \Rightarrow \underset{u \to \infty}{\underset{u \to \infty}{\lim }} \underset{\mu}{\underset{u \to \infty}{\mu_{h}}} (c) \le \mu(c);$

(c) g bounded and
$$\mu(\operatorname{Sing}(g))=0 \implies \lim_{u \to \infty} \int g \, d\mu_n = \int g \, d\mu_j$$

discontinuity set of g
in particular E Borel and $\mu(\partial E)=0 \implies \lim_{u \to \infty} \mu_n(E) = \mu(E)$

Sketch of proof
(a) Take
$$g_n \in \mathcal{E}(x)$$
 s.t. $g_n(x) \uparrow g(x) \forall x \in X$.
(Such $g_n exist because g is bounded below and I.s.c.)
Let $\Lambda_n(\mu) := \int_X g_n d\mu$ and $\Lambda(\mu) := \int_X g d\mu \quad \forall \mu \in \mathcal{M}^+(X)$.
Then Λ_n is (weak*) continuous on \mathcal{M}^+ and $\Lambda_n \uparrow \Lambda$.
Hence Λ is (weak*) I.s.c. on \mathcal{M}^+ .
(b) Apply (a) to $-g$.
(c) $\forall x \in X$ set $g^* and g_*$ are the upper and lower
 $g^*(x) := \underset{y \to x}{\operatorname{limsup}} g(y)$, $g_*(x) := \underset{y \to x}{\operatorname{liminf}} g(y)$.$

Then (1) g^* is bounded and u.s.c.; (2) g_* is bounded and l.s.c.; (3) $g_* \leq g \leq g^*$ on X; (4) $g_* = g = g^*$ on X\Sing(g). Then (3) $\lim_{n \to \infty} \int_{X} g(x) d\mu \leq \limsup_{n \to \infty} \int_{X} g^*(x) d\mu$ (1) + (a) $\rightarrow \leq \int_{X} g^* d\mu$ (4) + $\mu(\operatorname{Sing}(g)) = 0$ $\Rightarrow = \int_{X} g d\mu$ (4) + $\mu(\operatorname{Sing}(g)) = 0$ $\Rightarrow = \int_{X} g d\mu$ (2) + (b) (3)

2.2.5 Weak* convergence and non-continuous test functions. II In the setting of § 2.2.4, assume that X is locally compact. Then statements (a)-(c) hold under the additional assumption

(*)
$$\lim_{n \to \infty} M(\mu_n) = M(\mu)$$

If (*) does not hold the assumptions in statements (a)-(c) should be modified as follows:

(a) g is l.s.c. and liminf g(x)≥0; A is open;
(b) g is u.s.c. and limsup g(x) ≤0; C is compact;
(c) μ(Sing(g))=0 and lim g(x)=0; E is compact and μ(∂E)=0.

2.2.6 Week* convergence and non-continuous test functions. III
Let
$$\lambda_n$$
 be F-valued measures on X such that $\lambda_n \stackrel{*}{\to} \lambda$ and
 $|\lambda_n| \stackrel{*}{\to} \mu$ (note that $|\lambda| \leq \mu$ but = may not hold).
Let g be a function on X with values in R or F*.
Then
 $\lim_{\mu \to \infty} \int_X^n g d\lambda_n = \int_X^n g d\lambda$
if ONE of the following sets of assumptions holds:
(a) X compact, g bounded, μ (Sing(g))=0;
(b) X locally compact, $M(\lambda_n) \rightarrow M(\mu)$, g bounded, μ (Sing(g))=0;
(c) X locally compact, $P(\mu) = 0$, μ (Sing(g))=0.
Remarks
 \circ Let $\mu_n \stackrel{*}{\to} \mu$ on X. If the measure μ are positive and
X is compact then $M(\mu_n) \rightarrow M(\mu)$.
Indeed $\mu \geq 0$ implies
 $M(\mu) = \int_X 1 d\mu$
and the RHS is a week* continuous functional on
 $\mathcal{M}(X)$ because 1 is a function in $\mathcal{E}(X)$.
In general the conclusion may not hold if either
the μ_n are not positive or X is not compact.
 $\delta_X := Dirac delta at xex$
Example (a): $X := [0, i]$, $\mu_n := \delta_0 - \delta_{V_n}$; then $\mu_n \stackrel{*}{\to} 0$ and
 $M(\mu_n) = 1 \forall n$.

O Let $\lambda_n \stackrel{*}{\longrightarrow} \lambda$ on χ . If the measures λ_n are not positive then it may happen that $|\lambda_n| \stackrel{*}{\longrightarrow} |\lambda|$. Example: $\chi := [0,1]$, $\lambda_n := \delta_0 - \delta_{1/m}$; then $\lambda_n \stackrel{*}{\longrightarrow} 0$ and $|\lambda_n| = \delta_0 + \delta_{1/n} \stackrel{*}{\longrightarrow} 2\delta_0$. However, if $M(\lambda_n) \rightarrow |M(\lambda)$ then $|\lambda_n| \stackrel{*}{\longrightarrow} |\lambda|$.

2.3 Outer measures

Given a set X, an outer measure on X is a set function $\mu: \mathcal{P}(X) \longrightarrow [0, +\infty]$ (where $\mathcal{P}(X)$ is the power set of X) s.t.:

(a) $\mu(\phi) = 0$;

(6)
$$E \subset E' \Rightarrow \mu(E) \leq \mu(E')$$
 (monotonicity);
(c) $E \subset \bigcup_{n=1}^{\infty} E_n \Rightarrow \mu(E) \leq \sum_{n=1}^{\infty} \mu(E_n)$ (*E*-subadditivity).

Note that (b) is implied by (c).

Examples

- (1) counting measure: $\mu(E) := \#E$;
- (2) Divac delta at x eX : $\delta_{x}(E) := \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$
- (3) $\mu(E) := \begin{cases} 1 & \text{if } E \neq \phi \\ 0 & \text{if } E = \phi \end{cases}$

Definition

A set $E \subset X$ is μ -measurable (according to Caratheodory) if $\mu(F) = \mu(F \cap E) + \mu(F \setminus E) \quad \forall F \subset X$.

Equivalently: $\mu = \mu LE + \mu L(X \setminus E)$. Note that $\mu \leq \mu LE + \mu L(X \setminus E)$ for every ECX by subadditivity. Mu denotes the class of all μ -measurable sets. <u>Proposition 1</u> The class $M\mu$ is a 5-algebra and the restriction of μ to $M\mu$ is 5-additive.

The proof is an exercise. It is easy to see that $M\mu = \mathcal{P}(X)$ is μ is the counting measure on X or a Dirac detta. What is $M\mu$ for the third example of outer measure given above?

Theorem 2 (Caratheodory) If X is a metric space and μ is additive on distant sets, that is, $\inf\{d(x,x'): x \in E, x' \in E'\}$ $\mu(E \cup E') = \mu(E) + \mu(E')$ if dist(E, E') > 0, then $\mathcal{M}\mu$ contains the Borel 5-algebra $\mathcal{B}(X)$. In particular the restriction of μ to $\mathcal{B}(X)$ is a measure. The proof of this result is nontrivial.