8

Equazioni differenziali

8.1 Introduzione

In molti casi ¢’¢ una stretta relazione fra una quantita e il modo in cui varia; la
variazione (la derivata) dipende dalla quantita (la funzione).

EseEMpPiO 8.1 Considera una colonia di cellule che si riproducono per scissione.
A ogni riproduzione, ’'aumento del numero di cellule (il numero di cellule nuove) &
uguale al numero di cellule vecchie; maggiore € il numero di cellule presenti nella
colonia, maggiore ¢ aumento (almeno finché non intervengono fattori che limitano
questo aumento; ne riparliamo dopo).

EsEmPIO 8.2  In un materiale radioattivo, il numero di atomi che decadono & pro-
porzionale al numero di atomi radioattivi presenti; quindi la variazione del numero
di atomi radioattivi (data dal numero di atomi che decadono) & proporzionale al
numero totale di atomi radioattivi.

Quello che succede di solito & che la teoria biologica (o chimica, fisica, eccetera)
suggerisce quale relazione deve sussistere fra la quantita studiata e la sua variazione;
e quindi si pone il problema di trovare 'espressione di questa quantita conoscendo
soltanto la relazione e i dati iniziali. Dobbiamo quindi risolvere un’equazione in
cui lincognita non é un numero, ma una funzione. Le equazioni con incognita una
funzione si chiamano equazioni funzionali; se nell’equazione compaiono oltre alla
funzione anche delle sue derivate (le variazioni della funzione) allora si parla di
equazione differenziale.

Vediamo alcuni esempi di equazioni differenziali prima di introdurre un po’ di
terminologia generale.

Osservazione 8.1 Quando si studiano le equazioni differenziali spesso si indica con
y la funzione incognita, e con t o x la variabile da cui dipende la funzione .
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EseEmMpio 8.3 L’equazione differenziale pin semplice in assoluto e l’equazione
y'(t) = f(t) o, come scriveremo spesso,

v =1, (8.1)

dove f ¢ una funzione nota. Il significato di (8.1) & che stiamo cercando una
funzione y la cui derivata sia la funzione nota f; e nel Capitolo 6 abbiamo visto
che tutte le soluzioni sono della forma

y(t)= | fa)de+C,

to

dove ty € un qualsiasi punto del dominio di f, e C' € R & una costante arbitraria.

Osservazione 8.2 Questo esempio gia rivela tre caratteristiche generali delle equa-
zioni differenziali. La prima e che, in generale, un’equazione differenziale puo am-
mettere infinite soluzioni; per determinare univocamente una soluzione, bisogna
imporre condizioni ulteriori. L’equazione differenziale (8.1) ammette infinite so-
luzioni, una per ogni valore della costante arbitraria C. Ma se noi fissiamo una
condizione ulteriore, per esempio quanto deve valere la soluzione che nel punto ¢,
allora troviamo un’unica soluzione che soddisfa questa condizione aggiuntiva. In-
fatti, I'unica soluzione che nel punto o vale yq €

t
y(t) = t f(x)dr +yo .

La seconda caratteristica ¢ che il dominio di definizione della soluzione y(t) pud
essere diverso dal dominio di definizione di tutti i termini presenti nell’equazione.
A seconda dei casi, puo essere piu grande, piu piccolo o uguale. La Curiosita 8.1
mostrera un esempio in cui il dominio delle soluzioni sara piu grande del dominio
dell’equazione; 'Esempio 8.4 un caso in cui il dominio sara uguale; e I’Osserva-
zione 8.13 un caso in cui il dominio sara strettamente piu piccolo. Il punto ¢ che
trovare il dominio delle soluzioni di un’equazione differenziale fa parte del lavoro
che dobbiamo fare per risolvere 1’equazione.

La terza caratteristica € che, come per gli integrali, la maggior parte delle equa-
zioni differenziali non hanno soluzioni esprimibili tramite funzioni elementari; in
altre parole, la maggior parte delle equazioni differenziali non si risolvono esplicita-
mente. Per questo motivo sono state sviluppate molte tecniche per effettuare uno
studio qualitativo delle soluzioni di equazioni differenziali; ma sono tecniche ben al
di 1a di quanto possiamo trattare qui. In questo capitolo ci limiteremo a studiare
alcuni esempi di equazioni differenziali risolvibili esplicitamente.

CURIOSITA 8.1 Prendiamo l'equazione (8.1) con f(t) = |t|~1/2. La funzione f & definita su R*
(non & definita nell’origine), per cui I’equazione & definita solo fuori dall’origine. Scegliendo
to > 0 troviamo che le soluzioni per t > 0 sono date da

t
vt >0 y(t)z/x—1/2dx+0=2\/i+c.

to
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Analogamente, scegliendo ¢y < 0 troviamo che le soluzioni per ¢ < 0 sono date da
t
vt <0 y(t):/ (—x)"Y?dz+C = -2v/—t+C.
to

Ma quindi le funzioni y: R — R della forma

y(t):{Q\/f—i-C set>0,
—2/—t+C set<O0,

sono soluzioni di (8.1) definite su tutto I’asse reale, cioé su un dominio pitt grande del dominio
dell’equazione. Va pero detto che quando cid accade siamo si contenti, ma di solito non
¢ molto importante, in quanto di solito siamo interessati solo a cio che accade nel dominio
dell’equazione, e ai problemi che si possono verificare se il dominio della soluzione & piu piccolo
del dominio dell’equazione.

EsemPIO 8.4 Negli Esempi 8.1 e 8.2 abbiamo considerato casi in cui la varia-
zione g’ della quantita y & proporzionale alla quantita stessa. L’equazione differen-
ziale che esprime questa relazione e

/

Yy =ky, (8.2)

dove k € R & una costante di proporzionalita. Abbiamo gia incontrato il caso
particolare k = 1 di questa equazione nell’Osservazione 5.18. Applicando le tecniche
viste 1i non ¢ difficile verificare che le soluzioni di (8.2) sono tutte e sole le funzioni
della forma

y(t) = ce*

dove ¢ € R & una costante arbitraria. Infatti, se y(t) = ce** si verifica subito che

y'(t) = kece** = ky(t), come voluto. Viceversa, supponiamo che y sia una soluzione
di (8.2). Allora la regola di Leibniz ci dice che

d, _ B _ _ _
7 (7My(0) = —ke™My(@) + 7MY (1) = —keTMy(t) + T Fhy(t) =0,

per cui e Fy(t) = c e y(t) = ceFt, come voluto.

In particolare, (8.2) ha infinite soluzioni, una per ogni valore della costante
arbitraria ¢ € R. Se pero richiediamo che la soluzione debba avere un valore
specificato a priori in un punto allora possiamo determinare una soluzione unica.
Per esempio, vogliamo trovare quali soluzioni valgono 7 in ¢ = 0. Si deve avere

quindi I'unica soluzione che in 0 vale 7 & y(t) = mek*. Infine, tutte le soluzioni di
(8.2) sono definite su tutto 1’asse reale, che & il dominio dell’equazione.

EsEMPIO 8.5 Altri esempi di equazioni differenziali sono:
(i) ¥ =ax+b,cona,beR;



340 Capitolo 8

(i) v =ay®+by+c, cona, b, c €R;

(iii) ¥y’ = —ky, con k € R;

(iv) v' = y? + logt, definita solo per t > 0;
(v) sin(y”) +ay?® =e¥ —tany ;

vi) y" =2ty ;

e non e difficile immaginarne infinite altre.

Vediamo di fissare un po’ di terminologia. Un’equazione differenziale ordinaria
¢ un’equazione differenziale della forma

F(y(n)’y(n_l)a Tty y7t) =0 ) (83>

dove F' & una funzione a valori reali dipendente da n+ 2 variabili reali, e I'incognita
y & una funzione reale dipendente dalla variabile reale ¢. Il numero n & detto ordine
dell’equazione; & il massimo ordine di derivata di y che compare nell’equazione. Per
esempio, le equazioni (8.1), (8.2), e quelle dell’Esempio 8.5.(i), (ii) e (iv) sono del
primo ordine, mentre le equazioni dell’Esempio 8.5.(iii), (v) e (vi) sono del secondo
ordine.

