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Bestiario

In questo capitolo presenteremo le principali classi di funzioni reali di variabile
reale che si incontrano nella pratica scientifica. Vedremo anche alcune delle tec-
niche principali per trovare funzioni che approssimano meglio possibile dei dati
sperimentali.

4.1 Funzioni lineari

Le funzioni reali di variabile reale pitt semplici (dopo le costanti. . . ) sono le funzioni
lineari. Rappresentano relazioni di proporzionalita: una funzione ¢ lineare se il suo
valore varia in modo proporzionale alla variazione dell’argomento. In altre parole,
una funzione f ¢ lineare se esiste un numero reale m € R (di solito non nullo)
tale che se la variabile indipendente x varia di una quantita ¢ allora la variabile
dipendente f(x) varia di mg.

Vediamo come si deduce da questa definizione la formula che descrive una
funzione lineare. Supponiamo di variare il valore della variabile indipendente
da zg a z; la variazione ¢ quindi uguale a ¢ = x — x(, che tradizionalmente
si indica con Az = =z — zg. Se f:R — R & una funzione lineare, la variazione
Af = f(x) — f(xo) del suo valore deve soddisfare la relazione

Af=mAzx.
Inserendo in questa formula le definizioni di Af e Az otteniamo
f(@) = f(zo) = Af =mAz = m(z — 20) ,

per cui
fl)=mz+d, (4.1)

con d = f(zg) — mxo.
Viceversa, supponiamo che la funzione f:R — R sia data dalla formula (4.1).
Allora

Af = f(x) = f(xo) = mx 4+ d — (mxg + d) = m(x — x9) = mAzx
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cioe f rappresenta una relazione di proporzionalita.

Riassumendo, le funzioni lineari (a volte chiamate anche funzioni lineari affini,
riservando il termine “lineare” alle funzioni di questo tipo con d = 0) sono tutte e
sole le funzioni della forma (4.1) per opportuni m, d € R.

Nella pratica sperimentale, capita spesso di trovare dati che dipendono in ma-
niera lineare da una variabile (almeno per certi intervalli della variabile; vedi 1’Os-
servazione 4.1); si pone quindi il problema di come trovare la legge che esprime
questa relazione a partire dai dati sperimentali. In altre parole, vogliamo recupe-
rare i coefficienti m e d conoscendo alcuni punti del grafico della funzione. Vediamo
un esempio molto semplice, ma gia significativo, di questa situazione.

ESEMPIO 4.1 E noto che la percentuale di semi di una data pianta che germo-
gliano dipende dalla temperatura ambiente. Per una determinata varietd di pomo-
doro, ¢ stato verificato che alla temperatura di 12 °C germoglia il 40% dei semi,
mentre alla temperatura di 15 °C germoglia il 70% dei semi. Trova la relazione
fra la temperatura e la percentuale di semi germogliati, supponendo sia espressa da
una funzione lineare. Indichiamo con P(T') la percentuale di semi che germoglia
alla temperatura di 7' °C. Siccome abbiamo supposto che la funzione P:R — R
che associa alla temperatura T la percentuale P(T) sia lineare, possiamo scrivere

P(T) =mT +d

per opportuni m, d € R; il nostro obiettivo & usare i dati sperimentali per calco-
lare m e d. Noi sappiamo che P(12) = 40 e P(15) = 70; dunque

30 = 70 — 40 = P(15) — P(12) = AP = mAT = m(15 — 12) = 3m ,

(attenzione: in questo esempio la variabile indipendente si chiama T e la varia-
bile dipendente P, per cui abbiamo scritto AT e AP invece di Az e Af) da cui
deduciamo 30
m=—=10.
3

Per ricavare d basta notare che si deve avere
40=P(12)=m-124d=10-12+d=120+4d,

per cui
d=—-80.

Quindi 'unica funzione lineare che rappresenta correttamente i dati sperimentali &
P(T)=10T —80. (4.2)

Osservazione 4.1 E importante notare che per arrivare a questa soluzione abbiamo
supposto a priori che la funzione da trovare fosse di tipo lineare; & un’ipotesi, e non
una conseguenza. Del resto, da due sole coppie di dati & ben difficile immagi-
nare, senza altre informazioni, quale possa essere I’andamento della funzione che
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volevamo studiare. Quale sia U'ipotesi giusta da fare (se lineare, quadratica, espo-
nenziale o di altro tipo) puod venire suggerito da quanto sappiamo sul fenomeno bio-
logico che stiamo studiando. Altrimenti, conviene fare molte pit misure e cercare
di capire quale sia la funzione che meglio approssima i dati che abbiamo ottenuti,
tenendo presente che le misure sono sicuramente affette da errori sperimentali. Ne
parleremo piu in dettaglio nella Sezione 4.3.

Come gia accennato nel capitolo precedente, lo scopo di ottenere una formula
come la (4.2) ¢ effettuare predizioni. Ci permette di dare risposte plausibili', senza
bisogno di altre misure, a domande del tipo: quale percentuale di semi germogliera
alla temperatura di 14 °C? A quale temperatura germogliera il 50% dei semi?

ESEMPIO 4.2 Supponiamo quindi che per questa varieta di pomodori la rela-
zione fra la percentuale di semi che germogliano e la temperatura sia data dalla
formula (4.2). Allora la percentuale di semi che germogliano a 14 °C &

P(14) = 10- 14 — 80 = 140 — 80 = 60% .

Trovare la temperatura T a cui germoglia il 50% dei semi equivale invece a risolvere
lequazione P(T) = 50, cioé

50=P(T)=10T —80;
quindi 107 = 130, cioe T'= 13 °C.

EsEMPIO 4.3 Per la stessa varieta di pomodori, vogliamo trovare quale percen-
tuale di semi germogliera alla temperatura di 10 °C, e a quale temperatura germo-
gliera il 90% dei semi. La risposta alla prima domanda & P(10) = 10-10—80 = 20%,
mentre per rispondere alla seconda domanda risolviamo I'equazione P(T") = 90 ot-
tenendo 7' = 17 °C.

Le predizioni dell’Esempio 4.2 sono frutto di una interpolazione. Infatti, ab-
biamo dati sperimentali sia per valori della variabile indipendente inferiori a quelli
coinvolti in queste predizioni, sia per valori superiori: sappiamo cosa succede a 12 e
15 °C, e deduciamo cosa accade a 13 e 14 °C. Invece, le predizioni dell’Esempio 4.3
sono frutto di una estrapolazione: i valori della variabile indipendente coinvolti
nelle predizioni (10 e 17 °C) sono esterni all’intervallo dei valori della variabile
indipendente per cui abbiamo dati sperimentali. Le estrapolazioni sono sempre
molto pit rischiose delle interpolazioni, in quanto I'ipotesi iniziale (che la relazione
sia di tipo lineare) potrebbe valere solo all’interno di un determinato intervallo di
valori.

EsEMPIO 4.4 Usando la (4.2) “prediciamo” che alla temperatura di 19 °C germo-
gliera il P(19) = 10-19 — 80 = 110% dei semi, cosa piuttosto improbabile a meno

1 Plausibili, e non certe: vedi I’Osservazione 4.2.
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di generazione spontanea di nuovi semi dal nulla... Analogamente, la “predizione”
che alla temperatura di 5 °C germogli il P(5) = 10-5 — 80 = —30% dei semi ha
ben poco senso.

Dunque quando si ipotizza un certo andamento per dei dati sperimentali e
importante indicare con chiarezza l'intervallo dei valori per cui si ritiene valida
I’ipotesi; al di fuori di quei valori I'estrapolazione potrebbe non avere senso anche
se la funzione che rappresenta ’andamento dei dati & ancora definita.

Osservazione 4.2 Determinare 'intervallo dei valori in cui la formula ottenuta puo
essere valida € spesso un esercizio di buon senso: nel nostro caso, una percentuale
negativa o maggiore del 100% non ha senso, per cui dobbiamo escludere i valori che
danno risultati del genere. Nella pratica sperimentale, ¢’¢ pero un ulteriore passo
importante da fare: confrontare le predizioni sensate (le interpolazioni) ottenute
con nuovi risultati sperimentali. Infatti, le nostre predizioni sono basate su un’ipo-
tesi (che la funzione fosse di tipo lineare), ipotesi che dobbiamo verificare nei fatti.
Se le nostre predizioni sono in buon accordo con le nuove misure (tenendo presente
gli inevitabili errori sperimentali) allora possiamo dirci soddisfatti della nostra ipo-
tesi; se invece non lo sono, dobbiamo cambiare ipotesi (vedi gli Esempi 4.7, 4.9,
4.18 € 4.27, e ’Esercizio 4.2 della Sezione 4.4).

Lasciamo ora crescere in pace i nostri pomodori, e vediamo come si affrontano
in generale i problemi che abbiamo risolto in questo caso particolare. Supponiamo
di avere due coppie Py = (x0,%0) € Pi = (x1,y1) di dati; vogliamo trovare una
funzione lineare f(x) = mx + d tale che Py e P; appartengano al grafico di f, cioe
tale che f(xg) =yo e f(x1) = y1. Imitando il procedimento usato nell’Esempio 4.1
troviamo

Y1 —yo = f(z1) — f(zo) = Af = mAx = m(z1 — x0) ,

per cui
_yi-w _Af

m = )
r1 —x9 Ax

Osservazione 4.3 Ovviamente stiamo supponendo che z; # xg, in quanto altri-
menti Py e P; non potrebbero (perché?) essere due punti del grafico di una sola
funzione (a meno che non siano uguali, nel qual caso devi strigliare il tuo assistente
e imporgli di misurare due coppie di dati diverse, se vuole sperare di ottenere un
qualche risultato).

Una volta trovato m, ¢ facile recuperare anche d: infatti
d = f(xo) — mxo = yo — mao .
Nota che

f(xr) —may = f(xo) + (f(21) — flzo)) — mao — m(x1 — x0)
= f(xog) — mao + Af —mAz = f(x9) — maxo ,
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per cui si ottiene lo stesso valore di d sia usando Py sia usando P;.

Osservazione 4.4 Dalla formula Af = mAx possiamo dedurre che

£(2) = (o + &) = f(ao) + me — z0) = f(z0) + 52 - (2~ 7).

formula che ritroveremo in un contesto diverso nel prossimo capitolo.

Dunque ci basta conoscere due punti del grafico di una funzione lineare per
ricavare l'espressione della funzione. Viceversa, data la funzione e facile tracciarne
il grafico. Infatti, sappiamo gia che il grafico di f(x) = mx+d dev’essere una retta;
quindi ci basta trovarne due punti. Per esempio, un punto puo essere 'intersezione
con l'asse delle ordinate: ponendo z = 0 troviamo il punto? (0,d). Una volta
ottenuto un punto Py = (zo,yo) del grafico, ogni altro punto P; = (z1,y1) si
ottiene con la formula

(x1,91) = P+ (Am,mAm) ,

dove Ax = 21 — xg.

Osservazione 4.5 1 grafici delle funzioni lineari sono tutte e sole le rette non paral-
lele all’asse delle ordinate. Per avere tutte le rette dobbiamo considerare insiemi
di equazione ax + by + ¢ = 0. Quando b # 0 ricaviamo y = —(a/b)x — (¢/b),
ciot il grafico della funzione lineare f(x) = mxz +d con m = —a/b e d = —c/b.
Se invece b = 0 (e a # 0) otteniamo = = —c/a, cioe la retta parallela all’asse
delle ordinate passante per il punto (—c/a,0). Analogamente, se a = 0 e b # 0
otteniamo y = —c/b, che & la retta parallela all’asse delle ascisse passante per il
punto (0, —¢/b), ovvero il grafico della funzione costante f(x) = —c/b.

Nell’Esempio 4.2, oltre a ricavare l'ordinata conoscendo ’ascissa (la percentuale
conoscendo la temperatura), abbiamo risolto il problema inverso di trovare ’a-
scissa conoscendo 'ordinata (la tenperatura conoscendo la percentuale). In altre
parole, dato il valore yo abbiamo risolto lequazione lineare f(x) = yo. Siccome
f(x) = mx + d, vediamo subito che:

- sem # 0 l'equazione f(x) = yo ha come unica soluzione = = (yo — d)/m;

- sem =0 ed# yp 'equazione f(x) = yo non ha soluzioni;

- sem =0 ed=yp lequazione f(x) = yo ha infinite soluzioni (ogni valore di x
va bene).

Osservazione 4.6 Se m # 0, dire che 'equazione f(z) = yo ha un’unica soluzione
quale che sia yy € R equivale a dire che la funzione f:R — R data da f(z) = ma+d
¢ invertibile. L’inversa & la funzione f~':R — R che fornisce la soluzione dell’e-

quazione: f~1(y) = (y —d)/m.

2 Per questo motivo d € a volte chiamato intercetta delle ordinate. Invece, il coefficiente m
& spesso chiamato coefficiente angolare, per motivi che vedremo nella Sezione 4.10.



130 Capitolo 4

La relazione Af = mAx permette di determinare facilmente quando una fun-
zione lineare & crescente o decrescente. In generale, una funzione & crescente se
aumentando il valore dell’argomento aumenta anche il valore della funzione; ed &
decrescente se invece aumentando il valore dell’argomento il valore della funzione
diminuisce. In altre parole, f & crescente se xg < x1 implica f(z¢) < f(z1), mentre
¢ decrescente se xo < zp implica f(zo) > f(x1). In altre parole ancora, il gra-
fico di una funzione crescente sale andando verso destra; quello di una funzione
decrescente invece scende.

Osservazione 4.7 Una funzione ¢ invece strettamente crescente se xg < xp im-
plica f(zo) < f(x1), escludendo la possibilita che si abbia f(xg) = f(z1); ed &
strettamente decrescente se xo < x1 implica f(z¢) > f(x1). Infine una funzione
crescente o decrescente si dice monotona (e non monotona, anche se 'idea ¢ la
stessa: € una funzione che non cambia mai modo di crescere).

Ora, dire che xy < x71 equivale a dire che Ax = z1 — x¢ > 0; analogamente,
dire che f(xz9) < f(x1) equivale a dire che Af = f(x1) — f(xo) > 0 (rispettiva-
mente, f(zg) > f(r1) equivale a Af < 0). Se f & una funzione lineare, sappiamo
che Af = mAux; quindi
—  sem > 0 allora Az > 0 implica Af > 0, cioe f & strettamente crescente;

—  sem < 0 allora Az > 0 implica Af < 0, cioe f & strettamente decrescente;
— sem =0 allora Af =0, cioe f & costante.

Conoscere la crescenza o la decrescenza di una funzione aiuta a trovarne i punti di
massimo e di minimo. Diremo che un punto xg € un punto di massimo (rispettiva-
mente, punto di minimo) per una funzione f su un intervallo [a, ] se f(z¢) > f(x)
per ogni z € [a,b] (rispettivamente, f(xg) < f(z) per ogni x € [a,b]). In altre pa-
role, z¢ & un punto di massimo (minimo) se (xo, f(xo)) ¢ un punto del grafico di f
sopra l'intervallo [a, b] con l'ordinata piu alta (bassa). Il valore assunto dalla fun-
zione (lordinata del grafico) in un punto di minimo (rispettivamente, di massimo)
sull’intervallo [a, b] viene detto (valore) minimo (rispettivamente massimo) di f sul-
I'intervallo, e viene indicato con min f (rispettivamente, max f), o con ren[inb f(z)
z€la,

(rispettivamente, m[a%)] f(x)) in caso sia importante ricordare U'intervallo che si sta
TE

)

considerando.

Osservazione 4.8 Trovare i punti di massimo o di minimo ¢ fondamentale per
le applicazioni della matematica. Infatti, in natura vale spesso un principio del
minimo sforzo: la configurazione che si realizza (fra le infinite possibili) & quella
che minimizza una qualche quantita. Per esempio, la luce segue il cammino piu
breve, i semi dei fiori cercano di disporsi in modo da minimizzare lo spreco di
spazio, e cosi via.

Vogliamo trovare minimo e massimo di una funzione f monotona sull’inter-
vallo [a,b]. Per definizione di intervallo, abbiamo a < x < b per ogni = € [a,b].
Se f & crescente, questo implica che f(a) < f(z) < f(b); quindi se f é crescente
sull’intervallo [a,b] un punto di minimo é a, con valore minimo f(a), e un punto
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di massimo € b, con valore massimo f(b). Un ragionamento analogo (controlla) ci
dice che se f & decrescente sull’intervallo [a,b] un punto di minimo é b, con valore
minimo f(b), e un punto di massimo é a, con valore massimo f(a).

Osservazione 4.9 Se una funzione ¢ strettamente crescente o decrescente (cioe stret-
tamente monotona) su un intervallo chiuso allora ha un unico punto di minimo e
un unico punto di massimo (perché?). Se invece non & strettamente monotona,
potrebbe averne anche piu di uno; per esempio, se f & costante allora tutti i punti
sono contemporaneamente sia di massimo sia di minimo. Invece, il valore minimo
e il valore massimo su un dato intervallo sono sempre unici (perché?).

CURIOSITA 4.1  Attenzione: dimostrare che un punto di minimo o un punto di massimo esiste pud
essere a volte anche molto complicato. E certe volte potrebbe anche non esistere. Per esempio,
la funzione f(z) = = non ha né minimo né massimo sull’intera retta reale R: per quanto grande
o quanto piccolo tu scelga M € R esistono sempre z1, z2 € R tali che f(z1) < M < f(z2).
Lo stesso problema si verifica su intervalli limitati ma non chiusi: la stessa funzione f non
ha né minimo né massimo sull’'intervallo aperto (0,1) (perché? Ricordati che 0 e 1 non
appartengono all’intervallo considerato...). Per fortuna, il Teorema di Weierstrass assicura
che tutte le funzioni continue (che sono la quasi totalita delle funzioni che considereremo in
questo corso, e che definiremo nella Curiosita 4.9) hanno sempre almeno un punto di massimo
e almeno un punto di minimo su qualsiasi intervallo chiuso della retta reale. Un esempio di
funzione non continua che non ammette né massimo né minimo su un intervallo chiuso ¢ la
funzione f:[—1,1] — R definita da

_ [ |z| sex#-1,0,
@)= {1/2 ~1,0

17
se x = , 0, 1.

Prova a tracciarne il grafico.

Abbiamo osservato che le funzioni lineari con coefficiente angolare non nullo
sono sempre strettamente monotone; quindi quanto visto ci permette di trovarne
massimi e minimi su intervalli chiusi. Per lesattezza, se f(x) = mz + d si ha

—  sem > 0 il punto di minimo di f sull’intervallo [a,b] & a, mentre il punto di
massimo & b;

- sem < 0 il punto di minimo di f sull’intervallo [a,b] & b, mentre il punto di
massimo € a.

Informazioni su crescenza e decrescenza aiutano anche a risolvere le disequazioni.

Supponiamo di voler risolvere la disequazione f(x) > yo su un intervallo [a,b] in

cui la funzione f sia crescente. Ci sono tre casi possibili:

- seyo < minf = f(a), allora f(x) > yo per ogni = € [a,b], ciod tutti gli
x € [a, b] sono soluzione della disequazione;

- seyp > max f = f(b), allora f(x) < yo per ogni x € [a,b], cioe la disequazione
non ha soluzione in [a, b];

- se f(a) =min f < yo < max f = f(b) allora f(x) > yo per ogni x € [xg, b,
dove z ¢ la piu piccola soluzione (quando esiste; vedi la Curiosita 4.2) dell’e-
quazione f(x) = yo in [a, b].

CURIOSITA 4.2 Un’altra proprietd non completamente banale delle funzioni continue definite su
intervalli chiusi & che per ogni yo € [min f, max f] equazione f(z) = yo ammette sempre una
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soluzione pil piccola e una soluzione pit grande (teorema dei valori intermedi). Sfortunata-
mente, le funzioni monotone non sono necessariamente continue; ma c’¢ un modo per aggirare
il problema. Infatti, se f & crescente sull’intervallo [a, b] allora per ogni yo € [min f, max f] esi-
ste un pil piccolo zy € [a, b] tale che f(z) > yo per ogni > zg, e f(z) < yo per ogni = < zg.
Se f & continua allora necessariamente f(z¢) = yo, come prima; se f non & continua potrebbe
succedere che f(xo) sia strettamente minore di yo. Quindi se f & crescente le soluzioni della
disequazione f(z) > yo sono gli elementi dell’intervallo chiuso [zo, b] se f(xzq) = yo, e gli ele-
menti dell’intervallo semiaperto (zo,b] se f(zo) < yo. Un esempio di funzione crescente non
continua ¢ la f:[—1,1] — R data da:

flz) = T se —1 < x <0,
T \o+1 se0<z< 1

Prova a tracciarne il grafico, e verifica che la disequazione f(z) > 1 ha come soluzione gli
elementi dell’intervallo semiaperto (0, 1].

Se vogliamo risolvere la disequazione f(x) < yo su un intervallo [a,b] in cui la
funzione f sia crescente, ci sono di nuovo tre casi possibili:

- seyo <min f = f(a), allora f(z) > yo per ogni = € [a, b], cioe la disequazione
non ha soluzione in [a, b];

- se yp > max f = f(b), allora f(x) < yo per ogni z € [a,b], cioe tutti gli
x € [a, b] sono soluzione della disequazione;

- se f(a) =min f < yg < max f = f(b) allora f(z) < yo per ogni = € [a, z¢],
dove z( ¢ la pit grande soluzione (quando esiste; vedi la Curiosita 4.2) dell’e-
quazione f(x) = yo in [a, b].

Osservazione 4.10 Ragionamenti analoghi si applicano al caso di intervalli non
chiusi, di intervalli illimitati, alle disequazioni strette (cioé con > o < invece di >
e <), e alle funzioni decrescenti; lasciamo il compito di scrivere esplicitamente cosa
si ottiene nei vari casi a te e al tuo assistente. Attenzione: il tuo obiettivo non
dev’essere imparare a memoria tutti i casi possibili, ma capire come si ottengono,
in modo da poter ripetere il ragionamento quando ti serve solo nei casi che ti
servono (con notevole risparmio di tempo e di memoria).

Vediamo cosa questi ragionamenti ci dicono nel caso delle funzioni lineari. Vo-
gliamo risolvere la disequazione mx + d > yo; troviamo

- Sem >0 (cio¢ f(z) = mx+d ¢ crescente) allora le soluzioni sono gli elementi
della semiretta [zg, +00), dove x¢ = (yo — d)/m = f~*(yo) & I'unica soluzione
dell’equazione max + d = yq.

- Sem < 0 (cio¢ f(x) = mz+d & decrescente) allora le soluzioni sono gli elementi
della semiretta (—oo, q], dove xg = (yo — d)/m = f~*(yo) & I'unica soluzione
dell’equazione mz + d = yjp.

In maniera analoga (esercizio per te) si risolve la disequazione mz + d < yq.

In particolare, se m > 0 la disequazione mx + d > yg ha soluzione una semi-
retta della forma (xg, +00) quale che sia yp € R. Questo vuol dire che se m > 0
possiamo rendere f(x) = mx+d arbitrariamente grande a patto di scegliere x suffi-
ctentemente grande: per quanto grande sia M > 0 possiamo sempre trovare xg > 0



4.1 Funzioni lineari 133

(sufficientemente grande) tale che f(x) > M non appena x > z(. In simboli,
VM >0 Fzg>0: 2>z = f(zr)>M.

Quando questo accade, si dice che f(x) ha limite +0o0 per x che tende a +oco, e si
scrive
lim f(z) =+o00.
Tr——+00

Sempre supponendo m > 0, hai anche visto che la disequazione mz + d < yo
ha soluzione una semiretta della forma (—oo,z¢) quale che sia yo € R. Questo
vuol dire che se m > 0 possiamo rendere f(x) = ma + d arbitrariamente negativa
a patto di scegliere x sufficientemente negativo: per quanto grande sia M > 0
possiamo sempre trovare xo < 0 (sufficientemente negativo) tale che f(z) < —M
non appena x < xg. In simboli,

VM >0 Fzp<0:z<zy= f(r)<—-M.
Stavolta si dice che f(z) ha limite —oo per x che tende a —oo, e si scrive

lim f(z)=—-o00.

r——00

Se m < 0 la situazione si inverte. In questo caso la disequazione mx + d > yo
ha soluzione una semiretta della forma (—oo,z¢) quale che sia yo € R. Questo
vuol dire che se m < 0 possiamo rendere f(x) = mx + d arbitrariamente grande
a patto di scegliere x sufficientemente negativo: per quanto grande sia M > 0
possiamo sempre trovare zp < 0 (sufficientemente negativo) tale che f(z) > M
non appena x < xg. In simboli,

VM >0 Fz9<0:z<zy= f(x)>M.
Si dice che f(x) ha limite 400 per = che tende a —oo, e si scrive

lim f(z)=+4c0.
r——00
Infine, se m > 0 la disequazione ma + d < yo ha soluzione una semiretta della
forma (xg, +00) quale che sia yo € R. Questo vuol dire che se m > 0 possiamo
rendere f(x) = mx + d arbitrariamente negativa a patto di scegliere x sufficien-
temente grande: per quanto grande sia M > 0 possiamo sempre trovare xy > 0
(sufficientemente grande) tale che f(x) < —M non appena z > . In simboli,

VM >0 Fz0>0: 2>z = f(zr)<—-M.
Stavolta si dice che f(z) ha limite —oo per x che tende a 400, e si scrive

lim f(z)=—-o00.

r——+00
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A volte, quando una funzione f ha limite +o00, si dice che f diverge a +oo.
Riassumendo, il comportamento di una funzione lineare f(x) = mz + d quando
z e sufficientemente grande o sufficientemente negativo & dato da:

— sem > 0 allora lirf = do0;

T— OO

— sem <0 allora lim = Foo.
r—+oo

Con questo abbiamo concluso lo studio delle funzioni lineari. Nelle prossime se-
zioni cercheremo (per quanto possibile) di studiare in modo analogo funzioni pit
complesse.

4.2 Funzioni quadratiche

Le funzioni lineari sono tutte monotone: sempre crescenti o decrescenti. Non tutti
i fenomeni naturali sono rappresentabili con funzioni monotone; spesso servono
funzioni che un po’ crescono e un po’ decrescono.

EseEMPIO 4.5 Hai provato a far saltare il tuo assistente, sperando che la sua
altitudine fosse descritta da una funzione monotona. Invece, sfortunatamente, ¢
salito solo per poco e poi & tornato giu. La sua altitudine e stata inizialmente
crescente, ha raggiunto un massimo, e poi & diventata descrescente.

Inoltre, anche le funzioni monotone non & detto che siano lineari, cioé che rap-
presentino relazioni di proporzionalita.

EsEMPIO 4.6 La superficie esterna di una cellula sferica dipende dal quadrato del
raggio della cellula, per cui non aumenta in modo proporzionale al raggio.

11 tipo pit semplice di funzioni non monotone (e quindi non lineari) & dato dalle
funzioni quadratiche: funzioni f:R — R della forma

f(x) =ax® +bx+c.
Il grafico di una funzione quadratica ¢ una curva chiamata parabola.

CURIOSITA 4.3 Pitl in generale, una parabola nel piano ¢ il luogo dei punti la cui distanza
da una retta data (detta direttrice della parabola) & uguale alla distanza da un punto dato
(detto fuoco della parabola). Si pud dimostrare che una parabola qualsiasi si ottiene sempre
ruotando e traslando il grafico di una funzione quadratica.

