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Probabilità continua

7.1 Variabili aleatorie

Il primo obiettivo di questa sezione è formalizzare il concetto di “probabilità che
una certa misura dia un certo risultato con una certa approssimazione”; inoltre
saremo in grado di dare una definizione precisa di cosa vuol dire che due misure
sono indipendenti.

L’idea è di vedere una misura come una funzione a valori reali definita su uno
spazio degli eventi che, a seconda dei casi, può essere l’insieme di tutti i possibili
risultati di un esperimento, oppure l’insieme di tutti gli individui di una popola-
zione, o anche qualcosa di più generale. Infatti, “effettuare la misura” vuol dire
associare un numero reale a ciascun possibile risultato dell’esperimento, o a ciascun
individuo della popolazione.

Siccome i nostri strumenti di misura hanno una precisione finita, di solito il
risultato della misura non sarà un numero reale preciso con tutte le sue infinite
cifre decimali, ma un numero reale indicato con un certo errore; in altre parole, la
misura ci può dire solo che il valore “vero” appartiene a un determinato intervallo
di valori. Quindi siamo interessati alla probabilità che il valore della misura cada
in un certo intervallo. L’unico caso in cui la misura può assumere un valore preciso
è quando i possibili valori formano un insieme finito, o più in generale discreto, cioè
un insieme i cui elementi sono ben separati fra di loro, per cui basta una precisione
finita per distinguerli tutti (l’esempio tipico è dato da misure i cui possibili valori
sono solo numeri interi).

Esempio 7.1 Supponiamo che la misura consista nel determinare la lunghezza
della coda di una popolazione di cavie, usando un righello con la precisione di un
millimetro (il tuo assistente non è riuscito a recuperare nulla di meglio). In tal
caso lo spazio degli eventi è costituito dalla popolazione di cavie; la misura consiste
nell’associare a ciascuna cavia la lunghezza della sua coda, misurata con il righello;
e sei interessato alla probabilità che la misura ottenuta sia, per esempio, 3±0.1 cm,
cioè che ricada nell’intervallo [2.9, 3.1].
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Esempio 7.2 Stavolta la misura consiste nell’effettuare la somma dei risultati del
lancio di due dadi distinguibili. In questo caso lo spazio degli eventi consiste in
tutti i possibili risultati del lancio di due dadi; la misura consiste nell’associare a
ciascun risultato la somma dei valori; e sei interessato alla probabilità che la misura
(la somma) ottenuta sia per esempio 8. Nota che in questo caso la misura può
assumere solo un numero finito di valori, per cui ha senso chiedersi la probabilità
che la misura assuma un valore preciso.

Esempio 7.3 Supponiamo di irradiare una coltura batterica con una quantità
data di radiazione, e che la misura consista nel determinare quanti batteri sono
mutati a causa della radiazione. In questo caso lo spazio degli eventi consiste
in tutti i possibili risultati dell’esperimento, e, siccome il numero di batteri della
coltura è molto grande, la misura consiste nel determinare la percentuale di batteri
mutati, per cui sei interessato alla probabilità che la percentuale sia per esempio
10± 0.1 %, cioè cada nell’intervallo [0.09, 0.11].

Esempio 7.4 Supponiamo di avere a disposizione una data quantità di materiale
radioattivo, e che la misura consista nel contare la radiazione emessa in un’ora, che
corrisponde al numero di atomi radioattivi che decadono nel materiale in un’ora.
In questo caso lo spazio degli eventi consiste in tutti i possibili risultati dell’esperi-
mento, la misura consiste nel contare il numero di decadimenti radioattivi in un’ora,
e sei interessato alla probabilità che la misura ottenuta sia per esempio 27 218. Nota
che in questo caso la misura può assumere solo valori interi (di fatto finiti, ma non
sapendo a priori il numero di atomi presenti nel materiale non conviene mettere
una limitazione a priori sui possibili valori della misura), per cui ha senso chiedersi
la probabilità che la misura assuma un valore preciso.

Questo modo di pensare viene formalizzato dal concetto di variabile aleatoria.
Sia Ω uno spazio degli eventi, e indichiamo con A la famiglia dei sottoinsiemi di Ω
di cui possiamo calcolare la probabilità (vedi la Sezione 2.5 e la Curiosità 2.1), e sia
p:A → [0, 1] una distribuzione di probabilità. Allora una variabile aleatoria a valori
reali è una funzione X: Ω → R tale che gli insiemi X−1(I) = {p ∈ Ω | X(p) ∈ I}
appartengano ad A per ogni intervallo (aperto o chiuso) o semiretta1 (aperta o
chiusa) I di R. In altre parole, stiamo dicendo che una variabile aleatoria è una
funzione X: Ω → R per cui siamo in grado di calcolare la probabilità che il valore
di X cada in un certo intervallo (o semiretta) I.

Osservazione 7.1 In questo contesto si utilizza spesso una notazione particolare
per gli insiemi della forma X−1(I). Per l’esattezza si scrive

X−1(I) = {X ∈ I} ,

1 Non c’è bisogno di richiedere esplicitamente che X−1(R) appartenga ad A, in quanto
X−1(R) = Ω per ogni funzione X, e Ω appartiene sempre ad A.
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e notazioni analoghe. Per esempio, si scrive

X−1([2, 3]) = {2 ≤ X ≤ 3} , X−1
(
(−∞,−1)

)
= {X < −1} ,

e cos̀ı via. Inoltre, la probabilità che la variabile aleatoria assuma un valore conte-
nuto in I si scrive

p(X ∈ I)

e non p({X ∈ I}), eliminando le parentesi graffe. Per esempio, si scrive

p(2 ≤ X ≤ 3) , p(X < −1) .

Osservazione 7.2 Se A coincide con l’intera famiglia dei sottoinsiemi di Ω (per
esempio, se Ω è finito) allora ogni funzione su Ω a valori in R è una variabile
aleatoria.

Osservazione 7.3 Vale la pena sottolineare che per il momento non ci stiamo oc-
cupando di come definire la distribuzione di probabilità su Ω; stiamo assumendo
che ci sia. In particolare, non ci stiamo per ora preoccupando di come calcolare la
probabilità che una variabile aleatoria assuma valore in un certo intervallo; stiamo
soltanto formalizzando questi concetti, e cercando di identificarne alcune proprietà.
La problematica di come determinare una distribuzione di probabilità su uno spa-
zio degli eventi, o di come determinare la funzione di distribuzione (vedi oltre) di
una variabile aleatoria, è stata discussa nel Capitolo 2, e ne riparleremo in alcuni
casi specifici anche in questo capitolo.

Negli esempi precedenti abbiamo distinto misure (cioè variabili aleatorie) che
potevano assumere a priori qualsiasi valore, e misure che potevano assumere sol-
tanto un numero finito (o discreto) di valori. Vediamo di formalizzare anche questa
distinzione.

Diremo che un insieme D ⊂ R è discreto se esiste ε > 0 tale che due elementi
distinti di D distano sempre almeno ε.

Esempio 7.5 L’insieme N dei numeri naturali è un insieme discreto, in quanto
due numeri naturali diversi distano sempre di almeno ε = 1; inoltre ogni insieme
finito è chiaramente (perché?) discreto.

Diremo che una variabile aleatoria X: Ω → R è discreta se la sua imma-
gine X(Ω) ⊂ R è un insieme discreto (cioè se X può assumere solo un insieme
discreto di valori).

Osservazione 7.4 Nella Sezione 7.4 introdurremo il concetto di variabile aleatoria
continua. Le variabili aleatorie continue non sono discrete, ma esistono variabili
aleatorie particolarmente antipatiche che non sono né continue né discrete.

Esempio 7.6 Le misure degli Esempi 7.2 e 7.4 sono variabili aleatorie discrete,
mentre le misure degli Esempi 7.1 e 7.3 sono variabili aleatorie continue.
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Osservazione 7.5 Se X è una variabile aleatoria discreta, e a ∈ R è un suo pos-
sibile valore, allora ha perfettamente senso cercare di calcolare la probabilità del-
l’evento {X = a}, in quanto {X = a} = {a − ε < X < a + ε}, dove ε > 0 è la
distanza minima fra due valori distinti di X. Se X è una variabile aleatoria non
discreta, invece, calcolare la probabilità dell’evento {X = a} potrebbe non avere
molto senso, anche quando si può fare; ne riparleremo meglio nella Sezione 7.4.

Siamo ora in grado di definire precisamente il concetto di “misure indipendenti”
che abbiamo citato più volte nel Capitolo 2. L’idea è che due misure sono indipen-
denti se il risultato di una non influenza il risultato dell’altra; o, in altre parole,
se la probabilità dell’evento che la prima misura abbia un certo valore è indipen-
dente dalla probabilità dell’evento che la seconda misura abbia un certo valore.
Ricordando la definizione di eventi indipendenti introdotta nella Sezione 2.6 siamo
portati alla seguente definizione: diremo che due variabili aleatorie X1, X2: Ω→ R
definite sullo stesso spazio degli eventi sono indipendenti se

p
(
{X1 ∈ I1} ∩ {X2 ∈ I2}

)
= p(X1 ∈ I1) · p(X2 ∈ I2)

per ogni coppia di intervalli o semirette I1, I2 ⊂ R. In altre parole, X1 e X2 sono
indipendenti se gli eventi {X1 ∈ I1} e {X2 ∈ I2} sono indipendenti quali che siano
gli intervalli o semirette I1 e I2.

Più in generale, diremo che n variabili aleatorie X1, . . . , Xn sono indipendenti
se ogni volta che ne scegliamo 1 ≤ k ≤ n diverse Xi1 , . . . , Xik

abbiamo

p
(
{Xi1 ∈ I1} ∩ · · · ∩ {Xik

∈ Ik}
)

= p(Xi1 ∈ I1) · · · p(Xik
∈ Ik)

per ogni k-upla di intervalli o semirette I1, . . . , Ik ⊂ R; vedi la Curiosità 2.2.