Osservazione 8.3 Come si possono considerare sistemi di equazioni algebriche con
piu di una incognita, si possono anche considerare sistemi di equazioni differenziali
ordinarie, composti da tante equazioni differenziali che legano fra loro le derivate
di numerose funzioni incognite; vedremo un esempio nella Sezione 8.4. La teoria
dei sistemi di equazioni differenziali ordinarie non € molto diversa dalla teoria
di singole equazioni differenziali ordinarie; & pero cruciale che tutte le funzioni
incognite dipendano da una sola variabile, la stessa per tutte. Se invece le funzioni
incognite dipendono da pilt di una variabile, entriamo nel regno delle equazioni
differenziali alle derivate parziali, che hanno caratteristiche completamente diverse
(e di cui non parleremo).

Se nell’equazione (8.3) la variabile indipendente ¢t non compare esplicitamente,
diremo che ’equazione ¢ autonoma; altrimenti diremo che non ¢ autonoma. Per
esempio, le equazioni (8.2) e quelle dell’Esempio 8.5.(i), (ii), (iii) e (v) sono auto-
nome; invece le equazioni (8.1) con f non costante e quelle dell’Esempio 8.5.(iv)
e (vi) sono non autonome.

Equazioni differenziali della forma

y™ — Gy, Yyt =0

sono dette esplicite; le altre sono dette implicite. Per esempio, le equazioni (8.1),
(8.2), e quelle dell’Esempio 8.5.(i), (ii), (iii), (iv), e (vi) sono esplicite; quella del-
I'Esempio 8.5.(v) ¢ implicita.

Osservazione 8.4 1In generale, le soluzioni delle equazioni differenziali ordinarie
esplicite si comportano un po’ meglio delle soluzioni delle equazioni differenziali
ordinarie implicite.
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Equazioni differenziali della forma
Y = a1 Oy + -+ ag(t)y + b(t)

con an_1,...,aq, b funzioni date, sono dette lineari; tutte le altre sono dette non
lineari. Per esempio, le equazioni (8.1), (8.2), e quelle dell’Esempio 8.5.(1), (iii)
e (vi) sono lineari; le altre sono non lineari. Equazioni lineari in cui b = 0 sono
dette omogenee; per esempio, le equazioni (8.2), e quelle dell’Esempio 8.5.(iii) e (vi)
sono omogenee, mentre le equazioni (8.1) e quella dell’Esempio 8.5.(i) non lo sono.
Equazioni lineari autonome (cio¢ in cui a,_1,...,ag, b sono costanti) sono anche
chiamate equazioni differenziali ordinarie lineari a coefficienti costanti. Per esem-
pio, (8.2) e le equazioni dell’Esempio 8.5.(i) e (iii) sono lineari a coefficienti costanti.

Quando si affronta lo studio di un’equazione differenziale, i problemi da risolvere
sono tipicamente tre. Prima di tutto, esistono soluzioni? Di solito si, anche se
spesso non esprimibili tramite funzioni elementari. Esistono risultati generali (ne
vedremo uno fra poco) che assicurano esistenza di soluzioni per vaste classi di
equazioni differenziali ordinarie; ma esistono anche esempi di equazioni differenziali
che non ammettono soluzioni.

Il secondo problema ¢ quali condizioni aggiuntive dobbiamo imporre per assicu-
rarci l'unicitd della soluzione? Se l’equazione differenziale nasce come modello di
una situazione reale, ci aspettiamo che fissate le condizioni iniziali del modello la
soluzione sia unica, in quanto la realta, una volta fissato il punto di partenza, si
sviluppa in modo unico!. Questo suggerisce di imporre come condizione aggiuntiva
il valore di ¢ in un punto tg iniziale fissato. In effetti, come vedremo fra poco, que-
sto e sufficiente ad assicurare 1'unicita della soluzione per le equazioni differenziali
ordinarie esplicite del primo ordine; non basta per quelle del second’ordine.

Se ci pensi un attimo, questo non ¢ sorprendente. Supponi di voler risolvere
un’equazione del tipo y” = f. Una prima integrazione ti permette di trovare g/’
come integrale di f — e quindi dipende da una costante arbitraria. Per trovare y,
pero, devi effettuare una seconda integrazione, e quindi compare una seconda co-
stante arbitraria; dunque per determinare un’unica soluzione abbiamo bisogno di
condizioni che fissino il valore di due costanti arbitrarie. La prima costante arbi-
traria deriva dall’integrazione che ci permette di ricavare y’, e quindi pud essere
fissata imponendo il valore iniziale di 3’. Cio fatto, la seconda costante arbitraria
deriva dall’integrazione che ci fornisce y, e quindi puo essere fissata imponendo il
valore iniziale di .

Questo esempio suggerisce che per assicurarci I'unicita della soluzione di un’e-
quazione differenziale ordinaria di ordine n dobbiamo fissare il valore iniziale della
funzione e delle prime n — 1 derivate, per un totale di n condizioni. Che questo
funzioni ci & assicurato dal Teorema di Cauchy-Kowaleski: dati to € R e n numeri

10O almeno cosi ci aspettiamo, forse ingenuamente, che faccia; dietro questa affermazioni
ci sono problematiche scientifiche e filosofiche tutt’altro che banali.
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reali Yo, yj, - - - 7y(()n_1) € R, esiste € > 0 tale che il problema

(=), ”
y(to) =y, y'(to) =yb -y V(to) = 5"V,

ammette un’unica soluzione y definita in un intervallo (to —e,to+¢). Un problema
della forma (8.4), cioé equazione differenziale esplicita con condizioni iniziali, &
detto problema di Cauchy. Quindi il teorema di Cauchy-Kowaleski ci assicura
che ogni problema di Cauchy ha una e una sola soluzione definita vicino al punto
iniziale tg.

Osservazione 8.5 A priori (e vedremo un esempio nell’Osservazione 8.13) la so-
luzione del problema di Cauchy potrebbe non essere definita su tutto il dominio
dell’equazione. Una classe di equazioni per cui questo non puo accadere ¢ quello
delle equazioni differenziali lineari: infatti si puo dimostrare che i problemi di Cau-
chy per equazioni differenziali lineari ammettono sempre un’unica soluzione definita
su tutto il dominio dell’equazione.

Il terzo problema & come si comporta, almeno qualitativamente, una soluzione di
una data equazione differenziale? In altre parole, sapendo solo che y(t) risolve una
data equazione differenziale, e magari conoscendo delle condizioni iniziali, siamo in
grado di farne uno studio qualitativo e tracciarne un grafico approsssimato? Per
rispondere a questa domanda (fondamentale, visto che buona parte delle equazioni
differenziali non hanno soluzioni esprimibili tramite funzioni elementari) sono state
sviluppate montagne di tecniche, sia analitiche sia di calcolo numerico per risolvere
le equazioni differenziali al calcolatore.

Osservazione 8.6 Vale la pena di citare esplicitamente una delle poche classi di
equazioni differenziali che si possono risolvere usando solo funzioni elementari: le
equazioni differenziali ordinarie lineari a coefficienti costanti. Vedremo qualche
esempio nelle prossime sezioni.

Una panoramica anche solo un minimo approfondita della teoria delle equazioni
differenziali, per quanto interessante e importante per qualsiasi scienzato, va al di 1a
di quanto possiamo fare in queste dispense. Nelle prossime sezioni ci concentremo
soprattutto su alcuni esempi di equazioni differenziali (importanti in diversi contesti
biologici) che potremo risolvere a mano; ma voglio concludere questa sezione con
un’interpretazione geometrica delle equazioni differenziali ordinarie esplicite del
primo ordine che a volte puo essere utile per suggerire il comportamento qualitativo
delle soluzioni.

Consideriamo una equazione differenziale della forma

y' = F(y,t) .

