3

Rappresentazioni dei dati

3.1 Funzioni

Se esiste un concetto che caratterizza la matematica moderna & il concetto di
funzione. Praticamente tutta la matematica (e le applicazioni della matematica
non sono da meno) ne fa un uso continuo. Non ti sorprendera quindi scoprire
che dedicheremo un intero paragrafo a una discussione delle funzioni e delle loro
proprieta.

Una funzione (o applicazione) fra due insiemi A e B & una legge che associa
a ciascun elemento di A uno e un solo elemento di B. L’insieme di partenza A
¢ il dominio della funzione; I'insieme di arrivo B il codominio. In simboli, una
funzione f di dominio A e codominio B verra indicata con f:A — B. Se la
funzione f manda I’elemento a € A nell’elemento b € B, scriveremo! b = f(a), e
diremo che b & immagine di a tramite f. L’insieme degli elementi di B che sono
immagine tramite f di elementi di A & 'immagine di f, e viene indicata con Im f
oppure con f(A); in simboli,

f(A)={be B|b= f(a) per qualche a € A} = {f(a) € B|a € A}.

Osservazione 3.1 Se b = f(a) si dice che b ¢ la variabile dipendente, mentre a ¢
la variabile indipendente. 11 significato di questa dizione ¢ che mentre I’elemento a
(che & anche chiamato argomento della funzione f) puo essere un elemento qualsiasi
del dominio, ’elemento b = f(a) del codominio (che & anche chiamato valore della
funzione nell’argomento a) ¢ univocamente determinato dall’argomento a e dalla
legge f; in altre parole, il valore b dipende dall’argomento a della funzione, e il
modo in cui ne dipende ¢ esattamente la funzione f.

! Oppure a»ib, o semplicemente a +— b, se il contesto individua chiaramente di quale
funzione si tratta.
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EseEmPIO 3.1 Il prezzo al litro della benzina senza piombo dal benzinaio all’angolo
¢ una funzione che associa a ogni giorno degli ultimi tre anni un numero reale —
ed & una funzione sfortunatamente non decrescente.

EsEMPIO 3.2 La legge che associa a ogni giorno dell’anno 2006 il prezzo al litro
della benzina in Italia non ¢ una funzione. Infatti, il prezzo cambia da benzinaio a
benzinaio, per cui non si puo associare a ciascun giorno dell’anno un unico prezzo.

EseEMPIO 3.3 La concentrazione di glucosio nel sangue di un paziente ¢ una fun-
zione, con dominio 'intervallo di tempo durante il quale viene effettuata la misura,
e con codominio l'insieme dei numeri reali.

EseEmpPio 3.4 I tuo peso ¢ una funzione, con dominio l'intervallo di tempo dalla
tua nascita alla tua morte, e con codominio I'insieme dei numeri reali positivi.

Esempio 3.5 Una distribuzione di probabilita ¢ una funzione, con dominio la
famiglia A di sottoinsiemi dello spazio degli eventi, e codominio I'intervallo [0, 1].

EseEmMPio 3.6 La legge che associa a ciascuna persona il suo gruppo sanguigno
¢ una funzione, con dominio l'insieme A di tutti gli esseri umani e codominio
I'insieme {A, B, AB,0} dei possibili gruppi sanguigni.

EsEMPIO 3.7 La classifica della quinta giornata del girone d’andata del campio-
nato di serie A del 2006/2007 ¢ una funzione che associa a ogni squadra di serie A
un numero naturale: il suo punteggio. Da questo punto di vista, il campionato
consiste nel cambiare funzione ogni settimana.

ESEMPIO 3.8 Se A ¢ un insieme qualsiasi, la funzione id4: A — A che associa a
ogni elemento di A se stesso (cioe id4(a) = a per ogni a € A) & lidentita di A.

EsEMPIO 3.9 Siano A e B insiemi, e by € B un elemento dato. La legge f: A — B
che associa by a ogni elemento di A (in simboli, f(a) = by per ogni a € A) & una
funzione, detta funzione costante di valore bg.

Figura 3.1 Rappresentazione grafica di una funzione.

EsEMPIO 3.10 Siano A e B gli insiemi A = {1,2,3,4} e B = {a,b,¢,d,e}. La
legge f: A — B data da f(1) = b, f(2) = a, f(3) = d, f(4) = b & una fun-



3.1 Funzioni 89

zione. Possiamo rappresentarla con un disegno come in Figura 3.1. In questo caso,
limmagine f(A) = {a,b,d} & strettamente pill piccola del codominio.

() =)

Figura 3.2 Leggi che non rappresentano funzioni.

Ogni funzione in cui sia il dominio che il codominio sono costituiti da un numero
finito di punti puo venire visualizzata con un disegno simile a quello della Figura 3.1:
I’essenziale € che da ogni punto del dominio parta una e una sola freccia. Per
intenderci, i due disegni della Figura 3.2 non rappresentano funzioni: il primo
perché a un elemento del dominio vengono associati due elementi del codominio,
e il secondo perché a un elemento del dominio non viene associato alcun elemento
del codominio.

Osservazione 3.2 Possiamo pensare la funzione f: A — B come una specie di sca-
tola nera, con un ingresso e un’uscita. Ogni volta che in ingresso entra un elemento
del dominio, la scatola nera — la funzione — lo elabora e poi espelle dall’uscita un
elemento del codominio. Non & importante la natura degli elementi del dominio e
del codominio (possono essere numeri, rette, patate, cavalleggeri prussiani o qual-
siasi altra cosa) né il tipo di processi digestivi che avvengono all’interno della sca-
tola. Somme, prodotti, classifiche o formine da sabbia, tutto ¢ ammissibile, purché
il procedimento usato sia sempre lo stesso: ogni volta che in ingresso infiliamo la
stessa patata, in uscita dobbiamo ottenere la stessa cipolla — a ogni elemento del
dominio viene associato uno e un solo elemento del codominio, appunto.

Questa analogia ci permette di dire quando due funzioni sono uguali. Per i
nostri scopi, due scatole nere che producono sempre lo stesso oggetto quando in
ingresso ricevono lo stesso elemento sono indistinguibili: non potendo vedere come
sono fatte dentro, se si comportano nello stesso modo per noi coincidono. Dunque
diremo che due funzioni f: A — B e g: A — B (con lo stesso dominio e lo stesso
codominio, s’'intende) sono uguali, e scriveremo f = g oppure f = g, se e solo se
f(a) = g(a) per ogni a € A.

Esempio 3.11 Un tipo particolare di funzioni e costituito dai polinomi. Un
polinomio (a coefficienti reali, in una variabile?) & una funzione p:R — R della
forma

p(t) = ant™ + an_1t" P+ +ag, (3.1

2 Una volta vista la definizione ti dovrebbe essere chiaro come costruire polinomi in piu
variabili.
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dove n € N e un numero naturale detto grado del polinomio, e ay,...,a, € R sono
numeri reali, i coefficienti del polinomio. In particolare, ag € detto termine noto,
e a, # 0 coefficiente direttivo. I polinomi di grado zero sono funzioni costanti. T
polinomi di primo grado sono spesso detti lineari. Per esempio, p(t) = 3t + 2 & un
polinomio lineare, mentre ¢(t) = 6t — 7t + 1 & un polinomio di grado 2.

11 significato della scrittura (3.1) ¢ il seguente: il polinomio p associa a ogni
numero reale ¢ il numero reale ottenuto prendendo ¢, elevandolo alla potenza n,
moltiplicandolo per a,,, riprendendo ¢ per moltiplicarlo per a,,_; dopo averlo elevato
alla potenza n—1 in modo da poter sommare il risultato a quanto gia avevamo, e cosi
via, fino a sommare ag ottenendo finalmente il valore finale p(t). Per esempio, se p &
il polinomio dato da p(t) = 2t2—t+3m, allora p(—2) = 2(—2)?—(—2)+37 = 10+3.
Per noi, un polinomio sara sempre una funzione, e mai una misteriosa combinazione
formale di lettere e numeri. Indicheremo con R[t] 'insieme di tutti i polinomi (a
coefficienti reali, in una variabile), e con R,[t] I'insieme dei polinomi di grado
minore o uguale a n € N. Torneremo a parlare dei polinomi nel prossimo capitolo.

Esempio 3.12 Una parte consistente di questo corso sara dedicato allo studio
delle funzioni reali di una variabile reale, cioe alle funzioni f con dominio A conte-
nuto in R (avremo casi in cui A = R e casi in cui A sard strettamente piu piccolo
di R), e a valori in R (cioé con codominio R). I polinomi, per esempio, sono
funzioni reali di variabile reale; e lo sono anche le funzioni razionali, le funzioni
trigonometriche seno e coseno, come pure I’esponenziale e il logaritmo®. Nota perd
che, mentre polinomi, seno, coseno ed esponenziale sono definiti su tutto 1’asse reale
(cioé hanno dominio uguale a R), le funzioni razionali e il logaritmo in generale non
lo sono. Per la precisione, il dominio di una funzione razionale non puo contenere
gli zeri del denominatore, e il logaritmo ha come dominio I'insieme dei numeri reali
positivi.

EsEmpIO 3.13 Vi sono ovviamente moltissime altre funzioni da R in R, di cui
alcune discretamente orrende. Un esempio di questo genere ¢ la scala del diavolo,
cioe la funzione f:R — R definita da

fla) = {x se = e razionale ,
0 se z ¢ irrazionale .

Torniamo a parlare di concetti generali. Sia f: A — B una funzione. Se A; C A
& un sottoinsieme di A, 'immagine di A; tramite f & I'insieme f(A;) C B delle
immagini degli elementi di A;. Viceversa, se By C B, l'insieme degli elementi di
A la cui immagine tramite f appartiene a By si chiama immagine inversa f~1(By)
di By tramite f; in simboli,

fYBi)={acA|fla)e B} CA.

Chiaramente, f~!(B) = A per qualunque funzione f: A — B (perché?).

3 Parleremo in dettaglio di tutte queste funzioni nel prossimo capitolo.
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EseEMpPIO 3.14 Sia f: A — B la funzione definita nell’Esempio 3.10, e prendiamo
Al = {274} € Bl = {bu due}' Allora f(Al) = {a7b} € f_l(Bl) = {1a374}

EsEMPIO 3.15 Sia f la funzione che associa a ogni distributore di benzina d’Italia
il prezzo al litro della benzina senza piombo il 4 maggio 2006. Se A; ¢ il sottoinsieme
dei distributori di benzina in Toscana, allora f(A;) € il sottoinsieme dei prezzi della
benzina senza piombo in Toscana il 4 maggio 2006. Se B; C R & il sottoinsieme
dei numeri reali minori di 1.1, allora f~!(Bj;) & l'insieme dei distributori d’Italia in
cui il 4 maggio 2006 la benzina senza piombo costava meno di 1.1 euro al litro.

Osservazione 3.3 Una funzione con dominio I'insieme dei numeri naturali ¢ spesso
chiamata successione. Infatti dare una funzione a: N — A significa scegliere una se-
quenza di elementi del codominio, cominciando da a(0) e poi proseguendo con a(1),
a(2) e cosi via. Di solito in questo caso si scrive a,, invece di a(n). Riparleremo di
successioni in un prossimo capitolo.

Osservazione 3.4 Stai attento a non confondere il concetto di funzione con quello
di equazione. Come detto, una funzione f: A — B ¢ un modo per associare a ogni
elemento del dominio A un elemento del codominio B. Invece, un’equazione € una
domanda associata alla f e a uno specifico elemento b € B del codominio. Infatti,
studiare Pequazione f(x) = b vuol dire chiedersi se esistono elementi a € A del
dominio che abbiano immagine b, cioe tali che f(a) = b. In altre parole, risolvere
I'equazione f(z) = b equivale a trovare I'immagine inversa f~1({b}) tramite f del
sottoinsieme {b}; gli elementi di f~!({b}) sono le soluzioni dell’equazione f(z) = b.
Ovviamente, se b non appartiene all'immagine di f allora f=1({b}) = @, cioe
lequazione f(x) = b non ha soluzioni.