Il primo obiettivo di questa sezione ¢ trovare come collegare le proprieta geo-
metriche (I’aspetto) del grafico di una funzione quadratica ai suoi coefficienti. Co-
minciamo studiando la funzione quadratica piu semplice di tutte:

fla) =a?,

il cui grafico & rappresentato nella Figura 4.1.
La prima osservazione evidente € che f(x) > 0 sempre, e che f(z) = 0 se e solo
se z = 0. In particolare,
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Figura 4.1 f(z) = 2°.

(a) f(x) = 22 ha un solo punto di minimo # = 0, con valore minimo 7 = f(Z) = 0;
il punto (Z,7) = (0,0) & detto vertice della parabola grafico di f.

(b) la parabola grafico di f(x) = z? interseca l’asse delle ordinate nel punto di
ordinata ¢ = f(0) = 0.

Chiaramente, (—x)? = 22, cio¢ f(—z) = f(z) per qualsiasi x. In altri termini,

(c) il grafico di f(z) = 22 & simmetrico rispetto alla retta x = T = 0 (I’asse delle
ordinate), che ¢ detta asse della parabola grafico di f.

Osservazione 4.11 Una funzione f:R — R tale che f(—z) = f(x) per ogni z € R
si dice funzione pari; se invece f(—z) = —f(x) per ogni z € R si dice che f ¢ una
funzione dispari. Un esempio di funzione dispari ¢ f(z) = 2.

CURIOSITA 4.4 Ogni funzione f:R — R si pud scrivere (in modo unico) come somma di

una funzione pari e una funzione dispari. Infatti, ponendo fi(x) = %(f(:v) —+ f(—w))
e fo(z)= %(f(a:) - f(—x)) si vede subito che f, & pari, f_ & dispari, e f = fi + f_.

Ora, se 0 < x¢ < x1 abbiamo f(z¢) = 23 < 23 = f(z1); invece se 1g < 1 < 0
abbiamo 0 < —z1 < —zg e f(z1) = f(—21) = (=21)* < (=20)* = f(~z0) = f(z0).
Quindi
(d) f(z) = 22 & strettamente decrescente nella semiretta (—oo,Z] e strettamente

crescente nella semiretta [T, +00), dove T = 0. In questo caso, si dice anche
che la parabola ha la concavita rivolta verso I’alto.
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Inoltre, per ogni yo > 0 la diseguaglianza f(x) > yo ha come soluzione le semi-
rette (\/yo,+00) e (—00,—/yo). Quindi possiamo rendere f(x) arbitrariamente
grande a patto di prendere z sufficientemente grande o sufficientemente negativo;
usando la simbologia dei limiti introdotta nella sezione precedente possiamo dire
che

(e) se f(x) = x? allora lim f(z) = +o0.

Per concludere la descrizione geometrica della parabola grafico di f(x) = 2% dob-
biamo misurarne in qualche modo la larghezza. Un modo per farlo & vedere come
cresce l'ordinata allontandosi dal vertice: se cresce molto la parabola & stretta, se
cresce poco la parabola e larga. Nel nostro caso si ha

(f) se f(z) = 2% allora f(z)— f(ZT) = 1- (2 —7T)?, dove T = 0. In particolare, allon-
tanandosi di un’unita dal vertice 'ordinata varia di a = f(z + 1) — f(Z) = 1.

Possiamo effettuare un’analisi analoga sul grafico della funzione f(r) = —x2. In

questo caso si ottiene (vedi la Figura 4.2):

Figura 4.2 f(z) = —2°.

(a) f(z) = —z? ha un solo punto di massimo T = 0, e il valore massimo ¢
y = f(Z) = 0; il punto (Z,7) = (0,0) & sempre detto vertice della parabola
grafico di f.

(b) il grafico di f(z) = —a? interseca 'asse delle ordinate nel punto di ordi-
nata ¢ = f(0) = 0.
(c) il grafico di f(z) = —2? & simmetrico rispetto alla retta z =7 = 0 (I’asse delle

ordinate), che & ancora detta asse della parabola grafico di f.
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(d) f(z) = —a? & strettamente crescente nella semiretta (—oco,T| e strettamente
decrescente nella semiretta [T, +00), dove T = 0. In questo caso, si dice che la
parabola ha la concavita rivolta verso il basso.

(e) se f(z) = —2? allora 7:Erinoo f(z) = —c0.

(f) se f(z) = —x? allora f(x)—f(T) = —1-(z—7)?%, con T = 0. In particolare, allon-

tanandosi di un’unita dal vertice l'ordinata varia di a = f(z+1) — f(ZT) = —1.
Vogliamo far vedere che ogni parabola grafico di funzione quadratica soddisfa op-
portune variazioni delle proprieta (a)—(f), ed & completamente determinata dalle
coordinate (Z,y) del vertice e dalla larghezza a = f(ZT + 1) — f(T). Per farlo, ve-
diamo come possiamo spostare il vertice e cambiare la larghezza, e che effetto ha
sulla funzione quadratica.

Come primo passo, proviamo a variare la larghezza della parabola. Abbiamo
visto che la parabola grafico di 22 sale di 1 unita se ci spostiamo dal vertice di 1
unita. Se invece salisse di @ > 1 unita spostandosi orizzontalmente dal vertice di 1
unita la parabola sarebbe piu stretta (in quanto raggiunge l'ordinata 1 prima di
x = 1); se salisse di 0 < a < 1 unita spostandosi orizzontalmente dal vertice di 1
unita la parabola sarebbe piti larga (in quanto raggiunge 'ordinata 1 oltre z = 1).
Per ottenere questo effetto & sufficiente moltiplicare la funzione per a, cio¢ passare

dalla funzione z? alla funzione axz?.

Osservazione 4.12 Questo procedimento si puo applicare anche per a negativi. In
questo caso a = —|a| < 0, per cui moltiplicare per a equivale a moltiplicare prima
per |a| > 0 (modificando la larghezza della parabola) e poi per —1. Quest’ul-
tima operazione effettua una simmetria rispetto all’asse delle ascisse, ribaltando il
grafico; vedi la Figura 4.3.

Osservazione 4.13 Moltiplicare per a le ordinate corrisponde a cambiare 'unita
di misura (e Vorientazione, se a < 0) sull’asse delle ordinate: si ottiene lo stesso
effetto dividendo per |a| 'unita di misura (e invertendo l'orientazione se a < 0).
Infatti, la vecchia unita di misura, che aveva ordinata 1 nelle vecchie coordinate,
ora ha ordinata a, per cui la nuova unita di misura (che ha coordinata 1 nelle nuove
coordinate) & 1/]a| volte la vecchia (con orientazione opposta se a < 0).

Le proprieta della funzione f(x) = ax? si ottengono subito da quelle di 2
(tenendo presente il segno di a):

(a) f(z) = ax? ha un solo punto di minimo (se a > 0; di massimo se a < 0) T = 0,
e il valore minimo (o massimo) ¢ § = f(Z) = 0; il vertice della parabola ha
ancora coordinate (Z,g) = (0,0).

(b) 1l grafico di f(z) = az? interseca I'asse delle ordinate nel punto di ordi-
nata ¢ = f(0) = 0.

(c) Tl grafico di f(z) = az? & simmetrico rispetto all’asse z = 7 = 0.

(d) T grafico di f(z) = az? ha la concavita rivolta verso I’alto se a > 0, e rivolta
verso il basso se a < 0.

(e) Se f(x) = ax? allora “lirf f(z) =+oc0sea>0,e “lirf () = —oo0sea <0.
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10
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Figura 4.3 f(z) = 22% e f(z) = —82°.

(f) Se f(x) = ax? allora f(z) — f(T) = a- (x —T)?, dove T = 0. In particolare,

allontanandosi di un’unita dal vertice 'ordinata varia di f(z + 1) — f(T) = a.
Proviamo ora a spostare in direzione verticale il vertice della parabola grafico di az?.
Per portare il vertice nel punto (0,+) ¢ sufficiente traslare 'intero grafico di una
distanza pari a 7 nella direzione verticale. In altre parole, dobbiamo sommare ~
alle ordinate del grafico, cioe passare dalla funzione az? alla funzione az? + v; vedi
la Figura 4.4.

Osservazione 4.14 In generale, traslando verticalmente di una quantita - il grafico
di una funzione f si ottiene il grafico della funzione f + ~. Inoltre, invece di
traslare in direzione verticale il grafico di una quantita v avremmo potuto traslare
in direzione verticale gli assi della quantita —vy (cioe sottrarre 7 alle ordinate)
ottenendo lo stesso risultato. In altre parole, traslare il piano in direzione verticale
di una quantita v equivale a sottrarre v alle ordinate.

Le proprieta della funzione f(z) = ax® ++ si ottengono subito da quelle di az?:

(a) f(z) = az?® 4+~ ha un solo punto di minimo (se a > 0; di massimo se a < 0)
T = 0, e il valore minimo (o massimo) & § = f(T) = ~; il vertice della parabola
ha ora coordinate (Z,7) = (0,7).

(b) 1l grafico di f(x) = az? + v interseca 'asse delle ordinate nel punto di ordi-
nata ¢ = f(0) = ~.

(c) Tl grafico di f(z) = az?® + 7 & simmetrico rispetto all’asse * = T = 0.

(d) 1l grafico di f(z) = az® + 7 ha la concavita rivolta verso l'alto se a > 0, e
rivolta verso il basso se a < 0.
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()
(f)

=2t

Figura 4.4 f(z) = az® + .

Se f(z) = ax?® + v allora lirf () =+ocosea>0,e lirin (x) = —o0 se
a < 0.

Se f(x) = ax?® +~ allora f(z) — f(Z) = a- (v —T)?, dove T = 0. In particolare,
allontanandosi di un’unita dal vertice 'ordinata varia di f(z + 1) — f(Z) = a.

11 passo successivo consiste nel traslare orizzontalmente il vertice (e quindi 1’asse)
della parabola. Abbiamo visto che traslare verso I’alto di una quantita -y il grafico &
equivalente a sottrarre 7 alle ordinate (cio¢ a spostare gli assi verso il basso di una
quantita 7). Per lo stesso motivo, traslare in direzione orizzontale di una quantita 3
il grafico equivale a traslare in direzione orizzontale gli assi della quantita —(, cioé a
sottrarre (3 alle ascisse. In altre parole, il grafico della funzione f(z) = a(z—/3)?+7,
ottenuta sostituendo z — 8 a  in ax? + v, & ottenuto traslando orizzontalmente di
una quantita 3 il grafico di az? + . Ne segue che (vedi la Figura 4.5)

(a)

f(x) = a(x — 8)? + v ha un solo punto di minimo (se a > 0; di massimo se
a < 0) T =, e il valore minimo (o massimo) & ¥ = f(Z) = ~; il vertice della
parabola ha quindi coordinate (Z,7) = (8, 7).

Il grafico di f(z) = a(x — 3)% + v interseca I'asse delle ordinate nel punto di
ordinata ¢ = f(0) = a3? + 7.

Il grafico di f(z) = a(x — 8)? + 7 & simmetrico rispetto all’asse z = 7 = 3.

Il grafico di f(z) = a(x — 3)? + v ha la concavita rivolta verso I'alto se a > 0,
e rivolta verso il basso se a < 0.

Se f(z) = a(x—B)?+~ allora IEIﬂIEloof(x) =+oosea>0,e lim f(x) = —c0
se a < 0.
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2l
Figura 4.5 f(z) =a(z — B)* + 1.

(f) Se f(x) =a(z — B)* + v allora f(z) — f(T) = a- (x —T)?, con T = 3. Quindi
allontanandosi di un’unita dal vertice 'ordinata varia di f(z + 1) — f(Z) = a.

Osservazione 4.15 Vale la pena notare che c¢’eé un’altra operazione ancora che po-
tremmo a priori fare: moltiplicare le ascisse per un valore o # 0, che equivale
(come nel caso delle ordinate) a dividere per |a| 'unitd di misura sull’asse delle
ascisse (e a invertire 'orientazione se o < 0). In questo modo arriveremmo a una
funzione della forma a(az — 3)% + . Fra un attimo vedremo perd che, per le fun-
zioni quadratiche, questa operazione non € necessaria: abbiamo gia ottenuto tutte
le funzioni quadratiche possibili senza bisogno di ulteriori operazioni. Invece & una
trasformazione utile per studiare funzioni pitt complicate (vedi I’Osservazione 4.42).

Ora, f(x) = a(x — §)? + 7 & chiaramente una funzione quadratica: infatti
svolgendo il quadrato troviamo

a(m—ﬂ)Q—i—W:axZ—2aﬂx+aﬁ2+'y:am2+bm+c,

dove
b= —2af, c=aB*+~. (4.3)

La cosa interessante & che vale anche il viceversa: ogni funzione quadratica si puo
scrivere nella forma a(x — 3)? + ~. Infatti, ricavando 8 e v dalle (4.3) in funzione
di a, b e ¢ (supponendo ovviamente a # 0), troviamo

b 9 b2 dac— b?
,8——%, ’y—c—aﬁ —C—E—T, (44)
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e quindi

b2 2
2 2
ar® + x+c—a<x+2a> +c 1 a(z —B) +7 (4.5)
I risultati che abbiamo ottenuto sul grafico delle funzioni della forma a(x — 3)? +~
si possono quindi tradurre nel caso di funzioni quadratiche qualsiasi:

(a) f(z) = az? + bxr + ¢ ha un solo punto di minimo (se a > 0; di massimo se
a < 0) T = —b/2a, e il valore minimo (o massimo) ¢ ¥ = f(T) = ¢ — b?/4a; il
vertice della parabola ha quindi coordinate (Z,7) = (—b/2a,c — b*/4a).

(b) Il grafico di f(z) = az? + bz + c interseca I’asse delle ordinate nel punto di
ordinata f(0) = c.

(c) Tl grafico di f(z) = ax? + bz + c & simmetrico rispetto all’asse © = T = —b/2a.

(d) 1l grafico di f(x) = az? + bz + ¢ ha la concavita rivolta verso l'alto se a > 0,
e rivolta verso il basso se a < 0. In altre parole, se a > 0 la funzione
¢ strettamente decrescente nella semiretta (—oo,—b/2a] e strettamente cre-
scente nella semiretta [—b/2a,+00), mentre se ¢ < 0 la funzione & stretta-
mente crescente nella semiretta (—oo, —b/2a] e strettamente decrescente nella
semiretta [—b/2a, +00).

(e) Se f(x) = ax? + bz + c allora lirf (x) =4ocosea>0,e hrf () =—o0
se a < 0.

(f) Se f(x) = az? + bz + c allora f(z) — f(T) = a- (r — T)?, dove T = —b/2a. In
particolare, f(Z + 1) — f(T) = a.

Dunque data la formula ora siamo in grado di tracciare il grafico. Vediamo ora

come risolvere il problema inverso: dato il grafico (o, almeno, alcuni punti del

grafico) ricavare la formula.

Un primo caso & quando abbiamo le coordinate (Z,7) del vertice e (supponendo
che il vertice non sia sull’asse delle ordinate, cio¢ che T # 0) il punto (0,c¢) di
intersezione del grafico con ’asse delle ordinate. Allora i conti precedenti, e in
particolare le (4.3), ci dicono che la funzione dev’essere f(x) = ax? + bz + ¢ con a
e b dati da _

c—y

b= —2az7 , a=-—
T

Se invece il vertice ¢ sull’asse delle ordinate, cioe T = 0, allora sappiamo soltanto
che f(x) = ax? + ¢ con ¢ = 7; per trovare a servono altre informazioni (quali, per
esempio, la larghezza della parabola).

Spesso, invece, conosciamo alcuni punti del grafico, senza pero sapere quale sia
il vertice. Per determinare la funzione, servono tre punti; vediamo come in un
esempio.

EseMPIO 4.7  Torniamo a studiare i semi di pomodoro dell’Esempio 4.1. Sai gid
che alla temperatura di 12 °C germoglia il 40% dei semi, mentre alla temperatura
di 15 °C germoglia il 70% dei semi. Un’ulteriore misurazione ha rivelato che alla
temperatura di 9 °C germoglia il 20% dei semi. Dimostra che allora la relazione
fra la temperatura e la percentuale di semi che germogliano non puo essere lineare.
Supponendo che sia quadratica, determinala. Indichiamo nuovamente con P(T)
la percentuale di semi che germogliano alla temperatura 7. Noi sappiamo che
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P(9) =20, P(12) = 40 e P(15) = 70. Se P fosse una funzione lineare, AP/AT
dovrebbe essere costante; invece

P(15) — P(12) 70—40
15— 12 -3

20 _40-20 _ P(12) — P(9)

107&? 3 12-9

Supponiamo allora che P:R — R sia una funzione quadratica, cioé che si abbia
P(T) = aT? + bT + c¢; dobbiamo trovare a, b, ¢ € R in modo da avere P(9) = 20,
P(12) = 40 e P(15) = 70. In altre parole, a, b e ¢ devono soddisfare il seguente
sistema di equazioni lineari:

8la + 9b+c = P(9) =20,
144a 4+ 12b+ ¢ = P(12) = 40 , (4.6)
22504 15b + ¢ = P(15) = 70 .

Per risolvere questo sistema, sottraiamo la prima equazione dalla seconda, e la
seconda dalla terza; otteniamo
63a + 3b = 20
’ 4.7
{81a+3b:30. (4.7)

Sottraendo di nuovo la prima equazione dalla seconda otteniamo

10 5
18a=10, ciot a=-— = .
a cloe a 18 9

Sostituendo questo valore nella seconda equazione in (4.7) troviamo

81-ng31):207 cioe b= -5;

e sostituendo i valori di a e b trovati nella prima equazione in (4.6) recuperiamo
infine

81~g—9~5+c:20, cioe ¢=20.

Quindi la formula cercata e
5
P(T) = §T — 5T +20.

Questa formula ha qualche vantaggio su quella lineare. Per esempio, non ¢ mai
negativa; infatti, ha minimo per T = —(=5)/2(5/9) = 9/2, con valore minimo
P(9/2) = 20 — (=5)?/4(5/9) = 35/4 > 0. Ma anche lei pud essere valida solo
in un determinato intervallo di temperature. Infatti, P(T") ricomincia ad aumen-
tare quando la temperatura scende sotto 9/2 °C, comportamento biologicamente
alquanto improbabile; e P(T) > 100 se T & troppo grande (o sufficientemente
negativo). Per esempio, P(18) = 110.
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Il procedimento usato nel precedente esempio puo essere applicato a qual-
siasi funzione quadratica. Supponiamo di voler trovare la funzione quadratica
f(x) = az? + bx + ¢ il cui grafico passi per i punti (z1,v1), (z2,y2) e (73,93),
con 1, T2 ed x3 tutti distinti. Vogliamo quindi trovare a, b e ¢ in modo che
f(z;) =y; per j =1, 2, 3. In altre parole, a, b e ¢ devono risolvere il sistema

ra+xb+c=1y,
x§a+x2b+c:y2,
x3a+x3b+c=y;s.

Sottraiamo la prima equazione dalla seconda, e la seconda dalla terza; otteniamo

2

(3?%—96%)614-(332—331)5:%—?!1 ) (48)
(2% —23)a+ (23 — 22)b=1y3 — Y2 . ’

Siccome 2 — 2% = (x5 — x1) (22 + 71) e T3 — 21 # 0, possiamo dividere la prima

equazione per xo — x1. Analogamente possiamo dividere la seconda equazione
per r3 — x2, e otteniamo

T2—T1

(w3 +@2)a+b= 2222

{($2+x1)a+b: Y31
Sottraendo di nuovo la prima equazione dalla seconda otteniamo

(23— 21)a = Y3—Y2 Y2—h
3 ! Tr3 — T2 332—1‘1'

Siccome x3 — x1 # 0, da questa equazione possiamo ricavare a; sostituendo il
valore trovato nel sistema precedente otteniamo b, e sostituendo nel sistema iniziale
troviamo anche c.

Osservazione 4.16 La generica funzione lineare dipendeva da due parametri (m
e d); per determinarla avevamo bisogno di conoscere due punti del grafico. La
generica funzione quadratica dipende da tre parametri (a, b e ¢); per determinarla
abbiamo bisogno di conoscere tre punti del grafico. Tutto cio non € un caso: si
puo dimostrare che se abbiamo una famiglia di funzioni dipendenti da k parametri,
per determinare univocamente una funzione della famiglia servono k condizioni
(indipendenti in un senso opportuno), quali per esempio richiedere il passaggio
del grafico per k punti dati. Vedremo un altro esempio di questo fenomeno nella
Sezione 4.4.

La (4.5) & molto utile anche per risolvere le equazioni di secondo grado. L’idea
¢ che I'equazione ax? +bx + ¢ = yo ha soluzione se e solo se la retta y = yo interseca
il grafico di f(x) = ax?® + bz + c. Questo accade solo se 0 a > 0 e y & maggiore
del minimo di f, oppure a < 0 e yy € minore del massimo di f. Quindi bisogna
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confrontare yo con l'ordinata § = v del vertice, che si legge facilmente da (4.5).
Per la precisione, 'equazione az? + bx + ¢ = y diventa

alw— @) +y =y, ciot (x—p)? =L,

Quindi ha soluzione reale se e solo se (yo —)/a > 0, e in tal caso le soluzioni sono

_ b+ 2 _ dalc —
oL =B+ [Yo =7 _ b b a(c — o) ' (4.9)
a 2a

11 caso yo = 0 & particolarmente interessante (e tutti gli altri possono esservi ricon-
dotti sostituendo ¢ — yg al posto di ¢). La quantita

D =b* — dac = —4ay

¢ detta discriminante della funzione f(z) = az?+bx+c. 1l discriminante & positivo
se e solo se a e l'ordinata 3 del vertice hanno segno opposto, e si annulla se e
solo se l'ordinata del vertice si annulla, cioe se e solo se il vertice ¢ sull’asse delle
ascisse. Insomma, o usando la posizione del vertice e la concavita del grafico,
oppure usando il segno del discriminante in (4.9), giungiamo alla conclusione che
l’equazione az? + bx + ¢ = 0 ha

—  due soluzioni reali distinte se D > 0, cioe se a e ¥ hanno segno opposto;
— un’unica soluzione reale se D = 0, cioe se y = 0, e in tal caso la soluzione e T;
—  nessuna soluzione reale se D < 0, cioe se a e 7 hanno lo stesso segno.

Come esercizio, riotteni questo risultato tracciando il grafico di az? + bx + ¢ nei
vari casi.

Usando le informazioni che abbiamo sulla crescenza e decrescenza delle funzioni
quadratiche, possiamo facilmente trovare i massimi e i minimi in intervalli chiusi.
Ci sono due casi da considerare:

—  se l'intervallo [ag, a1] non contiene I'ascissa del vertice di f(x) = az? + bx + ¢,
allora f & monotona in quell’intervallo, per cui (come abbiamo visto nella pre-
cedente sezione) i punti di minimo e massimo di f in [ag, a1] sono gli estremi ag
e aj.

—  se l'intervallo [ag, a1] contiene lascissa T del vertice, sappiamo gia che il punto
di minimo (se a > 0) o di massimo (se @ < 0) ¢ T. Siccome f ¢ monotona nei
due intervalli [ag,T] e [T, a1], si vede subito (perché?) che il punto di massimo
(se a > 0) o di minimo (se a < 0) & quello® fra i due estremi ag e a; su cui f
assume il valore pilt grande (se a > 0) o pil piccolo (se a < 0).

Queste tecniche ci permettono anche di risolvere facilmente le disequazioni di se-

condo grado. Perché la disequazione ax? + bz 4+ ¢ > yo possa avere soluzione

occorre che il grafico di f(z) = ax? + bz + ¢ sia in qualche punto al di sopra

3O entrambi se f(ao) = f(a1).
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della retta y = yo. Mettendo insieme (4.9) con cio che sappiamo sulla crescenza e
decrescenza di f troviamo

e sea>0e
—  yo <7, la disequazione az?® + bx + ¢ > yy & soddisfatta per tutti i valori
di x € R;
— Yo > ¥, la disequazione az? + bx + ¢ > yo & soddisfatta per x € (—oo,z_] e
per x € [x4,+00), dove x4 sono dati da (4.9);

e sea<0e
—  yo > 7, la disequazione ax? + bx + ¢ > yo non & mai soddisfatta;
—  yo <7, la disequazione az? + bz + ¢ > yo ¢ soddisfatta per z € [xy,x_],
dove z sono dati da (4.9).

Analoghi risultati (esercizio: se sei confuso, aiutati tracciando il grafico nei vari
casi) si trovano per la disequazione ax? + bz + ¢ < yq.

Osservazione 4.17 Quando yy = 0, il segno di 7 ¢ legato al segno di a tramite il
segno del discriminante. In particolare, se a > 0 abbiamo § > 0 se e solo se D < 0,
mentre se a < 0 abbiamo 0 > 7 se e solo se D < 0. Quindi quando y = 0 possiamo
riformulare (esercizio per te) i risultati precedenti usando a e D invece di a e 3.

Osservazione 4.18 Come fatto nella scorsa sezione, i risultati sulle disequazioni ci
permettono anche di studiare ’andamento all’infinito delle funzioni quadratiche.
Per esempio, abbiamo appena visto che se a > 0 allora per ogni yy € R possiamo
trovare x4+ € R tali che f(z) > yo non appena x > x4 oppure x < z_. In
altre parole, possiamo rendere f(x) arbitrariamente grande a patto di scegliere
sufficientemente grande o sufficientemente negativo. Usando la terminologia gia
introdotta, abbiamo quindi dimostrato che

a>0 — lim az?+bzr+c=+o00,

r—+o0

in accordo con quanto avevamo gia visto. In maniera analoga si dimostra che

a<0 — lim az’+br+c=—00.

z—+o0

4.3 Il metodo dei minimi quadrati

In questa sezione presenteremo due applicazioni dello studio delle funzioni quadra-
tiche che abbiamo appena completato.

La prima applicazione consiste nel mantenere una promessa fatta nell’Osserva-
zione 3.27. Siano z1,...,%, € R dei numeri reali (dei dati); vogliamo trovare il
punto di minimo della funzione
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Se sviluppiamo i quadrati, vediamo subito che f & una funzione quadratica:

n n
a=n, b:—Qin, CZle
i=1 i=1
Quindi il punto di minimo di f &
_ b1
T=——=— x;,
20 n !

cioe la media aritmetica dei dati, come promesso.

La seconda applicazione consiste in un metodo (detto metodo dei minimi qua-
drati) per trovare la retta che meglio approssima un dato insieme di dati.

Supponiamo di avere n coppie di dati (z1,y1),. .., (Zn,yn), € di sospettare che
le ordinate dipendano in modo lineare dalle ascisse. Anche se la nostra ipotesi
e corretta, ¢ molto improbabile che le n coppie di dati giacciano esattamente su
una retta, in quanto non possiamo evitare gli errori sperimentali; abbiamo quindi
bisogno di una tecnica che ci fornisca la “migliore” (in un senso da specificare)
approssimazione lineare di questi dati, e al contempo una misura della bonta di
questa approssimazione — in quanto, se la “migliore” approssimazione fosse cattiva
vorrebbe dire che la nostra ipotesi di dipendenza lineare non ¢ compatibile con i
dati, e quindi dev’essere scartata.