Una funzione y & soluzione di questa equazione se e solo se in ogni punto (t, y(t))
del grafico la sua retta tangente ha coefficiente angolare y/(¢) dato da F(y,t). Se
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interpretiamo t come ascissa e y come ordinata di un piano cartesiano, possiamo
associare a ogni punto del (dominio di F in questo) piano la retta passante per quel
punto con coefficiente angolare F(y,t). Questo campo di rette indica la direzione
che deve seguire il grafico di una soluzione; il grafico di una soluzione dev’essere in
ogni suo punto tangente alla retta passante per quel punto. La distribuzione delle
rette allora spesso puo suggerirci ’andamento qualitativo dei grafici delle soluzioni;
vedi la Fig. 8.1.

7/////
/////

~
-  — —

P — —

\
\
\
\

AN

\

\
AR

Figura 8.1 Rappresentazione grafica dell’equazione differenziale 3’ = ty.

Osservazione 8.7 Questa interpretazione in un certo senso spiega anche perché fis-
sare la condizione iniziale ci determina un’unica soluzione. Fissare la condizione
iniziale significa scegliere un punto di partenza (to,yo). Partendo da i, dobbiamo
muoverci nella direzione indicata da F'(yg,to); una volta partiti, non abbiamo pit
scelte, e dobbiamo continuare a muoverci seguendo le direzioni indicate dalla fun-
zione F'. Quindi e ragionevole pensare che una volta scelto il punto di partenza
il cammino successivo (la traiettoria) sia univocamente fissato; e, viceversa, che
possiamo scegliere il punto di partenza in modo arbitrario nel dominio di F. In
particolare, per ogni punto del dominio di F passa il grafico di una e una sola
soluzione. Se ci pensi un attimo, questo e esattamente il contenuto del Teorema di
Cauchy-Kowaleski.

8.2 L’equazione 3 = \y +v.

Invece di affrontare in astratto vari esempi di equazioni differenziali, vogliamo pro-
vare a usare le equazioni differenziali per modellare matematicamente un problema
concreto; in particolare vedremo come la scelta di ipotesi biologiche diverse porta
a equazioni differenziali diverse.
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11 problema concreto che seguiremo (uno fra le migliaia possibili) ¢ quello della
crescita di una popolazione. Indichiamo con N(t) il numero di individui presenti
in una data popolazione al tempo ¢, e con Ny il numero di individui presenti
all’istante ¢ = 0 in cui abbiamo iniziato le nostre osservazioni; vogliamo vedere
come evolve N(t) a seconda delle ipotesi che facciamo sulla popolazione.

Osservazione 8.8 Strettamente parlando, il numero di individui in una popolazione
¢ un numero intero, e la popolazione aumenta o diminuisce in intervalli discreti di
tempo. Ma per popolazioni composte da un numero molto grande di individui
(quali, per esempio, le colture di cellule) semplifica molto lo studio approssimare
il numero di individui con una funzione N a valori reali e dipendente in modo
continuo e derivabile dal tempo. Un altro approccio possibile ¢ prendere come N
la funzione che da la percentuale di popolazione presente al tempo ¢, calcolata
rispetto alla popolazione iniziale; in questo caso Ny = 100%, e diventa naturale
pensare N (t) come numero reale, e non soltanto intero.

Osservazione 8.9 Quanto diremo si applica anche ad altre situazioni, non solo alla
crescita di una popolazione. Per esempio, molto del materiale di questa sezione si
puo adattare allo studio del decadimento radioattivo di un materiale.

Vediamo ora di esplicitare le ipotesi che faremo sulla nostra popolazione. Trat-
tandosi di uno studio esemplificativo, cominciamo con ipotesi che semplifichino il
piu possibile la situazione. Supporremo che:

(a) la proporzione di individui fertili nella popolazione sia costante nel tempo;

(b) la fertilitd degli individui fertili sia costante nel tempo e indipendente dall’in-
dividuo;

(¢) non ci siano morti;

(d) non ci siano fenomeni di immigrazione o emigrazione;

(e) non ci siano fattori esterni che limitino (o stimolino) la crescita.

L’ipotesi (a) ci dice che la percentuale di individui della popolazione che possono
procreare ¢ costante nel tempo. Nel caso di popolazione sessuata, stiamo suppo-
nendo che la percentuale di femmini fertili sia costante nel tempo, che & un’ipotesi
ragionevole su grosse popolazioni in situazioni di stabilita. L’ipotesi (a) & a maggior
ragione verificata in popolazioni di organismi unicellulari in cui tutti gli individui
sono fertili (cioe si possono riprodurre).

L’ipotesi (b) dice che la probabilita che un individuo fertile procrei & la stessa
per tutto il periodo in cui rimane fertile, e non varia da individuo a individuo.
Questa e chiaramente una notevole semplificazione per popolazioni sessuate, ma &
essenzialmente verificata da popolazioni di organismi unicellulari.

L’ipotesi (c) & nel lungo periodo chiaramente irrealistica; ma nel breve periodo
in situazioni stabili puo essere verificata (e vedremo poi come rimuoverla).

L’ipotesi (d) puo essere verificata o meno a seconda delle situazioni; per colonie
di organismi unicellulari € molto ragionevole.

L’ipotesi (e) dice che la crescita dipende solo dalle dinamiche interne alla popo-
lazione, e non dall’ambiente esterno. In particolare, stiamo supponendo che ci sia
luce, cibo, acqua e spazio sufficiente per un qualsiasi numero di individui. Questa
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¢ un’ipotesi molto forte, che perd & verificata spesso in situazioni sperimentali, o
per certi intervalli del numero di individui della popolazione. Per il momento la
assumiamo, riservandoci piu avanti di vedere cosa succede se la rimuoviamo.

11 succo di queste ipotesi € che il numero delle nascite (cio¢ la variazione N’
del numero di individui) &, per 'ipotesi (b), proporzionale al numero di individui
fertili presenti in quel momento, che ¢ a sua volta, per l'ipotesi (a), proporzionale al
numero N di individui nella popolazione totale; inoltre, grazie alle ipotesi (c), (d)
ed (e), non ci sono altri meccanismi che causano variazioni nel numero di individui.
Quindi possiamo rappresentare il nostro modello con il problema di Cauchy

N'(t) = AN(1) ,
{N((O)): o 7( ) (8.5)

dove A > 0 ¢ una costante positiva che rappresenta la fertilita della popolazione.
Nell’Esempio 8.4 abbiamo visto che la soluzione di questo problema ¢

N(t) = Noe™ ; (8.6)
sotto queste ipotesi, la popolazione cresce in maniera esponenziale. La Fig. 8.2 mo-

stra il grafico della soluzione per alcuni valori di Ny, assieme alla rappresentazione
grafica dell’equazione discussa al termine della sezione precedente.

Figura 8.2 Crescita esponenziale.

Osservazione 8.10 Anche se da un punto di vista biologico in questo caso hanno
senso solo condizioni iniziali Ny positive, da un punto di vista matematico (e in
altre situazioni biologiche) possono aver senso anche condizioni iniziali Ny negative
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o nulle. Se Ny = 0, 'unica soluzione del problema di Cauchy (8.5) & chiaramente
N(t) = 0 (perché?). Stiamo dicendo che se la popolazione non ha individui al-
I'inizio, continuera a non avere individui per sempre; la generazione spontanea in
questo modello non & ammessa. Se invece Ny < 0 (8.6) ci dice che N(¢) decresce
esponenzialmente verso —oo. Se interpretiamo una popolazione negativa come com-
posta di zombie, allora in questo modello anche la popolazione di zombie esplode
in maniera esponenziale. In particolare, una popolazione di zombie non puo mai
diventare composta da individui normali (positivi), e una popolazione normale non
puo mai diventare composta da zombie. Pensiero confortante. Tra parentesi, que-
sto modello si adatta molto bene ai dati sperimentali sulla coltura di cellule in
ambienti con ampia disponibilita di cibo e spazio.

Osservazione 8.11 Vale la pena di osservare esplicitamente che benché in questo
contesto siamo interessati solo a cosa succede per t > 0, cioe al futuro delle nostre
popolazioni, la soluzione che abbiamo ottenuto ha senso anche per ¢t < 0; in alcuni
casi questo permette di estrapolare il passato della popolazione — almeno finché
le ipotesi che abbiamo fatto per il modello rimangono valide.

