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Calcolo differenziale

5.1 Derivate

In molte situazioni, più che il valore effettivo di una quantità conta quanto veloce-
mente varia; ci interessa studiare la variazione di quella quantità nel tempo (o in
funzione di una qualche altra variabile indipendente).

Esempio 5.1 Una volta messa la pentola con l’acqua della pasta sul fuoco, di
solito non ci interessa sapere il valore esatto della temperatura d’ebollizione (e,
tanto meno, la temperatura esatta dell’acqua uscita dal rubinetto); ci interessa sa-
pere quanto velocemente l’acqua giungerà a ebollizione. Ci interessa sapere quanto
velocemente varia la temperatura dell’acqua sul fuoco — magari per verificare l’e-
sattezza del detto popolare “acqua guardata non bolle mai.”

Esempio 5.2 Osservando la crescita di una colonia di batteri, è di solito ab-
bastanza irrilevante sapere il numero esatto di individui della colonia; studiare
1 237 664 batteri o studiare 1 244 511 batteri è di solito abbastanza equivalente.
Quello che invece è importante sapere è se il numero di batteri aumenta o di-
minuisce, e quanto velocemente aumenta o diminuisce, e come questa variazione
dipende dalle condizioni dell’esperimento (temperatura, luminosità, disponibilità
di sostanze nutritive), e come questa variazione cambia nel tempo.

Esempio 5.3 La colonia di batteri del tuo assistente è fuori controllo, e sta inva-
dendo l’intero laboratorio; devi intervenire con un antibiotico per uccidere i batteri
di troppo. Hai giusto a disposizione un antibiotico inedito da testare, e vuoi ve-
dere a quale concentrazione è più efficace. Ordini al tuo assistente di misurare la
percentuale di mortalità di batteri a seconda della concentrazione dell’antibiotico;
i dati ottenuti sono poi interpolati con una funzione logistica, ottenendo il grafico
di Figura 5.1.

Esaminando il grafico è naturale suddividere la concentrazione in tre zone. Nella
prima, di bassa concentrazione, l’antibiotico è praticamente inefficace. Nella terza,
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Figura 5.1 Concentrazione/Mortalità.

di alta concentrazione, l’efficacia diventa quasi indipendente dalla concentrazione:
aumentando la concentrazione la mortalità praticamente non cambia, per cui con-
viene rimanere a concentrazioni più basse senza sprecare inutilmente antibiotico.
Nella zona centrale, invece, basta una piccola variazione nella concentrazione per
provocare una sensibile variazione della mortalità. In questa zona, l’efficacia del-
l’antibiotico è massima, nel senso che piccoli aumenti dell’antibiotico hanno effetti
significativi sulla mortalità.

Riflettendo un secondo sul discorso appena fatto, vedrai che la suddivisione
naturale in tre zone corrisponde a una suddivisione in base alla velocità di varia-
zione: nella prima e nella terza zona la velocità di variazione era chiaramente bassa,
mentre la velocità di variazione era molto maggiore nella zona centrale. Un altro
modo per spiegare la stessa cosa è dire che la suddivisione è legata alla pendenza
del grafico: quasi orizzontale nella prima e terza zona, molto inclinato in quella
centrale. Uno degli obiettivi di questo capitolo sarà proprio fornire tecniche precise
per misurare la “velocità di variazione” e la “pendenza” di un grafico.

Esempio 5.4 Non posso esimermi dal citare l’esempio paradigmatico di velocità
di variazione: la velocità di un corpo che si muove. Misura esattamente la va-
riazione di posizione del corpo; e, in diversi casi, è più interessante conoscere la
variazione di posizione piuttosto che la posizione esatta. Per esempio, gli auto-
velox, indipendentemente da dove si trovano, sono interessati solo alla velocità di
variazione di posizione delle auto che passano — mentre, effettivamente, gli autisti
sono molto più interessati alla posizione assoluta degli autovelox.

Esempio 5.5 In diverse situazioni può essere utile studiare anche la variazione
della variazione. L’esempio paradigmatico stavolta è fornito dalla variazione della
velocità, cioè dall’accelerazione. Infatti, alla base della fisica newtoniana (e gali-
leiana) c’è l’osservazione che l’azione di una forza su un corpo è misurata dalla
variazione della velocità; un corpo indisturbato rimane a velocità costante. E una
delle principali leggi di Newton dice esattamente che la forza è proporzionale al-
l’accelerazione: F = ma.
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Vogliamo quindi trovare un modo efficace per misurare la variazione di una
quantità. Come al solito, rappresentiamo la nostra quantità con una funzione
f : I → R, dove I ⊆ R è il dominio di definizione della nostra funzione, l’insieme
in cui varia la variabile indipendente. Vogliamo misurare la velocità di variazione
di f in un punto x0 ∈ I, ammesso che sia possibile.

Se prendiamo un altro punto x1 ∈ I, possiamo prima di tutto calcolare la
variazione assoluta

∆f = f(x1)− f(x0)

di f nel passare da x0 a x1. Come già accadeva per l’errore assoluto, la variazione
assoluta di due funzioni diverse è difficile da confrontare, in quanto dipende pe-
santemente dai valori effettivi delle due funzioni. Inoltre, anche intuitivamente, la
variazione assoluta non misura la velocità di variazione: una variazione assoluta
pari a 100 può essere una variazione lentissima se ottenuta in un milione di anni,
oppure una variazione velocissima se ottenuta in un milionesimo di secondo.

Questo suggerisce di confrontare la variazione assoluta ∆f con la lunghezza

∆x = x1 − x0

dell’intervallo in cui avviene la variazione, cioè di calcolare la variazione media (o
variazione relativa) di f da x0 a x1:

∆f

∆x
=

f(x1)− f(x0)
x1 − x0

=
f(x0 + ∆x)− f(x0)

∆x
.

Dalla Figura 5.2 risulta evidente che la variazione media è il coefficiente angolare
della retta (detta secante) che collega i punti

(
x0, f(x0)

)
e

(
x1, f(x1)

)
del grafico

di f , e che ha equazione

y = f(x0) +
∆f

∆x
· (x− x0) .

La variazione media è già più interessante della variazione assoluta, ma è ancora
una misura piuttosto grezza: non ci dice rigorosamente nulla su cosa accade fra x0

e x1. Per esempio, nella Figura 5.2 vediamo che le due funzioni raffigurate e la
retta secante hanno esattamente la stessa variazione media da x0 a x1. D’altra
parte, più x1 è vicino a x0 più precisa è l’informazione data dalla variazione media
sul comportamento della funzione vicino a x0; anche la differenza (vicino a x0) fra
il grafico di f e la retta secante diminuisce. Questo suggerisce di far tendere x1

a x0, e quindi di considerare la variazione istantanea

lim
x1→x0

∆f

∆x
= lim

x1→x0

f(x1)− f(x0)
x1 − x0

= lim
∆x→0

f(x0 + ∆x)− f(x0)
∆x

= lim
h→0

f(x0 + h)− f(x0)
h

,

(5.1)

dove nell’ultima formula abbiamo semplicemente indicato ∆x con il simbolo h;
tanto, per il calcolo del limite l’unica cosa che importa è che la quantità in questione
diventi arbitrariamente piccola, indipendentemente da come si chiama.
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Figura 5.2 .

Osservazione 5.1 Attenzione: non è detto che il limite (5.1) esista! In altre parole,
non è sempre detto che si possa calcolare la variazione istantanea. Per esempio,
scriviamo

f(x)− f(x0) = (x− x0) ·
f(x)− f(x0)

x− x0
.

Se f è derivabile in x0, allora per x → x0 il secondo membro tende (perché?)
a 0; quindi f(x) tende a f(x0), cioè f è continua in x0. In altre parole, se f
non è continua in x0 allora non può essere derivabile in x0. Ma anche quando la
funzione f è continua in x0 il limite (5.1) è una forma indeterminata del tipo 0/0,
per cui nulla ci assicura a priori che esista. Uno dei principali obiettivi di questo
capitolo sarà far vedere che il limite (5.1) esiste finito per tutte le funzioni elementari
del bestiario; però vedremo anche che esistono funzioni semplici (per esempio, la
funzione valore assoluto; vedi l’Esempio 5.7) di cui non è sempre possibile calcolare
la variazione istantanea.

Se il limite (5.1) esiste finito, diremo che la funzione f è derivabile in x0. Il
valore del limite verrà detto derivata di f in x0, e indicato o con il simbolo f ′(x0)
o con il simbolo df

dx (x0), a seconda dei casi:

f ′(x0) =
df

dx
(x0) = lim

h→0

f(x0 + h)− f(x0)
h

;

il quoziente f(x0+h)−f(x0)
h è detto rapporto incrementale.

Osservazione 5.2 Il concetto di derivata è stato introdotto indipendentemente da
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Newton e Leibniz nel diciassettesimo secolo. La notazione f ′ è stata introdotta
da Lagrange un secolo più tardi modificando quella originale di Newton, mentre la
notazione df/dx è quella usata da Leibniz. Come vedrai, a seconda della situazione
una o l’altra può essere più utile, per cui le useremo entrambe.

Osservazione 5.3 Quando diciamo che una funzione f è derivabile in un punto x0

intendiamo che il rapporto incrementale ha limite sia per h che tende a zero da
sopra, sia per h che tende a zero da sotto, e che i due limiti sono uguali. A volte
capita che esista finito solo il limite per h → 0+ (rispettivamente, per h → 0−);
in quel caso diremo che f è derivabile a destra (rispettivamente, sinistra) in x0,
e il valore del limite sarà la derivata destra (rispettivamente, sinistra) di f in x0.
Un caso in cui siamo costretti a considerare derivate destre e sinistre è quando
f è definita su un intervallo chiuso [a, b], e vogliamo considerare la derivata negli
estremi dell’intervallo. Chiaramente (perché?), in a possiamo calcolare solo la
derivata destra, mentre in b possiamo calcolare solo la derivata sinistra.

Geometricamente, l’esistenza del limite (5.1) in x0 (o, come diremo, l’esistenza
della derivata di f in x0) significa che le rette secanti per x0 e x1 tendono a una
retta limite quando x1 tende a x0. Questa retta si chiama retta tangente al grafico
di f in x0, ed è la retta di equazione

y = f(x0) + f ′(x0)(x− x0) ;

la Figura 5.2 contiene anche la retta tangente al grafico di f in x0.
Supponiamo che una funzione f sia derivabile in tutti i punti di un intervallo I

(e in tal caso diremo semplicemente che f è derivabile in I). Allora possiamo
associare a ciascun punto x ∈ I il valore f ′(x) della derivata di f in x. In questo
modo abbiamo quindi definito una nuova funzione f ′: I → R, chiamata ovviamente
derivata di f — e che indicheremo anche con la notazione df

dx di Leibniz. La derivata
di f misura quindi la variazione istantanea di f in ogni punto di I, cioè proprio
quanto ci eravamo proposti di trovare in questa sezione.

Osservazione 5.4 Attenzione: in questo testo i simboli df e dx singolarmente non
avranno alcun significato1; df/dx non è il quoziente delle “quantità” df e dx. La
notazione di Leibniz per noi serve solo a ricordare che la derivata è il limite del
quoziente ∆f/∆x al diventare ∆x arbitrariamente piccolo. Inoltre, la “x” in df

dx
è semplicemente il nome scelto in quel momento per la variabile indipendente;
notazioni quali df

dy , df
du e cos̀ı via indicano tutte la derivata di f , e differiscono solo

nel nome dato alla variabile indipendente.

Esempio 5.6 Se la funzione f misura lo spostamento di un corpo nel tempo,
allora f ′ misura la velocità di spostamento. Se invece f misura la velocità, allora f ′

misura l’accelerazione. Se f è la quantità di carica elettrica in un punto nel tempo,

1 In testi di matematica più avanzati servono a indicare oggetti particolari chiamati
“forme differenziali”, che però noi non studieremo.
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f ′ è l’intensità di corrente passante per quel punto. Se f è la concentrazione di un
dato reagente, allora f ′ è la velocità di reazione.

Nelle prossime sezioni vedremo come calcolare le derivate delle funzioni del be-
stiario (e di altre funzioni costruite a partire da quelle) e, soprattutto, come dedurre
informazioni importanti sulla funzione originaria f conoscendone la derivata f ′.
Questo ci darà una procedura efficace per lo studio qualitativo delle funzioni, in
quanto le derivate si calcolano: più precisamente, le derivate di funzioni elementari
si esprimono sempre in termini di funzioni elementari (mentre vedremo che questo
non accade per gli integrali).

5.2 Calcolo di derivate: funzioni costanti

Cominciamo a vedere come calcolare le derivate di funzioni f . In tutti i casi che
vedremo, per calcolare la derivata di f nel punto x procederemo come segue:
– scriveremo il rapporto incrementale

f(x + h)− f(x)
h

per h 6= 0;
– manipoleremo, se possibile, il rapporto incrementale (effettuando operazioni

valide per h 6= 0) in modo da semplificarlo o portarlo in una forma a noi più
congeniale;

– calcoleremo il limite per h che tende a 0 del rapporto incrementale manipolato.
Cominciamo col caso più semplice: quello delle funzioni costanti. Sia f : R→ R la
funzione che vale costantemente c ∈ R, cioè f(x) = c per ogni x ∈ R. Allora il
rapporto incrementale è

∀h 6= 0
f(x + h)− f(x)

h
=

c− c

h
=

0
h

= 0 .

Quindi il rapporto incrementale di una funzione costante è sempre nullo, e dunque
il limite del rapporto incrementale è chiaramente sempre zero. In altre parole,
abbiamo fatto vedere che la derivata di una funzione costante è identicamente
nulla.

Questo era un fatto geometricamente prevedibile. Infatti, il grafico di una fun-
zione costante è una retta orizzontale. Quindi tutte le rette secanti coincidono con
questa retta orizzontale, per cui anche tutte le rette tangenti coincidono con que-
sta retta orizzontale. Le rette orizzontali hanno tutte coefficiente angolare nullo, il
coefficiente angolare delle rette tangenti è dato dalla derivata, e quindi le funzioni
costanti hanno derivata nulla.

Osservazione 5.5 L’ultimo ragionamento suggerisce che valga anche il viceversa:
una funzione derivabile con derivata identicamente nulla su un intervallo è ne-
cessariamente costante su quell’intervallo. Dire che la derivata è identicamente
nulla equivale a dire che tutte le rette tangenti sono orizzontali, e sembra difficile
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immaginare che possa esistere una funzione con tutte rette tangenti orizzontali
il cui grafico non sia a sua volta costante. Detto in altri termini ancora, se la
variazione istantanea di una funzione è sempre nulla, la funzione non varia mai:
l’annullarsi ovunque della variazione istantanea implica l’annullarsi ovunque della
variazione media. Tutto ciò è vero, ma per verificarlo rigorosamente serve un modo
per collegare la variazione istantanea (che dipende solo da quello che avviene ar-
bitrariamente vicino al punto in cui viene calcolata) alla variazione media; vedi la
Curiosità 5.1.

