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Probabilita discreta

2.1 Introduzione

La parola “probabilita

N

¢ ampiamente utilizzata nel linguaggio comune, a volte

anche a sproposito. In questo capitolo vogliamo cercare di dare una presentazione
piu precisa e meno ambigua di questo concetto, illustrandone gli aspetti matematici
e indicandone alcuni utilizzi in ambito scientifico e biologico. Per esempio, saremo
in grado di spiegare come rispondere a domande del tipo:

Se tiro un dado non truccato, con che probabilita ottengo 67

Se tiro due dadi non truccati, con che probabilita ottengo 67

Se Leonardo e Martina hanno entrambi sangue con fattore Rh positivo, con
che probabilita avranno un figlio con fattore Rh negativo?

Qual é la probabilita che un bimbo italiano pesi alla nascita pit di 1500 g?
Cosa vuol dire la frase “un esame del DNA ha dato una probabilita del 97.5%
che il sangue trovato sul luogo del delitto sia dell’accusato”?

Se ho vissuto fino a 60 anni, che probabilita ho di raggiungere i 707

Cosa vuol dire la frase “questo test diagnostico ha un valore predittivo della
malattia di oltre il 69%”7

Detto con parole un po’ vaghe, la probabilita ¢ una misura di quanto sia plausibile
che avvenga un dato evento fra tutti quelli possibili. Per studiare con tecniche
probabilistiche un dato fenomeno possiamo allora procedere con i seguenti passi:

2)
b)

identificare quali sono i possibili “eventi” che si possono verificare;

attribuire, in seguito a ipotesi teoriche o a misurazioni di laboratorio, delle
probabilita ad alcuni di questi eventi, scelti fra i piu semplici, soddisfacendo
alcune regole basilari;

calcolare, partendo dalle probabilita degli eventi semplici, dalle regole basilari e
da ipotesi sullo sviluppo del fenomeno, le probabilita degli eventi piti complessi,
in modo da effettuare predizioni teoriche sul fenomeno studiato;

verificare sperimentalmente le predizioni, con ’obiettivo di confermare o smen-
tire (e quindi modificare) le ipotesi fatte nei passi b) e c).
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Nelle prossime sezioni discuteremo pitu in dettaglio, con numerosi esempi, questa
procedura. Vale la pena pero di osservare fin da ora due cose. Prima di tutto,
questa procedura ¢ tipica del metodo scientifico: si parte da ipotesi esplicitamente
dichiarate sul fenomeno che si vuole studiare; si deducono, tramite ragionamenti
precisi e spesso matematici, predizioni sullo sviluppo del fenomeno; si verificano
sperimentalmente queste predizioni; e se le predizioni non sono corrette si modi-
ficano di conseguenza le ipotesi iniziali, e si ripete il procedimento. Il processo di
validazione di ipotesi esplicite tramite verifica sperimentale di predizioni ottenute
con ragionamenti logici e matematici ¢ il cuore del metodo scientifico contempora-
neo.

La seconda osservazione ¢ che nella procedura sopra descritta si vedono bene i
ruoli complementari svolti dalla matematica e dalla biologia (o altra scienza coin-
volta). La biologia fornisce gli oggetti di studio e le ipotesi sul fenomeno; la ma-
tematica fornisce le regole formali da soddisfare e le tecniche di ragionamento da
applicare. Inutile dire che una parte non irrilevante del lavoro consiste nel far
comunicare questi due aspetti: esprimere i concetti biologici in modo da poterne
dare una trattazione matematica, e, viceversa, riuscire a tradurre le conclusioni
matematiche in termini biologicamente significativi. In questo capitolo vedremo
qualche esempio (estremamente semplice. . . ), soprattutto in ambito genetico.

Infine, un ultimo commento. Quando & necessario usare un approccio di tipo
probabilistico a un problema? Generalizzando molto, si puo dire che € necessario
farlo quando non si ha una conoscenza completa del modo con cui si sviluppa il fe-
nomeno. Questo pud essere dovuto all’eccessiva complessita del fenomeno (dovuta
a una sua complessita intrinseca o all’eccessivo numero di fattori da tenere in consi-
derazione), agli errori necessariamente introdotti da qualsiasi strumento di misura,
o anche banalmente alla nostra ignoranza. Quale che sia il motivo, la mancanza
di conoscenza completa ci costringe ad abbandonare un approccio deterministico
e a perseguire un approccio probabilistico, che fornisce appunto una misura della
maggiore o minore plausibilita di certi risultati rispetto ad altri, senza pero negare
che talvolta anche I'improbabile possa verificarsi.

2.2 Eventi

Come accennato prima, il primo passo necessario per lo studio probabilistico di un
fenomeno & stabilire quali sono gli eventi possibili. Matematicamente parlando, lo
spazio® degli eventi & un insieme 2, che puo essere qualsiasi. Un evento semplice
(o evento elementare) ¢ un elemento dello spazio degli eventi; un evento composto
€ un sottoinsieme dello spazio degli eventi.

Alcuni esempi chiariranno meglio 'uso di questa terminologia.