Rimuoviamo ora l'ipotesi (¢), e ammettiamo la possibilita di morti. Di nuovo,
vogliamo un modello semplice; supponiamo allora che

(¢’) la mortalita sia costante nel tempo e mediamente indipendente dal singolo
individuo.
In altre parole, stiamo supponendo che le morti in ciascun istante siano una percen-
tuale costante del numero di individui presenti nella popolazione in quell’istante.
Di nuovo, questa € un’ipotesi ragionevole per colonie di organismi unicellulari.
Dungque abbiamo solo due fenomeni che possono modificare il numero di indivi-
dui: le nascite (che aumentano il numero) e le morti (che diminuiscono il numero).
Entrambi i fenomeni sono proporzionali al numero totale di individui, e agiscono
indipendentemente 'uno dall’altro, sommando i propri effetti. Quindi possiamo
rappresentare questo modello col seguente problema di Cauchy:

N(0) = N , (87)

{N "= AN — uN
dove p > 0 ¢ una costante positiva che rappresenta la mortalita della popolazione
(e A > 0 continua a rappresentare la fertilita della popolazione).

Siccome AN — uN = (A — )N, la soluzione di questo problema ¢

N(t) = NoeA =Wt (8.8)

Ci sono quindi tre evoluzioni possibili:

—  se A > p, cioe se la fertilita ¢ maggiore della mortalitd (e diremo che siamo
in condizioni di crescita demografica), la popolazione cresce ancora in modo
esponenziale, anche se piu lentamente rispetto a prima;

- se A < u, ciod se la fertilitd ¢ minore della mortalita (e diremo che siamo in
condizioni di decrescita demografica), la popolazione decresce a zero seguendo
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un esponenziale con esponente negativo; in altre parole, la popolazione tende
a estinguersi;

— se A = u la popolazione rimane costante, le morti equivalgono esattamente alle
nascite.

La Fig. 8.3 rappresenta le tre possibilita.

A<t
A> 1

Figura 8.3 Evoluzione con natalita e mortalita.

Eliminiamo ora anche l'ipotesi (d), ammettendo fenomeni di immigrazione o
emigrazione. Anche stavolta consideriamo un caso molto semplice, in cui I'immi-
grazione o ’emigrazione e costante nel tempo ed ¢ indipendente dal numero di
individui presenti nella popolazione. Quindi & un terzo meccanismo di modifica
del numero di individui, indipendente dagli altri e il cui effetto si somma agli altri.
Possiamo dunque rappresentare il modello con il problema di Cauchy

{N’:(/\—M)N—i—u, (8.9)

N(0) = No,

dove v € R rappresenta il tasso di immigrazione (se v > 0) o emigrazione (se v < 0).
Questo problema non & della forma studiata nell’Esempio 8.4, ma non e difficile
ricondurcelo, con un procedimento detto di sostituzione.
Consideriamo ’equazione differenziale

y =ay+0b (8.10)

con a # 0 e b € R. Siccome a non ¢ nullo, possiamo raccogliere a e scri-
vere ay+b = a(y+b/a). Questo suggerisce di introdurre la nuova funzione incognita

siccome 2z’ = 3/, la funzione z soddisfa I’equazione differenziale

2 =az,
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che ¢ della forma studiata nell’Esempio 8.4. Quindi z(¢) = ce®, per cui le soluzioni
di (8.10) sono le funzioni

Torniamo al problema (8.9). Il ragionamento appena fatto ci dice che (se A # p)
la soluzione ¢

N(t) = ce®=mt — H :
dove ¢ € R ¢ tale che y

No=N(0)=c— .

0=N(0)=c—3— m
Quindi
v
c= NO + )
A—p
e possiamo scrivere la soluzione nella forma
N(t) = NoeP=mt 4 A%(ewwt ~1). (8.11)

Vediamo di interpretare il risultato che abbiamo ottenuto?. La prima osservazione &
che la presenza di immigrazione/emigrazione ha aggiunto un addendo alla soluzione
precedente, per cui I’andamento della popolazione dipendera dal bilanciamento di
questi due addendi. Per la precisione:

se A > pev > 0 (cioe crescita demografica e immigrazione) entrambi gli
addendi sono positivi e determinano una crescita esponenziale. In particolare,
per t abbastanza grande e*~#* & molto maggiore di 1, per cui possiamo
trascurare il —1 in (8.11) ottenendo

e Deffetto dell’immigrazione ¢ essenzialmente equivalente a un aumento della
popolazione iniziale.

se A < pev >0 (cioe decrescita demografica e immigrazione) entrambi gli
addendi sono ancora positivi (perché A — u < 0 e eA=mt 1 <0 pert> 0),

2 Come forse ormai avrai capito, la fase di interpretazione del risultato matematico ¢ uno
dei passaggi cruciali dell’'uso di qualsiasi modello matematico di un fenomeno scientifico.
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ma gli esponenziali decrescono molto velocemente verso zero. In particolare,
abbiamo
v

14 v
N(t) = No— —— | e =Nt ~
) M—A+(O u—A)e e

per cui leffetto dell’immigrazione e far tendere la popolazione velocemente
verso il valore limite v/(u — A) > 0.

— se A>pev <0 (cioe crescita demografica ed emigrazione) il primo addendo
¢ positivo ma il secondo negativo; cosa succede dipende dal confronto fra Ny
e |v|/(A — ). Infatti, possiamo scrivere

Y\ o, I
N(t) = [ Ny — 2 we . M
(t ( - ) e L

quindi
e se Ny > |v]/(A — u) la popolazione cresce esponenzialmente;
e se Ny = |v|/(A—p) la popolazione rimane stabile sul valore iniziale Ny; ma
e se Ny < |v|/(A—p) il primo addendo & negativo, e provoca una diminuzione
esponenziale della popolazione. In particolare, la popolazione si estingue,
cioe N(tp) = 0, per

to = 1 lo V]
TN BN )

e diventa negativa per t > ty3. Quindi elevata emigrazione trasforma la
popolazione in zombie in un tempo finito anche in presenza di crescita de-
mografica; che ci sia una morale da qualche parte?
- se A< pewv <0 (cioe decrescita demografica ed emigrazione) il primo ad-
dendo ¢ positivo e il secondo negativo; inoltre, gli esponenziali hanno esponente
negativo. Quindi

| Pl —uea |
N({t)=———+ Ny + — LI il
() ILL*)\J'_ O+’u7>\ e [L*)\7

per cui leffetto dell’emigrazione & far tendere la popolazione velocemente verso
il valore limite® —|v|/(u — A\) < 0.
La Fig. 8.4 mostra il grafico dei vari casi possibili. Lascio a te la discussione di
cosa accade quando Ny < 0, e dell’equazione differenziale che si ottiene se A = p.

3 In realta, la conclusione da trarre & che il nostro modello in presenza di emigrazione non
puo essere valido per tutti i tempi. In effetti, se ci pensi un attimo, il tasso di emigrazione
dev’essere sempre maggiore della popolazione presente; quindi se la popolazione scende
al di sotto del tasso di emigrazione, il modello non puo piu essere valido.
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A> 1

v<0
A<pt A<p A> No>|v|/(A—u)
>0 \ v<0 >0

A>
——— v<0

No=[v|/(A-p)

A> 1 \\
v<0 \
No<|v]/(A=p) '\

Figura 8.4 Emigrazione e immigrazione.

8.3 Separazione delle variabili

Vediamo ora come possiamo modificare 'ipotesi (e), permettendo che ’ambiente
esterno influisca sulla natalita. Per esattezza, supporremo che ’ambiente possa
sostenere agevolmente solo popolazioni di dimensione al di sotto di una certa so-
glia 8 > 0; popolazioni piu grandi subiranno una decrescita demografica, a causa
(per esempio) di mancanza di cibo, o di sovraffollamento, mentre popolazioni pitt
piccole potranno ancora crescere. Infine, popolazioni molto piccole non sentono par-
ticolarmente la presenza della soglia, per cui crescono approssimativamente come
se la soglia non ci fosse.
Possiamo riassumere queste richieste dicendo che nel nostro modello:

— se N(t) > f allora N'(t) < 0;

—  se 0 < N(t) < B allora N'(t) > 0;

- se 0 < N(t) & molto piccolo rispetto a 3 allora N'(t) & approssimativamente
proporzionale a N (¢).