Esempio 7.7 Sia Ω =
{
(i, j)

∣∣ i, j ∈ {1, 2, 3, 4, 5, 6}
}

lo spazio degli eventi del
lancio di due dadi distinti, e mettiamo su Ω la solita distribuzione di probabilità
uniforme: ogni evento semplice ha probabilità 1/36. Indichiamo poi con X1: Ω→ R
la variabile aleatoria che misura il lancio del primo dado, ciòe X1(i, j) = i per
ogni (i, j) ∈ Ω; e con X2: Ω → R la variabile aleatoria che misura il lancio del
secondo dado, cioè X2(i, j) = j per ogni (i, j) ∈ Ω. Chiaramente, X1 e X2 sono
variabili aleatorie discrete, che possono assumere solo i valori 1, . . . , 6. Vediamo
che sono anche indipendenti. Se I1 ⊂ R è un intervallo (o una semiretta), l’insieme
{X1 ∈ I1} è formato da quelle coppie di lanci di dadi in cui il risultato del primo
dado appartiene a I1. Se I1 ∩ {1, . . . , 6} contiene k1 elementi, allora {X1 ∈ I1}
conterrà (perché?) 6k1 eventi semplici, e quindi

p(X1 ∈ I1) =
6k1

36
=

k1

6
,

dove abbiamo usato il fatto che su Ω abbiamo messo la distribuzione di probabilità
uniforme per cui la probabilità di qualsiasi evento è uguale al numero di elementi
dell’evento diviso per 36.
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Analogamente, se I2 ⊂ R è un altro intervallo (o semiretta) e I2 ∩ {1, . . . , 6}
contiene k2 elementi, abbiamo

p(X2 ∈ I2) =
k2

6
.

Infine, l’evento {X1 ∈ I1}∩{X2 ∈ I2} contiene tutte e sole le coppie (i, j) con i ∈ I1

e j ∈ I2; quindi {X1 ∈ I1} ∩ {X2 ∈ I2} contiene (perché?) k1k2 elementi. Dunque

p
(
{X1 ∈ I1} ∩ {X2 ∈ I2}

)
=

k1k2

36
=

k1

6
· k2

6
= p(X1 ∈ I1) · p(X2 ∈ I2) ,

e abbiamo verificato che X1 e X2 sono indipendenti (cioè che il risultato del lancio
del primo dado non influenza il risultato del lancio del secondo).

Per chiarezza, anche se non sarebbe strettamente necessario, ripeto questo ar-
gomento per due intervalli specifici. Poniamo I1 = [1, 5/2], e I2 = [2, 4]. Allora
I1 ∩ {1, . . . , 6} = {1, 2} e I2 ∩ {1, . . . , 6} = {2, 3, 4}, per cui

{X1 ∈ I1} = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}

ha 2 · 6 = 12 elementi, e

{X2 ∈ I2} = {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (1, 3), (2, 3), (3, 3),

(4, 3), (5, 3), (6, 3), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4)}

ha 6 · 3 = 18 elementi; in particolare p(X1 ∈ I1) = 12/36 = 1/3, e analogamente
p(X2 ∈ I2) = 18/36 = 1/2. D’altra parte

{X1 ∈ I1} ∩ {X2 ∈ I2} = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}

ha 2 · 3 = 6 elementi, per cui ha probabilità 6/36 = 1/6 = (1/3) · (1/2) come
previsto.

Esempio 7.8 Indicato con Ω lo stesso spazio degli eventi dell’esempio precedente,
sia X: Ω → R la variabile aleatoria data dalla somma dei risultati dei due dadi:
X(i, j) = i + j. Allora le variabili aleatorie X ed X2 (dove X2 è quella introdotta
nell’esempio precedente) non sono indipendenti. Infatti, prendiamo I2 = [2, 4]
e I = [1, 2]. Allora {X ∈ I} = {(1, 1)}, per cui p(X ∈ I) = 1/36; inoltre abbiamo
visto che p(X2 ∈ I1) = 1/2. Ma {X ∈ I} ∩ {X2 ∈ I2} = ∅; quindi

p
(
{X ∈ I} ∩ {X2 ∈ I2}

)
= p(∅) = 0 6= 1

72
=

1
36
· 1
2

= p(X ∈ I) · p(X2 ∈ I2) ,

e X e X2 non sono indipendenti (infatti, la somma dei due dadi dipende dal valore
del secondo dado).
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Concludo questa sezione introducendo una nozione che sarà più utile per le
variabili aleatorie continue, ma ha senso anche quelle discrete. Sia X: Ω → R
una variabile aleatoria. La funzione di distribuzione (o legge) di X è la fun-
zione FX : R→ [0, 1] definita da

FX(t) = p(X ≤ t) .

In altre parole, FX(t) è la probabilità che la variabile aleatoria X assuma un valore
minore o uguale a t.

Conoscendo la funzione di distribuzione è possibile ricostruire moltissime ca-
ratteristiche della variabile aleatoria. Per esempio, da Ω \ {X ≤ t} = {X > t}
ricaviamo

p(X > t) = 1− FX(t) .

Poi se t1 < t2 abbiamo {t1 < X ≤ X2} = {X ≤ t2} \ {X ≤ t1}, per cui

p(t1 < X ≤ t2) = FX(t2)− FX(t1) .

Osservazione 7.6 Se t1 ≤ t2 allora {X ≤ t1} ⊆ {X ≤ t2} e quindi FX(t1) ≤ FX(t2);
in altre parole, le funzioni di distribuzioni sono sempre crescenti. Inoltre è chiaro
(perché?) che

lim
t→−∞

FX(t) = 0 e lim
t→+∞

FX(t) = 1 .

Osservazione 7.7 Se X è una variabile aleatoria discreta, allora FX è una funzione
costante a tratti. Infatti, se ε > 0 è la distanza minima fra due valori di X, e x è
un valore di X, allora l’intervallo aperto (x, x+ε) non contiene valori di X, per cui

∀t ∈ (x, x + ε) FX(t) = p(X ≤ t) = p(X ≤ x) = FX(x) .

Inoltre, possiamo recuperare p(X = x) usando la funzione di distribuzione. In-
fatti, x è l’unico valore di X nell’intervallo (x − ε/2, x + ε/2]. Quindi abbiamo
{X = x} = {x− ε/2 < X ≤ x + ε/2} e

p(X = x) = FX(x + ε/2)− FX(x− ε/2) .

Viceversa, conoscendo p(X = x) per ogni valore x di X possiamo ricostruire la
funzione di distribuzione di X. Infatti se x1 < x2 sono due valori consecutivi di X
abbiamo FX(t) = FX(x1) se x1 ≤ t < x2 e

FX(x2) = FX(x1) + p(X = x2) .

Quindi procedendo un valore alla volta determiniamo FX su tutta la retta; vedi
l’Esempio 7.9.

Curiosità 7.1 Con un po’ più di fatica possiamo usare la funzione di distribuzione per recu-
perare p(X = x) per ogni variabile aleatoria X e ogni x ∈ R. Infatti, siccome

{X < x} =
⋃
t<x

{X ≤ t} e {X = x} = {X ≤ x} \ {X < x} ,
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otteniamo

p(X < x) = lim
t→x−

FX(t) e p(X = x) = FX(x)− lim
t→x−

FX(t) ;

nota che il limite esiste in quanto F è crescente e limitata. In particolare, se FX è una funzione
continua a sinistra allora p(X = x) = 0 per ogni x ∈ R — che equivale a dire che è impossibile
effettuare la misura X con precisione infinita. Come vedremo nell’Osservazione 7.13, questo
accade per le variabili aleatorie continue.

Esempio 7.9 Vediamo di determinare la funzione di distribuzione per la variabile
aleatoria “somma del lancio di due dadi”. Sia Ω lo spazio degli eventi dell’Esem-
pio 7.7, e X: Ω→ R la variabile aleatoria somma data da X(i, j) = i+ j. Allora X
è una variabile aleatoria discreta, con valori possibili 2, . . . , 12. Nell’Esempio 2.14
abbiamo calcolato la probabilità di {X = k} per k = 2, . . . , 12, ottenendo

p(X = 2) = p(X = 12) =
1
36

, p(X = 3) = p(X = 11) =
1
18

,

p(X = 4) = p(X = 10) =
1
12

, p(X = 5) = p(X = 9) =
1
9

,

p(X = 6) = p(X = 8) =
5
36

, p(X = 7) =
1
6

.

Quindi FX(t) = 0 finché t < 2; poi FX(2) = p(X ≤ 2) = p(X = 2) = 1/36. La
funzione di distribuzione FX rimane costante in 2 ≤ t < 3, mentre in t = 3 otte-
niamo FX(3) = p(X ≤ 3) = p(X = 2) + p(X = 3) = 3/36 = 1/12. Poi FX rimane
costante in 3 ≤ t < 4, e ha un altro scalino in FX(4) = FX(3) + p(X = 4) = 1/6.
Procedendo in questo modo otteniamo la funzione di distribuzione il cui grafico è
mostrato nella Fig. 7.1.
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Figura 7.1 La funzione di distribuzione della somma di due dadi.
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7.2 Media e varianza di variabili aleatorie discrete

Nel Capitolo 3 abbiamo introdotto i concetti di media, varianza e deviazione stan-
dard di un insieme di misurazioni; in questa sezione vogliamo introdurre concetti
analoghi per una misura — ovvero per una variabile aleatoria, almeno nel caso
discreto (del caso continuo parleremo nella Sezione 7.4).

Per capire come procedere, supponiamo di avere uno spazio degli eventi fi-
nito Ω = {v1, . . . , vn} con distribuzione di probabilità uniforme, e una variabile
aleatoria (necessariamente discreta) X: Ω→ R. Nella Sezione 3.6 abbiamo definito
la media x delle misurazioni X(v1), . . . , X(vn) ponendo

x =
X(v1) + · · ·+ X(vn)

n
.

Ora, alcune di queste misure potrebbero avere risultati uguali; potrebbe succedere
che X(vi) = X(vj) per qualche i 6= j. Siano x1, . . . , xk (con k ≤ n) gli effettivi
valori assunti da X, cioè X(Ω) = {x1, . . . , xk}, e per j = 1, . . . , k indichiamo con fj

il numero di volte che X assume il valore xj ; in altre parole, fj è la cardinalità
di {X = xj}. Allora

X(v1) + · · ·+ X(vn) = f1x1 + · · ·+ fkxk ,

in quanto nella somma a destra abbiamo semplicemente raggruppato insieme gli
eventuali addendi uguali della somma a sinistra. Quindi

x =
f1

n
x1 + · · ·+ fk

n
xk .

