5]

Calcolo differenziale

5.1 Derivate

In molte situazioni, piu che il valore effettivo di una quantita conta quanto veloce-
mente varia; ci interessa studiare la variazione di quella quantita nel tempo (o in
funzione di una qualche altra variabile indipendente).

EseEMPIO 5.1 Una volta messa la pentola con l'acqua della pasta sul fuoco, di
solito non ci interessa sapere il valore esatto della temperatura d’ebollizione (e,
tanto meno, la temperatura esatta dell’acqua uscita dal rubinetto); ci interessa sa-
pere quanto velocemente l'acqua giungera a ebollizione. Ci interessa sapere quanto
velocemente varia la temperatura dell’acqua sul fuoco — magari per verificare I’e-
sattezza del detto popolare “acqua guardata non bolle mai.”

EseEmMPIO 5.2 Osservando la crescita di una colonia di batteri, ¢ di solito ab-
bastanza irrilevante sapere il numero esatto di individui della colonia; studiare
1237664 batteri o studiare 1244511 batteri ¢ di solito abbastanza equivalente.
Quello che invece & importante sapere € se il numero di batteri aumenta o di-
minuisce, e quanto velocemente aumenta o diminuisce, e come questa variazione
dipende dalle condizioni dell’esperimento (temperatura, luminosita, disponibilita
di sostanze nutritive), e come questa variazione cambia nel tempo.

EseEmMPIO 5.3 La colonia di batteri del tuo assistente € fuori controllo, e sta inva-
dendo l'intero laboratorio; devi intervenire con un antibiotico per uccidere i batteri
di troppo. Hai giusto a disposizione un antibiotico inedito da testare, e vuoi ve-
dere a quale concentrazione e piu efficace. Ordini al tuo assistente di misurare la
percentuale di mortalita di batteri a seconda della concentrazione dell’antibiotico;
i dati ottenuti sono poi interpolati con una funzione logistica, ottenendo il grafico
di Figura 5.1.

Esaminando il grafico € naturale suddividere la concentrazione in tre zone. Nella
prima, di bassa concentrazione, I’antibiotico & praticamente inefficace. Nella terza,
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Figura 5.1 Concentrazione/Mortalita.

di alta concentrazione, 'efficacia diventa quasi indipendente dalla concentrazione:
aumentando la concentrazione la mortalita praticamente non cambia, per cui con-
viene rimanere a concentrazioni piu basse senza sprecare inutilmente antibiotico.
Nella zona centrale, invece, basta una piccola variazione nella concentrazione per
provocare una sensibile variazione della mortalita. In questa zona, D'efficacia del-
I’antibiotico & massima, nel senso che piccoli aumenti dell’antibiotico hanno effetti
significativi sulla mortalita.

Riflettendo un secondo sul discorso appena fatto, vedrai che la suddivisione
naturale in tre zone corrisponde a una suddivisione in base alla velocita di varia-
zione: nella prima e nella terza zona la velocita di variazione era chiaramente bassa,
mentre la velocita di variazione era molto maggiore nella zona centrale. Un altro
modo per spiegare la stessa cosa ¢ dire che la suddivisione e legata alla pendenza
del grafico: quasi orizzontale nella prima e terza zona, molto inclinato in quella
centrale. Uno degli obiettivi di questo capitolo sara proprio fornire tecniche precise
per misurare la “velocita di variazione” e la “pendenza” di un grafico.

EsEmpPIO 5.4 Non posso esimermi dal citare I’esempio paradigmatico di velocita
di variazione: la velocita di un corpo che si muove. Misura esattamente la va-
riazione di posizione del corpo; e, in diversi casi, ¢ piu interessante conoscere la
variazione di posizione piuttosto che la posizione esatta. Per esempio, gli auto-
velox, indipendentemente da dove si trovano, sono interessati solo alla velocita di
variazione di posizione delle auto che passano — mentre, effettivamente, gli autisti
sono molto piu interessati alla posizione assoluta degli autovelox.

EseEmMPio 5.5 In diverse situazioni puo essere utile studiare anche la variazione
della variazione. L’esempio paradigmatico stavolta e fornito dalla variazione della
velocita, cioe dall’accelerazione. Infatti, alla base della fisica newtoniana (e gali-
leiana) ¢’ osservazione che 'azione di una forza su un corpo ¢ misurata dalla
variazione della velocita; un corpo indisturbato rimane a velocita costante. E una
delle principali leggi di Newton dice esattamente che la forza & proporzionale al-
l’accelerazione: F' = ma.
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Vogliamo quindi trovare un modo efficace per misurare la variazione di una
quantita. Come al solito, rappresentiamo la nostra quantitd con una funzione
fi:I — R, dove I C R ¢ il dominio di definizione della nostra funzione, 'insieme
in cui varia la variabile indipendente. Vogliamo misurare la velocita di variazione
di f in un punto xy € I, ammesso che sia possibile.

Se prendiamo un altro punto xz; € I, possiamo prima di tutto calcolare la
variazione assoluta

Af = f(z1) = f(=o)
di f nel passare da x¢ a z1. Come gia accadeva per l'errore assoluto, la variazione
assoluta di due funzioni diverse ¢ difficile da confrontare, in quanto dipende pe-
santemente dai valori effettivi delle due funzioni. Inoltre, anche intuitivamente, la
variazione assoluta non misura la velocita di variazione: una variazione assoluta
pari a 100 puo essere una variazione lentissima se ottenuta in un milione di anni,
oppure una variazione velocissima se ottenuta in un milionesimo di secondo.
Questo suggerisce di confrontare la variazione assoluta Af con la lunghezza

Ar =21 — 29

dell’intervallo in cui avviene la variazione, cioe di calcolare la variazione media (o
variazione relativa) di f da xg a x1:

Af f(z1) — f(@o) :f(xo-#Aff)—f(l"o).

Ax T1 — To Ax

Dalla Figura 5.2 risulta evidente che la variazione media ¢ il coefficiente angolare
della retta (detta secante) che collega i punti (zo, f(z0)) e (z1, f(z1)) del grafico
di f, e che ha equazione

y=fao) + 52 (@ —0)

La variazione media e gia pitu interessante della variazione assoluta, ma & ancora
una misura piuttosto grezza: non ci dice rigorosamente nulla su cosa accade fra xg
e x1. Per esempio, nella Figura 5.2 vediamo che le due funzioni raffigurate e la
retta secante hanno esattamente la stessa variazione media da xg a x;. D’altra
parte, piu x; € vicino a xq piu precisa ¢ 'informazione data dalla variazione media
sul comportamento della funzione vicino a xg; anche la differenza (vicino a xg) fra
il grafico di f e la retta secante diminuisce. Questo suggerisce di far tendere x
a xg, e quindi di considerare la variazione istantanea

w1—w0 AL Z1—To r1 — Xo Az—0 Ax (5 1)
_ iy S @0+ 1) = f(20) .
= 1m ,
h—0 h

dove nell’ultima formula abbiamo semplicemente indicato Az con il simbolo h;
tanto, per il calcolo del limite I'unica cosa che importa & che la quantita in questione
diventi arbitrariamente piccola, indipendentemente da come si chiama.
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Figura 5.2

Osservazione 5.1  Attenzione: non & detto che il limite (5.1) esista! In altre parole,
non e sempre detto che si possa calcolare la variazione istantanea. Per esempio,
scriviamo

£(&) = f(@0) = (o = ag) - LD S0

Tr — X
Se f & derivabile in x, allora per x — x( il secondo membro tende (perché?)
a 0; quindi f(z) tende a f(xg), cioe f & continua in xo. In altre parole, se f
non & continua in xo allora non puo essere derivabile in ro. Ma anche quando la
funzione f & continua in z il limite (5.1) ¢ una forma indeterminata del tipo 0/0,
per cui nulla ci assicura a priori che esista. Uno dei principali obiettivi di questo
capitolo sara far vedere che il limite (5.1) esiste finito per tutte le funzioni elementari
del bestiario; pero vedremo anche che esistono funzioni semplici (per esempio, la
funzione valore assoluto; vedi I’'Esempio 5.7) di cui non ¢ sempre possibile calcolare
la variazione istantanea.

Se il limite (5.1) esiste finito, diremo che la funzione f & derivabile in zq. Il

valore del limite verra detto derivata di f in zg, e indicato o con il simbolo f/(zg)
o con il simbolo %(xo), a seconda dei casi:

f' (o)

_df o fleo+h)— flxo)
= g (o) = fimy h ’

il quoziente M ¢ detto rapporto incrementale.

Osservazione 5.2 1l concetto di derivata ¢ stato introdotto indipendentemente da
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Newton e Leibniz nel diciassettesimo secolo. La notazione f’ & stata introdotta
da Lagrange un secolo piu tardi modificando quella originale di Newton, mentre la
notazione df /dx & quella usata da Leibniz. Come vedrai, a seconda della situazione
una o 'altra puo essere piu utile, per cui le useremo entrambe.

Osservazione 5.3 Quando diciamo che una funzione f ¢ derivabile in un punto zg
intendiamo che il rapporto incrementale ha limite sia per h che tende a zero da
sopra, sia per h che tende a zero da sotto, e che i due limiti sono uguali. A volte
capita che esista finito solo il limite per o — 0% (rispettivamente, per h — 07);
in quel caso diremo che f & derivabile a destra (rispettivamente, sinistra) in xo,
e il valore del limite sara la derivata destra (rispettivamente, sinistra) di f in xg.
Un caso in cui siamo costretti a considerare derivate destre e sinistre € quando
f & definita su un intervallo chiuso [a, b], e vogliamo considerare la derivata negli
estremi dell’intervallo. Chiaramente (perché?), in a possiamo calcolare solo la
derivata destra, mentre in b possiamo calcolare solo la derivata sinistra.

Geometricamente, lesistenza del limite (5.1) in 29 (o, come diremo, esistenza
della derivata di f in xg) significa che le rette secanti per zy e x; tendono a una
retta limite quando x; tende a xy. Questa retta si chiama retta tangente al grafico
di f in xg, ed e la retta di equazione

y = f(zo) + f'(z0)(x — 20) ;

la Figura 5.2 contiene anche la retta tangente al grafico di f in z.

Supponiamo che una funzione f sia derivabile in tutti i punti di un intervallo I
(e in tal caso diremo semplicemente che f & derivabile in I). Allora possiamo
associare a ciascun punto x € [ il valore f’(z) della derivata di f in . In questo
modo abbiamo quindi definito una nuova funzione f’: I — R, chiamata ovviamente
derivata di f — e che indicheremo anche con la notazione % di Leibniz. La derivata
di f misura quindi la variazione istantanea di f in ogni punto di I, cioé proprio
quanto ci eravamo proposti di trovare in questa sezione.

Osservazione 5.4 Attenzione: in questo testo i simboli df e dz singolarmente non
avranno alcun significato!; df /dx non & il quoziente delle “quantitd” df e dr. La
notazione di Leibniz per noi serve solo a ricordare che la derivata ¢ il limite del
quoziente Af/Ax al diventare Ax arbitrariamente piccolo. Inoltre, la “z” in %
¢ semplicemente il (g}ome scelto in quel momento per la variabile indipendente;

. . d NP, . . . .
notazioni quali %, <o e cosi via indicano tutte la derivata di f, e differiscono solo

nel nome dato alla variabile indipendente.

EsEMPIO 5.6 Se la funzione f misura lo spostamento di un corpo nel tempo,
allora f’ misura la velocita di spostamento. Se invece f misura la velocita, allora f’
misura l'accelerazione. Se f € la quantita di carica elettrica in un punto nel tempo,

1 In testi di matematica pit avanzati servono a indicare oggetti particolari chiamati
“forme differenziali”, che pero noi non studieremo.
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N

/' & 'intensita di corrente passante per quel punto. Se f ¢ la concentrazione di un
dato reagente, allora f’ & la velocita di reazione.

Nelle prossime sezioni vedremo come calcolare le derivate delle funzioni del be-
stiario (e di altre funzioni costruite a partire da quelle) e, soprattutto, come dedurre
informazioni importanti sulla funzione originaria f conoscendone la derivata f’.
Questo ci dara una procedura efficace per lo studio qualitativo delle funzioni, in
quanto le derivate si calcolano: piu precisamente, le derivate di funzioni elementari
si esprimono sempre in termini di funzioni elementari (mentre vedremo che questo
non accade per gli integrali).

5.2 Calcolo di derivate: funzioni costanti

Cominciamo a vedere come calcolare le derivate di funzioni f. In tutti i casi che
vedremo, per calcolare la derivata di f nel punto x procederemo come segue:

—  scriveremo il rapporto incrementale

fle+h) - fz)
h

per h # 0;

—  manipoleremo, se possibile, il rapporto incrementale (effettuando operazioni
valide per h # 0) in modo da semplificarlo o portarlo in una forma a noi pit
congeniale;

—  calcoleremo il limite per h che tende a 0 del rapporto incrementale manipolato.

Cominciamo col caso piu semplice: quello delle funzioni costanti. Sia f:R — R la
funzione che vale costantemente ¢ € R, cio¢ f(z) = ¢ per ogni z € R. Allora il
rapporto incrementale &

f@+h)—f@) c—c 0

Vh;éo n = A :EZO.

Quindi il rapporto incrementale di una funzione costante &€ sempre nullo, e dunque
il limite del rapporto incrementale ¢ chiaramente sempre zero. In altre parole,
abbiamo fatto vedere che la derivata di una funzione costante é identicamente
nulla.

Questo era un fatto geometricamente prevedibile. Infatti, il grafico di una fun-
zione costante ¢ una retta orizzontale. Quindi tutte le rette secanti coincidono con
questa retta orizzontale, per cui anche tutte le rette tangenti coincidono con que-
sta retta orizzontale. Le rette orizzontali hanno tutte coefficiente angolare nullo, il
coefliciente angolare delle rette tangenti & dato dalla derivata, e quindi le funzioni
costanti hanno derivata nulla.

Osservazione 5.5 L’ultimo ragionamento suggerisce che valga anche il viceversa:
una funzione derivabile con derivata identicamente nulla su un intervallo & ne-
cessariamente costante su quell’intervallo. Dire che la derivata € identicamente
nulla equivale a dire che tutte le rette tangenti sono orizzontali, e sembra difficile
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immaginare che possa esistere una funzione con tutte rette tangenti orizzontali
il cui grafico non sia a sua volta costante. Detto in altri termini ancora, se la
variazione istantanea di una funzione & sempre nulla, la funzione non varia mai:
I'annullarsi ovunque della variazione istantanea implica ’annullarsi ovunque della
variazione media. Tutto cio € vero, ma per verificarlo rigorosamente serve un modo
per collegare la variazione istantanea (che dipende solo da quello che avviene ar-
bitrariamente vicino al punto in cui viene calcolata) alla variazione media; vedi la
Curiosita 5.1.