EseMPIO 3.16 Sia p:R — R il polinomio p(t) = t> — 1. Se ¢ € R & un qualsiasi
numero reale, risolvere I'equazione p(x) = ¢ equivale a trovare (se esistono) dei nu-
meri reali che diano risultato ¢ elevandoli al quadrato e sottraendo 1. Per esempio,
I'equazione z? —1 = 0 ha come soluzione i numeri 1 e —1, cio¢ p~({0}) = {1, —1}.
Invece, p~1({—2}) = @, cioe I'equazione 2 — 1 = —2 non ha soluzioni (in quanto
22 — 1 & sempre maggiore o uguale di —1). Infine, I'’equazione x? — 1 = —1 ha come
unica soluzione x = 0, cioe p~*({—1}) = {0}.

Osservazione 3.5 Sia f: A — B una funzione da A a B. Se A; & un sottoinsieme
di A, la funzione f chiaramente determina anche una legge che a ogni elemento
di A; associa un elemento di B (la stessa legge di prima), e quindi una funzione
da A; a B. Questa nuova funzione si chiama restrizione di f ad Aj, e si indica
con f|a,. Se capitera, scriveremo f(A;1) e non f|a, (A1) per indicare I'immagine
di f ristretta ad A;, in modo da non complicare troppo le formule.

EsEMPIO 3.17 La funzione f = p|n:N — R che associa a ogni numero naturale
il suo successore ¢ la restrizione a N del polinomio p: R — R dato da p(t) = ¢+ 1.

EseEMPIO 3.18 La funzione che ci fornisce la concentrazione del glucosio nel san-
gue di un paziente ogni ora € una restrizione della funzione dell’Esempio 3.3 che ci
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fornisce la concentrazione del glucosio a ogni istante.

Osservazione 3.6 Cambiando il dominio di una funzione cambiano le soluzioni
delle equazioni che possiamo associare alla funzione. Per esempio, sia p: R — R il
polinomio p(x) = 22—1 visto nell’Esempio 3.16, e indichiamo con ¢ = p|p+:RT — R
la sua restrizione ai soli numeri reali positivi. Allora 'equazione ¢(z) = 0 ha come
unica soluzione z = 1, in quanto ¢~ ({0}) dev’essere un sottoinsieme del dominio
di g, cioe RT.

Nel definire il concetto di funzione, abbiamo sottolineato che & importante che
a ogni elemento del dominio venga associato esattamente un elemento del codomi-
nio; se questo non avviene non si puo parlare di funzione. Richiedendo proprieta
analoghe per gli elementi del codominio possiamo invece identificare alcune classi
particolarmente significative di funzioni.

Per esempio, non sempre ogni elemento del codominio ¢ associato a (& immagine
di) un elemento del dominio; in generale, 'immagine & un sottoinsieme proprio del
codominio. Se invece f: A — B ¢ una funzione tale che ogni elemento del codominio
¢ immagine di (almeno) un elemento del dominio, cio¢ Im f = B, diremo che f &
surgettiva.

0 UG

Figura 3.3 Fungzioni surgettive e non surgettive.

In termini della rappresentazione grafica introdotta nell’Esempio 3.10, una fun-
zione & surgettiva se ogni elemento del codominio & raggiunto da almeno una freccia:
nella Figura 3.3 la funzione a sinistra e surgettiva, quella a destra no.

Osservazione 3.7 1In termini di equazioni, dire che una funzione f: A — B ¢ sur-
gettiva equivale (perché?) a dire che per qualsiasi b € B l'equazione f(x) = b ha
almeno una soluzione.

EsemMpIo 3.19 1 polinomio p: R — R dato da p(t) = 2t — 1 & surgettivo. Infatti,
per ogni b € R si ha f((b + 1)/2) = b, cioe I'elemento b del codominio ¢ immagine
dell’elemento (b + 1)/2 € R del dominio. Invece, il polinomio ¢:R — R dato
da ¢(t) = t?> + 1 non & surgettivo, in quanto I’equazione ¢(x) = 0 non ha soluzioni
(cioe 0 non & nell’'immagine di q).

Un’altra cosa che puo accadere ¢ che ci siano elementi del codominio che siano
associati a piu di un elemento del dominio, cioe che due elementi diversi del dominio
abbiano la stessa immagine. Se invece f: A — B & tale che ogni elemento del
codominio ¢ immagine di al pit un elemento del dominio, cioe se f associa elementi
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Figura 3.4 Funzioni iniettive e non iniettive.

diversi del codominio a elementi diversi del dominio — cioe se, in simboli, a; # as
implica f(a1) # f(ag) — diremo che f & iniettiva.

In termini della solita rappresentazione grafica, una funzione & iniettiva se su
ogni elemento del codominio arriva al pili una freccia (ma pud anche non arrivarne
alcuna): nella Figura 3.4 la funzione a sinistra ¢ iniettiva e quella a destra no.

Osservazione 3.8 In termini di equazioni, dire che una funzione f: A — B ¢ iniet-
tiva equivale (perché?) a dire che per qualsiasi b € B l'equazione f(z) = b ha al
massimo una soluzione (ma puod anche non averne).

EsemMPIO 3.20 Il polinomio p: R — R dato da p(t) = 2t — 1 & iniettivo. Infatti, se
a1, az € R sono tali che p(a;) = p(ag) si deve avere 2a; —1 = 2as—1, ciot 2a1 = 2as,
e quindi a; = ay. Invece, il polinomio ¢: R — R dato da ¢(t) = t2+41 non @ iniettivo,
in quanto ’equazione g(x) = 2 ha due soluzioni 1 e —1, cioe ¢(1) = 2 = g(—1).

Una funzione f: A — B iniettiva e surgettiva verra detta bigettiva (o biiettiva,
o biunivoca). Tramite una funzione bigettiva, ciascun elemento del codominio &
associato a uno e un solo elemento del dominio?; se b € B, esiste un unico a € A tale
che f(a) =b. Questo ci permette di definire una funzione da B ad A, la funzione
inversa f~1: B — A, ponendo f~1(b) = a, dove a € A & quell'unico elemento tale
che f(a) =b. Le funzioni bigettive si dicono anche invertibili.

Usando di nuovo la rappresentazione dell’Esempio 3.10, una funzione & bigettiva
se su ogni elemento del codominio arriva esattamente una freccia, e in tal caso la
funzione inversa si ottiene invertendo il senso delle frecce. Per intenderci, nessuna
delle funzioni nelle Figure 3.3 e 3.4 era bigettiva, mentre la Figura 3.5 ci mostra
una funzione invertibile (a sinistra) assieme alla sua inversa (a destra).

A B A B

Figura 3.5 Una funzione bigettiva e la sua inversa.

4 In un certo senso, questo vuol dire che il dominio e il codominio hanno lo stesso numero
di elementi; in A ce ne sono tanti quanti in B. Si dice anche che f & una corrispondenza
biunivoca fra A e B.
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Osservazione 3.9 In termini di equazioni, dire che una funzione f: A — B ¢ inver-
tibile equivale (perché?) a dire che per qualsiasi b € B l'equazione f(z) = b ha
esattamente una soluzione. La funzione inversa e ottenuta associando a ciascun
b € B l'unica soluzione a € A dell’equazione f(z) = b.

EsemMpPio 3.21 Dagli esempi precedenti deduciamo che il polinomio p:R — R
dato da p(t) = 2t — 1 & bigettivo, e la funzione inversa p~::R — R & data
dap=t(t)=(t+1)/2.

Osservazione 3.10 Attenzione: 'essere o meno surgettiva (o iniettiva) dipende for-
temente dal dominio e dal codominio di una funzione. Per esempio, se f: A — B
¢ una funzione non surgettiva, la funzione f1: A — Im f data dalla stessa legge
di f (cioe fi(a) = f(a) per ogni a € A) & surgettiva, in quanto abbiamo tolto
dal codominio tutti gli elementi di B che non stavano nell’immagine. Se invece
g: A — B & una funzione non iniettiva, scegliamo per ogni elemento b € Img un
specifico elemento del dominio A con immagine b, e indichiamo con A; il sottoin-
sieme di A composto dagli elementi cosi scelti. Allora g|a,: A; — B ¢ iniettiva, in
quanto abbiamo tolto dal dominio tutti gli elementi che hanno la stessa immagine
di elementi di A;.

ESEMPIO 3.22 Abbiamo visto che il polinomio ¢: R — R dato da q(t) = t> + 1
non € né iniettivo né surgettivo. Si vede subito (perché?) che 'immagine di ¢ &
la semiretta [1,400); quindi la funzione ¢;: R — [1,+00) data da q;(t) = >+ 1 &
surgettiva. Inoltre, ogni elemento di [1,+00) & immagine tramite ¢; di un unico
numero non negativo; quindi la restrizione g2 = qi[[0,400): [0, +00) — [1,400) &
iniettiva e surgettiva, cioe bigettiva.

Osservazione 3.11 Attenzione a non confondere i concetti di funzione inversa e di
immagine inversa. La funzione inversa f~! associa a ogni elemento del codominio
di f un elemento del dominio di f, ed esiste soltanto quando la funzione f e
bigettiva. L’immagine inversa, invece, associa a un sottoinsieme del codominio un
sottoinsieme del dominio — per cui non € una funzione definita sul codominio —
ed esiste sempre, anche quando la funzione f non & bigettiva.

Osservazione 3.12 Attenzione anche a non confondere i concetti di funzione e di
funzione iniettiva. Una funzione f: A — B associa sempre a ogni elemento di A
uno e un solo elemento di B; per una funzione iniettiva invece ogni elemento di B
e immagine di al pit un elemento di A, che & un concetto ben diverso. In una
funzione qualunque, da ogni elemento del dominio parte esattamente una freccia;
in una funzione iniettiva, su ogni elemento del codominio arriva al piu una freccia.

Supponiamo ora di avere due funzioni f: A — B e ¢g: B — C, dove il codominio

di f coincide col dominio di ¢g. In tal caso possiamo definire una nuova funzione,
la composizione g o f: A — C' delle funzioni f e g, tramite la formula

Vae€ A (g0 f)a) =g(f(a)) . (3.2)
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La g o f ¢ effettivamente una funzione: infatti, f associa a ciascun a € A un unico
elemento di B, e g associa a quest’ultimo un unico elemento di C, per cui go f &
una legge che a ciascun elemento di A associa uno e un solo elemento di C.

Osservazione 3.13  Attenzione: nella composizione g o f prima si applica f e poi si
applica g. Infatti, per calcolare go f(a) = g(f(a)) dobbiamo prima trovare f(a) e
poi 'immagine di f(a) tramite g.

Osservazione 3.14 Piu in generale, la composizione go f di due funzioni f: A — B
e g:C — D e ben definita non appena 'immagine di f e contenuta nel dominio
di g. Infatti in tal caso il secondo membro di (3.2) & ben definito per ogni a € A.

gof
Figura 3.6 Composizione di funzioni.

EseMPIO 3.23 Prendiamoi tre insiemi A = {1,2}, B = {a,b,c}, C = {©,, &, &}
e le funzioni f: A — Beg: B — C dateda f(1) =¢, f(2) =bedag(a) = & = g(b),
e g(c) = O. Allora la composizione di f e g ¢ la funzione go f: A — C data
da (go f)(1) =V e (go f)(2) = & (vedi la Figura 3.6).

EseEmPIO 3.24 Siano f:N — R e g:R — R le funzioni date da f(n) = 2n + 3
e da g(x) = x2. Allora la composizione di f e g & la funzione go f:N — R data
da (go f)(n) = g(f(n)) = g(2n + 3) = (2n + 3)%. Nota che 'immagine di go f &
contenuta in N, anche se 'immagine di g & ben piu grande (& l'insieme di tutti i
numeri reali non negativi).

Osservazione 3.15 Attenzione: la composizione non ¢ commutativa. Se go f &
definita, non & detto che f o g lo sia, e anche se lo fosse potrebbe essere alquanto
diversa da g o f.