EseEmpIO 2.1 Lo spazio degli eventi €2 del fenomeno “lancio di un dado a sei

facce” & I'insieme dei possibili risultati del lancio del dado, cioé Q = {1,2,3,4,5,6}.

L' n questo contesto, “spazio” € semplicemente sinonimo di “insieme”, senza nessuna
connotazione geometrica.
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N

L’elemento “6” & un evento semplice; il sottoinsieme “pari” (cioe {2,4,6}) ¢ un
evento composto.

Esempio 2.2 Nello studio del peso alla nascita dei bimbi italiani, una scelta
dello spazio degli eventi potrebbe essere I'intervallo [200,5000] della retta reale,
misurando i pesi in grammi. Cosi facendo, pero, stiamo facendo un’ipotesi: stiamo
escludendo a priori che possano esservi neonati di peso inferiore ai 200 grammi o
superiore ai 5 chili. Per non introdurre ipotesi limitative a questo stadio, possiamo
invece scegliere come spazio degli eventi I'intera semiretta R* dei numeri reali
positivi, in modo da assumere soltanto che un neonato pesi qualcosa. ..

Osservazione 2.1 Mentre lo spazio degli eventi dell’Esempio 2.1 era finito, lo spazio
degli eventi in questo esempio & infinito. Lo studio delle probabilita nel caso di
spazi degli eventi infiniti & piu delicato che nel caso di spazi degli eventi finiti, e
richiede tecniche piu avanzate. Per questo motivo, in questo capitolo tranne rare
eccezioni ci limiteremo a studiare spazi degli eventi finiti, rimandando lo studio
della probabilita continua (probabilita su insiemi infiniti; la probabilita su insiemi
finiti & detta probabilita discreta) a un capitolo successivo.

EsEmpio 2.3 Un gene € una zona di un cromosoma con una funzione precisa,
quale dirigere la codifica di una data proteina. Il numero esatto di geni nell’'uomo
non € ancora noto, ma si stima siano fra i venti e i trentamila. Anche la lunghezza
di ciascun gene e molto variabile, da qualche centinaio a diverse decine di migliaia
di basi; in ogni caso, i geni coprono meno del 10% dell’intero DNA umano. L’in-
tero DNA umano ¢ composto da circa 3.3 miliardi di (paia di) basi; meno dell’l
per mille (circa 3 milioni di basi) pud variare da individuo a individuo. Le possibili
varianti di quei geni (o, in generale, di quelle sezioni del DNA) che possono effet-
tivamente variare sono dette alleli (o varianti alleliche). Supponiamo che un dato
gene possa avere solo due alleli, che indicheremo con le lettere A e a. Il corredo
genetico di ciascun individuo € composto da coppie di cromosomi, per cui ciascun
gene compare due volte. Il genotipo di un individuo (relativo a quel gene) & la
coppia di alleli di quel gene presente nel suo corredo cromosomico. Se entrambi
gli alleli sono uguali, per cui sono la coppia AA oppure la coppia aa, diremo che
I'individuo & omozigote (rispetto a quel gene); se invece sono diversi, diremo che &
eterozigote. Nota che siccome non c¢’e¢ modo di distinguere un cromosoma dall’altro,
non possiamo distinguere la coppia Aa dalla coppia aA, per cui il genotipo eterozi-
gote viene indicato con Aa. Riassumendo, per studiare il genotipo di un individuo
relativo a un gene con due alleli lo spazio degli eventi adatto ¢ Q = {AA, Aa, aa}.
L’evento “omozigote” & 'evento composto {AA, aa}, mentre I'evento “eterozigote”
& levento {Aa}.

ESEMPIO 2.4 Nel caso di un gene con due soli alleli, I’evento “eterozigote” ¢ un
evento semplice; questo non e piu vero se gli alleli sono tre o piu. Per esem-
pio, nel caso di un gene con tre alleli A;, Ay e As, lo spazio degli eventi &
O = {A1A1,A1As, A1 Az, Ay Ay, As A3, A3 A3}, e Tevento “eterozigote” & l'evento
composto {41 Az, A1 Az, AxAs}.
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Osservazione 2.2 Seguendo le definizioni alla lettera, anche un sottoinsieme {a}
composto da un unico elemento a di uno spazio degli eventi ) sarebbe un evento
composto, cosa francamente ridicola. Per questo motivo, con un lieve abuso di
terminologia chiameremo eventi semplici anche gli eventi “composti” formati da
un unico elemento.

EsEMPIO 2.5 Lo spazio degli eventi del fenomeno “lancio di 2 dadi distinti a sei
facce” & l'insieme delle coppie ordinate (in quanto sappiamo distinguere un dado
dall’altro, per esempio perché uno ¢ rosso e uno verde, per cui abbiamo un primo
risultato e un secondo risultato) dei possibili esiti dei lanci di ciascun dado, cioe

Q={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5), (2,6),
1(3,2),(3,3),(3,4),(3,5), (3,6), (4, 1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5’ 1)7 (5’ 2)’ (57 3)’ (5’ 4)7 (57 5)7 (57 6)7 (67 1)’ (6 )7 ( 73)7 (6’ 4)’ (67 5)’ (67 6)} :
Usando la terminologia introdotta nella Sezione 1.8, possiamo dire che € ¢ il pro-

dotto cartesiano dello spazio degli eventi del lancio del primo dado con lo spazio
degli eventi del lancio del secondo dado:

4
6

0 ={1,2,3,4,5,6} x {1,2,3,4,5,6} .