Cominciamo con definire quanto il grafico di una funzione lineare f(z) = ma+d
approssima U'insieme {(z1,¥y1), ..., (Zn,yn)}. La coppia (z;,y;) appartiene al gra-
fico di f se e solo se y; = mx; +d; quindi l'errore d; = mx; +d—1y; misura la distanza
che ¢’¢ fra il dato sperimentale (z;,y;) e il dato teorico (;, f(x;)) che si avrebbe se
la funzione f rappresentasse esattamente il fenomeno che stiamo studiando. Ab-
biamo quindi n errori, d1,...,d,; tenendo presente che a noi non importa il segno
dell’errore ma solo la sua grandezza, e ricordando quanto fatto studiando la va-
rianza, una misura di quanto la funzione f(x) = mx + d approssima i dati & data
dalla media dei quadrati degli errori:

n

IR 1
S(m,d) = 5263 = EZ(mxi—i—d—yi)z .
i=1

i=1

Nota che la funzione S dipende dai due parametri m e d che determinano la funzione
lineare f; quindi .S € una funzione di due variabili reali.
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Il nostro obiettivo ¢ trovare il punto di minimo di S, cio¢ i valori m e d di m
e d che rendono S(m, d) pil piccola possibile?. La corrispondente funzione lineare
f(x) = T +d sara allora quella che meglio approssima i dati da cui siamo partiti; e
ci rimarra solo da trovare una misura di quanto buona sia questa approssimazione.

Per trovare questo punto di minimo procederemo in questo modo. Prima di
tutto faremo vedere che, per ogni m € R fissato, la funzione d — S(m,d) & una
funzione quadratica di d con coefliciente del termine quadrato positivo; quindi
ammette un unico punto di minimo, che indicheremo con dy(m); vedremo anche
come do(m) dipende da m. Poi dimostreremo che anche la funzione S(m, do(m))
¢ una funzione quadratica (di m, stavolta) con coefficiente del termine quadrato
positivo; quindi anche lei ha un unico punto di minimo 72, a cui corrisponde il
valore d = dy(m). Allora (7m,d) ¢ il punto di minimo cercato. Infatti, per ogni
(m,d) € R? abbiamo

S(m,d) > S(m,do(m)) > S(m, do(m)) = S(m,d)

come voluto (studia bene la precedente catena di disuguaglianze fin quando non
sei certo d’aver capito perché & vera e perché & proprio quello che ci serve).
Ok, cominciamo. Sviluppando i quadrati nella definizione di S(m, d) otteniamo

1 n
S(m,d) = = Z(m?m2 +d® +y? + 22;md — 2x;y;m — 2y;d)

n
i=1

2 - = 2 1 - 2 RS RS 2

=d°+2(mT —7)d+m ﬁzml —QmﬁsziyrFEZyi )
i=1 =1 i=1
dove T e la media aritmetica di z1,...,2, e ¥ € la media aritmetica di y1,...,Yn.

Quindi per ogni m fissato d — S(m, D) & effettivamente una funzione quadratica
di d, in quanto possiamo scrivere S(m,d) = ad? + bd + ¢ con

o I 1O I
a=1, b=2(mz—-7), c:m252x3—2m52x1yi+52yf.
i=1 i=1

i=1

In particolare, a = 1 > 0 e il punto di minimo do(m) di questa funzione &

Per calcolare S(m, do(m)) ricordiamoci che il valore minimo di una funzione

4 Ede questo il motivo per cui questo metodo si chiama dei minimi quadrati.
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quadratica (con a > 0) & ¢ — b?/4a, per cui
IR 1< IR 1
S(m, do(m)) = m? — z;x? —2m—~ ;xiyi +— Zlyf — Z4(m§ —7)?
i= i= i=

1 — 1 « 1 &
—[EZx?—fﬂTrﬂ—Z[Einyi—T.y m+Eny—§2
=1 =1 =1

=am?+bm+é.

con

Dunque abbiamo ottenuto, come promesso, una funzione quadratica di m. Inoltre,
il coefficiente a del termine quadrato € positivo; infatti, 'Osservazione 3.32 ci dice
che

1 n
a= - Zw? — 7% = Media(z?) — Media(z;)? = Var(z;) > 0,
i=1

come voluto®.
Quindi la funzione S (m, do(m)) ammette un unico punto di minimo

mo b _wXin®yi—Ty (4.10)
% Iy |

e la funzione S(m,d) ammette un unico punto di minimo (77, d) con
d=7—-m= . (4.11)

La retta grafico della funzione f(z) = mz+d che meglio approssima i dati si chiama
retta di regressione (lineare).

Osservazione 4.19 Mentre il modo migliore di calcolare d & usare la formula (4.11),
ci sono altre formule per il calcolo di 7 oltre a (4.10). Prima di tutto notiamo che
possiamo scrivere (4.10) cosi:

Media(z;y;) — Media(z;)Media(y;)
Media(z?) — Media(z;)? ’

(4.12)

m:

5 La varianza non puo essere nulla, a meno che tutti gli x; siano uguali; ma in tal caso
sapremmo gia che i dati giacciono su una retta (verticale), e quindi non avremmo neppure
cominciato questi conti.
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o anche come

__Tj-T-F
dove Ty ¢ la media aritmetica dei prodotti z1y1, ..., Znyn, € 22 & la media aritme-
tica dei quadrati %, ..., 22, per cui m ¢ la differenza fra la media dei prodotti e il

prodotto delle medie divisa per la differenza fra la media dei quadrati e il quadrato

della media.
Un’altra formula si ottiene notando che, come abbiamo gia visto, il denomina-
tore di (4.10) & uguale a Var(z;) = 237" (T — 2;)*>. Una formula analoga vale

anche per il numeratore: infatti

n

n n
inyi—f%Zyi—y%Zxﬁf-y
=1 =1

i=1

S|

1 n
— E Ty —T Y =
n

i=1

(T —z)(y —vi)

Il
S

&
Il
-

per cui possiamo scrivere

S (@ =)y — i)
Z?:l(f )2 . (4.14)

m =

Quale formula usare dipende dalle situazioni, da quali altri calcoli hai gia effettuato
o devi effettuare, da quale ti ricordi meglio e anche dai tuoi gusti personali.

Rimane da stabilire quanto bene la retta di regressione approssima i dati. Una
prima informazione ci & data dal valore minimo che abbiamo trovato,

72
¥,

——=c—am
4a

S(m,d) = é

_ _12
:liy.?,yz, (3 i ziyi — T 7]
n i=1 ' %E?:l xZ_Q_EQ

(> 7))@ —7°) — @y -7 7)°
2% — 7 ’

dove 32 ¢ la media aritmetica di y?,...,y2, come al solito. Ora, le coppie di dati
stanno tutte sulla retta di regressione se e solo se S(7,d) = 0. Pero il valore
di S(m, d) da solo non & una buona misura della qualita della retta di regressione,
in quanto ha il solito problema degli errori assoluti: se i dati sono grandi allora
I’errore & grande in valore assoluto, anche quando ¢ piccolo rispetto ai valori assoluti
dei dati. Ci serve invece un errore relativo. Siccome S(7, d) misura la media degli
errori quadratici nelle ordinate, la quantita giusta a cui confrontarla e lo scarto
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quadratico medio delle ordinate, cioe la varianza® Var(y;) = y2 —7%. Quindi siamo
condotti a considerare la quantita

Smd) _, (@ -7-7)’

Var(y:) (a2 =) (2 - 7°)

che ¢ sempre maggiore o uguale di zero, e si annulla se e solo se tutti i dati sono
sulla retta di regressione. Inoltre, ¢ anche sempre minore o uguale di 1 (perché?);
quindi anche se i dati sono molto grandi rimane con valore assoluto limitato.
Abbiamo quasi finito: rimane da fare un passaggio analogo a quello che porta
dalla varianza alla deviazione standard. La quantita S(7m, d) / Var(y;) si annulla se

e solo se (Ty — E-@)Q/(P—EQ)(? —7?) = 1, cioe (estraendo la radice quadrata) se

e solo se (Ty —f@)/\/(ﬁ —72)(y2 — 7%) = £1. Introduciamo allora il coefficiente
di correlazione di Pearson

CP =

Per quanto abbiamo detto, il coefficiente di correlazione di Pearson misura la bonta
dell’approssimazione fornita dalla retta di regressione: se & sufficientemente vicino
a1l oa —1, allora 'approssimazione ¢ buona; se invece ¢ vicino a 0, vuol dire che i
dati non seguono affatto un andamento lineare.

Osservazione 4.20 “Sufficientemente vicino a +1” di solito vuol dire almeno 0.9 in
valore assoluto; almeno 0.95 ¢ anche meglio.

Osservazione 4.21 11 segno del coefficiente di Pearson ¢ lo stesso di m.

Osservazione 4.22 1 conti fatti nell’Osservazione 4.19 ci forniscono un’altra formula
per il coefficiente di Pearson:

= DS (DS VoL@ w2 S (- )t

G TY—T-7 Yo (@ =) [T —vi)

Concludiamo questa sezione con un esempio di calcolo della retta di regressione
e del coefficiente di Pearson; altri esempi li vedremo nella Sezione 4.9.

EsEmpio 4.8 Riprendiamo il nostro gruppo di 15 cavie; vogliamo vedere se c’e
una relazione lineare fra il loro peso (in decigrammi) e la loro eta (in giorni; sono
cavie molto giovani). Per procedere prepariamo una tabella (Tabella 4.1) con cinque
colonne: l'etd (la nostra ), il peso (la nostra y), i prodotti xy, i quadrati z2, e i

6 Che ¢ nulla se e solo se tutte le y; sono uguali; ma in tal caso i dati sono chiaramente
su una retta (orizzontale), e di nuovo non ci saremmo imbarcati in questi calcoli.
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quadrati 2. Poi calcoliamo la media aritmetica dei dati di ciascuna colonna; con
questi dati possiamo trovare i coefficienti della retta di regressione e il coefficiente
di Pearson.

Cavia Eta (x) Peso (y) wxy z? >
1 61 28 1708 3721 784
2 76 32 2432 5776 1024
3 80 37 2960 6400 1369
4 66 29 1914 4356 841
5 71 31 2201 5041 961
6 68 30 2040 4624 900
7 78 32 2496 6084 1024
8 59 26 1430 3025 676
9 74 32 2368 5476 1024
10 60 27 1620 3600 729
11 65 29 1885 4225 841
12 70 30 2100 4900 900
13 64 28 1792 4096 784
14 73 31 2263 5329 961
15 68 31 2108 4624 961

Media 68.6 30.2 2087.8 4751.8 918.6
TABELLA 4.1

Usando per esempio la formula (4.13) otteniamo

Ty —T-7 _ 2087.8 — 68.6 - 30.2
2272  4751.8 — 68.62

T

d=79—m-T~30.2—0.351 67 ~6.136,

™= ~0.351 ,

per cui la retta di regressione e
f(xz) =0.351x + 6.136 .

I1 coefficiente di Pearson ¢

op — T _ 2087.8 — 68.6 - 30.2 0927

\/@ _ @) (2 —g2) V(47518 —68.62)(918.6 — 30.2)

per cui la retta di regressione approssima piuttosto bene i dati, come si puo vedere
dalla Figura 4.6, che contiene sia i dati sia la retta di regressione.

Esercizio 4.1 Calcola la retta di regressione e il coefficiente di Pearson partendo
dai dati della Tabella 4.1 ma supponendo che la cavia 3 abbia 55 giorni d’eta.

Osservazione 4.23 Come hai visto (vero?) risolvendo il precedente esercizio, la
presenza anche di un solo dato spurio puo falsare di molto la retta di regressione,
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38¢

36f

34

32¢

30

28f

26f

55 60 65 70 75 80 85

Figura 4.6 Retta di regressione.

e dare un coefficiente di Pearson molto basso. Per questo motivo nella pratica
sperimentale conviene sempre esaminare i dati raccolti per eliminare dati evidente-
mente spuri, e (possibilmente) investigare i motivi che hanno portato alla presenza
dei dati spuri (semplici errori o un fenomeno nuovo?).

4.4 Funzioni polinomiali

Dopo le funzioni quadratiche, si possono considerare funzioni di terzo grado, o di
quarto grado, o piu in generale funzioni polinomiali, cioe funzioni f: R — R espresse
da un polinomio:

f(@) = anz" + an12" "+ a1z +ag (4.15)

dove n € N ¢ il grado della funzione polinomiale (o del polinomio), e ag, . ..,a, € R
sono i coefficienti; si suppone sempre che a,, # 0. Non abbiamo ancora gli stru-
menti necessari’ per effettuare uno studio dettagliato di queste funzioni; mi limitero
quindi a citare alcuni fatti, in parte analoghi a quanto abbiamo gia visto, che pos-
sono essere utili nel loro studio. La Figura 4.7 comunque contiene i grafici di alcune
funzioni polinomiali, giusto per darti un’idea di che faccia possano avere.

La prima osservazione € che per x molto grande in valore assoluto I’addendo
anz™ in (4.15) & molto piu grande degli altri, per cui il comportamento della fun-

7 Ne introdurremo molti nel prossimo capitolo.



4.4 Funzioni polinomiali 153

-4

Figura 4.7 Funzioni polinomiali.

zione f per x molto grande in valore assoluto & dettato dal comportamento di a,x"™.
In particolare:

se a, > 0 e n e pari allora

lim a,z"+---4+ap= lim a,z" =+00;
z—+o0 z—+o0

se a, > 0 e n ¢ dispari allora

lim a,z" 4+ ---4+ap= lim a,z" = +o0;
r—+oo r—+oo

se a, < 0 e n e pari allora

lim a,z"+---4+ap= lim a,z" =—00;
z—+o0 z—+o0

se a, < 0 e n e dispari allora

lim a,z"+---+ag= lim a,z" = Foo.
r—+o0 rz—+o0

CURIOSITA 4.5 Vediamo come dimostrare correttamente queste affermazioni. L’idea & scrivere

i1
23—, (4.16)

a, xI

anx” + - +ag=apz" | 1+ E
j=1

e far vedere che per |z| grande il termine fra parentesi non & troppo distante da 1. Poniamo

_ 2n max{|ao|, ..., |an|}

R
|an|

>2n>1.

Se |z| >Re0<j<n-—1abbiamo |z|"77 > |z| > R > 2n|a,;|/|a,|, cio&

laj| 1 1

|an| |x|™—7 on’
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e quindi
n—1
la;| 1 1

1
n.—==.
|an| |x|™—7 2n 2
j=0

Ricordando le seguenti fondamentali proprieta del valore assoluto
lal = 18] < [al = bI| < la+b < lal+ bl ,  la-b] = lal- o],

per |z| > R otteniamo

n—1 n—1 n—1
; 1 i 1 i 1 1 1
el Bl et R B o] >1-- =2
a, xTnJ a, xn—i |an| || 2 2
j=0 j=0 j=0
Inoltre,
n—1 1 n—1 1 n—1 1 1 3
et B ) Yl RS RO lo,] - <1+-=1,
a, xTn—J a, xn—i lan| || 2 2
=0 j=0 =0

sempre per |z| > R. Ricordando (4.16), non appena a,z™ > 0 e |z| > R otteniamo

3 1
§anz" >anz" 4 a0 > - apz”,

mentre se a,z" < 0 e |z| > R otteniamo
3 n n n
7 <apz" +---+ao < —apz™ .
Queste due stime implicano immediatamente le affermazioni volute.

La seconda osservazione riguarda il numero di condizioni necessarie per deter-
minare i coefficienti di un polinomio di grado n. Abbiamo visto che il grafico di una
funzione lineare era completamente determinato dal passaggio per due punti, e che
il grafico di una funzione quadratica era completamente determinato dal passaggio
per tre punti. Analogamente, il grafico di un polinomio di grado n & completamente
determinato dal passaggio per n + 1 punti.

Il metodo per trovare il polinomio dati n + 1 punti € analogo a quello visto per

le funzioni quadratiche. Supponiamo di avere n + 1 punti (zo,¥0), .- -, (Tn, Yn) con
ascisse xo, . . ., &, tutte distinte. Trovare un polinomio f(z) = a,a™+---+aq il cui
grafico passi per questi punti, cioe tale che f(z;) =y; per j =0,...,n, equivale a

risolvere il sistema lineare

—1

Lian + 20 p_1+ -+ a0 =Yo ,

-1

x:LLan‘sz Ap—1+ -+ ayg=Yn,

di n + 1 equazioni nelle n 4+ 1 incognite ay, ..., a,. Per risolvere questo sistema si
sottrae ogni equazione dalla successiva; se necessario, si dividono, come in (4.8), i
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coefficienti del sistema ottenuto per un opportuno fattore comune, utilizzando le
formule

gh L gkl = () Zziykfi : (4.17)

e si ripete il procedimento col nuovo sistema. Dopo n passaggi si arriva a una sola
equazione lineare con a, come unica incognita; ricavata a, si sostituisce il valore
trovato nei sistemi precedenti, ricavando a,_; € poi a,_o e cosl via fino ad ag.
Questa tecnica per determinare i coefficienti dei polinomi & detta metodo delle
differenze.

CURIOSITA 4.6 La formula (4.17) si dimostra col seguente conto:

k k k
(x — ) E iyt = E aitlyk—i E T G
i=0 i=0 i=0
k—1 k—1
— gkt 4 E Tty E ghtlgh=h gkl
=0 h=0
_ ak+1 kE+1
=z - Yy s

dove abbiamo posto h = ¢ — 1 nell’ultima sommatoria.

EsEmpio 4.9  Studiamo nuovamente i semi di pomodoro degli Esempi 4.1 e 4.7.
Sai gia che alla temperatura di 12 °C germoglia il 40% dei semi, alla temperatura
di 15 °C germoglia il T0% dei semi, e che alla temperatura di 9 °C germoglia il 20%
dei semi. Non contento, il tuo assistente effettua un’ulteriore misura, scoprendo
che alla temperatura di 18 °C germoglia 1'85% dei semi. Trova un polinomio di
terzo grado che rappresenti questi dati. Dobbiamo trovare ag, a1, as, agz € R che
soddisfano il sistema

729a3 + 8las 4+ 9a1 + ag = 20,

1728@3 + ].44(12 + ].2(11 +ag = 40 5
3375as + 225a9 + 15a1 + ag = 70,
5832a3 + 324as + 18a1 + a9 = 85 .

La prima serie di sottrazioni ci da

1647a3 + 8las + 3a; = 30,

{ 999a3 + 63as + 3a1 = 20,
2457a3 + 99as + 3a; = 15 .

Siccome i coefficienti di a; sono uguali nelle tre equazioni, non abbiamo bisogno
di effettuare divisioni e possiamo procedere direttamente con la seconda serie di

sottrazioni:
{648(13 + 18as = 10,

810as + 18as = —15 .

L’ultima sottrazione ci da 162a3 = —25, cio¢ ag = —25/162. Mettendo questo
valore nelle equazioni precedenti e risalendo troviamo ag = 55/9, a3 = —1265/18,
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e ap = 270, per cui il polinomio cercato e

25 55 1265
P(T) = f@T3 + §T2 ——g [ +270.

La Figura 4.8 contiene sia i dati sia i grafici delle funzioni che abbiamo ottenuto
nei vari esempi.
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Figura 4.8

Osservazione 4.24 Gli Esempi 4.1, 4.7 e 4.9 mostrano che i conti nel metodo
delle differenze sono pitt semplici se le ascisse xg,...,x, sono equispaziate, cioe
S€ X1 —Xp=T2 —X1 =" " ==Xp_-1— Tnp.

Esercizio 4.2 Usa il metodo dei minimi quadrati per determinare la retta di
regressione per i dati dell’Esempio 4.9, calcola il coefficiente di Pearson, e confronta
pregi e difetti delle varie formule (retta di regressione inclusa) che abbiamo trovato
per rappresentare la relazione fra temperatura e percentuale di semi germinati.

L’ultima osservazione che ci servira riguarda le radici di un polinomio. Una
radice di un polinomio f(x) & un numero reale zy € R tale che f(xy) = 0. La regola
di Ruffini dice che xy € R e radice del polinomio f se e solo se esiste un polinomio ¢
tale che f(x) = (z — zp)q(z), dove ¢ ha grado di uno minore rispetto al grado di f.
Ora, se xg € radice anche di ¢, deve esistere un terzo polinomio ¢;, di grado minore
di quello di ¢, tale che q(z) = (z — xo)q1(x), per cui f(z) = (v — x0)*q1 ().
Ripetendo questo procedimento, prima o poi troveremo un numero naturale » > 0
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(e minore o uguale del grado di f) e un polinomio ¢, tali che

f(x) = (x —20)"¢r(x)  con gy (wo) #0;
il numero r & detto molteplicita di xy come radice di f.

CURIOSITA 4.7  Se g, ha una radice z; di molteplicitd s > 0, possiamo ripetere questa costruzione
con ¢, trovando un polinomio p, tale che f(z) = (z — zo)"(x — z1)*ps(z). Procedendo in
questo modo si riesce a dimostrare che ogni polinomio f si pud scrivere in modo unico come
prodotto

f(x) = api(z)™ - pa(z)™ (4.18)
dove a € R ¢ il coefficiente direttore di f, r1,...,r, sono numeri interi maggiori di zero, e
Pi1,...,Pr sono polinomi monici (cio¢ con coefficiente direttore uguale a 1) irriducibili (cio¢

non si possono scrivere come prodotto di due altri polinomi monici). I polinomi irriducibili
sono ’equivalente per i polinomi dei numeri primi per i numeri naturali; e (4.18) & ’equivalente
della decomposizione in fattori primi di un numero naturale. Infine, si puo anche dimostrare
che i polinomi monici irriducibili a coefficienti reali sono o polinomi lineari della forma x — zq
oppure polinomi quadratici senza radici reali (cio¢ con discriminante negativo).

4.5 Funzioni potenza

Un’altra famiglia importante di funzioni e costituito dalle funzioni potenza, che
sono funzioni della forma

f(@) = ax?,

dove a # 0 & un numero reale e p & un numero razionale (ma vedi anche ’Osserva-
zione 4.26), detto esponente della funzione potenza.

Osservazione 4.25 Se p ¢ un numero naturale, p € N = {0,1,2,...}, la funzione
f(x) = axP & una particolare funzione polinomiale, e quindi ¢ definita su tutta la
retta reale: f:R — R. Se p & un numero intero negativo, p € Z~ = {—-1,-2,...},
la funzione f & una particolare funzione razionale (vedi la prossima sezione) ed &
definita per z # 0, cioe f:R* — R. Infine, se p & un numero razionale non intero,
p € Q\ Z, allora f & definita solo per # > 0, cio¢ f:RT — R.

Osservazione 4.26 Come accenneremo nelle Sezioni 4.7 e 4.8 e vedremo nel pros-
simo capitolo, & possibile dare un senso anche alle potenze irrazionali di un numero
non negativo, per cui potremo considerare funzioni potenza con esponente qualsiasi
(ma solo con argomento reale non negativo).

CURIOSITA 4.8 Supponiamo che p € R\ Q sia un numero irrazionale, e x € Rt un numero non
negativo. Siccome i numeri razionali possono approssimare bene quanto vogliamo qualsiasi
numero reale, un modo per calcolare la potenza irrazionale z? si basa sul fatto che esiste un
numero reale y tale che la potenza razionale x? & arbitrariamente vicina a y non appena ¢
¢ un numero razionale sufficientemente vicino a p; allora si pone z? = y. Quindi le potenze
razionali forniscono approssimazioni arbitrariamente buone delle potenze irrazionali. Un altro
modo per esprimere questo concetto & dire che per ogni € > 0 (arbitrariamente piccolo) esiste
un ¢ > 0 (sufficientemente piccolo) tale che se ¢ & un numero razionale che dista da p meno
di 6 (cioe |g — p| < §) allora z¢ dista da y meno di € (cioe |29 — y| < &).
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Osservazione 4.27 Nella Sezione 4.8 vedremo anche che il grafico di una funzione
potenza f(z) = azP & completamente determinato dal passaggio per due punti.

Le funzioni potenza azP con p € N hanno un comportamento molto simile a
quello di ax se p & dispari, e a quello di az? se p ¢ pari. Infatti, con le tecniche
introdotte nelle Sezioni 4.1 e 4.2 non & difficile vedere (esercizio per te e il tuo
assistente) che
— se p & dispari, la funzione f(x) = axP & monotona (crescente se a > 0, decre-

scente se a < 0), e

lim ax? =
r—+o0

+oo sea >0,
Foo sea<0;

— se p & pari (e non nullo), la funzione f(x) = ax? ha un punto di minimo (se
a > 0) o un punto di massimo (se a¢ < 0) in z = 0, ¢ monotona (crescente o
decrescente a seconda del segno di a), nelle semirette (—oo, 0] e [0, +00), €

lim az? =
rz—Fo0

{—!—oo sea >0,
-0 sea<0.

Osservazione 4.28 Nota che il tipo di monotonia su Rt = [0, 400) e il limite a +o00
di axP dipende solo dal segno di a e non dalla parita di p.

Osservazione 4.29 11 confronto fra funzioni potenza con diverso esponente puo for-
nire interessanti conseguenze biologiche legate a questioni di scala. Prendiamo un
particolare individuo di una data specie animale (o vegetale), e scegliamo una sua
lunghezza caratteristica ¢: per esempio, possiamo indicare con ¢ il diametro della
testa. Tutte le altre lunghezze di questo particolare individuo sono banalmente pro-
porzionali a ¢: i coefficienti di proporzionalita si ottengono semplicemente dividendo
per ¢ la lunghezza che si vuole considerare. Se ora prendiamo un altro individuo
della stessa specie, i coefficienti di proporzionalita delle sue lunghezze rispetto a /¢
saranno un po’ diversi, ma non troppo diversi: per esempio, il secondo individuo
sara un po’ piu alto o un po’ piu basso, ma facendo parte della stessa specie € molto
improbabile che sia alto piu del doppio o meno della meta. Quindi possiamo consi-
derare questa lunghezza ¢ come rappresentativa della specie; tutte le altre lunghezze
in tutti gli altri individui della stessa specie saranno proporzionali a ¢ con coeffi-
cienti di proporzionalita approssimativamente costanti. Di conseguenza, tutte le
superfici di individui della stessa specie saranno proporzionali a 2, con coefficienti
di proporzionalita approssimativamente costanti; e tutti i volums saranno propor-
zionali a 3, con coefficienti di proporzionalita approssimativamente costanti. Ora,
i fenomeni di scambio con ’esterno (assorbimento di ossigeno, emissione di calore,
eccetera) di un individuo avvengono usualmente attraverso la superficie, e quindi
avranno andamenti proporzionali a ¢2; invece, i fenomeni metabolici (consumo di
ossigeno, produzione di calore, eccetera) sono di solito proporzionali al volume (al
numero di cellule coinvolte), e quindi proporzionali a £3. La conseguenza di tutto
cio ¢ che (come sara chiarito dai prossimi esempi) non é possibile variare eccessiva-
mente le dimensioni di una data specie animale senza danneggiare equilibrio fra
1l metabolismo interno e ’ambiente esterno che le permette di vivere; in un certo
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senso, i rapporti fra il metabolismo e la forma di una specie ne determinano le
dimensioni ideali.

EsEmpio 4.10 Con buona pace dei film dell’orrore, un ragno gigante, ottenuto
ingrandendo 100 volte un ragno usuale, ha poche possibilita di sopravvivere. Il
consumo di ossigeno ¢ proporzionale al volume del ragno, volume che ¢ passato da
un multiplo di #3 a un uguale multiplo di (10¢)® = 1000¢3. D’altra parte, I’assorbi-
mento di ossigeno & proporzionale alla superficie interna dei polmoni, superficie che
¢ passata da un multiplo di £2 a un uguale multiplo di (10¢)? = 100¢2. 11 consumo
di ossigeno e quindi aumentato di 1000 volte, mentre 1’assorbimento di ossigeno
solo di 100 volte; il ragno gigante riceve solo 1/10 dell’ossigeno che gli servirebbe,
e quindi muore soffocato sotto gli occhi increduli dell’eroe del film.

