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Equazioni differenziali

8.1 Introduzione

In molti casi c’è una stretta relazione fra una quantità e il modo in cui varia; la
variazione (la derivata) dipende dalla quantità (la funzione).

Esempio 8.1 Considera una colonia di cellule che si riproducono per scissione.
A ogni riproduzione, l’aumento del numero di cellule (il numero di cellule nuove) è
uguale al numero di cellule vecchie; maggiore è il numero di cellule presenti nella
colonia, maggiore è l’aumento (almeno finché non intervengono fattori che limitano
questo aumento; ne riparliamo dopo).

Esempio 8.2 In un materiale radioattivo, il numero di atomi che decadono è pro-
porzionale al numero di atomi radioattivi presenti; quindi la variazione del numero
di atomi radioattivi (data dal numero di atomi che decadono) è proporzionale al
numero totale di atomi radioattivi.

Quello che succede di solito è che la teoria biologica (o chimica, fisica, eccetera)
suggerisce quale relazione deve sussistere fra la quantità studiata e la sua variazione;
e quindi si pone il problema di trovare l’espressione di questa quantità conoscendo
soltanto la relazione e i dati iniziali. Dobbiamo quindi risolvere un’equazione in
cui l’incognita non è un numero, ma una funzione. Le equazioni con incognita una
funzione si chiamano equazioni funzionali; se nell’equazione compaiono oltre alla
funzione anche delle sue derivate (le variazioni della funzione) allora si parla di
equazione differenziale.

Vediamo alcuni esempi di equazioni differenziali prima di introdurre un po’ di
terminologia generale.

Osservazione 8.1 Quando si studiano le equazioni differenziali spesso si indica con
y la funzione incognita, e con t o x la variabile da cui dipende la funzione y.



338 Capitolo 8

Esempio 8.3 L’equazione differenziale più semplice in assoluto è l’equazione
y′(t) = f(t) o, come scriveremo spesso,

y′ = f , (8.1)

dove f è una funzione nota. Il significato di (8.1) è che stiamo cercando una
funzione y la cui derivata sia la funzione nota f ; e nel Capitolo 6 abbiamo visto
che tutte le soluzioni sono della forma

y(t) =
∫ t

t0

f(x) dx + C ,

dove t0 è un qualsiasi punto del dominio di f , e C ∈ R è una costante arbitraria.

Osservazione 8.2 Questo esempio già rivela tre caratteristiche generali delle equa-
zioni differenziali. La prima è che, in generale, un’equazione differenziale può am-
mettere infinite soluzioni; per determinare univocamente una soluzione, bisogna
imporre condizioni ulteriori. L’equazione differenziale (8.1) ammette infinite so-
luzioni, una per ogni valore della costante arbitraria C. Ma se noi fissiamo una
condizione ulteriore, per esempio quanto deve valere la soluzione che nel punto t0,
allora troviamo un’unica soluzione che soddisfa questa condizione aggiuntiva. In-
fatti, l’unica soluzione che nel punto t0 vale y0 è

y(t) =
∫ t

t0

f(x) dx + y0 .

La seconda caratteristica è che il dominio di definizione della soluzione y(t) può
essere diverso dal dominio di definizione di tutti i termini presenti nell’equazione.
A seconda dei casi, può essere più grande, più piccolo o uguale. La Curiosità 8.1
mostrerà un esempio in cui il dominio delle soluzioni sarà più grande del dominio
dell’equazione; l’Esempio 8.4 un caso in cui il dominio sarà uguale; e l’Osserva-
zione 8.13 un caso in cui il dominio sarà strettamente più piccolo. Il punto è che
trovare il dominio delle soluzioni di un’equazione differenziale fa parte del lavoro
che dobbiamo fare per risolvere l’equazione.

La terza caratteristica è che, come per gli integrali, la maggior parte delle equa-
zioni differenziali non hanno soluzioni esprimibili tramite funzioni elementari; in
altre parole, la maggior parte delle equazioni differenziali non si risolvono esplicita-
mente. Per questo motivo sono state sviluppate molte tecniche per effettuare uno
studio qualitativo delle soluzioni di equazioni differenziali; ma sono tecniche ben al
di là di quanto possiamo trattare qui. In questo capitolo ci limiteremo a studiare
alcuni esempi di equazioni differenziali risolvibili esplicitamente.

Curiosità 8.1 Prendiamo l’equazione (8.1) con f(t) = |t|−1/2. La funzione f è definita su R∗
(non è definita nell’origine), per cui l’equazione è definita solo fuori dall’origine. Scegliendo
t0 > 0 troviamo che le soluzioni per t > 0 sono date da

∀t > 0 y(t) =

∫ t

t0

x−1/2 dx + C = 2
√

t + C .
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Analogamente, scegliendo t0 < 0 troviamo che le soluzioni per t < 0 sono date da

∀t < 0 y(t) =

∫ t

t0

(−x)−1/2 dx + C = −2
√
−t + C .

Ma quindi le funzioni y: R → R della forma

y(t) =

{
2
√

t + C se t ≥ 0 ,
−2
√
−t + C se t ≤ 0 ,

sono soluzioni di (8.1) definite su tutto l’asse reale, cioé su un dominio più grande del dominio
dell’equazione. Va però detto che quando ciò accade siamo s̀ı contenti, ma di solito non
è molto importante, in quanto di solito siamo interessati solo a ciò che accade nel dominio
dell’equazione, e ai problemi che si possono verificare se il dominio della soluzione è più piccolo
del dominio dell’equazione.

Esempio 8.4 Negli Esempi 8.1 e 8.2 abbiamo considerato casi in cui la varia-
zione y′ della quantità y è proporzionale alla quantità stessa. L’equazione differen-
ziale che esprime questa relazione è

y′ = ky , (8.2)

dove k ∈ R è una costante di proporzionalità. Abbiamo già incontrato il caso
particolare k = 1 di questa equazione nell’Osservazione 5.18. Applicando le tecniche
viste l̀ı non è difficile verificare che le soluzioni di (8.2) sono tutte e sole le funzioni
della forma

y(t) = cekt ,

dove c ∈ R è una costante arbitraria. Infatti, se y(t) = cekt si verifica subito che
y′(t) = kcekt = ky(t), come voluto. Viceversa, supponiamo che y sia una soluzione
di (8.2). Allora la regola di Leibniz ci dice che

d

dt

(
e−kty(t)

)
= −ke−kty(t) + e−kty′(t) = −ke−kty(t) + e−ktky(t) ≡ 0 ,

per cui e−kty(t) ≡ c e y(t) = cekt, come voluto.
In particolare, (8.2) ha infinite soluzioni, una per ogni valore della costante

arbitraria c ∈ R. Se però richiediamo che la soluzione debba avere un valore
specificato a priori in un punto allora possiamo determinare una soluzione unica.
Per esempio, vogliamo trovare quali soluzioni valgono π in t = 0. Si deve avere

π = y(0) = cek0 = c ;

quindi l’unica soluzione che in 0 vale π è y(t) = πekt. Infine, tutte le soluzioni di
(8.2) sono definite su tutto l’asse reale, che è il dominio dell’equazione.

Esempio 8.5 Altri esempi di equazioni differenziali sono:
(i) y′ = ax + b, con a, b ∈ R;
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(ii) y′ = ay2 + by + c, con a, b, c ∈ R;
(iii) y′′ = −ky, con k ∈ R;
(iv) y′ = y2 + log t, definita solo per t > 0;
(v) sin(y′′) + ay2 = ey − tan y ;
(vi) y′′ = 2ty ;

e non è difficile immaginarne infinite altre.

Vediamo di fissare un po’ di terminologia. Un’equazione differenziale ordinaria
è un’equazione differenziale della forma

F (y(n), y(n−1), . . . , y, t) = 0 , (8.3)

dove F è una funzione a valori reali dipendente da n+2 variabili reali, e l’incognita
y è una funzione reale dipendente dalla variabile reale t. Il numero n è detto ordine
dell’equazione; è il massimo ordine di derivata di y che compare nell’equazione. Per
esempio, le equazioni (8.1), (8.2), e quelle dell’Esempio 8.5.(i), (ii) e (iv) sono del
primo ordine, mentre le equazioni dell’Esempio 8.5.(iii), (v) e (vi) sono del secondo
ordine.