CURIOSITA 5.1 Una formula che lega la variazione istantanea alla variazione media esiste, ed &
contenuta nel Teorema del valor medio di Lagrange. Questo teorema dice che se f:[a,b] — R
¢ una funzione continua, derivabile in tutti i punti dell’intervallo aperto (a,b), allora per ogni
coppia di punti zg < z; in [a,b] esiste (almeno) un punto zo < T < z; tale che la variazione
media di f da zo a x1 & uguale alla variazione istantanea di f in T:

fz1) = flzo)

X1 — Xo

=f(@.

In altre parole, la retta secante per zo e z; € parallela ad almeno una retta tangente nel-
intervallo (zo,z1). B importante notare che questo teorema non ci dice come trovare Z né
quanti ce ne sono; ma fornisce comunque un importante legame fra variazione media e varia-
zione istantanea. Per esempio, ci dice che se la derivata & identicamente nulla in [a, b] allora
la variazione media di f in due punti qualunque dell’intervallo ¢ sempre zero, e quindi f &
costante.

Osservazione 5.6 L’equazione
d,
i@ _,

= = (5.2)

& un (primo e banalissimo) esempio di equazione differenziale. Un’equazione diffe-
renziale & un’equazione in cui 'incognita & una funzione, e che coinvolge anche la
derivata della funzione stessa. Una caratteristica tipica delle equazioni differenziali
¢ che la soluzione (se esiste) non € unica, a meno di richiedere che siano soddisfatte
delle condizioni aggiuntive. Per esempio, abbiamo appena visto che le soluzioni
dell’equazione (5.2) sono tutte e sole le funzioni costanti:

ﬁ =0 = f=c.

dz
Per individuare una soluzione unica, abbiamo bisogno di condizioni aggiuntive.
Per esempio, possiamo richiedere che la soluzione cercata valga 7 (o qualsiasi altro
valore cg) nel punto 2 (o in qualsiasi altro punto xg), cio¢ che f(2) = 7 (rispetti-
vamente, che f(zg) = ¢p); allora 'unica soluzione che soddisfa questa condizione
aggiuntiva & la funzione costante f = 7 (rispettivamente, f = ¢g).
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5.3 Calcolo di derivate: funzioni lineari

Passiamo ora alle funzioni lineari. Sia f:R — R data da f(z) = mx 4+ d una
funzione lineare. Il rapporto incrementale in z € R & dato da
flx+h)— f(x) m(z+h)+d—(mzx+d) mh

= — =M .

h h h

In particolare, il rapporto incrementale non dipende da h (né da xz), e quindi
chiaramente ammette limite (finito uguale a m) per h — 0. Quindi le funzioni
lineari (sono derivabili ¢) hanno derivata costante, uguale al coefficiente angolare.

Di nuovo, geometricamente questo ¢ un risultato ovvio. Le rette secanti del
grafico di una funzione lineare coincidono tutte con la retta grafico della funzione,
e quindi anche le rette tangenti devono coincidere con questa, e in particolare hanno
lo stesso coefficiente angolare.

EsEmpIO 5.7 1l conto appena fatto ci permette di verificare che la funzione valore
assoluto non e derivabile in 0. Infatti il rapporto incrementale in 0 ¢ dato da

|0+h|—|0|_@_{+1 seh>0,
h " h  l—=1 seh<0.

Quindi il rapporto incrementale non ha limite per h che tende a zero (il limite
sinistro & diverso dal limite destro), e quindi il valore assoluto non & derivabile
in 0. Geometricamente, si vede bene: il grafico del valore assoluto ha un vertice
nell’origine, per cui le rette secanti da sopra tendono a una retta diversa da quella
a cui tendono le rette secanti da sotto.

Osservazione 5.7 La funzione lineare f(z) = mz + d ¢ un esempio di somma di
due funzioni: la funzione max e la funzione costante d. Questo non & 'unico caso; i
polinomi sono somma di funzioni potenza, per esempio. Chiaramente, se fossimo in
grado di calcolare la derivata della somma di due funzioni partendo dalla derivata
degli addendi, potremmo semplificarci diversi conti. Fortunatamente, questo si puo
fare, e otteniamo una formula molto semplice:

dif +9) _df  dg

dz dr dz’ (5.3)

cioe la deriwata della somma é uguale alla somma delle derivate?. Questo fatto si
verifica molto semplicemente scrivendo il rapporto incrementale:

(f+9)@+h) = (f+9)(«) _fla+h)+g(z+h)—(f(=)+g(z)

h N h
fleth) = fx)  glz+h)—g(x)
h h '

2 O, piu precisamente: se f e g sono derivabili in z allora anche f + g & derivabile in z e
si ha (f +g)'(x) = f'(z) + ¢'(2).
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Passando al limite per h — 0, e ricordando che il limite della somma e uguale alla
somma dei limiti, otteniamo (5.3). In maniera analoga ricaviamo che la derivata
della differenza € uguale alla differenza delle derivate:

d(f—g) df dg
T ds  dr (5.4)

CURIOSITA 5.2 Attenzione: la somma di due funzioni puod essere derivabile senza che nessuna
delle due lo sia singolarmente. Per esempio, prendiamo f(z) = |z| e g(z) = = — |z|. Allora
(f + g)(z) = x & derivabile in tutti i punti, mentre né f né g (perché?) sono derivabili in 0.

Osservazione 5.8 Nel Capitolo 4 abbiamo visto che le funzioni lineari sono tutte e
sole quelle con variazione media costante (cioé Af = mAz); non ¢ difficile vedere
che sono anche tutte e sole quelle con variazione istantanea costante. In altre
parole, le funzioni lineari f(x) = ma +d sono tutte e sole le soluzioni dell’equazione
differenziale

df

dxim

Infatti, supponiamo che f sia una soluzione di questa equazione, cioe che si ab-
bia f’ = m, e poniamo g(x) = max. Allora l'osservazione precedente ci dice che

(f—9)=f—-¢gd=m-—m=0;

quindi f — g, avendo derivata identicamente nulla, dev’essere costante. In altre
parole, deve esistere d € R tale che f(z) — mxz = d, e quindi f(z) = mzx +d, cioe f
¢ lineare come volevamo.

Osservazione 5.9 Piu in generale, due funzioni derivabili che hanno la stessa de-
rivata differiscono per una costante additiva. Infatti, supponiamo che f e g siano
due funzioni derivabili tali che f' = ¢’. Allora (f —g) =f' —¢g =0, percui f —g
€ una costante c, cioe f = g + ¢ come voluto.

5.4 Calcolo di derivate: funzioni quadratiche

Una funzione quadratica f(z) = ax?+bx+c & naturalmente somma di una funzione
potenza (ax?) e di una funzione lineare (bx + ¢). Siccome la derivata della somma
¢ uguale alla somma delle derivate, e siccome sappiamo calcolare la derivata di
funzioni lineari, abbiamo

d d d d
%(axz + bz +c) = %(cwf) + %(bm +c¢)= %(axQ) +5b.
Quindi per trovare la derivata di una funzione quadratica ci basta saper calcolare
la, derivata della funzione ax?. Scriviamo come al solito il rapporto incrementale:

a(x+h)? —az®  a(a? 4+ 2ha + h?) —ax®  2ahx + ah?

= . h = 2ax + ah .
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Anche stavolta siamo stati in grado di semplificare il rapporto incrementale in modo
da poter calcolare il limite per h — 0. Infatti }llirr%)(2am + ah) = 2azx, e quindi

d—(amQ) = 2ax .
x

Riassumendo abbiamo ottenuto la seguente formula per la derivazione delle funzioni
quadratiche:

f(z) = az® +bx +c = f(x)=2ax+b.
EsempPIO 5.8 Se f(z) = 122% — 7z + 3, allora f'(z) =2 122 — 7 = 24z — 7.

Vale la pena esaminare le relazioni fra il comportamento di una funzione qua-
dratica f(x) = ax? 4+ bx + c e la sua derivata f’(z) = 2ax + b. Ricordando quanto
abbiamo studiato nel Capitolo 4, otteniamo:

— la derivata f’ si annulla esattamente nell’ascissa del vertice z = —b/2a della
parabola grafico di f;

— la derivata f’ & positiva esattamente nei punti (dopo il vertice se a > 0, prima
del vertice se a < 0) in cui la funzione f & crescente;

— la derivata f’ & negativa esattamente nei punti (prima del vertice se a > 0,
dopo il vertice se a < 0) in cui la funzione f & decrescente;

— la derivata f’ & crescente (cioe a > 0) se e solo se il grafico di f ha la concavita
rivolta verso 1’alto;

— la derivata f’ & decrescente (ciod a < 0) se e solo se il grafico di f ha la
concavita rivolta verso il basso.

Vedremo piti in 1a che queste relazioni fra f ed f’ sono valide per qualsiasi funzione,
e non solo per quelle quadratiche.

5.5 Calcolo di derivate: funzioni polinomiali

Sistemate le funzioni quadratiche, il passo successivo consiste nelle funzioni poli-
nomiali. Chiaramente abbiamo

d _ d, .. d . d
(" a4 ag) = (") + 2 (@) e 2 (ao)

quindi dobbiamo calcolare la derivata della generica funzione potenza a esponente

naturale az*.

Ci sono (almeno) tre modi diversi per effettuare questo calcolo. Il primo consiste
nell’usare la formula (2.22) per lo sviluppo del binomio, come fatto nel caso k = 2.



5.5 Calcolo di derivate: funzioni polinomiali 231

Otteniamo

k
a(z+h)* —azk 1 (k‘) k—iri &
-~ = a 2" IR —ax
h h Zo J
. ]7
1 k
= 7 a(xk—&-kmk_lh—i— (2)xk_2h2+---+hk) —amk}
[ 2
=7 e <kx’“h+ <2)xk2h2 +~~-+h’“)]

E

k
axk Tt + (2) az®*2h 4+ .. 4 ah* L.

Facendo tendere h a zero muoiono tutti i termini nell’ultima somma tranne il primo,
per cui otteniamo

%(amk) = kaz""1; (5.5)

la derivata della funzione potenza az® é la funzione potenza con esponente dimi-
nuito di 1 e coefficiente moltiplicato per l’esponente.

Osservazione 5.10 Vedremo piu in 14 (Sezione 5.8) che questa formula vale per
funzioni potenza di esponente reale qualsiasi.

I1 secondo modo utilizza la formula (4.17) della differenza di potenze:

k—1
[(erh)k—xk} :Z[ x+h)—x ZaﬁLhZ k—l=i
=0

k—1
=a Z(x + h)igh—171

1=0

Mandando h a zero tutti gli addendi della sommatoria tendono a z*~1; siccome

)
ci sono k addendi, otteniamo nuovamente kaz*~! come limite del rapporto incre-
mentale.

Il terzo metodo invece ha applicazioni che vanno ben al di la delle funzioni
polinomiali. L’idea & considerare az® come il prodotto di due funzioni potenza
di grado minore (per esempio, ax e x*71), e di vedere se riusciamo a calcolare la
derivata di un prodotto conoscendo le derivate dei fattori.

Effettivamente si puo fare, ma con un avvertenza: la derivata del prodotto NON
¢ uguale al prodotto delle derivate. Per capire a cosa e uguale, scriviamo come al
solito il rapporto incrementale per il prodotto fg di due funzioni, e manipoliamolo
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in modo da far comparire i rapporti incrementali di f e g:

(f9)@+h) = (f9)(x) _ flz+h)g(z+h) - flz)g(z)
h h
_ flet+h)g(z+h) - fl@)g(x+h) + fx)g(z + h) — fx)g(x)
h
(z +h) + f(x)

gz +1) —gla)

flz+h)— f(z)
h g h

Mandando h a 0 i rapporti incrementali tendono alle derivate, e g(z + h) tende
a g(z), per cui abbiamo dimostrato che se f e g sono derivabili in x allora anche
fg é derivabile in x, e vale la regola di Leibniz

PR Y

%(fg) = dxg+ dr (5.6)

Osservazione 5.11 1In particolare, se g € una funzione costante, diciamo g = ¢, ha
derivata nulla e quindi

d _df
Vee R %(cf)fcdx.

Mettendo g = f in (5.6) otteniamo la derivata del quadrato di una funzione:

d(f*)
dx

df
dz

=2f

Mettendo g = f? in (5.6) otteniamo la derivata del cubo di una funzione:

d(f?) _ edf | L d(f?) L0 df
dx 7fda:+f dx =3f dx
Procedendo in questo modo chiaramente otteniamo
k
Vk € N A7) _ kfk—lﬁ . (5.7)

dx dx
In particolare, prendendo f(z) = z, e ricordando I’Osservazione 5.11, otteniamo
nuovamente (5.5).

CURIOSITA 5.3 La dimostrazione della formula (5.7) usa una procedura particolarmente utile in
matematica, nota come principio di induzione. L’idea & la seguente: per dimostrare che una
certa affermazione Py, dipendente da un numero naturale k, & vera per ogni k >0 (o k > 1,
o k > ko per un qualche kq fissato), basta dimostrare che:

(I1) Py (o Pi, 0 Py,) & vera; e che

(I2) se P,_; & vera allora anche Py lo &.

Infatti, (I1) dice che P, & vera; allora usando (I2) per & = 1 otteniamo che anche P; & vera; ma
allora usando (I2) con k = 2 otteniamo che anche P, ¢ vera; ma allora usando (12) con k = 3 otte-
niamo che anche P; & vera; e cosi via, fino a raggiungere in un numero finito di passi qualsiasi Pj.
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Per esempio, indichiamo con Py la formula (5.7). Allora P; & banalmente vera (in quanto f° =1
per ogni funzione f), per cui (I1) & verificata. Supponiamo che Py _; sia vera; applicando la regola
di Leibniz a f* = f*~! . f otteniamo

d(f*) _ d(f k—1 ﬁ (1 k—2ﬁ k—ld_f _ k—lﬁ
de dz r+s dx_(k nf dIf+f d:):_kf dx

)

per cui Py & vera. Quindi abbiamo verificato anche (I2), e il principio di induzione ci assicura che
(5.7) & vera per ogni k > 1.