Ma su Ω abbiamo messo la distribuzione uniforme di probabilità; quindi

∀j = 1, . . . , k p(X = xj) =
fj

n
,

e dunque siamo arrivati alla formula

x =
k∑

j=1

pjxj , (7.1)

dove pj = p(X = xj), che esprime la media come media ponderata (vedi anche la
Curiosità 3.3).

La nostra idea intuitiva è che la media di una misura deve coincidere con la
media di tutte le misurazioni possibili; quindi (7.1) dovrebbe rappresentare la media
della variabile aleatoria X che abbiamo appena studiato.

È chiaro allora come definire la media di una variabile aleatoria discreta qual-
siasi. Sia X: Ω → R una variabile aleatoria discreta; la media (o valor medio, o
valore atteso, o speranza) di X è il numero E(X) dato da

E(X) =
∑

pjxj , (7.2)
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dove la somma è estesa a tutti i valori xj di X, e pj = p(X = xj). A volte
scriveremo µX invece di E(X).

Osservazione 7.8 “E” sta per “expected”, che in inglese significa “atteso”. Si dice
“valore atteso” perché, in un certo senso, la media rappresenta il valore che ci
aspettiamo (o che speriamo. . . ) la misura dia. S’intende che tutto ciò non è da
prendere alla lettera, in quanto può capitare (vedi l’Esempio 7.10) che il valore
atteso di una variabile aleatoria non sia fra i valori che la variabile può assumere!

Osservazione 7.9 Se l’insieme dei valori della variabile aleatoria X è finito, allora
(7.2) è una somma finita, e non ci sono problemi di interpretazione. Se invece
l’insieme dei valori di X è infinito (ma discreto), allora (7.2) è una somma infinita,
cioè una serie (vedi la Curiosità 5.9). Siccome gli addendi sono tutti numeri positivi
o nulli, questa somma infinita si comporta come una somma normale, e il suo
valore è semplicemente il limite delle somme parziali finite. Vedremo nella prossima
sezione esempi di come manipolare somme infinite di questo genere.

La varianza di misurazioni era la media degli scarti quadratici, cioè delle dif-
ferenze al quadrato (xj − x)2. La probabilità che compaia la differenza xj − x
è chiaramente uguale alla probabilità che compaia xj come valore della misura,
per cui è uguale a pj = p(X = xj). Scrivendo la media degli scarti quadratici
come media ponderata possiamo allora definire la varianza Var(X) di una variabile
aleatoria discreta X: Ω→ R ponendo

Var(X) =
∑

pj(xj − µX)2 ,

dove anche stavolta la somma è estesa a tutti i possibili valori xj di X. A volte
scriveremo σ2

X invece di Var(X).
Infine, la deviazione standard σX di una variabile aleatoria discreta X: Ω → R

è la radice quadrata della varianza:

σX =
√

σ2
X .

A volte scriveremo DS(X) invece di σX .
Vediamo ora qualche esempio di calcolo di valore atteso e varianza.

Esempio 7.10 Sia Ω = {1, . . . , 6} lo spazio degli eventi del lancio di un dado non
truccato, e indichiamo con X: Ω → R la variabile aleatoria banale data dal valore
del lancio del dado: X(j) = j per j = 1, . . . , 6. Siccome il dado non è truccato,
su Ω abbiamo la distribuzione uniforme di probabilità, per cui pj = p(X = j) = 1

6
per j = 1, . . . , 6. Quindi

E(X) = p1 · 1 + p2 · 2 + · · ·+ p6 · 6 =
1
6
(1 + 2 + 3 + 4 + 5 + 6) =

21
6

= 3.5 .

In altre parole il valore atteso del lancio di un dado è 3.5, che è effettivamente nel
mezzo di tutti i possibili valori, ma non può essere mai il risultato di un lancio!
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In modo analogo calcoliamo la varianza del lancio di un dado non truccato:

Var(X) = p1 · (1− 3.5)2 + p2 · (2− 3.5)2 + · · ·+ p6 · (6− 3.5)2 =
17.5
6

= 2.916 ,

per cui σX =
√

2.916 ' 1.71.

Esempio 7.11 Calcoliamo ora il valore atteso e la varianza della somma del lancio
di due dadi non truccati. Usando le probabilità calcolate nell’Esempio 7.9 troviamo

E(X) =
1
36

2 +
1
18

3 +
1
12

4 +
1
9
5 +

5
36

6 +
1
6
7 +

5
36

8 +
1
9
9 +

1
12

10 +
1
18

11 +
1
36

12

=
252
36

= 7 ,

per cui il valore atteso del lancio di due dadi non truccati è 7, in accordo con la
nostra intuizione. La varianza è data da

Var(X) =
1
36

(2− 7)2 +
1
18

(3− 7)2 +
1
12

(4− 7)2 +
1
9
(5− 7)2

+
5
36

(6− 7)2 +
1
6
(7− 7)2 +

5
36

(8− 7)2 +
1
9
(9− 7)2

+
1
12

(10− 7)2 +
1
18

(11− 7)2 +
1
36

(12− 7)2

=
210
36

= 5.83 ,

e la deviazione standard è DS(X) =
√

35/6 ' 2.42.

La distribuzione binomiale studiata nella Sezione 2.10 può essere riformulata in
termini di variabili aleatorie. La situazione è la seguente: lo spazio degli eventi Ω
consiste in tutti i possibili risultati di n esperimenti indipendenti (per esempio, n
lanci di un dado, o le nascite di n figli). In ciascun esperimento un certo evento E
(per esempio, un risultato pari, o la nascita di una femmina) può avvenire con
probabilità p. Consideriamo allora la variabile aleatoria X: Ω → R che conta il
numero di volte che l’evento E è effettivamente accaduto negli n esperimenti (il
numero di risultati pari in una data sequenza di n lanci, o il numero di figlie
femmine in una data famiglia con n figli). Allora nella Sezione 2.10 abbiamo visto
che X soddisfa la legge

p(X = k) =
(

n

k

)
pkqn−k , (7.3)

per k = 0, . . . , n, dove q = 1−p. Nota che, grazie all’Osservazione 7.6, a partire da
(7.3) è possibile ricostruire completamente la funzione di distribuzione di X. Qual-
siasi variabile aleatoria discreta che soddisfa (7.3) verrà detta variabile aleatoria
Bernoulliana di tipo (n, p).

Vogliamo calcolare valore atteso e varianza per una variabile aleatoria Bernoul-
liana di tipo (n, p). Cominciamo con il valore atteso: siccome i possibili valori di X
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sono 0, . . . , n otteniamo

E(X) =
n∑

k=0

(
n

k

)
pkqn−kk =

n∑
k=1

n!
(n− k)!k!

kpkqn−k =
n∑

k=1

n!
(n− k)!(k − 1)!

pkqn−k

= np

n∑
k=1

(n− 1)!
(n− k)!(k − 1)!

pk−1qn−k = np

n−1∑
h=0

(n− 1)!
(n− h− 1)!h!

phqn−1−h

= np(p + q)n−1 = np

(controlla di aver capito bene tutti i passaggi di questo conto). In altre parole, se
un evento E in un esperimento può accadere con probabilità p, in n esperimenti ci
aspettiamo accada np volte (in perfetto accordo con la nostra intuizione).

Il calcolo della varianza è simile ma un poco più complicato. L’idea è cercare
di ricondursi a somme del tipo

∑̀
k=0

(
`

k

)
pkq`−k ,

che valgono (p + q)` = 1. Scrivendo

k − np = k − n(1− q) = nq − (n− k)

otteniamo

Var(X)=
n∑

k=0

(
n

k

)
pkqn−k(k − np)2 =

n∑
k=0

(
n

k

)
pkqn−k(k − np)

(
nq − (n− k)

)
= n

n∑
k=0

(
n

k

)
kpkqn−k+1 −

n∑
k=0

(
n

k

)
k(n− k)pkqn−k

− n2
n∑

k=0

(
n

k

)
pk+1qn−k+1 + n

n∑
k=0

(
n

k

)
(n− k)pk+1qn−k

=npq

[
n

n∑
k=1

(n− 1)!
(n− k)!(k − 1)!

pk−1qn−k−
n−1∑
k=1

(n− 1)!
(n− k − 1)!(k − 1)!

pk−1qn−k−1

− n
n∑

k=0

(
n

k

)
pkqn−k + n

n−1∑
k=0

(n− 1)!
(n− k − 1)!k!

pkqn−k−1

]

= npq

[
n

n−1∑
h=0

(
n− 1

h

)
phqn−1−h − (n− 1)

n−2∑
h=0

(
n− 2

h

)
phqn−2−h

− n
n∑

k=0

(
n

k

)
pkqn−k + n

n−1∑
k=0

(
n− 1

k

)
pkqn−1−k

]
= npq

[
n(p + q)n−1 − (n− 1)(p + q)n−2 − n(p + q)n + n(p + q)n−1

]
= npq .
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Quindi σ2
X = npq, e la deviazione standard è σX =

√
npq.

Esempio 7.12 Riprendiamo l’Esempio 2.59: supponendo che la probabilità che un
paziente sottoposto a una data operazione muoia entro un mese sia del 12%, se sono
state effettuate 4 operazioni, quanti pazienti ci aspettiamo siano ancora vivi dopo
un mese? Se la probabilità che un paziente muoia entro un mese dall’operazione
è q = 12/100, la probabilità che sopravviva è p = 1−q = 88/100. Vogliamo trovare
il valore atteso della variabile Bernouilliana X di tipo (4, p) data dal numero di
pazienti che sopravvivono dopo un mese. Il conto che abbiamo appena fatto ci dà

E(X) = 4p = 4 · 88
100

=
88
25

= 3.52 ;

quindi ci aspettiamo che un mese dopo l’operazione siano ancora vivi fra 3 e 4
pazienti.

7.3 Distribuzione di Poisson

Il calcolo della distribuzione binomiale prevede di conoscere a priori il numero mas-
simo n di eventi possibili; in molti casi, invece, non è detto che lo si sappia. Inoltre,
la distribuzione binomiale necessita di sapere a priori la probabilità p che l’evento
accada; in molti casi, invece, questa probabilità non è nota. L’osservazione del
fenomeno può invece fornire il numero medio µ (che per la distribuzione binomiale
è uguale a np, come abbiamo visto nella sezione precedente) di eventi in un dato
intervallo di tempo; e vogliamo vedere se riusciamo usando solo µ a calcolare la
probabilità del verificarsi di k eventi, con k ∈ N qualsiasi, nel dato intervallo di
tempo.