In maniera analoga, con buona pace dei film di fantascienza, un uomo rimpiccio-
lito di 10 volte si sentirebbe piuttosto male. Infatti, la perdita di calore attraverso
I’epidermide & proporzionale alla superficie del corpo, cioe a £2, e quindi si & ridotta
di 1/100. Ma il calore prodotto dal corpo umano, necessario alla nostra sopravvi-
venza visto che siamo animali a sangue caldo, & proporzionale al volume del corpo,
cio a £3, e quindi si & ridotto di 1/1000. Quindi un uomo rimpicciolito 10 volte per-
derebbe attraverso I’epidermide 10 volte piu calore di quello che produce, e quindi
probabilmente morirebbe di freddo.

Osservazione 4.30 La superficie di assorbimento dell’ossigeno nei polmoni in realta
ha una struttura frastagliata, di tipo frattale, e di conseguenza ’assorbimento di
ossigeno ¢ piu efficiente diventando proporzionale a fP con p > 2; ma in ogni caso
non raggiunge £3.

EsEmMPIO 4.11 E noto che la forza muscolare di un muscolo delle gambe & ap-
prossimativamente proporzionale al numero di fibre muscolari che lo compongono,
e quindi & proporzionale alla superficie trasversa del muscolo, cioe a £2. Inoltre,
I’energia prodotta dal muscolo & proporzionale alla forza per la lunghezza, e quindi
¢ uguale a ¢ /3 per un’opportuna costante ¢; > 0. D’altra parte, I’energia neces-
saria per un salto di altezza h e proporzionale al prodotto dell’altezza per il peso
del corpo, e quindi & uguale a cyhf? per un’opportuna costante c; > 0. Ne segue
che la massima altezza possibile i di un salto deve soddisfare ¢1£3 = cohf3, cioe
h = ¢1/¢2; in particolare, h non dipende da £.

Ora, una pulce comune ¢ in grado di saltare a un’altezza pari a 200 volte la
propria altezza; quanto sara in grado di saltare una pulce 10 volte piu grande? E
una pulce 100 volte piu grande? La pulce comune ¢ in grado di saltare a un’al-
tezza h = 200csf per una costante cg3 > 0 opportuna. Una pulce 10 volte piu grande
avra lunghezza caratteristica 10/, ma uguali costanti di proporzionalita ci, ¢ € c3.
Siccome la massima altezza possibile per un salto dipende solo dalle costanti di
proporzionalita, la pulce 10 volte piu grande puo saltare solo alla stessa altezza
della pulce comune, e quindi al massimo a 20 volte la propria altezza. Analoga-
mente, una pulce 100 volte piti grande riuscira a saltare solo il doppio della propria
altezza, e una pulce mastodontica 1000 volte pit grande della pulce comune riuscira
a saltare solo un quinto della propria altezza. Per intenderci, se una pulce comune
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alta circa 1 mm riesce a saltare 20 cm, una pulce alta 1 metro riuscirebbe a saltare
sempre soltanto 20 cm. ..

Le funzioni f(z) = axP con esponente p € Q1 \ N razionale positivo non intero
sono definite solo su R*, e hanno comportamento analogo a quelle con esponente
naturale: sono crescenti se a > 0, decrescenti se a < 0, e il loro limite all’infinito
e uguale a +oo a seconda del segno di a. La Figura 4.9 contiene il grafico di
alcune di queste (con a = 1). Nota che quelle con esponente maggiore di 1 hanno
la concavita rivolta verso 1’alto, mentre quelle con esponente minore di 1 hanno
la concavita rivolta verso il basso. Nel prossimo capitolo vedremo come verificare
rigorosamente questa affermazione.

5,

0.5 1 1.5 2 2.5 3

Figura 4.9 Funzioni potenza.

Pil interessanti sono le funzioni f(z) = ax? con p € Q~; siccome (almeno
quando p € Z~) sono funzioni razionali, le discutiamo nella prossima sezione (Os-
servazione 4.32).

4.6 Funzioni razionali

Una funzione razionale & un quoziente di polinomi:

AmE™ + Q1 2™ L+ -+ ag
bpx™ + by 12"+ -+ by

fz) =

bl

con m,n €N, ag,...,am, by,...,bp € R € ap, b, #0 (e di solito si assume anche
n > 1, perché altrimenti f sarebbe un polinomio); il numero d = max{m,n} &
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detto grado della funzione razionale. Ovviamente, lo studio dell’andamento delle
funzioni razionali generiche, come per i polinomi, richiede strumenti che ancora non
abbiamo; a parte alcune osservazioni finali, ci concentreremo quindi sulle funzioni
razionali di grado 1, note anche come funzioni lineari fratte.

L’esempio piu semplice di funzione lineare fratta ¢ la funzione (potenza)

a -1

f(x):x:ax ,

con a # 0. Rappresenta le relazioni di proporzionalita inversa: infatti, un punto
(z,y) appartiene al grafico di f se e solo se

1Yy = a,

per cui il prodotto fra 'argomento e il valore della funzione e costante su tutto il
dominio della funzione.

Osservazione 4.31 In particolare, basta conoscere un punto (z, yo) del grafico per
determinare la funzione a/x, in quanto a = zgyo.

La prima osservazione importante ¢ che la funzione f(z) = a/x non é definita
su tutto l’asse reale: il suo dominio non e R. Infatti, il quoziente a/x non ¢ definito
per z = 0, per cui la funzione f & definita solo su R* = R\ {0}. Si dice anche che
0 & una singolarita per la funzione f.

Quando una funzione ha una singolaritd (un punto in cui non & definita), ¢
importante cercare di capire come si comporta vicino alla singolarita. Cominciamo
supponendo @ > 0 e z > 0. Quando = > 0 diventa piccolo (per esempio, mi-
nore di 1/n per n arbitrariamente grande) allora 1/z diventa grande (per esempio,
maggiore di n) e quindi anche a/x diventa grande (per esempio, maggiore di an).
In altre parole, possiamo rendere f(x) = a/x arbitrariamente grande a patto di
scegliere x sufficientemente piccolo e positivo.

Abbiamo gia visto come tradurre in simboli i concetti di “arbitrariamente
grande” e “sufficientemente grande”; una procedura analoga si usa per il concetto
di “sufficientemente piccolo”. La frase precedente diventa: per ogni M > 0 (arbi-
trariamente grande) esiste § > 0 (sufficientemente piccolo) tale che se 0 < & < §
allora f(x) > M. In simboli,

VM >0 36>0 0<z<d= f(z)>M.

Usando la terminologia dei limiti, diremo che il limite di f(x) per x che tende a 0
da destra (o da sopra, o che tende a 0%) & +o00:

lim f(x)=4o00.

i f(2)

Quando z < 0 negativo diventa piccolo (in valore assoluto), 1/x diventa grande
in valore assoluto ma rimane negativo, cioé diventa molto negativo. Quindi, sem-
pre assumendo a > 0, possiamo rendere f(xr) = a/x arbitrariamente negativa a
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patto di scegliere x sufficientemente piccolo e megativo. In altre parole, per ogni
M > 0 (arbitrariamente grande) esiste 6 > 0 (sufficientemente piccolo) tale che se
—0 <z <0 allora f(x) < —M. In simboli,

VM >0 36>0 —d<z<0= f(z)<—-M.

Usando la terminologia dei limiti, diremo che il limite di f(x) per x che tende a 0
da sinistra (o da sotto, o che tende a 07) é —oo:

lim f(z) =—-00.

x—0~

Una conseguenza di questo comportamento e che il grafico di f si avvicina sempre
pitt all’asse delle ordinate quando = tende a zero (si avvicina in alto se z > 0,
in basso se x < 0). Si dice che l'asse delle ordinate & un asintoto verticale della
funzione f.

Ovviamente, se a < 0 i segni si invertono; lascio a te il compito di dimostrare

che
se a < 0 allora lim f(z)= Foo,
z—0F
e di scrivere a parole e in simboli il significato di questa formula.

Vediamo ora cosa succede allontanandoci da zero. Cominciamo come al solito
supponendo a > 0. Se 0 < zyp < x7 allora 0 < 1/x; < 1/z9 e 0 < a/x1 < a/xo;
quindi 0 < xo < x; implica f(zg) > f(xz1) > 0, per cui f & strettamente decre-
scente nella semiretta (0, 4+00). In modo analogo si dimostra che f & strettamente
decrescente (ma negativa) nella semiretta (—o0,0). Se invece a < 0 s’inverte tutto;
riassumendo,

- sea > 0, la funzione f(x) = a/x & strettamente decrescente e negativa in
(—00,0), mentre ¢ strettamente decrescente e positiva in (0, +00);

- sea < 0, lafunzione f(z) = a/x & strettamente crescente e positiva in (—oo, 0),
mentre € strettamente crescente e negativa in (0, +00).

In particolare, quando x diventa grande (e a > 0) la funzione f(z) = a/x decresce
rimanendo positiva e diventando arbitrariamente piccola. Una cosa simile accade
quando z diventa molto negativo (e quando a < 0): cambia il segno, cambia la
crescenza, ma in ogni caso f(x) diventa arbitrariamente piccolo in valore assoluto
a patto di scegliere x sufficientemente grande o sufficientemente negativo. Ormai
avrai capito il trucco per tradurre espressioni quali “arbitrariamente piccolo”: la
frase precedente diventa “per ogni € > 0 (arbitrariamente piccolo) esiste M > 0
(sufficientemente grande) tale che se « > M o « < —M allora |f(z)] < ¢”. In
simboli,

Ve>0 IM >0 z>Mozxz<-M = |f(x)|<e,

o anche
li =
Jlim f(z) =0,
che si legge “il limite di f(z) per = che tende a oo & 07, o anche “f(x) tende
a 0 per x che tende a +00”. Una conseguenza di questo comportamento € che il
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grafico di f si avvicina sempre piu all’asse delle ascisse quando x tende a oo (si
avvicina da sopra a +o0o se a > 0 e a —oo se a < 0, e da sotto a —oo se a > 0
e a +oo se a < 0). Sidice che lasse delle ascisse ¢ un asintoto orizzontale della
funzione f. La Figura 4.10 contiene il grafico di f(x) = a/x con a > 0, che
riassume visivamente tutte le proprieta che abbiamo discusso, asintoti compresi.
Questo grafico & un esempio di iperbole equilatera®.

Figura 4.10 f(z) =1/=.

Osservazione 4.32 Le funzioni potenza f(x) = aa? con p razionale negativo pos-
sono venire studiate con tecniche analoghe. In particolare, su (0,+00) sono tutte
positive e strettamente decrescenti (se a > 0, o negative e crescenti se a < 0),
hanno limite 0 a +00 con la retta delle ascisse come asintoto orizzontale, e limite
+o0o (a seconda del segno di a) per x che tende a 07, con la retta delle ordinate
come asintoto verticale. Su (—oo,0) sono definite solo quando p € Z~, e in tal caso
hanno un andamento analogo a quello di a/z in (—o0,0) se p & dispari, e a quello
di |a/x| se p & pari. In particolare, se p & pari abbiamo che f(x) diventa arbitraria-
mente grande a patto di prendere x sufficientemente piccolo in valore assoluto, cioe
per ogni M > 0 (arbitrariamente grande) esiste § > 0 (sufficientemente piccolo)

8 11 termine “equilatera” serve a indicare che i due asintoti sono ortogonali. In generale,
un’iperbole ¢ il luogo dei punti del piano per cui il valore assoluto delle differenze delle
distanze da due punti dati (detti fuochi) & costante. Un’iperbole ha sempre due asintoti,
ma non necessariamente ortogonali.
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tale che 0 < |z| < § implica f(z) > M, ovvero

lim f(z) = 400

r—0

senza bisogno di distinguere se x tende a 0 da destra o da sinistra.

Lo studio di qualsiasi funzione razionale fratta puo venire ricondotto a quello
di a/x, proprio come avevamo ricondotto lo studio di qualsiasi funzione quadratica
a quello di z2. Infatti, se ¢ # 0 si ha

a:chbi(a/c)a:er/ci%(w—i—d/c)—i—%—‘;—g7g+(bcfad)/02 (4.19)
cx+d  x+d/c x+d/c Cc x+d/c '

Ricordando la Sezione 4.2 vediamo che il grafico di f(z) = (az + b)/(cx + d) si
ottiene a partire da quello di 1/x con le seguenti operazioni:

—  moltiplichiamo le ordinate per (bc — ad)/c?;

—  sottraiamo a/c alle ordinate, traslando il grafico in direzione verticale della
quantita a/c;

—  sommiamo d/c alle ascisse, traslando il grafico in direzione orizzontale della
quantita —d/c.

Quindi la funzione f(z) = (ax +b)/(cz + d) soddisfa le seguenti proprieta:

—  ha una singolarita in zg = —d/c;

— il suo grafico & un’iperbole equilatera con asintoto orizzontale la retta y = a/c
e asintoto verticale la retta z = —d/c;

—  nelle semirette (—oo,—d/c) e (—d/c,+00) & strettamente decrescente se si
ha bc — ad > 0, e strettamente crescente se bc — ad < 0 (ed & costante
se bc — ad = 0).

La presenza dell’asintoto orizzontale y = a/c vuol dire che f(z) & arbitrariamente

vicina al valore a/c non appena x ¢ sufficientemente grande o sufficientemente nega-

tivo. Ora, f(x) & arbitrariamente vicina ad a/c se e solo se la differenza f(x) —a/c

¢ arbitrariamente piccola in valore assoluto. Quindi dire che y = a/c & un asin-

toto orizzontale per f equivale a dire che per ogni € > 0 (arbitrariamente piccolo)

esiste M > 0 (sufficientemente grande) tale che se © > M o x < —M allora

|f(z) —a/c| < e. In simboli,

Ve>0 M >0: z>Mox<-M = |f(z)—a/c|<e,

o anche

lim f(z)=a/c.

r—+o0

Analogamente, la presenza dell’asintoto verticale x = —d/c vuol dire che f(z) & ar-
bitrariamente grande (o arbitrariamente negativa) non appena x & sufficientemente
vicino a g = —d/c. Ora, x ¢ sufficientemente vicina a xg se e solo se la diffe-
renza x—xg € arbitrariamente piccola. Quindi dire che x = z & un asintoto verticale
per f equivale (almeno quando bc — ad > 0) a dire che per ogni M > 0 (arbitra-
riamente grande) esiste € > 0 (sufficientemente piccolo) tale che se 0 < x —xo < €
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allora f(x) > M, e se —e < x —x9 < 0 allora f(z) < —M. Usando il simbolo di
limite questo si scrive

lim f(z) =400 e lim f(z)=-00.

+ —
IHIO IHZO

Lascio a te il compito di scrivere cosa succede se be—ad < 0. La Figura 4.11 contiene
il grafico di una funzione lineare fratta con rappresentati anche gli asintoti.

Figura 4.11 f(z) = (z+1)/(z - 1).

Osservazione 4.33 Una conseguenza immediata di (4.19) & che i punti (z,y) del
grafico di f(x) = (ax 4 b)/(cx 4+ d) sono tutti i punti del piano che soddifano la
condizione

(z—a)ly—p) =k
con a = —d/c, 3=a/cek=(bc—ad)/c.

Osservazione 4.34 Abbiamo visto cosa vuol dire che una funzione ha limite infinito
quando z tende all’infinito; cosa vuol dire che ha limite un valore finito quando x
tende all’infinito; e cosa vuol dire che ha limite infinito quando x tende a un valore
finito (da destra, da sinistra o da entrambi i lati). Rimane da dire cosa vuol dire
che ha limite un valore finito quando « tende a un valore finito. La definizione non
dovrebbe stupirti: diremo che la funzione f ha limite ¢ € R quando z tende a xy,
e scriveremo

lim f(z)=1¢,

T—x0
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se f(z) si avvicina arbitrariamente a ¢ a patto di prendere z sufficientemente vicino
a xo, 0, in altre parole, se per ogni € > 0 (arbitrariamente piccolo) esiste 6 > 0
(sufficientemente piccolo) tale che 0 < |z — xo| < 0 implica |f(z) —¢| < e.

Osservazione 4.35 La condizione 0 < |x — x| < § & equivalente a richiedere
0 < x—xy < 6 oppure =0 < z — x9 < 0. Utilizzando solo una di queste due
condizioni otteniamo (come visto prima) il concetto di limite per x che tende a xq
da sopra (ciot x — x7) oppure da sotto (cio¢ x — z).

CURIOSITA 4.9 Possiamo usare il concetto di limite per definire la continuita di una funzione. Per
Pesattezza, una funzione f: I — R, dove I C R & un intervallo, & continua in un punto xo € I
se

lim f(z) = f(zo) ,

T—z(

cioe se il suo valore in z, coincide con il suo limite (sia da sopra che da sotto) in zo, o, ancora,
se f(z) diventa arbitrariamente vicino a f(z¢) a patto di prendere z sufficientemente vicino
a xo. La funzione f: I — R & poi detta continua se lo € in ogni punto del suo dominio I.

Vediamo ora un’applicazione biologica delle funzioni lineari fratte.

ESEMPIO 4.12 In un esperimento si trova® che la velocita v (in ¢cm/sec) con cui
un muscolo sartorio della coscia di una rana si estende per sollevare un peso p (in
grammi) soddisfa la relazione

70 —1p
v(p) = 0.95 (p+ 12)

In particolare, questa funzione ha una singolarita in p = —12; ma siccome chiara-
mente ci interessa solo per p > 0, la presenza della singolarita non ¢ un problema.
E una funzione lineare fratta della forma (az +b)/(cx +d) con a = —0.95, b = 66.5,
c¢=1ed=12. In particolare, (bc —ad)/c?> = 77.9 > 0 per cui v & strettamente de-
crescente per p > —12 (in altre parole, maggiore il peso pil lentamente si estende il
muscolo, osservazione piuttosto ragionevole). Di conseguenza, la massima velocita
di estensione si ha per p = 0, cio¢ in assenza di carico, e vale v(0) ~ 5.54 cm/sec. Il
limite all’infinito a/c = —0.95 & negativo; dunque il grafico deve intersecare 1’asse
delle ascisse. Infatti v(70) = 0, che vuol dire che se p = 70 g la gamba della rana
non riesce a estendersi (velocita zero!), cioé la rana non riesce a sollevare un peso
di 70 g (o maggiore). In particolare, questa formula puo essere valida solo per valori
di p nell’intervallo [0, 70].

Vediamo ora cosa possiamo dire sul comportamento di una funzione razionale
qualsiasi
p(®)  amx™ + am_12™ 4+ +ag
q(z) bpam byl by

(4.20)

9 Nella Sezione 4.9 vedremo come il metodo dei minimi quadrati puo essere usato anche
per interpolare funzioni lineari fratte.
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Cominciamo col capire dove e definita. Gli unici punti in cui potrebbero esserci dei
problemi sono le radici del denominatore g. Se x( € una radice di ¢ e il numeratore
non si annulla in x, cioé p(zg) # 0, allora per calcolare f(z() dovremmo dividere
per zero, che non ¢ possibile; quindi le radici del denominatore che non sono radici
del numeratore sono sicuramente singolarita per f. Se invece x(y € radice anche
del numeratore, dobbiamo confrontare le molteplicita. Nella Sezione 4.4 abbiamo
visto che se x( € radice sia di p che di ¢ possiamo scrivere p(x) = (z — o) "p1(z)
e q(z) = (z — z0)*q1(z) con p1(zo), q1(x0) # 0. Quindi

flo) = EmTI D) (e 21 (4.21)

(x —x0)%q1(x) q(z)

Ma allora se r > s il punto x¢ non ¢ una singolarita di f, in quanto ¢;(zq) # 0;
invece zp rimane una singolaritd di f se r < s, perché in tal caso & (x — x¢)"*°
ad avere una singolarita in o (’esponente ¢ negativo). Inoltre (4.21) implica che,
semplificando un’opportuna potenza di x—x, possiamo esprimere f come quoziente
di polinomi tali che zy non sia una radice comune di numeratore e denominatore.
Ripetendo questo procedimento per tutte le radici del denominatore troviamo che
ogni funzione razionale si puo esprimere come rapporto di polinomi privi di radici
comuni, e in tal caso le singolarita coincidono con le radici del denominatore.

Supponiamo allora che f(x) = p(x)/q(z) sia una funzione razionale tale che p
e q non abbiano radici comuni, e sia xy una radice del denominatore di moltepli-
cita r > 0. Per quanto visto possiamo scrivere

= ; p(x) con i xZ
f((E)— (JJ—J?())T th(ﬂ:) p( 0)1 ql( 0)#0

In particolare, p(z)/q1(z) ammette limite finito non nullo ¢ = p(xg)/q1(zo) per x
che tende a zg, per cui il comportamento di f(x) per x vicino a x( sara analogo
a quello di ¢/(x — z()". In particolare, il limite di f(x) per z che tende a xy (da
sopra o da sotto) sara uguale a quello di £/(x — xg)", e quindi varra +oo a seconda
del segno di £ e della parita di r (e a seconda se = tende a z¢ da sopra o da sotto).
In ogni caso, la retta x = x¢ € un asintoto verticale.

Osservazione 4.36  Nel ragionamento precedente abbiamo implicitamente usato al-
cune proprieta algebriche dei limiti. Per l'esattezza, le seguenti formule valgono
quast sempre:

lim [f(x) + g(2)] = lim f(z) £ lim g(a),

T—Tg T—T0 T—T0
lim [f(x)g(x)] = lim f(z)- lim g(z),
x o xr o x o (4.22)
lim f(z)
lim ) _ T se lim g(z) #0.
w0 g(z) - lim g(z) 20

Il “quasi” si riferisce al fatto che possono sorgere dei problemi se qualcuno di questi
limiti & infinito. In particolare, se a secondo membro otteniamo una delle seguenti
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forme indeterminate

Ee)
+o00’

allora per scoprire quanto fa il limite a primo membro (ammesso che esista!) ab-
biamo bisogno di maggiori informazioni (e di metodi che vedremo nel prossimo
capitolo). Altre apparizioni di limiti infiniti non creano grossi problemi, invece: se
poniamo

+o00o+00 =400, —00—00=-—00,
L
{+o0o=d00 ¢ — =0 perfeR,
+oo
+ +
€~:|:oo:%::|:oo per £ >0, €~:|:oo:%::|:oo per £ <0,

allora le formule (4.22) rimangono valide (come pure rimangono valide se al posto
di zp mettiamo +00). Infine, anche lo studio del limite di un quoziente quando il de-
nominatore tende a zero richiede maggiori informazioni. Se il limite del numeratore
¢ non nullo (o infinito), il limite del valore assoluto del quoziente & +00, ma il limite
del quoziente potrebbe essere +00, —oo 0 non esistere affatto. Infine, se anche il
limite del numeratore ¢ nullo siamo in presenza della forma indeterminata 0/0, che
studieremo nel prossimo capitolo.

Infine, vediamo cosa possiamo dire sul comportamento di una funzione razio-
nale f, scritta nella forma (4.20), quando x tende all’infinito. Abbiamo visto (nella
Sezione 4.4) che per |z| abbastanza grande, p(x) si comporta come a,,2™ e g(z) si
comporta come b,z™; quindi f(x) si comporta come la funzione potenza

m
amT o Am m—n

bz by,

quando |z| & abbastanza grande.

CURIOSITA 4.10 Per l'esattezza, quanto visto nella Curiositd 4.5 ci dice che esiste un R > 0
sufficientemente grande tale che se |z| > R e ama™, byz™ > 0 allora éam:r"" <p(z) < %am:r""
e 2bnz™ < g(x) < 3byam, per cui

1 m m —
Lam men < P@®) gy o 3‘;—;(; n

3 by q(z) n

n

Stime analoghe si ottengono anche per gli altri possibili segni di a.,,™ e b,z".

Di conseguenza,

sen>m,

a
lim f(r)= lim 2™ "=
r—+o0 r—+o0 bn

0

am
— sen=m
b, ’
+oo sen<m,
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dove il segno nell’ultimo caso dipende dal segno di a,, /by, dalla parita di m —n, e
da dove si sta calcolando il limite (se a +00 0 a —00).

EsEmpio 4.13 La legge che descrive il comportamento delle lenti convesse sottili

N

&
1 1 1
—4+-== 4.23
R (4.23)
dove u ¢ la distanza fra ’oggetto e il centro della lente, v € la distanza fra I'immagine
e il centro della lente, e f & la lunghezza focale della lente. Vogliamo studiare la
dipendenza della distanza s = u 4+ v fra oggetto e immagine dalla distanza wu fra
loggetto e il centro di una lente di lunghezza focale f = 10 cm. Siccome v = s —u,

otteniamo
1 1 1 s u?

10 u+57u u(s — u) = uls—u) A T

Quindi la dipendenza & data da una funzione razionale di grado 2. Notiamo prima
di tutto che s ha una singolarita in u = 10: questo vuol dire che quando 'oggetto
si avvicina al fuoco della lente allora I'immagine scappa all’'infinito (in quanto s(u)
tende a +o0o per u che tende a 10%). Se w < 10 allora s diventa negativa, cosa
fisicamente insensata; ma infatti la legge (4.23) vale solo per u, v > f.

Siccome il grado del numeratore & maggiore del grado del denominatore, e i
coefficienti dei termini di grado massimo del numeratore e del denominatore sono
positivi, abbiamo che s tende a +oco quando u tende all’infinito. Detta cosi e
un’affermazione fisicamente ovvia: se I’oggetto scappa all’infinito, la distanza dal-
I'immagine (che ¢ dall’altro lato della lente) tende all’infinito. Possiamo renderla
pero pill interessante notando che

w?  u(u—10)+ 10u 10(u — 10) + 100 100

- - —u+10 .
uw—10 w—10 ut uw—10 R Ty

Siccome 100/(u—10) tende a zero quando u tende a 400, vediamo che s si comporta
come u + 10 quando u diventa grande'®. Ma s = u + v; quindi v = s — u tende
a 10 quando u tende all’infinito — che fisicamente vuol dire che quando 'oggetto
scappa all’infinito 'immagine si avvicina quanto vogliamo al fuoco della lente.

Dunque s tende all’infinito sia quando u tende a -+oo sia quando u tende a 10T.
Ma allora la funzione s non pud essere monotona nella semiretta (10, +00); inoltre,
siccome s scappa all’infinito in entrambi gli estremi di (10, +00), sembra molto
ragionevole supporre che s abbia almeno un punto di minimo all’interno di questa
semiretta. Questo punto di minimo & chiaramente interessante, in quanto permette
di trovare la distanza minima fra l'oggetto e I'immagine; vedremo nel prossimo
capitolo come fare per (dimostrare che esiste e) trovarlo. La Figura 4.12 contiene
il grafico della funzione s assieme all’asintoto verticale e all’asintoto obliquo*!.

10 F infatti il grafico di s si avvicina sempre piu alla retta grafico di u + 10; si dice che
questa retta € un asintoto obliquo per il grafico di s.
g il grafico di s € un’iperbole non equilatera.
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Figura 4.12  s(u) = u*/(u — 10).

4.7 Funzioni esponenziali

Le funzioni esponenziali e logaritmiche (di cui parleremo nella prossima sezione)
sono fra le pit importanti e utili nella modellizzazione di fenomeni naturali, pro-
babilmente persino pitt importanti delle funzioni polinomiali. Prima di presentare
una definizione ufficiale, voglio discutere tre esempi in cui appaiono in maniera
naturale funzioni di tipo esponenziale.