EseMpPiO 2.6 Come nel caso del genotipo, lo spazio degli eventi del fenomeno
“lancio di 2 dadi indistinguibili a sei facce” non & costituito dalle coppie ordinate, in
quanto una volta effettuato il lancio non siamo piu in grado di distinguere un dado
dall’altro. Se indichiamo una coppia non ordinata semplicemente giustapponendo i
due elementi della coppia (come fatto negli Esempi 2.3 e 2.4) lo spazio degli eventi
in questo caso e

Q = {11,12,13, 14, 15, 16, 22, 23, 24, 25, 26, 33, 34, 35, 36, 44, 45, 46, 55, 56, 66} .

Osservazione 2.3 La coppia non ordinata “23” puo essere rappresentata dall’in-
sieme A costituito da due coppie ordinate, le coppie che corrispondono alla coppia
non ordinata “23”: A = {(2,3),(3,2)}. Invece la coppia ordinata “11” pud essere
rappresentata dall’unica coppia ordinata corrispondente {(1,1)}. In altre parole,
all’evento semplice coppia non ordinata “ij” con i # j dell’Esempio 2.6 possiamo
associare ’evento composto {(7,7), (4,4)} dell’Esempio 2.5, mentre all’evento sem-
plice coppia non ordinata “i7” dell’Esempio 2.6 associamo l'evento semplice {(i,4)}
dell’Esempio 2.5.

ESEMPIO 2.7 Lo spazio degli eventi del fenomeno “somma del lancio di 2 dadi”
¢ invece Q = {2,3,4,5,6,7,8,9,10,11,12} (dove stavolta “12” ¢ il numero dodici e
non la coppia non ordinata composta da 1 e 2, e cosi via). Nota che otteniamo lo
stesso spazio degli eventi sia che i due dadi siano distinguibili sia che non lo siano.

Osservazione 2.4 Anche in questo caso possiamo associare a ciascun evento sem-
plice k un evento (semplice o composto) dell’Esempio 2.5: il sottoinsieme delle
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coppie ordinate la cui somma sia uguale a k. Per esempio, ’evento “somma 2”
& associato all’evento semplice {(1,1)}, mentre 'evento “somma 57 & associato
all’evento composto {(1,4),(2,3),(3,2),(4,1)}.

Osservazione 2.5 1l fatto che lo spazio degli eventi negli ultimi due esempi & chia-
ramente derivato da quello dell’Esempio 2.5 fa sospettare che ci sara un modo per
assegnare delle probabilita agli eventi degli Esempi 2.6 e 2.7 partendo da probabilita
assegnate agli eventi dell’Esempio 2.5.

L’interpretazione degli elementi e dei sottoinsiemi di un insieme come eventi
ha suggerito l'introduzione in teoria della probabilita di una nomenclatura che &
una semplice traduzione della terminologia insiemistica usuale. I termini pit usati
SOno:

— lo spazio degli eventi 2 & chiamato evento certo (qualcosa deve accadere,
contiene tutto cio che pud accadere, e quindi 2 accade di certo);

—  linsieme vuoto @ ¢ chiamato evento impossibile (qualche evento deve accadere,
@ non contiene eventi, e quindi non puod accadere);

— dati due eventi A e B, ’evento che si verifica se succede A oppure se succede B
(o entrambi) & 'evento unione A U B, e coincide effettivamente con 1'unione
insiemistica di A e B. In alcuni testi, I’evento unione ¢ indicato con “A + B”
oppure con “A o B”.

— dati due eventi A e B, I’evento che si verifica se succedono sia A sia B ¢ I’evento
intersezione A N B, e coincide effettivamente con l'intersezione insiemistica
di A e B. In alcuni testi, ’evento intersezione ¢ indicato con “A - B” oppure
con “Ae B”.

— dato un evento A, 'evento che si verifica se e solo se A non succede & 1’evento
complementare Q\ A, che coincide effettivamente con la differenza insiemistica
di Q e A. In alcuni testi, evento complementare ¢ indicato con A€ o con A,
o ancora con non A.

EseEmpio 2.8 Nel caso del lancio di un dado a sei facce, possiamo considerare
gli eventi “pari” A = {2,4,6} e “maggiore di 3> B = {4,5,6}. Allora 'evento
unione AU B = {2,4,5,6} corrisponde proprio all’evento “pari oppure maggiore
di 37, e l'evento intersezione AN B = {4,6} corrisponde proprio all’evento “pari e
maggiore di 3”. Infine, evento complementare di “pari” & (ovviamente) “dispari”,
cioe O\ A ={1,3,5}.

Usando unione e intersezione, possiamo introdurre altri termini di uso comune
in questo contesto. Diremo che due eventi A e B sono incompatibili (o0 mutuamente
esclusivi) se sono disgiunti, cioe se AN B = &. In altre parole, dire che A e B sono
incompatibili vuol dire che se si verifica A allora B non puo verificarsi, e viceversa.