EsEmMPIO 3.25 Sia f la funzione che associa a ogni citta d’Italia il suo sindaco, e
g la funzione che associa a ogni essere umano il suo gruppo sanguigno. Allora go f
¢ la funzione che associa a ogni citta il gruppo sanguigno del suo sindaco, ma fog
si guarda bene dall’essere definita. Infatti, calcolare f o g richiederebbe di trovare
il sindaco di un gruppo sanguigno. ..
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ESEMPIO 3.26  Siano p, ¢:R — R i polinomi p(t) = 2t — 1 e q(t) = t? + 1. Allora
q(p(t)) =q(2t —1) = (2t — 1) +1=4t> — 4t + 2

mentre
p(gt)) =p(*+1)=2(t*+1) - 1=2>+1,

per cui gop e pogq, pur essendo entrambi definiti, sono polinomi alquanto diversi.

Esercizio 3.1 Dati a, b € R, indichiamo con pgp:R — R il polinomio Ii-
neare pqp(t) = at +b. Per quali valori di a e b il polinomio p,; € iniettivo?
Per quali surgettivo? Per quali bigettivo?

Esercizio 3.2 Siano f: A — B e g: B — C due funzioni tali che go f: A — C sia
iniettiva. Puoi dedurre che f é iniettiva? O che g é iniettiva? Perché?

A ogni funzione f: A — B possiamo associare un sottoinsieme del prodotto
cartesiano del dominio col codominio che rappresenta bene la funzione, e da cui
(come vedremo) saremo in grado di leggere proprieta della funzione stessa.

Sia allora f: A — B una funzione, di dominio A e codominio B. Il grafico I'y
di f e il sottoinsieme del prodotto cartesiano A x B dato da

Iy={(a,b) e AxB|b=f(a)} ={(a,f(a)) |a€ A} CAxB.

Esempio 3.27 1l grafico della funzione f: A — B dell’Esempio 3.10 ¢ dato da

Ly= {(1,0),(2,a),(3,d), (4,b)} .
Infatti, F(1) = b, f(2) = a, f(3) = d e f(4) b

EseEMmpio 3.28 1l grafico della concentrazione di glucosio nel sangue di un pa-
ziente & l'insieme delle coppie ordinate (t,c) € R? di numeri reali per cui ¢ & la
concentrazione di glucosio misurata al tempo t.

EseEmpio 3.29 1l grafico della funzione gruppo sanguigno ¢ l'insieme delle coppie
ordinate (p, G) tali che G sia il gruppo sanguigno della persona p.

Non ogni sottoinsieme di un prodotto cartesiano A x B puo essere il grafico di
una funzione da A a B. Infatti, un sottoinsieme I' C A x B ¢ il grafico di una
funzione f se e solo se (perché?) per ogni a € A esiste un unico elemento b € B
tale che (a,b) in I, e in tal caso b = f(a).

Esercizio 3.3 SiaI' C A x B un sottoinsieme (non vuoto) di un prodotto car-
tesiano tale che per ogni a € A esiste al pilt un elemento b € B (ma potrebbe non
esisterne alcuno) tale che (a,b) € T'. Indica con Ay C A I'insieme degli elementi
a € A per cui esiste un b € B con (a,b) € I'. Mostra cheI' C Ay x B, e che T &1l
grafico di una funzione da A, a B.
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Se mettiamo gli elementi di A su un’ipotetica linea orizzontale, e quelli di B
su una ipotetica linea verticale, allora gli elementi di A x B corrispondono a tutte
le intersezioni delle linee verticali passanti per elementi di A con le linee orizzon-
tali passanti per elementi di B. In questa rappresentazione grafica, un sottoin-
sieme I' C A x B & un grafico se e solo se ogni linea verticale passante per un
elemento di A interseca I' in uno e un solo punto (perché?).

Considerando invece le intersezioni delle linee orizzontali con il grafico possiamo
identificare alcune proprieta della funzione. Per esempio, una funzione f: A — B
¢ surgettiva se e solo se per ogni b € B esiste almeno un elemento a € A tale
che b = f(a), o, in altre parole, tale che (a,b) € T'y. Quindi (perché?) f e surgettiva
se e solo se ogni linea orizzontale passante per un elemento di B interseca il grafico
di f. Piu in generale, 'immagine di f consiste negli elementi b € B tali che la linea
orizzontale passante per b interseca il grafico di f.

Analogamente, una funzione f: A — B ¢ iniettiva se e solo se per ogni b € B
esiste al massimo un elemento a € A tale che b = f(a), o, in altre parole, tale
che (a,b) € T'y. Quindi (perché?) f ¢ iniettiva se e solo se ogni linea orizzontale
passante per un elemento di B interseca il grafico di f in al massimo un punto.

Osservazione 3.16 Piu in generale, diremo che un sottoinsieme qualsiasi R C Ax B
rappresenta una relazione fra gli elementi di A e gli elementi di B, nel senso che
a € A ¢ in relazione con b € B se e solo se (a,b) € R.

EseMpio 3.30 Se A e linsieme dei neuroni del tuo cervello, il sottoinsieme
R C A x A delle coppie (a1, as2) di neuroni tali che il neurone a; sia in grado di
mandare un segnale elettrico al neurone as rappresenta una relazione sull’insieme
dei neuroni del tuo cervello.

EsemP1o 3.31  Se A ¢ l'insieme degli esseri umani vivi il 9 dicembre 2006, allora la
relazione “essere sposato a” € rappresentata dal sottoinsieme R C A X A costituito
dalle coppie (ordinate) di coniugi.

EseEmMP1O 3.32 Sia A l'insieme degli elementi chimici, e B = N. Allora possiamo
considerare la relazione R C A x N costituita dalle coppie (a,n) € A x N, dove n
¢ il peso atomico (arrotondato all’intero piu vicino) di un isotopo dell’elemento a.
Siccome ogni elemento ha isotopi con pesi atomici diversi (per esempio, I'idrogeno
ha isotopi con peso atomico 1, 2 e 3), questa relazione non ¢ il grafico di una
funzione.

EsemPIO 3.33  L’insieme delle coppie (x,%) di numeri reali tali che 22 + y? > 1
rappresenta una relazione sull’insieme di numeri reali.

3.2 Coordinate cartesiane

Nel seguito di questo corso ci occuperemo spesso di funzioni con dominio e codo-
minio contenuti nella retta reale R (funzioni reali di variabile reale). Il grafico di
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queste funzioni & contenuto in R x R = R?; obiettivo di questa sezione & richiamare
le idee di base della geometria analitica, che permettono di identificare R? con il
piano euclideo e quindi rappresentare i grafici di funzioni reali di variabile reale
come sottoinsiemi del piano.

Nella Sezione 1.1 abbiamo visto come costruire una corrispondenza biunivoca
fra i punti di una retta e i numeri reali; vediamo ora come usare una procedura
analoga per costruire una corrispondenza biunivoca fra i punti del piano e le coppie
ordinate di numeri reali.

Il primo passo consiste anche stavolta nella scelta di un punto O del piano che
chiameremo origine; sara il punto che verra associato alla coppia (0, 0), e che quindi
sara in un certo senso il centro della nostra rappresentazione.

Il secondo passo consiste nella scelta di una retta r; qualsiasi passante per
lorigine; sara I'asse delle ascisse.

Il terzo passo consiste nella scelta di un punto A; distinto dall’origine sull’asse
delle ascisse. Come abbiamo visto nella Sezione 1.1, questa scelta fornisce un’unita
di misura e un’orientazione sull’asse delle ascisse r1, e quindi una corrispondenza
biunivoca fra i punti di 7; e i numeri reali. Nota che la retta r; € 'unica retta
passante per O e Aq; quindi l'asse delle ascisse ¢ completamente determinato da
(Porigine e dal) punto A;.

Il quarto passo consiste nella scelta dell’asse delle ordinate, una seconda retta 7o
passante per l'origine e distinta da r;. Usualmente si sceglie ’asse delle ordinate
ortogonale all’asse delle ascisse, ma non e strettamente necessario; la costruzione
che stiamo descrivendo funziona con qualsiasi retta per l'origine diversa da 7.

Il quinto e ultimo passo consiste nella scelta di un punto A, distinto dall’origine
sull’asse delle ordinate 7o, ottenendo un’unita di misura e un’orientazione anche
su ro (e l’asse delle ordinate & completamente determinato dalla scelta del punto Ao
fuori dall’asse delle ascisse).

Come vedremo fra un secondo, la scelta dei tre punti O, Ay e As, o, come diremo,
la scelta del sistema di riferimento (o di coordinate) R(O, A1, A3), determina una
corrispondenza biunivoca fra punti del piano e coppie ordinate di numeri reali.

Osservazione 3.17 Se l'unitd di misura sull’asse delle ascisse (la lunghezza del
segmento OA;) & diversa da quella sull’asse delle ordinate (la lunghezza del seg-
mento OAs), si parla di sistema di riferimento dimetrico; se invece sono uguali si
parla di sistema di riferimento monometrico. La scelta di un sistema di riferimento
monometrico o di uno dimetrico dipende molto dal tipo di problema che si deve
affrontare; vedi I’Osservazione 3.20.

Scegliamo ora un punto P del piano; dobbiamo associargli una coppia di numeri
reali. La procedura ¢ la seguente: cominciamo tracciando la retta passante per P
e parallela all’asse delle ordinate. Questa retta interseca ’asse delle ascisse in un
unico punto Pp, a cui corrisponde (grazie alla scelta dell’unita di misura) un unico
numero reale z € R, ’ascissa del punto P.

Analogamente, la retta passante per P e parallela all’asse delle ascisse interseca
I’asse delle ordinate in un unico punto P,, a cui corrisponde un unico numero
reale y € R, Pordinata del punto P. La coppia (x,y) € R? sono le coordinate
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cartesiane del punto P rispetto al sistema di riferimento R(O, A1, Az); vedi la
Figura 3.7.

Al / F’1

Figura 3.7 Coordinate nel piano.

Abbiamo quindi costruito una funzione P A (z,y) che associa a ogni punto
del piano una ben definita coppia di numeri reali. Per verificare che & una corri-
spondenza biunivoca, ci basta costruire la funzione inversa, cioeé una funzione g che
associa a ogni coppia (z,y) di numeri reali un punto del piano in modo che sia go f
sia f o g siano 'identita.

Per costruire g ci basta invertire la precedente procedura. Data la coppia di
numeri (z,y), sia P; € ry il punto dell’asse delle ascisse associato a x, e Py € 1o
il punto dell’asse delle ordinate associato a y. Allora la retta passante per P;
parallela all’asse delle ordinate interseca la retta passante per P», parallela all’asse
delle ascisse in un unico punto P; poniamo ¢(z,y) = P. In questo modo abbiamo
ottenuto una funzione g che associa a ogni coppia di numeri reali un punto del
piano. Non ¢ difficile vedere (controlla) che g & effettivamente l'inversa di f, per
cui abbiamo trovato una corrispondenza biunivoca fra i punti del piano e le coppie
di numeri reali.

Osservazione 3.18 Nello spazio, scegliendo un terzo asse r3, non contenuto nel
piano determinato dalle due rette 1 ed 72, e un punto Az € r3 si ottiene (esercizio,
non troppo difficile, per te) una corrispondenza biunivoca fra i punti dello spazio e
le terne ordinate di numeri reali.

Osservazione 3.19 Quale sistema di riferimento scegliere dipende dal problema che
si deve affrontare. Se e un problema di tipo geometrico avente a che fare con figure
nel piano, allora potrebbe essere il problema stesso a suggerire le scelte migliori. Per
esempio, se si deve studiare una circonferenza di solito conviene scegliere il centro
della circonferenza come origine del sistema di riferimento; se si deve studiare un
parallelogramma conviene scegliere gli assi paralelli ai lati del parallelogramma. Nel
seguito, pero, noi ci troveremo molto spesso a seguire la strada opposta: partiremo
da un insieme di coppie di numeri reali (per esempio, il grafico di una funzione reale
di variabile reale) e vogliamo associargli un sottoinsieme del piano. In tal caso, la
scelta del sistema di riferimento dev’essere fatta in modo che 'insieme (il grafico)
sia rappresentato nella maniera piu fedele possibile. Per esempio, tutto I'insieme (o
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almeno la sua parte piu significativa) dev’essere contenuto nella porzione di piano
a noi visibile, occupandola in buona parte. Per intenderci, se ascissa e ordinata
delle coppie di numeri che vagliamo rappresentare nel piano variano fra 10 e 20,
e abbiamo a disposizione un intero foglio formato A4, potremo mettere I'origine
in basso a sinistra nel foglio, scegliere assi ortogonali e unita di misura di circa
un centimetro. Ma se ascisse e ordinate variassero fra 10° e 2 - 10°, questa scelta
rappresenterebbe 'insieme a un paio di chilometri dal nostro foglio; e se ascisse e
ordinate variassero fra 107! e 2- 107! con questa scelta il nostro insieme verrebbe
rappresentato in un quadratino di un millimetro di lato.