ESEMPIO 4.14  Supponiamo di avere una popolazione di cellule in ambiente ideale:
calore e luce proprio adatti, e cibo in abbondanza per tutte. In queste condizioni,
ogni cellula si riproduce sdoppiandosi dopo un tempo ¢y misurato in secondi (e che,
per semplicita, supporremo uguale per ogni cellula). Se all’inizio la popolazione di
cellule € composta da pg individui, da quanti individui sara composta al tempo nty?
L’idea & che ogni ty secondi tutte le cellule si riproducono, per cui la popolazione
raddoppia. Quindi se al tempo 0 la popolazione & composta da p(0) = pg cellule,
al tempo tg sara composta da p(tg) = 2pg cellule, al tempo 2ty sard composta
da p(2tg) = 2(2pg) = 4tg cellule, e in generale al tempo nty sara composta da

p(ntg) = 2"po

cellule.
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EsSEMPIO 4.15 Interesse semplice e interesse composto. Questo esempio, anche
se non di interesse strettamente biologico, ¢ sicuramente interessante per i bio-
logi, che come ogni altro lavoratore nella societa contemporanea deve necessa-
riamente contrattare con le banche. Supponi di avere a disposizione un capitale
di ¢y euro, e di volerlo depositare in banca per ricavarne un qualche interesse. Il
funzionario bancario, con un sorriso da un orecchio all’altro, ti propone il seguente
schema, detto di interesse semplice, secondo lui molto vantaggioso: a intervalli re-
golari di tempo (per esempio, una volta all’anno) la banca ti concede un interesse
pari al p% del capitale iniziale. Non devi fare nulla: basta che non tocchi i tuoi
soldi in banca e questi crescono da soli. Se linteresse viene attribuito a inter-
valli di tempo ¢y, e se al tempo 0 depositi il capitale cg, allora al tempo ¢y avrai
un capitale uguale a IS(tg) = co + %Oco, al tempo 2ty avrai un capitale uguale
a IS(2tg) = IS(to) + 1550 = co+ %co, e in generale al tempo nty avrai un capitale
uguale a
p
IS(nty) = co+n 100 -

Tu guardi il funzionario di banca, e decidi che sorride troppo. Rifletti un attimo, e
realizzi che in questo modo l'interesse viene calcolato sempre e soltanto sul capitale
iniziale; il fatto che il capitale aumenti nel tempo non viene tenuto in considera-
zione. E questo non & giusto: se al tempo ¢y hai in banca un capitale pari a IS(ty),
allora il nuovo interesse dev’essere calcolato su questa cifra, e non sul capitale
iniziale! Il sorriso del funzionario di banca si restringe mentre ammette che effetti-
vamente ¢ previsto anche questo schema, detto di interesse composto. Con questo
schema, al tempo ¢y hai un capitale IC(tg) uguale a quello ottenuto con I'interesse
semplice, ma al tempo 2ty hai un capitale IC(2t9) = (1+ 55)IC(to) = (1+ 155) %o,
e in generale al tempo nty avrai un capitale pari a

IC(nty) = (1 + %)nco .

Ricordandoti la formula dello sviluppo del binomio ottieni

P \" p n\ (P \? p
1 _) —14+n-2 (_) s 1an P
( 100 +"100+<2> 00/ T T 00

non appena n > 1, per cui l'interesse composto ti fornisce piu soldi dell’interesse
semplice. Richiedi quindi che ti venga applicato 'interesse composto, e il funzio-
nario, pur mugugnando, accetta.

Leggendo le clausole scritte in piccolo nel contratto, noti perd un fatto curioso.
Mentre I'interesse composto al tuo capitale viene attribuito a intervalli di ty, in
caso tu andassi in rosso e chiedessi un prestito alla banca, la banca calcolerebbe
Pinteresse sul tuo prestito a intervalli di ¢p/2. Insospettito, chiedi lumi al funzio-
nario; lui (sorriso ridotto al lumicino) ti rassicura dicendo che si, ¢ vero, calcolano
I'interesse a intervalli di ¢y/2, ma ogni volta applicano un interesse dimezzato: solo
di p/2%. Subodorando qualcosa, provi a fare il conto: ponendo (per semplicita di
notazione) r = p/100, partendo da un capitale ¢y il metodo della banca dopo un
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tempo ty porta a un capitale pari a

2
(1+ g) (1+g) co = (1+7“+%> co > (1+71)eo =1C(to) ;
il metodo adottato dalla banca fa aumentare il capitale (o il debito) piu veloce-
mente dell’interesse composto che ti avevano concesso! Minacci di portare il tuo
capitale a un’altra banca; borbottando “Questi matematici rompiscatole...” e col
sorriso completamente scomparso, il funzionario cede e accetta di usare lo stesso
metodo di calcolo degli interessi sia per i crediti che per i debiti del tuo conto.

La storia non finisce qui. Il funzionario di banca, rimasto solo, riflette. Cal-
colando un interesse della meta il doppio delle volte, il capitale che si ottiene e
maggiore. Che succede calcolando un interesse di un terzo il triplo delle volte? Un
veloce conto mostra che il capitale che si ottiene dopo un tempo ty calcolando un
interesse di /3 dopo to/3 &

7\ 3 r r2 g3 r2 3 7\ 2
1 —) (1435438 15 )= (1 LN >(1 —) :
<+3 0 <+3+ 9+27>c° <+r+3+27>co tg) @

¢ piu alto di quello che si otteneva applicando la meta dell’interesse il doppio delle
volte! Al funzionario brillano gli occhi. Allora applicando un quarto dell’interesse
il quadruplo delle volte sara ancora piu alto, e un quinto cinque volte sara ancora
piu alto. .. e applicando un interesse minuscolo un numero sufficientemente alto di
volte potremo ottenere un capitale sempre piu alto, astronomico! Il funzionario si
precipita dal suo capo, sicuro che una scoperta del genere gli assicurera una promo-
zione, se non addirittura un posto di dirigente! Il capo, che un poco di matematica
dell’'universita ancora se la ricorda, ringrazia il funzionario ma lo rimanda al suo
posto suggerendogli di iscriversi a Biologia e studiarsi un po’ di matematica e sta-
tistica. Infatti, il funzionario ha ragione a dire che la procedura che ha proposto
produce interessi crescenti, cioé che

2 3 n n+l
1er<(142) <(1+5) << (1+2) < (1+25) <o
2 3 n n+1

ma il funzionario ha torto a dire che in questo modo si possono ottenere interessi
arbitrariamente grandi. Infatti, si puo dimostrare (vedi la Curiosita 4.11) che esiste
un numero reale, il numero di Nepero, usualmente indicato con e, che vale

e = 2.718281828459... ,

tale che (14r/n)™ sia arbitrariamente vicino a e” a patto di prendere n abbastanza
grande:
r\”n"
lim (1 + —) = . (4.24)
n—-+00 n
Quindi applicando lo schema proposto dal funzionario dopo un tempo tg si ottiene
al massimo un capitale pari a e"cg, che ¢ piu di quanto si ottenesse prima, ma non
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¢ arbitrariamente grande essendo strettamente minore di 3"¢g (in quanto e < 3 e
la funzione potenza ¢ strettamente crescente). Per esempio, se r = 1/100 si ha

IS(to) = IC(to) =1.01¢y < GTCO ~ 1.01005¢g .

Osservazione 4.37 1l limite in (4.24) & il limite di una successione, cioe di una se-
quenza di numeri g, 1, T2, ..., Ty, ... Abbiamo gia notato che una successione &
semplicemente una funzione con dominio I'insieme N dei numeri naturali; essendo
N C R, la definizione di limite di una successione ¢ analoga a quella di limite di una
funzione per n che tende a +o0o. Diremo che una successione {x1,xa, ...} (0, come
spesso scriveremo, {xz,, }) ha limite ¢ € R se x,, & arbitrariamente vicino a ¢ a patto di
prendere n sufficientemente grande, cioé se per ogni e > 0 (arbitrariamente piccolo)
esiste N > 0 (sufficientemente grande) tale che n > N implica |z,, — ¢| < . Analo-
gamente diremo che la successione {x,} ha limite +00 (0 —oc0) se per ogni M > 0
(arbitrariamente grande) esiste N > 0 (sufficientemente grande) tale che n > N
implica x, > M (rispettivamente, z, < —M).

Osservazione 4.38 Nell’Esempio 4.15 abbiamo supposto r > 0. In realta, il limite
(4.24) vale anche per » = 0 (ovvio: 1" = 1 = €° quale che sia n € N, per cui la
successione & costante) e per r < 0; quindi vale per ogni r € R.

Osservazione 4.39 In realta, modulo sapere come si calcolano potenze con espo-
nente irrazionale qualsiasi, il limite in (4.24) puo essere visto come il limite di una
funzione: infatti si ha
7" t
Vr € R lim (1 + —) = . (4.25)
t—+o0 t
Ora, t tende a +oco se e solo se © = 1/t tende a 0T; quindi (4.25) si puo scrivere
anche come
vreR lim (14 rz)Y/* =¢" . (4.26)
z—0t
In particolare, prendendo r = 1 vediamo che (14 z)*/* & molto vicino a e se z > 0

¢ sufficientemente piccolo; o, in altre parole, e* & molto vicino a 1 +x se x > 0 ¢
sufficientemente piccolo.

CURIOSITA 4.11 Vediamo come si dimostra (4.24) per r > 0. Poniamo

Tn(r) = (1 + %) ;

cominciamo dimostrando che {z, (r)} & una successione strettamente crescente, cioé tale che
Zn(r) < Tng1(r) per ogni n € N. Usando lo sviluppo del binomio possiamo scrivere

n n

ny r* rknn—1)---(n—k+1
xn(’l”)zz()—: ' ( ) )

nk k! n-n---n

S -D (-2 (-5
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Siccome
Vi=1,...,n—1 1— il>1—l,
n n
otteniamo
n+1
rk 1 k—1
w"H(T):ZH(l_n—&-l)m(l_n—l-l)
k=0
"k 1 k—1 rrtt 1 n
>y —(1-=).(1- 1- -
Zk’!( n) ( n )+(n+1)!< n+1> ( n+1)
k=0
>z (r) .

Quindi la successione {z,(r)} & strettamente crescente. Adesso dimostriamo che (contra-
riamente a quanto pensava il funzionario di banca) ¢ una successione limitata. Diremo che
un sottoinsieme A C R ¢ limitato superiormente se esiste M € R tale che x < M per ogni
x € A; che € limitato inferiormente se esiste M; € R tale che M; < z per ogni « € A; e che ¢
limitato se ¢ limitato sia superiormente sia inferiormente. Siccome z,(r) > z1(r) =1+ r per
ognin € N, la nostra successione ¢ limitata inferiormente; facciamo vedere che & anche limitata
superiormente. Scegliamo un numero naturale no maggiore di r. Notando che 1 — j/n < 1
per ogni n, j € N* troviamo che per n > ng si ha

n no—1 no—1 no e k—mn,
T (T) <Z7];' Z %l Z k! Z k! no. m
k=0 k=ng =no
ng—1 n k—ng '/ \*
<Zk, —Z( ) Zkl _Z(n_o)
— k=0

Usando la (4.17) con z = r/no e y = 1 deduciamo che

ng—1

rno 1 — (’I‘/')’Lo n no+1 1
" -~/ — =M. 4.27
we(r) < Z T R ey Z I (@.27)

Abbiamo quindi ottenuto una stima z,(r) < M con M indipendente da n. Quindi la suc-
cessione {z,(r)} continua a crescere senza mai poter superare la barriera imposta da M; &

naturale pensare che vada ad accumularsi da qualche parte. Ora, una delle proprieta piu
importanti dell’insieme dei numeri reali & 'esistenza degli estremi superiori. Sia A C R un
sottoinsieme limitato superiormente; ’estremo superiore di A & il minimo numero M € R
tale che x < M per ogni = € A" T numeri reali sono costruiti in modo tale da assicurare
Pesistenza degli estremi superiori (e inferiori; vedi la Nota 12) di insiemi limitati. Indichiamo
con e, lestremo superiore della nostra successione {z,(r)}; rimane da far vedere che e, & il
limite della nostra successione. Infatti, scegliamo & > 0 arbitrariamente piccolo. Sicuramente
e — xn(r) > 0 per ogni n € N, in quanto e, > z,(r) per definizione. Ora, se avessimo

2 T maniera analoga si definisce 1’estremo inferiore di un sottoinsieme A limitato in-
feriormente come il massimo M; € R tale che M; < z per ogni x € A. A volte si
dice che un insieme A non limitato superiormente (inferiormente) ha estremo superiore
(inferiore) +o0o0 (—00).
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e, — T,(r) > € per ogni n € N, avremmo e, — € > z,(r) per ogni n, e quindi e, — € sarebbe
un numero minore di e, maggiore o uguale di tutti gli elementi della successione, per cui e,
non sarebbe l’estremo superiore. Siccome e, ¢ I’estremo superiore, questo non puo succedere;
quindi deve esistere N € N tale che e, — zn (1) < &, ciot e, —e < zny(r). Ma {z,(r)} & una
successione crescente; quindi e, — & < x,,(r) per ogni n > N, cio¢ (ricordando che e, — x,(r)
& sempre positivo) |e, — z,(r)| < € per ogni n > N, come voluto.

Abbiamo quindi dimostrato che la successione {z,(r)} ammette limite e,.. In particolare,
la successione {x,(1)} ha limite ei; per concludere, dobbiamo far vedere che e, = (e1)",
almeno per r = p/q razionale (che & la situazione in cui sappiamo esattamente cosa vuol
dire elevare un numero alla r). Cominciamo notando che per ogni p > 0 naturale la succes-
sione {p(r), Z2,(7), ..., Tmp(r),...} & contenuta nella successione {x, ()}, per cui & crescente;
inoltre siccome per ogni n € N esiste m € N tale che mp > n, la successione {z,,,(r)} ha
anche lo stesso estremo superiore di {z,(r)} — e quindi lo stesso limite. Ma allora

mp mAqp mqp
.= lim (1+L> — lim [(1+@) } - { lim (1+@) }
m—too mp m—too m m—too m

= (er/p)” s

dove abbiamo usato il fatto che il limite del prodotto & uguale al prodotto dei limiti (Osser-
vazione 4.36). In particolare, prendendo r = 1 otteniamo e; = (e1,,)?, cioe e1,, = (e1)'/P.
Quindi se r = p/q € Q* & razionale positivo otteniamo

€prq = (€1/4)" = (el)p/q ’

come voluto. Il numero di Nepero e & quindi il nostro e;; nota infine che la stima (4.27)
conr =1eng=2cida

1 1
e=er <1414 - — =3,
! 21 1-1/2

Lasciamo gli ambienti bancari e vediamo un altro esempio.

EsEmMPIO 4.16 Decadimento radioattivo. Un atomo radioattivo, quando decade,
libera particelle alfa, che possono indurre il decadimento di altri atomi. Quindi pit
atomi ci sono, pitt atomi decadono; il numero di atomi che decadono nell’'unita di
tempo & proporzionale al numero di atomi radioattivi presenti. Se indichiamo con
N(t) il numero di atomi radioattivi presenti al tempo ¢ in un campione di isotopo
radioattivo, esiste quindi una costante A > 0, detta costante di decadimento, tale
che

AN = N(t1) — N(to) = —A(t1 — to)N(to) = —AAt N(to) ,

o anche
AN
— = —=AN
At ’

almeno per At piccolo (e il segno meno & dovuto al fatto che il numero di atomi
radioattivi diminuisce col passare del tempo). Vediamo come recuperare la forma
della funzione N. Supponiamo che il nostro campione contenga Ny atomi radioat-
tivi al tempo tg = 0. Allora al tempo ¢; (piccolo) ne conterra

N(t1) = Ny — MoNo = (1 — A1) Ny .
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Analogamente, al tempo 2t; ne conterra N (2t1) = (1 — Mt1)N(t1) = (1 — At1)?No,
e in generale
N(kty) = (1 = M1)" Ny .

Ponendo t = kt; questa formula diventa

N(t) = (1—%)kNO.

Ora, questa formula vale solo per ¢t multiplo di ¢;. Inoltre, di fatto abbiamo suppo-
sto che tutti i decadimenti avvengano solo agli istanti multipli di ¢1; in realta, av-
vengono in continuazione. Quindi per calcolare N (t) per ¢ > 0 fissato ma qualsiasi
(e per modellizzare meglio il fenomeno reale) dobbiamo rendere ¢; arbitrariamente
piccolo, facendolo tendere a 0*. Siccome k = t/t1, far tendere t; a zero equivale a
far tendere k a 400, per cui otteniamo il risultato cercato:

A
N@#) = i 1—22) Ny=e MN,.
(t) k—lvr-ﬁ{loo ( k ) 0 ¢ 0

Questa ¢ la formula del decadimento esponenziale di costante A\. A volte, per
descrivere il decadimento radioattivo di un dato isotopo, invece della costante A si
usa il tempo di dimezzamento (o emivita) t /o, definito come il tempo necessario
perché il numero di atomi radioattivi si dimezzi. In altre parole, ¢; /o deve soddisfare
la seguente condizione:
—At12 _
e =—.
2
Nella prossima sezione (Esempio 4.19) vedremo come calcolare ¢, /5 partendo da .

Siamo ora pronti per definire cos’e¢ una funzione esponenziale: ¢ una fun-
zione f:R — R della forma

f(z) =aq”,
per opportuni ¢ > 0 (detto base della funzione esponenziale) e a # 0.
Osservazione 4.40 Se g = 1 abbiamo f(x) = a per ogni z € R, cioe¢ ogni fun-
zione esponenziale di base 1 ¢ costante. Per questo motivo la base 1 non si usa

praticamente mai.

Osservazione 4.41 Le proprieta delle potenze ci dicono che

1 x
ag " =a (—) e ag® =a(g)";
q

quindi ogni funzione della forma f(z) = a¢®® con ¢ > 0 e a, ¢ # 0 si pud scrivere
come funzione esponenziale, a patto di scegliere una base opportuna.
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Osservazione 4.42 La funzione esponenziale per antonomasia ¢ quella di base e
e con coefficiente 1. E la piu importante, tanto da avere meritato un simbolo
specifico:

exp(z) =e” .
Nel prossimo capitolo vedremo perché questa funzione esponenziale e particolar-
mente amata dai matematici; nella prossima sezione vedremo inoltre che ogni

funzione esponenziale puo essere scritta nella forma f(z) = aexp(cx) per oppor-
tuni a, ¢ # 0; vedi (4.33).

Osservazione 4.43 Attenzione a non confondere le funzioni esponenziali con le
funzioni potenza. Nelle funzioni esponenziali, la base & fissata e la variabile e a
esponente; nelle funzioni potenza, ¢ I’esponente a essere fissato, mentre la variabile
¢ la base.

Vediamo di studiare le funzioni esponenziali seguendo lo schema delle sezioni
precedenti. Prima di tutto, la generica funzione esponenziale dipende da due pa-
rametri (¢ e a); quindi ci aspettiamo che per determinarla bastino due punti del
suo grafico. Infatti, se f(z) = aq® e g, 1 € R abbiamo

f(x1) = aq™ = aq™ - ¢"* 7" = ¢"* 7" f(xo) ;

quindi se (2o, yo) e (21, y1) sono due punti con ascisse distinte del grafico di f, cioe
yo = f(xo) e y1 = f(x1) con g # x1, otteniamo

. <£>1/(x1—xo) . azﬂz <£>1/(x1—xo)
Yo qeo yr°

Un altro modo per trovare a ¢ notare che a = f(0).
Ricaviamo ora le caratteristiche del grafico di f(z) = ag®. Prima di tutto,

(a) una funzione esponenziale non si annulla mai. Piu precisamente, f(z) > 0 per
ogniz € Rsea>0,e f(z) <0 perognizeRsea<0.

Poi, un numero maggiore di 1 diventa sempre piu grande se viene elevato a espo-
nenti piu grandi, cioe g < x1 implica ¢*° < ¢*!'. Invece, un numero positivo
minore di uno diventa sempre piu piccolo se elevato a esponenti piu grandi; infatti,
se 0 < g < 1 allora 1/q > 1, per cui xg < x; implica

1/q*™ = (1/g)"™ < (1/q)" =1/q"" ,

e quindi ¢ > ¢®'. Tenendo presente anche il segno di a otteniamo le seguenti
informazioni sulla monotonia delle funzioni esponenziali:

(b) se f(z) = ag® allora f & strettamente crescente se a > 0 e ¢ > 1, oppure
sea < 0el < q<1;ede strettamente decrescente se a > 0e 0 < ¢ < 1,
oppure se a < 0 e g > 1.
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Nell’Esempio 4.15 abbiamo visto che la successione (1+x/k)* tende crescendo a e®
quando x > 0; in particolare, prendendo k = 1 otteniamo

Vo >0 e >1+x.

In particolare, siccome 1+ x tende a +00 per x che tende a 400, anche e*, essendo
piu grande, non puo fare diversamente:

lim €* =+o00.

r— 400
Siccome e~ = 1/e” ponendo y = —z otteniamo
. gj . _ . 1 1
lim e*= lim e¥= lim —=——"—=0,
T——00 y—+o0 y——+oo e¥ lim e¥
y—+oo

dove abbiamo usato le proprieta dei limiti descritte nell’Osservazione 4.36.

Osservazione 4.44 Abbiamo usato anche un’altra proprieta importante dei limiti:
se f(z) < g(z) per tutti gli  abbastanza vicini a ¢ € R, allora

lim f(z) < lim g(z);

T—To T—xTo

funzioni pitt grandi hanno limiti pit grandi. Questo vale anche per zg = o0,
dove per “abbastanza vicino” a +oo (rispettivamente, a —oo) intendiamo x ab-
bastanza grande (rispettivamente, abbastanza negativo), cio¢ x > M (rispettiva-
mente, x < —M) per qualche M > 0. In particolare, abbiamo il risultato noto
come Teorema dei due carabinieri: se f(x) < g(x) < h(x) per ogni x vicino a xg,
e limy ., f(z) = limg—4, h(z) = L (che puo essere finito o infinito), allora an-
che lim,_,,, g(z) = L. Infine, un’avvertenza: la disuguaglianza stretta delle fun-
zioni f(x) < g(z) non implica la disuguaglianza stretta dei limiti. Per esempio,
1/x < 2/x per ogni > 0 ma

Come detto nell’Osservazione 4.42 e come dimostreremo nella prossima sezione,
ogni funzione esponenziale si puod scrivere nella forma aexp(cx), con ¢ > 0 se la
base & maggiore di 1 e ¢ < 0 se la base ¢ minore di 1. Quindi tenendo presente il
segno di a otteniamo

(c) se f(z) = aqg” allora

—o0 sea<0eg>1,
0 se0<g<1;

lim f(z) =

r— 400

{+oo sea>0eqg>1,
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0 seq>1,
lim f(x):{+oo sea>0el0<g<1,
e —o0 sea<0el<qg<l1.

Dunque se a > 0 la funzione f(z) = ag” pud assumere sia valori arbitrariamente
grandi sia valori arbitrariamente piccoli positivi, mentre se a < 0 puo assumere
sia valori arbitrariamente negativi sia valori arbitrariamente piccoli negativi; e per
passare dagli uni agli altri deve assumere anche tutti i valori intermedi (vedi la
Curiosita 4.2). Quindi

(d) limmagine di f(z) = aq® & tutto R* se a > 0, o tutto R~ se a < 0.

Osservazione 4.45 Una funzione strettamente monotona & sempre iniettiva: se
xo # x1 si deve avere f(zg) < f(x1) o f(xo) > f(z1), e non pud mai succedere
che f(zp) = f(x1). Quindi una funzione esponenziale f(z) = ag” & una funzione
bigettiva dal suo dominio R alla sua immagine Rt (o R~ a seconda del segno di a);
in particolare, & una funzione invertibile. Come vedrai, questo fatto sara essenziale
nella prossima sezione.

La Figura 4.13 contiene il grafico di un paio di funzioni esponenziali.

10y

Figura 4.13 Grafici di e” e 277 = (1/2)".

Le funzioni esponenziali possono venire usate per costruire altre funzioni con
comportamenti interessanti.
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ESEMPIO 4.17 I neuroni comunicano gli uni con gli altri scambiando cariche
elettriche. La carica elettrica si accumula su un dato neurone fino al momento in
cui il potenziale supera una certa soglia (dipendente dalle condizioni fisico-chimiche
del neurone, dei neuroni a cui & collegato, e delle altre cellule circostanti), quando
scarica su un altro neurone. Sperimentalmente si € trovato che prima della scarica
il potenziale elettrico V(t) (misurato in milliVolt) accumulato da un neurone al
tenpo t segue un andamento della forma

V() =VQo(l—e ¥y,

per opportuni k, Vy > 0, dove l'origine dei tempi ¢ fissata a un istante in cui il
neurone & completamente scarico, cioe V(0) = 0. Vogliamo tracciare il grafico
di V'(¢), e capire il significato di Vj. La funzione V' (¢) & ottenuta a partire da una
funzione esponenziale di base e ¥ con una serie di operazioni; seguiamole e vediamo
cosa succede al grafico. Siccome k > 0, la base e™* & minore di 1, per cui la funzione
esponenziale f;(t) = e~** & positiva, strettamente decrescente, con limite +oo per t
che tende a —oo, e con limite 0 per ¢ che tende a +oc. La funzione fo(t) = —e * &
ottenuta da f; moltiplicando per —1; quindi il grafico di f5 € il simmetrico rispetto
all’asse delle ascisse del grafico di f;. Quindi f5 & negativa, strettamente crescente,
con limite —oo per t che tende a —oo, e con limite 0 per ¢ che tende a +o00. La
funzione f3(t) = 1 — e~** & ottenuta da fo sommando 1, operazione che abbiamo
visto corrispondere a traslare verso I'alto di 1 unita il grafico di fs. In particolare,
f3(t) < 0 se e solo se fa(t) < —1 se e solo se f1(t) > 1, e quindi se e solo se t < 0
(in quanto f1(0) =1 e f; & strettamente decrescente). Quindi f3 & negativa sulla
semiretta (—o0, 0), si annulla in 0, & positiva sulla semiretta (0, 400), & strettamente
crescente, ha limite —oo per t che tende a —oo, e ha limite 1 per ¢ che tende a +oc.

Infine, V(t) = Vo f3(t) & ottenuta da fs3 moltiplicando le ordinate per V. Di
conseguenza, V' & negativa sulla semiretta (—oo,0), si annulla in 0, & positiva sulla
semiretta (0,400), & strettamente crescente, ha limite —oo per ¢ che tende a —oo,
e ha limite Vy per t che tende a +o0o. In particolare, il potenziale accumulato dal
neurone (in assenza di scariche) aumenta col tempo tendendo ad appiattirsi verso il
valore limite Vj, che rappresenta quindi il potenziale massimo che puo accumularsi
sul neurone lasciato evolvere per conto suo senza influenze esterne. La Figura 4.14
contiene il grafico di V(¢) con Vp =k = 2.

Le funzioni f: R — R della forma
flz) = a (1 _ e*k@*wo)) b (4.28)

con a, k > 0 e g, b € R sono utili ogni qualvolta si voglia rappresentare una
quantita che assume un valore specificato b in un punto specificato xg, inizia a
crescere in maniera quasi lineare per x > xo, e poi (per l'intervento di fenomeni di
saturazione) tende ad appiattirsi verso il valore limite a + b.

Osservazione 4.46 La frase “cresce in maniera quasi lineare” in un intervallo vuol
dire che esiste una funzione lineare g: R — R tale che | f(x)—g(z)| sia piccolo quando
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N

-1 1 2 3

-0.