Vogliamo costruire una equazione differenziale ordinaria piu semplice possibile che
riproduca questo comportamento. Prima di tutto, per renderla pitt semplice pos-
sibile la vogliamo esplicita e autonoma; inoltre, non c’e¢ motivo per coinvolgere
derivate di ordine superiore, per cui la cerchiamo del primo ordine. Quindi par-
tiamo da una equazione del tipo

N’ = F(N),

e dobbiamo scegliere la funzione F' piu semplice possibile in modo da soddisfare le
nostre richieste.
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Le nostre richieste si possono tradurre dicendo che F(z) dev’essere negativa se
x > f3, positivase 0 < = < 3, e F'(x) dev’essere approssimativamente proporzionale
a x per x > 0 piccolo.

Siccome F' cambia segno, non puo essere costante. Se F' fosse un polinomio di
primo grado, dovendo essere negativa dopo (3 e positiva prima, dovrebbe (perché?)
annullarsi in § e quindi essere della forma F(z) = a(8 — x) per qualche a > 0; ma
allora per x piccolo varrebbe circa a3, e non sarebbe proporzionale a .

Dunque F non puo essere un polinomio di primo grado. Le funzioni non lineari
piu semplici sono quelle quadratiche; vediamo se troviamo una funzione quadratica
che soddisfa le richieste. Abbiamo gia notato che F' deve annullarsi in (; inoltre,
se per x piccolo F' ¢ approssimativamente proporzionale a x, si annullera anche
in 0. Un polinomio quadratico che si annulla in 3 e in 0 & necessariamente della
forma F(x) = kx(8 — ), con k € R. Inoltre, per soddisfare le condizioni sul segno
dobbiamo richiedere che k > 0; infine, se x > 0 ¢& piccolo rispetto a 3 abbiamo
F(z) = kfBx, per cui anche 'ultima condizione ¢ soddisfatta.

Riassumendo, il modello pitt semplice (ma sicuramente non I'unico!) di crescita
di popolazione in presenza di una soglia di sostentamento ¢ il problema di Cauchy

N(0) = Ny (8.12)

{N’—kN(ﬂN),

L’equazione differenziale che abbiamo trovato & un’equazione non lineare; in par-
ticolare, & di un tipo che non abbiamo ancora incontrato. Per risolverla dobbiamo
introdurre una nuova tecnica, detta di separazione delle variabili.

Per capire come funziona questa tecnica, consideriamo come esempio la solita
equazione

Y =My;

vogliamo risolverla senza sapere a priori che le soluzioni sono esponenziali. Sup-
poniamo che una soluzione y non si annulli mai (ipotesi che dovremo verificare a
posteriori). Allora possiamo scrivere

/
LAY
Y

Il membro sinistro & la derivata del logaritmo di |y|; quindi integrando entrambi i
membri otteniamo

/
log|y\:/%dt:/)\dt:)\t+0.

Infine prendendo I’esponenziale di entrambi i membri ricaviamo

Ol =N = y(t) =ce,
dove ¢ = 4e% e il segno ¢ il segno di y. Quindi, se la nostra equazione ha una
soluzione che non si annulla mai, dev’essere della forma che abbiamo trovato; sic-
come la y(t) che abbiamo trovato effettivamente non si annulla mai, l'ipotesi fatta
all’inizio e confermata, e il procedimento che abbiamo seguito & corretto.
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Cosa abbiamo fatto? Abbiamo operato tre passaggi. Prima di tutto, abbiamo
spostato nel membro sinistro tutte le y (assumendo di poter effettuare la divisione);
poi abbiamo integrato entrambi i membri rispetto a ¢; infine, abbiamo applicato la
funzione inversa del membro sinistro (ammesso che questa funzione si possa inver-
tire). Questa procedura si chiama appunto separazione delle variabili, in quanto
abbiamo “separato” nei due membri la variabile y dalla variabile .

In generale, si applica in questo modo. Supponiamo di avere un’equazione
differenziale della forma

y'(t) =a(t)f(y(1) (8.13)

per opportune funzioni a ed f. Supponiamo (ipotesi da verificare a posteriori) di
avere una soluzione tale che f (y(t)) non si annulli mai. Allora possiamo scrivere

Integriamo entrambi i membri rispetto a ¢; otteniamo

Y Wena— [a
/f(y(t)) it (t)dt / (t)dt .

Ora, il metodo di integrazione per sostituzione ci dice che se poniamo

vo1
F(y) = . O] ds
allora
L dy o
/f(y(t)) dt(t)dt F(y(t)+C;
quindi

F(y(t)) = /a(t) dt+C.

Se la funzione F & invertibile, possiamo applicare F~! a entrambi i membri otte-

nendo la soluzione
y(t) = F </a(t) dt + c> .

Se la y cosl ottenuta effettivamente e tale che f(y(t)) non si annulla mai, allora
abbiamo trovato delle soluzioni dell’equazione (8.13).

Ti sara chiaro che questo metodo non si puo applicare spesso per ottenere solu-
zioni esplicite. Come minimo, bisogna essere in grado di integrare esplicitamente
la funzione a, e di invertire esplicitamente la funzione F'; poi, bisogna verificare
che f (y(t)) non si annulli. Ma a volte funziona, ed & quello che ci serve per risol-
vere (8.12).
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Osservazione 8.12 Una volta capito come funziona, i passaggi precedenti sono
spesso abbreviati scrivendo semplicemente

/ﬁdy:/a(t)dt—kC.

Proviamo ad applicare il metodo di separazione delle variabili all’equazione, di
cui (8.12) € un caso particolare,

Y =ay* +by+c, (8.14)

con a # 0, b, ¢ € R. Supponendo che ay? + by + ¢ non si annulli mai scriviamo

/

Yy _
ay? +by+c

e quindi, integrando,

1
—_—dy= | dt=t+C.
/ay2+by+c Y / +

Dobbiamo quindi calcolare I'integrale indefinito di (ay?+by+c)~!. Per semplicita,
supponiamo che il polinomio ay? + bz + ¢ abbia due radici reali distinte, in modo
da poter scrivere

ay® +by+c=aly—yo)(y—v1),

dove yo # y1 sono le due radici, ordinate in modo che a(y; — yo) > 0. Questo ci
bastera per risolvere (8.12); gli altri casi sono discussi nella Curiosita 8.2. Nota che
ay(t)? +by(t) +c = 0 se e solo se y(t) = yo o y(t) = y1; quindi a posteriori dovremo
verificare che la soluzione y trovata non assuma mai i valori yg e y;.

Il trucco che ci permette di calcolare I'integrale indefinito e I'identita

1 B 1 1 { 1 }
ay? +by+c  aly—yo)ly—v1) alyi—wo) ly—m  yv—wol

1 1 1 1
= / ! _/ d]
/ay2+by+c 4 a(y1—yo)[ y—y Y y—yo

Allora

= ———[log|y —y1| — log |y — yol] + C
a(y1 — yo)
1 —
— log Y=y o,
a(y1 — o) Y—Y
Dunque abbiamo
t —
STCETR
a(yr — yo) y(t) — vo




354  Capitolo 8

da cui segue

YO =y _ peatn-vor (8.15)

dove D = Fe*@1—%)C ¢ il segno ¢ il segno di (y(t) = y1)/(y(t) — yo); nota che
questo quoziente & sempre definito e non pud mai annullarsi (in quanto y(t) # yo, y1
sempre), per cui ha segno costante su ogni intervallo.

Ricavando y(t) da (8.15) e manipolando un poco il risultato troviamo

- Y1 —+ Dyoea(ylfyo)t (yo — yl)Dea(ylfyO)t

y(t) = 1 4+ Dea(y1—yo)t =t 1 4+ Dealyi—yo)t

e infine
Yo — Y1
1 1+ D-1le—alyri—vo)t ’

y(t) =y (8.16)
che ¢ una funzione logistica (almeno quando D > 0 e yg > y1). Siccome y(t) &
sempre diversa da yo e y; (verifica), abbiamo effettivamente trovato una soluzione
della nostra equazione differenziale.