Riassumendo, siamo in grado di calcolare la derivata di una qualsiasi funzione
polinomiale:

—(apz™ + an 12" P+t ayz+ ag) = nan,z™ "t 4 (n— l)an,lx”_2 +--+ay.

dx

ESEMPIO 5.9 Se f(z) = 6% — 372? + 1122 + 7 allora

f(z) =3-622 -2 -3nz+1-11vV2 =182 — 67z + 11V2 .

5.6 Calcolo di derivate: funzioni razionali

Proseguendo col calcolo delle derivate delle funzioni del bestiario, ora tocca alle
funzioni razionali. Siccome le funzioni razionali sono quozienti di polinomi, ¢ na-
turale affrontare questo problema cercando di trovare una formula per la derivata
di un quoziente. Siccome un quoziente si puo scrivere come il prodotto del nume-
ratore per il reciproco del denominatore, e sappiamo gia calcolare la derivata del
prodotto, ci basta calcolare la derivata di un reciproco.

Supponiamo allora che f:I — R sia una funzione derivabile in un punto x € [
con f(x) # 0. Manipolando il rapporto incrementale otteniamo

e ~ 7@ _ f@)~ flath) 1 frh) - f@)

h - fle+n)f@)h o flz+h)f(z) h
Passando al limite per h — 0 ricaviamo che se f ¢ derivabile in un punto x
con f(x) #0 allora 1/f ¢ derivabile in x e vale la formula

d (1 !
— (== L . (5.8)
dz \ f 12
Osservazione 5.12 Un modo per ricordarsi questa formula consiste nel derivare
Iidentita 1

1Ef-?.

Sapendo gia che 1/f & derivabile possiamo usare la regola di Leibniz ottenendo

d 1\ df 1 d (1
w(rg)-a s u(s)

0



234  Capitolo 5

che ¢ equivalente a (5.8).

Usando la regola di Leibniz possiamo ora calcolare la derivata di un qualsiasi
quoziente nei punti in cui il denominatore non si annulla:

A\ _d (1Y _ a1 d (1N gy

de \g) dx g) dxg dt \g) g ¢2°
e quindi se f e g sono deriwabili in un punto x in cui g(x) # 0 allora f/g &
derivabile in x e vale la formula

i([)f’gfg’
de \g) ¢

EseMPIO 5.10 Proviamo a calcolare la derivata di una funzione razionale (nei
punti in cui il denominatore non si annulla):

d (3x2+1) A 4) (9 —9) — 222 (352 4 1)

de \ 22 -2 (20 — 2)2
6x(2x —2) —2(322+1) 622 — 12z —2
- Az —1)2 T A2 2z +1)
322 —6x—1
T2 _drt2”

EseEmpio 5.11 Un caso particolare di funzione razionale ¢ dato dalle funzioni

potenza a esponente negativo f(r) = ax~*. Siccome az™* = a/x* otteniamo
d d (a A (2k fexh—1
—(az™%) = — (—) = —a—d““( ) =—a = —kaz~F 1.
dx dr \xk x2k 22k

In particolare, la formula (5.5) vale per ogni k € Z.

5.7 Calcolo di derivate: potenze a esponente razionale

Vogliamo ora calcolare la derivata di funzioni della forma f(x) = a2/ conp € Z
e ¢ € N*. Ora, possiamo scrivere

2?1 = (z1/7)P = gp(xl/q) = gp(fo()) (5.9)

dove abbiamo posto g,(x) = 2P e f,(z) = x4, Quindi la nostra f si pud scrivere
come composizione delle funzioni g, e f4, cioe f = gpo fq, € questo ci suggerisce che
sarebbe utile saper calcolare la derivata della composizione di funzioni derivabili.
Anche stavolta procediamo manipolando il rapporto incrementale; solo che sta-
volta 'operazione ¢ un attimo piu complessa delle altre volte. Supponiamo che
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f sia derivabile nel punto z, e che g sia derivabile nel punto y = f(x); vogliamo
vedere se g o f & derivabile nel punto . Cominciamo scrivendo

gofw+h)—gof(x) g(flz+h)—g(f(x))

h h
_9(f@) + (f@+h) - f@)) —g(f(@) fl@+h) - f()
fl@+h) = f(z) h
_9y+h)—gly) flz+h) - f(2)
ha h ’

(5.10)
dove abbiamo posto hy = f(x+h)—f(z) ey = f(z). Siccome f (essendo derivabile)
¢ continua in z, quando h tende a 0 anche h; tende a 0; quindi nell’ultimo membro
di (5.10) il primo quoziente tende alla derivata di g in y = f(z), e il secondo
quoziente tende alla derivata di f in z. Quindi se f é derivabile nel punto x, g ¢
derivabile nel punto f(x), e la composizione go f & definita vicino a x, allora go f
e derivabile in x e vale la formula

d _(dg dg
%(gof)— <@°f>%,

che puo anche essere scritta come

(gof)(x) =g (f(x)f (). (5.11)

EsEMPIO 5.12 Prendiamo f(z) = 322 — 2 e g(x) = 223 — 32; vogliamo calcolare
la derivata di g o f. Possiamo procedere in due modi: calcolando ’espressione
polinomiale esplicita di go f e poi derivandola, oppure applicando la formula appena
ottenuta per la derivata di funzione composta. Nel primo caso abbiamo

go f(x) = g(f(x)) = 9(32° — 2) = 2(32* — 2)° — 3(32® — 2)
= 2(272% — 542* 4 362 — 8) — 92% + 6
= 5425 — 108z* 4+ 6322 — 10,
per cui
(go f)(z) = 324x° — 4322° + 126z .
Usando la (5.11) otteniamo direttamente
(g0 f)(x) =g (f(x))f'(z) = g'(32* — 2) - 62 = [6(32" — 2)* — 3|6z
= 62(54a* — 7227 4 21)
= 324a2° — 4322° 4+ 126z .

Tornando al nostro problema originale, applicando (5.11) a (5.9) otteniamo

d d
p/ay — o (1/9) ! — pr(P—1)/q 1/qy .
T (a?9) = g (/1) f () = paPV/0 (1) (5.12)
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quindi dobbiamo trovare il modo di calcolare la derivata di z/9.

Ora, 2'/9 &, per definizione, la funzione inversa della funzione gq(x) = 27, di cui
sappiamo calcolare la derivata; quindi questo suggerisce di trovare un modo per
calcolare la derivata di una funzione inversa.

Supponiamo allora che f sia una funzione invertibile, derivabile in un punto y;
vogliamo vedere se la funzione inversa f~! & derivabile nel punto = = f(y). Come
vedremo fra un attimo, dovremo assumere che f’(y) # 0.

Scriviamo il rapporto incrementale per f~! in z:

fHa4+h)—fHe)  fHa+h)—y  yi—y

h (@+h)—z  fly) = fly)

dove abbiamo posto y; = f~(x+h). Sia hy = y; —y; siccome f~! & continua in x,
anche h; tende a 0 per h che tende a 0. Quindi per h che tende a 0 il rapporto

incrementale
Nz +h) =) 1
h a M
1

tende a 1/f'(y), che esiste perché f'(y) # 0. Ricordando che y = f~!(z) abbiamo
dimostrato che se la funzione invertibile f & derivabile nel punto y con f'(y) # 0
allora la funzione inversa f=1 & derivabile nel punto x = f(y) e vale la formula

-t 1
& @)

(5.13)

Osservazione 5.13 Supponiamo di sapere gid per altri motivi che f~! & derivabile
in x = f(y). Allora derivando l'identitd f o f~1(x) = z otteniamo

P @) L@ =1,

cioe (5.13).

Possiamo allora calcolare la derivata di f,(z) = z/4. Come gia notato, fqela
funzione inversa di g,(y) = y?. Ora, g (y) = qy?~'; quindi I'unico punto yo in cui
g; si annulla & yo = 0; di conseguenza, possiamo calcolare la derivata di z'/7 in
tutti i punti in cui g, ¢ definita tranne in zg = g4(yo) = 0. Quindi

1
da'/c 1 L _ 1 e

= .14
dx gg(xl/q) q(xl/a)a—1 " ¢ (5.14)

per ogni x # 0 in cui /7 & definita.
Osservazione 5.14 In particolare, non siamo in grado di calcolare la derivata della

funzione radice cubica f(z) = 2'/3 in zero. Ora, guardando il grafico notiamo che
stavolta il problema non e causato dalla presenza di un vertice nel grafico; la retta
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tangente al grafico di f nell’origine esiste. Il problema & causato dal fatto che la
retta tangente in quel punto & verticale, per cui il suo coefficiente angolare (che
dovrebbe essere il valore della derivata) non € definito.

Osservazione 5.15 Abbiamo notato che se f & una funzione invertibile, il grafico
di f~! si ottiene riflettendo il grafico di f rispetto alla diagonale di equazione y = z.
Chiaramente, questa operazione di riflessione trasforma rette tangenti al grafico di f
in rette tangenti al grafico di f~! — e non ti sara difficile verificare (esercizio) che
questa riflessione trasforma rette di coefficiente angolare m (non nullo!) in rette
di coefficiente angolare 1/m. Inoltre, la riflessione trasforma rette orizzontali (di
coefficiente angolare nullo) in rette verticali (in cui il coefficiente angolare non &
definito); quindi punti del grafico di f a tangente orizzontale diventano punti del
grafico di f~! a tangente verticale, in cui la retta tangente esiste ma la derivata
di f~! no.

Mettendo insieme (5.12) ed (5.14) siamo finalmente in grado di calcolare la
derivata di 2P/

dl’p/q = px(pfl)/q lxl/Q*l — 1_) x(p/4)71
dx q q

per ogni z # 0 in cui zP/? ¢ definita. In particolare, la formula (5.5) continua a
valere per ogni esponente razionale.

5.8 Calcolo di derivate: esponenziali e logaritmi

Una delle conseguenze di (5.5) ¢ che siamo in grado di risolvere l'equazione diffe-
renziale
ar _ x

dr *
per quasi ogni k € Z. Infatti, (5.5) ci dice che

d 1 k+1 )\ __ k.
dm(szrlx -

quindi (ricordando I’Osservazione 5.9)

af _ x 1

— k+1
piald = f(x)—k+1x +c,

con ¢ € R qualsiasi. Attenzione, pero: la formula che abbiamo ottenuta non ha
senso per k = —1 (in quanto richiederebbe di dividere per (—=1) + 1 = 0). E in
effetti la derivata di 2° non ¢ un multiplo di z~ .

Quindi in questo momento non conosciamo alcuna funzione la cui derivata sia
un multiplo di 2~'; ma rimediamo subito, con un risultato forse inaspettato.
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Scriviamo il rapporto incrementale per il logaritmo naturale nel punto x > 0.
Usando le proprieta dei logaritmi otteniamo

- 1/h
log(x + h) logz:llog x+h ~ log 1+lh .
h h x x

Ma allora ricordando (4.26), e usando la continuita del logaritmo, troviamo

. log(z+h) —logx
lim =
h—0 h

In altre parole abbiamo dimostrato che

loga = ~ :
dz B*T L

il logaritmo naturale ha come derivata esattamente z=1. Per trovare la derivata

del logaritmo in una base qualsiasi basta allora applicare la formula (4.34) e 1’Os-

servazione 5.11: )

—1 S —
%"= (og p)a

dx

Osservazione 5.16 Nella Sezione 4.8 abbiamo parlato della legge di Weber, che
dice che la variazione assoluta AP dell’intensita percepita & proporzionale alla
variazione relativa As/s dello stimolo, almeno per variazioni assolute piccole dello
stimolo. Questa relazione puo venire scritta come

AP A

As s
per un’opportuna costante A\ € R. Questa ¢ una affermazione sulla variazione
media di P, che pero ¢ valida solo per wvariazioni assolute piccole dello stimolo.
Nella pratica scientifica questo vuol dire che la nostra relazione in realta non vale
(necessariamente) per la variazione media (in quanto non sappiamo a priori quanto
piccole debbano essere le variazioni assolute dello stimolo) ma vale sicuramente per
la variazione istantanea. In altre parole, la vera legge di Weber &

dP A\

ds s
Questa ¢ un’equazione differenziale che ora siamo in grado di risolvere; la relazione
fra P ed s dev’essere della forma

P(s)=Alogs+c,
per un’opportuna costante ¢ € R. Scrivendo ¢ = — log sg, dove s9 = e~ ¢, otteniamo
P(s) = Alog(s/so) ,

che & la formula che avevamo anticipato in (4.37).
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Osservazione 5.17 Se f & una funzione derivabile sempre positiva, la formula di
derivazione di una funzione composta ci dice che

d !
—logf==.
dx f
L’esponenziale ¢ la funzione inversa del logaritmo; quindi possiamo usare la
formula per la derivazione della funzione inversa trovando

d . 1

X xr

= e

In altre parole, la funzione esponenziale di base e coincide con la propria derivata!
E questo il motivo per cui i matematici preferiscono usare il numero di Nepero e
come base delle funzioni esponenziali.

La formula a® = e%1°8% ¢i permette poi di calcolare la derivata di qualsiasi
funzione esponenziale. Infatti (controlla)

d d

ﬁa“’ == exp(zloga) = exp(xzloga) - loga = (loga)a® .

Inoltre, la formula z® = exp(alog x) ci permette di calcolare la derivata di qualsiasi
funzione potenza: infatti (verifica)

d d
%x“ == exp(alogz) = exp(alogz) - % =ar® !,

per cui (5.5) effettivamente vale per ogni esponente « € R.

Osservazione 5.18 In particolare, la funzione esponenziale risolve 'equazione dif-
ferenziale
df

dx ’
nota che in questa equazione l'incognita f appare in entrambi i membri, contra-
riamente alle equazioni che avevamo visto finora. Non ¢ difficile verificare che le
soluzioni di questa equazione sono tutte e sole le funzioni della forma ce® con ¢ € R.
Infatti, sia f una soluzione dell’equazione; allora la regola di Leibniz ci da

d —x _ -z —rﬁ__—x -z —q.
%(6 f)— e ’f+e dr e “f+e " f=0;

€T

quindi e™* f = ¢, cioe f(x) = ce™*, come voluto.