Figura 4.14 Grafico di V(t) = 2(1 — e™2%).

x appartiene a quell’intervallo. Per esempio, nel prossimo capitolo vedremo che se
fl@)=a(l—e*e=m)) tbe g(z) =b+ ka(z — zo) allora

k2(x — )

Yz > xg 0<|f(z) —g(x)| <a 5

(4.29)

Ora, se indichiamo con 1 > x¢ 'unico punto tale che f(x1) = b+ a/3, allora un
conto che vedremo nella prossima sezione (Esempio 4.20) ci dira che

Vi € [zo,x1] |f(z) — g(z)| < 0.09a , (4.30)

per cui nell’intervallo [zg,x1] la differenza fra f e una funzione lineare non supera
un decimo della variazione totale di f.

Le funzioni della forma (4.28) sono di solito usate solo per seguire lo sviluppo di
un fenomeno che presenta saturazione (cio¢ appiattimento verso un valore limite)
partendo da un punto preciso zp con un valore preciso f(zo) = b, e proseguendo
con r > xg. Alcune situazioni, invece, non hanno un punto di partenza preciso
inviduato a priori; sappiamo solo che la quantitad f(z) che vogliamo studiare pud
variare da un valore limite minimo a_ a un valore limite massimo a, con fenomeni
di saturazione per = grande e di saturazione inversa (cioé¢ partenza piatta da un
valore limite) per z molto negativo. Le funzioni esponenziali sono utili anche in
questo caso.
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Dati a_ < a4, vogliamo trovare una funzione f:R — R strettamente crescente
e tale che
lim f(z)=a_, lim f(z)=a4 .

T— —00 T— 00

Prima di tutto, traslando verticalmente di a_ il grafico vediamo che basta trovare
una funzione f1:R — R strettamente crescente tale che

lim fi(z) =0, lim fi(x)=a>0,

xr——+00

dove a = a4 — a_; infatti, se abbiamo f; allora f(x) = f1(z) + a— & come voluto.
Poi, ponendo fi(z) = af2(x) vediamo che basta trovare una funzione fo: R — RT
strettamente crescente tale che

lim fo(x) =0, lim fo(x)=1.

r——00 r— 400

Dovendo essere strettamente crescente, fo € sempre positiva; quindi la funzione
f3(x) = 1/ fa(x) & sempre positiva, & strettamente decrescente, ed & tale che

lim f3(z) =400, lim fs(z)=1.

Tr— —00 r——+0o0

Allora la funzione f4(x) = f3(x) — 1 & anch’essa positiva, strettamente decrescente,
e soddisfa

i fir)=+oo,  lim fi(x)=0.

xT—+00

Ora, noi conosciamo funzioni con questo comportamento; per esempio,
—k(z—=x
I 4(%) =e ( o) ’

con k > 0 e zg € R. Risalendo otteniamo

ay —a— ay —a—

f(x):fl(fﬂ)Jra—:(a+7a‘)f2(x)+a_:W+a_ :era_
_ ay —a—
T igere O

Le funzioni della forma a

f("T) = 1+efk(acfxo) +

cona, k> 0exp, b € R, sono talvolta dette funzioni logistiche, e hanno esattamente
I’andamento cercato: sono positive, strettamente crescenti, hanno come immagine
Iintervallo (b,a +b), e

b, (4.31)

lim f(z)=0», lim f(z)=a+b.

rT——00 r——400

Inoltre, f(xzg) = b+ a/2, cioé xq & il punto in cui f raggiunge il punto di mezzo
della sua immagine.
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Osservazione 4.47 Le funzioni logistiche hanno un andamento quasi lineare vicino
al punto xg. Infatti, tecniche che vedremo nel prossimo capitolo mostrano che

Va € [x_1,21] ‘f(:c) - <b+ g + azk(xxo)>‘ < 0.09a ,

dove z1; € R sono gli unici punti per cui f(ry1) = b+ (a/2) £ (a/4). Quindi
nell'intervallo [z_1,2z41] la funzione logistica f differisce da una funzione lineare
meno di un decimo della variazione totale a.

EsEMPIO 4.18 Proviamo a usare funzioni logistiche per studiare la dipendenza
fra la temperatura e la percentuale di germinazione dei soliti semi di pomodoro.
Siamo in effetti proprio in una situazione che sembra fatta apposta per questo tipo
di approccio: abbiamo due valori limite, uno superiore (100) e uno inferiore (0); &
molto ragionevole assumente che la percentuale P(T') cresca con la temperatura;
e che ci siano fenomeni di saturazione e di saturazione inversa. Siccome il limite
inferiore € b = 0 e il limite inferiore & a + b = 100, vogliamo usare una funzione del
tipo
PT) = oy
1 e FT-T0)

Dobbiamo determinare k e zo. Nella Sezione 4.9 vedremo come usare il metodo
dei minimi quadrati per farlo al meglio; ma possiamo ottenere dei buoni risultati
anche procedendo un po’ a occhio.

Prima di tutto, Ty dev’essere scelto in modo tale che P(Tp) valga b+ a/2 = 50.
Siccome le misure sperimentali danno P(12) = 40 e P(15) = 70, dobbiamo avere
12 < Ty < 15. Ora, (a/2) — (a/4) = 25 e (a/2) + (a/4) = 75; quindi l'intervallo
[12,15] & contenuto nell'intervallo [x_1,z4+1] in cui la funzione logistica & quasi
lineare (Osservazione 4.47). La interpolazione lineare che abbiamo visto nell’Esem-
pio 4.2 vale 50 in 13; quindi una possibile stima per Ty e Ty = 13.

Rimane da trovare k o, equivalentemente, e~ *; infatti, se poniamo ¢ = e™*
allora possiamo riscrivere f nella forma
100
P =y -
Siccome conosciamo P(12) = 40, e 12 — 13 = —1, viene naturale imporre la condi-
zione 100 5
40=P12)= —  — _ 2z
(12) 1+g¢! 1= 3
Quindi otteniamo
100

PO T em

la Figura 4.15 ne riporta il grafico, dove si vede che non solo abbiamo una buona
approssimazione dei dati sperimentali, ma anche un andamento che sembra com-
patibile con estrapolazioni credibili. Nell’Esempio 4.27 vedremo che il metodo dei
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minimi quadrati fornira la funzione

B 100
© 1+ (0.702)T—12.94

P(T)

che non ¢é troppo distante da quella ottenuta qui a mano.

H
D
D

80f

60

407

20+ )

-5 5 10 15 20 25
Figura 4.15 Una funzione logistica.

Infine, un’altra funzione importante che si puo ottenere usando gli esponenziali
¢ la funzione Gaussiana

1
flx) = —— exp (—2%/2
di cui puoi vedere il grafico nella Figura 4.16. Usando le tecniche viste in questa
sezione non dovrebbe esserti difficile dimostrare (esercizio) che f & sempre positiva,
¢ strettamente crescente in (—oo,0], & strettamente decrescente in [0, 400), ha un
punto di massimo in z = 0, e ha limite 0 per = che tende a £oo.

Osservazione 4.48 Vedremo nel Capitolo 6 che la distribuzione normale a cui ab-
biamo accennato nel capitolo precedente si esprime proprio usando la funzione
Gaussiana.

CURIOSITA 4.12 Un’altra funzione che i matematici amano particolarmente &

_Je v sez>0,
f(x)_{O sex <0,
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-4 ‘ 2 4
Figura 4.16 La funzione Gaussiana.

il cui grafico ¢ riportato nella Figura 4.17. La particolarita di questa funzione ¢ di essere (in
un senso che discuteremo nel prossimo capitolo) infinitamente piatta nell’origine.

-2 -1 f 1 2 3 4 5

Figura 4.17 f(z) = e 1/e®,

4.8 Funzioni logaritmiche

Nell’Osservazione 4.45 abbiamo notato che la funzione f(x) = ¢* & invertibile come
funzione da R a RT, non appena ¢ > 0, ¢ # 1. La funzione inversa si chiama
logaritmo in base q # 1, e si indica con logq:R+ — R. In particolare, i logaritmi
sono definiti solo sui numeri (strettamente) positivi.
Essendo la funzione inversa della funzione ¢7, il logaritmo in base ¢ soddisfa le
identita seguenti:
log,(¢") =z, %" ==zx.

In particolare,
log,1=log,(¢") =0, e  log,q=log,(¢")=1.

Siccome il grafico dell’inversa di un funzione f si ottiene scambiando ascisse e
ordinate, cioe¢ prendendo il simmetrico del grafico di f rispetto alla retta y = z,
dalle proprieta delle funzioni esponenziali deduciamo le seguenti proprieta delle
funzioni logaritmiche:
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— se ¢ > 1 allora log, e strettamente crescente, negativa in (0,1), positiva
in (1,+400), e

lim log, x = 4+ lim log, o = —00;
5+ oo gq + ’ 20+ gq I

se invece ¢ < 1 allora log, ¢ strettamente decrescente, positiva in (0,1), nega-
tiva in (1, +00), e

lim log, x = —cc lim log, o = +o00.
T—+00 gq ’ r—0+ gq t

La Figura 4.18 contiene i grafici di log,  per ¢ > 1 e per ¢ < 1.

3 3
2 2
1 1
2 4 6 8 10 4 6 8 10
-1 -1
-2 -2
-3 -3
-4 -4

Figura 4.18 Logaritmi.

Le funzioni logaritmo godono di una proprieta estremamente importante. Ap-
plicando log, all’identita ¢*¢¥ = ¢®*TY otteniamo

log,(¢"¢") =2 +y.
Ora, se poniamo a = ¢* e b = ¢, ricaviamo z = log, a e y = log, b, per cui
Ya, b >0 log,(a-b) =log, a+log,b; (4.32)
il logaritmo del prodotto € uguale alla somma dei logaritmi. In particolare, se a = b
otteniamo log, (a®) = 2log, a; con b = a* otteniamo log,(a*) = 3log, a, e, pilt in
generale,

Ya>0Vn eN log,(a") =nlog,a .

Inoltre

1 1
0 =log, 1 =log, (a'a> zlogqa—i—logqa,

per cui

1
Ya > 0 log, — = —log,a.
a
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Infine,
a 1
Ya, b >0 1ogqulogq a5 = log,a —log,b.

Nell’Osservazione 4.42 avevamo detto che ogni funzione esponenziale puo essere
scritta nella forma ae®® per opportuni a, ¢ € R. Adesso possiamo verificarlo,
usando anche basi diverse da e. Dati p, ¢ > 0, per definizione di logaritmo abbiamo
p = ¢'°%a?; quindi

Ya € RVp, g >0 ap® = aq\1°8P)* (4.33)
In particolare, applicando log, a entrambi i membri (con a = 1) otteniamo
Vr e RVp,q>0 log, (p*) = = log, p .

La formula (4.33), sempre con a = 1, ci permette anche di trovare come cambia il
logaritmo cambiando base. Infatti, mettendo log, z / log,, p al posto di z otteniamo

plogq z/log,p _ qlogq T _

)

e applicando log,, a entrambi i membri deduciamo l'importante formula

log, x
log, x = 8 (4.34)
log, p
In particolare, ponendo x = ¢ ricaviamo
log, g = —.
P log, p
Inoltre, prendendo p = 1/p otteniamo
logy /g = logiqa: = —log, 7,
log,(1/q)

per cui possiamo limitarci a lavorare con basi ¢ > 1.

Osservazione 4.49 La formula (4.34) ci dice che tutti i logaritmi sono multipli della
stessa funzione; quindi non c¢’@ bisogno di lavorare con logaritmi in base qualsiasi
ma ¢ sufficiente fissare una base e lavorare solo con quella. La base pitt comune®® in
ambito matematico € il numero di Nepero e; il logaritmo in base e & detto logaritmo
naturale, e viene indicato con log (con la base sottintesa) o con ln. In ambito

13 Per motivi che vedremo nel prossimo capitolo.
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applicativo'? la base piti comune ¢ invece 10. Il logaritmo in base 10 & talvolta detto
logaritmo decimale, e si indica con Log, o con log quando non si corre il rischio di
confonderlo con il logaritmo naturale. Infine, in ambito informatico talvolta si usa
anche il logaritmo in base 2, indicato (senza molta fantasia) con logs.

Osservazione 4.50 1l logaritmo decimale di un numero positivo e strettamente le-
gato alla sua rappresentazione decimale. Per esempio, abbiamo n < Logxz <n+1
se e solo se 10" < z < 10™*!, per cui la parte intera di Logz ¢ il numero di cifre
(prima della virgola) nella rappresentazione decimale di z. Inoltre, Log funziona
bene in combinazione con la notazione scientifica. Infatti, se scriviamo = = a - 10°
con 1l <a<10ebe N, allora Logz = b+ Loga, con 0 < Loga < 1. Si dice che
Loga ¢ la mantissa di Logx, mentre b & la caratteristica di Log x.

Osservazione 4.51 Nell’Osservazione 4.39 abbiamo visto che e* & molto vicino
a 1+ x quando |z| & piccolo.'> Da questo segue che log(1 + x) & molto vicino
a x quando |z| & piccolo; scriveremo

log(l+z)~xz perx=0. (4.35)
Questa formula € uno dei motivi per cui log & chiamato “logaritmo naturale”; la

formula analoga per logaritmi in altre basi ¢ meno elegante. Infatti, la (4.34)
implica

log, (1 +2) ~ per z =0,

log, q
formula piu brutta della (4.35).

Osservazione 4.52 La definizione formale del simbolo ~ & la seguente: f(x) =~ g(x)
per x & xo (dove zy pud essere un numero reale oppure +0o) se

f(x)

o=z0 g()

Se questo accade, a volte si dice che f e g hanno lo stesso ordine in x.

CURIOSITA 4.13  Supponiamo che la funzione g sia limitata vicino a o, cio¢ che esista M > 0
tale che |g(x)] < M per ogni z sufficientemente vicino a z, (dove “sufficientemente vicino
a 400” significa “abbastanza grande”, e “sufficientemente vicino a —co” significa “abbastanza
negativo”). Siccome si pud scrivere

F@) - gla) = (% 1) g(e)

se f(z) ~ g(z) per z =~ xo e g(z) & limitata vicino a zo, allora f(z) — g(x) tende a zero per x
che tende a xg.

4 Per i motivi che vedrai nella prossima osservazione.
15 Per Desattezza, nel prossimo capitolo vedremo che |e® — 1 — z| < el®l22 /2.



4.8 Funzioni logaritmiche 189

Osservazione 4.53 Un problema che non affronteremo ma che & importante men-
zionare € come calcolare i logaritmi in pratica. Esistono degli algoritmi che per-
mettono di approssimare il logaritmo di un numero dato con la precisione voluta
usando solo le quattro operazioni; e calcolatori e calcolatrici usano questi algoritmi
per calcolare i logaritmi. Certo, & molto meglio adesso di quando (fino a non molti
anni fa) si dovevano usare le tavole; ma tieni comunque presente che i logaritmi
forniti dai calcolatori sono approssimazioni, e in alcuni casi & importante poter
controllare la precisione di queste approssimazioni.

Vediamo ora alcune applicazioni biologiche dei logaritmi, cominciando con al-
cune questioni lasciate in sospeso nelle sezioni precedenti.

Osservazione 4.54 11 grafico di una funzione potenza f(x) = aaP & completa-
mente determinato dal passaggio per due punti (zo,yo) e (z1,y1), con xg # 23
e x1/%o, Y1/Yo > 0. Infatti da f(x;) = y; per j = 0, 1 otteniamo (x1/x0)” = y1/yo,
e quindi
_ log(y1/y0) Yo
= —-—— e _—
log (1 /o) x

EsemPIo 4.19 Nell’Esempio 4.16 avevamo visto che la costante di decadimento A
e il tempo di dimezzamento ¢;,, di un materiale radioattivo erano legati da

e_>‘t1/2 [
Calcolando il logaritmo naturale di entrambi i membri otteniamo
At 1 L log 2
— = ]10g — = — 10
1/2 g B g4,

per cui il tempo di dimezzamento ¢ dato da

In particolare, e~ = e~ (1082)t/t1/2 — 9=t/t1/2 per cui la formula per il numero N (t)

di atomi radioattivi presenti al tempo ¢ diventa
N(t) = No2~ /1=
EsEmpPIO 4.20 Nell’Osservazione 4.46 avevamo bisogno di risolvere I’equazione
a(l — e*k(“*“)) +b=0b+ g .
Sottraendo b a entrambi i membri, e dividendo il risultato per a, ci riconduciamo a

1 — e~ k(z1—z0) _ l , OVVero e~ k(@1—z0) _ 2
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Calcolando il logaritmo naturale di entrambi i membri otteniamo
k(x1 — xz9) =1og(3/2) ,

per cui la soluzione dell’equazione ¢ z; = zg + k~11og(3/2). Nella formula (4.29),
perd, non compariva direttamente x1, ma piuttosto k%(z —x¢)?/2 per 2o < x < 1.
Quindi otteniamo

k2(x —x0)? _ k(21 —x0)®  [log(3/2)]?

Vx € [l’o,lCl] 9 < 5 = 5 ~ (.0822 ,

da cui segue subito (4.30).

EsEmPIO 4.21  Si e verificato sperimentalmente in numerose situazioni che le va-
riazioni percepite nell’intensita di uno stimolo non sono proporzionali alla variazione
assoluta dell’intensita, ma alla variazione relativa. Per esempio, mentre percepiamo
bene la differenza di peso fra 10 g e 20 g, abbiamo difficolta a percepire la diffe-
renza di peso fra 1000 g e 1010 g, anche se la variazione assoluta di peso €& la stessa.
Aumentare la dose di un farmaco da 5 mg a 10 mg potrebbe causare una risposta
significativamente diversa; aumentarla da 1000 mg a 1005 mg probabilmente no.
La frequenza del La centrale ¢ 440 Hz, quella del La un’ottava sopra e 880 Hz, e
quella del La due ottave sopra ¢ 1760 Hz: 'aumento di frequenza necessario per
passare da un’ottava percepita alla successiva non € costante, ma raddoppia ogni
volta.

In tutti questi casi (e altri) vale la legge di Weber: la variazione assoluta dell’in-
tensita percepita é proporzionale alla variazione relativa dello stimolo. In simboli,
se indichiamo con P l'intensita percepita, con s lo stimolo, e con AP e As le relative
variazioni assolute, abbiamo la formula

AP =\ % . (4.36)

Nel prossimo capitolo vedremo che questo implica che P deve dipendere dal loga-
ritmo di s, e piu precisamente che si deve avere

P(s) = Alog(s/so) , (4.37)

dove sp rappresenta la soglia della percezione: si percepisce un segnale solo se lo
stimolo ha un’intensita almeno pari a sg.

Diamo un’idea del perché la funzione (4.37) pud soddisfare una legge tipo (4.36),
almeno per variazioni relative As/s piccole. Se P & data da (4.37), otteniamo

s+ As s+ As

AP = P(s+ As) — P(s) = Aog .
0

= Alog <1+E) ;::)\E
s s

“Alog 2 = Alog
50

per As/s ~ 0, grazie all’Osservazione 4.51.
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EsEmMPIO 4.22  Un tipico caso di applicazione della legge di Weber consiste nella
misura dell’intensita percepita dei suoni. L’intensita assoluta dei suoni ¢ una po-
tenza per unita d’area, e quindi & misurata in Watt/m?2. La soglia della percezione
uditiva per un suono di frequenza 1000 Hz ¢ Iy = 1072 W/m?: 'orecchio umano di
solito non ¢ in grado di sentire suoni di intensita inferiore (e con quella frequenza).
Allora l'intensita percepita P(I) di un suono di intensita assoluta I ¢ misurata in
decibel, abbreviati in dB, con la formula

P(I) = 10 Log (I_[o) dB. (4.38)

Il prossimo esempio contiene un’applicazione di queste formule.

EsEmpPIO 4.23  Una centrifuga di laboratorio causa un rumore di 64 dB a una
distanza di 1 m. Qual é lintensita assoluta del suono? Se le centrifughe sono due,
come cambia il valore in decibel del suono? Se ricopriamo entrambe le centrifughe
con un isolante acustico che a 1 m di distanza riduce il suono di 45 dB, di quanto
abbiamo ridotto l'intensita assoluta del suono? La (4.38) ci dice che per rispondere
alla prima domanda dobbiamo risolvere ’equazione

1
10 Log <I_) =64.
0

Dividendo per 10 e applicando la funzione esponenziale 10* a entrambi i membri
otteniamo
I =104y = 10412 =106 ~25.107% W/m"> .

Avere due centrifughe equivale a raddoppiare 'intensita assoluta del suono emesso.
Siccome

21 1
10 Log (I_) =10 Log2 4+ 10 Log (I_> ,
0 0

raddoppiando l'intensita il rumore in decibel aumenta di 10 Log2 ~ 3.01 dB, per
cui il rumore totale & circa

64 +3.01 =67.01 dB .

L’isolante acustico riduce il rumore di 45 dB, portandolo a 67.01 — 45 = 22.01 dB.
Quindi 'intesita assoluta I.iq del suono ridotto deve soddisfare ’equazione

Iri
10 Log ( Id> =22.01,
0

e quindi vale

Lig = 10291 [ = 10777 ~ 1.589 - 101 W/m” .
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4.9 Tecniche di interpolazione

T logaritmi permettono di usare il metodo dei minimi quadrati anche per interpolare
funzioni esponenziali, potenza, e (almeno in parte) logistiche; vedremo anche una
tecnica per interpolare funzioni razionali fratte.

In tutti questi casi, I'idea ¢ di applicare opportune trasformazioni ad ascisse e
ordinate in modo da trasformare la funzione che si vuole interpolare in una funzione
lineare, su cui poi applicare il metodo dei minimi quadrati.

L’esempio piu semplice e dato dalle funzioni esponenziali. Calcolando il loga-
ritmo di entrambi i membri di f(z) = ag® con a > 0 otteniamo

Log f(z) = Loga + (Log q)x ;

in altre parole, se f & una funzione esponenziale di x allora Log f é una funzione
lineare di . Dunque per interpolare una funzione esponenziale f(x) = ag” nei dati
(1,y1),---,(Tn,yn), con ascisse tutte distinte e ordinate tutte positive, si procede
come segue:

si calcolano le coppie (z1,Logyi), ..., (Tn, LOgYn);

— si applica il metodo dei minimi quadrati per trovare la retta di regressione
y =mx +d dei dati (z1,Logy1), ..., (Tn, Logyn);

~  siricava ¢ = 10™ e a = 10%;

—  sicalcola il coefficiente di Pearson per controllare la qualita dell’interpolazione.

Osservazione 4.55 Ovviamente nulla vieta di usare il logaritmo naturale log (o un
logaritmo in qualsiasi altra base) al posto del logaritmo decimale Log.

Vediamo un esempio di applicazione di questo metodo.

EsEmpio 4.24 Una colonia di batteri cresce in condizioni ideali di luce, calore
e abbondanza di cibo. Il tuo assistente conta (uno per uno...) il numero di bat-
teri N(t) presenti al tempo ¢, a partire da t = 0 fino a ¢ = 120 minuti, otte-
nendo i risultati riportati nelle prime due colonne della Tabella 4.2. Visti i dati
(e le abitudini riproduttive dei batteri), tu sospetti una crescita esponenziale della
forma N (t) = aq’; vogliamo usare il metodo dei minimi quadrati per trovare a e g,
e calcolare il coefficiente di correlazione di Pearson per verificare la plausibilita del
tuo sospetto.

La prima cosa da fare e creare la Tabella 4.2, analoga alla Tabella 4.1 ma con
y = Log N. Attenzione: per semplicita, nella Tabella 4.2 ho riportato i valori arro-
tondati alla seconda cifra decimale, ma i conti sono stati fatti con un numero ben
maggiore di cifre decimali, in modo da avere una precisione di almeno due cifre
decimali anche nel risultato finale (ricorda quanto abbiamo visto nel Capitolo 1 sui
calcoli approssimati).

Partendo da questi dati otteniamo, con le tecniche viste nella Sezione 4.3, i
parametri della retta di regressione:

m ~ 0.013, d~2.67.
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Tempo (v =t) Numero (N) y=LogN zy z? y?

0 470 2.67 0 0 7.14

10 653 2.81 28.15 100 7.92

25 1019 3.01 75.20 625 9.05

45 1720 3.24 145.60 2025 10.47

60 3055 3.49 209.10 3600 12.15

75 4812 3.68 276.17 5625 13.56

100 10101 4.00 400.44 10000  16.03

120 18646 4.27 512.47 14400 18.24

Media 54.375 5060 3.40 205.89 4546.875 11.82

TABELLA 4.2

Quindi
a=10%~469.59, ¢=10"~1.03,

per cui otteniamo N (t) = 469.59 - 1.03". 1l coefficiente di Pearson ¢ CP =~ 0.9996,
che vuol dire che la funzione esponenziale che abbiamo ottenuto approssima molto
bene i dati.

Sarebbe naturale adesso rappresentare in un grafico cartesiano sia i dati speri-
mentali sia la funzione esponenziale interpolata, per poter valutare anche visiva-
mente la qualita dell’approssimazione e poter individuare la presenza di eventuali
dati spuri. Pero c’e¢ un problema: i valori sulle ordinate presentano un intervallo
di variazione molto ampio (variano da 470 a 18646), rendendo difficile la loro rap-
presentazione in un grafico cartesiano usuale di dimensioni umane.

Questo problema si risolve usando un grafico (o diagramma) semilogaritmico,
che ha sull’asse delle ascisse la scala lineare usuale, ma sull’asse delle ordinate una
scala logaritmica.

La scala logaritmica su un asse si ottiene scegliendo, come al solito, un’origine e
un’unita di misura (e un’orientazione) sull’asse, ma poi assegnando al numero reale
positivo > 0 il punto sull’asse distante Log x unita dall’origine. Per esempio, al
numero 1 viene associata l'origine, al numero 10 il punto posto 1 unita a destra
(o sopra) lorigine, al numero 100 = 10? il punto posto 2 unitd a destra (o sopra)
l'origine, al numero 1/10 = 10! il punto posto 1 unita a sinistra (o sotto) I'origine,
al numero 4 il punto posto Log4 ~ 0.6 unita a destra (o sopra) l'origine, e cosi via.
Il risultato € mostrato in Figura 4.19.

0.1 1 2 3 45678490 100

Figura 4.19 La scala logaritmica.
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Rappresentare il grafico di una funzione f in un diagramma semilogaritmico
equivale quindi a mettere le ordinate in scala logaritmica, che equivale a disegnare
in un diagramma cartesiano usuale il grafico di Log f. In particolare, rappresentare
il grafico di una funzione esponenziale f(z) = ag® in un diagramma semilogarimico
equivale a disegnare il grafico di Log f = Log a+ (Log q)x, che ¢ una retta: il grafico
di una funzione esponenziale in un diagramma semilogaritmico é rappresentato da
una retta. Nella Figura 4.20 puoi vedere i dati e la funzione esponenziale interpolata
dell’Esempio 4.24, rappresentati a sinistra in un diagramma cartesiano usuale, e
a destra in un diagramma semilogaritmico. In particolare, la funzione interpolata
diventa la retta di regressione.

20000

17500 o 10000
15000 1000
12500

10000 L/ 100
7500

5000 10
2500

20 40 60 80 160120 0 20 40 60 80 100120

Figura 4.20 Un diagramma semilogaritmico.

Passiamo alle funzioni potenza. Calcolando il logaritmo di entrambi i membri
di f(x) = az? con a > 0 otteniamo

Log f(x) = Loga+ pLogx ;

in altre parole, se f e una funzione potenza di x allora Log f é una funzione

lineare di Logx. Dunque per interpolare una funzione potenza f(z) = ax? nei dati

(x1,y1),---,(Tn,yn), con ascisse tutte distinte e ordinate tutte positive, si procede

come segue:

—  si calcolano le coppie (Logxz1,Logyi),..., (Logz,, Logy,);

— si applica il metodo dei minimi quadrati per trovare la retta di regressione
y = mx + d dei dati (Logz,Logy),. . ., (Logz,, Logy,);

—  siricavap=Tm e a = 10

—  si calcola il coefficiente di Pearson.