Curiosità 5.1 Una formula che lega la variazione istantanea alla variazione media esiste, ed è
contenuta nel Teorema del valor medio di Lagrange. Questo teorema dice che se f : [a, b]→ R
è una funzione continua, derivabile in tutti i punti dell’intervallo aperto (a, b), allora per ogni
coppia di punti x0 < x1 in [a, b] esiste (almeno) un punto x0 < x < x1 tale che la variazione
media di f da x0 a x1 è uguale alla variazione istantanea di f in x:

f(x1)− f(x0)

x1 − x0
= f ′(x) .

In altre parole, la retta secante per x0 e x1 è parallela ad almeno una retta tangente nel-
l’intervallo (x0, x1). È importante notare che questo teorema non ci dice come trovare x né
quanti ce ne sono; ma fornisce comunque un importante legame fra variazione media e varia-
zione istantanea. Per esempio, ci dice che se la derivata è identicamente nulla in [a, b] allora
la variazione media di f in due punti qualunque dell’intervallo è sempre zero, e quindi f è
costante.

Osservazione 5.6 L’equazione
df

dx
= 0 (5.2)

è un (primo e banalissimo) esempio di equazione differenziale. Un’equazione diffe-
renziale è un’equazione in cui l’incognita è una funzione, e che coinvolge anche la
derivata della funzione stessa. Una caratteristica tipica delle equazioni differenziali
è che la soluzione (se esiste) non è unica, a meno di richiedere che siano soddisfatte
delle condizioni aggiuntive. Per esempio, abbiamo appena visto che le soluzioni
dell’equazione (5.2) sono tutte e sole le funzioni costanti:

df

dx
= 0 ⇐⇒ f ≡ c .

Per individuare una soluzione unica, abbiamo bisogno di condizioni aggiuntive.
Per esempio, possiamo richiedere che la soluzione cercata valga 7 (o qualsiasi altro
valore c0) nel punto 2 (o in qualsiasi altro punto x0), cioè che f(2) = 7 (rispetti-
vamente, che f(x0) = c0); allora l’unica soluzione che soddisfa questa condizione
aggiuntiva è la funzione costante f ≡ 7 (rispettivamente, f ≡ c0).
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5.3 Calcolo di derivate: funzioni lineari

Passiamo ora alle funzioni lineari. Sia f : R → R data da f(x) = mx + d una
funzione lineare. Il rapporto incrementale in x ∈ R è dato da

f(x + h)− f(x)
h

=
m(x + h) + d− (mx + d)

h
=

mh

h
= m .

In particolare, il rapporto incrementale non dipende da h (né da x), e quindi
chiaramente ammette limite (finito uguale a m) per h → 0. Quindi le funzioni
lineari (sono derivabili e) hanno derivata costante, uguale al coefficiente angolare.

Di nuovo, geometricamente questo è un risultato ovvio. Le rette secanti del
grafico di una funzione lineare coincidono tutte con la retta grafico della funzione,
e quindi anche le rette tangenti devono coincidere con questa, e in particolare hanno
lo stesso coefficiente angolare.

Esempio 5.7 Il conto appena fatto ci permette di verificare che la funzione valore
assoluto non è derivabile in 0. Infatti il rapporto incrementale in 0 è dato da

|0 + h| − |0|
h

=
|h|
h

=
{+1 se h > 0 ,
−1 se h < 0 .

Quindi il rapporto incrementale non ha limite per h che tende a zero (il limite
sinistro è diverso dal limite destro), e quindi il valore assoluto non è derivabile
in 0. Geometricamente, si vede bene: il grafico del valore assoluto ha un vertice
nell’origine, per cui le rette secanti da sopra tendono a una retta diversa da quella
a cui tendono le rette secanti da sotto.

Osservazione 5.7 La funzione lineare f(x) = mx + d è un esempio di somma di
due funzioni: la funzione mx e la funzione costante d. Questo non è l’unico caso; i
polinomi sono somma di funzioni potenza, per esempio. Chiaramente, se fossimo in
grado di calcolare la derivata della somma di due funzioni partendo dalla derivata
degli addendi, potremmo semplificarci diversi conti. Fortunatamente, questo si può
fare, e otteniamo una formula molto semplice:

d(f + g)
dx

=
df

dx
+

dg

dx
, (5.3)

cioè la derivata della somma è uguale alla somma delle derivate2. Questo fatto si
verifica molto semplicemente scrivendo il rapporto incrementale:

(f + g)(x + h)− (f + g)(x)
h

=
f(x + h) + g(x + h)−

(
f(x) + g(x)

)
h

=
f(x + h)− f(x)

h
+

g(x + h)− g(x)
h

.

2 O, più precisamente: se f e g sono derivabili in x allora anche f + g è derivabile in x e
si ha (f + g)′(x) = f ′(x) + g′(x).
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Passando al limite per h→ 0, e ricordando che il limite della somma è uguale alla
somma dei limiti, otteniamo (5.3). In maniera analoga ricaviamo che la derivata
della differenza è uguale alla differenza delle derivate:

d(f − g)
dx

=
df

dx
− dg

dx
. (5.4)

Curiosità 5.2 Attenzione: la somma di due funzioni può essere derivabile senza che nessuna
delle due lo sia singolarmente. Per esempio, prendiamo f(x) = |x| e g(x) = x − |x|. Allora
(f + g)(x) = x è derivabile in tutti i punti, mentre né f né g (perché?) sono derivabili in 0.

Osservazione 5.8 Nel Capitolo 4 abbiamo visto che le funzioni lineari sono tutte e
sole quelle con variazione media costante (cioè ∆f = m∆x); non è difficile vedere
che sono anche tutte e sole quelle con variazione istantanea costante. In altre
parole, le funzioni lineari f(x) = mx+d sono tutte e sole le soluzioni dell’equazione
differenziale

df

dx
= m .

Infatti, supponiamo che f sia una soluzione di questa equazione, cioè che si ab-
bia f ′ ≡ m, e poniamo g(x) = mx. Allora l’osservazione precedente ci dice che

(f − g)′ = f ′ − g′ = m−m ≡ 0 ;

quindi f − g, avendo derivata identicamente nulla, dev’essere costante. In altre
parole, deve esistere d ∈ R tale che f(x)−mx ≡ d, e quindi f(x) = mx + d, cioè f
è lineare come volevamo.

Osservazione 5.9 Più in generale, due funzioni derivabili che hanno la stessa de-
rivata differiscono per una costante additiva. Infatti, supponiamo che f e g siano
due funzioni derivabili tali che f ′ ≡ g′. Allora (f − g)′ = f ′ − g′ ≡ 0, per cui f − g
è una costante c, cioè f = g + c come voluto.

5.4 Calcolo di derivate: funzioni quadratiche

Una funzione quadratica f(x) = ax2+bx+c è naturalmente somma di una funzione
potenza (ax2) e di una funzione lineare (bx + c). Siccome la derivata della somma
è uguale alla somma delle derivate, e siccome sappiamo calcolare la derivata di
funzioni lineari, abbiamo

d

dx

(
ax2 + bx + c

)
=

d

dx
(ax2) +

d

dx
(bx + c) =

d

dx
(ax2) + b .

Quindi per trovare la derivata di una funzione quadratica ci basta saper calcolare
la derivata della funzione ax2. Scriviamo come al solito il rapporto incrementale:

a(x + h)2 − ax2

h
=

a(x2 + 2hx + h2)− ax2

h
=

2ahx + ah2

h
= 2ax + ah .
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Anche stavolta siamo stati in grado di semplificare il rapporto incrementale in modo
da poter calcolare il limite per h→ 0. Infatti lim

h→0
(2ax + ah) = 2ax, e quindi

d

dx
(ax2) = 2ax .

Riassumendo abbiamo ottenuto la seguente formula per la derivazione delle funzioni
quadratiche:

f(x) = ax2 + bx + c =⇒ f ′(x) = 2ax + b .

Esempio 5.8 Se f(x) = 12x2 − 7x + 3, allora f ′(x) = 2 · 12x− 7 = 24x− 7.

Vale la pena esaminare le relazioni fra il comportamento di una funzione qua-
dratica f(x) = ax2 + bx + c e la sua derivata f ′(x) = 2ax + b. Ricordando quanto
abbiamo studiato nel Capitolo 4, otteniamo:

– la derivata f ′ si annulla esattamente nell’ascissa del vertice x = −b/2a della
parabola grafico di f ;

– la derivata f ′ è positiva esattamente nei punti (dopo il vertice se a > 0, prima
del vertice se a < 0) in cui la funzione f è crescente;

– la derivata f ′ è negativa esattamente nei punti (prima del vertice se a > 0,
dopo il vertice se a < 0) in cui la funzione f è decrescente;

– la derivata f ′ è crescente (cioè a > 0) se e solo se il grafico di f ha la concavità
rivolta verso l’alto;

– la derivata f ′ è decrescente (cioè a < 0) se e solo se il grafico di f ha la
concavità rivolta verso il basso.

Vedremo più in là che queste relazioni fra f ed f ′ sono valide per qualsiasi funzione,
e non solo per quelle quadratiche.

5.5 Calcolo di derivate: funzioni polinomiali

Sistemate le funzioni quadratiche, il passo successivo consiste nelle funzioni poli-
nomiali. Chiaramente abbiamo

d

dx

(
anxn + an−1x

n−1 + · · ·+ a0

)
=

d

dx
(anxn) +

d

dx
(an−1x

n−1) + · · ·+ d

dx
(a0) ;

quindi dobbiamo calcolare la derivata della generica funzione potenza a esponente
naturale axk.

Ci sono (almeno) tre modi diversi per effettuare questo calcolo. Il primo consiste
nell’usare la formula (2.22) per lo sviluppo del binomio, come fatto nel caso k = 2.
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Otteniamo

a(x + h)k − axk

h
=

1
h

a
k∑

j=0

(
k

j

)
xk−jhj − axk


=

1
h

[
a

(
xk + kxk−1h +

(
k

2

)
xk−2h2 + · · ·+ hk

)
− axk

]
=

1
h

[
a

(
kxk−1h +

(
k

2

)
xk−2h2 + · · ·+ hk

)]
= kaxk−1 +

(
k

2

)
axk−2h + · · ·+ ahk−1 .

Facendo tendere h a zero muoiono tutti i termini nell’ultima somma tranne il primo,
per cui otteniamo

d

dx
(axk) = kaxk−1 ; (5.5)

la derivata della funzione potenza axk è la funzione potenza con esponente dimi-
nuito di 1 e coefficiente moltiplicato per l’esponente.

Osservazione 5.10 Vedremo più in là (Sezione 5.8) che questa formula vale per
funzioni potenza di esponente reale qualsiasi.

Il secondo modo utilizza la formula (4.17) della differenza di potenze:

a(x + h)k − axk

h
=

a

h

[
(x + h)k − xk

]
=

a

h

[
(x + h)− x

] k−1∑
i=0

(x + h)ixk−1−i

= a
k−1∑
i=0

(x + h)ixk−1−i .

Mandando h a zero tutti gli addendi della sommatoria tendono a xk−1; siccome
ci sono k addendi, otteniamo nuovamente kaxk−1 come limite del rapporto incre-
mentale.

Il terzo metodo invece ha applicazioni che vanno ben al di là delle funzioni
polinomiali. L’idea è considerare axk come il prodotto di due funzioni potenza
di grado minore (per esempio, ax e xk−1), e di vedere se riusciamo a calcolare la
derivata di un prodotto conoscendo le derivate dei fattori.

Effettivamente si può fare, ma con un avvertenza: la derivata del prodotto NON
è uguale al prodotto delle derivate. Per capire a cosa è uguale, scriviamo come al
solito il rapporto incrementale per il prodotto fg di due funzioni, e manipoliamolo
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in modo da far comparire i rapporti incrementali di f e g:

(fg)(x + h)− (fg)(x)
h

=
f(x + h)g(x + h)− f(x)g(x)

h

=
f(x + h)g(x + h)− f(x)g(x + h) + f(x)g(x + h)− f(x)g(x)

h

=
f(x + h)− f(x)

h
g(x + h) + f(x)

g(x + h)− g(x)
h

.

Mandando h a 0 i rapporti incrementali tendono alle derivate, e g(x + h) tende
a g(x), per cui abbiamo dimostrato che se f e g sono derivabili in x allora anche
fg è derivabile in x, e vale la regola di Leibniz

d

dx
(fg) =

df

dx
g + f

dg

dx
. (5.6)

Osservazione 5.11 In particolare, se g è una funzione costante, diciamo g ≡ c, ha
derivata nulla e quindi

∀c ∈ R
d

dx
(cf) = c

df

dx
.

Mettendo g = f in (5.6) otteniamo la derivata del quadrato di una funzione:

d(f2)
dx

= 2f
df

dx
.

Mettendo g = f2 in (5.6) otteniamo la derivata del cubo di una funzione:

d(f3)
dx

= f2 df

dx
+ f

d(f2)
dx

= 3f2 df

dx
.

Procedendo in questo modo chiaramente otteniamo

∀k ∈ N
d(fk)
dx

= kfk−1 df

dx
. (5.7)

In particolare, prendendo f(x) = x, e ricordando l’Osservazione 5.11, otteniamo
nuovamente (5.5).

Curiosità 5.3 La dimostrazione della formula (5.7) usa una procedura particolarmente utile in
matematica, nota come principio di induzione. L’idea è la seguente: per dimostrare che una
certa affermazione Pk, dipendente da un numero naturale k, è vera per ogni k ≥ 0 (o k ≥ 1,
o k ≥ k0 per un qualche k0 fissato), basta dimostrare che:

(I1) P0 (o P1, o Pk0 ) è vera; e che

(I2) se Pk−1 è vera allora anche Pk lo è.

Infatti, (I1) dice che P0 è vera; allora usando (I2) per k = 1 otteniamo che anche P1 è vera; ma
allora usando (I2) con k = 2 otteniamo che anche P2 è vera; ma allora usando (I2) con k = 3 otte-
niamo che anche P3 è vera; e cos̀ı via, fino a raggiungere in un numero finito di passi qualsiasi Pk.
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Per esempio, indichiamo con Pk la formula (5.7). Allora P1 è banalmente vera (in quanto f0 ≡ 1
per ogni funzione f), per cui (I1) è verificata. Supponiamo che Pk−1 sia vera; applicando la regola
di Leibniz a fk = fk−1 · f otteniamo

d(fk)

dx
=

d(fk−1)

dx
f + fk−1 df

dx
= (k − 1)fk−2 df

dx
f + fk−1 df

dx
= kfk−1 df

dx
,

per cui Pk è vera. Quindi abbiamo verificato anche (I2), e il principio di induzione ci assicura che
(5.7) è vera per ogni k ≥ 1.

Riassumendo, siamo in grado di calcolare la derivata di una qualsiasi funzione
polinomiale:

d

dx
(anxn + an−1x

n−1 + · · ·+ a1x + a0) = nanxn−1 + (n− 1)an−1x
n−2 + · · ·+ a1 .

Esempio 5.9 Se f(x) = 6x3 − 3πx2 + 11
√

2x + 7 allora

f ′(x) = 3 · 6x2 − 2 · 3πx + 1 · 11
√

2 = 18x2 − 6πx + 11
√

2 .