Osservazione 8.3 Come si possono considerare sistemi di equazioni algebriche con
più di una incognita, si possono anche considerare sistemi di equazioni differenziali
ordinarie, composti da tante equazioni differenziali che legano fra loro le derivate
di numerose funzioni incognite; vedremo un esempio nella Sezione 8.4. La teoria
dei sistemi di equazioni differenziali ordinarie non è molto diversa dalla teoria
di singole equazioni differenziali ordinarie; è però cruciale che tutte le funzioni
incognite dipendano da una sola variabile, la stessa per tutte. Se invece le funzioni
incognite dipendono da più di una variabile, entriamo nel regno delle equazioni
differenziali alle derivate parziali, che hanno caratteristiche completamente diverse
(e di cui non parleremo).

Se nell’equazione (8.3) la variabile indipendente t non compare esplicitamente,
diremo che l’equazione è autonoma; altrimenti diremo che non è autonoma. Per
esempio, le equazioni (8.2) e quelle dell’Esempio 8.5.(i), (ii), (iii) e (v) sono auto-
nome; invece le equazioni (8.1) con f non costante e quelle dell’Esempio 8.5.(iv)
e (vi) sono non autonome.

Equazioni differenziali della forma

y(n) −G(y(n−1), . . . , y′, y, t) = 0

sono dette esplicite; le altre sono dette implicite. Per esempio, le equazioni (8.1),
(8.2), e quelle dell’Esempio 8.5.(i), (ii), (iii), (iv), e (vi) sono esplicite; quella del-
l’Esempio 8.5.(v) è implicita.

Osservazione 8.4 In generale, le soluzioni delle equazioni differenziali ordinarie
esplicite si comportano un po’ meglio delle soluzioni delle equazioni differenziali
ordinarie implicite.
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Equazioni differenziali della forma

y(n) = an−1(t)y(n−1) + · · ·+ a0(t)y + b(t) ,

con an−1, . . . , a0, b funzioni date, sono dette lineari; tutte le altre sono dette non
lineari. Per esempio, le equazioni (8.1), (8.2), e quelle dell’Esempio 8.5.(i), (iii)
e (vi) sono lineari; le altre sono non lineari. Equazioni lineari in cui b ≡ 0 sono
dette omogenee; per esempio, le equazioni (8.2), e quelle dell’Esempio 8.5.(iii) e (vi)
sono omogenee, mentre le equazioni (8.1) e quella dell’Esempio 8.5.(i) non lo sono.
Equazioni lineari autonome (cioè in cui an−1, . . . , a0, b sono costanti) sono anche
chiamate equazioni differenziali ordinarie lineari a coefficienti costanti. Per esem-
pio, (8.2) e le equazioni dell’Esempio 8.5.(i) e (iii) sono lineari a coefficienti costanti.

Quando si affronta lo studio di un’equazione differenziale, i problemi da risolvere
sono tipicamente tre. Prima di tutto, esistono soluzioni? Di solito s̀ı, anche se
spesso non esprimibili tramite funzioni elementari. Esistono risultati generali (ne
vedremo uno fra poco) che assicurano l’esistenza di soluzioni per vaste classi di
equazioni differenziali ordinarie; ma esistono anche esempi di equazioni differenziali
che non ammettono soluzioni.

Il secondo problema è quali condizioni aggiuntive dobbiamo imporre per assicu-
rarci l’unicità della soluzione? Se l’equazione differenziale nasce come modello di
una situazione reale, ci aspettiamo che fissate le condizioni iniziali del modello la
soluzione sia unica, in quanto la realtà, una volta fissato il punto di partenza, si
sviluppa in modo unico1. Questo suggerisce di imporre come condizione aggiuntiva
il valore di y in un punto t0 iniziale fissato. In effetti, come vedremo fra poco, que-
sto è sufficiente ad assicurare l’unicità della soluzione per le equazioni differenziali
ordinarie esplicite del primo ordine; non basta per quelle del second’ordine.

Se ci pensi un attimo, questo non è sorprendente. Supponi di voler risolvere
un’equazione del tipo y′′ = f . Una prima integrazione ti permette di trovare y′

come integrale di f — e quindi dipende da una costante arbitraria. Per trovare y,
però, devi effettuare una seconda integrazione, e quindi compare una seconda co-
stante arbitraria; dunque per determinare un’unica soluzione abbiamo bisogno di
condizioni che fissino il valore di due costanti arbitrarie. La prima costante arbi-
traria deriva dall’integrazione che ci permette di ricavare y′, e quindi può essere
fissata imponendo il valore iniziale di y′. Ciò fatto, la seconda costante arbitraria
deriva dall’integrazione che ci fornisce y, e quindi può essere fissata imponendo il
valore iniziale di y.

Questo esempio suggerisce che per assicurarci l’unicità della soluzione di un’e-
quazione differenziale ordinaria di ordine n dobbiamo fissare il valore iniziale della
funzione e delle prime n − 1 derivate, per un totale di n condizioni. Che questo
funzioni ci è assicurato dal Teorema di Cauchy-Kowaleski: dati t0 ∈ R e n numeri

1 O almeno cos̀ı ci aspettiamo, forse ingenuamente, che faccia; dietro questa affermazioni
ci sono problematiche scientifiche e filosofiche tutt’altro che banali.
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reali y0, y′0, . . . , y
(n−1)
0 ∈ R, esiste ε > 0 tale che il problema{
y(n) = G

(
y(n−1), . . . , y′, y, t

)
,

y(t0) = y0 , y′(t0) = y′0 , . . . , y(n−1)(t0) = y
(n−1)
0 ,

(8.4)

ammette un’unica soluzione y definita in un intervallo (t0−ε, t0 +ε). Un problema
della forma (8.4), cioè equazione differenziale esplicita con condizioni iniziali, è
detto problema di Cauchy. Quindi il teorema di Cauchy-Kowaleski ci assicura
che ogni problema di Cauchy ha una e una sola soluzione definita vicino al punto
iniziale t0.

Osservazione 8.5 A priori (e vedremo un esempio nell’Osservazione 8.13) la so-
luzione del problema di Cauchy potrebbe non essere definita su tutto il dominio
dell’equazione. Una classe di equazioni per cui questo non può accadere è quello
delle equazioni differenziali lineari: infatti si può dimostrare che i problemi di Cau-
chy per equazioni differenziali lineari ammettono sempre un’unica soluzione definita
su tutto il dominio dell’equazione.

Il terzo problema è come si comporta, almeno qualitativamente, una soluzione di
una data equazione differenziale? In altre parole, sapendo solo che y(t) risolve una
data equazione differenziale, e magari conoscendo delle condizioni iniziali, siamo in
grado di farne uno studio qualitativo e tracciarne un grafico approsssimato? Per
rispondere a questa domanda (fondamentale, visto che buona parte delle equazioni
differenziali non hanno soluzioni esprimibili tramite funzioni elementari) sono state
sviluppate montagne di tecniche, sia analitiche sia di calcolo numerico per risolvere
le equazioni differenziali al calcolatore.

Osservazione 8.6 Vale la pena di citare esplicitamente una delle poche classi di
equazioni differenziali che si possono risolvere usando solo funzioni elementari: le
equazioni differenziali ordinarie lineari a coefficienti costanti. Vedremo qualche
esempio nelle prossime sezioni.

Una panoramica anche solo un minimo approfondita della teoria delle equazioni
differenziali, per quanto interessante e importante per qualsiasi scienzato, va al di là
di quanto possiamo fare in queste dispense. Nelle prossime sezioni ci concentremo
soprattutto su alcuni esempi di equazioni differenziali (importanti in diversi contesti
biologici) che potremo risolvere a mano; ma voglio concludere questa sezione con
un’interpretazione geometrica delle equazioni differenziali ordinarie esplicite del
primo ordine che a volte può essere utile per suggerire il comportamento qualitativo
delle soluzioni.

Consideriamo una equazione differenziale della forma

y′ = F (y, t) .

Una funzione y è soluzione di questa equazione se e solo se in ogni punto
(
t, y(t)

)
del grafico la sua retta tangente ha coefficiente angolare y′(t) dato da F (y, t). Se
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interpretiamo t come ascissa e y come ordinata di un piano cartesiano, possiamo
associare a ogni punto del (dominio di F in questo) piano la retta passante per quel
punto con coefficiente angolare F (y, t). Questo campo di rette indica la direzione
che deve seguire il grafico di una soluzione; il grafico di una soluzione dev’essere in
ogni suo punto tangente alla retta passante per quel punto. La distribuzione delle
rette allora spesso può suggerirci l’andamento qualitativo dei grafici delle soluzioni;
vedi la Fig. 8.1.

Figura 8.1 Rappresentazione grafica dell’equazione differenziale y′ = ty.