Osservazione 3.20 Anche la scelta fra sistemi di riferimento monometrici e dime-
trici dipende da cosa vogliamo rappresentare. Tipicamente, se ascisse e ordinate si
riferiscono a quantita dello stesso tipo e dello stesso ordine di grandezza i sistemi
monometrici sono piul convenienti; ma se ascisse e ordinate si riferiscono a gran-
dezze di tipo diverso (per esempio, tempo e concentrazione del glucosio nel sangue)
allora un sistema dimetrico puo essere piu efficiente. Attenzione: passare da un
sistema monometrico a un sistema dimetrico cambia ’aspetto degli insiemi raffigu-
rati. Per esempio, un quadrato in un sistema monometrico diventa un rettangolo
in un sistema dimetrico, una circonferenza diventa un’ellisse, le rette cambiano
pendenza, e cosi via. Anche I'aspetto di un grafico cambia passando da un sistema
di riferimento a un altro (per quanto le informazioni contenute siano sempre le
stesse); ¢ importante che tu scelga il sistema di riferimento in modo che il disegno
evidenzi al meglio le caratteristiche che tu ritieni piu importanti in quel grafico.

CURIOSITA 3.1 Scegliendo un sistema di riferimento diverso, allo stesso punto P vengono as-
sociate coordinate diverse; che relazione c’¢ fra loro? Indichiamo con A? il piano euclideo,
e con R = R(O,A:1,A2) e R" = R(O’, A}, A}) due sistemi di riferimento sul piano. Il si-
stema R ci fornisce una bigezione f: A? — R2, che associa a ciascun punto P € A? la
coppia di coordinate f(P) = (z,y). Analogamente, il sistema R’ ci fornisce una seconda
bigezione f’: A2 — R2?, che associa al punto P € A? le coordinate f'(P) = (2/,y’). La
composizione f’o f~1:R? — R2 & quindi una bigezione di R? con se stesso, che manda le coor-
dinate (z,y) nelle coordinate (z’,y’); in altre parole, la funzione f’ o f=! & il cambiamento di
coordinate dal sistema R al sistema R’. Si puo dimostrare che

{ ' =bnzr+bytc,
Y =ba1x + baay +ca,

dove (¢1,¢2) = f/(O) sono le coordinate di O nel sistema di riferimento R’, e b1, b1a, ba1, bao
sono opportuni numeri reali.

Osservazione 3.21 Dunque una volta fissato un sistema di riferimento abbiamo una
corrispondenza biunivoca fra punti del piano e coppie ordinate di numeri reali. Per
questo motivo spesso, con un lieve abuso di terminologia, useremo frasi del tipo “il
punto P = (z,y)” invece di “il punto P di coordinate (z,y) rispetto al sistema di
riferimento dato”.

Ricordiamo adesso un po’ di terminologia legata alle coordinate cartesiane. Sup-
poniamo di aver fissato un sistema di riferimento R(O, Ay, A2). L’insieme dei punti
con ordinata positiva (rispettivamente, negativa) sara detto semipiano superiore
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(rispettivamente, semipiano inferiore); 'insieme dei punti con ascissa positiva (ri-
spettivamente, negativa) sard detto sempiano destro (rispettivamente, semipiano
sinistro). L’insieme dei punti con ascissa e ordinata positiva sara detto primo qua-
drante; quello dei punti con ascissa negativa e ordinata positiva secondo quadrante;
quello dei punti con ascissa e ordinata negative terzo quadrante; quello dei punti
con ascissa positiva e ordinata negativa quarto quadrante. In altre parole, i qua-
dranti sono ordinati in senso antiorario, partendo da quello con ascisse e ordinate
positive, che ¢ la porzione di piano che si usa piu spesso.

3.3 Equazioni e disequazioni

Oltre a permettere di rappresentare visivamente i grafici di funzioni, le coordinate
cartesiane servono anche a dare una rappresentazione grafica di equazioni e di-
sequazioni. In questa seziome supporremo di aver fissato una volta per tutte un
sistema di riferimento.

Cominciamo con un’osservazione molto semplice. La costruzione che abbiamo
fatto mostra (perché?) che tutti i punti di una retta parallela all’asse delle ascisse
hanno la stessa ordinata, e che tutti i punti con la stessa ordinata stanno su una
retta parallela all’asse delle ascisse®. In altre parole, per ogni ¢ € R I'insieme dei
punti (vedi I’Osservazione 3.21)

{(z,¢) |z € R} = {(x,y) € R? | y = ¢} C R? (3.3)

¢ una retta parallela all’asse delle ascisse; e, viceversa, ogni retta parallela al-
I’asse delle ascisse € descrivibile in questo modo. Molto spesso, si dice che la retta
{(z,y) € R? | y = ¢} ¢ data dall’equazione y = c, o, ancora, che ¢ la retta di equa-
zione y = ¢, intendendo che & l'insieme dei punti (z,y) del piano che soddisfano la
relazione y = c. Per esempio, ’asse delle ascisse ¢ la retta di equazione y = 0.

Ragionando nello stesso modo vediamo che ogni retta parallela all’asse delle
ordinate ¢ descritta da un’equazione della forma x = ¢ con ¢ € R, e viceversa che gli
insiemi del piano di equazione x = ¢ sono tutti rette parallele all’asse delle ordinate.
In particolare, I’asse delle ordinate ¢ esattamente la retta di equazione x = 0.

Possiamo descrivere in modo analogo il grafico I'y di una funzione f:1 — R
reale di variabile reale con dominio I C R. Infatti, sappiamo che

Ly={(z,y) eI xR|y=f(x)};

quindi possiamo dire che il grafico di f & Iinsieme di equazione y = f(x). Nota
che stiamo sottintendendo il fatto che ci limitiamo a considerare punti (z,y) con
2 appartenente al dominio di f, perché altrimenti la scrittura f(z) non avrebbe
Senso.

5 Convinciti che queste ultime due frasi dicono cose diverse, e chiediti perché abbiamo
bisogno di entrambe per I'affermazione seguente.
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EseEMPIO 3.34 Sia f:R — R il polinomio quadratico f(z) = 2% — 3z +2. Allora il
grafico di f & I'insieme di equazione y = 22 — 3z + 2, che & una parabola. Siccome
la funzione f & definita su tutta la retta reale, non ci sono limitazioni sui valori
che = puo assumere.

Esemp1O 3.35 Sia f:[-1,1] — R la funzione f(z) = v/1 —z2. Allora il grafico
di f & linsieme di equazione y = v/1 — a2, cioé la semicirconferenza superiore di
centro l'origine e raggio 1 (e ovviamente = ¢ compreso nell’intervallo [—1, 1], perché
la funzione f & definita solo in quell’intervallo).

Supponiamo ora di voler risolvere ’equazione f(x) = 0, cioe di voler trovare gli
elementi del dominio della funzione f: I — R che vengono mandati in 0 da f. Per
capire il significato geometrico del problema, scomponiamo ’equazione f(z) = 0
nelle due equazioni f(xz) = y e y = 0; chiaramente, il numero z soddisfa I'equa-
zione f(x) = 0 se e solo se la coppia (z,y) soddisfa le due equazioni f(z) = y
ey =0. Ma f(z) =y & Pequazione del grafico di f, e y = 0 & Pequazione dell’asse
delle ascisse; quindi i punti (x,y) che soddisfano entrambe queste equazioni sono
quelli che stanno sull’intersezione del grafico di f con ’asse delle ascisse. Quindi
le soluzioni dell’equazione f(x) = 0 sono le ascisse dei punti di intersezione del
grafico di f con l'asse delle ascisse. In maniera assolutamente analoga si vede che,
pill in generale, le soluzioni dell’equazione f(x) = ¢ sono le ascisse dei punti di
intersezione del grafico di f con la retta di equazione y = c.

ESEMPIO 3.36 Se f(x) = 2% — 3z + 2 si vede subito che il grafico di f interseca
lasse delle ascisse nei punti (1,0) e (2,0). Siccome il grafico di f ¢ una parabola
rivolta verso l’alto, ha ordinata minima nel vertice (1/2, f(1/2)) = (1/2,-1/4).
Quindi se ¢ < —1/4 il grafico di f non interseca la retta y = ¢, e di conseguenza ’e-
quazione f(x) = ¢ non ha soluzione. La retta y = —1/4 interseca il grafico in un solo
punto, per cui 'equazione f(x) = —1/4 ha un’unica soluzione. Infine, se ¢ > —1/4
la retta y = ¢ interseca il grafico di f in due punti, per cui 'equazione f(x) = ¢ ha
due soluzioni distinte.

La retta y = ¢ ¢ il grafico della funzione costante g(z) = ¢. Se consideriamo
una funzione g:J — R qualsiasi, con J C R, allora un ragionamento analogo al
precedente mostra che le soluzioni dell’equazione f(x) = g(z) sono le ascissi dei
punti di intersezione del grafico di f con il grafico di g.

Osservazione 3.22  Questo tipo di interpretazione geometrica non serve (quasi mai)
a trovare esplicitamente la soluzione di un’equazione. Serve invece a dare un’idea
qualitativa della struttura dell’insieme delle soluzioni (quante dovrebbero essere, in
che zona si dovrebbero trovare, eccetera), e a visualizzare cosa sta succedendo.

Portiamo questo procedimento ancora oltre. C’¢ ancora un altro modo per
descrivere il grafico di una funzione: come 'insieme dei punti (z,y) che risolvono
lequazione f(z) —y = 0 (e con = nel dominio di f). In altre parole, stiamo
prendendo la funzione di due variabili reali F'(z,y) = f(z) — y e considerando
I'insieme dei punti (z,y) che soddisfano 'equazione F(x,y) = 0.
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Chiaramente, possiamo ripetere ’operazione con qualsiasi funzione reale di due
variabili reali. In altre parole, data una funzione F: A — R, con A C R?, possiamo
considerare U'insieme di equazione F(x,y) = 0, cioé I'insieme

S={(x,y) € A| F(z,y) = 0} CR?;

spesso scriveremo anche S = {F(z,y) = 0}.
Usare le equazioni ¢ una delle tecniche piu efficienti per descrivere sottoinsiemi
del piano, anche molto piu generali dei grafici.

Esempio 3.37 La circonferenza di centro l'origine e raggio unitario chiaramente
non & un grafico, in quanto ci sono rette verticali che la intersecano in due punti; ri-
cordando I’Esempio 3.35, possiamo solo dire (perché?) che ¢ 'unione di due grafici.
Usando la tecnica appena introdotta possiamo descriverla con un’unica equazione:
¢ I'insieme di equazione 2 + 3% — 1 = 0, o, anche, di equazione 2% + 3% = 1.

CURIOSITA 3.2 Tramite questa tecnica I'introduzione delle coordinate cartesiane permette di
studiare insiemi geometrici molto piu generali di quelli alla portata dei geometri greci, limitati
a rette, circonferenze e poco altro. Un esempio di risultato completamente fuori dalla portata
dei geometri classici ¢ il teorema di Bezout. Supponiamo di avere due insiemi del piano S;
ed S, descritti rispettivamente dalle equazioni Fi(z,y) = 0 e Fx(z,y) = 0, dove Fi ed F»
sono due polinomi in due variabili di grado rispettivamente d; e dz. Allora Bezout ci dice che
i due insiemi S; ed S> si intersecano in al piu did> punti, o in un numero infinito di punti
(nel qual caso i due polinomi hanno un fattore comune). Per esempio, questo ci dice che
se una retta S» (che ¢ data da un’equazione di grado 1) interseca I'insieme S; di equazione
Fi(z,y) = 0 in piu di d; punti allora & tutta contenuta in S;.