Invece diremo che A e B sono esaustivi se AU B = ). In altre parole, dire
che A e B sono esaustivi vuol dire che siamo sicuri che uno dei due si verifichera
(e magari tutti e due).

ESEMPIO 2.9 Sempre nel solito caso del lancio di un dado a sei facce, gli eventi
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“pari” A = {2,4,6} e “dispari” B = {1,3,5} sono sia incompatibili (interse-
zione vuota: AN B = @) sia esaustivi ('unione & tutto lo spazio degli eventi:
AUB = {1,2,3,4,5,6}). Gli eventi “minore o uguale di 57 C = {1,2,3,4,5} e
“maggiore di 4” D = {5, 6} sono esaustivi (ogni numero fra 1 e 6 & minore o uguale
a b oppure maggiore di 4: C U D = {1,2,3,4,5,6}) ma non incompatibili (5 &
un numero sia minore o uguale a 5 sia maggiore di 4: C N D = {5}). Gli eventi
“maggiore di 57 E = {6} e “minore di 37 F = {1,2} sono incompatibili (nessun
numero & contemporaneamente maggiore di 5 e minore di 3: EN F = &) ma non
esaustivi (esistono numeri che non sono maggiori di 5 o minori di 3: per esempio,
4 ¢ FUF). Infine, gli eventi “pari” e “minore di 3” non sono né incompatibili né
esaustivi: infatti ANF={2}eb¢ ANF.

Osservazione 2.6 Un evento e il suo complementare sono sempre incompatibili ed
esaustivi: infatti A e Q\ A sono sempre disgiunti e danno come unione tutto €.
Viceversa, due eventi sono contemporaneamente incompatibili ed esaustivi se e solo
se (perché?) sono uno il complementare dell’altro.

Osservazione 2.7 Due eventi semplici distinti sono sempre incompatibili (perché?).

Piu in generale, diremo che n eventi Ay, ..., A, sono esaustivi se la loro unione
¢ tutto lo spazio degli eventi, cioe Q2 = A; U---U A,,. Se inoltre sono anche a 2
a 2 incompatibili (cioe A; N A; = @ per qualsiasi coppia di indici ¢ e j distinti
compresi fra 1 ed n) allora diremo che formano una partizione dello spazio degli
eventi. In altre parole, una partizione & una famiglia di eventi di cui siamo certi
che se ne verifichera esattamente uno: almeno uno (esaustivi) e non piu di uno (a
2 a 2 incompatibili).

EsEMPIO 2.10 Gli eventi A; = {1,2}, A2 = {3,4} e A3 = {5,6} sono una parti-
zione del solito spazio degli eventi 2 = {1,2,3,4,5,6}. Infatti, Q = 4; U Az U As,
e A1 NAy=A1NA3=ANA3 =.

2.3 Distribuzioni di probabilita

Adesso che sappiamo cosa sono gli eventi, possiamo passare al passo successivo e
cercare di capire come attribuire delle probabilita agli eventi semplici.
Ci sono tipicamente due metodi per attribuire una probabilita agli eventi sem-
plici:
— @ priori, in funzione di ipotesi teoriche sulla natura degli eventi semplici (e a
volte si parla di probabilita teorica o stimata);
—  a posteriori, in funzione di misurazioni effettuate sul fenomeno che si sta stu-
diando (e a volte si parla di probabilita misurata).

In entrambi i casi (e questa sezione e la prossima sono dedicate a presentare
numerosi esempi dei due metodi, in modo da darti un’idea di come si procede)
I’attribuzione delle probabilita deve sottostare ad alcune semplici condizioni, senza
le quali non sarebbe corretto parlare di probabilita. Le condizioni sono solo tre:
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(1) levento certo ha probabilita 1, e l’evento impossibile probabilita 0. Questa ¢
una convenzione, ma utile. Avremmo potuto assegnare probabilita 27 all’e-
vento certo e —12 all’evento impossibile, ma ci saremmo complicati la vita
inutilmente.

(2) tutti gli eventi hanno una probabilita compresa fra 0 e 1 inclusi. Puro buon
senso: stiamo chiedendo che nulla possa essere piti probabile dell’evento certo
o piu improbabile dell’evento impossibile. Nota che potrebbero esserci eventi
con probabilita 1 distinti dall’intero spazio degli eventi, ed eventi con proba-
bilita 0 che non sono 'insieme vuoto. Per esempio, possiamo ragionevolmente
assumere che la probabilita che un neonato pesi meno di 5 tonnellate sia 1, e
che pesi meno di 5 grammi sia 0.

(3) la probabilita che avvenga uno di due eventi incompatibili é la somma della
probabilita dei due eventi®. Di nuovo, ¢ una richiesta molto ragionevole. Se
due eventi sono incompatibili, o accade uno o accade 'altro (o nessuno dei
due); quindi richiedere che la probabilita che accada uno qualsiasi dei due
sia la somma della probabilita ¢ in accordo con la nostra idea intuitiva di
probabilita. In particolare, questo si applica agli eventi semplici, che sono
sempre incompatibili. La probabilita che tirando un dado venga 2 o 5 sara la
somma della probabilita che venga 2 e della probabilita che venga 5.

