Version: 4/5/2020 GMT 19/20, Exercise Sheet 2 Reference: lectures 2&3 In the following measures are always positive Bovel measures on a locally compact, separable metric space X. Ex.1 Let µ be a measure on X. Prove that the smallest closed set C which supports µ exists. Thus the definition of support of µ is well posed. Ex.2 Give examples of <u>finite</u> measures μ, λ on [0,1] s.t. $\mu \perp \lambda$ and $supp(\mu) = supp(\lambda) = [0, 1]$. Ex.3 Prove that it is not possible to associate to every measure $\mu \text{ on } X$ a Bovel set $S(\mu) \subset X$ s.t. $S(\mu)$ supports μ and $S(\mu) \cap S(\lambda) = \phi$ whenever $\mu \perp \lambda$. An atom of a measure μ is a point $x \in X$ s.t. $\mu(\{x\})>0$; µ is non-atomic if it has not atoms; µ is atomic if every set E with $\mu(E) > 0$ contains on atom. Note that these are not quite the definitions you may find in textbooks on general measure theory, but are equivalent for Borel measures.

A measure μ is called 6-finite if there exist countably many (Borel) sets X_i s.t. $\mu(X_i) < +\infty$ fi and $UX_i = X$.

Ex. 4
Given a measure μ on X, let p(x):= μ({x}) for every x∈X, and let
μ(E):= Σ p(x) := sup { Σ p(x): E' C E x∈E p(x) := sup { Σ p(x): E' C E x∈E' E' finite }.
Prove that
(a) μ is an atomic measure on X;
(b) μ = μ + λ where λ is a non-atomic measure;
(c) p can be any function from X to [0,+∞], even not Borel.

Ex.5 Let μ be a 5-finite measure. Then the following are equivalent: (a) μ is atomic; (b) there exists the smallest Borel set E that supports μ.

Ex. 6 Let μ be a non-atomic locally finite measure. Then for every $0 \le m \le M(\mu)$ there exists E s.t. $\mu(E) = m$. <u>Hint for $X = \mathbb{R}$ </u>: use that the function $f: [0, +\infty] \to [0, +\infty]$ defined by $f(x) := \mu((-x, x))$ is increasing and <u>continuous</u>.

We denote by \mathcal{H}^{O} the measure that "counts points, on every space X, namely $\mathcal{H}^{O}(E) := \# E =$ the number of points of E if E is finite and + ∞ otherwise.

Ex. 7 Let μ be a finite, non-atomic measure on X. Then $\mu \ll \mathcal{H}^{\sigma}$ but Radon - Nikodym Theorem does not apply, that is, μ cannot be written as $\mu = \rho \mathcal{H}^{\sigma}$ for any $\rho \in L^{1}(\mathcal{H}^{\sigma})$.

Ex.8 Let μ be a (Borel) measure on X, $f: X \rightarrow X'$ a Borel map, and let $f_{\#} \mu$ be the push-forward of μ according to f, that is, $[f_{\#}\mu](E) := \mu(\bar{f}'(E)) \quad \forall E \in \mathcal{B}(X')$ Prove that $f_{\#}\mu$ is indeed a (Borel) measure on X'. Ex. 9 Let μ be a measure on X. Then for every $x \in \text{supp}(\mu)$ (and in particular for μ -a.e. X) there holds

This proves that the ratios in the limits and the limsup in Theorem 2, § 2.1, Lect. 2, are well-defined for μ -a.e.X.

Ex. 10
Let
$$\mu$$
 be a 6-finite measure on X and fix $x \in X$.
Then $\mu(\partial B(x,r)) = 0$ for all $r > 0$ except countably many.
In particular $\mu(\overline{B(x,r)}) = \mu(B(x,r))$ for all such r .