Supponiamo quindi di essere nella seguente situazione:

– abbiamo fissato un dato intervallo di tempo (o una data regione di spazio);
– in un qualsiasi istante di questo intervallo (o punto di questa regione) può

accadere un dato evento, e noi non siamo in grado di predire quando (o dove);
– l’accadere o meno di un evento in un dato istante (o punto) è indipendente

dall’accadere o meno dell’evento in un altro istante (o punto);
– sappiamo che in media accadranno µ eventi nell’intervallo di tempo (o regione

di spazio).

Indichiamo con X la variabile aleatoria che conta il numero di eventi accaduti nel
fissato intervallo di tempo (o regione di spazio); il nostro obiettivo è calcolare la
probabilità p(X = k) che accadano esattamente k eventi, quale che sia k ∈ N.
Chiaramente X è una variabile aleatoria discreta, ma l’insieme dei valori che può
assumere non è finito. Il prossimo esempio contiene un elenco di situazioni rappre-
sentabili con un modello di questo genere.

Esempio 7.13 – Il numero di automobili che passano in un dato punto di una
strada (sufficientemente lontano da semafori) in un determinato periodo di
tempo;
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– il numero di errori di battuta commessi scrivendo una pagina di testo;
– il numero di telefonate che un call center riceve in un minuto;
– il numero di mutazioni in una fissata sequenza di DNA sottoposto a una data

radiazione;
– il numero di decadimenti radioattivi in una fissata quantità di sostanza ra-

dioattiva in un dato intervallo di tempo (molto più piccolo della vita media
della sostanza radioattiva);

– il numero di alberi di leccio in una data regione di foresta mista;
– il numero di stelle in un dato volume di spazio;
– il numero di virus che possono infettare una data cellula in uno specificato

intervallo di tempo in una coltura cellulare fissata;
– il numero di cavalleggeri prussiani uccisi dal calcio di un cavallo in un dato

anno (questo esempio è dovuto a L.J. Bortkiewicz).

Per ricavare p(X = k) procediamo suddividendo il nostro intervallo di tempo (o
regione di spazio) in n intervallini uguali, e indichiamo con Yn la variabile aleatoria
che conta il numero di intervallini in cui accade almeno un evento (o, come diremo,
che vengono colpiti). Siccome l’accadere o meno di un evento in un intervallino è
del tutto indipendente dall’accadere o meno di un evento in un altro intervallino,
possiamo equiparare l’osservazione di un intervallino a un singolo esperimento,
e quindi pensare di stare effettuando n esperimenti del tutto indipendenti l’uno
dall’altro. Quindi Yn è una variabile aleatoria Bernoulliana di tipo (n, p), dove p è
la probabilità che un dato intervallino sia colpito.

Ora, noi ci aspettiamo in media µ eventi nell’intero intervallo; d’altra parte, ci
aspettiamo che in media vengano colpiti np intervallini. Se n è molto più grande
di µ, in media ciascun intervallino sarà colpito al più una volta sola; quindi il
numero medio di eventi deve coincidere col numero medio di intervallini colpiti,
cioè µ = np, ovvero p = µ/n.

Riassumendo, se n è molto maggiore di µ la probabilità che vengano colpiti k
intervallini è

p(Yn = k) =
(

n

k

)
pkqn−k =

(
n

k

) (µ

n

)k (
1− µ

n

)n−k

=
n(n− 1) · · · (n− k + 1)

nk k!
µk

(1− µ
n )k

(
1− µ

n

)n

=
nk(1− 1

n ) · · · (1− k−1
n )

nk(1− µ
n )k

µk

k!

(
1− µ

n

)n

=
µk

k!
(1− 1

n ) · · · (1− k−1
n )

(1− µ
n )k

(
1− µ

n

)n

.

(7.4)

Benché molto improbabile, anche per n molto grande un intervallino potrebbe
essere colpito più di una volta, per cui non abbiamo ancora trovato la probabilità
che avvengano esattamente k eventi nell’intervallo. Per risolvere questo problema
basta far tendere n all’infinito: in questo modo gli intervallini tendono a ridursi a
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singoli punti, e quindi p(Yn = k) tende alla probabilità p(X = k) che avvengano
esattamente k eventi.

Nell’espressione finale di (7.4), la prima frazione non dipende da n, per cui
non varia facendo tendere n all’infinito. Numeratore e denominatore della seconda
frazione sono composti da un numero finito di fattori (k − 1 nel numeratore, k nel
denominatore) che tendono a 1 al tendere di n all’infinito; quindi la seconda frazione
tende a 1 al tendere di n all’infinito. Ricordando il limite fondamentale (4.24) che
abbiamo usato per definire la funzione esponenziale otteniamo quindi

p(X = k) =
µk

k!
e−µ . (7.5)

Ogni variabile aleatoria a valori numeri naturali che soddisfa (7.5) verrà detta
variabile aleatoria di Poisson di media µ.

Esempio 7.14 Sapendo che in media in un anno 12 cavalleggeri prussiani ven-
gono uccisi dal calcio di un cavallo, qual è la probabilità p che nel 1861 ne siano
stati uccisi solo 7? Siccome il numero di cavalleggeri prussiani uccisi in un anno dal
calcio di un cavallo è una variabile aleatoria di Poisson, possiamo applicare la (7.5)
e trovare

p =
127

7!
e−12 ' 35 831 808

5040
· 6.14 · 10−6 ' 0.044 ;

quindi la probabilità cercata è di circa il 4.4%.

Esempio 7.15 Sapendo che una cellula in una data coltura cellulare viene infet-
tata in media da 2 virus, qual è la probabilità che una data cellula venga infettata
da almeno un virus? Indicando con X la variabile aleatoria di Poisson che conta il
numero di virus che infettano una data cellula, abbiamo

p(X ≥ 1) = 1− p(X = 0) = 1− 20

0!
e−2 = 1− e−2 ' 0.86 .

Quindi c’è una probabilità di circa l’86% che una data cellula sia infettata.

Osservazione 7.10 La probabilità che una variabile aleatoria di Poisson X assuma
un qualche valore (0 compreso) dev’essere chiaramente 1; quindi dobbiamo avere

+∞∑
k=0

p(X = k) = 1 . (7.6)

La somma a sinistra è una somma infinita (una serie); stiamo sommando p(X = k)
al variare di k in tutti i numeri naturali. Ricordando (7.5) otteniamo

+∞∑
k=0

p(X = k) = e−µ
+∞∑
k=0

µk

k!
.
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Ora, nella Curiosità 5.11 abbiamo fatto vedere che la serie a secondo membro ha
come somma proprio eµ, cioè che

+∞∑
k=0

µk

k!
= eµ ; (7.7)

quindi
+∞∑
k=0

p(X = k) = e−µeµ = e0 = 1 ,

e (7.6) è verificata. Se non lo fosse stata, avrebbe voluto dire che un qualche
passaggio del nostro ragionamento era sbagliato; ma per fortuna non è cos̀ı.

Un’altra verifica che dobbiamo fare è controllare che il valore atteso di una
variabile aleatoria di Poisson di media µ sia effettivamente µ; se cos̀ı non fosse
vorrebbe dire che la definizione che abbiamo dato di valore atteso non corrisponde
all’idea intuitiva che volevamo formalizzare. Ma in realtà abbiamo

E(X) =
+∞∑
k=0

p(X = k) · k =
+∞∑
k=0

µk

k!
e−µk = e−µ

+∞∑
k=1

µk

(k − 1)!

= µe−µ
+∞∑
k=1

µk−1

(k − 1)!
= µe−µ

+∞∑
h=0

µh

h!
= µe−µeµ

= µ ,

grazie a (7.7), come volevamo.
Calcoliamo ora anche la varianza di X (e vedrai di nuovo come la manipolazione

di sommatorie infinite sia molto simile alla manipolazione delle sommatorie finite):

Var(X) =
+∞∑
k=0

p(X = k) · (k − µ)2 =
+∞∑
k=0

µk

k!
e−µ(k − µ)2

= e−µ
+∞∑
k=0

µk

k!
k2 − 2µe−µ

+∞∑
k=0

µk

k!
k + µ2e−µ

+∞∑
k=0

µk

k!

= µe−µ
+∞∑
k=1

µk−1

(k − 1)!
k − 2µ2 + µ2

= µe−µ
+∞∑
h=0

µh

h!
(h + 1)− µ2 = µe−µ

+∞∑
h=0

µh

h!
h + µe−µ

+∞∑
h=0

µh

h!
− µ2

= µ2 + µ− µ2

= µ .

In altre parole, la varianza di una variabile aleatoria di Poisson è uguale alla sua
media. Questo risultato può essere usato per verificare se effettivamente gli eventi
sono indipendenti.
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Esempio 7.16 Vuoi studiare la distribuzione degli alberi di leccio in una foresta
mista, e cercare di capire se la posizione di ciascun albero è indipendente da quella
degli altri oppure se c’è una relazione. Dividi la foresta in molti riquadri di ugual
area, e incarichi il tuo assistente di contare il numero di alberi di leccio presenti in
ciascun riquadro. Se ciascun albero di leccio nasce in un punto indipendente dalla
presenza di altri alberi di leccio, il conteggio del numero di alberi per riquadro
dovrebbe seguire una distribuzione di Poisson; in particolare, la media del numero
di alberi per riquadro dovrebbe essere circa uguale alla varianza del numero di
alberi per riquadro. Se i dati raccolti dal tuo assistente soddisfano questo requisito,
l’ipotesi di indipendenza viene rafforzata; ma se la varianza dei dati raccolti dal tuo
assistente è sensibilmente diversa dalla media, vuol dire che l’ipotesi d’indipendenza
non è coerente con i fatti.

Per la precisione, possono succedere due cose. Se la varianza è sensibilmente
maggiore della media, vuol dire che il numero di alberi per riquadro varia molto:
ci sono diversi riquadri con tanti alberi, e diversi riquadri con pochi alberi. In altre
parole, gli alberi di leccio tendono a raggrupparsi in alcune zone per lasciarle libere
altre. Ci possono essere vari motivi per questo fenomeno di raggruppamento (in
inglese, clustering): i semi si discostano poco dall’albero genitore, il terreno nella
foresta non è uniforme, o anche altri. La matematica ha segnalato la presenza di un
fenomeno; compito del biologo è ora capire il perché di questo fenomeno, facendo
delle ipotesi (che poi possono essere tradotte in un modello matematico e di nuovo
verificate come abbiamo appena fatto per l’ipotesi d’indipendenza).