Vediamo ora come mescolando queste condizioni a ipotesi teoriche opportune pos-
siamo attribuire a priori delle probabilita.

Esempio 2.11 1l lancio di un dado a 6 facce non truccato. Nell’Esempio 2.1
abbiamo visto che lo spazio degli eventi & Q = {1,2,3,4,5,6}. Dire che il dado
non e truccato vuol dire che tutte le facce sono uguali; non c’e nulla che favorisca
una faccia rispetto alle altre. Quindi ¢ naturale attribuire a ciascun risultato la
stessa probabilita, che indicheremo con p. Ma quant’e p? Abbiamo detto che,
per la proprieta (1), la probabilita dell’evento certo dev’essere 1. Siccome ci sono
6 risultati possibili, ognuno dei quali ha probabilita p, dobbiamo avere 6p = 1,
cioe p = 1/6 (attento che qui stiamo usando la proprieta (3); ne riparleremo nella
Sezione 2.5). Quindi l'ipotesi “dado non truccato” si traduce nell’assegnare la
stessa probabilita di 1/6 a tutti i possibili risultati del lancio di un dado.

Esempio 2.12 11 lancio di due dadi distinti a 6 facce non truccati. Nell’Esem-
pio 2.5 abbiamo visto che lo spazio degli eventi ¢ composto da 36 possibili risultati.
Nel caso di 2 dadi, la frase “non truccati” non significa solo che le facce di ciascun
dado sono tutte uguali, ma anche che i due dadi sono indipendenti, nel senso che
il risultato di un dado non influenza in alcun modo il risultato dell’altro (riparle-
remo del concetto di indipendenza nella Sezione 2.6). Questo vuol dire che non c’&
nulla che favorisca un risultato rispetto agli altri; tutti i 36 risultati sono equipro-
babili. Ragionando come nell’esempio precedente dobbiamo quindi assegnare una
probabilita di 1/36 a ciascun risultato possibile.

2 Nel caso di spazio degli eventi infinito potrebbe servire una proprieta piu forte, che
discuteremo nella Curiosita 2.1.
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Osservazione 2.8 Quando assegnamo la stessa probabilita p a tutti gli elementi
di uno spazio degli eventi €2, diremo che abbiamo una distribuzione di probabilita
uniforme. Nota che se 2 contiene N elementi allora si deve avere (perché?) p = 1/N.

Esempio 2.13 11 lancio di due dadi a 6 facce indistinguibili non truccati. Nel-
I’Esempio 2.6 abbiamo visto che lo spazio degli eventi ¢ composto da 21 eventi
semplici; ma, contrariamente al caso dei due dadi distinti, i vari eventi non sono
equiprobabili. Il punto & che abbiamo due tipi di eventi semplici: le coppie non
ordinate composte da due numeri diversi (per esempio, “23” o “46”), e le coppie
ordinate composte da due copie dello stesso numero (per esempio, “44” o “11”). Le
nostre ipotesi teoriche (dadi indistinguibili non truccati) ci portano ad attribuire
ai risultati del primo tipo una probabilita doppia rispetto a quelli del secondo tipo.
Infatti, nell’Osservazione 2.3 abbiamo visto che il risultato “23” corrisponde ai due
eventi semplici (2,3) e (3,2) dello spazio degli eventi dei dadi distinti. Siccome
abbiamo visto che ciascuno di questi due eventi ha probabilita 1/36, usando la pro-
prieta (3) vediamo che 'evento “23” deve avere probabilita 1/36+1/36=2/36=1/18.
Invece il risultato “11” si puo ottenere in un solo modo: entrambi i dadi devono
dare 1. Siccome questo evento ha probabilita 1/36, anche I’evento “11” ha proba-
bilitd 1/36. Riassumendo, in questo caso otteniamo probabilita 1/18 per le coppie
non ordinate “ij” con i # j che variano da 1 a 6, e probabilitd 1/36 per le coppie
non ordinate “i7”, con ¢ che varia da 1 a 6; la distribuzione di probabilita non &
uniforme. Nota che ci sono 15 coppie del primo tipo e 6 del secondo, e che

1 1
15— +6-—=1
g tligg =

come dev’essere (perché?).

EseEmMPiO 2.14 La somma del lancio di due dadi a 6 facce non truccati. Nel-
I’Osservazione 2.4 abbiamo visto come associare a ciascun evento “somma uguale
a k” l'evento composto dell’Esempio 2.5 costituito da tutte le coppie ordinate con
somma k. Siccome ogni coppia ordinata ha probabilita 1/36, 'evento “somma
uguale a k” deve avere probabilitd uguale a 1/36 per il numero di coppie ordinate
con somma k. Per esempio, siccome 2 si puo ottenere solo come somma di (1,1),
Pevento “somma uguale a 2”7 ha probabilita 1/36. Invece, “5” si puo ottenere come
somma in quattro modi diversi, per cui ’evento “somma uguale a 5” ha probabi-
litd 4/36 = 1/9. Ti lascio il compito di verificare la correttezza della Tabella 2.1,
che riassume la distribuzione di probabilita in questo esempio.