Osservazione 8.7 Questa interpretazione in un certo senso spiega anche perché fis-
sare la condizione iniziale ci determina un’unica soluzione. Fissare la condizione
iniziale significa scegliere un punto di partenza (t0, y0). Partendo da l̀ı, dobbiamo
muoverci nella direzione indicata da F (y0, t0); una volta partiti, non abbiamo più
scelte, e dobbiamo continuare a muoverci seguendo le direzioni indicate dalla fun-
zione F . Quindi è ragionevole pensare che una volta scelto il punto di partenza
il cammino successivo (la traiettoria) sia univocamente fissato; e, viceversa, che
possiamo scegliere il punto di partenza in modo arbitrario nel dominio di F . In
particolare, per ogni punto del dominio di F passa il grafico di una e una sola
soluzione. Se ci pensi un attimo, questo è esattamente il contenuto del Teorema di
Cauchy-Kowaleski.

8.2 L’equazione y′ = λy + ν.

Invece di affrontare in astratto vari esempi di equazioni differenziali, vogliamo pro-
vare a usare le equazioni differenziali per modellare matematicamente un problema
concreto; in particolare vedremo come la scelta di ipotesi biologiche diverse porta
a equazioni differenziali diverse.
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Il problema concreto che seguiremo (uno fra le migliaia possibili) è quello della
crescita di una popolazione. Indichiamo con N(t) il numero di individui presenti
in una data popolazione al tempo t, e con N0 il numero di individui presenti
all’istante t = 0 in cui abbiamo iniziato le nostre osservazioni; vogliamo vedere
come evolve N(t) a seconda delle ipotesi che facciamo sulla popolazione.

Osservazione 8.8 Strettamente parlando, il numero di individui in una popolazione
è un numero intero, e la popolazione aumenta o diminuisce in intervalli discreti di
tempo. Ma per popolazioni composte da un numero molto grande di individui
(quali, per esempio, le colture di cellule) semplifica molto lo studio approssimare
il numero di individui con una funzione N a valori reali e dipendente in modo
continuo e derivabile dal tempo. Un altro approccio possibile è prendere come N
la funzione che dà la percentuale di popolazione presente al tempo t, calcolata
rispetto alla popolazione iniziale; in questo caso N0 = 100%, e diventa naturale
pensare N(t) come numero reale, e non soltanto intero.

Osservazione 8.9 Quanto diremo si applica anche ad altre situazioni, non solo alla
crescita di una popolazione. Per esempio, molto del materiale di questa sezione si
può adattare allo studio del decadimento radioattivo di un materiale.

Vediamo ora di esplicitare le ipotesi che faremo sulla nostra popolazione. Trat-
tandosi di uno studio esemplificativo, cominciamo con ipotesi che semplifichino il
più possibile la situazione. Supporremo che:
(a) la proporzione di individui fertili nella popolazione sia costante nel tempo;
(b) la fertilità degli individui fertili sia costante nel tempo e indipendente dall’in-

dividuo;
(c) non ci siano morti;
(d) non ci siano fenomeni di immigrazione o emigrazione;
(e) non ci siano fattori esterni che limitino (o stimolino) la crescita.
L’ipotesi (a) ci dice che la percentuale di individui della popolazione che possono
procreare è costante nel tempo. Nel caso di popolazione sessuata, stiamo suppo-
nendo che la percentuale di femmini fertili sia costante nel tempo, che è un’ipotesi
ragionevole su grosse popolazioni in situazioni di stabilità. L’ipotesi (a) è a maggior
ragione verificata in popolazioni di organismi unicellulari in cui tutti gli individui
sono fertili (cioè si possono riprodurre).

L’ipotesi (b) dice che la probabilità che un individuo fertile procrei è la stessa
per tutto il periodo in cui rimane fertile, e non varia da individuo a individuo.
Questa è chiaramente una notevole semplificazione per popolazioni sessuate, ma è
essenzialmente verificata da popolazioni di organismi unicellulari.

L’ipotesi (c) è nel lungo periodo chiaramente irrealistica; ma nel breve periodo
in situazioni stabili può essere verificata (e vedremo poi come rimuoverla).

L’ipotesi (d) può essere verificata o meno a seconda delle situazioni; per colonie
di organismi unicellulari è molto ragionevole.

L’ipotesi (e) dice che la crescita dipende solo dalle dinamiche interne alla popo-
lazione, e non dall’ambiente esterno. In particolare, stiamo supponendo che ci sia
luce, cibo, acqua e spazio sufficiente per un qualsiasi numero di individui. Questa
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è un’ipotesi molto forte, che però è verificata spesso in situazioni sperimentali, o
per certi intervalli del numero di individui della popolazione. Per il momento la
assumiamo, riservandoci più avanti di vedere cosa succede se la rimuoviamo.

Il succo di queste ipotesi è che il numero delle nascite (cioè la variazione N ′

del numero di individui) è, per l’ipotesi (b), proporzionale al numero di individui
fertili presenti in quel momento, che è a sua volta, per l’ipotesi (a), proporzionale al
numero N di individui nella popolazione totale; inoltre, grazie alle ipotesi (c), (d)
ed (e), non ci sono altri meccanismi che causano variazioni nel numero di individui.
Quindi possiamo rappresentare il nostro modello con il problema di Cauchy{

N ′(t) = λN(t) ,
N(0) = N0 ,

(8.5)

dove λ > 0 è una costante positiva che rappresenta la fertilità della popolazione.
Nell’Esempio 8.4 abbiamo visto che la soluzione di questo problema è

N(t) = N0e
λt ; (8.6)

sotto queste ipotesi, la popolazione cresce in maniera esponenziale. La Fig. 8.2 mo-
stra il grafico della soluzione per alcuni valori di N0, assieme alla rappresentazione
grafica dell’equazione discussa al termine della sezione precedente.

Figura 8.2 Crescita esponenziale.

Osservazione 8.10 Anche se da un punto di vista biologico in questo caso hanno
senso solo condizioni iniziali N0 positive, da un punto di vista matematico (e in
altre situazioni biologiche) possono aver senso anche condizioni iniziali N0 negative
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o nulle. Se N0 = 0, l’unica soluzione del problema di Cauchy (8.5) è chiaramente
N(t) ≡ 0 (perché?). Stiamo dicendo che se la popolazione non ha individui al-
l’inizio, continuerà a non avere individui per sempre; la generazione spontanea in
questo modello non è ammessa. Se invece N0 < 0 (8.6) ci dice che N(t) decresce
esponenzialmente verso −∞. Se interpretiamo una popolazione negativa come com-
posta di zombie, allora in questo modello anche la popolazione di zombie esplode
in maniera esponenziale. In particolare, una popolazione di zombie non può mai
diventare composta da individui normali (positivi), e una popolazione normale non
può mai diventare composta da zombie. Pensiero confortante. Tra parentesi, que-
sto modello si adatta molto bene ai dati sperimentali sulla coltura di cellule in
ambienti con ampia disponibilità di cibo e spazio.

Osservazione 8.11 Vale la pena di osservare esplicitamente che benché in questo
contesto siamo interessati solo a cosa succede per t ≥ 0, cioè al futuro delle nostre
popolazioni, la soluzione che abbiamo ottenuto ha senso anche per t < 0; in alcuni
casi questo permette di estrapolare il passato della popolazione — almeno finché
le ipotesi che abbiamo fatto per il modello rimangono valide.

Rimuoviamo ora l’ipotesi (c), e ammettiamo la possibilità di morti. Di nuovo,
vogliamo un modello semplice; supponiamo allora che
(c’) la mortalità sia costante nel tempo e mediamente indipendente dal singolo

individuo.
In altre parole, stiamo supponendo che le morti in ciascun istante siano una percen-
tuale costante del numero di individui presenti nella popolazione in quell’istante.
Di nuovo, questa è un’ipotesi ragionevole per colonie di organismi unicellulari.

Dunque abbiamo solo due fenomeni che possono modificare il numero di indivi-
dui: le nascite (che aumentano il numero) e le morti (che diminuiscono il numero).
Entrambi i fenomeni sono proporzionali al numero totale di individui, e agiscono
indipendentemente l’uno dall’altro, sommando i propri effetti. Quindi possiamo
rappresentare questo modello col seguente problema di Cauchy:{

N ′ = λN − µN ,
N(0) = N0 ,

(8.7)

dove µ > 0 è una costante positiva che rappresenta la mortalità della popolazione
(e λ > 0 continua a rappresentare la fertilità della popolazione).