Osservazione 5.19 La formula di derivazione composta ci permette di calcolare la
derivata di funzioni della forma exp(f), con f derivabile. Infatti (verifica)
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Possiamo trovare quindi anche la derivata di funzioni della forma f9, con f, g
funzioni derivabili e f sempre positiva. Infatti, si ha f9 = exp(glog f), e quindi
(controlla)

d _
I =af" 7 4 g flog f

ESEMPIO 5.13  Vogliamo calcolare la derivata di f(x) = x'/* per > 0. L’osser-
vazione precedente ci da

1 1
f(z) = ;xl/”’_l — le/x logz = 2'/*72(1 —logx) .

CURIOSITA 5.4 A voler essere del tutto precisi, c’¢ un problema che ancora non abbiamo del
tutto risolto: cosa vuol dire elevare un numero positivo a una potenza di esponente irrazionale.
Senza questa informazione il limite (4.26) non & del tutto verificato, e quindi tutti i conti fatti
in questa sezione non sono completamente dimostrati. Un modo per superare questo problema
& stato accennato nella Curiosita 4.8; qui voglio invece descrivere un’altra procedura, che in
un certo senso ripercorre il percorso che abbiamo fatto noi ma nel verso opposto.

L’idea & partire da una funzione derivabile definita su R*, che valga 0 nel punto 1 e la
cui derivata sia uguale a 1/z (nel prossimo capitolo vedremo come costruire una funzione del
genere usando gli integrali); chiamiamo “log” questa funzione. La prima osservazione & che

d 1
VYa >0 — “log” (ax) = a4 _ - ;
dx axr T

quindi deve esistere ¢ € R (dipendente da a) tale che “log” (az) = “log”z + c¢. Ponendo z =1
troviamo ¢ = “log”a, e quindi abbiamo dimostrato che

Vz,y >0 “log” (zy) = “log”’x + “log”y . (5.15)

Ora, la derivata di “log” & sempre positiva in RT; nella Sezione 5.11 vedremo che questo
implica che “log” & strettamente crescente. In particolare, & invertibile; indichiamo con “exp”
la funzione inversa. Siccome la derivata di “log” non si annulla mai, “exp” ¢ derivabile
ovunque, e si verifica come al solito che

d
. “exp” (CC) — uexpw (Z‘) .

dx
Inoltre (5.15) implica che
Vz,y € R “exp”(z +y) = “exp” () - “exp”(y) . (5.16)
In particolare, se poniamo e = “exp”’(1), otteniamo eP/? = “exp”(p/q) per ogni p/q € Q.

Questo suggerisce di definire e* per € R qualsiasi ponendolo uguale a “exp”(x); in partico-
lare, siccome “exp” & una funzione continua e derivabile, otteniamo che x +— e® & una funzione
continua e derivabile. Per ogni a > 0 definiamo allora a” con la formula a® = “exp” (z“log” a);
le formule (5.15) e (5.16) ci assicurano che a® coincide con la solita definizione di potenza
quando x & razionale. Infine,

1
(1 +Tx)1/m — “exp” (—“log”(l +,rx)) ,
x
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per cui

d“log” (1 + ra)

1
lim (1 + rz)Y/* = lim “exp” (—“log”(l + T:L‘)) = “exp” (
x dx

x—0 x—0

©)) = e ().

In particolare, “exp”(1) & il numero di Nepero, e dunque “exp” coincide con la funzione
esponenziale come ’abbiamo definita noi, e “log” & il nostro logaritmo naturale.

5.9 Calcolo di derivate: funzioni trigonometriche

Rimangono da calcolare le derivate delle funzioni trigonometriche, e delle funzioni
trigonometriche inverse.
Cominciamo con la funzione seno. Usando le formule di prostaferesi troviamo

sin(x + h) —sinz 9 6o 2x 4+ h\ sin(h/2) ~ eos 2x 4+ h sin(h/2)
h 2 h 2 h/2

Ricordando (4.39) vediamo che il rapporto incrementale del seno tende a cos  per h
che tende a 0, per cui

—sinx = cosx .

dx

In modo analogo, le formule di prostaferesi per il coseno danno

cos(x +h) —cosx 9 sin 2x+h sm(h/2)__Sin 2x+h sin(h/2)7
h 2 3 2 h)2

per cui

—cosr = —sinz.
dzr

La derivata della tangente la otteniamo con la formula di derivazione del quoziente:

d sinz cos?x +sin? z 1

—tanzx = = = .
dx dx cosx cos? x cos? x

Analogamente si calcola (esercizio) la derivata della cotangente:

d ¢ d cosx 1
—cotr = — — = —— .
dx dr sinx sin® x

Passiamo alle funzioni trigonometriche inverse. Applicando brutalmente la for-
mula di derivazione di una funzione inversa otteniamo

1
Ve e (—1,1) — arcsing = ——— .
dx cos(arcsin z)

Possiamo scrivere meglio questo risultato. Infatti, si ha cost = +1/1 — sin®¢t, dove
il segno della radice quadrata € uguale al segno di cost. Siccome per definizione
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x € (—1,1) implica arcsinx € (—m/2,7/2), e il coseno ¢ positivo nell’intervallo
(—m/2,7/2), otteniamo

Vo € (—1,1) cos(arcsinz) = \/1 —sin?(arcsinz) = /1 — 22 |

e quindi
1

V122

— arcsinzx =
dx

In maniera analoga (esercizio) si trova

1
—— arccos T = —

dx Vi—a2

Osservazione 5.20 Una conseguenza di queste formule ¢ che
i (arcsin Z + arccos x) =0;
dx

quindi deve esistere una costante ¢ € R tale che arcsinz + arccosz = c¢. Siccome
arcsin0 = 0 e arccos 0 = 7/2, otteniamo ¢ = 7/2 e la relazione

m .
arccos xr = 5 —arcsmda ,

che forse (ma forse no) avevi gia notato quando definimmo le funzioni trigonome-
triche inverse.

Rimane la derivata dell’arcotangente. La formula di derivazione della funzione
inversa ci da

d 2
— arctan z = cos”(arctan ) ;

dx

ma anche stavolta possiamo semplificarla. Infatti

) sin? 1 5 1
l4+tan"z =1+ =—— = cosT=—"F,
cos2z  cosiz 1+ tan®z
per cui
d ¢ 1 1
— arctanz = = .
dz 1+ tan?(arctanz) 1+ 22

In particolare, la derivata dell’arcotangente & una funzione razionale.

Con questo abbiamo finito di derivare le funzioni del bestiario. In partico-
lare, abbiamo mantenuto la promessa: ogni funzione che si ottiene a partire dalle
funzioni elementari con le operazioni di somma, sottrazione, prodotto, quoziente,
composizione e inversione & derivabile, e la sua derivata si esprime in termini di
funzioni elementari.

Nel resto di questo capitolo, vedremo a cosa servono le derivate.
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5.10 La regola di de ’Hopital

Abbiamo visto che per calcolare le derivate dobbiamo calcolare un limite che &
della forma indeterminata 0/0. Pil in generale, le derivate possono essere usate
per calcolare anche altri limiti della forma indeterminata 0/0.

Il motivo e questo: supponiamo di avere due funzioni f e g derivabili vicino a
un punto g e tali che f(xg) = g(xg) = 0; supponiamo inoltre che ¢'(z) sia diverso
da zero. Allora si ha

f(x) f(x) = f(20) (f(x) = f(x0))/(x—20)  f'(x0)

o g(o) e gla) —glen) o (9(0) — g(e0) [la—z0)  ga0)

la forma indeterminata 0/0 puo venire calcolata usando il rapporto delle derivate.

Questo ragionamento puo essere perfezionato in modo da potersi applicare in
situazioni un poco piu generali. Il risultato finale & noto come regola di de I’Hopital:
supponiamo che f e g siano due funzioni derivabili tali che

lim f(z) = lim g(z) =0,

T—T0 T—xTo

dove xo puo essere un numero reale o anche +o0o. Supponiamo inoltre che g'(x) # 0
per x wvicino a xg (ma non necessariamente in xg), e che esista finito il limite

/()
A (@)
Allora
lim ﬂ = lim (@)

T30 g :];) T—10 g’(;c) ’

Osservazione 5.21 IL’equivalente della regola di de ’'Hépital vale anche per limiti
da destra o da sinistra.

Vediamo su alcuni esempi come si usa la regola di de I’'Hopital.

ESEMPIO 5.14 Vogliamo calcolare il limite di (e® — 1)/x per z che tende a zero.
Ponendo f(z) = e* — 1 e g(z) = z, le ipotesi della regola di de I’'Hépital sono
soddisfatte: infatti f(z) e g(z) tendono a 0 quando  — zy = 0, e ¢’ non si annulla
mai. Allora derivando numeratore e denominatore otteniamo

lim
r—0 €T z—0 1

ESEMPIO 5.15  Stavolta scegliamo zg = 1, f(z) = 2*—1cona € R, e g(z) = z—1.
Di nuovo le ipotesi sono tutte soddisfatte, per cui
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EsemMPIO 5.16  Prendiamo zp = +o0, f(z) = § —arctanz e g(z) = 1/2. Siccome

g'(x) = —1/22 non si annulla per x > 0 le ipotesi della regola di de ’Hépital sono
soddisfatte, e otteniamo

I 5 —arctanx . —1/(1+ 2?) . x?
im =—————= lim ——————% = lim
z——+00 1/:13 T—+00 —1/]}2 z—+oo 1 + 2
1
= lim ———= =1

z—+oo 1 + 1/‘7;2

Osservazione 5.22 11 limite del precedente esempio puo essere scritto anche come

i ™

lim =z (— — arctan x) ,
T—+00 2

che € una forma indeterminata del tipo 0-co. Tutte le forme indeterminate di questo

tipo possono essere ricondotte alla forma indeterminata 0/0: infatti, se g(x) — £oo

per  — xg, allora 1/g(z) — 0 per  — xg, e scrivendo

_ i@
1/g(a)

abbiamo trasformato la forma indeterminata 0 - oo nella forma indeterminata 0/0
studiabile con ’'Hépital. Analogamente, scrivendo

flx) _ 1/g(x)

g(z) — 1/f(x)

f(@)g(x)

si trasforma qualsiasi forma indeterminata co/oco nella forma indeterminata 0/0.

EsEmpPIO 5.17 Vogliamo calcolare, se esiste, il limite

i tanx
im ——
aon/2- (x—7/2)" 1

che & una forma indeterminata co/co. Usando 1'osservazione precedente e la regola
di de I’Hopital otteniamo

) tan x ) x—m/2 . 1
hm _— = hm - = 1m —
T—T/27 (.I — 7T/2)_1 z—m/2— cotx T—7 /27 —1/ sin” x
=— lim sin®z=-1.
T—T/27

Osservazione 5.23 Puo capitare che anche il rapporto f’/g¢’ dia origine a una forma
indeterminata del tipo 0/0. In quel caso, se f e g hanno anche le derivate seconde
e ¢"(x) # 0 vicino a zg (ma non necessariamente in ) si puo applicare ’Hopital
una seconda volta e tentare di ricavare il limite di f//¢’ (e quindi quello di f/g)
calcolando il limite di f”/g".
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EsemMPIO 5.18 Vogliamo calcolare il seguente limite

i & —1—a(z-1)
rx—1 (;E — ]_)2

Applicando una prima volta 'Hépital otteniamo

. % —1-ar—-1) | ar®*l-a
lim = lim ,
1 (x —1)2 a—1 2(x —1)

che & ancora una forma indeterminata del tipo 0/0. Applicando ancora una volta
I’Hépital troviamo

ar®! -« . ala—1)z72  ala—1)
m im =
a—1 2(x —1) z—1 2 2 ’
e quindi
lim z*—1—afz—1) ala—1)
z—1 (x—1)2 2

Osservazione 5.24 Attenzione: per poter ripetere I’'Hopital bisogna essere sicuri
che anche il limite di f’/¢’ dia una forma indeterminata del tipo 0/0. Se non lo ¢,
il procedimento non funziona! Per esempio, il conto seguente & sbagliato:

3292 —1 . b6x—2 . 6
lim ——— = lim = lim —
x—1 2 —x z—12x — 1 z—1 2

=3.

Infatti, il secondo limite non ¢ una forma indeterminata, in quanto per z — 1 il
numeratore tende a 6 -1 — 2 =4 e il denominatore a 2-1—1 = 1. Quindi

o 3x?2-22—1 . bx—2 4
L B - b Il Rk

Osservazione 5.25 La regola di de 'Hopital non ¢ una panacea universale: non
permette di calcolare proprio tutti i limiti della forma 0/0. Per esempio, se tentiamo
di applicare I’'Hopital al quoziente e_l/”/x per £ — 01 otteniamo

6—1/::7 #671/w e—l/:v

lim = lim &—— = lim 5
z—0t z—0+ 1 z—0t T

9

che & ancora una forma indeterminata 0/0. Riapplicando ’'Hépital troviamo

) e—1/z ) z%e—l/x ) e~ 1/
lim 5— = lim =———= lim 3
z—0t T z—0t 2% z—0t 2T

che & sempre del tipo 0/0 pure peggio di prima. Ripetere ancora I'Hépital non
aiuta; si ottengono sempre quozienti del tipo e~ /% /(nlz"*+1) cioe forme indetermi-
nate 0/0. Per calcolare questo limite servono tecniche pilt sofisticate, che vedremo
piu avanti.
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Esercizio 5.1 Vedi cosa succede se tenti di calcolare usando I’Hépital i seguenti
limiti (mi raccomando, ricordati prima di tutto di trasformarli nella forma 0/0):

v log "
lim — lim , lim ze™®, lim xlogx .
r—400 I r—4o00 I r—400 z—0t

Nei dintorni della regola di de I’Hépital circola una terminologia che € spesso
utile, e che adesso introduciamo.
Diremo che una funzione f ¢ infinitesima in un punto xzo € R U {fo0} se

lim f(z)=0;

T—T0

diremo invece che e infinita in zg se
lim |f(z)| = +o00
Tr—T0

(usiamo il modulo perché non ci interessa distinguere fra +0o e —o0; come esercizio
verifica che se f ¢ infinita in xg, ed & continua fuori da zg, allora esistono i limiti
destro e sinistro di f(z) per x — xg, valgono +0o 0 —oo, ma possono essere diversi).

Dunque una funzione infinitesima (rispettivamente, infinita) in z¢ ¢ una fun-
zione che diventa arbitrariamente piccola (rispettivamente, di modulo arbitraria-
mente grande) vicino a xg. In molti contesti, ¢ importante saper confrontare due
funzioni infinitesime nello stesso punto zg, e decidere quale delle due & pil piccola.