EsEmMPIO 2.15 Come gia detto nell’Esempio 2.3, il corredo genetico di ogni indivi-
duo & composto da coppie di cromosomi. Un figlio riceve un cromosoma da ciascun
genitore; quindi in caso di geni con piu alleli il genotipo del figlio comprende un
allele proveniente dal padre e un allele proveniente dalla madre. Un’importante
ipotesi teorica che sottende la trasmissione del genotipo da genitori a figli ¢ la
legge di disgiunzione di Mendel: le possibili trasmissioni di alleli da genitori a figli
sono tutte equiprobabili. Vediamo come questa legge ci permetta di stabilire la
probabilita che un figlio abbia un certo genotipo conoscendo i genotipi dei genitori.
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Somma Coppie ordinate Probabilita
2 (1,1) 1/36
3 (1,2),(2,1) 1/18
4 (1,3),(2,2),(3,1) 1/12
5 (1,4),(2,3),(3,2),(4,1) 1/9
6 (1,5),(2,4),(3,3),(4,2),(5,1) 5/36
7 (1,6),(2,5),(3,4),(4,3),(5,2),(6,1) 1/6
8 (2,6),(3,5),(4,4),(5,3),(6,2) 5/36
9 (3,6),(4,5),(5,4),(6,3) 1/9
10 (4,6), (5,5), (6,4) 1/12
11 (5,6),(6,6) 1/18
12 (6,6) 1/36

TABELLA 2.1

Prendiamo un gene con due possibili alleli, che indicheremo come al solito A e a.
Supponiamo che il padre abbia genotipo AA e la madre genotipo Aa. Allora il figlio
puo ricevere gli alleli dai genitori in quattro modi diversi: il primo allele A del padre
e il primo allele A della madre (genotipo del figlio AA); il primo allele A del padre e
il secondo allele a della madre (genotipo del figlio Aa); il secondo allele A del padre
e il primo allele A della madre (genotipo del figlio AA); il secondo allele A del padre
e il secondo allele a della madre (genotipo del figlio Aa). La legge di disgiunzione di
Mendel ci dice che queste quattro eventualita sono equiprobabili; quindi ciascuna
di esse ha probabilitad 1/4. Siccome otteniamo come genotipo del figlio AA in due
casi e Aa negli altri due, possiamo concludere che se i genitori hanno genotipo AA
e Aa allora il figlio ha genotipo AA con probabilitd 1/4+1/4 = 1/2 e genotipo Aa
con probabilita 1/2. La Tabella 2.2 (che avrai cura di verificare) riassume le varie
possibilita: ciascuna casella centrale contiene le probabilita che il figlio abbia un
certo genotipo sapendo che il padre ha il genotipo indicato in quella colonna e la
madre il genotipo indicato nella riga.

AA Aa aa

AA:1 AA:1/2 AA:0
AA Aa: 0 Aa:1/2 Aa:1
aa : 0 aa : 0 aa : 0
AA:1/2 AA:1/4 AA: 0
Aa Aa:1/2 Aa:1/2 Aa:1/2

aa : 0 aa:1/4 aa:1/2
AA:0 AA:0 AA:0
aa Aa:1 Aa:1/2 Aa: 0
aa: 0 aa :1/2 aa: 1

TABELLA 2.2

EsEmPIO 2.16 Un tipico esempio di gene con due alleli &€ quello che determina la
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presenza o meno del fattore Rh nel sangue. Inoltre, abbiamo un allele dominante e
un allele recessivo. Un allele € dominante quando la sua presenza nel genotipo causa
la comparsa di una certa caratteristica (detta fenotipo) nell’individuo indipenden-
temente da quale sia 1'altro allele; & recessivo altrimenti. Per esempio, I’allele Rh™
¢ dominante sull’altro allele Rh™: la sua presenza nel genotipo implica la presenza
nel sangue del fattore Rh (fenotipo Rh™), mentre 1'unico modo perché nel san-
gue non ci sia il fattore Rh (fenotipo Rh™) & che entrambi gli alleli del genotipo
siano Rh™. Se Leonardo e Martina hanno fenotipo Rh*, possono avere genotipo
omozigote Rh™Rh™ oppure eterozigote RhTRh™. Se anche uno solo dei due ha
genotipo omozigote Rh™Rh™, la tabella precedente ci dice che la probabilita che
abbiano un figlio con fenotipo Rh™ (e quindi genotipo Rh™Rh™) & zero. Invece, se
entrambi hanno genotipo eterozigote Rh*Rh ™, la probabilita che abbiano un figlio
con fenotipo Rh™ & 1/4.

Osservazione 2.9 L’esempio precedente ancora non risponde del tutto alla do-
manda 3 della Sezione 2.1, in quanto non sappiamo ancora con che probabilita
un individuo con fenotipo Rh* ha genotipo omozigote o eterozigote. Riprende-
remo l'argomento nella Sezione 2.7.