Osservazione 3.23 Non ¢ difficile trovare I’equazione dell’'unione e dell’interse-
zione di insiemi definiti tramite un’equazione. Prendiamo S; = {Fi(x,y) = 0}
e Sy = {Fy(z,y) = 0}. Siccome il prodotto di due numeri & nullo se e solo se
almeno uno dei due lo ¢, otteniamo (perché?)

S1U Sy ={Fi(x,y)Fo(x,y) =0},

cioé I'unione S7 U So ha equazione FyFy = 0. Analogamente, siccome la somma
dei quadrati di due numeri reali € zero se e solo se entrambi sono nulli, otteniamo
(perché?)

S1N Sy ={Fi(z,y)* + Fa(z,y)* =0},

cioe 'intersezione S; N Sy ha equazione F12 + F22 =0.

Anche le disequazioni hanno un’analoga interpretazione grafica. Per esem-
pio, il semipiano superiore ¢ rappresentato dalla disequazione y > 0: infatti, un
punto (x,y) appartiene al semipiano superiore se e solo se ha ordinata positiva.
Ragionando come abbiamo fatto finora (controlla) si vede quindi che le soluzioni
della disequazione f(x) > 0 sono le ascisse dei punti del grafico di f contenuti nel
SemipLano Superiore.
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y=2x2 3z + 2

N2

Figura 3.8

ESEMPIO 3.38 Vogliamo risolvere la disequazione 22 — 3z + 2 > 0. Poniamo
f(z) = 2% — 3z + 2; risolvere la disequazione equivale (perché?) a determinare
fYRT). I grafico di f & una parabola (vedi la Figura 3.8), con la concavita
rivolta verso l'alto in quanto il coefficiente direttivo & positivo (¢ uguale a 1).
Abbiamo gia osservato (Esempio 3.36) che il grafico di f interseca I’asse delle ascisse
nei punti (1,0) e (2,0). Siccome la concavita ¢ diretta verso l'alto, il grafico di f
rimane nel semipiano positivo a destra di (2,0) e a sinistra di (1, 0); quindi I'insieme
delle soluzioni della disequazione & dato dall’unione delle due semirette (—oo, 1)
e (2,+00):

TR ={zeR|z<loz>2}=(—00,1)U(2,+00) .

Concludiamo questa sezione con un esempio di una situazione che si verifica
spesso nella pratica scientifica, coinvolgente diverse equazioni e disequazioni lineari,
e la cui rappresentazione grafica aiuta sensibilmente nel suggerire la soluzione.

EseEmP1O 3.39 Al tuo laboratorio é stato affidato il compito di contare il numero
di batteri presenti in 1000 campioni, e devi concludere il lavoro in al massimo 80
ore. Hai a disposizione due possibili contatori. Il primo & piu semplice, lo puoi
affidare anche al tuo assistente, e in un’ora conta il numero di batteri presenti in
4 campioni. 1l secondo contatore ¢ invece un modello pit sofisticato e in un’ora
conta il numero di batteri presenti in 10 campioni; ma per farlo funzionare hai
bisogno di un tecnico specializzato, che ti costa 15 euro all’ora. Siccome si avvicina
il suo compleanno, hai deciso di pagare anche il tuo assistente per questo lavoro;
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ma solo 8 euro all’ora, perché il suo contatore é pit semplice da usare. Come dividi
1 campioni fra i due contatori in modo da spendere il meno possibile? Cominciamo
col cercare di capire quali sono i vincoli imposti dal problema. Indichiamo con z;
il numero di ore di fuzionamento del primo contatore, e con s il numero di ore di
funzionamento del secondo contatore; il tuo obiettivo & trovare la coppia (x1,x2)
che ti permetta di contare tutti i campioni spendendo il meno possibile. Siccome
devi concludere il conteggio entro 80 ore (e chiaramente le ore sono numeri positivi)
otteniamo i vincoli
0<2 <80 e 0<2y <80.

Dunque la soluzione (x1, x2) deve trovarsi nella regione di piano definita da queste

disequazioni, che & chiaramente un quadrato () contenuto nel primo quadrante.
Ma non basta. Tu devi contare 1000 campioni, il primo contatore ne tratta 4

all’ora, il secondo 10 all’ora; quindi devi scegliere 1 ed x2 in modo da avere

4x1 + 1029 = 1000 ,

0, equivalentemente,

2
ZTo :100—31‘1 .

Dunque la soluzione (x1, x2) deve appartenere anche al grafico del polinomio lineare
p(z1) = 100— %xl, che € una retta; quindi deve trovarsi nel segmento ottenuto inter-
secando questa retta con il quadrato ). L’estremo superiore P; di questo segmento
& lintersezione del grafico di p con la retta x5 = 80; quindi (perché?) P; = (50, 80).
Analogamente, ’estremo destro P> di questo segmento & 'intersezione del grafico
di p con la retta x; = 80; quindi (perché?) P, = (80,68). In altre parole, la
soluzione deve stare sul pezzo del grafico di p relativo a x; che varia da 50 a 80;
vedi la Figura 3.9.

Calcoliamo ora il costo. Far lavorare il primo contatore per x; ore e il secondo
contatore per x5 ore ti costa

C(xl,:vg) = 81’1 + 15%2

euro. Quindi il tuo obiettivo & trovare il punto (z1,z2) appartenente al segmento
di estremi P; e P, per cui il costo C(z1,22) sia il minimo possibile.

Per risolvere questo problema, notiamo prima di tutto che la soluzione deve
appartenere al grafico del polinomio p, per cui dev’essere della forma (xl, p(xl)).
Sostituendo allora p(z1) a x2 nella formula del costo troviamo

2
C’(xl,p(xl)) =8z + 15 <100 - 5:171> = 1500 + 2z .

Questa ¢ una funzione lineare, con coefficiente di x; positivo; quindi cresce al
crescere di x1. Il costo minimo si ottiene quindi per il valore minimo di z, che
abbiamo visto essere 1 = 50 e corrisponde a xo = 80. Il costo minimo ¢ dunque
C(50,80) = 1600 euro. Riassumendo, il costo minimo di 1600 euro si ottiene
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42,4102,=1000
\

P,=(50,80)  *1=80

0 \

T2:80

7

P,=(80, 52)

80

Figura 3.9 Programmazione lineare.

facendo contare 200 campioni in 50 ore al primo contatore, e 800 campioni in 80
ore al secondo contatore. In particolare, contrariamente a quanto forse ci si sarebbe
potuti aspettare, la soluzione piu economica si ottiene facendo lavorare di piu
il contatore piu costoso, e non quello meno costoso: il motivo & che il secondo
contatore ¢ sensibilmente piu efficiente del primo (conta in un’ora piu del doppio
dei campioni costando meno del doppio). Infine, nota che la soluzione si trova sul
bordo dell’insieme determinato dai vincoli.

L’esempio precedente & un tipico problema di programmazione lineare: si vuole
trovare il minimo (o il massimo) di una funzione lineare ristretta a un insieme
definito da un numero finito di equazioni o disequazioni lineari. Si puo dimostrare
che la soluzione ¢ sempre un punto sul bordo dell’insieme; e sono stati sviluppati
algoritmi anche molto sofisticati per determinarla in maniera efficiente.

3.4 Diagrammi cartesiani

In questa e nella prossima sezione vogliamo riassumere le modalita pit1 comuni con
cui rappresentare graficamente dei dati.
Il primo modo & tramite un diagramma cartesiano.

EsempPiOo 3.40 Hai convinto il tuo assistente a misurarsi il livello di glucosio
nel sangue una volta all’ora per un’intera giornata; i risultati sono riportati nella
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Ora Livello di glucosio (mmol/l1) Ora Livello di glucosio (mmol/])

0

© 00 O Uk W N+

—_ =
—= O

Tabella 3.1.

5.52
6.48
6.06
5.12
4.32
4.81
5.75
6.66
6.12
5.09
4.54
4.67

12
13
14
15
16
17
18
19
20
21
22
23

TABELLA 3.1

5.11
6.90
6.55
5.91
5.08
5.23
6.11
6.50
6.06
5.33
4.43
5.05

Abbiamo quindi 24 coppie di dati: da (0,5.52) a (23,5.05). Per rappresentarli
graficamente, fissiamo un sistema di riferimento cartesiano sul piano, riportando
sull’asse delle ascisse i tempi e sull’asse delle ordinate il livello di glucosio. Ovvia-
mente conviene usare un sistema dimetrico, in quanto gli intervalli di variazione
(e le unita di misura) dei tempi e dei livelli di glucosio sono alquanto diversi. In
questo modo a ogni coppia di dati corrisponde un punto del piano, e otteniamo
la Figura 3.10, che rende molto meglio I’andamento del livello di glucosio del tuo
assistente di quanto possa farlo la mera lista di dati della Tabella 3.1 (e rivela che
il tuo assistente si ¢ fatto uno spuntino di mezzanotte).

7

Figura 3.10 Diagramma cartesiano.

5

10

15

20

In generale, la rappresentazione grafica tramite un diagramma cartesiano e utile
quando si devono visualizzare dati numerici dipendenti da una variabile numerica.
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Sulle ascisse si mettono i possibili valori della variabile indipendente (tempo, quan-
tita di sostanza, energia d’irraggiamento, ecc.) di solito controllata direttamente
dallo sperimentatore, mentre le ordinate rappresentano i valori dei dati forniti dal-
I’esperimento.

Osservazione 3.24 Un diagramma cartesiano puo essere usato anche per altri tipi
di coppie di dati. Per esempio, possiamo aver misurato apertura alare e peso di
una popolazione di colibri composta da 24 individui. Otteniamo 24 coppie di dati,
che possiamo visualizzare in un diagramma cartesiano. In questo caso, la scelta di
quale variabile usare come ascissa (se il peso o 'apertura alare) & del tutto lasciata
allo sperimentatore.

Anche se non € necessariamente sempre vero, la rappresentazione tramite un
diagramma cartesiano si usa soprattutto quando i dati sono delle variabili continue,
cio¢ variabili che possono assumere (a priori) tutti i valori intermedi fra quelli
effettivamente misurati.

EsEMPIO 3.41 Per stressare ulteriormente il tuo assistente, avresti potuto chie-
dergli di misurarsi il livello di glucosio nel sangue ogni mezz’ora, od ogni dieci
minuti, od ogni dieci secondi; e avrebbe trovato valori intermedi rispetto a quelli
rappresentati nella Figura 3.10.

Uno dei problemi principali che uno scienziato si trova ad affrontare ¢ proprio
quello dell’interpolazione: trovare un modo affidabile per predirre i valori intermedi
della quantita studiata a partire dai dati effettivamente misurati. Un problema
collegato (ma molto piu delicato) & quello dell’estrapolazione: predirre il valore della
quantita studiata per valori della variabile indipendente al di fuori dell’intervallo
misurato nell’esperimento.

EseEMPIO 3.42 Nel caso del livello di glucosio del tuo assistente, interpolare signi-
fica predirre il livello di glucosio in altri istanti della stessa giornata (per esempio,
alle 12:30, oppure alle 02:45); estrapolare significa invece predirre il suo livello di
glucosio in giorni diversi da quello in cui ¢ stato condotto I'esperimento (per esem-
pio, il giorno dopo o un mese prima). E chiaro che lestrapolazione € molto piu
rischiosa dell’interpolazione, e le predizioni ottenute sono da usare con precauzione.

11 tipo di interpolazione piu semplice consiste nell'unire con dei segmenti i punti
del diagramma, ottenendo un diagramma a spezzate come quello della Figura 3.11.

Questo metodo serve a visualizzare meglio 'andamento dei dati (se crescono o
descrescono, per esempio), ma per il resto ha molti difetti. Per esempio, ciascun
segmento dipende solo dai suoi estremi e segue una legge propria, senza tenere
conto del resto dei dati e senza tentare di trovare una singola legge che descriva
tutti i dati disponibili. Inoltre, e rigorosamente inutile per ’estrapolazione, e non
¢ applicabile se ci sono pill dati con la stessa ascissa.