Date due funzioni f e g infinitesime in zg, diremo che g € un infinitesimo di
ordine superiore rispetto a f in zq se

lim sz.

o0 f(z)

In altre parole, il rapporto g(z)/f(x) diventa arbitrariamente piccolo per z suf-
ficientemente vicino a z, che vuol dire che l'infinitesimo g ¢ molto piu piccolo
dell’infinitesimo f vicino a xg.

Se g & un infinitesimo di ordine superiore rispetto a f in xg, si scrive

g=o(f),

che si legge “g € un o piccolo di f”.
Se invece

JH}U%:CER\{O}’

diremo che g ed f sono infinitesimi dello stesso ordine in z¢; in tal caso abbiamo

gle)=cf(x) e fla)=

L’interesse di queste nozioni € che, in molte situazioni, é ragionevole trascurare
gli infinitesimi di ordine superiore. Infatti, supponiamo di avere due funzioni f
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e h= f+g,dove g =o0(f), cioé g & un infinitesimo di ordine superiore rispetto a f
in un punto zy. Allora possiamo scrivere

W) = F(x) + ge) = () (1 T %) ,

per cui
. h(z) ( g(x))
lim —= = lim (14+==—=%)=1.
o Fla) etn U f(a)
Ricordando il simbolo = introdotto nel Capitolo 4, abbiamo quindi fatto vedere
che

f@)+o(f(x)) = f(x);

in altre parole, vicino a xg la presenza dell’infinitesimo di ordine superiore non
modifica sostanzialmente il comportamento della funzione — e quindi puo spesso
essere trascurato. Nella Sezione 5.14 utilizzeremo in maniera sistematica questa
possibilita.

Osservazione 5.26 Attenzione: gli infinitesimi di ordine superiore si possono tra-
scurare quando si ¢ abbastanza vicino a xg. Per sapere in dettaglio quanto vicino
¢ “abbastanza” vicino, occorrono stime precise su quanto piccolo e I'infinitesimo di
ordine superiore. Stime di questo genere le vedremo nella Sezione 5.13; in assenza
di stime, si procede incrociando le dita sperando di non stare commettendo errori

troppo grossi.

Osservazione 5.27 Gli infinitesimi in 2y € R piu semplici che vengono in mente
sono le funzioni (x — x)* con k € N*; gli infinitesimi in fco pilt semplici sono le
funzioni =%, sempre con k € N*. Un problema che si pone spesso ¢ confrontare
un infinitesimo f qualsiasi con uno di questi infinitesimi standard — che & quanto
abbiamo fatto negli Esempi 5.14-5.16.

Un’ultima osservazione: il simbolo o si usa anche per gli infiniti. Se f e ¢g sono
infinite in xg, diremo che g € un infinito di ordine inferiore rispetto a f in xg, e
scriveremo g = o(f), se

x
lim 29 _ g,
2% F(a)
In altre parole, g = o(f) significa che il rapporto g/f € infinitesimo in x¢, indipen-
dentemente dal fatto che f o g siano infinite, infinitesime o altro.

ESEMPIO 5.19  Attenzione: 2% = o(z) come infinitesimi in 0, ma z = o(z?) come
infiniti in +oo0.
CURIOSITA 5.5 Nella letteratura si trovano anche formule del tipo g = O(f), che si legge “g &

un O grande di f”. Sfortunatamente, il significato del simbolo O pud cambiare da testo a
testo. I tre significati piti comuni sono:

(a) g=O0(f) in zo se il limite lim [g(x)|/|f(x)| esiste finito e diverso da zero;
r—xq
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(b) g =O(f) in zo se esistono due costanti m, M > 0 tali che m < |g(z)|/|f(z)] < M per tutti
gli x sufficientemente vicini a xo;

(¢) g = O(f) in z( se esiste una costante M > 0 tale che |g(z)| < M|f(z)| per tutti gli =
sufficientemente vicini a xg.

Ti lascio la cura di verificare che se g = O(f) secondo il significato (a) allora g = O(f) secondo il
significato (b), e che se g = O(f) secondo il significato (b) allora g = O(f) secondo il significato
(c), ma che nessuno dei viceversa & vero (esistono funzioni f e g tali che g = O(f) secondo il
significato (c) ma non secondo il significato (b), e cosl via). Dunque se in un testo troverai il
simbolo O assicurati di controllare cosa ’autore vuol dire con quel simbolo.

5.11 Massimi e minimi

N

Uno degli usi pitt comuni delle derivate € per trovare massimi e minimi di una
funzione; in questa sezione vedremo perché e come.

Iniziamo cercando di capire il significato del segno della derivata. Supponiamo
che f sia una funzione derivabile in zg, e che si abbia f’(xg) > 0. Siccome f’(x¢)
¢ il limite del rapporto incrementale, questo implica che

f(zo+h) — f(zo)
h

>0

non appena |h| & abbastanza piccolo. Tenendo presente il segno di h ricaviamo
quindi
f(xo —h) < f(zo) < flzo+h)

non appena h > 0 & abbastanza piccolo. Questa osservazione suggerisce la se-
guente definizione: diremo che f & crescente nel punto xg se z1 < x¢ < x2 implica
f(x1) < f(xo) < f(x2) non appena x e zo sono sufficientemente vicini a zg. Allora
abbiamo appena fatto vedere che f'(xzg) > 0 implica che f é crescente in xg.

Osservazione 5.28 Se una funzione & strettamente crescente nel senso usuale in un
intervallo (a,b) allora & anche crescente in tutti i punti dell’intervallo. Attenzione,
pero: esistono funzioni crescenti in un punto xy che non sono crescenti in nessun
intervallo contenente zy: per esempio, la funzione

3 1
r)=x| - +sn—
fa) = (s )
¢ crescente in 0 (per il semplice motivo che f(z) <0se x < 0e f(x) > 0se x > 0)
ma non e crescente in nessun intervallo contenente 1’origine.

In modo analogo (controllal) si dimostra che f/(xg) < 0 implica che f é decre-
scente in xg, cioe che f(xz1) > f(xg) > f(z2) non appena 1 < g < Tz € T1 € To
sono sufficientemente vicini a xg.

Viceversa, supponiamo che f sia (derivabile e) crescente in xg. Possiamo dedurre
che la derivata e positiva in g7 Quasi. Infatti, se f & crescente in xy abbiamo

f(zo—h) < f(zo) < f(zo+h)
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per h > 0 piccolo, ovvero (tenendo presente il segno di h)

flzo+h) — flxo)
h

>0

per ogni h sufficientemente piccolo (positivo o negativo che sia). Passando al limite

deduciamo
f(zo +h) — f(z0) >0,
3 >

cio¢ la derivata in xo ¢ non negativa. Un ragionamento analogo (che sicuramente
farai) mostra che se f & decrescente in zg allora f'(xg) < 0; anche stavolta compare
il minore o uguale, e non il minore stretto. Questo fa parte della natura delle
cose: come mostra il prossimo esempio, dobbiamo ammettere la possibilita che la
derivata sia nulla in un punto in cui f & crescente o decrescente; puo effettivamente
succedere.

Pan) =y

EseEMPIO 5.20 Sia f(x) = 2. Allora f & crescente in tutti i punti, e in particolare
anche nell’origine; ma f’(z) = 322 si annulla nell’origine. Quindi f & crescente in 0
anche se f'(0) = 0. Analogamente, la funzione g(z) = —z & decrescente nell’origine
ma ¢'(0) = 0.

Osservazione 5.29 11 ragionamento precedente mostra (esercizio per te) che se
f & crescente (rispettivamente, decrescente) nel senso usuale in tutto un inter-
vallo (a,b), allora f'(x) > 0 (rispettivamente, f'(x) < 0) per ogni x € (a,b). Vi-
ceversa, si pud dimostrare che se f’ & positiva (rispettivamente, negativa) in tutti
i punti di un intervallo (a,b), allora f & strettamente crescente (rispettivamente,
decrescente) in (a, b).

CURIOSITA 5.6 Di nuovo, lo strumento che permette di passare dall’informazione puntuale al-
I'informazione in tutto un intervallo & il teorema del valor medio di Lagrange (Curiosita 5.1).
Infatti, supponiamo che f’(z) > 0 per ogni & € (a,b), e scegliamo due punti qualsiasi
1, T2 € (a,b) con z1 < z». Allora il Teorema del valor medio di Lagrange ci dice che
esiste T € (x1,x2) tale che f(z2) — f(x1) = (z2 — z1)f'(T), e quindi f(x1) < f(z2) perché
f'(T) > 0 per ipotesi. Analogamente, se f’(x) < 0 per ogni € (a,b) deduciamo che f &
strettamente decrescente in (a, b).

Riassumendo, abbiamo dimostrato che

f'(rg) >0 = fecrescenteinzg = f'(x9)>0;
f'(zo) <0 = f&decrescente inzg = f'(z9) <0.

Che succede nei punti in cui la derivata si annulla? Come vedremo, possono succe-
dere varie cose, di cui alcune particolarmente importanti; ma intanto introduciamo
una definizione. Un punto xg in cui f’(xg) = 0 sard detto punto critico (o punto
stazionario, o estremo) della funzione f.

I ragionamenti precedenti ci forniscono subito due categorie di punti critici.
Diremo che un punto xg & un massimo locale (o relativo) di una funzione f se
f(zo) > f(xz) per tutti gli = sufficientemente vicini a zp. Analogamente, zo &
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un minimo locale (o relativo) di una funzione f se f(zo) < f(z) per tutti gli
sufficientemente vicini a xg.

Chiaramente, se x¢ € un minimo o un massimo locale per f allora f non puo
essere né crescente né decrescente in zp; quindi f'(x¢) non puod essere né positiva
né negativa, per cui necessariamente f’(z¢) = 0. In altre parole, minimi e massimi
locali sono sempre punti critici. I punti critici che non sono né minimi locali né
massimi locali sono chiamati punti di flesso (e a volte si aggiunge orizzontale, per
ricordare che la retta tangente in quel punto ¢ orizzontale).

Osservazione 5.30 Attenzione a distinguere fra massimi e minimi locali e massimi
e minimi globali. Un punto zy & detto di massimo globale (o assoluto) per una
funzione f:I — R se f(xg) > f(z) per ogni punto z € I del dominio di f, e
non solo per i punti z sufficientemente vicini a zy. Analogamente, zy € un punto
di minimo globale (o assoluto) per una funzione f:1 — R se f(xo) < f(z) per
ogni punto x € I del dominio di f. La derivata di f in un punto zy dipende
solo dal comportamento di f vicino a zg; quindi usando solo le derivate non siamo
in grado di identificare minimi e massimi globali fra i minimi e massimi locali.
Sapere quanto fa la derivata in un punto non dice nulla su cosa succede a duecento
chilometri (o secondi, o quale che sia I'unita di misura) da li. Pil in generale, le
derivate misurano solo fenomeni locali, e non fenomeni globali.

Osservazione 5.31 Un’altra avvertenza importante € che se una funzione f ha come
dominio un intervallo chiuso [a, b], allora massimi e minimi globali potrebbero essere
negli estremi dell’intervallo a e b anche se la derivata (destra o sinistra a seconda
dei casi) non si annulla nell’estremo®. Per esempio, la Figura 5.3 mostra il grafico
di una funzione con 6 punti critici interni all’intervallo di definizione, di cui 2 sono
massimi locali, 1 un punto di flesso, e 3 minimi locali. Il minimo globale ¢ uno dei
punti di minimo locale, ma il massimo globale & uno degli estremi dell’intervallo.
Di conseguenza, per trovare i minimi e i massimi globali di una funzione bisogna
controllare sia i punti critici interni sia gli estremi dell’intervallo di definizione.

Una domanda che sorge spontanea a questo punto &: & possibile usare la derivata
per distinguere un punto di minimo locale da un punto di massimo locale? La
risposta, come vedremo fra poco, € che si puo fare spesso usando la derivata della
derivata.

La derivata f’ di una funzione f ¢, a sua volta, una funzione; quindi possiamo
provare a derivarla. La derivata della derivata (quando esiste) si chiama derivata
seconda, e si indica con i simboli

a2 f

" oppure — .
/ pp 7n2

3 Questo non dovrebbe sorprenderti troppo: se ripensi al ragionamento che abbiamo
fatto, per stabilire che un punto zo di massimo o minimo locale era un punto critico
abbiamo avuto bisogno di esaminare la funzione da entrambi i lati di zo, cosa che non &
possibile fare negli estremi dell’intervallo di definizione.
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. 4 5 8 9
Figura 5.3 f(z) = —1006T 4 542% — 12¢° — 1472 4 4927 4 720 9,7 32 4 2° 2 € [-2.2,3.5].
Osservazione 5.32 A volte serve considerare anche la derivata della deri\gata se-
conda, che si chiama derivata terza, e si indica con i simboli f" oppure %. Piu
in generale, se deriviamo n volte una funzione f otteniamo la derivata di ordine n,

che si indica con i simboli
d"f

(n) 24
f oppure e

Il segno della derivata seconda segnala se la derivata prima & crescente o decre-
scente; possiamo usare questo fatto per identificare massimi e minimi locali.

Sia allora xp un punto critico per una funzione f (cioe f'(z¢) = 0), e supponiamo
che la derivata seconda di f sia (calcolabile e) positiva in zg, cioe f”(z¢) > 0.
Questo vuol dire che f’ & crescente in xzp; quindi, essendo f’(zg) = 0, otteniamo
che f'(x) < 0 per x < x( (sufficientemente vicino a x¢), e che f'(x) > 0 per x > xg
(sufficientemente vicino a ). Ma allora f & decrescente prima di z( e crescente
dopo xg — che vuol dire esattamente che zg € un minimo locale.

In altre parole, abbiamo dimostrato che

f'(xo)=0e f"(z0) >0 = =z ¢ un minimo locale.
In modo analogo si dimostra (esercizio) che
f(@o)=0e f"(z0) <0 = =z & un massimo locale.

Quindi il segno della derivata seconda ci fornisce un criterio per stabilire se un
punto critico € un minimo locale o un massimo locale.