L’altra possibilità è che la varianza sia sensibilmente minore della media. Questo
vuol dire che il numero di alberi per riquadro varia poco; in ogni riquadro c’è più
o meno lo stesso numero di alberi. In altre parole, gli alberi di leccio sono disposti
in modo più o meno uniforme in tutta la foresta. Di nuovo, ci possono essere
diversi motivi per questo comportamento (tendenza a occupare tutto lo spazio
possibile, competizione per la luce o per l’assorbimento di nutrimento dal terreno,
oppure sono stati piantati da qualcuno. . . ) ed è compito del biologo fare ipotesi
sul perché; ma la matematica intanto ti assicura che una distribuzione uniforme è
estremamente improbabile sia casuale, e richiede la presenza di un qualche tipo di
relazione fra i vari alberi.

Esempio 7.17 Un’altra applicazione interessante della distribuzione di Poisson è
una stima della carica elettrica di un elettrone. Sotto certe condizioni, il passaggio
degli elettroni in un certo punto per un secondo segue una distribuzione di Poisson.
Se in t secondi passano N elettroni, la corrente media in un secondo per quel punto
è data da

I = e
N

t
,

dove e è la carica dell’elettrone. D’altra parte, la deviazione standard della corrente
passante per quel punto è σI = eσN , dove σN è la deviazione standard del numero
di elettroni passanti per quel punto in un secondo. Se effettivamente il passaggio
degli elettroni segue una distribuzione di Poisson, la varianza dev’essere uguale alla
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media; quindi σ2
N = N/t, per cui

σI = e

√
N

t
.

Dunque

e =
σ2

I

I

ci fornisce una stima per la carica dell’elettrone.

7.4 Variabili aleatorie continue

Supponiamo ora che X: Ω → R sia una variabile aleatoria non discreta; come ne
calcoliamo media e varianza?

Per giustificare la risposta, procediamo per approssimazioni. Per fissare le idee,
supponiamo che X sia una misurazione, che effettuiamo con strumenti a poco a
poco più sofisticati. Il primo strumento è veramente rozzo, e fornisce solo risultati
arrotondati all’unità superiore. Per esempio, una misura di 3 significa che il valore
vero della misura è in realtà compreso fra 2 e 3. Quindi, se indichiamo con X1 la
misura fornita da questo strumento, abbiamo p(X1 = 3) = p(2 < X ≤ 3) e, in
generale,

∀j ∈ Z p(X1 = j) = p(j − 1 < X ≤ j) .

Possiamo rappresentare le probabilità associate a X1 costruendo un istogramma
composto da colonne di base gli intervalli (j−1, j] e altezza pj = p(j−1 < X ≤ j);
vedi la Fig. 7.2.

p–2

p–1

p0

p1

p2

–3 –2 –1 0 1 2

Figura 7.2 .
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L’area della colonna j-esima è pj = pj∆j (dove ∆j = j − (j − 1) = 1) e
rappresenta la probabilità che la misura X sia compresa fra j − 1 e j. Inoltre, la
media e la varianza di X1 sono date da

E(X1) = µ1 =
∑

j

pjj∆j e Var(X1) =
∑

j

pj(j − µ1)2∆j ,

dove abbiamo usato il fatto che ∆j = 1, e possono essere considerate come una
prima approssimazione della media e della varianza di X.

Abbiamo ricevuto un nuovo finanziamento, e ci possiamo permettere uno stru-
mento migliore X2, con una precisione di mezza unità; per esempio, una mi-
sura di 1/2 con X2 significa che il valore vero è compreso fra 0 e 1/2. Quindi
p(X2 = 1/2) = p(0 < X ≤ 1/2); in generale, se indichiamo con xj = j/2 un
generico valore di X2, abbiamo

∀j ∈ Z p(X2 = xj) = p(xj−1 < X ≤ xj) .

Rappresentiamo di nuovo le probabilità associate a X2 con un istogramma in modo
però che sia l’area delle colonna di base l’intervallo (xj−1, xj ] a rappresentare la
probabilità che la misura X sia compresa fra xj−1 e xj . Se indichiamo con fj

l’altezza della colonna j-esima, dobbiamo avere

pj = fj∆xj ,

dove pj = p(X2 = xj) e ∆xj = xj − xj−1 = 1/2; quindi

fj =
p(xj−1 < X ≤ xj)

∆xj
= 2pj .

In particolare, se a e b sono due possibili valori di X2, la probabilità che la misura X
cada fra a e b è data da

p(a < X ≤ b) =
∑

h

ph =
∑

h

fh∆xh ,

dove la somma è limitata a quegli h per cui a < xh ≤ b.
Infine, la media e la varianza di X2 sono date da

E(X2) = µ2 =
∑

j

pjxj =
∑

j

fjxj∆xj

Var(X2) =
∑

j

pj(xj − µ2)2 =
∑

j

fj(xj − µ2)2∆xj ,

e possono essere considerate come una migliore approssimazione della media e della
varianza di X.



7.4 Variabili aleatorie continue 319

A questo punto è chiaro come si procede. Per ogni n ≥ 1 ci procuriamo uno
strumento Xn con precisione 1/n. Per xj = j/n, poniamo

pj = p(Xn = xj) = p(xj−1 < X ≤ xj)

e

fj =
p(xj−1 < X ≤ xj)

∆xj
= npj ,

e costruiamo l’istogramma con colonne di altezza fj sopra (xj−1, xj ] in modo che
sia l’area delle colonne a rappresentare la probabilità che X cada fra xj−1 e xj ;
vedi la Fig. 7.3.

pj

fj

xj

Figura 7.3 .

Quindi se a e b sono due possibili valori di Xn, la probabilità che la misura X
cada fra a e b è data dall’area dell’istogramma sull’intervallo (a, b], cioè

p(a < X ≤ b) =
∑

h

ph =
∑

h

fh∆xh , (7.8)

dove la somma è limitata a quegli h per cui a < xh ≤ b.
Inoltre, la media e la varianza di Xn sono date da

E(Xn) = µn =
∑

j

pjxj =
∑

j

xjfj∆xj

Var(Xn) =
∑

j

pj(xj − µn)2 =
∑

j

(xj − µn)2fj∆xj ,
(7.9)

e possono essere considerate come sempre migliori approssimazioni della media e
della varianza di X; nota che stavolta la somma è estesa a tutti i possibili valori
di j, cioè con xj che varia da −∞ a +∞.
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A questo punto non ci rimane che passare al limite per n che tende all’infinito.
Diremo che la variabile aleatoria X è continua se per ogni x ∈ R esiste il limite

fX(x) = lim
∆x→0+

p(x−∆x < X ≤ x)
∆x

; (7.10)

la funzione fX : R → R è detta densità di probabilità della variabile aleatoria X.
Ricordando la definizione di integrale vediamo subito che passando al limite (7.8)
ci dice che la densità di probabilità è tale che

∀a < b p(a < X ≤ b) =
∫ b

a

fX(x) dx ; (7.11)

vedi la Fig. 7.4. In altre parole, la probabilità che X cada fra a e b è uguale all’area
del sottografico della densità di probabilità fX sull’intervallo [a, b].

FX(t)

a

fX

bt

p(a<X≤b)

Figura 7.4 Densità di probabilità.

In particolare, la funzione di distribuzione FX di X è data da

FX(t) =
∫ t

−∞
fX(x) dx ;

di conseguenza, il primo teorema fondamentale del calcolo ci dice che la densità
di probabilità di una variabile aleatoria continua è la derivata della funzione di
distribuzione:

fX =
dFX

dx
.

Osservazione 7.11 Più precisamente, fX è la derivata sinistra della funzione di
distribuzione, come si vede scrivendo (7.10) nella forma

fX(x) = lim
∆x→0+

FX(x)− FX(x−∆x)
∆x

= lim
h→0−

FX(x + h)− FX(x)
h

.



7.4 Variabili aleatorie continue 321

Osservazione 7.12 Dalla (7.10) si vede subito che fX(x) ≥ 0 per ogni x ∈ R; inoltre
(7.11) ci dice che ∫ +∞

−∞
fX(x) dx = 1 .

Curiosità 7.2 Viceversa, se abbiamo una funzione f : R → R integrabile su ogni intervallo (o

semiretta), con f(x) ≥ 0 sempre e tale che
∫ +∞
−∞

f(x) dx = 1 allora possiamo definire una

distribuzione di probabilità p:A → [0, 1] su R ponendo

p(A) =

∫
A

f(x) dx ,

dove A è la famiglia dei sottoinsiemi di R su cui f è integrabile (essenzialmente, A è otte-
nuta prendendo tutte le possibili unioni e intersezioni finite o infinite numerabili di intervalli).
Allora le proprietà dell’integrale permettono di verificare facilmente che p soddisfa gli as-
siomi (P1)–(P3) che abbiamo introdotto nella Sezione 2.5, per cui p è effettivamente una
distribuzione di probabilità su R. Per la precisione, p soddisfa anche l’assioma (P4) citato
nella Curiosità 2.1; ma per vederlo occorre definire l’integrale in modo più generale di quanto
abbiamo fatto noi, usando la teoria dell’integrazione di Lebesgue.

Osservazione 7.13 Se X è una variabile aleatoria continua e a ∈ R, abbiamo

p(X = a) = FX(a)− lim
t→a−

FX(t) =
∫ a

−∞
fX(x) dx− lim

t→a−

∫ t

−∞
fX(x) dx

= lim
t→a−

∫ a

t

fX(x) dx =
∫ a

a

fX(x) dx

= 0 .

Questo non deve sorprenderti: p(X = a) è la probabilità che si riesca a determinare
che la misura X vale esattamente a con precisione infinita, controllando tutte le
infinite cifre decimali. Nella pratica sperimentale questo non succede mai (e nella
pratica matematica ha probabilità zero di succedere, che è un modo più forbito
di dire la stessa cosa); le misure sono sempre ottenute a meno di un errore, che
equivale a dire che il valore “vero” appartiene a un determinato intervallo. Quindi
nella pratica sperimentale siamo interessati alla probabilità che la misura cada in
un dato intervallo, che è esattamente ciò che possiamo calcolare usando la densità
di probabilità.