Osservazione 8.13 Nota che se D < 0 pud succedere che il denominatore in (8.16)
si annulli; quindi puo capitare che la soluzione non sia definita su tutto 1’asse reale.

Concludiamo il discorso generale segnalando che

Yo — Y1

1+ D1 (8.17)

y(0) =y +

e che
alyr — yo) = Vb2 — dac,

come si vede subito dalla formula di risoluzione delle equazioni di secondo grado.

CURIOSITA 8.2 Nella Curiositd 6.8 abbiamo visto come integrare tutte le funzioni razionali;
vediamo come applicare quella tecnica per risolvere (8.14) quando il polinomio ay? + by + ¢
non ha due radici reali distinte.

Supponiamo che abbia una sola radice reale yo € R, in modo che ay?+by+c = a(y —yo)?.

Allora
1 1 1 1
——dy = — dy = — +C.
/ay2+by+c Y a/(y—yo)2 Y a(y — yo)
Quindi
1
- _=t4C = y(t) = yo — (8.18)
a(yo —y(t)) at +C

Supponiamo infine che ay? + by + ¢ non abbia radici reali; in particolare possiamo scrivere

ay® + by + c = a(u® + p°)
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dove u=y+b/2aep= ix/4acf b2. Allora

1 1 1 1
——dy=~- | ——— du= — arctan(u/p) + C
ay? +by+c a u? + p? ap

2 ¢ ( 2ay +b ) L C
= ———— arctan [ ——— .
Viac — b2 Viac — b?

Eguagliando questo risultato a t + C otteniamo

2ay(t) +b 4dac — b?
—— =ta —t+C
Vdac — b? " 2

e quindi

4 — b2 4 — h2
y(t) = Vdac =B <\/ ac b t+C’) b (8.19)
2a 2 2a

Nota che sia (8.18) sia (8.19) non sono definite per tutti i valori di ¢; inoltre, le soluzioni
cosi ottenute non forniscono tutte le soluzioni di (8.14). Per esempio, nel primo caso anche
y(t) = yo & una soluzione, 'unica che soddisfa la condizione iniziale y(0) = yo.

Torniamo ora a (8.12). Confrontando con (8.14), vediamo che
a:_ka b:kﬁ7 0207 y0:B7 91:07 a(yl_yo):kﬁ7

inoltre (8.17) diventa

B No
T 14Dt B— N,

Quindi la soluzione che abbiamo trovato e

N(t) = s . (8.20)
Lt (£ 1) eh

Il comportamento di questa funzione dipende dal segno di Nio — 1; discutiamo i vari

casi.

- 0 < Ny < 3, cioé partiamo sotto la soglia. In questo caso Nﬂo —1>0, per cui
(8.20) ¢ effettivamente una funzione logistica. Dunque per ¢ > 0 la popolazione
aumenta tendendo al valore di soglia senza mai raggiungerlo.

— [ < Ny, cioé partiamo sopra la soglia. In questo caso Nio —1 <0, per cui (8.20)
non ¢ una funzione logistica. Pili precisamente, per ¢ > 0 il denominatore di
(8.20) & positivo ma minore di 1, e tende a 1 per t — +o0, per cui N(t) > [ per
ognit > 0e N(t) — (8 pert — +oo. In altre parole, se partiamo sopra la soglia
la popolazione decresce tendendo al valore di soglia senza mai raggiungerlo.

— Ny = 8. Strettamente parlando, il procedimento che ci ha portato alla (8.20)
in questo caso non si applica, in quanto § ¢ una delle radici del polino-
mio ky(8 — y). Perd (8.20) in questo caso diventa N(t) = 3, che ¢ effetti-
vamente la soluzione del problema di Cauchy (8.12). Quindi se partiamo sul
valore di soglia la popolazione rimane costante.
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— Ny = 0. In questo caso (8.20) non ha proprio senso; pero si vede subito
(controlla) che N(t) = 0 risolve (8.12), per cui anche in questo modello non
¢’eé generazione spontanea.

Osservazione 8.14 Puo essere interessante studiare anche cosa succede per ¢ < 0,
in modo da estrapolare informazioni sul passato della nostra popolazione. Se
0 < Nyg < S, (8.20) ¢ una funzione logistica, per cui sappiamo perfettamente
come si comporta anche per ¢t < 0. Se Ny > (3, invece, abbiamo una sorpresa: il
denominatore di (8.20) si annulla in

Quindi la popolazione puo esistere solo per t > tg, e N(t) — 400 per t — tar.
Per t < tg, la funzione N(t) & negativa, per cui abbiamo una popolazione di zombie,
che esplode per ¢t — ¢y, mentre N(t) — 0~ per t — —o0.

Osservazione 8.15 Anche se non ha un’interpretazione biologica immediata, ma-
tematicamente & interessante studiare anche il caso Ny < 0. Siccome 3 > 0 per

ipotesi, abbiamo Nﬂo — 1 < 0 sempre. Inoltre il denominatore si annulla per
1 p
t0=—10g<1—|——> >0
kg |No| ’

& negativo per t < tg ed e positivo per ¢t > tg. Quindi la nostra popolazione di
zombie esplode per ¢t — ¢, per poi risorgere quando ¢ > ¢y come una popolazione
normale che tende al valore di soglia 3 per t — +oo.

La Fig. 8.5 riassume la situazione.

Esercizio 8.1 Studia cosa succede se in questo modello si aggiunge I'immigra-
zione/emigrazione. In altre parole, studia il problema di Cauchy

{N’:k:N(B—N)—f—u,
N(0) = No,

al variare dei parametri k, 3 > 0 e Ny, v € R. Avrai bisogno dei risultati della
Curiosita 8.2.

8.4 Sistemi lineari di equazioni

In questa sezione cambiamo il nostro modello introducendo una seconda popo-
lazione. Abbiamo due specie che coabitano nello stesso habitat, e indichiamo
con Nip(t) il numero di individui della prima specie al tempo ¢, e con Na(t) il
numero di individui della seconda specie al tempo . Ciascuna specie, se da sola, si
evolverebbe secondo il modello precedente; vogliamo vedere se riusciamo a ripro-
durre l'interazione fra le due specie.
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\N0<O

N0>ﬁ \
No=03 ~

\\ Ny<0

Figura 8.5 Popolazione con soglia.

Come al solito, faremo ipotesi molto semplificatrici. Supponiamo prima di tutto
di non avere fenomeni di immigrazione/emigrazione, né fenomeni di soglia; quindi
ciascuna specie per conto suo si evolverebbe seguendo 'equazione N} = \;N; per
i =1, 2 con A\; € R positivo o negativo a seconda della situazione (crescita o
decrescita demografica). Supponiamo poi che la presenza di una popolazione causi
una variazione nel numero di individui dell’altra popolazione rappresentabile con
un’equazione dello stesso tipo. Il nostro modello quindi e

{N{ = MNy + Ny, (8.21)

N} = poN1 + ANy,

dove p1, uo € R sono i tassi di correlazione fra le due popolazioni. Il segno di
e o rappresenta il tipo interazione fra le due popolazioni. Per esempio, se sono
uno positivo e 'altro negativo potremmo essere in una situazione di tipo predatore-
preda: la popolazione 1 si ciba della popolazione 2, per cui la presenza di individui
della popolazione 2 fornisce cibo e quindi causa un incremento della popolazione 1
(cioé p1 > 0), mentre la presenza di individui della popolazione 1 causa morti e
quindi un decremento della popolazione 2 (cioé e < 0).

Se invece entrambi i tassi di correlazione sono negativi potremmo essere in una
situazione di tipo competizione: entrambe le popolazioni competono per le stesse
risorse (cibo, spazio, eccetera) per cui la presenza di individui di una popolazione
causa una diminuzione nel numero di individui dell’altra (cio¢ ui, pe < 0).

Infine, se entrambi i tassi di correlazione sono positivi potremmo essere in una
situazione di tipo simbiotico: la presenza di individui di una popolazione fornisce
qualcosa di utile per la sopravvivenza dell’altra, e quindi ne aumenta il numero di
individui (cioe p1, po > 0).