Osservazione 5.33 Attenzione: se f”(xg) = 0 a priori pud succedere di tutto. Per
esempio, le tre funzioni f(z) = 22, g(z) = 2* e h(x) = —2* hanno tutte derivate
prime e seconde nulle in 0, ma 0 & un punto di flesso per f, un minimo locale per g
e un massimo locale per h.
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CURIOSITA 5.7 Pill in generale, supponiamo che f si possa derivare n volte in xo, e che si
abbia f'(zo) = f"(z0) = -+ = f* "V (z0) = 0 ma f(™(zg) # 0. Allora si pud far vedere che

- se n & dispari allora o ¢ un punto di flesso;

- se n & pari e f(™(xy) > 0 allora z; ¢ un minimo locale;

— se n & pari e f<")(:c0) < 0 allora zg € un massimo locale.

Vediamo ora come applicare quanto visto finora in un problema concreto.

ESEMPIO 5.21 E noto che i piccioni viaggiatori non amano volare a lungo sopra
ampi specchi d’acqua (per esempio, laghi), e che spesso per evitarlo compiono delle
deviazioni che allungano il percorso totale. Non e noto con sicurezza il motivo di
questo comportamento; per gli scopi di questo esempio, supporremo che sia dovuto
al fatto che di giorno sui laghi si formano correnti d’aria discendenti (causate dal
raffreddamento dell’aria sopra la superficie dell’acqua), per cui i piccioni per ri-
manere in quota devono spendere piu energia sopra il lago di quanto ne spendano
sopra la terra. Siccome il piccione tende a scegliere il proprio percorso in modo da
minimizzare l'energia necessaria per giungere al punto d’arrivo, questo meccanismo
potrebbe spiegare il comportamento dei piccioni.

Vediamo cosa di applicare questo modello alla situazione illustrata nella Fi-
gura 5.4. Un piccione viaggiatore viene liberato nel punto A sulla sponda ovest
di un lago, e deve raggiungere il punto C' sulla sponda sud. Il tragitto piu breve
sarebbe il segmento AC, ma non ¢ detto che sia il tragitto che minimizza 1’energia.
Supponendo, per semplicita, che la sponda sud del lago sia pit o meno rettili-
nea, vogliamo trovare il punto P lungo la costa tale che il tragitto formato dal
segmento AP seguito dal segmento PC minimizzi 'energia.

N

Figura 5.4 Piccioni viaggiatori.

Introduciamo alcuni dati. Indichiamo con B la proiezione M sulla retta est-
ovest passante per C, con a :_|BC'| la lunghezza del segmento BC, e con b = |A_B|
la lunghezza del segmento AB. In particolare, la lunghezza del segmento AC

¢ |AC| = Va2 + 2.
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Indichiamo poi con E;, ’energia per unita di lunghezza necessaria per volare
sopra il lago, e con F; ’energia per unita di lunghezza necessaria per volare sopra
la terra. La nostra ipotesi € che Ey sia maggiore di Fy, cioe che

E
|

k= .
Ey

L’energia necessaria per compiere il percorso APC ¢ quindi
E(P) = E|AP| + Ei|PC| ;

dobbiamo trovare P in modo da minimizzare FE(P).

Per poter effettuare i conti, introduciamo ’angolo 6 fra il segmento AP e il
segmento BC'; & chiaro (vedi anche la Figura 5.4) che I’angolo 6 identifica univoca-
mente il punto P. Abbiamo

b
AP| = —;
|AP] sinf ’
inoltre, se P si trova fra B e C' allora

bcos b

|PC| =a—|BP|=a—|AP|cosf =a— —
sin 0

Attenzione: questa formula vale solo se P si trova fra B e C, ovvero, in termini di
angoli, se e solo se 0; < 6 < /2, dove 6; & langolo fra AC' e BC' e soddisfa

cosbfy = @ _ @
Vo ar T Ve v

Discuteremo dopo cosa succede se § non appartiene all’intervallo [0, 7/2].
Con queste notazioni, la funzione da minimizzare diventa

b bcos 6 E,— FE 0

B(0)=E—— + B, (a— 27 ) = qB, + bt 27
sin 6 sin 6 sin 6 (5.17)

k — cos 6 '
= (LEt + bEt ﬂ .
sin 6
Per trovare il punto di minimo assoluto, cominciamo col derivare:

B(9) = bEtsin29 —cosO(k — cos ) _ bEtl — kcosd (5.18)

sin’ 9 sin’ @

Quindi 'unico punto critico di F ¢ il punto 6y tale che

1
cosfy = 7 (5.19)
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cioé 0y = arccosk™! € (0,7/2). Verifichiamo che & un minimo calcolando la deri-
vata seconda:

E"(0) = bE, </€Sln9 - kcosﬂ)d% (L)) ,

sin” # sin” #
per cui

_ bEk

E//
(%) sin 6y

>0,

e 0y ¢ effettivamente un minimo.

Abbiamo quindi identificato il punto P cercato; ¢ il punto corrispondente al-
l’angolo 6y soddisfacente la relazione (5.19). Nota un fatto interessante: 6 dipende
solo dal rapporto k fra le energie, e non dalle dimensioni del lago (né dalla posizione
dei punti di partenza e arrivo!). In particolare, questo vuol dire che il piccione puo
essere in grado di determinare 6 (e quindi la direzione in cui volare) semplicemente
stando sul lago e confrontando I’energia che spende per volarci sopra con ’energia
che spende sulla terra; quindi il piccione ¢ in grado di stabilire la rotta solo usando
informazioni locali.

Il nostro lavoro non & ancora terminato. Come abbiamo gia notato, la for-
mula (5.17) vale solo per 0 € [0y, 7/2]; quindi abbiamo trovato il punto di minimo
solo se Oy appartiene a questo intervallo, cioe solo se 61 < 0y < w/2, ovvero (ricor-
dando che il coseno & decrescente in [0, 7/2]) solo se

a?

1
pras = cosf; > cosfy = 7

che ¢ equivalente a
b\ 2
k> /14 (E) . (5.20)

Se questa condizione non e soddisfatta, il punto di minimo 6y non appartiene al-
I'intervallo [61,7/2], per cui il minimo di E in questo intervallo dev’essere in uno
degli estremi (non essendoci altri punti critici interni). Ora, (5.18) ci dice che se
0 > 0y allora E'(f) > 0. Questo vuol dire che se §y < 6y allora la funzione E &
crescente nell’intervallo [0y, /2], per cui il valore minimo & assunto in 6. In altre
parole, se (5.20) non & soddisfatta allora il percorso che minimizza lenergia & il seg-
mento AC. Questo & ragionevole: infatti se (5.20) non & soddisfatta allora 1'altezza
nord-sud del lago ¢ molto maggiore della larghezza est-ovest, per cui in ogni caso
la maggior parte del tragitto deve essere sul lago, e il risparmio di energia ottenuto
volando sopra un pezzo di costa non compensa ’allungamento del percorso.

Per essere sicuri di avere effettivamente considerato tutti i casi possibili, tro-
viamo la formula dell’energia anche per P a est di C' o a ovest di B. Se P ¢ a est
di C' la formula diventa

Fuet(0) = E|AP| + E,|PC| = bEtk:,iCOSG

inf —ak,
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valida per @ € (0,6;]. Derivando troviamo

1+ kcosb
El.(0) = —bE———5— <0
sin“ 6
in tutto l'intervallo; quindi Eegs € decrescente in (0, 61] e ha minimo in § = 67, come
previsto. Infine, se P & a ovest di B la formula diventa

k +sinf
Eovest(0) = Ee|AP| + E,|PC| = b&%

E
0s @ akes

valida per 6 € [r/2, 7). Derivando troviamo

0) = p, LERSO

E/
cos2 6

ovest
in tutto l'intervallo; quindi Egyest © crescente in [r/2,7) e ha minimo in § = 7/2.
Siccome Foyest(7/2) = E(m/2), scegliere P a ovest di B non fornisce un tragitto
con energia minore di quelli che avevamo esaminato prima.

Riassumendo, abbiamo dimostrato che se i dati del problema soddisfano la con-
dizione (5.20) allora il tragitto migliore & quello corrispondente all’angolo 8y dato
da (5.19); se invece i dati del problema non soddisfano (5.20) allora il tragitto mi-
gliore ¢ il segmento AC.

Questo risultato suggerisce esperimenti successivi che potrebbero gettare luce
sui meccanismi di volo dei piccioni viaggiatori. Infatti, mentre, come abbiamo
visto, il calcolo dell’angolo 6y puo essere effettuato dal piccione soltanto in base
alla situazione locale, la condizione (5.20) dipende dalla geometria globale del pro-
blema, e, in particolare, dalle dimensioni del lago. Si possono quindi progettare
degli esperimenti (per esempio, variando la posizione del punto A di partenza) in
cui la condizione (5.20) non sia soddisfatta. Se il piccione parte volando nella dire-
zione data dall’angolo 6, allora dovremo dedurre che, almeno all’inizio, stabilisce
la propria rotta solo in base a informazioni locali; se invece parte fin dall’inizio nella
direzione data dall’angolo 61, allora dovremo dedurre che il piccione & in possesso
di informazioni globali sulla geometria della situazione, e che determina la propria
rotta in base a queste informazioni — e quindi diventa interessante scoprire di quali
informazioni € in possesso.

In conclusione, abbiamo visto come trasformare un problema di etologia in un
modello matematico, e come lo studio attento del modello possa a sua volta indicare
nuovi problemi etologici e suggerire ulteriori esperimenti.

5.12 Studio qualitativo di funzioni

Torniamo ora alla situazione generale, e cerchiamo di vedere se il segno della deri-
vata seconda ha un significato anche al di fuori dei punti critici.

Se f"(xo) > 0 allora f'(zg) & crescente in xg. Questo vuol dire che, andando
da sinistra verso destra, la pendenza della retta tangente al grafico di f sta au-
mentando: il grafico di f sta ruotando in senso antiorario (vedi la Figura 5.5).
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Visivamente, il grafico di f ha la concavita rivolta verso ’alto; in tal caso diremo
che la funzione f & convessa in x.

J

Figura 5.5 Funzioni convesse.

Se invece f"(xg) < 0 allora f'(zg) & decrescente in xg. Questo vuol dire che,
andando da sinistra verso destra, la pendenza della retta tangente al grafico di f
diminuisce: il grafico di f ruotando in senso orario (vedi la Figura 5.6). Visiva-
mente, il grafico di f ha la concavita rivolta verso il basso; in tal caso diremo che
la funzione f & concava in xg.

/N

Figura 5.6 Funzioni concave.

CURIOSITA 5.8  Si pud definire cos’® una funzione convessa anche senza tirare in ballo le derivate.
Essenzialmente, si dice che una funzione f:I — R & convessa se per ogni z; < zo in [ il
grafico di f in [z1, 2] & sotto il segmento secante da (xl, f(:vl)) a (zg, f(xg)) Si puo allora
dimostrare che ogni funzione che ammetta derivata seconda sempre positiva & convessa anche
in questo senso.

Rimangono i punti zg in cui la derivata seconda si annulla; e, al solito, puo
succedere di tutto (nel senso che il grafico della funzione puo sia cambiare sia non
cambiare concavitd passando attraverso xg); vedi I’Osservazione 5.32. I punti in
cui f”(xg) = 0 vengono detti punti di flesso (obliquo se f'(x¢) # 0, cioe se la retta
tangente non & orizzontale).

A questo punto abbiamo abbastanza tecniche per effettuare quello che si chiama
studio qualitativo delle funzioni. In altre parole, siamo in grado (almeno per fun-
zioni che ammettono due derivate) di avere un’idea piuttosto precisa, anche se
qualitativa, dell’andamento del grafico della funzione. Tipicamente, si procede nel
modo seguente:

— si identifica il dominio di definizione della funzione, trovando in particolare
eventuali punti singolari e gli estremi degli intervalli che compongono il dominio
di definizione;

—  sistudia il segno della funzione, in modo da capire in quali intervalli & positiva
e in quali & negativa (e in quali punti si annulla);
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—  si studia il segno della derivata prima, in modo da capire in quali intervalli la
funzione & crescente e in quali & decrescente; inoltre, si calcolano i punti critici
(cioe gli zeri della derivata), e il valore della funzione in questi punti, in modo
da poter porre sul grafico tutti i minimi, massimi e punti di flesso;

— si studia il segno della derivata seconda, in modo da capire in quali intervalli
la funzione & convessa e in quali & concava, e da distinguere minimi e massimi
locali dai punti di flesso;

— i calcola il limite (se esiste) della funzione nei punti singolari, negli estremi
degli intervalli di definizione, e all’infinito (se ha senso farlo).

Non e detto che si riescano a effettuare tutti questi passaggi; ma piu se ne fanno,
maggiore € la precisione con sui si traccia il grafico.

EsEMPIO 5.22  Vogliamo effettuare uno studio qualitativo della funzione

222 — 1
f@) =257

E una funzione razionale; quindi il dominio & costituito da tutta le retta reale tolti
gli eventuali zeri del denominatore. In questo caso il denominatore z? + 1 non si
annulla mai, per cui f & definita su tutto ’asse reale.

Siccome il denominatore & sempre positivo, il segno e gli zeri di f coincidono
con il segno e gli zeri del numeratore 222 — 1. Le tecniche che abbiamo visto nel
Capitolo 4 ci dicono quindi che f(z) = 0 se e solo se # = +1/v/2, e che f(x) ¢
negativo per r € (—1/v/2,1/4/2), e positiva fuori da [~1/+/2,1/+/2]. Riportiamo
queste informazioni su un grafico come nella Figura 5.7.(a).

La derivata di f e

dz(2? +1) — 22(22% — 1) 6x

fla) = (22 +1)2 T (@12

Quindi f’ si annulla solo in 0, ¢ negativa per x < 0, ed & positiva per x > 0. Di
conseguenza, f e decrescente per x < 0, crescente per x > 0, e ha un punto critico
in z = 0, dove vale f(0) = —1. Nota che possiamo gia adesso stabilire che 0 & un
minimo assoluto di f, per almeno due motivi. Prima di tutto, abbiamo appena
visto che f e decrescente prima di 0 e crescente poi; quindi 0 ¢ un minimo —
necessariamente assoluto dato che non ci sono altri punti critici e il dominio di f
non ha estremi. Ma possiamo arrivare alla stessa conclusione anche senza bisogno
di studiare il segno della derivata. Infatti, f deve avere un minimo nell’intervallo
chiuso [~1/+/2,1//2]; siccome f & negativa nell’interno dell’intervallo, e nulla negli
estremi, il minimo dev’essere un punto critico interno all’intervallo; siccome 0 e 'u-
nico punto critico, dev’essere il minimo. La Figura 5.7.(b) riassume le informazioni
trovate finora.
La derivata seconda di f &

wo o 6(z?+1)2 = 2(z% +1)(2x)(6z)  —6(3z* + 222 — 1)
Jla) = (@2 + 1) T @)
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Figura 5.7 Studio qualitativo di funzione.