2.4 Frequenze relative

Se non abbiamo alcuna ipotesi teorica a cui aggrapparci per attribuire a priori
delle probabilita ai possibili eventi del fenomeno che stiamo studiando, dobbiamo
rimboccarci le maniche e metterci a misurare. Ripetiamo lo stesso esperimento un
numero (possibilmente) grande di volte: diremo frequenza assoluta (o numero di
successi) di un evento il numero di volte che 'evento si verifica ripetendo 'esperi-
mento, e frequenza relativa il rapporto fra la frequenza assoluta e il numero degli
esperimenti (o numero di tentativi) effettuati:

numero di successi

frequenza relativa = - — .
numero di tentativi

L’attribuzione a posteriori della probabilita consiste allora nell’assegnare come pro-
babilta a ciascun evento la sua frequenza relativa.

ESEMPIO 2.17 Supponi di avere un dado a 6 facce, e di non sapere se & truccato o
meno, per cui non puoi attribuire le probabilita a priori. Incarichi il tuo assistente
di passare una notte insonne a tirare 1000 volte il dado. Il giorno dopo, lui ti
consegna la Tabella 2.3.

Usando la frequenza relativa per calcolare la probabilita, possiamo quindi dire
che, in base ai dati disponibili, la probabilita che un lancio di questo dado abbia
come risultato 1 € 0.12, che abbia come risultato 2 € 0.412, e cosi via. In particolare,
in assenza di altre informazioni, siamo portati a concludere che questo dado &
truccato, in quanto favorisce in maniera pesante il 2 e sfavorisce il 3 e il 6.
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Risultato Frequenza assoluta Frequenza relativa

1 120 120/1000 = 0.12
2 412 412/1000 = 0.412
3 66 66/1000 = 0.066
4 222 222/1000 = 0.222
) 127 127/1000 = 0.127
6 93 53/1000 = 0.053

TABELLA 2.3

Osservazione 2.10 Attenzione: qui ¢’¢ un punto delicato. Lo stesso esperimento
effettuato con una dado non truccato avrebbe potuto dare lo stesso risultato. In-
fatti, come abbiamo visto, qualsiasi sequenza di risultati di lanci di un dado non
truccato ha la stessa probabilita non nulla di verificarsi. Pero, come vedremo nella
Sezione 2.9, la probabilita di ottenere quella tabella tirando 1000 volte un dado
non truccato & circa 4.15 - 1012, mentre la probabilita di ottenere tirando 1000
volte un dado non truccato una tabella in cui i 6 risultati hanno una frequenza
relativa di 1/6 & di circa 6.85- 1078, estremamente pilt grande (anche se in assoluto
piccolal). In altre parole, & possibile ma estremamente improbabile che un dado
non truccato dia il risultato che abbiamo ottenuto.

Osservazione 2.11 La distinzione sottile da tenere presente € se stiamo usando le
frequenze relative per verificare una probabilita a priori oppure per attribuire una
probabilita a posteriori. Ne riparliamo fra poco.

L’esempio precedente illustra una possibilita per I’attribuzione delle probabilita
a posteriori tramite la ripetizione dello stesso esperimento. Un altro caso possibile
€ invece tramite I’esame pitt 0 meno esaustivo di una popolazione.

EseEmpPIO 2.18 Vogliamo vedere qual & la probabilita che una cellula epiteliale di
ratto subisca una mutazione quando sottoposta a una radioattivita di 1 Roentgen
(1 Roentgen — abbreviato R — corrisponde a 2.58 - 10~* C/kg, dove C sta per
Coulomb, la misura di carica elettrica, e 1 C=1 A-s). Sottoponiamo 1000 di cellule
epiteliali di ratto ciascuna a una radiazione di 1 R; se ne sono mutate 5, possiamo
dire che la probabilita di mutazione ¢ 5/1000 = 0.005.

EsEMPIO 2.19 In un esperimento vengono pesate 15 cavie, ottenendo i seguenti
pesi in grammi:

28 32 37 29 31 30 32 26 32 27 29 30 28 31 31.

Qual ¢ la probabilita che una cavia presa a caso fra queste pesi meno di 29 grammi?
Per rispondere a questa domanda contiamo: 4 cavie su 15 pesano meno di 29
grammi; quindi la probabilita & 4/15. Analogamente, 6 cavie su 15 pesano al-
meno 31 grammi, per cui la probabilita che una cavia presa a caso fra queste pesi
almeno 31 grammi & 6/15.
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Esempio 2.20 All’Ospedale S. Camillo di Roma, nel periodo 16/4-15/10 2002
hanno registrato il peso dei bambini nati nel reparto maternita. I risultati sono
riassunti nella Tabella 2.4.

Peso alla nascita Frequenza assoluta Frequenza relativa

<1000 g 9 9/116 ~ 8%
1001-1500 g 21 21/116 ~ 18%
1501-2500 g 50 50/116 ~ 43%

> 2500 g 36 36/116 ~ 31%

Totale 116 116/116 = 100%

TABELLA 2.4

Qual & la probabilita che un neonato preso a caso fra questi 116 pesi piu di
1500 g? Siccome 86 neonati su 116 pesano pit di 1500 g, la risposta & 86/116 ~ 74%.