Vediamo un esempio di applicazione di questo metodo.

ESEMPIO 4.25 Stavolta il tuo assistente ha misurato il numero medio M (D) di
uova deposte al giorno da femmine di gruppi di moscerini della frutta allevati
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a densita D (misurata in numero di moscerini per centimetro quadro) differenti.
Visti i dati (e le abitudini riproduttive dei moscerini), tu stavolta sospetti una
crescita della forma M (D) = aDP; vogliamo usare il metodo dei minimi quadrati
per trovare a e p, e calcolare il coefficiente di correlazione di Pearson per verificare
la plausibilita del tuo sospetto.

La prima cosa da fare e creare la Tabella 4.3, che contiene i dati e una colonna
in piu rispetto al solito, contenente x = Log D.

Densita (D) x=LogD Uova (M) y=LogM xy 2% >

) 0.70 28.7 1.46 1.02 049 2.12
10 1.00 22.6 1.35 1.3 1 1.83
20 1.30 19.5 1.29 1.68 1.69 1.66
40 1.60 16.2 1.21 1.94 257 1.46
80 1.90 14.2 1.15 2.19 3.62 1.33
Media 31 1.30 20.24 1.29 1.64 187 1.68

TABELLA 4.3

Partendo da questi dati otteniamo i parametri della retta di regressione:
m o~ —0.25, d~1.62.

Quindi B
a=101~4163, p=m~-0.25,

per cui otteniamo N (D) = 41.63- D~9-25. 11 coefficiente di Pearson ¢ CP ~ —0.995,
negativo perché la retta di regressione e decrescente, e anche stavolta la funzione
che abbiamo ottenuto approssima molto bene i dati sperimentali.

Possiamo raprresentare le funzioni potenza in un diagramma bilogaritmico, in
cui usiamo una scala logaritmica sia sull’asse delle ascisse sia sull’asse delle or-
dinate. Rappresentare il grafico di una funzione f in un diagramma bilogarit-
mico equivale a mettere ascisse e ordinate in scala logaritmica, che equivale a dise-
gnare in un diagramma cartesiano usuale il grafico di ¢(Z) = Log f (105’). Infatti,
alla coppia (z, f(z)) del grafico di f viene associato il punto (Logz,Log f(z))
nel diagramma bilogaritmico; ponendo # = Logz abbiamo z = 107, per cui
(Logz,Log f(x)) = (&,Log f(10%)), e quindi (Logz,Log f(z)) ¢ un punto del
grafico di Log f(10%).

In particolare, rappresentare il grafico di una funzione potenza f(z) = az? in
un diagramma bilogaritmico equivale a disegnare il grafico di

Log f(10%) = Log a + pLog(10%) = Loga + p& ,

che & una retta: il grafico di una funzione potenza é rappresentato in un diagramma
bilogaritmico da una retta. Nella Figura 4.21 puoi vedere i dati e la funzione potenza
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Figura 4.21 Diagramma bilogaritmico.

interpolata dell’Esempio 4.25, rappresentati a sinistra in un diagramma cartesiano
usuale e a destra in un diagramma bilogaritmico.

Con un po’ di fantasia e qualche conto possiamo usare queste tecniche per
interpolare anche altri tipi di funzioni. Per esempio, se f(z) = a(l — e‘k(l'_‘”")) +b
allora

[) b _

a

—-b
1- e k@=20) 0 og (1 ~ &> = —kz + ko ,

a

ciot log(1—(f(z)—b)/a) & una funzione lineare di z. Se, per altre vie, abbiamo delle
informazioni su a (il valore limite) e b (il valore assunto nel punto iniziale xy), allora
possiamo applicare il metodo dei minimi quadrati per ricavare k e zy. Oppure,
se abbiamo delle informazioni su b e xg, possiamo usare il metodo dei minimi
quadrati per diversi valori di a cercando di ricavare la migliore approssimazione
di zg. Oppure ancora, possiamo variare a e b cercando di portare il coefficiente di
Pearson piu vicino possibile a +1.

EseEmpIO 4.26 Hai dato ordine al tuo assistente di misurare il potenziale elettrico
di un neurone isolato di ratto per un’ora; i dati ottenuti sono riportati nella Ta-
bella 4.4 (tempo in minuti, potenziale in milliVolt). Da quanto abbiamo visto, ti
aspetti un andamento della forma V (t) = V(1 —e~*t), e vuoi ricavare i valori di V;
e k dai dati. La tecnica sopra illustrata suggerisce di calcolare la retta di regres-
sione di log(1 — V/(¢)/Vy) per vari valori di Vj (ricorda che stai supponendo b = 0)
fino a ottenere una retta che passa per origine (in accordo con l'ipotesi xg = 0)
e, possibilmente, un buon coefficiente di Pearson. La Tabella 4.4 riporta, oltre ai
dati sperimentali, i valori di —k = m, kxo = d ¢ del coefficiente di Pearson ottenuti
per vari valori di V. Nota che, siccome Vj ¢ il valore limite, testiamo valori di Vj
superiori ai valori di potenziale misurati.

Dalla Tabella 4.4 si vede che il valore di V{ che fornisce il valore di d pil vicino
a0eVy=70mV, che ¢ anche quello col miglior coefficiente di Pearson. Quindi
puoi sentirti sufficientemente sicuro affermando che il potenziale di questo neurone
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Tempo (x =t) Potenziale (V) Vo m=—k d=kxg CP

0 0 66 —0.071 0.304 —0.974

10 25.41 68 —0.053 0.078 —0.998

20 41.51 70  —0.045 0.001  —0.99998
30 51.87 72 —0.040 —-0.043 —0.9990
40 58.58 74 —0.036 —0.069 —0.9972
50 62.59

60 65.30

TABELLA 4.4

di ratto ha un andamento ben descritto dalla funzione V(t) = 70(1 — 6_0'045t).

Dati e funzione interpolata sono mostrati nella prima immagine in Figura 4.22.

Argomenti analoghi si possono applicare anche alle funzione logistiche. Infatti
da f(z) = b+ a/(1 + e *@=20)) deduciamo

flx)—b 1 a —k(z—20)
= — 1 = T—To
a 1 4 e—k(@—=0) — flx)—=» €

= log(ﬁ—l) = —kx + kxg .

Quindi avendo informazioni sui valori limite a e b si puo usare il metodo dei minimi
quadrati per determinare —k e kxo; oppure, di nuovo, possiamo variare i parame-
tri a e/o b cercando di ottenere il valore migliore per il coefficiente di Pearson.

EsEmpiO 4.27 Vogliamo interpolare una funzione logistica ai dati relativi alle
percentuali di germinazione dei semi di pomodoro in funzione della temperatura.
In questo caso abbiamo una scelta praticamente obbligata per i valori limite:
a = 100 e b = 0. La Tabella 4.5 contiene nelle prime due colonne i dati spe-
rimentali; nella terza colonna i valori delle ordinate trasformati secondo la legge
Yy = log((l()O /P)— 1) suggerita dal ragionamento precedente; e le colonne successive
i valori necessari per I'applicazione del metodo dei minimi quadrati.

Temp. (x=T) Perc. (P) y=Ilog(‘p —1) xy x? y?

0 470 2.67 0 0 714
9 20 1.39 1248 81  1.92
12 40 0.41 487 144 0.16
15 70 —0.85 —12.70 225  0.72
18 85 ~1.73 —31.20 324 3.01
Media 135 53.75 ~0.20 —6.65 193.5 1.45

TABELLA 4.5
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Dai valori della Tabella 4.5 si ottiene —k = m ~ —0.354 e kzg = d ~ 4.58;
quindi e™* ~ 0.702 e 29 = d/k ~ 12.94 per cui la funzione logistica interpolata &

100
P = 13701201 -

come annunciato nell’Esempio 4.18. Il coefficiente di Pearson ¢ CP ~ —0.998, per
cui l'interpolazione & decisamente buona.

EsEmMPIO 4.28 Una colonia di batteri cresce in condizioni non ideali, che possono
sostenere la vita di solo un quantitativo limitato di individui. Anche stavolta il tuo
assistente conta il numero N (t) di batteri presenti al tempo ¢ a partire da ¢t = 0 fino
a t = 120, ottenendo i risultati riportati nelle prime due colonne della Tabella 4.6.
Questa volta tu sospetti che N(t) sia rappresentato da una funzione logistica. E
naturale ipotizzare che il valore limite a —oo valga b = 0; invece non ritieni di fare
ipotesi a priori sul valore di xg, il punto di mezzo della funzione logistica, o su a,
il valore limite a 4o00. Quindi applichi il metodo dei minimi quadrati per diversi
valori di a, valori ovviamente scelti pitt grandi dei valori misurati, ottenendo le
ultime quattro colonne della Tabella 4.6.

Tempo (x =t) Numero (N) a m=-k d=kxg CP

0 470 2116  —0.063 1.58  —0.9956
10 653 2118 —0.061 1561 —0.9972
25 1007 2120 —0.059 1.47 —0.9977
45 1492 2122 —0.057 1.43 —0.9978
60 1866 2124 —0.056 140  —0.9977
75 2012 2126 —0.055 1.37  —0.9974
100 2099 2128 —0.054 1.35  —0.9971
120 2112 2130 —0.053 1.33 —0.9967

TABELLA 4.6

Dai risultati ottenuti si vede che il valore di a che fornisce il miglior coefficiente
di Pearson ¢ a = 2122, per il quale otteniamo k ~ 0.057 e zp = d/k ~ 24.97.
Quindi questo metodo ci fornisce la seguente formula

_ 2122 2122
T 1 4 e—0.057(t-24.97) T 1 4 ().94t—24.97 °

N(t)

Dati e funzione interpolata sono mostrati nella seconda immagine in Figura 4.22.

Osservazione 4.56 11 metodo dei minimi quadrati consiste nel trovare il punto
di minimo di una funzione quadratica di due variabili (m e d). Le tecniche di
interpolazione che stiamo discutendo negli ultimi esempi richiedono di trovare il
punto di minimo di una funzione non necessariamente quadratica e di piu di due
variabili (per esempio, a, b, k e xp). Ci sono tecniche analitiche per affrontare
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Figura 4.22 Tecniche di interpolazione.

problemi di questo genere, ma sfortunatamente sono al di 1a di quanto possiamo
trattare in questo corso.

Come ultimo esempio di questa tecnica vediamo le funzioni lineari fratte. La
(4.19) ci dice che ogni funzione lineare fratta (non costante) puo essere scritta nella
forma

f@)=a+

B+’
dove a = hrf f(x) & il valore limite di f all’infinito. Quindi otteniamo
1
f(@) —a =pr+7.

Bty J@-a

Dunque 1/(f(z) —a) & funzione lineare di z, e possiamo applicare le solite tecniche
di interpolazione.

EseEmMPIO 4.29 Vediamo come si ¢ ottenuta la formula dell’Esempio 4.12. 11 tuo
assistente ha misurato la velocita di espansione del muscolo sartorio della coscia
di una rana che sollevava un determinato peso, aumentandolo di 10 grammi in
10 grammi finché la povera rana non ce 'ha fatta pit. Le misure ottenute sono
riportate nelle prime due colonne della Tabella 4.7. Visti i dati (e conoscendo
le abitudini riproduttive delle rane, che sembrano non c’entrare niente ma non si
sa mai) hai ipotizzato un andamento lineare fratto, e hai applicato il metodo dei
minimi quadrati per diversi valori di «; 'unica limitazione che ti sei posto € che
a dev’essere negativo (in quanto dev’essere minore dei valori misurati). Le ultime
quattro colonne della Tabella 4.7 riportano i valori di 8 e v e il coefficiente di
Pearson ottenuti al variare di a.
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Peso (x =p) Velocita (v) a m=f d=vy CP

0 5.542 —-0.35 0.037 —0.103 0.9672
10 2.591 —0.65 0.019 0.101 0.9955
20 1.484 —-0.95 0.013 0.154 0.9999
30 0.905 —-1.25 0.009 0.170 0.9979
40 0.548 —1.55 0.007 0.172 0.9934
50 0.306

60 0.132

70 0

TABELLA 4.7

Il valore migliore di o & quindi @ = —0.95, col quale otteniamo
1 70—p
=095+ —————>~095 ,
v(p) * 0.013p +0.154 (p—|— 12)

che e la formula usata nell’Esempio 4.12. Dati e funzione sono riportati nella
Figura 4.23.

20 40 60

-2

Figura 4.23 Interpolazione di funzioni lineari fratte.
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4.10 Funzioni trigonometriche

Le funzioni che abbiamo visto finora sono decisamente utili e hanno una vasta
applicabilita, ma non sono adatte a rappresentare un tipo di fenomeni piuttosto
comune in natura: i fenomeni periodici. Un fenomeno & periodico se si ripete (pil
o meno) uguale a intervalli prestabiliti di tempo. Analogamente, una funzione
f:R — R ¢ periodica di periodo T > 0 se

Vz € R Fx+T) = f(z).

In altre parole, una funzione f e periodica di periodo T se il suo grafico non
cambia traslandolo orizzontalmente (a destra o a sinistra) di 7" unita; in altre parole
ancora, 'intero grafico si ottiene giustapponendo copie del grafico di f ristretta a
un qualsiasi intervallo chiuso di lunghezza T'.

Nessuna delle funzioni che abbiamo visto finora era periodica (a parte le co-
stanti). Scopo di questa sezione & introdurre le funzioni periodiche di base; in un
certo senso, tutte le altre funzioni periodiche si possono ottenere a partire da queste
(vedi la fine del capitolo).

Nella matematica elementare esistono degli oggetti che presentano una natura
periodica: gli angoli. Sai bene che un angolo di 90° e un angolo di 90+ 360 = 450°
sono in realta lo stesso angolo: aggiungendo o togliendo 360° da un angolo la sua
ampiezza non muta. Il nostro obiettivo sara usare questa periodicita naturale per
costruire funzioni periodiche a valori reali.

Abbiamo appena parlato di angoli misurandoli in gradi, ma il grado non & I'unita
di misura migliore per gli angoli. Il principale problema & che si tratta di una unita
di misura del tutto slegata dall’'unita di misura delle lunghezze, e quindi priva di
significato geometrico. Un’unita di misura molto pitt naturale, e strettamente legata
all’'unita di misura delle lunghezze ¢ invece il radiante (abbreviato, se necessario,
con “rad”). Per definizione, ’angolo di 1 radiante ¢ ’'angolo che sottende un arco di
lunghezza 1 in una circonferenza di raggio 1. Di conseguenza, la misura in radiants
di un angolo coincide con la lunghezza dell’arco sotteso in una circonferenza di
raggio unitario.

Per esempio, ’angolo giro (360°) sottende I'intera circonferenza, che ¢ lunga 27;
quindi I'angolo giro misura 27 radianti. L’angolo piatto (180°) sottende mezza
circonferenza, che ¢ lunga 7; quindi I’angolo piatto misura 7 radianti. Analoga-
mente, I’angolo retto (90°) sottende un quarto di circonferenza, per cui misura /2
radianti. In generale, un angolo di d° sottende d/360 di circonferenza, per cui
misura 27d/360 radianti:

° = _— mrad.

180

In particolare, la misura in radianti di angoli acuti comuni &

O—i o:E O:E o:E O:z
1—180rad, 30 6rad, 45 4raud, 60 3rad7 90 2raud.

Viceversa, avendo la misura in radianti si recupera la misura in gradi moltiplicando
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per 180/

1 o
r rad = ( 80T> .
T

1 rad = <@> ~ 57.29° ,
™

dove 57.29° significa “57 gradi e 29 centesimi di grado”; nella pratica scientifica i
minuti e i secondi di grado non si usano mai.

In particolare,

Gli angoli hanno un verso: possiamo percorrerli in senso orario oppure in senso
antiorario. Di conseguenza, la misura degli angoli ha un segno: esistono angoli
positivi e angoli negativi. Per convenzione, si considera positivo un angolo percorso
i senso antiorario, e negativo un angolo percorso in senso orario. Per esempio,
I’angolo dalla semiretta positiva delle ascisse alla semiretta positiva delle ordinate
¢ +7/2 (in radianti), mentre 'angolo dalla semiretta positiva delle ascisse alla
semiretta negativa delle ordinate ¢ —7/2.

Come accennato sopra, la misura degli angoli contiene una periodicita intrin-
seca. Siccome ruotare di un angolo giro (360° ovvero 27 radianti) ci riporta al
punto di partenza, un angolo di r radianti (o d°) e un angolo di r 4+ 27 radianti (o
(d + 360)°) identificano lo stesso spicchio di piano. Analogamente, un angolo di r
radianti (o d°) e un angolo di r — 27 radianti (o (d — 360)°) identificano lo stesso
spicchio di piano; in generale, un angolo di r radianti (o d°) e un angolo di r + 2k7
radianti (o (d+ 360k)°) identificano lo stesso spicchio di piano quale che sia k € Z.
In questo senso, la misura degli angoli & periodica di periodo 27 radianti (o 360°).

Possiamo ora sfruttare questa periodicita degli angoli per definire le due princi-
pali funzioni periodiche. Sia C' C R? la circonferenza nel piano cartesiano di centro
Porigine e raggio unitario. Per ogni ¢ € R 'angolo di ¢ radianti (misurato a par-
tire dalla semiretta positiva delle ascisse) identifica in modo unico un punto P(¢)
della circonferenza C', ottenuto partendo dal punto (1,0) e ruotando di ¢, cioe se-
guendo la circonferenza per una lunghezza pari a |¢| procedendo in senso antiorario
se ¢ > 0, e in senso orario se ¢ < 0. Il coseno cos ¢ dell’angolo ¢ & allora 1’ascissa
del punto P(¢), mentre il seno'S sin ¢ di ¢ & I'ordinata di P(¢); vedi la Figura 4.24.

In questo modo abbiamo definito due funzioni cos, sin:R — R chiaramente
periodiche di periodo 27:

VkeZ cos(¢p + 2km) =cos¢ e sin(¢+ 2km) =sing .

Siccome l’ascissa e 'ordinata dei punti della circonferenza di centro l'origine e
raggio unitario variano fra 1 e —1, lo stesso fanno seno e coseno:

Vo € R —1<cosp <1, —1<singp <1,

16 1n questo corso indicheremo sempre il seno con il simbolo internazionale sin, e mai
con sen.
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Figura 4.24 Seno e coseno.

e, piu precisamente, le funzioni seno e coseno hanno come immagine esattamente
I'intervallo chiuso [—1, 1].

Seguendo 'andamento del coseno per angoli crescenti, vediamo che parte da
un punto di massimo cos0 = 1 e poi decresce, passando per cos(m/2) = 0 fino a
raggiungere il punto di minimo cosm = —1. A quel punto ricomincia a crescere,
ripassando per cos(37/2) = 0 fino a ritornare a un punto di massimo cos(2w) = 1.
Per ¢ > 27 (0 ¢ < 0) la periodicita ci assicura che andamento si ripete. In
particolare,

—  cos¢ = 1 nel punto di massimo ¢ = 0 e, piu in generale, nei punti di mas-
simo ¢ = 2km, con k € Z;

—  cos¢ = —1 nel punto di minimo ¢ = 7 e, piu in generale, nei punti di mi-
nimo ¢ = w + 2km, con k € Z;

—  cos¢ si annulla in ¢ = 7/2, 37/2 e, pilt in generale, negli angoli ¢ = 7/2 4 kx
con k € 7Z;

—  cos¢ & positivo nell'intervallo (—m/2,7/2) e, pilt in generale, negli intervalli
(2km — 7/2,2km + 7/2) al variare di k € Z;

—  cos¢ & strettamente decrescente nell’intervallo [0, 7] e, pill in generale, negli
intervalli [2km, (2k + 1)7] al variare di k € Z;

—  cos¢ & strettamente crescente nell’intervallo [m,27] e, pill in generale, negli
intervalli [(2k — 1), 2kn] al variare di k € Z.
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La Figura 4.25 mostra il grafico di cos ¢ (linea continua).

Seguendo invece il seno per ¢ crescenti, vediamo che parte da sin0 = 0 e poi
cresce, raggiungendo un punto di massimo sin(7/2) = 1. A quel punto comincia
a decrescere, annullandosi di nuovo in sin7m = 0, fino a raggiungere un punto di
minimo cos(37/2) = —1. Poi risale, fino a tornare a sin(2r) = 0. Per ¢ > 27
(0 ¢ < 0) la periodicita ci assicura che "andamento si ripete. In particolare,

—  sing = 1 nel punto di massimo ¢ = m/2 e, piu in generale, nei punti di
massimo ¢ = 2km + 7/2, con k € Z;
—  sing = —1 nel punto di minimo ¢ = —7/2 e, piu in generale, nei punti di

minimo ¢ = 2km — 7/2, con k € Z;

— sin¢ si annulla in ¢ = 0, 7 e, piu in generale, negli angoli ¢ = k7w con k € Z;

—  sin¢ & positivo nell’intervallo (0,7) e, pitt in generale, in (2kw, (2k 4+ 1)7) al
variare di k € Z;

— sing & strettamente crescente nell’intervallo [—7/2,7/2] e, piu in generale,
negli intervalli [2km — 7/2,2kw 4 /2] al variare di k € Z;

—  cos¢ e strettamente decrescente nell'intervallo [r/2,37/2] e, pil in generale,
negli intervalli [2km + 7/2, 2kw + 37/2] al variare di k € Z.

La Figura 4.25 mostra il grafico di sin ¢ (linea tratteggiata).

e N e N,

A N N s

Figura 4.25 Coseno e seno.
Osservazione 4.57 Dalla figura ¢ evidente (e lo verificheremo rigorosamente fra
poco) che il grafico di cos¢ si ottiene traslando verso sinistra di 7/2 il grafico
di sin ¢. Il grafico di sin ¢ € detto sinusoide; qualunque altra curva che si ottiene da
una sinusoide tramite traslazioni o moltiplicazioni di ascisse e/o ordinate si chiama
curva sinusoidale, ed ¢ il grafico di una funzione sinusoidale.

Osservazione 4.58 Una funzione sinusoidale f:R — R & determinata da quattro
grandezze:

— il periodo (che per seno e coseno & 27);

— lampiezza, data da (M — m)/2, dove M ¢ il valore massimo e m il valore
minimo di f, ed & quindi meta dell’intervallo di variazione dei valori di f (e
per seno e coseno vale 1);

— il valor medio, dato da (M +m)/2, ed & quindi il punto centrale dell’intervallo
di variazione di f (e per seno e coseno vale 0);

— la fase, che ¢ il primo punto non negativo di massimo (per cui il coseno ha
fase 0 mentre il seno ha fase 7/2).

Vedremo fra poco come ottenere funzioni sinusoidali che abbiano periodo, ampiezza,
valor medio e fase prestabiliti.
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Osservazione 4.59 Seno e coseno ci forniscono un esempio di funzioni che non
hanno limite per  che tende a 400 0 —oo. Infatti, al crescere di x il valore di sin x
e di cosz continua a oscillare fra —1 e 1, senza mai tendere ad alcun limite, finito o
infinito; e la stessa cosa accade quando x diventa abritrariamente negativo. Sempre
usando seni e coseni ¢ possibile costruire funzioni che non ammettono limite anche
per x che tende a un valore xy € R finito. Per esempio, la funzione f(x) = sin(1/x),
definita per ogni x # 0, non ammette limite per x che tende a 0, né da sopra né da
sotto: infatti, quando « si avvicina a zero 1/x diventa arbitrariamente grande (o
arbitrariamente negativo), per cui sin(1/x) oscilla freneticamente fra —1 e 1 senza
mai tendere a un valore limite, come si puo vedere nella Figura 4.26.

Figura 4.26 f(z) =sin(1/x).

Osservazione 4.60 Una conseguenza dell’osservazione precedente ¢ che non sempre
i limiti esistono. In diversi casi capire se un dato limite esiste o meno e, se esiste,
calcolarlo, puo essere un’impresa tutt’altro che banale. Un primo esempio di limite
di questo genere ’abbiamo incontrato nella Sezione 4.7 (Osservazione 4.39 e Curio-
sita 4.11); un altro esempio ¢ legato alla funzione seno. Noi sappiamo che sin0 = 0.
Inoltre, sin ¢ & 'ordinata del punto P(¢), che si ottiene partendo da P(0) = (1,0)
e seguendo la circonferenza per una lunghezza ¢. Ora, per ¢ piccolo 'arco da P(0)
a P(¢) pare distare sempre meno dalla corda da P(0) a P(¢), e quest’ultima tende
a confondersi con il segmento verticale di altezza sin ¢ uscente da P(¢). Quindi
sembra plausibile aspettarsi che qualcosa del genere valga:

. sing
lim =

1
¢—0 ¢

; (4.39)

cioe sinx ~ x per x ~ 0. Ti deve essere ben chiaro che il discorso precedente
non dimostra la validitad di (4.39), ma semplicemente rende plausibile una simile
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affermazione — e quindi spinge a cercare di verificare se & vera o non lo &. La Cu-
riosita 4.17 conterra una dimostrazione corretta di (4.39); la Curiosita 4.14 contiene
invece un esempio in cui un ragionamento di questo genere porta a una conclusione
sbagliata. La morale e che fidarsi € bene ma non fidarsi & meglio: quando si tratta
di ragionamenti che coinvolgono limiti o, piu in generale, quantita che diventano
arbitrariamente piccole o arbitrariamente grandi, bisogna procedere con i piedi di
piombo e controllare (o far controllare a un matematico) ogni passaggio.

CURIOSITA 4.14 Indichiamo con #; la lunghezza di una semicirconferenza che ha come diametro
lintervallo [0,1]. Poi indichiamo con ¢, la somma delle lunghezze delle semicirconferenze
di diametro [0,1/2] e [1/2,1]. Piu in generale, indichiamo con ¢,, la somma delle lunghezze
delle n semicirconferenze di diametro gli intervalli [0,1/n], [1/n,2/n],...,[(n—1)/n,1]. Tutte
queste semicirconferenze si avvicinino sempre di piu all’intervallo [0, 1]; sembrerebbe quindi
naturale aspettarsi che la somma delle loro lunghezze si avvicini sempre piu alla lunghezza
dell’intervallo [0, 1], cioé che si abbia

lim ¢, =1.

n— +o0o

Invece, questo & falso. Per vederlo, basta calcolare £,,. Infatti, ¢£; & la lunghezza di una
semicirconferenza di diametro 1, cioé¢ raggio 1/2, per cui ¢; = w. Al passo n, ciascuna
semicirconferenzina ha diametro 1/n, per cui ha lunghezza m/n. Ma ce ne sono n: quindi
L, =n-(m/n) =x. In altre parole, £, = 7 per ogni n, e il risultato esatto & quindi

lim 4, =w.
n— oo

La spiegazione di questo apparente paradosso & che le circonferenzine pur avvicinandosi al

segmento diventano sempre piu curve; e questo aumento della curvatura controbilancia il
rimpicciolimento del diametro lasciando costante la lunghezza totale.