5.6 Calcolo di derivate: funzioni razionali

Proseguendo col calcolo delle derivate delle funzioni del bestiario, ora tocca alle
funzioni razionali. Siccome le funzioni razionali sono quozienti di polinomi, è na-
turale affrontare questo problema cercando di trovare una formula per la derivata
di un quoziente. Siccome un quoziente si può scrivere come il prodotto del nume-
ratore per il reciproco del denominatore, e sappiamo già calcolare la derivata del
prodotto, ci basta calcolare la derivata di un reciproco.

Supponiamo allora che f : I → R sia una funzione derivabile in un punto x ∈ I
con f(x) 6= 0. Manipolando il rapporto incrementale otteniamo

1
f(x+h) − 1

f(x)

h
=

f(x)− f(x + h)
f(x + h)f(x)h

=
−1

f(x + h)f(x)
f(x + h)− f(x)

h
.

Passando al limite per h → 0 ricaviamo che se f è derivabile in un punto x
con f(x) 6= 0 allora 1/f è derivabile in x e vale la formula

d

dx

(
1
f

)
= − f ′

f2
. (5.8)

Osservazione 5.12 Un modo per ricordarsi questa formula consiste nel derivare
l’identità

1 ≡ f · 1
f

.

Sapendo già che 1/f è derivabile possiamo usare la regola di Leibniz ottenendo

0 ≡ d

dx

(
f · 1

f

)
=

df

dx
· 1
f

+ f · d

dx

(
1
f

)
,
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che è equivalente a (5.8).

Usando la regola di Leibniz possiamo ora calcolare la derivata di un qualsiasi
quoziente nei punti in cui il denominatore non si annulla:

d

dx

(
f

g

)
=

d

dx

(
f · 1

g

)
=

df

dx

1
g

+ f
d

dx

(
1
g

)
=

f ′

g
− fg′

g2
,

e quindi se f e g sono derivabili in un punto x in cui g(x) 6= 0 allora f/g è
derivabile in x e vale la formula

d

dx

(
f

g

)
=

f ′g − fg′

g2
.

Esempio 5.10 Proviamo a calcolare la derivata di una funzione razionale (nei
punti in cui il denominatore non si annulla):

d

dx

(
3x2 + 1
2x− 2

)
=

d(3x2+1)
dx · (2x− 2)− d(2x−2)

dx · (3x2 + 1)
(2x− 2)2

=
6x(2x− 2)− 2(3x2 + 1)

4(x− 1)2
=

6x2 − 12x− 2
4(x2 − 2x + 1)

=
3x2 − 6x− 1
2x2 − 4x + 2

.

Esempio 5.11 Un caso particolare di funzione razionale è dato dalle funzioni
potenza a esponente negativo f(x) = ax−k. Siccome ax−k = a/xk otteniamo

d

dx
(ax−k) =

d

dx

( a

xk

)
= −a

d
dx (xk)
x2k

= −a
kxk−1

x2k
= −kax−k−1 .

In particolare, la formula (5.5) vale per ogni k ∈ Z.

5.7 Calcolo di derivate: potenze a esponente razionale

Vogliamo ora calcolare la derivata di funzioni della forma f(x) = xp/q, con p ∈ Z
e q ∈ N∗. Ora, possiamo scrivere

xp/q = (x1/q)p = gp

(
x1/q

)
= gp

(
fq(x)

)
, (5.9)

dove abbiamo posto gp(x) = xp e fq(x) = x1/q. Quindi la nostra f si può scrivere
come composizione delle funzioni gp e fq, cioè f = gp ◦fq, e questo ci suggerisce che
sarebbe utile saper calcolare la derivata della composizione di funzioni derivabili.

Anche stavolta procediamo manipolando il rapporto incrementale; solo che sta-
volta l’operazione è un attimo più complessa delle altre volte. Supponiamo che
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f sia derivabile nel punto x, e che g sia derivabile nel punto y = f(x); vogliamo
vedere se g ◦ f è derivabile nel punto x. Cominciamo scrivendo

g ◦ f(x + h)− g ◦ f(x)
h

=
g
(
f(x + h)

)
− g

(
f(x)

)
h

=
g
(
f(x) +

(
f(x + h)− f(x)

))
− g

(
f(x)

)
f(x + h)− f(x)

f(x + h)− f(x)
h

=
g(y + h1)− g(y)

h1
· f(x + h)− f(x)

h
,

(5.10)
dove abbiamo posto h1 = f(x+h)−f(x) e y = f(x). Siccome f (essendo derivabile)
è continua in x, quando h tende a 0 anche h1 tende a 0; quindi nell’ultimo membro
di (5.10) il primo quoziente tende alla derivata di g in y = f(x), e il secondo
quoziente tende alla derivata di f in x. Quindi se f è derivabile nel punto x, g è
derivabile nel punto f(x), e la composizione g ◦ f è definita vicino a x, allora g ◦ f
è derivabile in x e vale la formula

d

dx
(g ◦ f) =

(
dg

dx
◦ f

)
dg

dx
,

che può anche essere scritta come

(g ◦ f)′(x) = g′
(
f(x)

)
f ′(x) . (5.11)

Esempio 5.12 Prendiamo f(x) = 3x2 − 2 e g(x) = 2x3 − 3x; vogliamo calcolare
la derivata di g ◦ f . Possiamo procedere in due modi: calcolando l’espressione
polinomiale esplicita di g◦f e poi derivandola, oppure applicando la formula appena
ottenuta per la derivata di funzione composta. Nel primo caso abbiamo

g ◦ f(x) = g
(
f(x)

)
= g(3x2 − 2) = 2(3x2 − 2)3 − 3(3x2 − 2)

= 2(27x6 − 54x4 + 36x2 − 8)− 9x2 + 6

= 54x6 − 108x4 + 63x2 − 10 ,

per cui
(g ◦ f)′(x) = 324x5 − 432x3 + 126x .

Usando la (5.11) otteniamo direttamente

(g ◦ f)′(x) = g′
(
f(x)

)
f ′(x) = g′(3x2 − 2) · 6x = [6(3x2 − 2)2 − 3]6x

= 6x(54x4 − 72x2 + 21)

= 324x5 − 432x3 + 126x .

Tornando al nostro problema originale, applicando (5.11) a (5.9) otteniamo

d

dx
(xp/q) = g′p(x

1/q)f ′q(x) = px(p−1)/q d

dx
(x1/q) ; (5.12)
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quindi dobbiamo trovare il modo di calcolare la derivata di x1/q.
Ora, x1/q è, per definizione, la funzione inversa della funzione gq(x) = xq, di cui

sappiamo calcolare la derivata; quindi questo suggerisce di trovare un modo per
calcolare la derivata di una funzione inversa.

Supponiamo allora che f sia una funzione invertibile, derivabile in un punto y;
vogliamo vedere se la funzione inversa f−1 è derivabile nel punto x = f(y). Come
vedremo fra un attimo, dovremo assumere che f ′(y) 6= 0.

Scriviamo il rapporto incrementale per f−1 in x:

f−1(x + h)− f−1(x)
h

=
f−1(x + h)− y

(x + h)− x
=

y1 − y

f(y1)− f(y)
,

dove abbiamo posto y1 = f−1(x+h). Sia h1 = y1−y; siccome f−1 è continua in x,
anche h1 tende a 0 per h che tende a 0. Quindi per h che tende a 0 il rapporto
incrementale

f−1(x + h)− f−1(x)
h

=
1

f(y+h1)−f(y)
h1

tende a 1/f ′(y), che esiste perché f ′(y) 6= 0. Ricordando che y = f−1(x) abbiamo
dimostrato che se la funzione invertibile f è derivabile nel punto y con f ′(y) 6= 0
allora la funzione inversa f−1 è derivabile nel punto x = f(y) e vale la formula

df−1

dx
(x) =

1
f ′

(
f−1(x)

) . (5.13)

Osservazione 5.13 Supponiamo di sapere già per altri motivi che f−1 è derivabile
in x = f(y). Allora derivando l’identità f ◦ f−1(x) = x otteniamo

f ′
(
f−1(x)

)
· df
−1

dx
(x) = 1 ,

cioè (5.13).

Possiamo allora calcolare la derivata di fq(x) = x1/q. Come già notato, fq è la
funzione inversa di gq(y) = yq. Ora, g′q(y) = qyq−1; quindi l’unico punto y0 in cui
g′q si annulla è y0 = 0; di conseguenza, possiamo calcolare la derivata di x1/q in
tutti i punti in cui gq è definita tranne in x0 = gq(y0) = 0. Quindi

d x1/q

dx
=

1
g′q(x1/q)

=
1

q(x1/q)q−1
=

1
q
x(1/q)−1 (5.14)

per ogni x 6= 0 in cui x1/q è definita.

Osservazione 5.14 In particolare, non siamo in grado di calcolare la derivata della
funzione radice cubica f(x) = x1/3 in zero. Ora, guardando il grafico notiamo che
stavolta il problema non è causato dalla presenza di un vertice nel grafico; la retta
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tangente al grafico di f nell’origine esiste. Il problema è causato dal fatto che la
retta tangente in quel punto è verticale, per cui il suo coefficiente angolare (che
dovrebbe essere il valore della derivata) non è definito.

Osservazione 5.15 Abbiamo notato che se f è una funzione invertibile, il grafico
di f−1 si ottiene riflettendo il grafico di f rispetto alla diagonale di equazione y = x.
Chiaramente, questa operazione di riflessione trasforma rette tangenti al grafico di f
in rette tangenti al grafico di f−1 — e non ti sarà difficile verificare (esercizio) che
questa riflessione trasforma rette di coefficiente angolare m (non nullo!) in rette
di coefficiente angolare 1/m. Inoltre, la riflessione trasforma rette orizzontali (di
coefficiente angolare nullo) in rette verticali (in cui il coefficiente angolare non è
definito); quindi punti del grafico di f a tangente orizzontale diventano punti del
grafico di f−1 a tangente verticale, in cui la retta tangente esiste ma la derivata
di f−1 no.

Mettendo insieme (5.12) ed (5.14) siamo finalmente in grado di calcolare la
derivata di xp/q:

d xp/q

dx
= px(p−1)/q 1

q
x1/q−1 =

p

q
x(p/q)−1

per ogni x 6= 0 in cui xp/q è definita. In particolare, la formula (5.5) continua a
valere per ogni esponente razionale.

5.8 Calcolo di derivate: esponenziali e logaritmi

Una delle conseguenze di (5.5) è che siamo in grado di risolvere l’equazione diffe-
renziale

df

dx
= xk

per quasi ogni k ∈ Z. Infatti, (5.5) ci dice che

d

dx

(
1

k + 1
xk+1

)
= xk ;

quindi (ricordando l’Osservazione 5.9)

df

dx
= xk ⇐⇒ f(x) =

1
k + 1

xk+1 + c ,

con c ∈ R qualsiasi. Attenzione, però: la formula che abbiamo ottenuta non ha
senso per k = −1 (in quanto richiederebbe di dividere per (−1) + 1 = 0). E in
effetti la derivata di x0 non è un multiplo di x−1.

Quindi in questo momento non conosciamo alcuna funzione la cui derivata sia
un multiplo di x−1; ma rimediamo subito, con un risultato forse inaspettato.
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Scriviamo il rapporto incrementale per il logaritmo naturale nel punto x > 0.
Usando le proprietà dei logaritmi otteniamo

log(x + h)− log x

h
=

1
h

log
(

x + h

x

)
= log

(
1 +

1
x

h

)1/h

.

Ma allora ricordando (4.26), e usando la continuità del logaritmo, troviamo

lim
h→0

log(x + h)− log x

h
= log e1/x =

1
x

.

In altre parole abbiamo dimostrato che

d

dx
log x =

1
x

:

il logaritmo naturale ha come derivata esattamente x−1. Per trovare la derivata
del logaritmo in una base qualsiasi basta allora applicare la formula (4.34) e l’Os-
servazione 5.11:

d

dx
logp x =

1
(log p)x

.

Osservazione 5.16 Nella Sezione 4.8 abbiamo parlato della legge di Weber, che
dice che la variazione assoluta ∆P dell’intensità percepita è proporzionale alla
variazione relativa ∆s/s dello stimolo, almeno per variazioni assolute piccole dello
stimolo. Questa relazione può venire scritta come

∆P

∆s
=

λ

s

per un’opportuna costante λ ∈ R. Questa è una affermazione sulla variazione
media di P , che però è valida solo per variazioni assolute piccole dello stimolo.
Nella pratica scientifica questo vuol dire che la nostra relazione in realtà non vale
(necessariamente) per la variazione media (in quanto non sappiamo a priori quanto
piccole debbano essere le variazioni assolute dello stimolo) ma vale sicuramente per
la variazione istantanea. In altre parole, la vera legge di Weber è

dP

ds
=

λ

s
.

Questa è un’equazione differenziale che ora siamo in grado di risolvere; la relazione
fra P ed s dev’essere della forma

P (s) = λ log s + c ,

per un’opportuna costante c ∈ R. Scrivendo c = − log s0, dove s0 = e−c, otteniamo

P (s) = λ log(s/s0) ,

che è la formula che avevamo anticipato in (4.37).
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Osservazione 5.17 Se f è una funzione derivabile sempre positiva, la formula di
derivazione di una funzione composta ci dice che

d

dx
log f =

f ′

f
.

L’esponenziale è la funzione inversa del logaritmo; quindi possiamo usare la
formula per la derivazione della funzione inversa trovando

d

dx
ex =

1
1/ex

= ex .

In altre parole, la funzione esponenziale di base e coincide con la propria derivata!
È questo il motivo per cui i matematici preferiscono usare il numero di Nepero e
come base delle funzioni esponenziali.

La formula ax = ex log a ci permette poi di calcolare la derivata di qualsiasi
funzione esponenziale. Infatti (controlla)

d

dx
ax =

d

dx
exp(x log a) = exp(x log a) · log a = (log a)ax .

Inoltre, la formula xα = exp(α log x) ci permette di calcolare la derivata di qualsiasi
funzione potenza: infatti (verifica)

d

dx
xα =

d

dx
exp(α log x) = exp(α log x) · α

x
= αxα−1 ,

per cui (5.5) effettivamente vale per ogni esponente α ∈ R.

Osservazione 5.18 In particolare, la funzione esponenziale risolve l’equazione dif-
ferenziale

df

dx
= f ;

nota che in questa equazione l’incognita f appare in entrambi i membri, contra-
riamente alle equazioni che avevamo visto finora. Non è difficile verificare che le
soluzioni di questa equazione sono tutte e sole le funzioni della forma cex con c ∈ R.
Infatti, sia f una soluzione dell’equazione; allora la regola di Leibniz ci dà

d

dx
(e−xf) = −e−xf + e−x df

dx
= −e−xf + e−xf ≡ 0 ;

quindi e−xf ≡ c, cioè f(x) = ce−x, come voluto.

Osservazione 5.19 La formula di derivazione composta ci permette di calcolare la
derivata di funzioni della forma exp(f), con f derivabile. Infatti (verifica)

d

dx
ef = f ′ef .
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Possiamo trovare quindi anche la derivata di funzioni della forma fg, con f , g
funzioni derivabili e f sempre positiva. Infatti, si ha fg = exp(g log f), e quindi
(controlla)

d

dx
fg = gfg−1f ′ + g′fg log f .