Siccome λN − µN = (λ− µ)N , la soluzione di questo problema è

N(t) = N0e
(λ−µ)t . (8.8)

Ci sono quindi tre evoluzioni possibili:
– se λ > µ, cioè se la fertilità è maggiore della mortalità (e diremo che siamo

in condizioni di crescita demografica), la popolazione cresce ancora in modo
esponenziale, anche se più lentamente rispetto a prima;

– se λ < µ, cioè se la fertilità è minore della mortalità (e diremo che siamo in
condizioni di decrescita demografica), la popolazione decresce a zero seguendo
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un esponenziale con esponente negativo; in altre parole, la popolazione tende
a estinguersi;

– se λ = µ la popolazione rimane costante, le morti equivalgono esattamente alle
nascite.

La Fig. 8.3 rappresenta le tre possibilità.

λ>µ

λ<µ

λ=µ

Figura 8.3 Evoluzione con natalità e mortalità.

Eliminiamo ora anche l’ipotesi (d), ammettendo fenomeni di immigrazione o
emigrazione. Anche stavolta consideriamo un caso molto semplice, in cui l’immi-
grazione o l’emigrazione è costante nel tempo ed è indipendente dal numero di
individui presenti nella popolazione. Quindi è un terzo meccanismo di modifica
del numero di individui, indipendente dagli altri e il cui effetto si somma agli altri.
Possiamo dunque rappresentare il modello con il problema di Cauchy{

N ′ = (λ− µ)N + ν ,
N(0) = N0 ,

(8.9)

dove ν ∈ R rappresenta il tasso di immigrazione (se ν > 0) o emigrazione (se ν < 0).
Questo problema non è della forma studiata nell’Esempio 8.4, ma non è difficile

ricondurcelo, con un procedimento detto di sostituzione.
Consideriamo l’equazione differenziale

y′ = ay + b (8.10)

con a 6= 0 e b ∈ R. Siccome a non è nullo, possiamo raccogliere a e scri-
vere ay+b = a(y+b/a). Questo suggerisce di introdurre la nuova funzione incognita

z(t) = y(t) +
b

a
;

siccome z′ = y′, la funzione z soddisfa l’equazione differenziale

z′ = az ,
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che è della forma studiata nell’Esempio 8.4. Quindi z(t) = ceat, per cui le soluzioni
di (8.10) sono le funzioni

y(t) = z(t)− b

a
= ceat − b

a

al variare della costante arbitraria c ∈ R. Nota che

y(0) = c− b

a
.

Torniamo al problema (8.9). Il ragionamento appena fatto ci dice che (se λ 6= µ)
la soluzione è

N(t) = ce(λ−µ)t − ν

λ− µ
,

dove c ∈ R è tale che
N0 = N(0) = c− ν

λ− µ
.

Quindi
c = N0 +

ν

λ− µ
,

e possiamo scrivere la soluzione nella forma

N(t) = N0e
(λ−µ)t +

ν

λ− µ
(e(λ−µ)t − 1) . (8.11)

Vediamo di interpretare il risultato che abbiamo ottenuto2. La prima osservazione è
che la presenza di immigrazione/emigrazione ha aggiunto un addendo alla soluzione
precedente, per cui l’andamento della popolazione dipenderà dal bilanciamento di
questi due addendi. Per la precisione:

– se λ > µ e ν > 0 (cioè crescita demografica e immigrazione) entrambi gli
addendi sono positivi e determinano una crescita esponenziale. In particolare,
per t abbastanza grande e(λ−µ)t è molto maggiore di 1, per cui possiamo
trascurare il −1 in (8.11) ottenendo

N(t) ≈
(

N0 +
ν

λ− µ

)
e(λ−µ)t ,

e l’effetto dell’immigrazione è essenzialmente equivalente a un aumento della
popolazione iniziale.

– se λ < µ e ν > 0 (cioè decrescita demografica e immigrazione) entrambi gli
addendi sono ancora positivi (perché λ − µ < 0 e e(λ−µ)t − 1 < 0 per t > 0),

2 Come forse ormai avrai capito, la fase di interpretazione del risultato matematico è uno
dei passaggi cruciali dell’uso di qualsiasi modello matematico di un fenomeno scientifico.
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ma gli esponenziali decrescono molto velocemente verso zero. In particolare,
abbiamo

N(t) =
ν

µ− λ
+

(
N0 −

ν

µ− λ

)
e−(µ−λ)t ' ν

µ− λ
,

per cui l’effetto dell’immigrazione è far tendere la popolazione velocemente
verso il valore limite ν/(µ− λ) > 0.

– se λ > µ e ν < 0 (cioè crescita demografica ed emigrazione) il primo addendo
è positivo ma il secondo negativo; cosa succede dipende dal confronto fra N0

e |ν|/(λ− µ). Infatti, possiamo scrivere

N(t) =
(

N0 −
|ν|

λ− µ

)
e(λ−µ)t +

|ν|
λ− µ

.

quindi
• se N0 > |ν|/(λ− µ) la popolazione cresce esponenzialmente;
• se N0 = |ν|/(λ−µ) la popolazione rimane stabile sul valore iniziale N0; ma
• se N0 < |ν|/(λ−µ) il primo addendo è negativo, e provoca una diminuzione

esponenziale della popolazione. In particolare, la popolazione si estingue,
cioè N(t0) = 0, per

t0 =
1

λ− µ
log

( |ν|
|ν| − (λ− µ)N0

)
,

e diventa negativa per t > t0. Quindi elevata emigrazione trasforma la
popolazione in zombie in un tempo finito anche in presenza di crescita de-
mografica; che ci sia una morale da qualche parte?

– se λ < µ e ν < 0 (cioè decrescita demografica ed emigrazione) il primo ad-
dendo è positivo e il secondo negativo; inoltre, gli esponenziali hanno esponente
negativo. Quindi

N(t) = − |ν|
µ− λ

+
(

N0 +
|ν|

µ− λ

)
e−(µ−λ)t ' − |ν|

µ− λ
,

per cui l’effetto dell’emigrazione è far tendere la popolazione velocemente verso
il valore limite3 −|ν|/(µ− λ) < 0.

La Fig. 8.4 mostra il grafico dei vari casi possibili. Lascio a te la discussione di
cosa accade quando N0 ≤ 0, e dell’equazione differenziale che si ottiene se λ = µ.

3 In realtà, la conclusione da trarre è che il nostro modello in presenza di emigrazione non
può essere valido per tutti i tempi. In effetti, se ci pensi un attimo, il tasso di emigrazione
dev’essere sempre maggiore della popolazione presente; quindi se la popolazione scende
al di sotto del tasso di emigrazione, il modello non può più essere valido.
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λ<µ
ν>0

λ>µ
ν>0

λ>µ
ν<0

N0>|ν|/(λ–µ)λ<µ
ν<0

λ>µ
ν<0

N0<|ν|/(λ–µ)

λ>µ
ν<0

N0=|ν|/(λ–µ)

Figura 8.4 Emigrazione e immigrazione.

8.3 Separazione delle variabili

Vediamo ora come possiamo modificare l’ipotesi (e), permettendo che l’ambiente
esterno influisca sulla natalità. Per l’esattezza, supporremo che l’ambiente possa
sostenere agevolmente solo popolazioni di dimensione al di sotto di una certa so-
glia β > 0; popolazioni più grandi subiranno una decrescita demografica, a causa
(per esempio) di mancanza di cibo, o di sovraffollamento, mentre popolazioni più
piccole potranno ancora crescere. Infine, popolazioni molto piccole non sentono par-
ticolarmente la presenza della soglia, per cui crescono approssimativamente come
se la soglia non ci fosse.

Possiamo riassumere queste richieste dicendo che nel nostro modello:

– se N(t) > β allora N ′(t) < 0;
– se 0 < N(t) < β allora N ′(t) > 0;
– se 0 < N(t) è molto piccolo rispetto a β allora N ′(t) è approssimativamente

proporzionale a N(t).

Vogliamo costruire una equazione differenziale ordinaria più semplice possibile che
riproduca questo comportamento. Prima di tutto, per renderla più semplice pos-
sibile la vogliamo esplicita e autonoma; inoltre, non c’è motivo per coinvolgere
derivate di ordine superiore, per cui la cerchiamo del primo ordine. Quindi par-
tiamo da una equazione del tipo

N ′ = F (N) ,

e dobbiamo scegliere la funzione F più semplice possibile in modo da soddisfare le
nostre richieste.
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Le nostre richieste si possono tradurre dicendo che F (x) dev’essere negativa se
x > β, positiva se 0 < x < β, e F (x) dev’essere approssimativamente proporzionale
a x per x > 0 piccolo.