Ex. 11 Let μ , λ be locally finite measures on X, let $x \in \text{supp}(\mu)$, and for r > 0 set $g(r) := \frac{\lambda(\overline{B(x,r)})}{\mu(\overline{B(x,r)})}; \quad h(r) := \frac{\lambda(B(x,r))}{\mu(B(x,r))}.$ Then (a) g(r) and h(r) are well-defined for $0 < r \le r_0$ where r_0 is such that $\overline{B(x,r_0)}$ is compact;

(b) g, h are resp. right - and left-continuous on
$$(0, r_0)$$
;

- (c) q(r) = h(r) iff $\lambda(\partial B(x,r)) = \mu(\partial B(x,r)) = O$ (that is, all r > 0except countably many);
- (d) g, r are continuous at all $r \in (0, r_0)$ s.t. g(r) = h(r)(that is, all r>o except countably many);

(e)
$$\limsup_{r \to 0} g(r) = \limsup_{r \to 0} h(r)$$
; $\limsup_{r \to 0} g(r) = \liminf_{r \to 0} h(r)$.

This exercise shows that all limits and limsups that D appear in Theorems 2 and 3 and in Corallary 4 in $\S 2.1$, Lecture 2, do not change if we replace the closed balls B(x,r) with the open balls B(x,r).

A locally finite measure µ on X has the doubling property if there exists M<+00 s.t.

$$\mu(\overline{B(x,2r)}) \leq M \mu(\overline{B(x,r)}) \quad \forall \text{ ball } \overline{B(x,r)}; \quad (*)$$

$$\mu \text{ has the asymptotic doubling property if}$$

$$\begin{array}{l} \begin{array}{l} \mu(\overline{B(x,2r)}) \\ r \rightarrow 0 \end{array} & \mu(\overline{B(x,r)}) \end{array} < +\infty \quad \text{for } \mu-a \cdot e \cdot x \ . \end{array} \quad (**)$$

Ex. 12

Prove that the definitions above are NOT affected if one replaces

- (a) the closed balls in (*) and (**) with the corresponding open ones;
- (b) the number 2 in B(x,2r) in (*) and (**) with any M>1 (and in (**) m may depend on x).

In the next exercises F is a finite dimensional normed space, and $\lambda = \rho\mu$ an F-valued measure.

Ex. 13
Data
$$p \in L^{1}(\mu, F)$$
, dimostrare che effettivamente
 $\lambda(E) := \int_{E} p d\mu$
ë una misuva di Bovel a valori in F.

Cosa succede se invece $p \in L'_{loc}(\mu, F)$?

Ex. 14 Let $\lambda = \rho\mu$ and $\lambda = \tilde{\rho}\tilde{\mu}$ be two representations of λ . Prove that $|\rho|_F \mu = |\tilde{\rho}|_F \tilde{\mu}$ and $||\rho||_{L'(\mu)} = ||\tilde{\rho}||_{L'(\tilde{\mu})}$. Thus the definition of 121 and 1M(2) do not depend on the representation of λ .

Ex.15
For every set ECN let
$$\lambda(E) \in \mathbb{C}^2$$
 be defined by
 $(\lambda(E))_n := \begin{cases} \frac{1}{n+1} & \text{if } n \in E, \\ 0 & \text{if } n \in \mathbb{N} \setminus E. \end{cases}$
Brown that

Trove that

(a)
$$\lambda$$
 is a 5-finite measure on N;
(b) λ cannot be written as $\lambda = \rho \mathcal{H}^0$ for any $\rho \in L'(\mathcal{H}^0)$;
(c) Theorem 1 in § 2.2, Lecture 3, does not apply to λ .

Given a locally compact topological space X, $\tilde{X} := XU\{\infty\}$ denotes the one-point (or Alexandrov) compactification of X. D Thus a base of neighbourhoods of ∞ is given by the sets X\K with K compact in X; in particular ∞ is an isolated point iff X is compact. Moreover if X is metrizable so is \tilde{X} .