Esempio 5.13 Vogliamo calcolare la derivata di f(x) = x1/x per x > 0. L’osser-
vazione precedente ci dà

f ′(x) =
1
x

x1/x−1 − 1
x2

x1/x log x = x1/x−2(1− log x) .

Curiosità 5.4 A voler essere del tutto precisi, c’è un problema che ancora non abbiamo del
tutto risolto: cosa vuol dire elevare un numero positivo a una potenza di esponente irrazionale.
Senza questa informazione il limite (4.26) non è del tutto verificato, e quindi tutti i conti fatti
in questa sezione non sono completamente dimostrati. Un modo per superare questo problema
è stato accennato nella Curiosità 4.8; qui voglio invece descrivere un’altra procedura, che in
un certo senso ripercorre il percorso che abbiamo fatto noi ma nel verso opposto.

L’idea è partire da una funzione derivabile definita su R+, che valga 0 nel punto 1 e la
cui derivata sia uguale a 1/x (nel prossimo capitolo vedremo come costruire una funzione del
genere usando gli integrali); chiamiamo “log” questa funzione. La prima osservazione è che

∀a > 0
d

dx
“log”(ax) =

a

ax
=

1

x
;

quindi deve esistere c ∈ R (dipendente da a) tale che “log”(ax) = “log”x + c. Ponendo x = 1
troviamo c = “log”a, e quindi abbiamo dimostrato che

∀x, y > 0 “log”(xy) = “log”x + “log”y . (5.15)

Ora, la derivata di “log” è sempre positiva in R+; nella Sezione 5.11 vedremo che questo
implica che “log” è strettamente crescente. In particolare, è invertibile; indichiamo con “exp”
la funzione inversa. Siccome la derivata di “log” non si annulla mai, “exp” è derivabile
ovunque, e si verifica come al solito che

d

dx
“exp”(x) = “exp”(x) .

Inoltre (5.15) implica che

∀x, y ∈ R “exp”(x + y) = “exp”(x) · “exp”(y) . (5.16)

In particolare, se poniamo e = “exp”(1), otteniamo ep/q = “exp”(p/q) per ogni p/q ∈ Q.
Questo suggerisce di definire ex per x ∈ R qualsiasi ponendolo uguale a “exp”(x); in partico-
lare, siccome “exp” è una funzione continua e derivabile, otteniamo che x 7→ ex è una funzione
continua e derivabile. Per ogni a > 0 definiamo allora ax con la formula ax = “exp”(x“log”a);
le formule (5.15) e (5.16) ci assicurano che ax coincide con la solita definizione di potenza
quando x è razionale. Infine,

(1 + rx)1/x = “exp”

(
1

x
“log”(1 + rx)

)
,
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per cui

lim
x→0

(1 + rx)1/x = lim
x→0

“exp”

(
1

x
“log”(1 + rx)

)
= “exp”

(
d“log”(1 + rx)

dx
(0)

)
= “exp”(r) .

In particolare, “exp”(1) è il numero di Nepero, e dunque “exp” coincide con la funzione
esponenziale come l’abbiamo definita noi, e “log” è il nostro logaritmo naturale.

5.9 Calcolo di derivate: funzioni trigonometriche

Rimangono da calcolare le derivate delle funzioni trigonometriche, e delle funzioni
trigonometriche inverse.

Cominciamo con la funzione seno. Usando le formule di prostaferesi troviamo

sin(x + h)− sinx

h
= 2 cos

(
2x + h

2

)
sin(h/2)

h
= cos

(
2x + h

2

)
sin(h/2)

h/2
.

Ricordando (4.39) vediamo che il rapporto incrementale del seno tende a cosx per h
che tende a 0, per cui

d

dx
sin x = cos x .

In modo analogo, le formule di prostaferesi per il coseno danno

cos(x + h)− cos x

h
= −2 sin

(
2x + h

2

)
sin(h/2)

h
= − sin

(
2x + h

2

)
sin(h/2)

h/2
,

per cui
d

dx
cos x = − sinx .

La derivata della tangente la otteniamo con la formula di derivazione del quoziente:

d

dx
tanx =

d

dx

sin x

cos x
=

cos2 x + sin2 x

cos2 x
=

1
cos2 x

.

Analogamente si calcola (esercizio) la derivata della cotangente:

d

dx
cot x =

d

dx

cos x

sin x
= − 1

sin2 x
.

Passiamo alle funzioni trigonometriche inverse. Applicando brutalmente la for-
mula di derivazione di una funzione inversa otteniamo

∀x ∈ (−1, 1)
d

dx
arcsin x =

1
cos(arcsin x)

.

Possiamo scrivere meglio questo risultato. Infatti, si ha cos t = ±
√

1− sin2 t, dove
il segno della radice quadrata è uguale al segno di cos t. Siccome per definizione
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x ∈ (−1, 1) implica arcsinx ∈ (−π/2, π/2), e il coseno è positivo nell’intervallo
(−π/2, π/2), otteniamo

∀x ∈ (−1, 1) cos(arcsin x) =
√

1− sin2(arcsinx) =
√

1− x2 ,

e quindi
d

dx
arcsin x =

1√
1− x2

.

In maniera analoga (esercizio) si trova

d

dx
arccos x = − 1√

1− x2
.

Osservazione 5.20 Una conseguenza di queste formule è che

d

dx

(
arcsinx + arccos x

)
≡ 0 ;

quindi deve esistere una costante c ∈ R tale che arcsin x + arccos x ≡ c. Siccome
arcsin 0 = 0 e arccos 0 = π/2, otteniamo c = π/2 e la relazione

arccos x =
π

2
− arcsin x ,

che forse (ma forse no) avevi già notato quando definimmo le funzioni trigonome-
triche inverse.

Rimane la derivata dell’arcotangente. La formula di derivazione della funzione
inversa ci dà

d

dx
arctanx = cos2(arctanx) ;

ma anche stavolta possiamo semplificarla. Infatti

1 + tan2 x = 1 +
sin2 x

cos2 x
=

1
cos2 x

=⇒ cos2 x =
1

1 + tan2 x
,

per cui
d

dx
arctanx =

1
1 + tan2(arctanx)

=
1

1 + x2
.

In particolare, la derivata dell’arcotangente è una funzione razionale.
Con questo abbiamo finito di derivare le funzioni del bestiario. In partico-

lare, abbiamo mantenuto la promessa: ogni funzione che si ottiene a partire dalle
funzioni elementari con le operazioni di somma, sottrazione, prodotto, quoziente,
composizione e inversione è derivabile, e la sua derivata si esprime in termini di
funzioni elementari.

Nel resto di questo capitolo, vedremo a cosa servono le derivate.
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5.10 La regola di de l’Hôpital

Abbiamo visto che per calcolare le derivate dobbiamo calcolare un limite che è
della forma indeterminata 0/0. Più in generale, le derivate possono essere usate
per calcolare anche altri limiti della forma indeterminata 0/0.

Il motivo è questo: supponiamo di avere due funzioni f e g derivabili vicino a
un punto x0 e tali che f(x0) = g(x0) = 0; supponiamo inoltre che g′(x0) sia diverso
da zero. Allora si ha

lim
x→x0

f(x)
g(x)

= lim
x→x0

f(x)− f(x0)
g(x)− g(x0)

= lim
x→x0

(
f(x)− f(x0)

)/
(x− x0)(

g(x)− g(x0)
)/

(x− x0)
=

f ′(x0)
g′(x0)

;

la forma indeterminata 0/0 può venire calcolata usando il rapporto delle derivate.
Questo ragionamento può essere perfezionato in modo da potersi applicare in

situazioni un poco più generali. Il risultato finale è noto come regola di de l’Hôpital:
supponiamo che f e g siano due funzioni derivabili tali che

lim
x→x0

f(x) = lim
x→x0

g(x) = 0 ,

dove x0 può essere un numero reale o anche ±∞. Supponiamo inoltre che g′(x) 6= 0
per x vicino a x0 (ma non necessariamente in x0), e che esista finito il limite

lim
x→x0

f ′(x)
g′(x)

.

Allora

lim
x→x0

f(x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

.

Osservazione 5.21 L’equivalente della regola di de l’Hôpital vale anche per limiti
da destra o da sinistra.

Vediamo su alcuni esempi come si usa la regola di de l’Hôpital.

Esempio 5.14 Vogliamo calcolare il limite di (ex − 1)/x per x che tende a zero.
Ponendo f(x) = ex − 1 e g(x) = x, le ipotesi della regola di de l’Hôpital sono
soddisfatte: infatti f(x) e g(x) tendono a 0 quando x→ x0 = 0, e g′ non si annulla
mai. Allora derivando numeratore e denominatore otteniamo

lim
x→0

ex − 1
x

= lim
x→0

ex

1
= 1 .

Esempio 5.15 Stavolta scegliamo x0 = 1, f(x) = xα−1 con α ∈ R, e g(x) = x−1.
Di nuovo le ipotesi sono tutte soddisfatte, per cui

lim
x→1

xα − 1
x− 1

= lim
x→1

αxα−1

1
= α .
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Esempio 5.16 Prendiamo x0 = +∞, f(x) = π
2 − arctanx e g(x) = 1/x. Siccome

g′(x) = −1/x2 non si annulla per x > 0 le ipotesi della regola di de l’Hôpital sono
soddisfatte, e otteniamo

lim
x→+∞

π
2 − arctanx

1/x
= lim

x→+∞
−1/(1 + x2)
−1/x2

= lim
x→+∞

x2

1 + x2

= lim
x→+∞

1
1 + 1/x2

= 1 .

Osservazione 5.22 Il limite del precedente esempio può essere scritto anche come

lim
x→+∞

x
(π

2
− arctanx

)
,

che è una forma indeterminata del tipo 0·∞. Tutte le forme indeterminate di questo
tipo possono essere ricondotte alla forma indeterminata 0/0: infatti, se g(x)→ ±∞
per x→ x0, allora 1/g(x)→ 0 per x→ x0, e scrivendo

f(x)g(x) =
f(x)

1/g(x)

abbiamo trasformato la forma indeterminata 0 · ∞ nella forma indeterminata 0/0
studiabile con l’Hôpital. Analogamente, scrivendo

f(x)
g(x)

=
1/g(x)
1/f(x)

si trasforma qualsiasi forma indeterminata ∞/∞ nella forma indeterminata 0/0.

Esempio 5.17 Vogliamo calcolare, se esiste, il limite

lim
x→π/2−

tanx

(x− π/2)−1
,

che è una forma indeterminata∞/∞. Usando l’osservazione precedente e la regola
di de l’Hôpital otteniamo

lim
x→π/2−

tanx

(x− π/2)−1
= lim

x→π/2−

x− π/2
cot x

= lim
x→π/2−

1
−1/ sin2 x

= − lim
x→π/2−

sin2 x = −1 .

Osservazione 5.23 Può capitare che anche il rapporto f ′/g′ dia origine a una forma
indeterminata del tipo 0/0. In quel caso, se f e g hanno anche le derivate seconde
e g′′(x) 6= 0 vicino a x0 (ma non necessariamente in x0) si può applicare l’Hôpital
una seconda volta e tentare di ricavare il limite di f ′/g′ (e quindi quello di f/g)
calcolando il limite di f ′′/g′′.
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Esempio 5.18 Vogliamo calcolare il seguente limite

lim
x→1

xα − 1− α(x− 1)
(x− 1)2

.

Applicando una prima volta l’Hôpital otteniamo

lim
x→1

xα − 1− α(x− 1)
(x− 1)2

= lim
x→1

αxα−1 − α

2(x− 1)
,

che è ancora una forma indeterminata del tipo 0/0. Applicando ancora una volta
l’Hôpital troviamo

lim
x→1

αxα−1 − α

2(x− 1)
= lim

x→1

α(α− 1)xα−2

2
=

α(α− 1)
2

,

e quindi

lim
x→1

xα − 1− α(x− 1)
(x− 1)2

=
α(α− 1)

2
.

Osservazione 5.24 Attenzione: per poter ripetere l’Hôpital bisogna essere sicuri
che anche il limite di f ′/g′ dia una forma indeterminata del tipo 0/0. Se non lo è,
il procedimento non funziona! Per esempio, il conto seguente è sbagliato:

lim
x→1

3x2 − 2x− 1
x2 − x

= lim
x→1

6x− 2
2x− 1

= lim
x→1

6
2

= 3 .

Infatti, il secondo limite non è una forma indeterminata, in quanto per x → 1 il
numeratore tende a 6 · 1− 2 = 4 e il denominatore a 2 · 1− 1 = 1. Quindi

lim
x→1

3x2 − 2x− 1
x2 − x

= lim
x→1

6x− 2
2x− 1

=
4
1

= 4 6= 3 .

Osservazione 5.25 La regola di de l’Hôpital non è una panacea universale: non
permette di calcolare proprio tutti i limiti della forma 0/0. Per esempio, se tentiamo
di applicare l’Hôpital al quoziente e−1/x/x per x→ 0+ otteniamo

lim
x→0+

e−1/x

x
= lim

x→0+

1
x2 e−1/x

1
= lim

x→0+

e−1/x

x2
,

che è ancora una forma indeterminata 0/0. Riapplicando l’Hôpital troviamo

lim
x→0+

e−1/x

x2
= lim

x→0+

1
x2 e−1/x

2x
= lim

x→0+

e−1/x

2x3
,

che è sempre del tipo 0/0 pure peggio di prima. Ripetere ancora l’Hôpital non
aiuta; si ottengono sempre quozienti del tipo e−1/x/(n!xn+1), cioè forme indetermi-
nate 0/0. Per calcolare questo limite servono tecniche più sofisticate, che vedremo
più avanti.
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Esercizio 5.1 Vedi cosa succede se tenti di calcolare usando l’Hôpital i seguenti
limiti (mi raccomando, ricordati prima di tutto di trasformarli nella forma 0/0):

lim
x→+∞

ex

x
, lim

x→+∞
log x

x
, lim

x→+∞
xe−x , lim

x→0+
x log x .

Nei dintorni della regola di de l’Hôpital circola una terminologia che è spesso
utile, e che adesso introduciamo.

Diremo che una funzione f è infinitesima in un punto x0 ∈ R ∪ {±∞} se

lim
x→x0

f(x) = 0 ;

diremo invece che è infinita in x0 se

lim
x→x0

|f(x)| = +∞

(usiamo il modulo perché non ci interessa distinguere fra +∞ e −∞; come esercizio
verifica che se f è infinita in x0, ed è continua fuori da x0, allora esistono i limiti
destro e sinistro di f(x) per x→ x0, valgono +∞ o −∞, ma possono essere diversi).

Dunque una funzione infinitesima (rispettivamente, infinita) in x0 è una fun-
zione che diventa arbitrariamente piccola (rispettivamente, di modulo arbitraria-
mente grande) vicino a x0. In molti contesti, è importante saper confrontare due
funzioni infinitesime nello stesso punto x0, e decidere quale delle due è più piccola.

Date due funzioni f e g infinitesime in x0, diremo che g è un infinitesimo di
ordine superiore rispetto a f in x0 se

lim
x→x0

g(x)
f(x)

= 0 .