Siccome F cambia segno, non può essere costante. Se F fosse un polinomio di
primo grado, dovendo essere negativa dopo β e positiva prima, dovrebbe (perché?)
annullarsi in β e quindi essere della forma F (x) = a(β − x) per qualche a > 0; ma
allora per x piccolo varrebbe circa aβ, e non sarebbe proporzionale a x.

Dunque F non può essere un polinomio di primo grado. Le funzioni non lineari
più semplici sono quelle quadratiche; vediamo se troviamo una funzione quadratica
che soddisfa le richieste. Abbiamo già notato che F deve annullarsi in β; inoltre,
se per x piccolo F è approssimativamente proporzionale a x, si annullerà anche
in 0. Un polinomio quadratico che si annulla in β e in 0 è necessariamente della
forma F (x) = kx(β − x), con k ∈ R. Inoltre, per soddisfare le condizioni sul segno
dobbiamo richiedere che k > 0; infine, se x > 0 è piccolo rispetto a β abbiamo
F (x) ≈ kβx, per cui anche l’ultima condizione è soddisfatta.

Riassumendo, il modello più semplice (ma sicuramente non l’unico!) di crescita
di popolazione in presenza di una soglia di sostentamento è il problema di Cauchy{

N ′ = kN(β −N) ,
N(0) = N0 .

(8.12)

L’equazione differenziale che abbiamo trovato è un’equazione non lineare; in par-
ticolare, è di un tipo che non abbiamo ancora incontrato. Per risolverla dobbiamo
introdurre una nuova tecnica, detta di separazione delle variabili.

Per capire come funziona questa tecnica, consideriamo come esempio la solita
equazione

y′ = λy ;

vogliamo risolverla senza sapere a priori che le soluzioni sono esponenziali. Sup-
poniamo che una soluzione y non si annulli mai (ipotesi che dovremo verificare a
posteriori). Allora possiamo scrivere

y′

y
= λ .

Il membro sinistro è la derivata del logaritmo di |y|; quindi integrando entrambi i
membri otteniamo

log |y| =
∫

y′

y
dt =

∫
λ dt = λt + C .

Infine prendendo l’esponenziale di entrambi i membri ricaviamo

|y(t)| = eCeλt =⇒ y(t) = ceλt ,

dove c = ±eC e il segno è il segno di y. Quindi, se la nostra equazione ha una
soluzione che non si annulla mai, dev’essere della forma che abbiamo trovato; sic-
come la y(t) che abbiamo trovato effettivamente non si annulla mai, l’ipotesi fatta
all’inizio è confermata, e il procedimento che abbiamo seguito è corretto.
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Cosa abbiamo fatto? Abbiamo operato tre passaggi. Prima di tutto, abbiamo
spostato nel membro sinistro tutte le y (assumendo di poter effettuare la divisione);
poi abbiamo integrato entrambi i membri rispetto a t; infine, abbiamo applicato la
funzione inversa del membro sinistro (ammesso che questa funzione si possa inver-
tire). Questa procedura si chiama appunto separazione delle variabili, in quanto
abbiamo “separato” nei due membri la variabile y dalla variabile t.

In generale, si applica in questo modo. Supponiamo di avere un’equazione
differenziale della forma

y′(t) = a(t)f
(
y(t)

)
, (8.13)

per opportune funzioni a ed f . Supponiamo (ipotesi da verificare a posteriori) di
avere una soluzione tale che f

(
y(t)

)
non si annulli mai. Allora possiamo scrivere

1
f
(
y(t)

) dy

dt
(t) = a(t) .

Integriamo entrambi i membri rispetto a t; otteniamo∫
1

f
(
y(t)

) dy

dt
(t) dt =

∫
a(t) dt .

Ora, il metodo di integrazione per sostituzione ci dice che se poniamo

F (y) =
∫ y

y0

1
f(s)

ds

allora ∫
1

f
(
y(t)

) dy

dt
(t) dt = F

(
y(t)

)
+ C ;

quindi

F
(
y(t)

)
=

∫
a(t) dt + C .

Se la funzione F è invertibile, possiamo applicare F−1 a entrambi i membri otte-
nendo la soluzione

y(t) = F−1

(∫
a(t) dt + C

)
.

Se la y cos̀ı ottenuta effettivamente è tale che f
(
y(t)

)
non si annulla mai, allora

abbiamo trovato delle soluzioni dell’equazione (8.13).
Ti sarà chiaro che questo metodo non si può applicare spesso per ottenere solu-

zioni esplicite. Come minimo, bisogna essere in grado di integrare esplicitamente
la funzione a, e di invertire esplicitamente la funzione F ; poi, bisogna verificare
che f

(
y(t)

)
non si annulli. Ma a volte funziona, ed è quello che ci serve per risol-

vere (8.12).
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Osservazione 8.12 Una volta capito come funziona, i passaggi precedenti sono
spesso abbreviati scrivendo semplicemente∫

1
f(y)

dy =
∫

a(t) dt + C .

Proviamo ad applicare il metodo di separazione delle variabili all’equazione, di
cui (8.12) è un caso particolare,

y′ = ay2 + by + c , (8.14)

con a 6= 0, b, c ∈ R. Supponendo che ay2 + by + c non si annulli mai scriviamo

y′

ay2 + by + c
= 1

e quindi, integrando, ∫
1

ay2 + by + c
dy =

∫
dt = t + C .

Dobbiamo quindi calcolare l’integrale indefinito di (ay2 +by+c)−1. Per semplicità,
supponiamo che il polinomio ay2 + bx + c abbia due radici reali distinte, in modo
da poter scrivere

ay2 + by + c = a(y − y0)(y − y1) ,

dove y0 6= y1 sono le due radici, ordinate in modo che a(y1 − y0) > 0. Questo ci
basterà per risolvere (8.12); gli altri casi sono discussi nella Curiosità 8.2. Nota che
ay(t)2 + by(t)+ c = 0 se e solo se y(t) = y0 o y(t) = y1; quindi a posteriori dovremo
verificare che la soluzione y trovata non assuma mai i valori y0 e y1.

Il trucco che ci permette di calcolare l’integrale indefinito è l’identità

1
ay2 + by + c

=
1

a(y − y0)(y − y1)
=

1
a(y1 − y0)

[
1

y − y1
− 1

y − y0

]
.

Allora ∫
1

ay2 + by + c
dy =

1
a(y1 − y0)

[∫
1

y − y1
dy −

∫
1

y − y0
dy

]
=

1
a(y1 − y0)

[
log |y − y1| − log |y − y0|

]
+ C

=
1

a(y1 − y0)
log

∣∣∣∣y − y1

y − y0

∣∣∣∣ + C .

Dunque abbiamo
1

a(y1 − y0)
log

∣∣∣∣y(t)− y1

y(t)− y0

∣∣∣∣ = t + C ,
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da cui segue
y(t)− y1

y(t)− y0
= −Dea(y1−y0)t , (8.15)

dove D = ∓ea(y1−y0)C , e il segno è il segno di
(
y(t) − y1

)/(
y(t) − y0

)
; nota che

questo quoziente è sempre definito e non può mai annullarsi (in quanto y(t) 6= y0, y1

sempre), per cui ha segno costante su ogni intervallo.
Ricavando y(t) da (8.15) e manipolando un poco il risultato troviamo

y(t) =
y1 + Dy0e

a(y1−y0)t

1 + Dea(y1−y0)t
= y1 +

(y0 − y1)Dea(y1−y0)t

1 + Dea(y1−y0)t

e infine

y(t) = y1 +
y0 − y1

1 + D−1e−a(y1−y0)t
, (8.16)

che è una funzione logistica (almeno quando D > 0 e y0 > y1). Siccome y(t) è
sempre diversa da y0 e y1 (verifica), abbiamo effettivamente trovato una soluzione
della nostra equazione differenziale.

Osservazione 8.13 Nota che se D < 0 può succedere che il denominatore in (8.16)
si annulli; quindi può capitare che la soluzione non sia definita su tutto l’asse reale.

Concludiamo il discorso generale segnalando che

y(0) = y1 +
y0 − y1

1 + D−1
, (8.17)

e che
a(y1 − y0) =

√
b2 − 4ac ,

come si vede subito dalla formula di risoluzione delle equazioni di secondo grado.

Curiosità 8.2 Nella Curiosità 6.8 abbiamo visto come integrare tutte le funzioni razionali;
vediamo come applicare quella tecnica per risolvere (8.14) quando il polinomio ay2 + by + c
non ha due radici reali distinte.