Anche stavolta il denominatore ¢ sempre positivo, per cui per trovare il segno di f”
ci basta studiare il segno del numeratore. Poniamo y = z?; allora il numeratore
si annulla se e solo se —6(3y% +2y — 1) = 0, cioe se e solo se y = —1 0 y = 1/3;
¢ positivo (ricorda che il coefficiente di y? & —18) se e solo se y € (—1,1/3), ed
¢ negativo se e solo se y ¢ [—1,1/3]. Ora, y = 2% non pud mai essere negativo;
quindi f”(x) si annulla se e solo se #2 = 1/3, ¢ positivo se e solo se 2% € [0,1/3),
ed & negativo se e solo se 22 > 1/3. Estraendo le radici quadrate otteniamo quindi
che f"(x) = 0 se e solo se x = £1//3, f"(z) > 0 se e solo se = € (—1//3,1//3),
e f"(x) < 0se e solose x ¢ [~1/v/3,1/+/3]. Dunque abbiamo due punti di flesso
obliquo (non sono punti critici) in cui f vale f(£+1/v/3) = —1/4, la funzione f &
convessa fra i due punti di flesso, ed ¢ concava all’esterno di essi. E importante
vedere dove si situano i punti di flesso rispetto agli altri punti significativi (gli zeri e
i punti critici) che abbiamo individuato: siccome 0 < 1/ V3<1 / V2, 1 punti di flesso
si trovano fra il punto critico e gli zeri. Tutto cio € riassunto nella Figura 5.7.(c).

Infine dobbiamo calcolare il limite di f all’infinito. Quanto visto nel Capitolo 4
ci dice subito che questo limite vale 2; un altro modo per verificarlo ¢ il seguente
conto:

2% — 1 . 221/ . 2—1/2?
im ——= lim —————= lim ——— =
z—too 2+ 1 g—too g2 14 1/22  a—too 14 1/22

La Figura 5.7.(d) inserisce nel grafico anche questa ulteriore informazione.
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A questo punto non rimane che tracciare il grafico della funzione. E chiaro che
la curva che tracciamo usando le informazioni trovate potrebbe non essere esatta-
mente quella giusta; ma & anche altrettanto chiaro che questa curva riflettera bene
il comportamento qualitativo (segno, crescenza/decrescenza, convessita/concavita,
massimi/minimi/flessi, limiti agli estremi) della nostra funzione — e spesso questo
¢ sufficiente. Prova a tracciare una curva nella Figura 5.7.(d) che rispetta tutte le
informazioni ottenute, e poi confrontala con la Figura 5.8 che contiene il grafico
vero della funzione f.

Figura 5.8 Grafico di f(z) = (22° — 1)/(z* + 1).

5.13 Sviluppo di Taylor

Si sente spesso dire che “la retta tangente ¢ la retta che meglio approssima un
grafico in un punto”. In questa sezione vogliamo chiarire cosa vuol dire questa
affermazione, perché & vera, e vedere come ottenere approssimazioni anche migliori.

“Meglio approssima” significa che I’errore che si compie sostituendo il grafico con
la retta dev’essere il minimo possibile. Come abbiamo gia visto quando abbiamo
studiato I'interpolazione, I’errore che conta ¢ dato dalla differenza delle ordinate in
punti di uguale ascissa. Quindi data una funzione f:I — R e un punto xy € I,
vogliamo trovare m, d € R tali che la funzione errore

Ei(z) = f(z) — (mx + d)
sia la piu piccola possibile vicino a zq.

Come concretizziamo questa condizione di “pill piccolo possibile vicino a xy”?
Prima di tutto, possiamo richiedere che ’errore sia nullo in xg, cioe che

0= FEi(x0) = f(xzg) — (maxo+d) = d= f(xg)—mxg.
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Con questa scelta, la funzione F; diventa
Er(@) = f(2) - f(z0) — m{@ — 20)

ed e infinitesima in xg. Ma quanto infinitesima? L’idea ¢ che maggiore € l'ordine di
infinitesimo in xy minore € ’errore e quindi migliore & l’approssimazione. Per cer-
care di capire quanto infinitesima puo essere E7, confrontiamola con 'infinitesimo
pitt semplice,  — zy (vedi 'Osservazione 5.27). Supponendo che f sia derivabile
in x¢ otteniamo

lim El(z) — lim f(x) - f(xO) - m(a: — ZE()) _ f/(l‘o) —m.
T—To T — T r—x0 T — X9

Quindi Eq(z) e  — xp sono infinitesimi dello stesso ordine in 2y a meno che
m = f'(xo), nel qual caso Fj(z) & un infinitesimo di ordine superiore rispetto
a x — xg. Quindi il valore di m che rende F(x) pilu piccolo possibile vicino a xg
em = f'(zp), per cui y = f'(x0)(x — o) + f(x0) & la retta che meglio approssima
il grafico di f vicino a xg. Piu precisamente, abbiamo fatto vedere che

f(@) = f(xo) + f'(x0)(x — 20) + o(x — z0) .

Vogliamo adesso la migliore approssimazione quadratica, cioe il polinomio qua-
dratico il cui grafico meglio approssima il grafico di f vicino a zy. Siccome con una
funzione lineare otteniamo un errore o(z — xg), con un’approssimazione quadratica
vogliamo ottenere un errore che sia un infinitesimo di ordine superiore, almeno
pari a o((x — xo)Q). Quindi la parte lineare del polinomio quadratico dev’essere
(perché?) quella che abbiamo gia trovato, e cerchiamo a € R tale che

Es(z) = f(z) — f(wo) — f'(zo)(z — 20) — alz — x0)?

sia 0((x — xo)z). Supponendo che f sia derivabile due volte vicino a zy possiamo
applicare 'Hopital e ottenere

p_Ba@) L (@) = fl@o) = f/(w0)(x — z0) — ale — 20)
v—a0 (£ —x0)* = (7 — 20)2
- a:llna:lo f (x) - f2((z())__x02)a(x — ‘TO) = %fﬁ(l’o) —a.

Quindi I'unico valore di a per cui Ea(z) = o(z — x0)?) & a = 5 f"(z0). In altre
parole, la migliore approssimazione quadratica di f vicino a zq €

Palw) = (o) + /(w0)(w = 20) + 5" (w0} z = 20

e possiamo scrivere

F(a) = £(zo) + £ @)z — o) + 5 " (o) (& — w0)? + o (& — 70)?) -
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A questo punto avrai capito come si procede. Se vogliamo trovare la migliore
approssimazione cubica di f vicino a xg consideriamo ’errore

Es(z) = f(x) = f(zo) + f'(w0)(x — x0) + %f”(l’o)(x —20)? + b(z — x0)”

e cerchiamo il valore di b tale che F3(z) = o((z — x9)*). Supponendo che f sia
derivabile tre volte vicino a x e applicando I’'Hopital due volte otteniamo

lim —Eg(x)
a—wo (. — x0)3
i f(x) = f(zo) — f'(x0)(x — x0) — f”(;‘]) (r —x0)? — bz — 20)®
o minmlo ({E _ x0)3
o @) = ) )@ — o) — b — 20)?
o 3o — a0
o f@) = (@) —3-2b(x —3) 1,
o xligtlo 3- 2({E — 1’0) N ? (1‘0) —b

Quindi il polinomio cubico che meglio approssima f vicino a zq &
Py(w) = f(zo) + £/ (o) (& = 0) + 5 £ (o) (& = 0)? + 5 (o) = 0)*
e possiamo scrivere
£(&) = Fw0)+ 1 (o) w=r0) 3 £ (w0) o —0)* 311" o) r—0) o (—20)?)

Procedendo in questo modo, si vede che se f é derivabile n volte vicino a xg
allora il polinomio di grado n che meglio approssima f vicino a xg € il polinomio

P =3 %f(j)(xo)(fv Y

(dove 0! = 1 come al solito, e O = f), che é lunico polinomio tale che Uerrore
En(z) = f(x) — Pu(x)
sia un infinitesimo di ordine superiore a (x — )", per cui si ha
1
f(@) = f@o) + f'(wo) (@ — wo) + -+ + ﬁf(”) (zo)(x — o)™ +o((w —x0)") . (5.21)

11 polinomio P, (x) & detto polinomio di Taylor di f in zq di grado n, e (5.21) viene
detto sviluppo di Taylor di f in xq di ordine n.

Osservazione 5.34 1In alcuni libri i polinomi e lo sviluppo di Taylor in 0 vengono
chiamati polinomi e sviluppi di Maclaurin di f.
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EsEMPIO 5.23 Vogliamo trovare lo sviluppo di Taylor di ordine n in g = 0 per
la funzione esponenziale f(x) = e®. Siccome fU)(x) = e® per ogni j € N, abbiamo
f9)(0) = 1 per ogni j € N, per cui lo sviluppo cercato &

1 1
e

I::l
€ trty 30

1
m3+-~-+—'x"—|—0(m").
n!

EsEMPIO 5.24 Vogliamo trovare gli sviluppi di Taylor in zg = 0 per la funzione
seno f(x) =sinx. Siccome

f(x)=sinz, f'(z)=cosz, f'(z)=—sinz, [fO(z)=—cosz,
e fW(z) =sinz = f(x), le derivate successive si ripetono. Quindi
foy=0, fO=1, f0)=0, f30)=-1,

e quelle successive si ripetono in maniera periodica; per Iesattezza (controlla)

f(j)(O) _JO se j = 2n e pari,
Tl (=1)" sej=2n+1 ¢ dispari.

Quindi lo sviluppo cercato ¢

A L g 15 14 (=" onpa 2n+2
sing =z — 5w +§x—ﬁm +~~~+mx + o(x )

(e convinciti che I'aver scritto o(z?"*+2) invece di o(z*"*1) non & un errore).

EsEmPIO 5.25 In modo analogo troviamo gli sviluppi di Taylor in zg = 0 per la
funzione coseno f(x) = cosz. Siccome

f(z) =cosz, f'(x)=—sinz, f'(z)=—cosz, [fO(z)=sinz,
stavolta abbiamo
fO)=1, fO)=0, f0)=-1, fO0)=0,
e pil in generale (verifica)

f(j)(O) 0 se 7 = 2n + 1 e dispari,
1 (=)™ sej=2né pari.

Quindi lo sviluppo cercato &

o Lo 14 1 (=1)" o 2n+t1
cosx—l—ga: —|—Ix—ax —|—-~-—|—(2n)!x + o(x ).
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EseEmMPIO 5.26 Vogliamo lo sviluppo di Taylor della funzione f(z) = logx nel
punto zg = 1. Abbiamo

f@) =loga, fla)==. f'@)=-—

e, in generale,

Quindi f(1)=0¢e
Wi >1 ) = (171G -t
per cui lo sviluppo cercato ¢

logaﬁz(:E—l)—%(m—1)2—|—é(x—1)3+--~—|—%(m—l)”—l—o((m—l)”).

ESEMPIO 5.27 Vogliamo lo sviluppo di Taylor della funzione f(z) = 1/(1 — z)
in g = 0. Abbiamo

fla) = 1; C f@=7 _136)2 L @) =g 235)3 e =4 E"x)4 !
e, in generale, .
9@ = 5 _];)M
Quindi
VjeN F90) =41,

per cui lo sviluppo cercato ¢

1

7 =l4+z+a®+ - +2" +o(z").
-z

CURIOSITA 5.9 Se f ammette derivate di ordine qualsiasi in zo (come accade per esempio per le
funzioni esponenziali o trigonometriche) possiamo approssimare f con polinomi di Taylor di
ordine arbitrariamente alto; quindi potremmo essere tentati di scrivere una formula del tipo

§(@) = Fa) + I @)@ = 20) + 3 1" (@) = w0)? + = o) = w0)* 0, (522)

dove i puntini sottintendono la “somma” di un’infinita di termini. Questa ¢ in realta una
buona idea, ma non si puo fare sempre. Voglio darti un’idea di come si pud procedere, e quali
sono i problemi che si possono incontrare.

Prima di tutto dobbiamo dare un senso alla somma infinita (5.22). Per farlo, conside-
riamo prima un problema lievemente piu semplice. Supponiamo di avere una successione
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{ao, a1, a2, ...} di numeri reali. Allora possiamo costruire la successione {so, s1, s2, ...} delle
somme parziali sommando un numero finito di termini alla volta:

So=a, S1=a+ta, S2=a+a+a, S3=a+a +azx+as,

e, pil in generale,
n
Sn = E a; .
j=0

Se la successione {s, } ammette un limite finito per n — 400, allora & ragionevole considerare
questo limite come somma della successione infinita di addendi ao, a1, az,.... Questa somma
infinita viene detta serie e indicata col seguente simbolo:

+oo

Sa

j=0

Quindi per definizione la somma della serie (quando esiste — nel qual caso diremo che la serie
converge) & data dal limite delle somme parziali:

+o00 n
E a; = lim a; .
n—+oo
Jj=0 Jj=0

Torniamo al nostro problema. Per ogni numero z fissato, possiamo considerare la successione
di numeri

a; = =19 (zo) (e — 2o} .
7!

Allora il polinomio di Taylor P;(x) valutato in x coincide proprio con la somma parziale

Pu(@)= a;,
j=0

per cui possiamo considerare la serie di Taylor per f in xq

+oo +oo .
7)== 3 L ey

Quando = = z( tutti gli addendi di questa serie tranne il primo sono nulli, per cui T'(z¢) & in
realtd una somma finita e si ha T(zo) = f(z0). Ma per = # o possono capitare tre cose:

degli a;, cioe

(a) la somma non esiste, ciot la serie non converge;
(b) la serie converge a un valore T'(z) € R, ma T'(z) # f(z);
(c) la serie converge a un valore T'(x) uguale a f(z).