In altre parole, il rapporto g(x)/f(x) diventa arbitrariamente piccolo per x suf-
ficientemente vicino a x0, che vuol dire che l’infinitesimo g è molto più piccolo
dell’infinitesimo f vicino a x0.

Se g è un infinitesimo di ordine superiore rispetto a f in x0, si scrive

g = o(f) ,

che si legge “g è un o piccolo di f”.
Se invece

lim
x→x0

g(x)
f(x)

= c ∈ R \ {0} ,

diremo che g ed f sono infinitesimi dello stesso ordine in x0; in tal caso abbiamo

g(x) ≈ cf(x) e f(x) ≈ 1
c

g(x) .

L’interesse di queste nozioni è che, in molte situazioni, è ragionevole trascurare
gli infinitesimi di ordine superiore. Infatti, supponiamo di avere due funzioni f
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e h = f + g, dove g = o(f), cioè g è un infinitesimo di ordine superiore rispetto a f
in un punto x0. Allora possiamo scrivere

h(x) = f(x) + g(x) = f(x)
(

1 +
g(x)
f(x)

)
,

per cui

lim
x→x0

h(x)
f(x)

= lim
x→x0

(
1 +

g(x)
f(x)

)
= 1 .

Ricordando il simbolo ≈ introdotto nel Capitolo 4, abbiamo quindi fatto vedere
che

f(x) + o
(
f(x)

)
≈ f(x) ;

in altre parole, vicino a x0 la presenza dell’infinitesimo di ordine superiore non
modifica sostanzialmente il comportamento della funzione — e quindi può spesso
essere trascurato. Nella Sezione 5.14 utilizzeremo in maniera sistematica questa
possibilità.

Osservazione 5.26 Attenzione: gli infinitesimi di ordine superiore si possono tra-
scurare quando si è abbastanza vicino a x0. Per sapere in dettaglio quanto vicino
è “abbastanza” vicino, occorrono stime precise su quanto piccolo è l’infinitesimo di
ordine superiore. Stime di questo genere le vedremo nella Sezione 5.13; in assenza
di stime, si procede incrociando le dita sperando di non stare commettendo errori
troppo grossi.

Osservazione 5.27 Gli infinitesimi in x0 ∈ R più semplici che vengono in mente
sono le funzioni (x − x0)k con k ∈ N∗; gli infinitesimi in ±∞ più semplici sono le
funzioni x−k, sempre con k ∈ N∗. Un problema che si pone spesso è confrontare
un infinitesimo f qualsiasi con uno di questi infinitesimi standard — che è quanto
abbiamo fatto negli Esempi 5.14–5.16.

Un’ultima osservazione: il simbolo o si usa anche per gli infiniti. Se f e g sono
infinite in x0, diremo che g è un infinito di ordine inferiore rispetto a f in x0, e
scriveremo g = o(f), se

lim
x→x0

g(x)
f(x)

= 0 .

In altre parole, g = o(f) significa che il rapporto g/f è infinitesimo in x0, indipen-
dentemente dal fatto che f o g siano infinite, infinitesime o altro.

Esempio 5.19 Attenzione: x2 = o(x) come infinitesimi in 0, ma x = o(x2) come
infiniti in +∞.

Curiosità 5.5 Nella letteratura si trovano anche formule del tipo g = O(f), che si legge “g è
un O grande di f”. Sfortunatamente, il significato del simbolo O può cambiare da testo a
testo. I tre significati più comuni sono:

(a) g = O(f) in x0 se il limite lim
x→x0

|g(x)|/|f(x)| esiste finito e diverso da zero;
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(b) g = O(f) in x0 se esistono due costanti m, M > 0 tali che m < |g(x)|/|f(x)| < M per tutti
gli x sufficientemente vicini a x0;

(c) g = O(f) in x0 se esiste una costante M > 0 tale che |g(x)| ≤ M |f(x)| per tutti gli x
sufficientemente vicini a x0.

Ti lascio la cura di verificare che se g = O(f) secondo il significato (a) allora g = O(f) secondo il
significato (b), e che se g = O(f) secondo il significato (b) allora g = O(f) secondo il significato
(c), ma che nessuno dei viceversa è vero (esistono funzioni f e g tali che g = O(f) secondo il
significato (c) ma non secondo il significato (b), e cos̀ı via). Dunque se in un testo troverai il
simbolo O assicurati di controllare cosa l’autore vuol dire con quel simbolo.

5.11 Massimi e minimi

Uno degli usi più comuni delle derivate è per trovare massimi e minimi di una
funzione; in questa sezione vedremo perché e come.

Iniziamo cercando di capire il significato del segno della derivata. Supponiamo
che f sia una funzione derivabile in x0, e che si abbia f ′(x0) > 0. Siccome f ′(x0)
è il limite del rapporto incrementale, questo implica che

f(x0 + h)− f(x0)
h

> 0

non appena |h| è abbastanza piccolo. Tenendo presente il segno di h ricaviamo
quindi

f(x0 − h) < f(x0) < f(x0 + h)

non appena h > 0 è abbastanza piccolo. Questa osservazione suggerisce la se-
guente definizione: diremo che f è crescente nel punto x0 se x1 < x0 < x2 implica
f(x1) < f(x0) < f(x2) non appena x1 e x2 sono sufficientemente vicini a x0. Allora
abbiamo appena fatto vedere che f ′(x0) > 0 implica che f è crescente in x0.

Osservazione 5.28 Se una funzione è strettamente crescente nel senso usuale in un
intervallo (a, b) allora è anche crescente in tutti i punti dell’intervallo. Attenzione,
però: esistono funzioni crescenti in un punto x0 che non sono crescenti in nessun
intervallo contenente x0: per esempio, la funzione

f(x) = x

(
3
2

+ sin
1
x

)
è crescente in 0 (per il semplice motivo che f(x) < 0 se x < 0 e f(x) > 0 se x > 0)
ma non è crescente in nessun intervallo contenente l’origine.

In modo analogo (controlla!) si dimostra che f ′(x0) < 0 implica che f è decre-
scente in x0, cioè che f(x1) > f(x0) > f(x2) non appena x1 < x0 < x2 e x1 e x2

sono sufficientemente vicini a x0.
Viceversa, supponiamo che f sia (derivabile e) crescente in x0. Possiamo dedurre

che la derivata è positiva in x0? Quasi. Infatti, se f è crescente in x0 abbiamo

f(x0 − h) < f(x0) < f(x0 + h)
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per h > 0 piccolo, ovvero (tenendo presente il segno di h)

f(x0 + h)− f(x0)
h

> 0

per ogni h sufficientemente piccolo (positivo o negativo che sia). Passando al limite
deduciamo

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)
h

≥ 0 ,

cioè la derivata in x0 è non negativa. Un ragionamento analogo (che sicuramente
farai) mostra che se f è decrescente in x0 allora f ′(x0) ≤ 0; anche stavolta compare
il minore o uguale, e non il minore stretto. Questo fa parte della natura delle
cose: come mostra il prossimo esempio, dobbiamo ammettere la possibilità che la
derivata sia nulla in un punto in cui f è crescente o decrescente; può effettivamente
succedere.

Esempio 5.20 Sia f(x) = x3. Allora f è crescente in tutti i punti, e in particolare
anche nell’origine; ma f ′(x) = 3x2 si annulla nell’origine. Quindi f è crescente in 0
anche se f ′(0) = 0. Analogamente, la funzione g(x) = −x3 è decrescente nell’origine
ma g′(0) = 0.

Osservazione 5.29 Il ragionamento precedente mostra (esercizio per te) che se
f è crescente (rispettivamente, decrescente) nel senso usuale in tutto un inter-
vallo (a, b), allora f ′(x) ≥ 0 (rispettivamente, f ′(x) ≤ 0) per ogni x ∈ (a, b). Vi-
ceversa, si può dimostrare che se f ′ è positiva (rispettivamente, negativa) in tutti
i punti di un intervallo (a, b), allora f è strettamente crescente (rispettivamente,
decrescente) in (a, b).

Curiosità 5.6 Di nuovo, lo strumento che permette di passare dall’informazione puntuale al-
l’informazione in tutto un intervallo è il teorema del valor medio di Lagrange (Curiosità 5.1).
Infatti, supponiamo che f ′(x) > 0 per ogni x ∈ (a, b), e scegliamo due punti qualsiasi
x1, x2 ∈ (a, b) con x1 < x2. Allora il Teorema del valor medio di Lagrange ci dice che
esiste x ∈ (x1, x2) tale che f(x2) − f(x1) = (x2 − x1)f ′(x), e quindi f(x1) < f(x2) perché
f ′(x) > 0 per ipotesi. Analogamente, se f ′(x) < 0 per ogni x ∈ (a, b) deduciamo che f è
strettamente decrescente in (a, b).

Riassumendo, abbiamo dimostrato che

f ′(x0) > 0 =⇒ f è crescente in x0 =⇒ f ′(x0) ≥ 0 ;
f ′(x0) < 0 =⇒ f è decrescente in x0 =⇒ f ′(x0) ≤ 0 .

Che succede nei punti in cui la derivata si annulla? Come vedremo, possono succe-
dere varie cose, di cui alcune particolarmente importanti; ma intanto introduciamo
una definizione. Un punto x0 in cui f ′(x0) = 0 sarà detto punto critico (o punto
stazionario, o estremo) della funzione f .

I ragionamenti precedenti ci forniscono subito due categorie di punti critici.
Diremo che un punto x0 è un massimo locale (o relativo) di una funzione f se
f(x0) ≥ f(x) per tutti gli x sufficientemente vicini a x0. Analogamente, x0 è
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un minimo locale (o relativo) di una funzione f se f(x0) ≤ f(x) per tutti gli x
sufficientemente vicini a x0.

Chiaramente, se x0 è un minimo o un massimo locale per f allora f non può
essere né crescente né decrescente in x0; quindi f ′(x0) non può essere né positiva
né negativa, per cui necessariamente f ′(x0) = 0. In altre parole, minimi e massimi
locali sono sempre punti critici. I punti critici che non sono né minimi locali né
massimi locali sono chiamati punti di flesso (e a volte si aggiunge orizzontale, per
ricordare che la retta tangente in quel punto è orizzontale).

Osservazione 5.30 Attenzione a distinguere fra massimi e minimi locali e massimi
e minimi globali. Un punto x0 è detto di massimo globale (o assoluto) per una
funzione f : I → R se f(x0) ≥ f(x) per ogni punto x ∈ I del dominio di f , e
non solo per i punti x sufficientemente vicini a x0. Analogamente, x0 è un punto
di minimo globale (o assoluto) per una funzione f : I → R se f(x0) ≤ f(x) per
ogni punto x ∈ I del dominio di f . La derivata di f in un punto x0 dipende
solo dal comportamento di f vicino a x0; quindi usando solo le derivate non siamo
in grado di identificare minimi e massimi globali fra i minimi e massimi locali.
Sapere quanto fa la derivata in un punto non dice nulla su cosa succede a duecento
chilometri (o secondi, o quale che sia l’unità di misura) da l̀ı. Più in generale, le
derivate misurano solo fenomeni locali, e non fenomeni globali.

Osservazione 5.31 Un’altra avvertenza importante è che se una funzione f ha come
dominio un intervallo chiuso [a, b], allora massimi e minimi globali potrebbero essere
negli estremi dell’intervallo a e b anche se la derivata (destra o sinistra a seconda
dei casi) non si annulla nell’estremo3. Per esempio, la Figura 5.3 mostra il grafico
di una funzione con 6 punti critici interni all’intervallo di definizione, di cui 2 sono
massimi locali, 1 un punto di flesso, e 3 minimi locali. Il minimo globale è uno dei
punti di minimo locale, ma il massimo globale è uno degli estremi dell’intervallo.
Di conseguenza, per trovare i minimi e i massimi globali di una funzione bisogna
controllare sia i punti critici interni sia gli estremi dell’intervallo di definizione.

Una domanda che sorge spontanea a questo punto è: è possibile usare la derivata
per distinguere un punto di minimo locale da un punto di massimo locale? La
risposta, come vedremo fra poco, è che si può fare spesso usando la derivata della
derivata.

La derivata f ′ di una funzione f è, a sua volta, una funzione; quindi possiamo
provare a derivarla. La derivata della derivata (quando esiste) si chiama derivata
seconda, e si indica con i simboli

f ′′ oppure
d2f

dx2
.

3 Questo non dovrebbe sorprenderti troppo: se ripensi al ragionamento che abbiamo
fatto, per stabilire che un punto x0 di massimo o minimo locale era un punto critico
abbiamo avuto bisogno di esaminare la funzione da entrambi i lati di x0, cosa che non è
possibile fare negli estremi dell’intervallo di definizione.
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Figura 5.3 f(x) = − 10067
360

+ 54x2 − 12x3 − 147x4

4
+ 49x5

5
+ 7x6 − 2x7 − 3x8

8
+ x9

9
, x ∈ [−2.2, 3.5].

Osservazione 5.32 A volte serve considerare anche la derivata della derivata se-
conda, che si chiama derivata terza, e si indica con i simboli f ′′′ oppure d3f

dx3 . Più
in generale, se deriviamo n volte una funzione f otteniamo la derivata di ordine n,
che si indica con i simboli

f (n) oppure
dnf

dxn
.

Il segno della derivata seconda segnala se la derivata prima è crescente o decre-
scente; possiamo usare questo fatto per identificare massimi e minimi locali.

Sia allora x0 un punto critico per una funzione f (cioè f ′(x0) = 0), e supponiamo
che la derivata seconda di f sia (calcolabile e) positiva in x0, cioè f ′′(x0) > 0.
Questo vuol dire che f ′ è crescente in x0; quindi, essendo f ′(x0) = 0, otteniamo
che f ′(x) < 0 per x < x0 (sufficientemente vicino a x0), e che f ′(x) > 0 per x > x0

(sufficientemente vicino a x0). Ma allora f è decrescente prima di x0 e crescente
dopo x0 — che vuol dire esattamente che x0 è un minimo locale.

In altre parole, abbiamo dimostrato che

f ′(x0) = 0 e f ′′(x0) > 0 =⇒ x0 è un minimo locale.

In modo analogo si dimostra (esercizio) che

f ′(x0) = 0 e f ′′(x0) < 0 =⇒ x0 è un massimo locale.

Quindi il segno della derivata seconda ci fornisce un criterio per stabilire se un
punto critico è un minimo locale o un massimo locale.

Osservazione 5.33 Attenzione: se f ′′(x0) = 0 a priori può succedere di tutto. Per
esempio, le tre funzioni f(x) = x3, g(x) = x4 e h(x) = −x4 hanno tutte derivate
prime e seconde nulle in 0, ma 0 è un punto di flesso per f , un minimo locale per g
e un massimo locale per h.
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Curiosità 5.7 Più in generale, supponiamo che f si possa derivare n volte in x0, e che si
abbia f ′(x0) = f ′′(x0) = · · · = f (n−1)(x0) = 0 ma f (n)(x0) 6= 0. Allora si può far vedere che

– se n è dispari allora x0 è un punto di flesso;

– se n è pari e f (n)(x0) > 0 allora x0 è un minimo locale;

– se n è pari e f (n)(x0) < 0 allora x0 è un massimo locale.