Supponiamo che abbia una sola radice reale y0 ∈ R, in modo che ay2 +by+c = a(y−y0)2.
Allora ∫

1

ay2 + by + c
dy =

1

a

∫
1

(y − y0)2
dy = − 1

a(y − y0)
+ C .

Quindi

1

a
(
y0 − y(t)

) = t + C =⇒ y(t) = y0 −
1

at + C
. (8.18)

Supponiamo infine che ay2 + by + c non abbia radici reali; in particolare possiamo scrivere

ay2 + by + c = a(u2 + ρ2) ,
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dove u = y + b/2a e ρ = 1
2a

√
4ac− b2. Allora∫

1

ay2 + by + c
dy =

1

a

∫
1

u2 + ρ2
du =

1

aρ
arctan(u/ρ) + C

=
2√

4ac− b2
arctan

(
2ay + b√
4ac− b2

)
+ C .

Eguagliando questo risultato a t + C otteniamo

2ay(t) + b√
4ac− b2

= tan

(√
4ac− b2

2
t + C

)
e quindi

y(t) =

√
4ac− b2

2a
tan

(√
4ac− b2

2
t + C

)
− b

2a
. (8.19)

Nota che sia (8.18) sia (8.19) non sono definite per tutti i valori di t; inoltre, le soluzioni
cos̀ı ottenute non forniscono tutte le soluzioni di (8.14). Per esempio, nel primo caso anche
y(t) ≡ y0 è una soluzione, l’unica che soddisfa la condizione iniziale y(0) = y0.

Torniamo ora a (8.12). Confrontando con (8.14), vediamo che

a = −k , b = kβ , c = 0 , y0 = β , y1 = 0 , a(y1 − y0) = kβ ;

inoltre (8.17) diventa

N0 =
β

1 + D−1
=⇒ D =

N0

β −N0
.

Quindi la soluzione che abbiamo trovato è

N(t) =
β

1 +
(

β
N0
− 1

)
e−kβt

. (8.20)

Il comportamento di questa funzione dipende dal segno di β
N0
−1; discutiamo i vari

casi.
– 0 < N0 < β, cioè partiamo sotto la soglia. In questo caso β

N0
− 1 > 0, per cui

(8.20) è effettivamente una funzione logistica. Dunque per t > 0 la popolazione
aumenta tendendo al valore di soglia senza mai raggiungerlo.

– β < N0, cioè partiamo sopra la soglia. In questo caso β
N0
−1 < 0, per cui (8.20)

non è una funzione logistica. Più precisamente, per t > 0 il denominatore di
(8.20) è positivo ma minore di 1, e tende a 1 per t→ +∞, per cui N(t) > β per
ogni t > 0 e N(t)→ β per t→ +∞. In altre parole, se partiamo sopra la soglia
la popolazione decresce tendendo al valore di soglia senza mai raggiungerlo.

– N0 = β. Strettamente parlando, il procedimento che ci ha portato alla (8.20)
in questo caso non si applica, in quanto β è una delle radici del polino-
mio ky(β − y). Però (8.20) in questo caso diventa N(t) ≡ β, che è effetti-
vamente la soluzione del problema di Cauchy (8.12). Quindi se partiamo sul
valore di soglia la popolazione rimane costante.
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– N0 = 0. In questo caso (8.20) non ha proprio senso; però si vede subito
(controlla) che N(t) ≡ 0 risolve (8.12), per cui anche in questo modello non
c’è generazione spontanea.

Osservazione 8.14 Può essere interessante studiare anche cosa succede per t < 0,
in modo da estrapolare informazioni sul passato della nostra popolazione. Se
0 < N0 < β, (8.20) è una funzione logistica, per cui sappiamo perfettamente
come si comporta anche per t < 0. Se N0 > β, invece, abbiamo una sorpresa: il
denominatore di (8.20) si annulla in

t0 =
1

kβ
log

(
1− β

N0

)
< 0 .

Quindi la popolazione può esistere solo per t > t0, e N(t) → +∞ per t → t+0 .
Per t < t0, la funzione N(t) è negativa, per cui abbiamo una popolazione di zombie,
che esplode per t→ t−0 , mentre N(t)→ 0− per t→ −∞.

Osservazione 8.15 Anche se non ha un’interpretazione biologica immediata, ma-
tematicamente è interessante studiare anche il caso N0 < 0. Siccome β > 0 per
ipotesi, abbiamo β

N0
− 1 < 0 sempre. Inoltre il denominatore si annulla per

t0 =
1

kβ
log

(
1 +

β

|N0|

)
> 0 ,

è negativo per t < t0 ed è positivo per t > t0. Quindi la nostra popolazione di
zombie esplode per t→ t−0 , per poi risorgere quando t > t0 come una popolazione
normale che tende al valore di soglia β per t→ +∞.

La Fig. 8.5 riassume la situazione.

Esercizio 8.1 Studia cosa succede se in questo modello si aggiunge l’immigra-
zione/emigrazione. In altre parole, studia il problema di Cauchy{

N ′ = kN(β −N) + ν ,
N(0) = N0 ,

al variare dei parametri k, β > 0 e N0, ν ∈ R. Avrai bisogno dei risultati della
Curiosità 8.2.

8.4 Sistemi lineari di equazioni

In questa sezione cambiamo il nostro modello introducendo una seconda popo-
lazione. Abbiamo due specie che coabitano nello stesso habitat, e indichiamo
con N1(t) il numero di individui della prima specie al tempo t, e con N2(t) il
numero di individui della seconda specie al tempo t. Ciascuna specie, se da sola, si
evolverebbe secondo il modello precedente; vogliamo vedere se riusciamo a ripro-
durre l’interazione fra le due specie.
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N0<0

N0<0

N0>β

N0>β

N0=β

0<N0<β

Figura 8.5 Popolazione con soglia.

Come al solito, faremo ipotesi molto semplificatrici. Supponiamo prima di tutto
di non avere fenomeni di immigrazione/emigrazione, né fenomeni di soglia; quindi
ciascuna specie per conto suo si evolverebbe seguendo l’equazione N ′i = λiNi per
i = 1, 2, con λi ∈ R positivo o negativo a seconda della situazione (crescita o
decrescita demografica). Supponiamo poi che la presenza di una popolazione causi
una variazione nel numero di individui dell’altra popolazione rappresentabile con
un’equazione dello stesso tipo. Il nostro modello quindi è{

N ′1 = λ1N1 + µ1N2 ,
N ′2 = µ2N1 + λ2N2 ,

(8.21)

dove µ1, µ2 ∈ R sono i tassi di correlazione fra le due popolazioni. Il segno di µ1

e µ2 rappresenta il tipo interazione fra le due popolazioni. Per esempio, se sono
uno positivo e l’altro negativo potremmo essere in una situazione di tipo predatore-
preda: la popolazione 1 si ciba della popolazione 2, per cui la presenza di individui
della popolazione 2 fornisce cibo e quindi causa un incremento della popolazione 1
(cioè µ1 > 0), mentre la presenza di individui della popolazione 1 causa morti e
quindi un decremento della popolazione 2 (cioè µ2 < 0).

Se invece entrambi i tassi di correlazione sono negativi potremmo essere in una
situazione di tipo competizione: entrambe le popolazioni competono per le stesse
risorse (cibo, spazio, eccetera) per cui la presenza di individui di una popolazione
causa una diminuzione nel numero di individui dell’altra (cioè µ1, µ2 < 0).

Infine, se entrambi i tassi di correlazione sono positivi potremmo essere in una
situazione di tipo simbiotico: la presenza di individui di una popolazione fornisce
qualcosa di utile per la sopravvivenza dell’altra, e quindi ne aumenta il numero di
individui (cioè µ1, µ2 > 0).

Il sistema (8.21) è un esempio di sistema di equazioni differenziali ordinarie
lineari a coefficienti costanti omogenee. Abbiamo due equazioni e due funzioni in-
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cognite, N1 ed N2, dipendenti dalla stessa variabile t; vogliamo vedere se riusciamo
a trovare due funzioni che soddisfano entrambe le equazioni contemporaneamente,
magari richiedendo anche che soddisfino opportune condizioni iniziali

N1(t0) = N0
1 , N2(t0) = N0

2 .