Infine, passando al limite su n che tende all’infinito in (7.9), partendo dalle
medie e varianze delle approssimazioni Xn troviamo finalmente la definizione di
media (o valor medio, valore atteso, o speranza) e varianza di una variabile aleatoria
continua:

E(X) = µX =
∫ +∞

−∞
xfX(x) dx , Var(X) = σ2

X =
∫ +∞

−∞
(x− µX)2fX(x) dx .
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La deviazione standard σX di una variabile aleatoria continua è come al solito la
radice quadrata della varianza:

DS(X) = σX =
√

σ2
X .

Osservazione 7.14 Il valor medio di una variabile aleatoria continua soddisfa pro-
prietà analoghe a quelle della media di numeri. Per esempio, è l’unico µ ∈ R per
cui l’integrale degli “errori” x− µ, pesati in base alla densità di probabilità fX , è
nullo:∫ +∞

−∞
(x− µ)fX(x) dx = 0 ⇐⇒ µ = µ

∫ +∞

−∞
fX(x) dx =

∫ +∞

−∞
xfX(x) dx = µX .

Si può anche vedere che µX minimizza l’integrale degli scarti quadratici (x− µ)2,
pesati in base alla densità di probabilità fX . Consideriamo la funzione s: R → R
data da

s(y) =
∫ +∞

−∞
(x− y)2fX(x) dx .

Sviluppando il quadrato otteniamo

s(y) = y2

∫ +∞

−∞
fX(x)− 2y

∫ +∞

−∞
xfX(x) dx +

∫ +∞

−∞
x2fX(x) dx dx

= y2 − 2µXy +
∫ +∞

−∞
x2fX(x) dx .

Quindi s è una funzione quadratica con coefficiente direttivo positivo, per cui am-
mette un unico minimo in y0 = −b/2a = µX , come voluto.

Curiosità 7.3 Si può dimostrare che il valor medio della somma di due variabili aleatorie
(entrambe discrete o continue) X1 e X2 è sempre uguale alla somma dei valori medi:

E(X1 + X2) = E(X1) + E(X2) .

Una proprietà importante delle variabili aleatorie indipendenti è che anche la varianza della
somma è uguale alla somma delle varianze: se X1 e X2 sono variabili aleatorie (entrambe
discrete o continue) indipendenti allora

Var(X1 + X2) = Var(X1) + Var(X2) .

Nota che la funzione di distribuzione (o la densità di probabilità nel caso continua) della somma
non è mai uguale alla somma delle funzioni di distribuzione (o delle densità di probabilità).
Se lo fosse, ci sarebbero (perché?) degli eventi con probabilità maggiore di 1. . .

Curiosità 7.4 Se X è una variabile aleatoria con funzione di distribuzione FX continua, la
mediana MX di X è il punto di mezzo dell’intervallo F−1

X (1/2); in altre parole, la probabilità
che X assuma un valore minore o uguale a MX è uguale alla probabilità che X assuma
un valore maggiore di MX . Se FX non è continua, la mediana potrebbe non esistere; vedi
l’Esempio 7.9. Anche se esiste, la mediana potrebbe essere diversa dal valor medio; vedi la
Curiosità 7.5.
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Le prossime (e ultime) tre sezioni di questo capitolo presentano i principali
esempi di densità di probabilità di variabili aleatorie continue, calcolandone il valore
atteso e la varianza.

7.5 Distribuzione uniforme

Nel caso discreto, una delle distribuzioni di probabilità più comuni era quella uni-
forme: tutti gli eventi semplici (o tutti i valori di una variabile aleatoria discreta)
hanno la stessa probabilità di verificarsi. Nel caso continuo, dire che tutti i valori di
una variabile aleatoria continua hanno la stessa probabilità di verificarsi non è par-
ticolarmente significativo, in quanto, come abbiamo visto nell’Osservazione 7.13, la
probabilità che una variabile aleatoria continua X ammetta il valore esatto a ∈ R
è zero. Per formalizzare l’idea intuitiva dell’equiprobabilità di tutti i valori di X
dobbiamo procedere in modo lievemente diverso: l’idea è che la probabilità che X
assuma il valore a a meno di un errore assoluto pari a e, cioè p(a− e ≤ X ≤ a+ e),
dipende solo dall’errore e (cioè dall’ampiezza dell’intervallo di valori considerato)
e non da a. Che debba dipendere dall’errore è evidente: aumentando l’ampiezza
dell’intervallo dei valori possibili la probabilità deve aumentare. L’uniformità è
espressa dall’indipendenza da a.

Esempio 7.18 Siamo quasi alla fine delle dispense, per cui decidi che puoi fare
a meno del tuo assistente, e lo depositi in mezzo al deserto in una giornata co-
perta, per cui non può neppure usare il sole per orientarsi. Il tuo assistente ha
decisamente voglia di vivere (e magari vendicarsi), per cui invece di mettersi se-
duto a riflettere sui suoi errori sceglie una direzione a caso e s’incammina. Che
probabilità ha di aver scelto l’unica (con l’approssimazione di un grado) direzione
che lo porta verso l’oasi più vicina? Per semplicità, identifichiamo ciascuna di-
rezione con l’angolo che forma con l’est; quindi se misuriamo gli angoli in gradi
le possibili direzioni corrispondono all’intervallo (0, 360]. Se indichiamo con X la
variabile aleatoria “direzione in cui si incammina l’assistente”, dobbiamo calco-
lare p(x0 − 1 < X ≤ x0 + 1), dove x0 ∈ (0, 360] è l’unica direzione giusta, sapendo
che l’assistente ha la stessa probabilità di scegliere qualsiasi direzione, in quanto
non ha alcun punto di riferimento su cui basarsi. Dal discorso fatto prima, questa
probabilità deve dipendere solo dal fatto che l’intervallo (x0 − 1, x0 + 1] è lungo 2,
e dev’essere la stessa per tutti gli intervalli di lunghezza 2. Suddividiamo allora
l’intervallo (0, 360] in 180 intervalli di lunghezza 2; gli assiomi della probabilità e
l’ipotesi di uniformità ci dicono che

1 = p
(
X ∈ (0, 360]

)
= p

(
X ∈ (0, 2]

)
+ p

(
X ∈ (2, 4]

)
+ · · ·+ p

(
X ∈ (358, 360]

)
= 180 p(x0 − 1 < X ≤ x0 + 1) ,

per cui la risposta è

p(x0 − 1 < X ≤ x0 + 1) =
1

180
' 0.6% ,

decisamente piccolina.
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Vediamo di formalizzare il ragionamento fatto in questo esempio. Diremo che
una variabile aleatoria X è limitata in (a, b] se i valori di X sono tutti contenuti
nell’intervallo (a, b]. In particolare, abbiamo (perché?)

FX(a) = 0 e FX(b) = 1 ,

da cui segue (perché?) che FX(t) = 0 per ogni t ≤ a e FX(t) = 1 per ogni t ≥ b.
Diremo poi che una variabile aleatoria X limitata in (a, b] ha una distribuzione
uniforme sull’intervallo (a, b] se esiste una costante c > 0 tale che

p(x1 < X ≤ x2) = c(x2 − x1)

per ogni a ≤ x1 < x2 ≤ b. Questa formula chiaramente esprime l’idea di uniformità
che abbiamo discusso prima. Inoltre, prendendo x1 = a e x2 = b è facile trovare
quanto deve valere c:

1 = p(a < X ≤ b) = c(b− a) =⇒ c =
1

b− a
.

Quindi X ha una distribuzione uniforme su (a, b] se e solo se

p(x1 < X ≤ x2) =
x2 − x1

b− a

per ogni a ≤ x1 < x2 ≤ b. In particolare, la funzione di distribuzione di X è data
da (perché?)

FX(t) =


0 se t ≤ a ,
t− a

b− a
se a ≤ t ≤ b ,

1 se t ≥ b .
La funzione di distribuzione è derivabile a sinistra, per cui X è una variabile alea-
toria continua con densità di probabilità

fX(x) =


0 se x ≤ a ,

1
b− a

se a < x ≤ b ,

0 se t > b ;

vedi la Fig. 7.5. Nota che l’uniformità della distribuzione probabilità si traduce nel
fatto che la densità di probabilità è costante nell’intervallo dei valori di X.

Come esercizio, calcoliamo il valor medio e la varianza di una variabile aleatoria
con distribuzione uniforme sull’intervallo (a, b]. Il valor medio è

E(X) =
∫ +∞

−∞
xfX(x) dx =

∫ b

a

x

b− a
dx =

1
b− a

b2 − a2

2
=

a + b

2
;

(nota che siamo passati dall’integrale improprio su tutta la retta all’integrale defi-
nito su [a, b] perché la densità di probabilità è nulla al di fuori di quell’intervallo).
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a b

1
b – a

Figura 7.5 Densità di probabilità uniforme.

Dunque il valor medio di X è il punto medio dell’intervallo (a, b]; del resto, siccome
tutti i valori di (a, b] sono equiprobabili, il valor medio non poteva essere altro che
il punto di mezzo dell’intervallo.

Infine, la varianza:

Var(X) =
∫ +∞

−∞
(x− µX)2fX(x) dx =

∫ b

a

(
x− a + b

2

)2 1
b− a

dx

=
1

b− a

[∫ b

a

x2 dx− (a + b)
∫ b

a

x dx +
(a + b)2

4

∫ b

a

dx

]

=
1

b− a

[
b3 − a3

3
− (a + b)(b2 − a2)

2
+

(a + b)2(b− a)
4

]
=

b2 + ab + a2

3
− b2 + 2ab + a2

4

=
(b− a)2

12
,

per cui la deviazione standard di una variabile aleatoria con distribuzione uniforme
su (a, b] è

σX =
b− a

2
√

3
.

7.6 Distribuzione esponenziale

Un’altra distribuzione comune per variabili aleatorie continue si ricava studiando
variabili aleatorie discrete di Poisson: per l’esattezza, vogliamo studiare il tempo
che intercorre fra due eventi consecutivi in un fenomeno di Poisson.