Vediamo ora come applicare quanto visto finora in un problema concreto.

Esempio 5.21 È noto che i piccioni viaggiatori non amano volare a lungo sopra
ampi specchi d’acqua (per esempio, laghi), e che spesso per evitarlo compiono delle
deviazioni che allungano il percorso totale. Non è noto con sicurezza il motivo di
questo comportamento; per gli scopi di questo esempio, supporremo che sia dovuto
al fatto che di giorno sui laghi si formano correnti d’aria discendenti (causate dal
raffreddamento dell’aria sopra la superficie dell’acqua), per cui i piccioni per ri-
manere in quota devono spendere più energia sopra il lago di quanto ne spendano
sopra la terra. Siccome il piccione tende a scegliere il proprio percorso in modo da
minimizzare l’energia necessaria per giungere al punto d’arrivo, questo meccanismo
potrebbe spiegare il comportamento dei piccioni.

Vediamo cosa di applicare questo modello alla situazione illustrata nella Fi-
gura 5.4. Un piccione viaggiatore viene liberato nel punto A sulla sponda ovest
di un lago, e deve raggiungere il punto C sulla sponda sud. Il tragitto più breve
sarebbe il segmento AC, ma non è detto che sia il tragitto che minimizza l’energia.
Supponendo, per semplicità, che la sponda sud del lago sia più o meno rettili-
nea, vogliamo trovare il punto P lungo la costa tale che il tragitto formato dal
segmento AP seguito dal segmento PC minimizzi l’energia.

A

B P C

θ θ1

P

θ

b

a

N

P

θ

Figura 5.4 Piccioni viaggiatori.

Introduciamo alcuni dati. Indichiamo con B la proiezione di A sulla retta est-
ovest passante per C, con a = |BC| la lunghezza del segmento BC, e con b = |AB|
la lunghezza del segmento AB. In particolare, la lunghezza del segmento AC
è |AC| =

√
a2 + b2.
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Indichiamo poi con E` l’energia per unità di lunghezza necessaria per volare
sopra il lago, e con Et l’energia per unità di lunghezza necessaria per volare sopra
la terra. La nostra ipotesi è che E` sia maggiore di Et, cioè che

k =
E`

Et
> 1 .

L’energia necessaria per compiere il percorso APC è quindi

E(P ) = E`|AP |+ Et|PC| ;

dobbiamo trovare P in modo da minimizzare E(P ).
Per poter effettuare i conti, introduciamo l’angolo θ fra il segmento AP e il

segmento BC; è chiaro (vedi anche la Figura 5.4) che l’angolo θ identifica univoca-
mente il punto P . Abbiamo

|AP | = b

sin θ
;

inoltre, se P si trova fra B e C allora

|PC| = a− |BP | = a− |AP | cos θ = a− b cos θ

sin θ
.

Attenzione: questa formula vale solo se P si trova fra B e C, ovvero, in termini di
angoli, se e solo se θ1 ≤ θ ≤ π/2, dove θ1 è l’angolo fra AC e BC e soddisfa

cos θ1 =
a

|AP | =

√
a2

a2 + b2
.

Discuteremo dopo cosa succede se θ non appartiene all’intervallo [θ1, π/2].
Con queste notazioni, la funzione da minimizzare diventa

E(θ) = E`
b

sin θ
+ Et

(
a− b cos θ

sin θ

)
= aEt + b

E` − Et cos θ

sin θ

= aEt + bEt
k − cos θ

sin θ
.

(5.17)

Per trovare il punto di minimo assoluto, cominciamo col derivare:

E′(θ) = bEt
sin2 θ − cos θ(k − cos θ)

sin2 θ
= bEt

1− k cos θ

sin2 θ
. (5.18)

Quindi l’unico punto critico di E è il punto θ0 tale che

cos θ0 =
1
k

, (5.19)
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cioè θ0 = arccos k−1 ∈ (0, π/2). Verifichiamo che è un minimo calcolando la deri-
vata seconda:

E′′(θ) = bEt

(
k sin θ

sin2 θ
+ (1− k cos θ)

d

dθ

(
1

sin2 θ

))
,

per cui

E′′(θ0) =
bEtk

sin θ0
> 0 ,

e θ0 è effettivamente un minimo.
Abbiamo quindi identificato il punto P cercato; è il punto corrispondente al-

l’angolo θ0 soddisfacente la relazione (5.19). Nota un fatto interessante: θ0 dipende
solo dal rapporto k fra le energie, e non dalle dimensioni del lago (né dalla posizione
dei punti di partenza e arrivo!). In particolare, questo vuol dire che il piccione può
essere in grado di determinare θ0 (e quindi la direzione in cui volare) semplicemente
stando sul lago e confrontando l’energia che spende per volarci sopra con l’energia
che spende sulla terra; quindi il piccione è in grado di stabilire la rotta solo usando
informazioni locali.

Il nostro lavoro non è ancora terminato. Come abbiamo già notato, la for-
mula (5.17) vale solo per θ ∈ [θ1, π/2]; quindi abbiamo trovato il punto di minimo
solo se θ0 appartiene a questo intervallo, cioè solo se θ1 ≤ θ0 ≤ π/2, ovvero (ricor-
dando che il coseno è decrescente in [0, π/2]) solo se√

a2

a2 + b2
= cos θ1 ≥ cos θ0 =

1
k

,

che è equivalente a

k ≥

√
1 +

(
b

a

)2

. (5.20)

Se questa condizione non è soddisfatta, il punto di minimo θ0 non appartiene al-
l’intervallo [θ1, π/2], per cui il minimo di E in questo intervallo dev’essere in uno
degli estremi (non essendoci altri punti critici interni). Ora, (5.18) ci dice che se
θ > θ0 allora E′(θ) > 0. Questo vuol dire che se θ0 < θ1 allora la funzione E è
crescente nell’intervallo [θ1, π/2], per cui il valore minimo è assunto in θ1. In altre
parole, se (5.20) non è soddisfatta allora il percorso che minimizza l’energia è il seg-
mento AC. Questo è ragionevole: infatti se (5.20) non è soddisfatta allora l’altezza
nord-sud del lago è molto maggiore della larghezza est-ovest, per cui in ogni caso
la maggior parte del tragitto deve essere sul lago, e il risparmio di energia ottenuto
volando sopra un pezzo di costa non compensa l’allungamento del percorso.

Per essere sicuri di avere effettivamente considerato tutti i casi possibili, tro-
viamo la formula dell’energia anche per P a est di C o a ovest di B. Se P è a est
di C la formula diventa

Eest(θ) = E`|AP |+ Et|PC| = bEt
k + cos θ

sin θ
− aEt ,
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valida per θ ∈ (0, θ1]. Derivando troviamo

E′est(θ) = −bEt
1 + k cos θ

sin2 θ
< 0

in tutto l’intervallo; quindi Eest è decrescente in (0, θ1] e ha minimo in θ = θ1, come
previsto. Infine, se P è a ovest di B la formula diventa

Eovest(θ) = E`|AP |+ Et|PC| = bEt
k + sin θ

cos θ
+ aEt ,

valida per θ ∈ [π/2, π). Derivando troviamo

E′ovest(θ) = bEt
1 + k sin θ

cos2 θ
> 0

in tutto l’intervallo; quindi Eovest è crescente in [π/2, π) e ha minimo in θ = π/2.
Siccome Eovest(π/2) = E(π/2), scegliere P a ovest di B non fornisce un tragitto
con energia minore di quelli che avevamo esaminato prima.

Riassumendo, abbiamo dimostrato che se i dati del problema soddisfano la con-
dizione (5.20) allora il tragitto migliore è quello corrispondente all’angolo θ0 dato
da (5.19); se invece i dati del problema non soddisfano (5.20) allora il tragitto mi-
gliore è il segmento AC.

Questo risultato suggerisce esperimenti successivi che potrebbero gettare luce
sui meccanismi di volo dei piccioni viaggiatori. Infatti, mentre, come abbiamo
visto, il calcolo dell’angolo θ0 può essere effettuato dal piccione soltanto in base
alla situazione locale, la condizione (5.20) dipende dalla geometria globale del pro-
blema, e, in particolare, dalle dimensioni del lago. Si possono quindi progettare
degli esperimenti (per esempio, variando la posizione del punto A di partenza) in
cui la condizione (5.20) non sia soddisfatta. Se il piccione parte volando nella dire-
zione data dall’angolo θ0, allora dovremo dedurre che, almeno all’inizio, stabilisce
la propria rotta solo in base a informazioni locali; se invece parte fin dall’inizio nella
direzione data dall’angolo θ1, allora dovremo dedurre che il piccione è in possesso
di informazioni globali sulla geometria della situazione, e che determina la propria
rotta in base a queste informazioni — e quindi diventa interessante scoprire di quali
informazioni è in possesso.

In conclusione, abbiamo visto come trasformare un problema di etologia in un
modello matematico, e come lo studio attento del modello possa a sua volta indicare
nuovi problemi etologici e suggerire ulteriori esperimenti.

5.12 Studio qualitativo di funzioni

Torniamo ora alla situazione generale, e cerchiamo di vedere se il segno della deri-
vata seconda ha un significato anche al di fuori dei punti critici.

Se f ′′(x0) > 0 allora f ′(x0) è crescente in x0. Questo vuol dire che, andando
da sinistra verso destra, la pendenza della retta tangente al grafico di f sta au-
mentando: il grafico di f sta ruotando in senso antiorario (vedi la Figura 5.5).
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Visivamente, il grafico di f ha la concavità rivolta verso l’alto; in tal caso diremo
che la funzione f è convessa in x0.

Figura 5.5 Funzioni convesse.

Se invece f ′′(x0) < 0 allora f ′(x0) è decrescente in x0. Questo vuol dire che,
andando da sinistra verso destra, la pendenza della retta tangente al grafico di f
diminuisce: il grafico di f ruotando in senso orario (vedi la Figura 5.6). Visiva-
mente, il grafico di f ha la concavità rivolta verso il basso; in tal caso diremo che
la funzione f è concava in x0.

Figura 5.6 Funzioni concave.

Curiosità 5.8 Si può definire cos’è una funzione convessa anche senza tirare in ballo le derivate.
Essenzialmente, si dice che una funzione f : I → R è convessa se per ogni x1 < x2 in I il

grafico di f in [x1, x2] è sotto il segmento secante da
(
x1, f(x1)

)
a

(
x2, f(x2)

)
. Si può allora

dimostrare che ogni funzione che ammetta derivata seconda sempre positiva è convessa anche
in questo senso.

Rimangono i punti x0 in cui la derivata seconda si annulla; e, al solito, può
succedere di tutto (nel senso che il grafico della funzione può sia cambiare sia non
cambiare concavità passando attraverso x0); vedi l’Osservazione 5.32. I punti in
cui f ′′(x0) = 0 vengono detti punti di flesso (obliquo se f ′(x0) 6= 0, cioè se la retta
tangente non è orizzontale).

A questo punto abbiamo abbastanza tecniche per effettuare quello che si chiama
studio qualitativo delle funzioni. In altre parole, siamo in grado (almeno per fun-
zioni che ammettono due derivate) di avere un’idea piuttosto precisa, anche se
qualitativa, dell’andamento del grafico della funzione. Tipicamente, si procede nel
modo seguente:
– si identifica il dominio di definizione della funzione, trovando in particolare

eventuali punti singolari e gli estremi degli intervalli che compongono il dominio
di definizione;

– si studia il segno della funzione, in modo da capire in quali intervalli è positiva
e in quali è negativa (e in quali punti si annulla);
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– si studia il segno della derivata prima, in modo da capire in quali intervalli la
funzione è crescente e in quali è decrescente; inoltre, si calcolano i punti critici
(cioè gli zeri della derivata), e il valore della funzione in questi punti, in modo
da poter porre sul grafico tutti i minimi, massimi e punti di flesso;

– si studia il segno della derivata seconda, in modo da capire in quali intervalli
la funzione è convessa e in quali è concava, e da distinguere minimi e massimi
locali dai punti di flesso;

– si calcola il limite (se esiste) della funzione nei punti singolari, negli estremi
degli intervalli di definizione, e all’infinito (se ha senso farlo).

Non è detto che si riescano a effettuare tutti questi passaggi; ma più se ne fanno,
maggiore è la precisione con sui si traccia il grafico.

Esempio 5.22 Vogliamo effettuare uno studio qualitativo della funzione

f(x) =
2x2 − 1
x2 + 1

.

È una funzione razionale; quindi il dominio è costituito da tutta le retta reale tolti
gli eventuali zeri del denominatore. In questo caso il denominatore x2 + 1 non si
annulla mai, per cui f è definita su tutto l’asse reale.

Siccome il denominatore è sempre positivo, il segno e gli zeri di f coincidono
con il segno e gli zeri del numeratore 2x2 − 1. Le tecniche che abbiamo visto nel
Capitolo 4 ci dicono quindi che f(x) = 0 se e solo se x = ±1/

√
2, e che f(x) è

negativo per x ∈ (−1/
√

2, 1/
√

2), e positiva fuori da [−1/
√

2, 1/
√

2]. Riportiamo
queste informazioni su un grafico come nella Figura 5.7.(a).

La derivata di f è

f ′(x) =
4x(x2 + 1)− 2x(2x2 − 1)

(x2 + 1)2
=

6x

(x2 + 1)2
.

Quindi f ′ si annulla solo in 0, è negativa per x < 0, ed è positiva per x > 0. Di
conseguenza, f è decrescente per x < 0, crescente per x > 0, e ha un punto critico
in x = 0, dove vale f(0) = −1. Nota che possiamo già adesso stabilire che 0 è un
minimo assoluto di f , per almeno due motivi. Prima di tutto, abbiamo appena
visto che f è decrescente prima di 0 e crescente poi; quindi 0 è un minimo —
necessariamente assoluto dato che non ci sono altri punti critici e il dominio di f
non ha estremi. Ma possiamo arrivare alla stessa conclusione anche senza bisogno
di studiare il segno della derivata. Infatti, f deve avere un minimo nell’intervallo
chiuso [−1/

√
2, 1/
√

2]; siccome f è negativa nell’interno dell’intervallo, e nulla negli
estremi, il minimo dev’essere un punto critico interno all’intervallo; siccome 0 è l’u-
nico punto critico, dev’essere il minimo. La Figura 5.7.(b) riassume le informazioni
trovate finora.

La derivata seconda di f è

f ′′(x) =
6(x2 + 1)2 − 2(x2 + 1)(2x)(6x)

(x2 + 1)4
=
−6(3x4 + 2x2 − 1)

(x2 + 1)4
.
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Figura 5.7 Studio qualitativo di funzione.