In un certo senso, questo tipo di sistemi di equazioni differenziali è il più bello di
tutti: infatti, si può sempre risolvere usando funzioni elementari. Per l’esattezza,
vale il seguente risultato: per ogni n ∈ N, a11, . . . , ann ∈ R, t0 ∈ R e y0

1 , . . . , y0
n ∈ R

il problema di Cauchy 
y′1 = a11y1 + · · ·+ a1nyn ,

...
y′n = an1y1 + · · ·+ annyn ,

y1(t0) = y0
1 , . . . , yn(t0) = y0

n ,

(8.22)

ammette un’unica soluzione. Inoltre, le funzioni soluzione y1, . . . , yn sono definite
su tutto l’asse reale, e si ottengono come somma e prodotto di funzioni della forma

aekt , b cos(ωt) , c sin(ωt) , dtq ,

con a, b, c, d, k, ω ∈ R e q ∈ N.
Vediamo cosa succede per il nostro sistema (8.21). Usando le notazioni del

risultato appena citato, vogliamo studiare il sistema{
y′1 = a11y1 + a12y2 ,
y′2 = a21y1 + a22y2 .

(8.23)

In assenza di idee brillanti (il tuo assistente è ancora nel deserto) affrontiamo il
problema a tentativi, provando a vedere se per caso il sistema ha soluzioni della
forma

y1(t) = A1e
kt , y2(t) = A2e

kt , (8.24)

per opportuni A1, A2, k ∈ R; del resto, abbiamo visto che questa è la forma delle
soluzioni se c’è una sola equazione.

Derivando (8.24) troviamo

y′1(t) = kA1e
kt , y′2(t) = kA2e

kt ;

quindi le y1, y2 date da (8.24) sono una soluzione di (8.23) se e solo se{
kA1e

kt = a11A1e
kt + a12A2e

kt ,
kA2e

kt = a21A1e
kt + a22A2e

kt ,

ovvero, dividendo per ekt (che non si annulla mai) se e solo se{
kA1 = a11A1 + a12A2 ,
kA2 = a21A1 + a22A2 ,

⇐⇒
{

(a11 − k)A1 + a12A2 = 0 ,
a21A1 + (a22 − k)A2 = 0 .

(8.25)
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In quest’ultimo sistema lineare le incognite sono A1 e A2, mentre a11, a12, a21 e a22

sono coefficienti noti; infine, k è un parametro che vogliamo scegliere in modo che
il sistema abbia soluzioni non banali. Infatti il sistema (8.25) ammette sempre la
soluzione ovvia A1 = A2 = 0, che corrisponde a prendere y1, y2 ≡ 0. Questa è
certamente una soluzione del sistema (8.23), ma non molto interessante; ci dice solo
che se partiamo senza popolazioni rimaniamo senza popolazioni. Il nostro obiettivo
è quindi trovare, se esistono, dei valori di k ∈ R per cui il sistema (8.25) abbia una
soluzione non banale, cioè una soluzione (A1, A2) 6= (0, 0).

Supponiamo per un istante che a12 6= 0; vedremo fra poco che il risultato
finale varrà anche se a12 = 0. Allora possiamo ricavare A2 dalla prima equazione;
inserendola nella seconda troviamo

A2 =
k − a11

a12
A1 ,[

a21 −
(k − a22)(k − a11)

a12

]
A1 = 0 .

(8.26)

Se il coefficiente di A1 nella seconda equazione è diverso da zero, ricaviamo A1 = 0
e quindi, grazie alla prima equazione, A2 = 0. Dunque una soluzione non banale
può esistere se e solo se il coefficiente di A1 è diverso da zero, cioè (moltiplicando
per a12 e riordinando i termini) se e solo se k è una radice della seguente equazione:

k2 − (a11 + a22)k + (a11a22 − a12a21) = 0 ; (8.27)

questa equazione è detta equazione caratteristica del sistema (8.23); le (eventuali)
radici di questa equazione sono dette radici caratteristiche di (8.23).

Osservazione 8.16 Se a12 = 0 l’equazione caratteristica si riduce a

(k − a11)(k − a22) = 0 ,

cioè a k = a11 o k = a22. Controlla allora che il sistema (8.25) con a12 = 0 ammette
una soluzione non banale se e solo se k = a11 o k = a22.

L’equazione caratteristica, come ogni equazione di secondo grado che si rispetti,
può avere due radici reali distinte, una sola radice reale, oppure nessuna radice reale,
a seconda del valore del discriminante

∆ = (a11 + a22)2 − 4(a11a22 − a12a21) = (a11 − a22)2 + 4a12a21 .

Supponiamo che l’equazione caratteristica ammetta almeno una radice reale k1 ∈ R
(discuteremo un poco nella Curiosità 8.3 cosa fare quando questo non accade).
Allora il discorso che abbiamo fatto ci dice che esistono A1 e A2 non entrambi nulli
che risolvono il sistema (8.25) con k = k1; quindi con questi valori di A1 e A2 e
con k = k1 le (8.24) sono una soluzione del sistema di equazioni differenziali (8.23).
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Inoltre, esistono infinite coppie (A1, A2) che risolvono (8.25), e si possono tutte
scrivere nella forma

(A1, A2) = (αA0
1, αA0

2)

con A0
1 = 1 o A0

2 = 1 (o entrambi), e α ∈ R è un qualsiasi numero reale. Se a12 6= 0
questo è una conseguenza immediata (perché?) di (8.26); se a12 = 0 te lo lascio
per esercizio.

Esempio 8.6 Consideriamo il sistema{
y′1 = 2y1 − 3y2 ,
y′2 = −y1 + 2y2 ,

(8.28)

corrispondente al caso di due popolazioni in competizione, con

a11 = λ1 = 2 , a22 = λ2 = 2 , a12 = µ1 = −3 , a21 = µ2 = −1 .

In questo caso il discriminante è ∆ = 12 > 0; quindi l’equazione caratteristica ha
due radici reali distinte

k1 = 2 +
√

3 , k2 = 2−
√

3 .

Scegliendo k = k1 il sistema (8.25) diventa{
−
√

3A1 − 3A2 = 0 ,
−A1 −

√
3A2 = 0 ,

le cui soluzioni sono chiaramente tutte le coppie della forma

(A1, A2) = (−
√

3α, α) .

Quindi ogni coppia di funzioni

y1(t) = −
√

3αe(2+
√

3)t , y2(t) = αe(2+
√

3)t

risolve (8.28).
Scegliendo invece k = k2, il sistema (8.25) diventa{√

3A1 − 3A2 = 0 ,
−A1 +

√
3A2 = 0 ,

le cui soluzioni sono chiaramente tutte le coppie della forma

(A1, A2) = (
√

3β, β) .

Quindi anche ogni coppia di funzioni

y1(t) =
√

3βe(2−
√

3)t , y2(t) = βe(2−
√

3)t



8.4 Sistemi lineari di equazioni 361

risolve (8.28).
Ma non è finita qui. Se (y1, y2) e (ỹ1, ỹ2) sono due coppie di soluzioni di (8.28),

allora puoi verificare subito che anche (y1 + ỹ1, y2 + ỹ2) è una soluzione di (8.28).
Quindi ogni coppia di funzioni della forma

y1(t) = −
√

3αe(2+
√

3)t +
√

3βe(2−
√

3)t , y2(t) = αe(2+
√

3)t + βe(2−
√

3)t ,

risolve (8.28), quali che siano α, β ∈ R. Vedremo fra poco che in questo modo
abbiamo ottenuto tutte le soluzioni di (8.28).

Supponiamo ora che l’equazione caratteristica del sistema (8.23) abbia due ra-
dici reali distinte, k1 e k2. Allora il ragionamento precedente ci fornisce due coppie
di soluzioni: la prima, della forma(

αA0
1e

k1t, αA0
2e

k1t
)

,

corrispondente a k = k1; e la seconda, della forma(
βB0

1ek2t, βB0
2ek2t

)
,

corrispondente a k = k2. Come osservato nel precedente esempio, la somma di
soluzioni di (8.23) è ancora una soluzione; quindi tutte le coppie di funzioni della
forma (

y1(t), y2(t)
)

= (αA0
1e

k1t + βB0
1ek2t, αA0

2e
k1t + βB0

2ek2t
)

(8.29)

sono soluzioni di (8.23), quali che siano α, β ∈ R.
Con questa informazione siamo ora in grado di risolvere il problema di Cauchy y′1 = a11y1 + a12y2 ,

y′2 = a21y1 + a22y2 ,
y1(t0) = y0

1 , y2(t0) = y0
2 .