Vediamo ora di raccogliere le principali proprieta delle funzioni seno e coseno.
Prima di tutto, cambiare di segno a un angolo significa ruotare in senso opposto;
quindi i punti P(¢) e P(—¢) sono simmetrici rispetto all’asse delle ascisse, e dunque

cos(—@) = cos ¢ e sin(—¢) = —sin¢ . (4.40)
In altre parole, il coseno & una funzione pari mentre il seno € una funzione dispari.
Ruotando di £180° (cioe aggiungendo + agli angoli) cambiamo di segno ascisse

e ordinate dei punti; quindi

cos(¢p+m) =—cos¢, sin(p+m) = —sing . (4.41)

Ruotando in senso antiorario di 90° (cioe¢ aggiungendo m/2 agli angoli) trasfor-
miamo le ascisse in ordinate, e le ordinate nelle ascisse cambiate di segno; quindi

cos (¢ + g) = —sing, sin <¢ + g) =cos¢, (4.42)

come anticipato nell’Osservazione 4.57. Queste proprieta sono visualizzate nella
Figura 4.27.
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Figura 4.27

E se ruotiamo in senso orario di 7/2 radianti? Cosa succede lo deduciamo subito
da quanto ottenuto:

cos (gb - g) = cos [(qﬁJr g) fw} = —cos (chr g) =sing, (4.43)

e analogamente (esercizio)
. 7r
sin (gf) - 5) = —cos¢. (4.44)

Essendo P(¢) un punto della circonferenza di centro ’origine e raggio unitario,
la distanza fra P(¢) e l'origine & esattamente 1. Scrivendo la distanza dall’origine
in coordinate otteniamo la relazione fondamentale che lega seni e coseni:

sin? ¢ +cos’p=1, (4.45)

dove sin? ¢ ¢ il quadrato di sin ¢, e analogamente cos? ¢ ¢ il quadrato di cos ¢.

Osservazione 4.61 In particolare, otteniamo

sing = £+4/1 —cos? ¢ , cos¢ = £4/1 —sin’¢ .

Attenzione, pero: il segno davanti alle radici quadrate dipende da ¢, in quanto
deve coincidere con il segno di sin¢ (o cos ¢).

Osservazione 4.62 La relazione (4.45), assieme a (4.39) e alle proprieta dei limiti,
ci permette di calcolare due altri limiti importanti:

. 1l—coszx . 1 —cos®x 1 . sin® x
lim ——— = lim . = ( lim
z—0 €T z—0 T 1+ cosx z—0 xHO 1+cosx + cosx

- (hm sinx) A tim ) - lim —0. —0,
z—0 z—0 T 2—0 1+ cosz + cosx 2
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. 1l—coszx . 1 —cos?x 1 . sin’z . 1
lim ———— =1 . = | lim - lim ——
=0 2 =0 22 1+ cosx z—0 2 z—0 1+ cosz
1
2

sinz 2 1 1
= ( lim (lm —— ) =12. - =
z—0 I z—0 14 cosx 2

cioe 1 —cosz =~ %xQ per z = 0.

Osservazione 4.63 Usando (4.45) possiamo ricavare il valore di seno e coseno di
altri angoli speciali. Per esempio, il punto P(w/4) appartiene alla bisettrice del
primo quadrante; quindi sin(w/4) = cos(w/4) > 0. Ma allora (4.45) implica
2sin®(m/4) = 1, per cui

o T _ V2

SIHZ :COSZ = 7 .

L’angolo di 7/3 radianti (cioe 60°) & langolo interno di un triangolo equilatero.
Quindi Vorigine, P(7/3) e (1,0) formano un triangolo equilatero di lato 1; siccome
nei triangoli equilateri I'altezza coincide con la mediana deduciamo

1 _ V3

s 1 .o
cos — = — sin — = - — =

3 27 3 22 2
Usando (4.40) e (4.42) otteniamo anche
(:osz—cos<—z>—sin(—z—l—z>—sinz—ig sinz—1
6 6/ 6 2/ 3 27 6 2

CURIOSITA 4.15 Un altro modo per dedurre che sin7/4 = cos w/4 ¢ il seguente:

.o (ﬂ‘ 7r) 3 ( T ) ( 71') T
sim— =—cos{—+ —-) =—cos— =—cos|——+7m) =cos|—— ) =cos—.
4 4 2 4 4 4 4

Un’altra formula molto importante & quella che permette di calcolare il coseno
della differenza di due angoli:

cos(¢p — ) = cos ¢ costp + sin psin ) . (4.46)

La Curiosita 4.16 mostra come ricavare questa formula; ma prima vediamo come
usarla per calcolare il coseno della somma di due angoli, e il seno della somma e
della differenza di due angoli. Prima di tutto usando (4.40) otteniamo

cos(¢ + ) = cos((b - (—w)) = cos ¢ cos(—1)) + sin @ sin(—1))

. . (4.47)
= cos¢cost —singsiny .
Poi (4.43) e (4.44) ci danno
sin(¢ + 1) = cos (¢ + ¢ — g) = COS ¢ COS <¢ — g) — sin ¢ sin <¢ — g) (4.48)

= cos ¢siny + sin¢cosp .
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Analogamente (esercizio),
sin(¢ — 1)) = sin ¢ cos ) — cos psin .
Ponendo ¢ = ¢ in (4.47) otteniamo anche
cos(2¢) = cos® ¢ —sin® ¢ = 1 — 2sin® p = 2cos® ¢ — 1 ,
dove abbiamo usato (4.45). Analogamente, (4.48) da
sin(2¢) = 2sin¢cos ¢ .
Sommando cos(¢ + 1) e cos(¢p — 1) otteniamo invece

cos(¢ + ) + cos(¢ —1p) = 2cos pcos ) .

Ponendo « = ¢+ e f = ¢ — 1, in modo che ¢ = (a+ 3)/2 e = (a— 3)/2,

ricaviamo quindi la prima formula di prostaferesi per la somma di coseni:

aJrﬂcosaiﬂ
2 2

cosa + cos 3 = 2 cos

In maniera analoga (esercizio) si ricavano le formule di prostaferesi per la differenza

di coseni, e per la somma e differenza di seni:

cosoz—cosﬁz—QsinoH_ﬁsina;ﬁ,
sina—i—sinB:Zsina;ﬁcosa;ﬁ,
sina—sinﬁ:2005a+ﬁsina;ﬁ.

CURIOSITA 4.16 Vediamo come si dimostra la formula (4.46) per il coseno della differenza.
Consideriamo i due triangoli rettangoli P(¢)AP(¢) e P(y)BP(¢) rappresentati nella Fi-
gura 4.28. Nel triangolo P(¢)AP(¢), il cateto AP(¢) & lungo |sin ¢ —sin |, e il cateto AP(v)
¢ lungo |cos ¢ — cos®|. Se indichiamo con d la lunghezza della corda P(1)P(¢), il Teorema

di Pitagora ci dice che

d?® = (cos ¢ — cosp)? + (sin ¢ — sinp)? .

D’altra parte, nel triangolo P(¢) BP(¢), il cateto BP(¢) & lungo |sin(¢—1)|, e il cateto BP (1))

¢ lungo |1 — cos(¢ — ®)|. Una nuova applicazione del Teorema di Pitagora ci da quindi

d* =sin*(¢ — ) + [1 — cos(¢ — ¢)]” .
Espandendo i quadrati e confrontando le due espressioni troviamo

sin? ¢ + cos? ¢ + sin? 1 + cos? b — 2(cos ¢ cos 1) + sin P sin 1)
=1+ sin’(¢ — ¥) + cos?(¢ — ¥) — 2cos(d — ),

e (4.46) segue subito da (4.45).
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Figura 4.28 Coseno della differenza.

Osservazione 4.64 Prendiamo un punto P = (x,y) # (0,0) del piano, a distanza r
dall’origine. Indichiamo con ¢ € [0,27) I'angolo fra asse positivo delle ascisse e
la semiretta uscente dall’origine passante per P. Allora usando i triangoli simili
evidenti nella Figura 4.29 otteniamo subito

T =rcos¢, y=rsing. (4.49)

Quindi conoscendo la distanza r e ’angolo ¢ & possibile ritrovare le coordinate
cartesiane del punto P; la coppia (r,¢) determina il punto P # (0,0) altrettanto
bene della coppia (z,y). Per questo motivo, (1, ¢) vengono dette coordinate polari
del punto P; sono definite per tutti i punti del piano tranne il polo (0,0), che ¢ a
distanza 0 dall’origine ma al quale non e possibile associare un angolo.

La (4.49) ci dice come recuperare le coordinate cartesiane (z,y) di un punto
conoscendone le coordinate polari (r,¢). Viceversa, il Teorema di Pitagora (vedi
nuovamente la Figura 4.29) ci dice che

P2 = 2?4y
per cui 7 = y/x2 + y2. Una volta trovato r, ’angolo ¢ ¢ 'unico angolo nell’inter-
vallo [0, 27) tale che

T T . Y Y
CosSp = — = ——— e sing =% = ———
r /x2+y2 r /x2—|-y2

per cui siamo in grado di recuperare le coordinate polari a partire dalle coordi-
nate cartesiane. Attenzione: non & sufficiente conoscere solo cos ¢ o solo sin ¢ per
ricavare ¢. Infatti, come puoi verificare facilmente, per ogni ¢ € [0,27) esistono
sempre ¢', ¢" € [0,27) diversi da ¢ e tali che cos @’ = cos ¢ e sin ¢” = sin ¢.

ESEMPIO 4.30 Alcuni animali utilizzano sistematicamente le coordinate polari;
per esempio, le api. Quando un’ape operaia vuole comunicare alle altre dove si tro-
vano dei fiori rispetto all’alveare, inizia una danza cosi fatta: si muove inizialmente
in linea retta, poi si gira e ritorna al punto di partenza in modo da formare un an-
golo ¢ con la direzione iniziale, e ripete questo percorso un numero preciso di volte.
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sin ¢------

Figura 4.29 Coordinate polari.

L’angolo ¢ indica la coordinata polare angolare della posizione dei fiori, misurata
rispetto alla direzione del sole; e il numero di ripetizioni indica la distanza r dei
fiori dall’alveare. In questo modo le altre api capiscono in che direzione e a quale
distanza devono volare per trovare i fiori.

Seno e coseno sono le pitl importanti funzioni trigonometriche (cioé dipendenti
da un angolo), ma non le uniche. Un’altra funzione trigonometrica utile & la tan-
gente definita da

a volte si scrive tg ¢ invece di tan ¢.

Osservazione 4.65 1l motivo del nome ¢ illustrato nella Figura 4.30: se ¢ € [0,7/2),
allora il segmento QS tangente in (1,0) alla solita circonferenza di raggio unitario
e centro 'origine, e intersecante la semiretta passante per P(¢), ha lunghezza
esattamente uguale a tan ¢, come si verifica subito usando i triangoli simili.

tan ¢*””’ﬁ(’” S
sin ¢p-----> \‘
o\, Qe
BPAC
O cos ¢ 1

Figura 4.30 Tangente.
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Dalla definizione e dalle proprieta di seno e coseno si deducono subito le seguenti
proprieta della tangente:

— la tangente non ¢ definita dove il coseno si annulla, cio¢ nei punti 7/2 + k7w
per k € Z, che sono delle singolarita per tan ¢;

—  tan¢ ¢ periodica di periodo 7, cioe tan(¢ + kw) = tan ¢ per ogni k € Z;

—  tan¢ ¢ strettamente crescente in ciascun intervallo (—m/2 + km,7/2 + kn),
per k € Z;

—  tan¢ & positiva negli intervalli (km,7/2 + k) e negativa in (—7/2 + kn, km),
per k € Z;

— il grafico di tan ¢ ha un asintoto verticale nelle singolarita, e

Vk e Z li tan ¢ = ;
zﬁ(ﬂ/lgkﬂ')i n¢ Foe

limmagine di tan ¢ ristretta a ciascun intervallo (—7/2+kn, 7 /2+k7) & 'intera
retta reale R.

La Figura 4.31 riporta a sinistra il grafico di tan ¢.

10 10
5 7.5
5 5
5 25
£p [ P g 120 \-P P \2p
-2(5 -2
5 -5
-15 -7.5
_ho 10

Figura 4.31 Tangente e cotangente.

La cotangente cot ¢ (talvolta indicata anche con ctg¢ o cotan ¢) ¢ il reciproco

della tangente:
1 cos¢

tang sing

Le proprieta della tangente implicano le seguenti proprieta della cotangente:

cotp =

— la cotangente non e definita dove il seno si annulla, cioe nei punti k7 per k € Z,
che sono delle singolarita per cot ¢;
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—  cot ¢ ¢ periodica di periodo 7, cioé cot(¢ + km) = cot ¢ per ogni k € Z;

—  cot ¢ & strettamente decrescente in ciascun intervallo (km, (k4 1)), per k € Z;

—  cot ¢ & positiva negli intervalli (kw,7/2 4+ k) e negativa in (—7/2 + km, kn),
per k € Z;

— il grafico di cot ¢ ha un asintoto verticale nelle singolarita, e

Vk e Z lim cot¢ = +o0;
z—(km)*

—  Dlimmagine di cot ¢ ristretta a ciascun intervallo (kw, (k + 1)7) & l'intera retta
reale R.

La Figura 4.31 riporta a destra il grafico di cot ¢.

Osservazione 4.66 Sia f(x) = mz una funzione lineare (con d = 0) e P = (x,y) un
punto del suo grafico; in particolare, y = f(z) = ma. Se (r,$) sono le coordinate
polari di P, allora

y rsing
m = — =
T  Trcoso

=tan¢ ,

cioe m ¢ la tangente dell’angolo fra I’asse delle ascisse e la retta grafico di f. Per
questo motivo, m & chiamato coefficiente angolare della retta.

CURIOSITA 4.17 Vediamo come si pud dimostrare che lim % = 1. Consideriamo per sempli-
¢—0

cita il caso ¢ — 07, il caso ¢ — 0~ essendo analogo. Facendo riferimento alla Figura 4.30,
vogliamo confrontare le aree del triangolo OQ(¢)P(¢), del settore circolare OQP(¢), e del
triangolo OQS. Con le ovvie notazioni, abbiamo

Aoqs)p(s) < Aogr(s) < Aogs »

in quanto i tre insiemi sono contenuti uno dentro l'altro. Ora, i due cateti di OQ(¢)P(¢)
misurano rispettivamente cos ¢ e sin¢; quindi Aoge)pe) = %cos¢>sin ¢. Analogamente, i
due cateti di OQS misurano rispettivamente 1 e tan ¢; quindi Apgs = %sin ¢/ cos ¢. Infine,
I’area di un settore circolare ¢ proporzionale alla lunghezza dell’arco. Siccome l'area del
cerchio di raggio 1, sotteso da un arco di lunghezza 27, & uguale a m, ’area del settore
circolare OQP(¢), sotteso da un arco di lunghezza ¢, ¢ Aogs = ¢7/2n = ¢/2. Riassumendo
abbiamo ottenuto

1. ¢ 1lsing
—singcosp < — < — .
2 ¢ ¢ 2 2 cos¢

Dividendo per sin ¢ (che & strettamente positivo per ¢ > 0 piccolo e non nullo), moltiplicando
per 2, e prendendo il reciproco otteniamo

sin ¢ 1
o) < cos¢

cos ¢ <

A questo punto, facendo tendere ¢ a 07, ricordando che cos0 = 1 e usando il Teorema dei

due carabinieri, otteniamo
. sing
lim — =
$—0

1.
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Le funzioni periodiche non possono essere globalmente invertibili, in quanto non
sono iniettive. Pero, restringendole a opportuni intervalli, si possono trovare delle
inverse.

Per esempio, abbiamo visto che il seno & strettamente crescente sull’inter-
vallo [—7/2,7/2], con immagine uguale a tutto 'intervallo [—1,1]. Siccome le
funzioni strettamente crescenti sono invertibili, possiamo definire la funzione in-
versa arcoseno arcsin: [—1,1] — [—m/2,7/2]; arcsinz & I'unico angolo nell’inter-
vallo [—7/2,7/2] il cui seno sia uguale a x. In altre parole, arcsinz & 'unica
soluzione nell’intervallo [—7/2, /2] dell’equazione sin ¢ = .

Osservazione 4.67 Attenzione: ti dev’essere ben chiaro che arcsinx non e 1'u-
nica soluzione dell’equazione sin ¢ = x; ¢ l'unica soluzione che appartiene all’in-
tervallo [—7/2,7/2]. Per periodicita, tutti gli angoli della forma arcsinx + 2k
con k € Z sono soluzioni della stessa equazione, ma ce ne sono anche altre. Per
esempio, l'equazione sin ¢ = 1/2 ha due soluzioni nell’intervallo [0, 7r]: la soluzione
arcsinx = m/4, e la soluzione 37 /4. Il modo pitt semplice per capire cosa succede &
intersecare il grafico di sin x con una retta orizzontale, come discusso nel Capitolo 3.

Analogamente, abbiamo visto che il coseno ¢ strettamente decrescente nell’in-
tervallo [0, 7]. Quindi possiamo definire la funzione inversa, chiamata arcocoseno
arccos: [—1,1] — [0, x]; arccosz ¢ I'unico angolo nell’intervallo [0, 7] il cui coseno
sia uguale a z. In altre parole, arccosz & l'unica soluzione nell’intervallo [0, 7]
dell’equazione cos ¢ = .

Osservazione 4.68 Anche per 'arcocoseno valgono le stesse avvertenze fatte per
I’arcoseno. Inoltre, vale la pena di sottolineare che arcoseno e arcocoseno hanno
immagine in intervalli diversi: il seno non & iniettivo nell’intervallo [0, 7], per cui
non possiamo definire un’inversa a valori in [0, 7]. Analogamente, il coseno non ¢&
invertibile nell’intervallo [—7/2,7/2]. La Figura 4.32 contiene i grafici di arcoseno
€ arcocoseno.

Piu interessante e 'inversa della tangente. Abbiamo visto che la tangente &
strettamente crescente nell’intervallo (—m/2,7/2), con immagine tutta la retta
reale. Quindi esiste la funzione inversa arcotangente arctan:R — (—m/2,7/2);
arctan x & I'unico angolo nell'intervallo (—7/2,7/2) la cui tangente sia uguale a x.
In altre parole, arctan = (a volte scritta “atg” o “atan”) & l'unica soluzione nell’in-
tervallo (—7/2,7/2) dell’equazione tan ¢ = .

L’arcotangente (contrariamente ad arcoseno e arcocoseno) ha il grosso vantaggio
di essere definita su tutto l'asse reale. Inoltre dalle proprieta della tangente si
deduce subito che arctanx e strettamente crescente, negativa per x < 0, positiva
per x >0, e

lim arctanx = :I:g ;

r—to0
in particolare, I’arcotangente ha un asintoto orizzontale sia a +o0o che a —co. La
Figura 4.33 contiene il grafico dell’arcotangente.
Vediamo ora come trovare una funzione sinusoidale con caratteristiche prede-
terminate, cominciando con un esempio.
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Figura 4.32 Arcoseno e arcocoseno.
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Figura 4.33 Arcotangente.

EsEMPIO 4.31 Molti fenomeni biologici hanno un andamento periodico; per esem-
pio quelli legati alle stagioni. Il tuo assistente ha tenuto sotto osservazione una
popolazione di uccelli stanziali nella zona del lago di Massaciuccoli, notando che il
numero di individui nella popolazione varia in modo periodico nel corso dell’anno
da (circa) 1000 individui a (circa) 1500 individui. II minimo numero di uccelli &
misurato intorno all’inizio di aprile, il massimo circa 6 mesi dopo. Vogliamo trovare
una funzione sinusoidale f che rappresenti questo andamento.

Vediamo come modificare la funzione fo(z) = cosz in modo da ottenere la
funzione voluta. La prima osservazione da fare ¢ che mentre f; ha periodo 2,
la funzione f che stiamo cercando deve avere periodo 365 giorni (misuriamo il
tempo in giorni, e trascuriamo per semplicita gli anni bisestili). Dunque men-
tre fo & completamente descritta da come si comporta sull’intervallo [0, 27], la
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nostra funzione f dev’essere completamente descritta da come si comporta sul-
I'intervallo [0,365]. Ora, se moltiplichiamo le ascisse per 27/365 trasformiamo
I'intervallo [0, 365] nell’intervallo [0, 27]; quindi potrebbe essere utile considerare la

funzione 5 9
i 7r
fix) = fo <%x> = cos <%x> .

La funzione fi;: R — R ha effettivamente periodo 365: infatti,

2

fi(x + 365) = cos <365

(z + 365)> = cos (S%x + 27r> = fi(z).

Il periodo ¢ sistemato; passiamo alla fase. La funzione f; assume il primo massimo
nello stesso punto in cui 'assume il coseno, cioe in z¢g = 0; invece la nostra funzione
deve assumere il primo massimo all’inizio di ottobre, cioé in xy = 274. Dunque
dobbiamo traslare il grafico verso destra di 274 giorni; come abbiamo visto piu
volte, questo equivale a sottrarre 274 alle ascisse. Quindi giungiamo alla funzione

21

fa(x) = fi(x — 274) = cos (365 (x — 274)) ,

che ha periodo e fase giusti. La funzione fs ha valore minimo m = —1 e valore
massimo M = 1, che corrispondono a un’ampiezza (M —m)/2 = 1 e a un valor
medio (M +m)/2 = 0. La nostra funzione f deve invece avere valore minimo 1000 e
valore massimo 1500, che corrispondono a un’ampiezza A = (1500—1000)/2 = 250 e
a un valor medio (150041000)/2 = 1250. Per modificare ’ampiezza senza cambiare
valor medio, fase e periodo, ¢ sufficiente moltiplicare le ordinate; in particolare la
funzione

fa(x) = 250 f2(x) = 250 cos (%(m - 274))

ha ampiezza 250 (e periodo e fase giusti). Infine, per modificare il valor medio
senza cambiare ampiezza, fase e periodo basta traslare verticalmente il grafico, per
cui arriviamo infine alla funzione

f(x) = f3(x) + 1250 = 250 cos (32%(:1@ - 274)) + 1250 .

Questa funzione ha periodo 365, e assume massimo in xg = 274, dove vale pro-
prio 250 + 1250 = 1500. Inoltre, ha valore minimo (uguale a —250 + 1250 = 100)

nei punti z; tali che
Ccos 2—7r(x —274) ) = -1
365 -

cioe per (27 /365)(x1 —274) = (2k+1)7, con k € Z, cioe x1 = 274+ (365/2) 4+ 365k
con k € Z. In particolare, per trovare un valore di x; nel primo anno (cioe
con 0 < z; < 365) prendiamo k = —1 ottenendo z; = 274 — (365/2) = 91.5,
che & proprio all’inizio di aprile. Dunque la funzione f:R — R soddisfa tutte le
condizioni che avevamo posto. Ne troverai il grafico nella Figura 4.34.
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Figura 4.34

Vediamo come adattare il metodo del precedente esempio per ottenere una fun-
zione sinusoidale con periodo P, fase zy, ampiezza A e valor medio yy. Abbiamo
visto che la funzione cos(272/365) ha periodo 365; in maniera assolutamente ana-

loga si verifica che la funzione
2
fi(x) = cos <%x)

ha periodo P. La quantita w = 27w/P & detta frequenza angolare della funzione
sinusoidale di periodo P (mentre f = 1/P viene detto frequenza della stessa fun-
zione). Spesso si usa esplicitare la frequenza angolare piuttosto che il periodo, per
cui si usa scrivere fi(x) = cos(wz) e ricordarsi che il periodo vale

P=—.
w

Per sistemare la fase, basta traslare le ascisse; quindi la funzione

f2(x) = cos(w(z — x0))
ha fase xg e frequenza angolare w. Infine, per ottenere ampiezza A e valor me-

dio yo basta moltiplicare le ordinate per A e poi sommare ¥g; giungiamo quindi
alla funzione sinusoidale generica

f(@) = Acos(w(z — z0)) + yo - (4.50)
Osservazione 4.69 Sommando funzioni sinusoidali di uguali ampiezza e periodo

ma differente fase (e valor medio nullo per semplicita) possono avvenire fenomeni
curiosi. Usando le formule di prostaferesi otteniamo

r /
A cos(w(z—1z0))+A cos(w(z—z()) = 24 cos (w %) cos {w (w - w>} .
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In particolare, se w(zy — xg)/2 = 7/2, cio¢ x, — x9 = w/w = P/2 allora la somma
si annulla! Questo accade per esempio con la luce: illuminando lo stesso punto
con due raggi di luce della stessa intensita (cioé con la stessa ampiezza) e uguale
colore (cioé con la stessa frequenza f = 1/P), ma con fasi che differiscono di P/2,
otteniamo il buio! Questo tipo di fenomeni cade sotto il nome di fenomeni di
interferenza. Un altro esempio di fenomeno di interferenza sono i colori delle penne
di un pavone: la struttura fine delle penne cambia in modo diverso da punto a
punto la fase della luce che viene riflessa, con il risultato che vediamo colori diversi
a seconda del punto d’osservazione che scegliamo.

Non tutti i fenomeni periodici si possono rappresentare con funzioni sinusoi-
dali; per esempio, la somma di due funzioni sinusoidali con uguale periodo ma
differente ampiezza (e/o fase) potrebbe non essere una funzione sinusoidale (vedi
per esempio la Figura 4.35). Si pud pero procedere in maniera un poco diversa.
Per spiegare come, cominciamo con l'usare (4.49) per espandere il coseno della
differenza in (4.50): otteniamo

Acos(w(z — 20)) + yo = A cos(wzg) cos(wz) + Asin(wzo) sin(wz) + yo

=y + a1 coswzx + by sinwz

dove abbiamo posto a; = Acoswxy e by = Asinwzxy. Piu in generale, possiamo
considerare i polinomi trigonometrici, cioe funzioni della forma

p(x) = yo + a1 coswx + az cos(2wx) + - - - + ap cos(nwz)

+ by sinwz + by sin(2wz) + - - - + by, sin(nwz) ,

COL Yg, A1, ..., Qn, b1,..., b, € R. Sono tutte funzioni di periodo 27 /w (controlla),
ma non sono funzioni sinusoidali; vedi per esempio la Figura 4.35.

/\ | /\ [\

Figura 4.35 f(z) = cos(2z) + 2sin(4x).

[y

L’importanza dei polinomi trigonometrici & dovuta al fatto che ogni funzione
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periodica'” di frequenza angolare w é approssimabile arbitrariamente bene da poli-
nomi trigonometrici di frequenza angolare w. In altre parole, se f:R — R & una
funzione periodica di frequenza angolare w, e ¢ > 0 & un qualsiasi numero (ar-
bitrariamente piccolo), esiste sempre un polinomio trigonometrico p di frequenza
angolare w tale che |f(x) — p(x)| < € per ogni z € R. La tecnica per trovare il
polinomio trigonometrico data la funzione si chiama analisi di Fourier (o analisi
armonica), ed & sfortunatamente troppo complessa per essere presentata in questo
COrSO0.

ESEMPIO 4.32 Se hai studiato un po’ di musica, saprai che quando suoni una
corda di una chitarra (per esempio il La) il suono che ottieni non & composto solo
dalla frequenza corrispondente al La fondamentale, ma anche dai cosiddetti armo-
nici. Ebbene: il La puro e rappresentato da una sinusoide, mentre gli armonici
corrispondono esattamente ai termini successivi della rappresentazione del suono
tramite un polinomio trigonometrico. I termini di frequenza angolare 2w corrispon-
dono al La dell’ottava superiore, i termini di frequenza angolare 3w forniscono la
quinta (cioe¢ il Mi), quelli di frequenza angolare 4w il La due ottave sopra, e cosl
via.

17 Che ti capitera di incontrare; ce ne sono alcune orribili per cui non € vero, ma non
intervengono nella pratica sperimentale (almeno per ora).