Anche stavolta il denominatore è sempre positivo, per cui per trovare il segno di f ′′

ci basta studiare il segno del numeratore. Poniamo y = x2; allora il numeratore
si annulla se e solo se −6(3y2 + 2y − 1) = 0, cioè se e solo se y = −1 o y = 1/3;
è positivo (ricorda che il coefficiente di y2 è −18) se e solo se y ∈ (−1, 1/3), ed
è negativo se e solo se y /∈ [−1, 1/3]. Ora, y = x2 non può mai essere negativo;
quindi f ′′(x) si annulla se e solo se x2 = 1/3, è positivo se e solo se x2 ∈ [0, 1/3),
ed è negativo se e solo se x2 > 1/3. Estraendo le radici quadrate otteniamo quindi
che f ′′(x) = 0 se e solo se x = ±1/

√
3, f ′′(x) > 0 se e solo se x ∈ (−1/

√
3, 1/
√

3),
e f ′′(x) < 0 se e solo se x /∈ [−1/

√
3, 1/
√

3]. Dunque abbiamo due punti di flesso
obliquo (non sono punti critici) in cui f vale f(±1/

√
3) = −1/4, la funzione f è

convessa fra i due punti di flesso, ed è concava all’esterno di essi. È importante
vedere dove si situano i punti di flesso rispetto agli altri punti significativi (gli zeri e
i punti critici) che abbiamo individuato: siccome 0 < 1/

√
3 < 1/

√
2, i punti di flesso

si trovano fra il punto critico e gli zeri. Tutto ciò è riassunto nella Figura 5.7.(c).
Infine dobbiamo calcolare il limite di f all’infinito. Quanto visto nel Capitolo 4

ci dice subito che questo limite vale 2; un altro modo per verificarlo è il seguente
conto:

lim
x→±∞

2x2 − 1
x2 + 1

= lim
x→±∞

x2

x2

2− 1/x2

1 + 1/x2
= lim

x→±∞
2− 1/x2

1 + 1/x2
= 2 .

La Figura 5.7.(d) inserisce nel grafico anche questa ulteriore informazione.
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A questo punto non rimane che tracciare il grafico della funzione. È chiaro che
la curva che tracciamo usando le informazioni trovate potrebbe non essere esatta-
mente quella giusta; ma è anche altrettanto chiaro che questa curva rifletterà bene
il comportamento qualitativo (segno, crescenza/decrescenza, convessità/concavità,
massimi/minimi/flessi, limiti agli estremi) della nostra funzione — e spesso questo
è sufficiente. Prova a tracciare una curva nella Figura 5.7.(d) che rispetta tutte le
informazioni ottenute, e poi confrontala con la Figura 5.8 che contiene il grafico
vero della funzione f .

-4 -3 -2 -1 1 2 3 4

-1

-0.5

0.5

1

1.5

2

Figura 5.8 Grafico di f(x) = (2x2 − 1)/(x2 + 1).

5.13 Sviluppo di Taylor

Si sente spesso dire che “la retta tangente è la retta che meglio approssima un
grafico in un punto”. In questa sezione vogliamo chiarire cosa vuol dire questa
affermazione, perché è vera, e vedere come ottenere approssimazioni anche migliori.

“Meglio approssima” significa che l’errore che si compie sostituendo il grafico con
la retta dev’essere il minimo possibile. Come abbiamo già visto quando abbiamo
studiato l’interpolazione, l’errore che conta è dato dalla differenza delle ordinate in
punti di uguale ascissa. Quindi data una funzione f : I → R e un punto x0 ∈ I,
vogliamo trovare m, d ∈ R tali che la funzione errore

E1(x) = f(x)− (mx + d)

sia la più piccola possibile vicino a x0.
Come concretizziamo questa condizione di “più piccolo possibile vicino a x0”?

Prima di tutto, possiamo richiedere che l’errore sia nullo in x0, cioè che

0 = E1(x0) = f(x0)− (mx0 + d) =⇒ d = f(x0)−mx0 .
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Con questa scelta, la funzione E1 diventa

E1(x) = f(x)− f(x0)−m(x− x0) ,

ed è infinitesima in x0. Ma quanto infinitesima? L’idea è che maggiore è l’ordine di
infinitesimo in x0 minore è l’errore e quindi migliore è l’approssimazione. Per cer-
care di capire quanto infinitesima può essere E1, confrontiamola con l’infinitesimo
più semplice, x − x0 (vedi l’Osservazione 5.27). Supponendo che f sia derivabile
in x0 otteniamo

lim
x→x0

E1(x)
x− x0

= lim
x→x0

f(x)− f(x0)−m(x− x0)
x− x0

= f ′(x0)−m .

Quindi E1(x) e x − x0 sono infinitesimi dello stesso ordine in x0 a meno che
m = f ′(x0), nel qual caso E1(x) è un infinitesimo di ordine superiore rispetto
a x − x0. Quindi il valore di m che rende E1(x) più piccolo possibile vicino a x0

è m = f ′(x0), per cui y = f ′(x0)(x− x0) + f(x0) è la retta che meglio approssima
il grafico di f vicino a x0. Più precisamente, abbiamo fatto vedere che

f(x) = f(x0) + f ′(x0)(x− x0) + o(x− x0) .

Vogliamo adesso la migliore approssimazione quadratica, cioè il polinomio qua-
dratico il cui grafico meglio approssima il grafico di f vicino a x0. Siccome con una
funzione lineare otteniamo un errore o(x−x0), con un’approssimazione quadratica
vogliamo ottenere un errore che sia un infinitesimo di ordine superiore, almeno
pari a o

(
(x − x0)2

)
. Quindi la parte lineare del polinomio quadratico dev’essere

(perché?) quella che abbiamo già trovato, e cerchiamo a ∈ R tale che

E2(x) = f(x)− f(x0)− f ′(x0)(x− x0)− a(x− x0)2

sia o
(
(x − x0)2

)
. Supponendo che f sia derivabile due volte vicino a x0 possiamo

applicare l’Hôpital e ottenere

lim
x→x0

E2(x)
(x− x0)2

= lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)− a(x− x0)2

(x− x0)2

= lim
x→x0

f ′(x)− f ′(x0)− 2a(x− x0)
2(x− x0)

=
1
2
f ′′(x0)− a .

Quindi l’unico valore di a per cui E2(x) = o
(
(x − x0)2

)
è a = 1

2f ′′(x0). In altre
parole, la migliore approssimazione quadratica di f vicino a x0 è

P2(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 ,

e possiamo scrivere

f(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 + o

(
(x− x0)2

)
.
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A questo punto avrai capito come si procede. Se vogliamo trovare la migliore
approssimazione cubica di f vicino a x0 consideriamo l’errore

E3(x) = f(x)− f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 + b(x− x0)3 ,

e cerchiamo il valore di b tale che E3(x) = o
(
(x − x0)3

)
. Supponendo che f sia

derivabile tre volte vicino a x0 e applicando l’Hôpital due volte otteniamo

lim
x→x0

E3(x)
(x− x0)3

= lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)− f ′′(x0)
2 (x− x0)2 − b(x− x0)3

(x− x0)3

= lim
x→x0

f ′(x)− f ′(x0)− f ′′(x0)(x− x0)− 3b(x− x0)2

3(x− x0)2

= lim
x→x0

f ′′(x)− f ′′(x0)− 3 · 2b(x− x0)
3 · 2(x− x0)

=
1
3!

f ′′′(x0)− b .

Quindi il polinomio cubico che meglio approssima f vicino a x0 è

P3(x) = f(x0) + f ′(x0)(x− x0) +
1
2
f ′′(x0)(x− x0)2 +

1
3!

f ′′′(x0)(x− x0)3 ,

e possiamo scrivere

f(x) = f(x0)+f ′(x0)(x−x0)+
1
2
f ′′(x0)(x−x0)2+

1
3!

f ′′′(x0)(x−x0)3+o
(
(x−x0)3

)
.

Procedendo in questo modo, si vede che se f è derivabile n volte vicino a x0

allora il polinomio di grado n che meglio approssima f vicino a x0 è il polinomio

Pn(x) =
n∑

j=0

1
j!

f (j)(x0)(x− x0)j

(dove 0! = 1 come al solito, e f (0) = f), che è l’unico polinomio tale che l’errore

En(x) = f(x)− Pn(x)

sia un infinitesimo di ordine superiore a (x− x0)n, per cui si ha

f(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ 1
n!

f (n)(x0)(x− x0)n + o
(
(x− x0)n

)
. (5.21)

Il polinomio Pn(x) è detto polinomio di Taylor di f in x0 di grado n, e (5.21) viene
detto sviluppo di Taylor di f in x0 di ordine n.

Osservazione 5.34 In alcuni libri i polinomi e lo sviluppo di Taylor in 0 vengono
chiamati polinomi e sviluppi di Maclaurin di f .
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Esempio 5.23 Vogliamo trovare lo sviluppo di Taylor di ordine n in x0 = 0 per
la funzione esponenziale f(x) = ex. Siccome f (j)(x) = ex per ogni j ∈ N, abbiamo
f (j)(0) = 1 per ogni j ∈ N, per cui lo sviluppo cercato è

ex = 1 + x +
1
2
x2 +

1
3!

x3 + · · ·+ 1
n!

xn + o(xn) .

Esempio 5.24 Vogliamo trovare gli sviluppi di Taylor in x0 = 0 per la funzione
seno f(x) = sinx. Siccome

f(x) = sinx , f ′(x) = cos x , f ′′(x) = − sinx , f (3)(x) = − cos x ,

e f (4)(x) = sinx = f(x), le derivate successive si ripetono. Quindi

f(0) = 0 , f ′(0) = 1 , f ′′(0) = 0 , f (3)(0) = −1 ,

e quelle successive si ripetono in maniera periodica; per l’esattezza (controlla)

f (j)(0) =
{

0 se j = 2n è pari,
(−1)n se j = 2n + 1 è dispari.

Quindi lo sviluppo cercato è

sinx = x− 1
3!

x3 +
1
5!

x5 − 1
7!

x7 + · · ·+ (−1)n

(2n + 1)!
x2n+1 + o(x2n+2)

(e convinciti che l’aver scritto o(x2n+2) invece di o(x2n+1) non è un errore).

Esempio 5.25 In modo analogo troviamo gli sviluppi di Taylor in x0 = 0 per la
funzione coseno f(x) = cos x. Siccome

f(x) = cos x , f ′(x) = − sin x , f ′′(x) = − cos x , f (3)(x) = sinx ,

stavolta abbiamo

f(0) = 1 , f ′(0) = 0 , f ′′(0) = −1 , f (3)(0) = 0 ,

e più in generale (verifica)

f (j)(0) =
{

0 se j = 2n + 1 è dispari,
(−1)n se j = 2n è pari.

Quindi lo sviluppo cercato è

cos x = 1− 1
2!

x2 +
1
4!

x4 − 1
6!

x6 + · · ·+ (−1)n

(2n)!
x2n + o(x2n+1) .
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Esempio 5.26 Vogliamo lo sviluppo di Taylor della funzione f(x) = log x nel
punto x0 = 1. Abbiamo

f(x) = log x , f ′(x) =
1
x

, f ′′(x) = − 1
x2

, f ′′′(x) =
2
x3

,

e, in generale,

f (j)(x) = (−1)j−1 (j − 1)!
xj

.

Quindi f(1) = 0 e

∀j ≥ 1 f (j)(1) = (−1)j−1(j − 1)! ,

per cui lo sviluppo cercato è

log x = (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 + · · ·+ (−1)n−1

n
(x− 1)n + o

(
(x− 1)n

)
.

Esempio 5.27 Vogliamo lo sviluppo di Taylor della funzione f(x) = 1/(1 − x)
in x0 = 0. Abbiamo

f(x) =
1

1− x
, f ′(x) =

1
(1− x)2

, f ′′(x) =
2

(1− x)3
, f ′′′(x) =

3!
(1− x)4

,

e, in generale,

f (j)(x) =
j!

(1− x)j+1
.

Quindi

∀j ∈ N f (j)(0) = j! ,

per cui lo sviluppo cercato è

1
1− x

= 1 + x + x2 + · · ·+ xn + o(xn) .

Curiosità 5.9 Se f ammette derivate di ordine qualsiasi in x0 (come accade per esempio per le
funzioni esponenziali o trigonometriche) possiamo approssimare f con polinomi di Taylor di
ordine arbitrariamente alto; quindi potremmo essere tentati di scrivere una formula del tipo

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 +
1

3!
f ′′′(x0)(x− x0)

3 + · · · , (5.22)

dove i puntini sottintendono la “somma” di un’infinità di termini. Questa è in realtà una
buona idea, ma non si può fare sempre. Voglio darti un’idea di come si può procedere, e quali
sono i problemi che si possono incontrare.

Prima di tutto dobbiamo dare un senso alla somma infinita (5.22). Per farlo, conside-
riamo prima un problema lievemente più semplice. Supponiamo di avere una successione
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{a0, a1, a2, . . .} di numeri reali. Allora possiamo costruire la successione {s0, s1, s2, . . .} delle
somme parziali sommando un numero finito di termini alla volta:

s0 = a0 , s1 = a0 + a1 , s2 = a0 + a1 + a2 , s3 = a0 + a1 + a2 + a3 ,

e, più in generale,

sn =

n∑
j=0

aj .

Se la successione {sn} ammette un limite finito per n→ +∞, allora è ragionevole considerare
questo limite come somma della successione infinita di addendi a0, a1, a2, . . .. Questa somma
infinita viene detta serie e indicata col seguente simbolo:

+∞∑
j=0

aj .

Quindi per definizione la somma della serie (quando esiste — nel qual caso diremo che la serie
converge) è data dal limite delle somme parziali:

+∞∑
j=0

aj = lim
n→+∞

n∑
j=0

aj .

Torniamo al nostro problema. Per ogni numero x fissato, possiamo considerare la successione
di numeri

aj =
1

j!
f (j)(x0)(x− x0)

j .

Allora il polinomio di Taylor Pj(x) valutato in x coincide proprio con la somma parziale
degli aj , cioè

Pn(x) =

n∑
j=0

aj ,

per cui possiamo considerare la serie di Taylor per f in x0

T (x) =

+∞∑
j=0

aj =

+∞∑
j=0

f (j)(x0)

j!
(x− x0)

j .

Quando x = x0 tutti gli addendi di questa serie tranne il primo sono nulli, per cui T (x0) è in
realtà una somma finita e si ha T (x0) = f(x0). Ma per x 6= x0 possono capitare tre cose:

(a) la somma non esiste, cioè la serie non converge;

(b) la serie converge a un valore T (x) ∈ R, ma T (x) 6= f(x);

(c) la serie converge a un valore T (x) uguale a f(x).

La situazione migliore è chiaramente la (c): vuol dire che possiamo approssimare la funzione
arbitrariamente bene con i polinomi di Taylor, in quanto (c) è equivalente ad avere

lim
n→+∞

En(x) = 0 .

Quando questo accade per tutti gli x sufficientemente vicini a x0 si dice che f è analitica reale
in x0. Ovviamente, a questo punto si pone il problema di stabilire per quali x la serie di Taylor
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converge a f(x). Per esempio, si può dimostrare (vedi la Curiosità 5.11) che la serie di Taylor
dell’esponenziale converge all’esponenziale per tutti gli x ∈ R; lo stesso accade per il seno o il
coseno. Invece, la serie di Taylor di 1/(1 − x) trovata nell’Esempio 5.27 non converge per tutti
gli x ∈ R; per esempio, è chiaro che diverge per ogni x > 1 (in quanto somma di termini sempre più
grandi). Però si può dimostrare che converge a 1/(1−x) per |x| < 1, per cui la funzione 1/(1−x)
è comunque analitica reale in 0. Lo studio di queste problematiche, e in generale delle funzioni
analitiche reali, è un campo della matematica molto sviluppato e pieno di applicazioni.