Sono chiaramente necessarie tecniche di interpolazione piu sofisticate. Nel pros-
simo capitolo vedremo come interpolare una retta fra i dati (metodo dei minimi
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5 10 15 20

Figura 3.11 Diagramma a spezzate.

quadrati), come misurare la bonta dell’interpolazione fornita dalla retta, e accen-
neremo a tecniche di interpolazione pitt complesse (utili per dati dall’andamento
periodico quale sembrerebbe essere il livello di glucosio nel sangue del tuo assi-
stente).

Osservazione 3.25 Nella maggior parte delle situazioni sperimentali i dati sono mi-
surati con un certo margine di errore, e indicati con espressioni del tipo v+e, come
abbiamo visto nel Capitolo 1. Un modo per rappresentare graficamente questa
incertezza nei diagrammi cartesiani in cui la variabile indipendente € nota con pre-
cisione (per esempio perché scelta dallo sperimentatore, come nel caso dell’ora della
misura del livello di glucosio del tuo assistente) mentre la variabile dipendente & mi-
surata con un certo errore, consiste nel sostituire i punti con dei segmenti verticali
centrati nel valore stimato e di altezza il doppio dell’errore assoluto. Un esempio
nel caso del livello di glucosio del tuo assistente ¢ mostrato nella Figura 3.12.

3.5 Istogrammi

Un’altra situazione che si presenta comunemente ¢ quella di dati dipendenti da
variabili qualitative. Per rappresentare questi dati si usa un istogramma: un dia-
gramma contenente per ciascun valore della variabile qualitativa una colonna di
altezza pari al dato corrispondente a quel valore della variabile.

EsEmpPIO 3.43 Possiamo riportare su un istogramma i pesi delle cavie dell’Esem-
pio 2.19. La variabile indipendente & letichetta delle cavie (che in questo esempio &
un numero da 1 a 15, ma poteva benissimo essere una lettera o il nome delle cavie),
e la variabile dipendente, che determina I’altezza delle colonne, ¢ il peso della cavia
corrispondente. Otteniamo la Figura 3.13.

Un altro caso in cui si usano gli istogrammi ¢ quando i dati dipendono da una
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5 10 15 20

Figura 3.12 Diagramma cartesiano con barre di errore.

35
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123456 78 9101112131415

Figura 3.13 Istogramma.

variabile continua discretizzata, cioe da una variabile continua considerata pero
solo in alcuni dei valori possibili.

EsEmpiO 3.44 Un istogramma che rappresenta i valori del livello di glucosio del
tuo assistente nel corso di una giornata e riportato nella Figura 3.14.

Non & un caso che le colonne nella Figura 3.14 siano accostate mentre quelle
della Figura 3.13 siano separate. L’idea ¢ che nel caso di variabile discretizzata
listogramma (o meglio, la cima dell’istogramma) rappresenta un’approssimazione
del grafico della funzione della variabile continua (un’interpolazione ancora pit
schematica di quella data dal diagramma a spezzate). Ciascuna colonna rappre-
senta il comportamento della funzione in tutto un intervallo di valori possibili per
la variabile indipendente, I'intervallo coperto dalla base della colonna. A seconda
dei casi, I'intervallo & centrato nel valore in cui si & effettuata la misura (come nella
Figura 3.14), oppure ¢ situato fra due valori consecutivi in cui si & effettuata la mi-
sura (e in tal caso l'altezza corrisponde alla misura effettuata nel valore di sinistra;
¢ il caso della Figura 3.15, sempre riferita al livello del glucosio nel sangue del tuo
assistente ma misurato ogni due ore).
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Figura 3.14 Livello di glucosio ogni ora.
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Figura 3.15 Livello di glucosio ogni due ore.

Un altro uso degli istogrammi & per rappresentare i risultati di misure di una
stessa quantita (continua) effettuate sugli individui di una popolazione. In tal caso,
la variabile “indipendente” rappresentata sull’asse delle ascisse ¢ data dai possibili
valori della misura; le colonne dell’istogramma rappresentano invece la frequenza
assoluta dei risultati, cioe il numero di campioni che hanno fornito quel particolare
risultato. Nota che in questo caso la variabile “dipendente”, la frequenza, & una
variabile discreta, cio¢ pud assumere solo alcuni valori (i numeri naturali) e non
tutti i valori intermedi possibili.

Per costruire l'istogramma, prima di tutto si suddividono i possibili valori della
misura in intervalli (anche per poter tenere conto degli eventuali errori di misura-
zione). Sopra ogni intervallo di valori si costruisce una colonna di area proporzionale
alla frequenza assoluta, cioe al numero di misure con risultato in quell’intervallo.
Se gli intervalli sono tutti della stessa lunghezza, allora I’altezza della colonna rap-
presenta bene la frequenza (in quanto larea ¢ il prodotto base per altezza, e la
base ¢ la stessa per tutte le colonne); se invece gli intervalli sono di lunghezza di-
versa ¢ importante che la frequenza sia rappresentata dall’area e non dall’altezza,
in quanto altrimenti (come vedrai nell’esempio seguente) si potrebbero ottenere
effetti visivamente ingannevoli. In particolare, negli istogrammi di questo genere
non va disegnato 1’asse delle ordinate.
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EsEmpiO 3.45 Vogliamo rappresentare la distribuzione dei pesi delle cavie del-
I’Esempio 2.19. Abbiamo trovato pesi che variano da 26 a 37 g; una prima rap-
presentazione naturale & un istogramma con una colonna per ogni peso ottenuto,
la cui altezza indichi la frequenza di quel peso. In altre parole, stiamo suddivi-
dendo i pesi possibili in intervalli di lunghezza 1 (da 26 g inclusi a 27 g esclusi, cioe
I, =[26,27); da 27 g inclusi a 28 g esclusi, cioe Iy = [27,28); eccetera) e mettendo
su ciascun intervallo una colonna di altezza (o area, visto che gli intervalli hanno
tutti la stessa lunghezza) proporzionale al numero di cavie con peso contenuto in
quell’intervallo. Otteniamo la Figura 3.16.

3

26 27 28 29 30 31 32 33 34 35 36 37

Figura 3.16 Frequenza dei pesi delle cavie.

Se invece prendiamo gli intervalli (—o0, 26), [26,29), [29,31), [31, 33), [33,38),
e [38,400) e rappresentiamo la frequenza con l’area otteniamo la Figura 3.17. Se
avessimo rappresentato la frequenza con ’altezza avremmo ottenuto l'istogramma
della Figura 3.18, in cui sembrano esserci molte piu cavie con peso fra 33 e 38 g di
quante ce ne siano in realta.

Figura 3.17 Frequenza dei pesi delle cavie con intervalli di lunghezza variabile.

Concludiamo questa sezione ricordando un altro tipo di rappresentazione gra-
fica, gli aerogrammi (o diagrammi a torta), utile quando si vogliono mostrare dati
percentuali, con I'obiettivo di visualizzare principalmente le dimensioni relative.

Supponiamo di avere dei dati percentuali pq,...,p, con p; + -+ p, = 100%.
L’areogramma che rappresenta questi dati consiste in un cerchio suddiviso in n
settori circolari di ampiezza rispettivamente (p;/100) - 360°, ..., (p,/100) - 360° in
modo da riempire I'intero disco. Per esempio, la Figura 3.19 contiene I'aerogramma
dei dati riportati nella prima meta della Tabella 2.7.
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Figura 3.18 Frequenza data dall’altezza.

Figura 3.19 Aerogramma.

3.6 Media, mediana e moda

In molte situazioni sperimentali & necessario riassumere molti dati con un solo
numero. Vediamo due esempi tipici.

ESEMPIO 3.46 Supponiamo di voler misurare la lunghezza dell’assone della cellula
neurale di un ratto. Ripetiamo la misura dieci volte, ottenendo i seguenti risultati,
espressi in micrometri:

70.78, 74.22, 74.03, 71.71, 70.97, 73.47, 69.28, 69.62, 72.31, 72.76 .

La differenza fra i vari risultati & dovuta agli (inevitabili) errori di misurazione;
il nostro obiettivo & estrarre da queste misure un unico valore per la lunghezza
dell’assone, scelto in modo che sia plausibile che i risultati delle nostre misure
siano variazioni casuali attorno a questo valore.

EsemMPIO 3.47 Nell’Esempio 2.19 abbiamo misurato il peso di 15 cavie, ottenendo
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i seguenti pesi in grammi:
28, 32, 37, 29, 31, 30, 32, 26, 32, 27, 29, 30, 28, 31, 31.

Vorremmo trovare un numero che rappresenti il peso tipico di questa popolazione
di cavie.

In entrambi questi casi abbiamo un numero finito di dati z1, ..., x, dello stesso
tipo (molte misure della stessa quantita, sia sullo stesso campione sia su campioni
diversi), e vorremmo trovare un numero T che riassuma questi dati.

Supponiamo di riassumere i nostri dati con il valore T. Se x; = T, il dato i-esimo
¢ perfettamente rappresentato da . Ma se x; # 7, il valore T rappresenta il dato x;
solo a meno dell’errore (o scarto) T — x;. Quindi & ragionevole pensare che la scelta
migliore di T sia quella che minimizza gli errori T — x;.

Ma gli errori sono a priori tanti, uno per ogni dato, e non possiamo preten-
dere di minimizzarli tutti indipendentemente 'uno dell’altro; dobbiamo cercare di
minimizzarli nel loro complesso.

Una prima possibilita consiste nel cercare di minimizzare la somma

Z(E—xi)

degli errori, o, piu precisamente, il suo valore assoluto. Siccome il numero con
valore assoluto minimo e zero, vogliamo vedere se esiste un numero T € R tale che
>iei(@ — i) =0. Ma
n n
E ZT—z)=@—21)+ - +@T—zp)=nT— (z1+-+2,) =nT — E x;
i=1

i=1
e quindi
n n
Y=o e poftdE Ly,
i=1
Il numero T cosl ottenuto si chiama media (o media aritmetica o valor medio) dei
dati z1,...,Zy:
1 n
T = Medla(xb) = ﬁ Z X .
i=1
EsEmPIO 3.48 La media delle misure delle lunghezze dell’assone del ratto dell’E-
sempio 3.46 e

70.78+474.22 + 74.03 + 71.71 + 70.97 + 73.47 4 69.28 + 69.62 + 72.314-72.76
10

E:

=T71915.
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EsEmMPIO 3.49 La media dei pesi delle cavie dell’Esempio 3.47 &

28432+374+29+314+30+324+26+324+27+29+30+28+31431
15

T =

=30.2.

Osservazione 3.26  Gli errori T — z; si suddividono naturalmente in due categorie:
quelli positivi (per cui z; < T) e quelli negativi (per cui z; > T). La media & 'unico
T € R per cui gli errori negativi bilanciano esattamente quelli positivi.

Osservazione 3.27 Potresti obiettare che in un certo senso stiamo barando: gli
errori sono errori indipendentemente dal segno, per cui dovremmo piuttosto cercare
di minimizzare quantita del tipo

n

> @ —a)?, (3.4)

i=1

in cui ogni errore non nullo contribuisce con un termine positivo. Ma puoi stare
tranquilla: come vedremo nel prossimo capitolo, la media minimizza anche (3.4).

Osservazione 3.28 La media risente della presenza di valori estremi nei dati: un
solo dato di valore sensibilmente diverso dagli altri puo spostare la media in modo
significativo (vedi 1’esempio successivo). Per questo motivo la presenza di dati
anomali nei risultati di un esperimento va esaminata con attenzione: il valore
medio calcolato escludendo questi dati estremi puo essere piu significativo del valore
medio calcolato includendoli, a meno che la loro presenza non indichi I'esistenza
di un fenomeno imprevisto (e quindi interessante) comparso solo in quelle misure.
In ogni caso, piu i dati sono distribuiti in modo uguale su entrambi i lati della
media (cioe, pitt la media si avvicina alla mediana; vedi sotto) piu la media &
rappresentativa dei dati nel loro complesso. Fortunatamente, come discuteremo
in un prossimo capitolo, variazioni nei dati prodotte da errori casuali soddisfano
questa condizione.