Il sistema (8.21) & un esempio di sistema di equazioni differenziali ordinarie
lineari a coefficienti costanti omogenee. Abbiamo due equazioni e due funzioni in-
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cognite, N1 ed Ny, dipendenti dalla stessa variabile ¢; vogliamo vedere se riusciamo
a trovare due funzioni che soddisfano entrambe le equazioni contemporaneamente,
magari richiedendo anche che soddisfino opportune condizioni iniziali

Ni(to) = NV, Ny(to) = NY .

In un certo senso, questo tipo di sistemi di equazioni differenziali ¢ il piu bello di
tutti: infatti, si puo sempre risolvere usando funzioni elementari. Per 'esattezza,
vale il seguente risultato: per ognin € N, a11,...,amm € R, tg €R ey, ..., 90 €R
il problema di Cauchy

Yyl =any1 + -+ ainyn ,

, : (8.22)
Yn = On1¥Y1 + -+ ApnYn ,
yi(to) =9+ unlto) = yy
ammette un’unica soluzione. Inoltre, le funzioni soluzione yi, ..., Yy, sono definite

su tutto 'asse reale, e si ottengono come somma e prodotto di funzioni della forma

aeft | beos(wt), esin(wt), dt?,
cona, b, c,d, k, weR eqeN.
Vediamo cosa succede per il nostro sistema (8.21). Usando le notazioni del
risultato appena citato, vogliamo studiare il sistema

/
Y1 = 6111 + aizy2 , 8.93
{yé = a21Y1 + a22y2 . (8:23)

In assenza di idee brillanti (il tuo assistente & ancora nel deserto) affrontiamo il
problema a tentativi, provando a vedere se per caso il sistema ha soluzioni della
forma

yi(t) = Aje Yo (t) = Agert (8.24)

per opportuni Ay, As, k € R; del resto, abbiamo visto che questa ¢ la forma delle
soluzioni se ¢’¢ una sola equazione.
Derivando (8.24) troviamo

yi(t) = kAre® | yh(t) = kAge® ;
quindi le y;, y2 date da (8.24) sono una soluzione di (8.23) se e solo se

kAjekt = ajg Arert + ajpAget?t |
kAQ@kt = aglAlekt + (122A26kt ,

ovvero, dividendo per e** (che non si annulla mai) se e solo se

{ kA1 = a11 A1 + a12ds — { (a11 —k)A1 +a1242 =0, (8.25)

kA = ag1 A1 + axAs asi Ay + (a2 —k)A; =0.
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In quest’ultimo sistema lineare le incognite sono A; e Ao, mentre a1, a2, a1 € Ao
sono coefficienti noti; infine, £ & un parametro che vogliamo scegliere in modo che
il sistema abbia soluzioni non banali. Infatti il sistema (8.25) ammette sempre la
soluzione ovvia A; = Ay = 0, che corrisponde a prendere y;, yo = 0. Questa ¢
certamente una soluzione del sistema (8.23), ma non molto interessante; ci dice solo
che se partiamo senza popolazioni rimaniamo senza popolazioni. Il nostro obiettivo
¢ quindi trovare, se esistono, dei valori di k € R per cui il sistema (8.25) abbia una
soluzione non banale, cioé una soluzione (Aq, A2) # (0,0).

Supponiamo per un istante che aj2 # 0; vedremo fra poco che il risultato
finale varra anche se ajo = 0. Allora possiamo ricavare A, dalla prima equazione;
inserendola nella seconda troviamo

Ay = ﬂAl ,
ai2
- B (8.26)
ag1 — (k a22)(k all) A1 = O .
a12

Se il coefficiente di A; nella seconda equazione & diverso da zero, ricaviamo A; =0
e quindi, grazie alla prima equazione, A5 = 0. Dunque una soluzione non banale
puo esistere se e solo se il coefficiente di A; & diverso da zero, cioé (moltiplicando
per aj2 e riordinando i termini) se e solo se k ¢ una radice della sequente equazione:

k? — (a1 + ag2)k + (a11as — a12a91) = 0 ; (8.27)

questa equazione & detta equazione caratteristica del sistema (8.23); le (eventuali)
radici di questa equazione sono dette radici caratteristiche di (8.23).

Osservazione 8.16 Se a1 = 0 'equazione caratteristica si riduce a
(k‘ — an)(k — agg) = O s

cio¢ a k = aj1 0 k = age. Controlla allora che il sistema (8.25) con aj2 = 0 ammette
una soluzione non banale se e solo se kK = a1; 0 k = ags.

L’equazione caratteristica, come ogni equazione di secondo grado che si rispetti,
puo avere due radici reali distinte, una sola radice reale, oppure nessuna radice reale,
a seconda del valore del discriminante

A = (a11 + ag)? — 4(a11a22 — a12a21) = (a11 — a)? + 4aizas; .

Supponiamo che I’equazione caratteristica ammetta almeno una radice reale k; € R
(discuteremo un poco nella Curiosita 8.3 cosa fare quando questo non accade).
Allora il discorso che abbiamo fatto ci dice che esistono A4; e Ay non entrambi nulli
che risolvono il sistema (8.25) con k = ki; quindi con questi valori di A; e Ag e
con k = ky le (8.24) sono una soluzione del sistema di equazioni differenziali (8.23).
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Inoltre, esistono infinite coppie (A1, A2) che risolvono (8.25), e si possono tutte
scrivere nella forma
(A1, Ag) = (@AY, aAY)

con A} =10 A =1 (o entrambi), e @ € R & un qualsiasi numero reale. Se aja # 0
questo ¢ una conseguenza immediata (perché?) di (8.26); se a;2 = 0 te lo lascio
per esercizio.

ESEMPIO 8.6 Consideriamo il sistema

Y1 = 2y1 — 3y2 , 3.98
{ygz—y1+2y2, (8.28)

corrispondente al caso di due popolazioni in competizione, con
aj1 =M\ =2, ax=X=2, ap=p=-3, ag =pz=-1.

In questo caso il discriminante ¢ A = 12 > 0; quindi ’equazione caratteristica ha
due radici reali distinte

ki =2+V3, ko =2—+3.
Scegliendo k = k; il sistema (8.25) diventa

—V3BA; —34,=0,
*Ali\/§A2:07

le cui soluzioni sono chiaramente tutte le coppie della forma
(A1, As) = (—V3a,a) .
Quindi ogni coppia di funzioni
yi(t) = —V3aeHVar ya(t) = eV

risolve (8.28).
Scegliendo invece k = ko, il sistema (8.25) diventa

V341 —345,=0,
_A1+\/§A2:Oa

le cui soluzioni sono chiaramente tutte le coppie della forma
(A1, 42) = (V35.) .

Quindi anche ogni coppia di funzioni

yi(t) = V3BT (1) = BV
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risolve (8.28).

Ma non ¢ finita qui. Se (y1,y2) e (g1, J2) sono due coppie di soluzioni di (8.28),
allora puoi verificare subito che anche (y; + @1, y2 + ¥2) & una soluzione di (8.28).
Quindi ogni coppia di funzioni della forma

y1(t) = —v3ae@tV3t L \/33cC2-VEE (1) = qeHVEE 4 g2 VA

risolve (8.28), quali che siano a, § € R. Vedremo fra poco che in questo modo
abbiamo ottenuto tutte le soluzioni di (8.28).

Supponiamo ora che equazione caratteristica del sistema (8.23) abbia due ra-
dici reali distinte, k1 e ko. Allora il ragionamento precedente ci fornisce due coppie
di soluzioni: la prima, della forma

(aA?eklt,ozAgeklt) ,
corrispondente a k = ki; e la seconda, della forma
(BBY!, BBYe")

corrispondente a k = ky. Come osservato nel precedente esempio, la somma di
soluzioni di (8.23) ¢ ancora una soluzione; quindi tutte le coppie di funzioni della
forma

(yl(t), yg(t)) = (aAVeht 1 pBYek2t oAkt 1 ﬂBgekﬁ) (8.29)

sono soluzioni di (8.23), quali che siano «, 8 € R.
Con questa informazione siamo ora in grado di risolvere il problema di Cauchy

Y1 = a11y1 + a2y2
Yy = a21y1 + a2y , (8.30)
yito) = y7 , ya(to) =43 .