Infine, voglio citare almeno un esempio di funzione f con derivate di ogni ordine la cui serie di
Taylor converge in ogni punto ma T (x) 6= f(x) per ogni x > 0. Si tratta della funzione f definita
nella Curiosità 4.12. Infatti vedremo nel prossimo capitolo che questa funzione ha derivate di ogni
ordine, ma f (j)(0) = 0 per ogni j ∈ N; quindi la serie di Taylor di f in 0 è identicamente nulla (e
quindi in particolare convergente) ma f(x) 6= 0 per ogni x > 0.

Quando si approssima qualcosa, è importante avere una stima dell’errore che
si compie. Uno dei motivi per cui i polinomi di Taylor sono cos̀ı utili è che esiste
una formula semplice per stimare l’errore che si compie sostituendo il polinomio di
Taylor alla funzione originale. Dato x0, sia f una funzione con n + 1 derivate (una
in più rispetto a quelle necessarie per scrivere lo sviluppo di Taylor di ordine n),
e per ogni x indichiamo con Mn(x) il massimo del modulo della derivata (n + 1)-
esima f (n+1) sull’intervallo di estremi x0 e x. Allora se Pn il polinomio di Taylor
di grado n per f in x0 abbiamo la stima di Lagrange dell’errore

|En(x)| = |f(x)− Pn(x)| ≤Mn(x)
|x− x0|n+1

(n + 1)!
. (5.23)

La Curiosità 5.10 spiega come si ricava questa formula; ma prima vediamo in un
paio di esempi come si usa.

Esempio 5.28 Vogliamo trovare un’approssimazione alla quarta cifra decimale
del numero di Nepero e. Lo sviluppo di Taylor dell’esponenziale ci dice che

e = e1 = 1 + 1 +
1
2

+
1
3!

+ · · ·+ 1
n!

+ En(1) ;

se troviamo un n ≥ 1 tale che |En(1)| < 10−5 allora (perché?) l’approssimazione

e ' 1 + 1 +
1
2

+
1
3!

+ · · ·+ 1
n!

ci darà le prime quattro cifre decimali di e. Ora, tutte le derivate della funzione
esponenziale coincidono con la funzione esponenziale, che è crescente nell’inter-
vallo [0, 1]; quindi Mn(1) = e1 = e per ogni n ≥ 1, ed (5.23) ci dice che

|En(1)| ≤ e|1− 0|n+1

(n + 1)!
<

3
(n + 1)!

,

dove abbiamo usato la disuguaglianza elementare e < 3. Quindi ci basta trovare n
tale che 3/(n + 1)! < 10−5, cioè tale che (n + 1)! > 300 000. Siccome 9! = 362 880,
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basta prendere n = 8 per ottenere

e ' 1 + 1 +
1
2

+
1
3!

+
1
4!

+
1
5!

+
1
6!

+
1
7!

+
1
8!
' 2.71827877

corretto almeno fino alla quarta cifra decimale compresa.

Esempio 5.29 Vogliamo ricavare la stima (4.29) del capitolo precedente. Pren-
diamo f(x) = a(1−e−k(x−x0))+b; allora (4.29) non è altro che la stima di Lagrange
dell’errore per f in x0 di ordine 1. Infatti,

f ′(x) = kae−k(x−x0) e f ′′(x) = −k2ae−k(x−x0) ,

per cui f(x0) = b, f ′(x0) = ka e

E1(x) = f(x)− (b + ka(x− x0)) ;

dunque il membro sinistro di (4.29) coincide con |E1(x)|. Infine, per x > x0 il
modulo della derivata seconda di f è decrescente; quindi M1(x) = k2a, e (4.29) è
esattamente la stima di Lagrange dell’errore.

Esempio 5.30 Stavolta vogliamo dimostrare la stima contenuta nell’Osserva-
zione 4.47. I conti sono più complessi rispetto al caso precedente, per cui seguili
con attenzione. Poniamo

f(x) =
a

1 + e−k(x−x0)
+ b ;

allora

f ′(x) =
kae−k(x−x0)

(1 + e−k(x−x0))2
, f ′′(x) =

ak2e−k(x−x0)(e−k(x−x0) − 1)
(1 + e−k(x−x0))3

.

In particolare, f(x0) = b + (a/2) e f ′(x0) = ak/4; quindi il membro sinistro
della stima dell’Osservazione 4.47 è, come al solito, |E1(x)|, dove abbiamo fatto
lo sviluppo di Taylor di f in x0. Dobbiamo quindi calcolare M1(x), cioè trovare
il massimo di |f ′′| nell’intervallo di estremi x0 e x ∈ [x−1, x1], dove x±1 è tale
che f(x±1) = b + (a/2)± (a/4).

Poniamo y = e−k(x−x0), e y±1 = e−k(x±1−x0). Allora abbiamo

a

1 + y±1
+ b = f(x±1) = b +

a

2
± a

4
;

risolvendo troviamo y1 = 1/3 e y−1 = 3. Siccome e−k(x−x0) è strettamente decre-
scente, abbiamo trovato che quando x varia in [x−1, x1] allora y varia in [1/3, 3].
Ora,

|f ′′(x)| = |a|k
2y|y − 1|

(1 + y)3
;
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quindi dobbiamo trovare il massimo di g(y) = y|y− 1|/(1+ y)3 per y ∈ [1/3, 3]. La
presenza del valore assoluto di y− 1 ci costringe (perché?) a considerare separata-
mente l’intervallo [1/3, 1] dall’intervallo [1, 3]. Nel primo intervallo

g(y) =
y − y2

(1 + y)3
,

per cui derivando otteniamo

g′(y) =
1− 4y + y2

(1 + y)4
,

che si annulla in 2 ±
√

3. Siccome 2 −
√

3 < 1/3 < 1 < 2 +
√

3, la derivata g′(y)
è negativa in [1/3, 1], per cui g è decrescente in questo intervallo, e il massimo è
nell’estremo y1 = 1/3.

Nel secondo intervallo

g(y) =
y2 − y

(1 + y)3
,

per cui derivando otteniamo

g′(y) = −1− 4y + y2

(1 + y)4
,

che si annulla di nuovo in 2 ±
√

3. Siccome 2 −
√

3 < 1 < 3 < 2 +
√

3, la deri-
vata g′(y) è positiva in [1, 3], per cui g è crescente in questo intervallo, e il massimo
è nell’estremo y−1 = 3. Siccome g(1/3) = g(3) = 3/32, otteniamo

∀x ∈ [x−1, x1] M1(x) ≤ 3
32
|a|k2 ,

e dunque

∀x ∈ [x−1, x1] |E1(x)| ≤ 3|a|
32

k2(x− x0)2

2
.

L’ultimo passaggio rimasto consiste nello stimare k2(x− x0)2. Ora, noi sappiamo
che y±1 = e−k(x±1−x0); quindi

−k(x±1 − x0) = log y±1 = ∓ log 3 =⇒ k2(x±1 − x0)2 = (log 3)2 .

Siccome k2(x− x0)2 ≤ k2(x±1 − x0)2 per ogni x ∈ [x−1, x1] otteniamo infine

∀x ∈ [x−1, x1] |E1(x)| ≤ 3|a|(log 3)2

64
< 0.06|a| ,

che è anche meglio della stima che avevamo dato nell’Osservazione 4.47.
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Osservazione 5.35 Lo sviluppo di Taylor è una delle tecniche più usate da calco-
latrici e calcolatori per determinare il valore numerico delle funzioni esponenziali,
logaritmiche e trigonometriche con un’approssimazione qualsiasi.

Curiosità 5.10 La stima di Lagrange dell’errore è conseguenza del teorema del valor medio
di Lagrange. Per farlo vedere, introduciamo prima una piccola generalizzazione, dovuta a
Cauchy, del teorema del valor medio di Lagrange: supponiamo di avere due funzioni f e g
derivabili in un intervallo [a, b]. Allora per ogni x1, x2 ∈ [a, b] con x1 < x2 esiste x ∈ (x1, x2)
tale che

f ′(x)[g(x2)− g(x1)] = g′(x)[f(x2)− f(x1)]

(teorema del valor medio di Cauchy); questo risultato segue subito (esercizio) dal teorema del
valor medio di Lagrange applicato alla funzione h(x) = f(x)[g(x2)−g(x1)]−g(x)[f(x2)−f(x1)].

Ora, sia f : I → R una funzione con n + 1 derivate, e x0 ∈ I. Sia

Pn(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)

n

il polinomio di Taylor di grado n di f in x0. Fissiamo ora un punto x ∈ I, e definiamo le
funzioni

F (t) = f(t) + f ′(t)(x− t) + · · ·+ f (n)(t)

n!
(x− t)n e G(t) = (x− t)n+1 .

Allora si verifica facilmente che F (x) = f(x) e F (x0) = Pn(x), per cui F (x)−F (x0) = En(x);
inoltre,

dF

dt
(t) =

(x− t)n

n!
f (n+1)(t) .

Applocando il teorema del valor medio di Cauchy alle funzioni F e G (usando le derivate
rispetto a t, non a x) troviamo un punto x fra x0 e x tale che

− (x− x)n

n!
f (n+1)(x)(x− x0)

n+1 = −(n + 1)(x− x)nEn(x) ,

per cui otteniamo la formula di Lagrange del resto

En(x) =
(x− x0)n+1

(n + 1)!
f (n+1)(x) .

Quindi se indichiamo con Mx il massimo del modulo di f (n+1) fra x0 e x abbiamo chiaramente
|f (n+1)(x)| ≤Mx e quindi

|En(x)| ≤Mx

|x− x0|n+1

(n + 1)!
,

come voluto.

Curiosità 5.11 Vogliamo usare la stima dell’errore di Lagrange per dimostrare che la serie di
Taylor di f(x) = ex (vedi la Curiosità 5.9) converge a ex per ogni x reale, cioè che

∀x ∈ R ex =

+∞∑
j=0

1

j!
xj .
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Dobbiamo dimostrare che lim
n→+∞

En(x) = 0 per ogni x ∈ R. La stima di Lagrange dell’errore

ci dice (perché?) che

|En(x)| ≤ Cx

|x|n+1

(n + 1)!
,

dove Cx = ex se x > 0, e Cx = 1 se x < 0. Quindi ci basta dimostrare che

∀a > 0 lim
n→+∞

an

n!
= 0 .

Ma infatti, scegliamo n0 ∈ N tale che n0 + 1 > 2a. Allora per ogni n > n0 abbiamo

an

n!
=

a

1
· a
2
· · · a

n0
· a

n0 + 1
· · · a

n
≤ a

1
· a
2
· · · a

n0

(
a

n0 + 1

)n−n0
<

(2a)n0

n0!

1

2n

che tende a zero per n→ +∞, ed è fatta. In modo analogo puoi dimostrare (esercizio) che

∀x ∈ R sin x =

+∞∑
n=0

(−1)n x2n+1

(2n + 1)!
e cos x =

+∞∑
n=0

(−1)n x2n

(2n)!
.

5.14 Propagazione degli errori

Lo sviluppo di Taylor al primo ordine può essere usato anche per studiare la pro-
pagazione degli errori dalla variabile indipendente alla funzione.

Supponiamo di stare studiando una quantità f(x) dipendente da una variabile
indipendente x. Supponiamo inoltre che la misura della variabile indipendente
sia soggetta a un errore relativo pari a er; vogliamo trovare una stima dell’errore
relativo che compiamo calcolando la quantità f(x).

Indichiamo con ea ∈ R l’errore assoluto commesso sulla variabile indipendente x.
Per questo conto, considereremo ea con segno: se ea > 0 allora l’errore è per eccesso,
mentre se ea < 0 allora l’errore è per difetto. Inoltre, supporremo per semplicità
che la variabile indipendente assuma solo valori positivi; allora

er =
ea

x
,

e il segno dell’errore relativo indica se l’errore assoluto è per eccesso o per difetto.
L’errore assoluto Ea (sempre con segno) compiuto calcolando la quantità f(x)

è dunque
Ea = f(x + ea)− f(x) ;

e l’errore relativo Er è dato da

Er =
f(x + ea)− f(x)

f(x)
,

dove, per semplicità, supponiamo che anche i valori di f siano tutti positivi.
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Vogliamo una stima di Er in funzione di er ed f . Scrivendo lo sviluppo di Taylor
al prim’ordine di f in x otteniamo

Ea = f(x + ea)− f(x) = f ′(x)
(
(x + ea)− x

)
+ o

(
(x + ea)− x

)
= f ′(x)ea + o(ea)

= x
[
f ′(x)er + o(er)

]
.

Quindi se l’errore relativo er è abbastanza piccolo possiamo trascurare gli infinite-
simi di ordine superiore e ottenere

Ea ≈ xf ′(x)er

e

Er ≈
xf ′(x)
f(x)

er , (5.24)

che erano le formule che stavamo cercando.

Osservazione 5.36 Ovviamente si ottengono formule più precise considerando svi-
luppi di Taylor di ordine superiore; ma per i nostri scopi possiamo limitarci a
queste.

Osservazione 5.37 Anche Ea ed Er hanno un segno, indicanti errori per eccesso o
per difetto. Siccome abbiamo supposto x ed f(x) positivi, il segno di Er dipende
sia dal segno di er che dal segno della derivata f ′(x). In particolare, se f ′(x) > 0
allora errori per eccesso (difetto) nella variabile indipendente causano errori per
eccesso (difetto) nella quantità calcolata, mentre se f ′(x) < 0 allora errori per
eccesso (difetto) nella variabile indipendente causano errori per difetto (eccesso)
nella quantità calcolata.

Concludiamo con un esempio di applicazione di queste stime.

Esempio 5.31 In assenza di turbolenza, la resistenza totale R che il cuore deve
superare per pompare del sangue in un capillare di lunghezza l e raggio interno a
è data dalla formula di Poiseuille

R = k
l

a4
,

dove k è un coefficiente di proporzionalità dipendente, per esempio, dalla viscosità
del sangue. Supponiamo di aver misurato il raggio interno del capillare con un
errore (relativo) del 2%; vogliamo stimare l’errore relativo nel valore calcolato della
resistenza totale. La formula (5.24) ci fornisce il risultato:

Er ≈
a

R(a)
dR

da
(a)er =

a

kl/a4

(
−4

kl

a5

)
er = −4er = −8% .

Quindi un errore per eccesso del 2% nella misura del raggio interno causa un errore
per difetto di circa l’8% nella misura della resistenza totale.
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Supponiamo ora di aver misurato con un errore relativo del 2% la lunghezza del
capillare; stimiamo che errore causiamo nel calcolo della resistenza totale. Stavolta
la formula (5.24) diventa

Er ≈
l

R(l)
dR

dl
(l)er =

l

kl/a4
· k

a4
er = er = 2% .

Quindi un errore per eccesso del 2% nella misura della lunghezza del capillare causa
un errore per eccesso di circa il 2% nella misura della resistenza totale.