EseEMPIO 3.50 Guardando i pesi delle cavie dell’Esempio 3.47 si nota subito la
presenza di un valore anomalo, i 37 g di peso della terza cavia. Se escludiamo
questo valore, la media dei pesi diventa

28+32+29+31+30+324+26+324+274+29430+28+4+ 31+ 31
14

E:

~29.71.

Quindi I’esclusione del dato anomalo ha provocato una variazione della media pari
a30.2—-29.71=049 g.

Osservazione 3.29 Nel calcolo della media aritmetica, ogni dato viene contato tutte
le volte che compare. Per esempio, nel caso delle cavie i dati assumono 8 valori
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distinti (26, 27, 28, 29, 30, 31, 32, 37), e le ripetizioni sono ammesse. Se raggrup-

piamo insieme i valori ripetuti, possiamo calcolare la media con la formula

1-26+1-2742-2842-2942-30+3-314+3-32+1-37
1+14+2+2+2+3+3+1 '

f:

Pit in generale, se abbiamo un gruppo di dati x1,...,z, che devono essere pesati
in maniera diversa (per esempio, perché compaiono con frequenze diverse) si puo
usare la media ponderata (o pesata) definita da

fizr + -+ foxn

T = ,
fito+fa
dove f1,..., fn sono numeri positivi detti pesi dei dati x1,...,x,. La media arit-
metica usuale corrisponde a prendere f; = --- = f,, = 1, cioé a pesare tutti i dati

nello stesso modo.

CuRrIOSITA 3.3 I pesi hanno una naturale interpretazione probabilistica. Se indichiamo con
F = Z;l fi la somma delle frequenze e poniamo p; = f;/F, allora p1 +---+p, = 1, e
quindi possiamo interpretare p;, come la probabilita di ottenere il valore z; facendo la nostra
misura.

Usando i p; possiamo calcolare la media ponderata con la formula

T = ipml . (3.5)
i=1

Pill in generale, in un esperimento probabilistico di spazio degli eventi Q = {z,...,z,}
composto da un numero finito di numeri reali la formula (3.5) (dove p; ora & la probabilita
dell’evento semplice z;) fornisce il valore atteso (o media) dell’esperimento. Per esempio, il
valore atteso della somma del lancio di due dadi a sei facce non truccati e

12+23+34+45+56+67+58+49+310+211+112—7
36 36 36 36 36 36 36 36 36 36 36 T
CURIOSITA 3.4 Nel caso di dati positivi, potremmo considerare invece degli errori assoluti x — z;
gli errori relativi z/z;. In questo caso, I’assenza di errore corrisponde ad avere errore relativo
uguale a 1; quindi possiamo chiederci se esiste un & € R per cui il prodotto H:;l(fc/arb) sia

esattamente uguale a 1. E facile rispondere: siccome

n
Sn

z T
SC_ i
=1 i=1
il prodotto degli errori relativi & uguale a 1 se e solo se

n 1/n

=1

Questo & & detto media geometrica di x1,...,ZT,. Si pud dimostrare che la media geometrica
€ sempre minore o uguale alla media aritmetica, cioe

§$1+'+$n7

n

(11 . .zn)l/n
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con uguaglianza se e solo se x1 = -+ = Ty,

Quando i dati non sono equamente distribuiti attorno alla media, puo essere
utile riassumerli con un altro valore che soddisfa invece questa condizione: la me-
diana. Prendiamo i nostri dati e disponiamoli in ordine crescente, in modo da
avere

T S22 <<y

Allora la mediana dei dati € un numero M tale che esattamente meta dei dati sia
minore o uguale a M, e meta sia maggiore o uguale a M: per l'esattezza,

ZT(nt1)/2 se n e dispari,
M=4: B ’
5(Tnj2 + T(nj2)41) sen & pari.

In altre parole, M ¢ il termine centrale se n € dispari, ed € la media aritmetica dei
due termini centrali se n € pari. In particolare, la mediana non & influenzata da
dati estremi anomali (ma dipende dal numero dei dati).

EseEmMPIO 3.51 Per calcolare la mediana dei pesi delle cavie dell’Esempio 3.47
cominciamo disponendoli in ordine crescente:

26 <27 <28<28<29<29<30<30<31<31<31<32<32<32<L37.

Abbiamo n = 15 dati; quindi la mediana & 'ottavo (8 = (15 + 1)/2) dato M = 30.
Nota che la mediana non cambia anche se aumentiamo il dato estremo 37, in quanto
I'ordine degli altri dati non viene modificato. Se togliamo il dato estremo 37, ci
rimangono 14 dati, per cui la mediana diventa la media aritmetica fra il settimo
(7 = 14/2) e Vottavo (8 = (14/2) 4+ 1) dato, per cui M = (30 + 30)/2 = 30. Se
invece togliamo il dato estremo 26, la mediana diventa la media aritmetica fra il
settimo e lottavo dato nel nuovo ordine, per cui diventa M = (30 + 31)/2 = 30.5.

CURIOSITA 3.5 La mediana divide i dati in due insiemi con ugual numero di elementi. I valori,
ottenuti in modo analogo, che dividono i dati in quattro insiemi con ugual numero di elementi
si chiamano quartili; in particolare, la mediana & il secondo quartile. Se ci sono moltissimi
dati, a volte si usano i percentili, che dividono i dati in cento insiemi con ugual numero di
elementi — e la mediana & il cinquantesimo percentile.

CURIOSITA 3.6 Anche la mediana minimizza un’opportuna somma di errori. Per I'esattezza, si
puo dimostrare che la mediana M dei dati x4, ..., x, rende minima la somma

Z|M*$i\
i=1

dei valori assoluti degli errori.

Media e mediana servono per riassumere dati numerici con un unico valore. A
volte si vorrebbe operare in modo analogo anche con dati non numerici (colori degli
occhi, specie di animale, eccetera). In tal caso si suddividono i dati in classi, e si
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chiama moda (o classe modale) la classe (o le classi, se ce ne sono pit d’una) col
maggior numero di elementi.

EsEMPIO 3.52 Supponiamo di avere come insieme di dati I’elenco dei maschi ita-
liani morti nel 2002, e suddividiamoli in classi d’eta come indicato nella Tabella 2.8.
Allora la moda (cio¢ la classe con pill elementi) ¢ la classe 70-79.

EseEmMPIO 3.53 Ovviamente, si puo calcolare la moda anche di dati numerici: la
moda ¢ il dato (o i dati) con frequenza assoluta maggiore. Per esempio, le classi
modali dei pesi delle solite cavie sono 31 e 32, in quanto sono i pesi che si ripetono
piu frequentemente.

3.7 Varianza

La media (o la mediana) non bastano a riassumere ragionevolmente i dati; ci serve
anche una misura di quanto la media sia rappresentativa, cioe di quanto i dati si
accumulano vicino alla media, o di quanto invece sono sparsi fra tutti i possibili
valori. In altre parole, ci serve una misura della dispersione dei dati.

Una prima misura di dispersione ¢ V'intervallo di variabilita: la differenza fra il
dato massimo xy,ax € il dato minimo Ty;y,.

EseEmMPIO 3.54 Nel caso dei pesi delle cavie, il dato massimo € x,.x = 37 e il dato
minimo € xni, = 26, per cui 'intervallo di variabilita e 37 — 26 = 11.

L’intervallo di variabilita ci dice quanto sono sparsi i dati, ma non quanto sono
dispersi rispetto alla media Z. Inoltre ¢ una misura molto grossolana; per questo
motivo & utilizzato di rado. Vogliamo introdurre ora una misura piu fine (e molto
pit utile) della dispersione dei dati intorno alla media.

Siano z1, ..., x, dati di media T. Abbiamo gia osservato che T—x; indica ’errore
che si compie sostituendo la media al posto di z; (o lerrore che si & compiuto
quando misurando T si ¢ ottenuto z;). Per quel che riguarda la dispersione, il
segno dell’errore & irrilevante; quindi conviene usare® lo scarto quadratico (T — ;).
La misura di dispersione pitt comune e piu usata ¢ allora la media degli scarti
quadratici, chiamata scarto quadratico medio o, pill sSpesso, varianza:

Var(z:) = % So@-w)?. (3.6)

6 (i sono due motivi che spingono a usare il quadrato degli errori e non i valori assoluti. Il
primo & che il quadrato, essendo un polinomio, ha proprieta algebriche molto piu gradevoli
della funzione valore assoluto. Il secondo ¢ che la media minimizza la somma dei quadrati
degli errori, mentre la somma dei valori assoluti degli errori € minimizzata dalla mediana;
vedi 1’Osservazione 3.27 e la Curiosita 3.6.
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A volte, la varianza si indica anche col simbolo ¢2. La radice quadrata della

varianza si chiama deviazione standard, e si indica col simbolo o o, talvolta, DS:

I
Q
I

Tanto piu piccola e la deviazione standard (o la varianza) tanto piu i dati sono
concentrati attorno al valor medio. In particolare, il coefficiente di variazione

SIS

¢ una misura della dispersione dei dati che non dipende dall’unita di misura usata,
e che permette di confrontare la dispersione di dati diversi.

Osservazione 3.30 Attenzione a non confondere la varianza con la deviazione stan-
dard! Se i dati sono misurati (per esempio) in metri, la varianza ¢ misurata in metri
quadri, ed e la deviazione standard a essere misurata in metri. In particolare, e il
valore della deviazione standard (e non quello della varianza) che va confrontato
con la media.

Osservazione 3.31 Chiaramente, la varianza e la deviazione standard si annullano
se e solo se tutti i dati sono uguali. Inoltre, come gia anticipato nell’Osserva-
zione 3.27 (e come dimostreremo nel prossimo capitolo), la media T & il numero
reale rispetto a cui i dati hanno scarto quadratico medio minimo, in quanto mini-
mizza la quantita % S (T — x;)?; anche per questo motivo la media aritmetica &
considerata il modo migliore per riassumere i dati.

Osservazione 3.32 (C’¢ un’altra formula per il calcolo della varianza che & spesso
utile. Espandendo il quadrato in (3.6) otteniamo

1 n 1 1 n 1 n
Var(z;) = - g (EQ — 2Tx; + xf) = EnEQ — 255 E T; + - E x?
i=1 i=1 i=1

1 — 1 —
=7 -2+ =) aj=-) 2} -7
n n “
=1 =1

= Media(2?) — Media(xz;)? ,
cioe la varianza € uguale alla media dei quadrati meno il quadrato della media.

EseEmpio 3.55 Calcoliamo la varianza del peso delle cavie dell’Esempio 3.47. Ri-
cordando che la media ¢ 30.2, troviamo che gli scarti quadratici sono

4.84,3.24,46.24,1.44,0.64,0.04, 3.24, 17.64, 3.24, 10.24, 1.44, 0.04, 4.84, 0.64, 0.64 ,
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per cui la varianza e

Var = % [4.84 +3.24 +46.24 + 1.44 + 0.64 + 0.04 + 3.24 + 17.64

+3.24+10.24 +1.44 4+ 0.04 + 4.84 + 0.64 + 0.64| = 6.56 ,

e la deviazione standard ¢

o =vV6.56 ~ 2.56 .

Si otteneva lo stesso risultato calcolando la media dei quadrati e sottraendo la
media al quadrato:

Media(z?) — Media(z;)?

1
=1 784 + 1024 4 1369 + 841 + 961 4 900 + 1024 + 676

+ 1024 + 729 + 841 4 900 + 784 + 961 + 961 | — 30.2?

= % —912.04 = 6.56 .

Il coefficiente di variazione dei dati ¢

2.56
CV = 302 = 0.085 = 8.5% ,

per cui i dati non sono troppo dispersi intorno alla media. Se togliamo il valore
estremo 37, la varianza diventa circa 3.73, la deviazione standard circa 1.93, e il
coefficiente di variazione circa 6.5%, con un miglioramento del (8.5—6.5)/8.5 = 24%
circa.