Infatti, ci basta verificare se esiste una coppia di funzioni della forma (8.29) che

soddisfa le condizioni iniziali di (8.30). Mettendo ¢ = tp in (8.29) vediamo che il
nostro problema si trasforma nel trovare « e § tali che
0 k1t 0 kato 3 — .0

[ s o oo

AseMtoa + Bie?o 3 =y, .

Tecniche di Algebra Lineare che non abbiamo tempo di richiamare qui c¢i dicono
che (8.31) ammette sempre un’unica soluzione (ag, B); quindi

(1 (1), y2(t)) = (a0 e + By BYet*!, aAge™" + 3B3et=")
risolve il problema di Cauchy (8.30). Inoltre, siccome il problema di Cauchy (8.22)

ammette un’unica soluzione, e ogni soluzione di (8.23) soddisfa una qualche con-
dizione iniziale, le coppie di funzioni della forma (8.29) forniscono tutte le possibili
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soluzioni di (8.30), in quanto scegliendo opportunamente « e 3 possiamo soddisfare
qualsiasi condizione iniziale.

EsEmpio 8.7 Vogliamo studiare due popolazioni in competizione rappresentate
dal problema di Cauchy

N{ =2N; — 3Ny,
N) =—N; 4+ 2N,
N1(0) =600, N2(0) =300.
Nel precedente esempio abbiamo visto che le soluzioni devono essere della forma

Ni(t) = —V3ae@ TVt 4 \/33.2-V3)t No(t) = ae®HVt | 32—Vl .

dobbiamo determinare a e 8 in modo da soddisfare anche le condizioni iniziali. Per
far cio, a e B devono risolvere il sistema lineare

{Nl(O) = —V3ae® + /336" = —v/3a + V33 = 600 ,
No(0) = ae® + Be’ = a+ 5 =300 .

Ricavando 8 dalla seconda equazione e inserendola nella prima otteniamo

{—\/§a+\/§(300—a):6007 . {a:—50(2\/_—3),
B =300—-a, B =502v3+3).

Quindi la soluzione cercata e

{ N (t) = 150(2 — v/3)e@+V3) 1 150(2 + /3)e2—V3)t |
Na(t) = =50(2v/3 — 3)e V3t 4 50(2¢/3 + 3)e2- V31

Raccogliendo e(+V3)t otteniamo

Ny (t) = e@+V3[300 — 150v/3 + (300 + 150v/3)e 23]
Ny(t) = e@+VD1[150 — 100v/3 + (150 + 100v/3)e2V3] .

Quindi per t — 400 abbiamo
Ni(t) ~ (300 — 150v/3)etV3t s 4oo | Ny(t) & (150 — 100v/3)e2HV3 5 _ oo .

In altre parole, nonostante la competizione sia piu dura per la prima popolazione
rispetto alla seconda (in quanto p; < pa < 0), il vantaggio iniziale (N1(0) > N2(0))
¢ sufficiente a compensare la competizione, e permette alla prima popolazione di
prevalere facendo estinguere la seconda (e anzi trasformandola in una popolazione
di zombie). La Fig. 8.6 contiene i grafici di N1 e Ns.
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Figura 8.6 Evoluzione di due popolazioni in competizione.

Riassumendo, la procedura per risolvere il problema di Cauchy (8.30) & la se-
guente:

—  si determinano le radici dell’equazione caratteristica (8.27);

—  supponendo che (8.27) abbia due radici reali k1, ko distinte, si trovano le
soluzioni del sistema lineare (8.25) per k = ki, e per k = ko, dipendenti
rispettivamente da un coefficiente o e da un coefficiente ;

—  si determinano « e 3 risolvendo il sistema lineare (8.31).

CURIOSITA 8.3 Per presentare la teoria generale dei problemi di Cauchy del tipo (8.30) ci servi-
rebbero tecniche di Algebra Lineare che non abbiamo. Mi limito a dire che quando ’equazione
caratteristica ha un’unica radice reale ko, oltre a soluzioni della forma (8.24) il sistema am-
mette anche soluzioni della forma

y1(t) = (a1 + ast)e*o’ ya2(t) = (Br + Bat)e™0?

per opportuni ay, as, 31, B2 € R.
Quando invece ’equazione caratteristica non ha radici reali, il sistema ammette soluzioni
della forma

y1(t) = cre”* cos(wt) + aze®* sin(wt) y2(t) = Bre™* cos(wt) + BaeF* sin(wt) ,

per opportuni ai, az, 81, B2, k, w € R.

8.5 L’equazione 3"’ = —ky.

In questa nostra breve carrellata sulle equazioni differenziali non posso esimermi
dal citare I’equazione
y' = —wy . (8.32)

EsEMPIO 8.8 La fisica ci dice che la forza esercitata su un oggetto di massa m
attaccato a una molla allungata di una lunghezza y rispetto alla posizione di riposo

e
F=—ky
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per un’opportuna costante positiva k. Ricordando che F' = mgy” otteniamo (8.32),
con w? =k/m > 0.

Si vede subito (controlla) che le funzioni della forma
y(t) = Acos(wt) + B sin(wt) (8.33)

sono tutte soluzioni di (8.32), quali che siano A, B € R. Inoltre, un facile conto
(verifica) mostra che prendendo

A = yg cos(wtp) — y1 sin(wtp) , B = yg sin(wtg) + y1 cos(wtp)

allora la funzione data da (8.33) risolve il problema di Cauchy

y'=-wy,
8.34
{y<to> — 0. y'(to) = u1 . (8:34)

In particolare, le soluzioni di (8.34) sono sempre periodiche di periodo 27 /w.
Vale la pena ricordare anche un collegamento con gli argomenti della sezione
precedente. Infatti, introducendo le nuove funzioni

n)=yt) e @)=y,

il problema di Cauchy (8.34) si trasforma nel seguente problema di Cauchy per un
sistema di equazioni differenziali lineari del prim’ordine:

yll =Y2,
yh = —w?yr , (8.35)
y1(to) = yo , ya(to) =1 -
Questo problema ¢ esattamente della forma (8.30), con
a1 =0, ap=1, an=-w>, an=0, =y, ¥W=u.
In particolare il discriminante vale

A=—-w?<0,

per cui l'equazione caratteristica non ha radici reali. Nonostante cio, il problema
di Cauchy (8.35), essendo equivalente a (8.34), ammette soluzioni della forma

y1(t) = Acos(wt) + Bsin(wt) , ya2(t) = —Awsin(wt) + Bw cos(wt) ,
per opportuni A, B € R.
CURIOSITA 8.4 L’equazione (8.32) assomiglia molto all’equazione

y' =Ky,
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che invece ha soluzioni della forma
y(t) = AeF* + Be "' .

Questo potrebbe far sospettare ’esistenza di una relazione inaspettata fra funzioni espo-
nenziali e funzioni trigonometriche. Per descrivere questa relazione bisogna usare i numeri
complessi. Se z = a + ib & un numero complesso, si definisce 1’esponenziale complesso e*
ponendo

e” = e = e*(cosb + isinb) . (8.36)

Se ci pensi un attimo, vedrai che questa definizione & perfettamente coerente con gli sviluppi
in serie di esponenziale, seno e coseno che abbiamo visto nella Curiosita 5.11. Derivando
separatamente parte reale e parte immaginaria, trattando ¢ come una costante (cosa che
effettivamente ¢) non ¢ difficile verificare che la derivata della funzione

f)=e

e data da
1) = ze**

per ogni numero complesso z. In particolare, se z = iw troviamo che

d . )
2 it — 4 eiwt
dt
N 2
d? . )
eiwt — _,2giwt :
dt?
essendo

et = cos(wt) + isin(wt) ,

abbiamo recuperato le soluzioni (8.33) di (8.32).
Concludiamo queste dispense notando che ponendo z = 0 + 7 in (8.36) otteniamo la
relazione di Eulero
6T 41=0,

che collega le cinque costanti fondamentali e, 7, 7, 1 e 0 (ed & una delle pitt belle formule di
tutta la Matematica).