Supponiamo quindi di voler esaminare un fenomeno che soddisfa le ipotesi della
Sezione 7.3, e indichiamo con X la variabile aleatoria che misura il tempo fra due
eventi successivi. Vogliamo trovare la funzione di distribuzione e la densità di
probabilità (se esiste) di X.
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Osservazione 7.15 Siccome gli eventi in un fenomeno di Poisson sono del tutto in-
dipendenti l’uno dall’altro, possiamo scegliere a piacimento l’istante in cui iniziamo
a osservare il fenomeno. In particolare, possiamo iniziare a osservare il fenomeno
quando avviene un evento, e misurare il tempo fra due eventi successivi diventa la
stessa cosa di misurare quanto tempo passa senza eventi.

Indichiamo con µ il valor medio di eventi in un intervallo di tempo unitario. Al-
lora in un tempo t avremo in media µt eventi. Quindi se indichiamo con Y (t) la va-
riabile aleatoria discreta che conta il numero di eventi nell’intervallo di tempo [0, t]
i conti fatti nella Sezione 7.3 ci dicono che

∀k ∈ N p
(
Y (t) = k

)
=

(µt)k

k!
e−µt .

Ora, dire che il primo evento avviene dopo un tempo t > 0 è esattamente equiva-
lente a dire che non ci sono eventi nell’intervallo [0, t]; quindi

∀t ≥ 0 p(X > t) = p
(
Y (t) = 0

)
=

(µt)0

0!
e−µt = e−µt .

D’altra parte, il primo evento è sicuramente dopo il tempo 0, per cui p(X > t) = 1
per ogni t < 0. Siccome FX(t) = p(X ≤ t) = 1 − p(X > t), abbiamo trovato la
funzione di distribuzione cercata:

FX(t) =
{

1− e−µt se t > 0 ,
0 se t ≤ 0 .

Derivando otteniamo anche la densità di probabilità:

fX(x) =
{

µe−µx se x > 0 ,
0 se x ≤ 0 ;

(7.12)

vedi la Fig. 7.6. Una variabile aleatoria continua con densità di probabilità data
da (7.12) è detta esponenziale di durata media µ.

µ

Figura 7.6 Densità di probabilità esponenziale.
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Non è difficile calcolare il valor medio di una variabile aleatoria esponenziale,
integrando per parti:

E(X) =
∫ +∞

−∞
xfX(x) dx =

∫ +∞

0

xµe−µx dx = −xe−µx

∣∣∣∣+∞
0

+
∫ +∞

0

e−µx dx

= (0− 0)− 1
µ

e−µx

∣∣∣∣+∞
0

=
1
µ

.

Non è un risultato sorprendente: se nell’unità di tempo ci sono in media µ eventi,
l’intervallo di tempo medio fra due eventi è ragionevole sia 1/µ.

Calcolando il valor medio abbiamo trovato che∫ +∞

0

xµe−µx dx =
1
µ

.

Ricordando che inoltre
∫ +∞
0

µe−µx dx = 1, integrando di nuovo per parti possiamo
calcolare la varianza:

Var(X) =
∫ +∞

−∞
(x− µX)2fX(x) dx =

∫ +∞

0

(
x− 1

µ

)2

µe−µx dx

=
∫ +∞

0

x2µe−µx dx− 2
µ

∫ +∞

0

xµe−µx dx +
1
µ2

∫ +∞

0

µe−µx dx

= −x2e−µx

∣∣∣∣+∞
0

+ 2
∫ +∞

0

xe−µx dx− 2
µ2

+
1
µ2

=
2
µ2
− 1

µ2
=

1
µ2

.

Quindi la deviazione standard di una variabile aleatoria esponenziale di durata
media µ è

σX =
1
µ

= µX .

Curiosità 7.5 Se X è una variabile aleatoria esponenziale di durata media µ, si ha FX(t) = 1/2
se e solo se e−µt = 1/2, per cui la mediana (vedi la Curiosità 7.4) di X è

MX =
log 2

µ
< µX .

7.7 Distribuzione normale

In natura, moltissime variabili aleatorie continue hanno una densità di probabilità
con una tipica forma a campana. Capita cos̀ı frequentemente che in assenza di
informazioni che suggeriscano il contrario, in statistica si assume spesso che le
misure che si vogliono studiare abbiano questo tipo di densità di probabilità. In
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questa sezione introdurremo queste funzioni a campana, e cercheremo di spiegare
perché sono cos̀ı frequenti.

La funzione da cui nasce tutto è la Gaussiana G0,1: R→ R data da

G0,1(x) =
1√
2π

e−x2/2 ;

la Fig. 7.7 ne contiene il grafico. Il fattore 1/
√

2π serve ad assicurare (vedi la
Curiosità 6.9) che ∫ +∞

−∞
G0,1(x) dx = 1 ; (7.13)

quindi G0,1 può essere la densità di probabilità di una variabile aleatoria continua.

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

Figura 7.7 La Gaussiana.

Supponiamo allora che X sia una variabile aleatoria continua di densità di
probabilità G0,1. Siccome

de−x2/2

dx
= −xe−x2/2 ,

il valore atteso di X è

E(X) =
1√
2π

∫ +∞

−∞
xe−x2/2 dx = − 1√

2π
e−x2/2

∣∣∣∣+∞
−∞

= 0 .

Un’integrazione per parti e (7.13) ci permettono di calcolare anche la varianza di X:

Var(X) =
1√
2π

∫ +∞

−∞
x2e−x2/2 dx = − 1√

2π

∫ +∞

−∞
x · (−xe−x2/2) dx

= − 1√
2π

[
xe−x2/2

∣∣∣+∞
−∞
−

∫ +∞

−∞
e−x2/2 dx

]
= 1 .
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Diremo quindi che una variabile aleatoria continua X è normale di media 0 e
varianza 1 se la densità di probabilità di X è G0,1.

Osservazione 7.16 La funzione di distribuzione di una variabile aleatoria X nor-
male di media 0 e varianza 1 è la funzione Φ: R→ [0, 1] data da

Φ(t) =
1√
2π

∫ t

−∞
e−x2/2 dx .

Questa funzione non è esprimibile tramite funzioni elementari (a parte che come
integrale di e−x2/2. . . ). Un paio di osservazioni possiamo però farle lo stesso. Prima
di tutto, la funzione G0,1 è una funzione pari, cioè con grafico simmetrico rispetto
all’asse delle ascisse. Di conseguenza,

∀t > 0
1√
2π

∫ 0

−t

e−x2/2 dx =
1√
2π

∫ t

0

e−x2/2 dx .

Da questo segue in particolare (perché?) che

Φ(0) =
1√
2π

∫ 0

−∞
e−x2/2 dx =

1
2

=
1√
2π

∫ +∞

0

e−x2/2 dx .

Più in generale se t ≥ 0 abbiamo

Φ(t) = 1− 1√
2π

∫ +∞

t

e−x2/2 dx = 1− 1√
2π

∫ −t

−∞
e−x2/2 dx = 1− Φ(−t) ,

cioè

∀t ∈ R Φ(t) + Φ(−t) = 1 . (7.14)

Molto più di questo non si può fare; per questo motivo in molti testi di statistica
si trovano delle tavole di valori approssimati di Φ — e molti calcolatori sono am-
piamente forniti di programmi per calcolarla numericamente. I valori che a noi
interesseranno di più sono

Φ(1) ' 0.84135 , Φ(2) ' 0.9772 , Φ(3) ' 0.9986 . (7.15)

Da questo usando (7.14) si trova

p(−1 ≤ X ≤ 1) ' 68.27% , p(−2 ≤ X ≤ 2) ' 95.45% , p(−3 ≤ X ≤ 3) ' 99.73% .

Si sa pure che p(−x ≤ X ≤ x) = 50% per x ' 0.674, mentre p(−x ≤ X ≤ x) = 95%
per x ' 1.960 e p(−x ≤ X ≤ x) = 99% per x ' 2.576.
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La varianza misura quanto è dispersa una variabile aleatoria rispetto alla media.
Ora, la funzione x 7→ G0,1(x/σ) ha un grafico più allargato rispetto a quello di G0,1

se σ > 1, e più stretto se σ < 1; quindi ci aspettiamo che una variabile aleatoria
con densità di probabilità simile a G0,1(x/σ) abbia varianza maggiore di 1 se σ > 1,
e minore di 1 se σ < 1. Ora, G0,1(x/σ) non può essere una densità di probabilità
perché, effettuando la sostituzione y = x/σ, abbiamo∫ +∞

−∞
G0,1(x/σ) dx =

1√
2π

∫ +∞

−∞
e−x2/2σ2

dx =
σ√
2π

∫ +∞

−∞
e−y2/2 dy = σ ;

dunque

G0,σ(x) =
1

σ
√

2π
e−x2/2σ2

ha integrale su R uguale a 1, e quindi può essere una densità di probabilità. Siccome∫ +∞

−∞
xG0,σ(x) dx =

1
σ
√

2π

∫ +∞

−∞
xe−x2/2σ2

dx =
σ√
2π

∫ +∞

−∞
ye−y2/2 dy = 0 ,

e∫ +∞

−∞
x2G0,σ(x) dx =

1
σ
√

2π

∫ +∞

−∞
x2e−x2/2σ2

dx =
σ2

√
2π

∫ +∞

−∞
y2e−y2/2 dy = σ2 ,

una variabile aleatoria continua con densità di probabilità G0,σ ha valor medio 0 e
varianza σ2.

Possiamo anche spostare la media. È molto ragionevole immaginare che per
spostare la media basti traslare il grafico della densità di probabilità, cioè traslare
le ascisse (operazione che chiaramente non cambia l’area del sottografico). Quindi
proviamo a porre

Gµ,σ(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

.

Usando la sostituzione y = (x− µ)/σ si vede subito che∫ +∞

−∞
xGµ,σ(x) dx =

1
σ
√

2π

∫ +∞

−∞
xe−(x−µ)2/2σ2

dx

=
1√
2π

∫ +∞

−∞
(σy + µ)e−y2/2 dy

σ√
2π

∫ +∞

−∞
ye−y2/2 dy +

µ√
2π

∫ +∞

−∞
e−y2/2 dy

= µ ,

e ∫ +∞

−∞
x2Gµ,σ(x) dx =

1
σ
√

2π

∫ +∞

−∞
(x− µ)2e−(x−µ)2/2σ2

dx

=
σ2

√
2π

∫ +∞

−∞
y2e−y2/2 dy = σ2 ;



7.7 Distribuzione normale 331

quindi una variabile aleatoria continua con densità di probabilità Gµ,σ ha valor
medio µ e varianza σ2. Per questo motivo diremo che una variabile aleatoria
continua X è normale di media µ e varianza σ2 se la densità di probabilità di X
è Gµ,σ. La Fig. 7.8 mostra il grafico di Gµ,σ per vari valori di µ e σ.
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Figura 7.8 Varie Gaussiane.