La situazione migliore & chiaramente la (c): vuol dire che possiamo approssimare la funzione
arbitrariamente bene con i polinomi di Taylor, in quanto (c) & equivalente ad avere

lim E,(z)=0.

n—+4oc

Quando questo accade per tutti gli « sufficientemente vicini a zq si dice che f ¢ analitica reale
in zo. Ovviamente, a questo punto si pone il problema di stabilire per quali x la serie di Taylor
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converge a f(z). Per esempio, si pud dimostrare (vedi la Curiosita 5.11) che la serie di Taylor
dell’esponenziale converge all’esponenziale per tutti gli x € R; lo stesso accade per il seno o il
coseno. Invece, la serie di Taylor di 1/(1 — z) trovata nell’Esempio 5.27 non converge per tutti
gli z € R; per esempio, & chiaro che diverge per ogni z > 1 (in quanto somma di termini sempre piu
grandi). Perd si pud dimostrare che converge a 1/(1 —z) per |z| < 1, per cui la funzione 1/(1 —x)
& comunque analitica reale in 0. Lo studio di queste problematiche, e in generale delle funzioni
analitiche reali, € un campo della matematica molto sviluppato e pieno di applicazioni.

Infine, voglio citare almeno un esempio di funzione f con derivate di ogni ordine la cui serie di
Taylor converge in ogni punto ma T'(z) # f(z) per ogni z > 0. Si tratta della funzione f definita
nella Curiosita 4.12. Infatti vedremo nel prossimo capitolo che questa funzione ha derivate di ogni
ordine, ma f()(0) = 0 per ogni j € N; quindi la serie di Taylor di f in 0 & identicamente nulla (e
quindi in particolare convergente) ma f(x) # 0 per ogni = > 0.

Quando si approssima qualcosa, ¢ importante avere una stima dell’errore che
si compie. Uno dei motivi per cui i polinomi di Taylor sono cosi utili & che esiste
una formula semplice per stimare 1’errore che si compie sostituendo il polinomio di
Taylor alla funzione originale. Dato g, sia f una funzione con n + 1 derivate (una
in pilt rispetto a quelle necessarie per scrivere lo sviluppo di Taylor di ordine n),
e per ogni z indichiamo con M, (x) il massimo del modulo della derivata (n + 1)-
esima ("1 sull’intervallo di estremi z e z. Allora se P, il polinomio di Taylor
di grado n per f in xg abbiamo la stima di Lagrange dell’errore

|z — x|t

|En(z)] = [f(2) — Pu(z)] < Mp(2) CE)

(5.23)

La Curiosita 5.10 spiega come si ricava questa formula; ma prima vediamo in un
paio di esempi come si usa.

EsEmpPIO 5.28 Vogliamo trovare un’approssimazione alla quarta cifra decimale
del numero di Nepero e. Lo sviluppo di Taylor dell’esponenziale ci dice che

1
— i “ee J— ETL ;

se troviamo un n > 1 tale che |E,(1)| < 1075 allora (perché?) I'approssimazione

T4t oy L
e : p— —_— DY JE—

2 3 n!
ci dara le prime quattro cifre decimali di e. Ora, tutte le derivate della funzione
esponenziale coincidono con la funzione esponenziale, che ¢ crescente nell’inter-
vallo [0,1]; quindi M,,(1) = e! = e per ogni n > 1, ed (5.23) ci dice che

el — o[+t 3
E,(1)| <
< =03 <

dove abbiamo usato la disuguaglianza elementare e < 3. Quindi ci basta trovare n
tale che 3/(n + 1)! < 107°, ciog tale che (n + 1)! > 300000. Siccome 9! = 362 830,
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basta prendere n = 8 per ottenere

11 1 1 1 1 1
621+1+§+§+I+a+a+ﬁ+§22.71827877

corretto almeno fino alla quarta cifra decimale compresa.
ESEMPIO 5.29 Vogliamo ricavare la stima (4.29) del capitolo precedente. Pren-

diamo f(z) = a(1—e *@=20)) 1 b: allora (4.29) non ¢ altro che la stima di Lagrange
dell’errore per f in x( di ordine 1. Infatti,

fl(l') _ kaefk(z*aio) e f//(l') _ _k2a€7k:(17x0) ,
per cui f(zg) =b, f'(xg) = ka e
Er(z) = f(z) = (b + ka(z — x0)) ;
dunque il membro sinistro di (4.29) coincide con |Ej(z)|. Infine, per z > x il
modulo della derivata seconda di f & decrescente; quindi M;(z) = k%a, e (4.29) &
esattamente la stima di Lagrange dell’errore.
EsEMPIO 5.30 Stavolta vogliamo dimostrare la stima contenuta nell’Osserva-

zione 4.47. 1 conti sono piu complessi rispetto al caso precedente, per cui seguili
con attenzione. Poniamo

a
F@) = T S T
allora
f/(x) — M f”(;v) _ ak2e_k(w—mo)(e—k(a:—mo) . 1)

(1+67k(1:710))2 ’ (1+efk(a:7mo))3
In particolare, f(zg) = b+ (a/2) e f'(xro) = ak/4; quindi il membro sinistro
della stima dell’Osservazione 4.47 ¢, come al solito, |Ey(z)|, dove abbiamo fatto
lo sviluppo di Taylor di f in zp. Dobbiamo quindi calcolare M;j(z), cioé trovare
il massimo di |f”| nell'intervallo di estremi xy e € [x_1,21], dove x4, & tale
che f(z+1) =b+ (a/2) £ (a/4).

Poniamo y = e #(@=70) ey, = e *(@+1=20)  Allora abbiamo

risolvendo troviamo y; = 1/3 e y_; = 3. Siccome e *(*~%0) ¢ strettamente decre-
scente, abbiamo trovato che quando z varia in [x_;, 2] allora y varia in [1/3, 3].
Ora,

_ lalk?yly —1|

)] =
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quindi dobbiamo trovare il massimo di g(y) = yly — 1|/(1+y)® per y € [1/3,3]. La
presenza del valore assoluto di y — 1 ci costringe (perché?) a considerare separata-
mente l'intervallo [1/3,1] dall’intervallo [1,3]. Nel primo intervallo

o(y) = LV
(1+y)?’
per cui derivando otteniamo
gy = WA
(1+y)* 7

che si annulla in 2 + /3. Siccome 2 — V3 < 1/3<1<2+4 V3, la derivata 9 (y)
& negativa in [1/3,1], per cui g & decrescente in questo intervallo, e il massimo &
nell’estremo y; = 1/3.

Nel secondo intervallo

g(y) = vy
(1+y)3’
per cui derivando otteniamo
J(y) = l-dy+y
1+y)*

che si annulla di nuovo in 2 + /3. Siccome 2 — V3 <1 <3 < 2+ \/g, la deri-
vata ¢'(y) & positiva in [1, 3], per cui g & crescente in questo intervallo, e il massimo
¢ nell’estremo y_; = 3. Siccome ¢(1/3) = ¢g(3) = 3/32, otteniamo

3
Va € [x_1,21] M (z) < §|a\k2 ,

e dunque

3lal k2 (z — 20)?

Vo € [x_1,21] |Ey(z)] < 9 5

L’ultimo passaggio rimasto consiste nello stimare k?(x — x¢)?. Ora, noi sappiamo
che yi1 = e F@=£1=20): quindi

—k(ry) —x) =logys = Flogd = k*(wy1; —x0)* = (log3)?.
Siccome k?(x — 20)? < k*(z11 — x0)? per ogni z € [z_1, 1] otteniamo infine

3lal|(log 3)?

Vo € [x_1,21] |Eq(z)| < ol

< 0.06|al ,

che & anche meglio della stima che avevamo dato nell’Osservazione 4.47.
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Osservazione 5.35 Lo sviluppo di Taylor & una delle tecniche piu usate da calco-
latrici e calcolatori per determinare il valore numerico delle funzioni esponenziali,
logaritmiche e trigonometriche con un’approssimazione qualsiasi.

CURIOSITA 5.10 La stima di Lagrange dell’errore ¢ conseguenza del teorema del valor medio
di Lagrange. Per farlo vedere, introduciamo prima una piccola generalizzazione, dovuta a
Cauchy, del teorema del valor medio di Lagrange: supponiamo di avere due funzioni f e g
derivabili in un intervallo [a, b]. Allora per ogni 1, x> € [a,b] con x1 < 2 esiste T € (z1,x2)
tale che

F@)g(x2) — g(z1)] = g’ (@)[f (w2) — f(21)]

(teorema del valor medio di Cauchy); questo risultato segue subito (esercizio) dal teorema del
valor medio di Lagrange applicato alla funzione h(z) = f(z)[g(z2)—g(x1)]—g(z)[f (z2)— f(z1)].
Ora, sia f: I — R una funzione con n + 1 derivate, e zo € I. Sia

P"(x) = f(l“o) +f/(éto)(x 7x0) 44

f(n)('ro) (x B xo)"

il polinomio di Taylor di grado n di f in z. Fissiamo ora un punto z € I, e definiamo le
funzioni

)

n!

Fit)=fO+f®)(z—t)+--+ (z—t)" e GEt)=(@—-t)"t".
Allora si verifica facilmente che F(z) = f(z) e F(zo) = P,.(z), per cui F(z) — F(zo) = En(z);
inoltre,

aF o (@ =0"

=" e

Applocando il teorema del valor medio di Cauchy alle funzioni F' e G (usando le derivate
rispetto a ¢, non a x) troviamo un punto T fra zo e x tale che

(-2

@) @ = 20)™ = ~(n+ 1)@ = D) Ea(a)

per cui otteniamo la formula di Lagrange del resto

(x — zo)" !

En(@) = =5

@)

Quindi se indichiamo con M, il massimo del modulo di f("‘H) fra 2o e x abbiamo chiaramente
[ D(@)] < M, e quindi
|z — zo|mt?

|En ()] < My EE

)

come voluto.

CURIOSITA 5.11 Vogliamo usare la stima dell’errore di Lagrange per dimostrare che la serie di
Taylor di f(z) = e (vedi la Curiosita 5.9) converge a e® per ogni z reale, cio¢ che

oo
vz € R eng —at .
4!
j=0
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Dobbiamo dimostrare che lim F,(x) = 0 per ogni z € R. La stima di Lagrange dell’errore
n——+oo

ci dice (perché?) che
|$|n+1

[En(z)] < m7

Cy

dove C, = e*sex >0,e C, =1 se x <0. Quindi ci basta dimostrare che

Ya >0 im & —o0.
n—-+oo n'

Ma infatti, scegliamo no € N tale che ng + 1 > 2a. Allora per ogni n > no abbiamo

a a

a
2 Mo TLO+1

a a
L2 < 2.
n 1

a a n-no 2a)™0 1
a ( ) < (29)

a
5”.710 ?"L0+1 TL()! 2_"

che tende a zero per n — 400, ed & fatta. In modo analogo puoi dimostrare (esercizio) che

2n

(2n)!

Foo 22+l +oo
Ve eR sinz = Z(fl)"m e cosx = Z(fl)"
n !

n=0 n=0

5.14 Propagazione degli errori

Lo sviluppo di Taylor al primo ordine puo essere usato anche per studiare la pro-
pagazione degli errori dalla variabile indipendente alla funzione.

Supponiamo di stare studiando una quantita f(x) dipendente da una variabile
indipendente z. Supponiamo inoltre che la misura della variabile indipendente
sia soggetta a un errore relativo pari a e,; vogliamo trovare una stima dell’errore
relativo che compiamo calcolando la quantita f(z).

Indichiamo con e, € R ’errore assoluto commesso sulla variabile indipendente x.
Per questo conto, considereremo e, con segno: se e, > 0 allora l’errore € per eccesso,
mentre se e, < 0 allora I'errore ¢ per difetto. Inoltre, supporremo per semplicita
che la variabile indipendente assuma solo valori positivi; allora

€a
€r = —,

e il segno dell’errore relativo indica se ’errore assoluto e per eccesso o per difetto.
L’errore assoluto F, (sempre con segno) compiuto calcolando la quantita f(z)
¢ dunque
Ea:f(x+ea)*f(x);

e l'errore relativo E, ¢ dato da

f(x+ea)_f(x)

="

dove, per semplicita, supponiamo che anche i valori di f siano tutti positivi.
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Vogliamo una stima di F. in funzione di e,. ed f. Scrivendo lo sviluppo di Taylor
al prim’ordine di f in x otteniamo

E,=f(r+e,) — f(z) = f’(a:)((:z: +eq) — :z:) + 0((93 +eq) — x) = f'(z)e, + o(eq)
=z[f'(z)e, + ole,)] .

Quindi se l'errore relativo e, & abbastanza piccolo possiamo trascurare gli infinite-
simi di ordine superiore e ottenere

Eo~af (2)e,

er, (5.24)
che erano le formule che stavamo cercando.

Osservazione 5.36  Ovviamente si ottengono formule piu precise considerando svi-
luppi di Taylor di ordine superiore; ma per i nostri scopi possiamo limitarci a
queste.

Osservazione 5.37 Anche F, ed E, hanno un segno, indicanti errori per eccesso o
per difetto. Siccome abbiamo supposto x ed f(x) positivi, il segno di E, dipende
sia dal segno di e, che dal segno della derivata f/(z). In particolare, se f'(z) > 0
allora errori per eccesso (difetto) nella variabile indipendente causano errori per
eccesso (difetto) nella quantita calcolata, mentre se f'(z) < 0 allora errori per
eccesso (difetto) nella variabile indipendente causano errori per difetto (eccesso)
nella quantita calcolata.

Concludiamo con un esempio di applicazione di queste stime.

Esempio 5.31 In assenza di turbolenza, la resistenza totale R che il cuore deve
superare per pompare del sangue in un capillare di lunghezza [ e raggio interno a
¢ data dalla formula di Poiseuille

l
R=k—,
at
dove k e un coefficiente di proporzionalita dipendente, per esempio, dalla viscosita
del sangue. Supponiamo di aver misurato il raggio interno del capillare con un
errore (relativo) del 2%; vogliamo stimare ’errore relativo nel valore calcolato della
resistenza totale. La formula (5.24) ci fornisce il risultato:

a dR a < kl

r ~ - T 7377 4 r = —4 r = .
Rla) da Ve = Tijai > ¢ er = —8%

a®

Quindi un errore per eccesso del 2% nella misura del raggio interno causa un errore
per difetto di circa 1'8% nella misura della resistenza totale.
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Supponiamo ora di aver misurato con un errore relativo del 2% la lunghezza del
capillare; stimiamo che errore causiamo nel calcolo della resistenza totale. Stavolta
la formula (5.24) diventa

I d l k
E, ~ —— il

R(Z)E(l)er = W . ger = €r = 2% .

Quindi un errore per eccesso del 2% nella misura della lunghezza del capillare causa
un errore per eccesso di circa il 2% nella misura della resistenza totale.