EsEMPIO 3.56 Calcoliamo la varianza delle misure dell’assone di neurone di ratto
dell’Esempio 3.46. Otteniamo

1
Var = = [70.78% 4 74.22% + 74.03% + 71.71% 4 70.97°

+ 73.47% 4 69.28 4 69.62% + 72.31% + 72.76%] — 71.915”
~2.751,

e la deviazione standard & o ~ 1/2.751 ~ 1.66. In particolare, il coefficiente di
variazione & CV ~ 1.66/71.915 ~ 2.3%, per cui i dati sono ben concentrati attorno
alla media.

Osservazione 3.33 Come gia detto piu volte, una delle situazioni sperimentali tipi-
che in cui ¢ importante il calcolo della media e della deviazione standard & quando
si effettuano numerose misure della stessa quantita; le singole misure danno ri-
sultati diversi a causa degli errori sperimentali. Gli errori sperimentali, per loro
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natura, sono essenzialmente casuali e (per motivi che discuteremo pit avanti) si di-
stribuiscono secondo una distribuzione di probabilita detta distribuzione normale
o distribuzione Gaussiana (che definiremo fra un paio di capitoli). Quando questo
accade, si pud dimostrare che nel 68% circa dei casi il valore vero sard contenuto
nell'intervallo [T — 0,7 + o], e che nel 95% circa dei casi il valore vero sara con-
tenuto nell'intervallo [ — 20, T 4 20]. Per questo motivo, quando si sa che i dati
seguono una distribuzione normale il risultato finale delle misure viene espresso
nella forma T + 20 con una confidenza del 95%, per indicare che il risultato vero &
contenuto nell’intervallo di confidenza [T — 20, T + 20| nel 95% circa dei casi. Si puo
anche dimostrare che il risultato vero ¢ contenuto nell’intervallo [Z — 30, T 4 30] nel
99% circa dei casi.

Esempio 3.57 Essendo misure sperimentali dello stesso assone, possiamo assu-
mere che i dati raccolti nell’Esempio 3.46 seguano una distribuzione normale, e dire
che la lunghezza dell’assone di neurone ¢ 71.915 4 3.32 con una confidenza del 95%.

3.8 Campioni e popolazione

Nella maggior parte delle situazioni statistiche e sperimentali, non si ha a disposi-
zione 'intera popolazione, ma solo un campione di essa. Non possiamo misurare le
lunghezze degli assoni di tutte le cellule neurali di tutti i ratti del mondo (e, pro-
babilmente, neanche di un ratto solo); dobbiamo contentarci di misurarne soltanto
alcune, quelle prese da un campione dell’intera popolazione.

Partendo dal nostro campione ricaviamo una media e una varianza. La domanda
naturale e: questa media e questa varianza rappresentano la media e la varianza
dell’intera popolazione? Ci si aspetta che se il campione ¢ davvero scelto a caso ed
¢ composto da un numero sufficientemente alto di individui la risposta sia positiva;
in questa sezione cercheremo di vedere se questa aspettativa ¢ corretta o meno.

Cominciamo precisando il problema e fissando alcune notazioni. Noi abbiamo un
insieme P, usualmente molto grande, di individui (per esempio, neuroni di ratto) su
cui vogliamo effettuare una misura (per esempio, misurare la lunghezza dell’assone).
Indichiamo con x la media e con o2 la varianza dei valori ottenuti effettuando la
misura su tutta la popolazione; sono valori che di solito non conosciamo, e che
vogliamo stimare effettuando le misure su un campione.

Indichiamo con X,, = {z1,...,2,} 'insieme dei valori ottenuti effettuando la
misure su un dato campione composto da n individui, e con X, la famiglia di tutti
gli insiemi X,, ottenuti al variare del campione di n individui nella popolazione.
Se Media(X,,) e Var(X,,) indicano rispettivamente la media e la varianza dei dati
in X,,, ci chiediamo se (e in che senso) Media(X,,) e Var(X,,) forniscono una stima
sensata di y e o2.

Cominciamo con la media. Ovviamente non ¢ detto che Media(X,,) sia uguale
a (; in generale, ci sard un errore. Possiamo interpretare Media(X,,) come una
misura di p, e chiederci qual e la media e la varianza di queste misure la variare
di X, nell’insieme X, di tutti i possibili campioni composti da n individui. Alcuni
conti un po’ elaborati ci forniscono le seguenti risposte:
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(a) la media di Media(X,,) al variare di X,, € X,, & esattamente uguale a y;
(b) la varianza di Media(X,,) al variare di X,, € X,, & uguale a o*/n.

Questo vuol dire che le medie su tutti i possibili campioni composti da n elementi
hanno media p, e che queste medie sono sempre pitt concentrate (meno disperse)
attorno a p al crescere di n, in quanto a patto di prendere n abbastanza grande
possiamo rendere o2 /n piccolo quanto ci pare”.

Inoltre, i probabilisti hanno anche dimostrato il seguente risultato, noto come

Teorema del limite centrale:

(¢) al crescere din la distribuzione dei valori Media(X,,) approssima sempre me-
glio una distribuzione normale di media p e varianza o2 /n.

Non siamo ancora in grado (ne riparleremo fra qualche capitolo) di dire cos’® una
distribuzione normale, ma nell’Osservazione 3.33 abbiamo gia accennato a una
importante proprieta di questa distribuzione, proprieta che nel nostro contesto
possiamo parafrasare cosi: se n é abbastanza grande la media p della popolazione
apparterrd all’intervallo di confidenza [Media(X,,) — 20/v/n, Media(X,,) + 20/1/n]
per circa il 95% det campioni composti da n individui. In altre parole, abbiamo il
95% di probabilita che la media Media(X,,) di un campione di n individui scelti a
caso approssimi la media p dell’intera popolazione a meno di un errore di 20//n.
Quindi basta scegliere n abbastanza grande da avere 20 /+/n molto piccolo e, nel
95% dei casi, Media(X,,) & una buona approssimazione di x. Se poi n & cosi grande
che 35 /+/n & molto piccolo, allora Media(X,,) diventa una buona approssimazione
di p nel 99% circa dei casi.

Bello, vero? Quasi. C’¢ ancora un problema da risolvere: non conoscendo o,
come facciamo a sapere se n & abbastanza grande da rendere 20 /1/n piccolo? Ab-
biamo bisogno anche di una stima di o.

La congettura naturale sarebbe che una stima di o sia data da Var(X,). Ma
perché questa stima sia utile occorre che valgano delle proprieta analoghe alle
proprieta (a) e (b) viste sopra: occorre che la media di Var(X,,) al variare di
X, € X, sia esattamente o2, e che sia possibile rendere la varianza degli Var(X,,)
arbitrariamente piccola a patto di scegliere n abbastanza grande.

Invece, si puo dimostrare il seguente risultato:

(d) la media di Var(X,,) al variare di X, € X, ¢ uguale a (n — 1)o?/n, e non
2
ao?.

Questo risultato suggerisce di introdurre la varianza campionaria

n

P(Xn) = = S @ wi) = " Var(X,)

i=1

dove T = Media(X,,) e X, = {x1,...,2,}. Allora la proprieta (d) diventa

(d°) la media della varianza campionaria s*(X,) al variare di X, € X, ¢ uguale

a o2

" La quantita o/y/n si chiama errore standard della media.
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Inoltre, & anche possibile dimostrare che

(e) la varianza della varianza campionaria s*(X,,) diventa arbitrariamente piccola
a patto di scegliere n abbastanza grande.

Quindi per n abbastanza grande i possibili valori di s?(X,,) sono ben concentrati

attorno a o2, per cui la deviazione standard campionaria

n

$(06) = VRG] = \[TDS() = || oy Y -2

n—1~4
=1

¢ una buona stima della deviazione standard o dell’intera popolazione, e quindi
2s(X,)/+/n & una buona stima dell’errore standard della media 20 //n.

Osservazione 3.34 Avrai certamente notato che in realta non ci siamo liberati del
problema di stabilire quanto grande dev’essere n per essere abbastanza grande: ab-
biamo ancora bisogno che n sia abbastanza grande perché la varianza della varianza
campionaria sia sufficientemente piccola, e perché la distribuzione delle medie sia
abbastanza vicina alla distribuzione normale. Senza ulteriori ipotesi sulla popo-
lazione originaria (per esempio, la popolazione originaria segue una distribuzione
normale oppure no?) non possiamo dire molto altro; ma nella maggior parte dei
casi non e necessario. Infatti, nella maggior parte dei casi lo sperimentatore non
puo scegliere n liberamente; il numero dei campioni testabili e limitato dal co-
sto, dal tempo disponibile, dalla quantita di materiale... Questa teoria ci fornisce
allora un test della qualita del risultato che si & ottenuto. Calcoliamo la media
Media(X,,) e la deviazione standard campionaria s(X,,) sul campione che abbiamo
a disposizione; se 2s(X,,)/+/n & piccolo rispetto a Media(X,,), cio¢ se il coefficiente
di variazione campionario

B s(Xy) 1

& piccolo (sensibilmente minore dell’ordine di precisione che vogliamo raggiungere),
allora Media(X,,) € probabilmente una buona approssimazione di p; ma se non &
piccolo dobbiamo assolutamente allargare il campione.

EsEMPIO 3.58 Supponiamo che le cavie dell’Esempio 3.47 siano solo un campione
di una ben piu vasta popolazione di cavie; vogliamo vedere se la media dei pesi
di questo campione ¢ rappresentativa della media dei pesi dell’intera popolazione.
Abbiamo visto che la media ¢ T = 30.2 g. La deviazione standard era circa 2.56 g;
quindi la deviazione standard campionaria e

15
~ /2256 =~ 2.65
"=V 11 &

e il coefficiente di variazione campionario e

2.65
CVC >~ ——— ~0.023 =2.3% .

v15-30.2
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Quindi il doppio dell’errore standard della media ¢ circa il 4.6% della media Z.
Questo vuol dire che lintervallo [T — 2s/+/n, T + 2s/+/n| ha una lunghezza che &
circa il 9.2% del valore centrale, che ¢ un po’ alto. Infatti,

[T —2s5/\/n,T + 2s/v/n] ~ [28.83,31.57] ,
e quindi non abbiamo una stima precisa su nessuna cifra significativa.

Osservazione 3.35 Vale la pena di ribadire che tutti questi conti suppongono che
il campione sia scelto a caso; non ci stiamo ponendo il problema di come trovare
campioni rappresentativi in qualche senso dell’intera popolazione, e stiamo suppo-
nendo che il campione non sia viziato da qualche errore sistematico nella scelta o
nella misura.

Osservazione 3.36 Tutti questi ragionamenti si applicano solo nel caso in cui non
sia possibile misurare l'intera popolazione; se, al contrario, abbiamo a disposizione
Iintera popolazione, calcoliamo direttamente la media p e la deviazione standard o
senza porci problemi.

Osservazione 3.37 Attenzione a non confondere la deviazione standard con la de-
viazione standard della media. Un giorno, il tuo assistente ti ha preso da parte
e ti ha detto: “Ho effettuato un sacco di misure di una stessa quantita, e poi ho
calcolato l'intervallo di confidenza usando la media e la deviazione standard. Ma
poi ho pensato: le misure che ho fatto sono solo un campione fra tutte le possibili
misure che potrei fare. Dunque la media che ho ottenuto misura la media di tutte le
possibili misure a meno della deviazione standard della media; e quindi I'intervallo
di confidenza lo dovrei fare usando la media e la deviazione standard della media,
e cosi viene molto piu carino perché la deviazione standard della media € molto
piu piccola della deviazione standard usuale.” Come al solito, il tuo assistente si
sbaglia. Il punto e che il valore vero della misura non ¢ necessariamente la media
di tutte le possibili misure; anche nel caso della distribuzione normale, sappiamo
solo che cade nell’intervallo di confidenza nel 95% dei casi. La deviazione standard
della media ci dice tutt’al piu con che precisione possiamo identificare il centro
dell’intervallo di confidenza; ma la larghezza dell’intervallo di confidenza continua
a dipendere soltanto dalla deviazione standard.