Osservazione 7.17 La funzione di distribuzione di una variabile aleatoria X nor-
male di media µ e varianza σ2 è data da

FX(t) =
∫ t

−∞
Gµ,σ(x) dx =

1
σ
√

2π

∫ t

−∞
e−(x−µ)2/2σ2

dx

=
1√
2π

∫ (t−µ)/σ

−∞
e−y2/2 dy = Φ

(
t− µ

σ

)
.

Quindi (7.14) e (7.15) implicano che

FX(µ + σ) = 1− FX(µ− σ) = Φ(1) ' 0.84135 ,

FX(µ + 2σ) = 1− FX(µ− 2σ) = Φ(2) ' 0.9772 ,

FX(µ + 3σ) = 1− FX(µ− 3σ) = Φ(3) ' 0.9986 .

Quindi

p(µ− σ ≤ X ≤ µ + σ) = FX(µ + σ)− FX(µ− σ) ' 68.27% ,

cioè circa il 68.27% delle volte il valore di una variabile aleatoria normale cade
nell’intervallo [µ − σ, µ + σ]. In modo analogo si vede che il 95.45% delle volte il
valore di una variabile aleatoria normale cade nell’intervallo [µ− 2σ, µ + 2σ], e che
il 99.73% delle volte cade nell’intervallo [µ− 3σ, µ + 3σ].

Il motivo per cui le variabili aleatorie normali sono cos̀ı frequenti in natura è
il Teorema del limite centrale, che abbiamo già citato nella Sezione 3.8. Esistono
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varie versioni di questo risultato; qui voglio citarne quella forse più significativa per
le applicazioni biologiche.

Supponiamo di avere una successione X1, X2, . . . , Xn, . . . di variabili aleatorie,
ognuna con la propria media µi e la propria varianza σ2

i . Supponiamo che:
(C1) le Xi siano tutte limitate;
(C2) siano tutte indipendenti;
(C3) le varianze σ2

i non siano troppo piccole, in modo da avere
∑

i σ2
i = +∞; per

esempio, è sufficiente che la successione {σ2
i } non tenda a zero (ma basta anche

molto meno).

È importante notare che non supponiamo nient’altro sulla funzione di distribuzione
delle Xi. Inoltre, le Xi possono essere sia discrete sia continue. Indichiamo con
Sn = X1 + · · ·+ Xn la variabile aleatoria somma delle prime n variabili aleatorie,
e con Mn = 1

nSn la media. Allora il Teorema del limite centrale ci dice che sia Sn

che Mn per n → +∞ tendono (in un senso che preciseremo fra un attimo) a una
variabile aleatoria normale.

Perché questo risultato spiega l’abbondanza delle variabili aleatorie normali in
natura? Il motivo è che molti fenomeni possono (almeno in prima approssimazione)
essere rappresentati come il risultato dell’interazione di molte cause indipendenti
che agiscono contemporaneamente. Se l’interazione è additiva (cioè gli effetti si
sommano) il fenomeno che noi vediamo è dovuto alla somma di queste cause. Rap-
presentando le cause con variabili aleatorie, il Teorema del limite centrale ci dice
che il fenomeno si comporta quindi come una variabile aleatoria molto vicina a una
variabile aleatoria normale — anche se le cause iniziali non avevano nulla a che
fare con la distribuzione normale. Questo non accade sempre (le ipotesi di indipen-
denza e di additività sono piuttosto forti), ma abbastanza spesso da giustificare la
diffusione della distribuzione normale.

Esempio 7.19 Un esempio, semplificato ma non troppo, è quello della pigmen-
tazione della pelliccia di alcuni animali. Supponiamo che il colore della pelliccia
dipenda dalla presenza di n fattori, X1, . . . , Xn. Ciascun fattore può essere presente
con probabilità p (la stessa per ogni fattore), e la presenza di un fattore qualsiasi
aumenta la pigmentazione di un’unità (opportuna; questa è l’additività). Suppo-
nendo che gli n fattori siano indipendenti, la variabile aleatoria Sn = X1 + · · ·+Xn

che misura la pigmentazione è allora una variabile Bernouilliana di tipo (n, p). La
Fig. 7.9 mostra istogrammi associati a Sn, in cui la colonna i-esima ha base [i, i+1]
e altezza p(Sn = i), per p = 1/3 e n = 2, 5 e 10, ed è evidente che la distribuzione
sta tendendo a una distribuzione normale.

Il Teorema del limite centrale ci dice che otteniamo lo stesso risultato anche
se ciascun fattore può apparire in più stati differenti, ogni stato con la propria
probabilità e influenzando in modo diverso la pigmentazione; le uniche cose che
contano sono il fatto che i vari fattori sono indipendenti, e che la loro influenza si
somma.

Osservazione 7.18 Un caso particolarmente importante del Teorema del limite cen-
trale è quando le variabili aleatorie hanno tutte la stessa media µ e la stessa va-
rianza σ2. Questo accade, per esempio, quando le Xi sono misure fatte su individui
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Figura 7.9 Convergenza della distribuzione binomiale.

diversi di una popolazione molto vasta; in questo caso µ e σ2 sono la media e la
varianza della popolazione. In questo caso il Teorema del limite centrale ci dice
che per n abbastanza grande la distribuzione della media campionaria Mn appros-
sima una distribuzione normale; ed è questo il fatto che avevamo utilizzato nella
Sezione 3.8.

Vediamo ora di precisare in che senso le variabili aleatorie Sn e Mn tendono a
una variabile aleatoria normale. Siccome si può dimostrare (vedi la Curiosità 7.3 e
l’Osservazione 7.19) che

E(Sn) = µ1 + · · ·+ µn , Var(Sn) = σ2
1 + · · ·+ σ2

n ,

e

E(Mn) =
µ1 + · · ·+ µn

n
, Var(Mn) =

σ2
1 + · · ·+ σ2

n

n2
,

la media e la varianza di Sn (e forse anche quelle di Mn) potrebbero divergere al
tendere di n all’infinito; in che senso allora Sn può tendere a una variabile aleatoria
normale, che ha media e varianza finite?

L’idea è che dobbiamo normalizzare Sn e Mn in modo da portare la media a 0
e la varianza a 1, in modo da poterle confrontare meglio.

Sia X una variabile aleatoria qualsiasi, di media µX e varianza σ2
X . Allora la

centrata di X è la variabile aleatoria X(c) data da

X(c) = X − µX .

Invece la standardizzata di X è la variabile aleatoria X(s) data da

X(s) =
1

σX
X(c) =

X − µX

σX
.

Vediamo di calcolare media e varianza delle variabili aleatorie centrate e standar-
dizzate. Prima di tutto abbiamo

FX(c)(t) = p(X(c) ≤ t) = p(X − µX ≤ t) = p(X ≤ t + µX) = FX(t + µX) ;
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quindi derivando troviamo

fX(c)(x) = fX(x + µX) ,

e dunque ponendo y = x + µX otteniamo

E(X(c)) =
∫ +∞

−∞
xfX(c)(x) dx =

∫ +∞

−∞
xfX(x + µX) dx =

∫ +∞

−∞
(y − µX)fX(y) dy

=
∫ +∞

−∞
yfX(y) dy − µX

∫ +∞

−∞
fX(y) dy = µX − µX = 0 ,

e

Var(X(c)) =
∫ +∞

−∞
x2fX(c)(x) dx =

∫ +∞

−∞
x2fX(x + µX) dx

=
∫ +∞

−∞
(y − µX)2fX(y) dy = σ2

X .

In altre parole, la variabile aleatoria centrata ha media 0 e varianza uguale a quella
di X. Poi,

FX(s)(t) = p(X(s) ≤ t) = p(σ−1
X X(c) ≤ t) = p(X(c) ≤ σXt) = FX(c)(σXt) ;

quindi derivando troviamo

fX(s)(x) = σXfX(c)(σXx) ,

e dunque ponendo y = σXx otteniamo

E(X(s)) =
∫ +∞

−∞
xfX(s)(x) dx =

∫ +∞

−∞
σXxfX(c)(σXx) dx

=
1

σX

∫ +∞

−∞
yfX(c)(y) dy = 0 ,

e

Var(X(s)) =
∫ +∞

−∞
x2fX(s)(x) dx =

∫ +∞

−∞
σXx2fX(c)(σXx) dx

=
1

σ2
X

∫ +∞

−∞
y2fX(c)(y) dy = 1 .

In altre parole, la variabile aleatoria standardizzata ha sempre media 0 e varianza 1.

Osservazione 7.19 Quest’ultimo conto dice in realtà che

E(σX) =
E(X)

σ
e Var(σX) =

Var(X)
σ2

per ogni variabile aleatoria X e ogni σ > 0.
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Osservazione 7.20 Se X è normale di media µ e varianza σ2, si vede facilmente
(controlla) che X(s) è normale di media 0 e varianza 1.

Allora l’enunciato esatto del Teorema del limite centrale è: se le ipotesi (C1)–
(C3) sono soddisfatte allora le standardizzate S

(s)
n e M

(s)
n tendono per n → +∞ a

una variabile aleatoria normale di media 0 e varianza 1 nel senso che

∀t ∈ R lim
n→+∞

F
S

(s)
n

(t) = lim
n→+∞

F
M

(s)
n

(t) = Φ(t) .

Osservazione 7.21 Quando le Xi hanno tutte la stessa media µ e la stessa va-
rianza σ2, abbiamo (vedi la Curiosità 7.3)

E(Mn) = µ e Var(Mn) =
σ2

n
.

Per questo motivo in un certo senso (e con un lieve abuso di linguaggio) si può dire
che il teorema del limite centrale implica che Mn approssima sempre meglio una
variabile aleatoria normale di media µ e varianza σ2/n. Mettendo insieme questo
risultato con quanto detto nell’Osservazione 7.17 otteniamo le affermazioni sugli
intervalli di confidenza anticipati nell’Osservazione 3.33 e nella Sezione 3.8.