Ex. 16 Consider the following classes of maps $g: X \to F^*$: $B_1 := \{g: g \text{ Borel, } |g|_F \leq 1 \text{ on } X\}$, $B_2 := \{g \in B_1 : g \text{ continuous}\}$, $B_3 := \{g \in B_2 : \lim_{X \to \infty} g(X) = 0\}$. (This make sense only if f is not compact Given $\lambda \in \mathcal{M}(X, F)$, prove that $M(\lambda) = \inf_{g \in B_1} \int_X g d\lambda = \inf_{g \in B_2} \int_X g d\lambda = \inf_{g \in B_3} \int_X g d\lambda$. and the first infimum is a minimum. This exercise proves (most of) Proposition 3 of §2.2, Lect.3. The key point is that for every VEF there holds

$$\langle w, v \rangle \leq |w|_{F^*} |v|_F \quad \forall w \in F^*$$

(by the definition of the dual norm $|\cdot|_{F^*}$) and equality holds for some $w \in F^*$ (this is a corollary of Hahn-Banach Theorem).

Note that the proof does not really uses that Fis finite dimensional.

Ex. 17 Show that Riesz Theorem (Theorem 4 of § 2.2, Lecture 3) for an arbitrary (finite dimensional) Normed space \mp follows from the case $\mp = \mathbb{R}$.

Ex. 18 Show that Riesz, Theorem for X locally compact (Theorem 5...) follows from Riesz, Theorem for the one-point compactification X (Theorem 4). Hint: Let X be locally compact. Then $\mathcal{E}_{0}(X,F^{*})$ is naturally identified with a subspace of $\mathcal{E}(\tilde{X},F^{*})$; then a bounded linear functional T on $\mathcal{E}_{0}(X,F^{*})$ can be extended to a bounded linear functional T on $\mathcal{E}(\tilde{X},F^{*})$ and the is represented by a measure

 $\tilde{\lambda} \in \mathcal{M}(\tilde{X}, F)$. Let then λ be the restriction of $\tilde{\lambda}$ to χ ...

Ex. 19 Let $\lambda_n \in \mathcal{M}(X,F)$ be of the form $\lambda_n = \alpha_n S_{X_n}$ with $X_n \in X$ and $\alpha_n \in F$. (a) if $X_n \to X$ in X, $\alpha_n \to \alpha$ then $\lambda_n \xrightarrow{*} \alpha \cdot S_X$; (b) if $\lambda_n \xrightarrow{*} \lambda$ and $\lambda \neq 0$ then X_n and α_n converge; (c) if $\lambda_n \xrightarrow{*} 0$, what can we say about α_n and x_n ?

Ex. 20 For every N=1,2,... let D_N be the set of all $\lambda \in \mathcal{H}(X,T)$ of the form $\lambda = \alpha_1 S_{X_1} + \cdots + \alpha_N S_{X_N}$ with $\alpha_i \in T$, $x_i \in X$, and let $D:= \bigvee_{N=1}^{U} D_N$. Prove that each D_N is weak* closed and D is dense in $\mathcal{H}(X,T)$.

Ex. 21
Let
$$\lambda_n$$
, λ be measures in $\mathcal{H}(X,F)$ such that:
(a) $\mathcal{M}(\lambda_n) \leq C$ for some $C <+\infty$ independent of n ;
(b) $\int_X g \, d\lambda_n \xrightarrow[n \to \infty]{}_X g \, d\lambda$ for every g in X deuse in $\mathcal{E}(X) \leftarrow \stackrel{\text{not}}{\mathcal{E}(X,F^*)!}$
Then $\lambda_n \xrightarrow{*} \lambda$. Moreover (a) is automatically verified if $X = \mathcal{E}(X)$.

Ex. 22
Let
$$X := [0, 1]$$
 and let $\lambda_n := n (S_{1/n} - S_0) \in \mathcal{H}(X)$. Then:
(a) $\int_X g \, d\lambda_n$ converges for every $g \in C^1(X)$; space of x-Hölder
(b) for every $x \in [0, 1]$ there exists $g \in C^{0, \alpha}(X)$ s.t. $\int_X g \, d\lambda_n \to +\infty$.