(8.30)

Infatti, ci basta verificare se esiste una coppia di funzioni della forma (8.29) che
soddisfa le condizioni iniziali di (8.30). Mettendo t = t0 in (8.29) vediamo che il
nostro problema si trasforma nel trovare α e β tali che{

A0
1e

k1t0α + B0
1ek2t0β = y0

1 ,
A0

2e
k1t0α + B0

2ek2t0β = y0
2 .

(8.31)

Tecniche di Algebra Lineare che non abbiamo tempo di richiamare qui ci dicono
che (8.31) ammette sempre un’unica soluzione (α0, β0); quindi(

y1(t), y2(t)
)

= (α0A
0
1e

k1t + β0B
0
1ek2t, αA0

2e
k1t + βB0

2ek2t
)

risolve il problema di Cauchy (8.30). Inoltre, siccome il problema di Cauchy (8.22)
ammette un’unica soluzione, e ogni soluzione di (8.23) soddisfa una qualche con-
dizione iniziale, le coppie di funzioni della forma (8.29) forniscono tutte le possibili
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soluzioni di (8.30), in quanto scegliendo opportunamente α e β possiamo soddisfare
qualsiasi condizione iniziale.

Esempio 8.7 Vogliamo studiare due popolazioni in competizione rappresentate
dal problema di Cauchy  N ′1 = 2N1 − 3N2 ,

N ′2 = −N1 + 2N2 ,
N1(0) = 600 , N2(0) = 300 .

Nel precedente esempio abbiamo visto che le soluzioni devono essere della forma

N1(t) = −
√

3αe(2+
√

3)t +
√

3βe(2−
√

3)t , N2(t) = αe(2+
√

3)t + βe(2−
√

3)t ;

dobbiamo determinare α e β in modo da soddisfare anche le condizioni iniziali. Per
far ciò, α e β devono risolvere il sistema lineare{

N1(0) = −
√

3αe0 +
√

3βe0 = −
√

3α +
√

3β = 600 ,
N2(0) = αe0 + βe0 = α + β = 300 .

Ricavando β dalla seconda equazione e inserendola nella prima otteniamo{
−
√

3α +
√

3(300− α) = 600 ,
β = 300− α ,

=⇒
{

α = −50(2
√

3− 3) ,
β = 50(2

√
3 + 3) .

Quindi la soluzione cercata è{
N1(t) = 150(2−

√
3)e(2+

√
3)t + 150(2 +

√
3)e(2−

√
3)t ,

N2(t) = −50(2
√

3− 3)e(2+
√

3)t + 50(2
√

3 + 3)e(2−
√

3)t .

Raccogliendo e(2+
√

3)t otteniamo{
N1(t) = e(2+

√
3)t

[
300− 150

√
3 + (300 + 150

√
3)e−2

√
3t

]
,

N2(t) = e(2+
√

3)t
[
150− 100

√
3 + (150 + 100

√
3)e−2

√
3t

]
.

Quindi per t→ +∞ abbiamo

N1(t) ≈ (300− 150
√

3)e(2+
√

3)t → +∞ , N2(t) ≈ (150− 100
√

3)e(2+
√

3)t → −∞ .

In altre parole, nonostante la competizione sia più dura per la prima popolazione
rispetto alla seconda (in quanto µ1 < µ2 < 0), il vantaggio iniziale (N1(0) > N2(0))
è sufficiente a compensare la competizione, e permette alla prima popolazione di
prevalere facendo estinguere la seconda (e anzi trasformandola in una popolazione
di zombie). La Fig. 8.6 contiene i grafici di N1 e N2.
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Figura 8.6 Evoluzione di due popolazioni in competizione.

Riassumendo, la procedura per risolvere il problema di Cauchy (8.30) è la se-
guente:
– si determinano le radici dell’equazione caratteristica (8.27);
– supponendo che (8.27) abbia due radici reali k1, k2 distinte, si trovano le

soluzioni del sistema lineare (8.25) per k = k1, e per k = k2, dipendenti
rispettivamente da un coefficiente α e da un coefficiente β;

– si determinano α e β risolvendo il sistema lineare (8.31).

Curiosità 8.3 Per presentare la teoria generale dei problemi di Cauchy del tipo (8.30) ci servi-
rebbero tecniche di Algebra Lineare che non abbiamo. Mi limito a dire che quando l’equazione
caratteristica ha un’unica radice reale k0, oltre a soluzioni della forma (8.24) il sistema am-
mette anche soluzioni della forma

y1(t) = (α1 + α2t)e
k0t , y2(t) = (β1 + β2t)e

k0t ,

per opportuni α1, α2, β1, β2 ∈ R.
Quando invece l’equazione caratteristica non ha radici reali, il sistema ammette soluzioni

della forma

y1(t) = α1e
kt cos(ωt) + α2e

kt sin(ωt) , y2(t) = β1e
kt cos(ωt) + β2e

kt sin(ωt) ,

per opportuni α1, α2, β1, β2, k, ω ∈ R.

8.5 L’equazione y′′ = −ky.

In questa nostra breve carrellata sulle equazioni differenziali non posso esimermi
dal citare l’equazione

y′′ = −ω2y . (8.32)

Esempio 8.8 La fisica ci dice che la forza esercitata su un oggetto di massa m
attaccato a una molla allungata di una lunghezza y rispetto alla posizione di riposo
è

F = −ky
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per un’opportuna costante positiva k. Ricordando che F = my′′ otteniamo (8.32),
con ω2 = k/m > 0.

Si vede subito (controlla) che le funzioni della forma

y(t) = A cos(ωt) + B sin(ωt) (8.33)

sono tutte soluzioni di (8.32), quali che siano A, B ∈ R. Inoltre, un facile conto
(verifica) mostra che prendendo

A = y0 cos(ωt0)− y1 sin(ωt0) , B = y0 sin(ωt0) + y1 cos(ωt0)

allora la funzione data da (8.33) risolve il problema di Cauchy{
y′′ = −ω2y ,
y(t0) = y0 , y′(t0) = y1 .

(8.34)

In particolare, le soluzioni di (8.34) sono sempre periodiche di periodo 2π/ω.
Vale la pena ricordare anche un collegamento con gli argomenti della sezione

precedente. Infatti, introducendo le nuove funzioni

y1(t) = y(t) e y2(t) = y′(t) ,

il problema di Cauchy (8.34) si trasforma nel seguente problema di Cauchy per un
sistema di equazioni differenziali lineari del prim’ordine: y′1 = y2 ,

y′2 = −ω2y1 ,
y1(t0) = y0 , y2(t0) = y1 .

(8.35)

Questo problema è esattamente della forma (8.30), con

a11 = 0 , a12 = 1 , a21 = −ω2 , a22 = 0 , y0
1 = y0 , y0

2 = y1 .

In particolare il discriminante vale

∆ = −ω2 < 0 ,

per cui l’equazione caratteristica non ha radici reali. Nonostante ciò, il problema
di Cauchy (8.35), essendo equivalente a (8.34), ammette soluzioni della forma

y1(t) = A cos(ωt) + B sin(ωt) , y2(t) = −Aω sin(ωt) + Bω cos(ωt) ,

per opportuni A, B ∈ R.

Curiosità 8.4 L’equazione (8.32) assomiglia molto all’equazione

y′′ = k2y ,
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che invece ha soluzioni della forma

y(t) = Aekt + Be−kt .

Questo potrebbe far sospettare l’esistenza di una relazione inaspettata fra funzioni espo-
nenziali e funzioni trigonometriche. Per descrivere questa relazione bisogna usare i numeri
complessi. Se z = a + ib è un numero complesso, si definisce l’esponenziale complesso ez

ponendo
ez = ea+ib = ea(cos b + i sin b) . (8.36)

Se ci pensi un attimo, vedrai che questa definizione è perfettamente coerente con gli sviluppi
in serie di esponenziale, seno e coseno che abbiamo visto nella Curiosità 5.11. Derivando
separatamente parte reale e parte immaginaria, trattando i come una costante (cosa che
effettivamente è) non è difficile verificare che la derivata della funzione

f(t) = ezt

è data da
f ′(t) = zezt

per ogni numero complesso z. In particolare, se z = iω troviamo che

d

dt
eiωt = iωeiωt

e
d2

dt2
eiωt = −ω2eiωt ;

essendo
eiωt = cos(ωt) + i sin(ωt) ,

abbiamo recuperato le soluzioni (8.33) di (8.32).
Concludiamo queste dispense notando che ponendo z = 0 + iπ in (8.36) otteniamo la

relazione di Eulero
eiπ + 1 = 0 ,

che collega le cinque costanti fondamentali e, π, i, 1 e 0 (ed è una delle più belle formule di
tutta la Matematica).