Ex. 23 Let C be the standard Cantor set, that is, $C := \bigcap_{n=0}^{\infty} C_n$ where $C_0 := [0,1]$, $C_1 := [0,1/3] \cup [2/3,1]$ and so on ... Thus each C_n is the union of closed intervals $I_{n,1}, ..., I_{n,2^n}$ with length 3⁻ⁿ. For every n let $\mu_n := 2^{n} \sum_{i=1}^{2^n} S_{X_{ni}}$ with $x_{ni} \in I_{ni}$. Then $\mu_n \stackrel{*}{\to} \mu$ in $\mathcal{M}^+(C)$ where μ is uniquely determined by $\mu(I_{n,i}) = 2^{-n}$ for every n, i.

Ex. 24 Let F be a family of functions $g: X \rightarrow [-\infty, +\infty]$, and let $f^+, f^$ be the upper and lower envelopes of F, that is $f(x) := \inf\{g(x) : g \in F\}; \quad f^+(x) := \sup\{g(x) : g \in F\}.$ Prove that: (a) if every $g \in f$ is lower semicont. Then f^+ is l.s.c.;

(b) if every $g \in F$ is upper semicont. then f^- is u.s.c.

Note that this exercise works with X any topological space.

Ex. 25
Let 7 be a family of functions
$$g:X \rightarrow \mathbb{R}$$
 with $L:=\sup_{g\in\mathcal{F}} Lip(g) <+\infty$,
and let f^+ , f^- be as above.
Then either $f^+=+\infty$ on X or f^+ takes values in \mathbb{R} and $Lip(f^+) \leq L$
And a similar statement holds for f^- .

Ex. 26
Let
$$E \subset X$$
, let $f: E \rightarrow (-\infty, +\infty]$ be finite at some point of E ,
and for every $x \in X$, $m \ge 0$ set
 $f_m(x) := \inf \{f(y) + m \cdot d(x, y) : y \in E\}$
Then
(a) f_m is Lipschitz and Lip $(f) \le m$ for every $m \ge 0$;
(b) $f_m(x)$ is increasing in m for every $x \in X$;
(c) $\lim_{m \to +\infty} f_m(x) = \sup_{m \ge 0} f_m(x) \le f(x) \quad \forall x \in E \text{ and } = \text{ holds iff } f \text{ is } l.s.c. at x.$
(d) if f is $l.s.c.$, $f_m(x) \uparrow f(x) \quad \forall x \in E$.

In Exercises 25 and 26 it is not needed that X is locally compact.

Ex. 27 Using Exercises 24-26 fill the missing details in the proof of § 2.2.4, Lecture 3.

Ex. 28 Given $\mu \in \mathcal{M}^{+}(X)$, let $\tilde{\mu} \in \mathcal{M}^{+}(\tilde{X})$ be the natural extension of μ to the compactification \tilde{X} , that is, $\tilde{\mu}(E) := \mu(E \cap X) = \mu(E \setminus \{\infty\}) \quad \forall E \in \mathcal{B}(\tilde{X}).$ Let $\mu \xrightarrow{*} \mu$ in $\mathcal{M}^{+}(X)$ and assume that there exists $m := \lim_{n \to \infty} \mathbb{M}(\mu_{n}).$ Prove that $\tilde{\mu} \xrightarrow{*} \tilde{\mu} + c \cdot S_{\infty}$ with $c := m - \mathbb{M}(\mu).$

Ex. 29 Prove the statements contained in § 2.2.5, Lecture 3. Hint: Use Exercise 28 to reduce to the statements in § 2.2.4.

Ex. 30
Let
$$\lambda_n \stackrel{*}{\longrightarrow} \lambda$$
 in $\mathcal{M}(X,F)$ and assume that $|\lambda_n| \stackrel{*}{\longrightarrow} \mu$. Then
(a) $|\lambda| \leq \mu$ (that is, $|\lambda|(E) \leq \mu(E) \forall E$);
(b) if $\mathcal{M}(\lambda_n) \longrightarrow \mathcal{M}(\lambda)$ then $|\lambda| = \mu$.
Hint for (a): prove first that for every A open in X
 $|\lambda|(A) = \sup \left\{ \int_X g d\lambda : g \in \mathcal{C}(A,F^*), |g|_F \leq l \right\}$
and deduce that $|\lambda|(A) \leq \mu(A)$.

Ex. 31 Prove the statements contained in § 2.2.6, Lecture 3.