Osservazione 2.12 Siccome le probabilita sono numeri compresi fra 0 e 1, sono
spesso indicate come percentuali (cioé come frazioni con denominatore uguale
a 100).

Osservazione 2.13 Attenzione: I'Esempio 2.20 non ci permette di concludere che
la probabilita che un neonato italiano pesi pit di 1500 g ¢ il 74% circa. Il fatto
e che i 116 neonati studiati in questo esperimento sono solo un campione dell’in-
tera popolazione di neonati italiani. Per essere certi che le frequenze relative ci
diano l’esatta probabilita per l'intera popolazione dovremmo misurare il peso di
tutti i neonati italiani. In molte situazioni sperimentali misurare tutti i membri
di una popolazione ¢ assolutamente impossibile; 'unica possibilita e studiare un
campione che speriamo rappresentativo dell’intera popolazione, dove “rappresenta-
tivo” vuol dire che ha una distribuzione delle probabilita simile a quella dell’intera
popolazione. Se il campione ¢ scelto bene, le frequenze relative del campione sa-
ranno probabilmente vicine alle frequenze relative dell’intera popolazione. Uno dei
principali compiti della Statistica ¢ esattamente misurare quale errore si compie
misurando solo un campione invece dell’intera popolazione; ne riparleremo.

Osservazione 2.14 Nei due esempi precedenti abbiamo usato la frase “preso a caso”,
che vuol dire che ogni membro della popolazione ha la stessa probabilita di essere
scelto. Se questa condizione non e soddisfatta, le frequenze relative non danno
la probabilita dell’evento. Per esempio, la probabilita che un neonato prematuro
fra i 116 esaminati pesi pitt di 1500 g ¢ sicuramente molto inferiore al 74%; e
infatti, imporre la condizione che il neonato sia prematuro vuol dire che non stiamo
scegliendo un neonato a caso, in quanto stiamo escludendo a priori i neonati non
prematuri. La scelta a caso deve avvenire tramite un meccanismo che non dipenda
da caratteristiche specifiche dei componenti della popolazione. Per esempio, per
ottenere una scelta a caso possiamo associare a ciascun bambino un numero fra 1
e 116 (numeri diversi a bambini diversi, s’intende!) e poi chiedere a un computer
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di generare un numero a caso® fra 1 e 116.

Osservazione 2.15 La definizione di probabilita tramite la frequenza relativa sod-
disfa le proprieta (1)—(3). Infatti, il numero dei successi & (non negativo e) minore
o uguale al numero dei tentativi, per cui le frequenze relative sono numeri com-
presi fra 0 e 1. Il numero di successi dell’evento impossibile ¢ zero, per cui la sua
frequenza relativa & zero; analogamente, la frequenza relativa dell’evento certo & 1.
Infine, il numero di volte in cui si verifica I'uno o I'altro di due eventi incompatibili
¢ la somma del numero di volte in cui si verifica uno con il numero di volte in cui
si verifica I’altro; dividendo per il numero dei tentativi troviamo che la frequenza
relativa dell’'unione dei due eventi ¢ uguale alla somma delle frequenze relative.

Osservazione 2.16  Se lo spazio degli eventi ¢ finito con una distribuzione uniforme
della probabilita, allora la frequenza relativa (calcolata esaminando tutti gli eventi!)
coincide con la probabilita a priori. Infatti, in questo caso (vedi I’Osservazione 2.8)
la probabilita a priori di un evento composto € uguale al numero di eventi semplici
che lo compongono (cioe al numero di successi) divisa per il numero totale di eventi
semplici (cioe il numero di tentativi).

EseMPIO 2.21 In un esperimento, hai stabilito di sottoporre la cavia A al trat-
tamento a, la cavia B al trattamento b, e la cavia C al trattamento c¢. Sfortunata-
mente il tuo assistente (che non si ¢ ancora ripreso dalla notte insonne passata a
tirare il dado) si sbaglia e attribuisce a caso i tre trattamenti alle tre cavie. Qual &
la probabilita che a nessuna cavia venga attribuito il trattamento giusto? Siccome
i tre trattamenti sono attribuiti a caso, le possibili attribuzioni sono equiproba-
bili. Ci sono 6 possibili attribuzioni — (a, b, ¢), (a,¢,b), (b,a,c), (b,c,a), (¢, a,b),
(¢,b,a), dove (z,y, z) vuol dire trattamento x alla cavia A, trattamento y alla cavia
B, trattamento z alla cavia C' —, per cui ogni attribuzione ha probabilita 1/6. 11
sottoinsieme delle attribuzioni in cui nessuna cavia ha il trattamento giusto ¢ co-
stituito da 2 elementi, (b, c,a) e (¢, a,b). Il ragionamento a priori ci dice allora che
la probabilita cercata e 2 - %; il ragionamento a posteriori ci dice che la probabilita
cercata ¢ 2/6, e coerentemente otteniamo 1/3 in entrambi i casi.

Come accennato sopra, € importante sapere se stiamo utilizzando le frequenze
relative per definire una distribuzione di probabilita o per verificare una distribu-
zione di probabilita. Nel primo caso non c’¢ nessun problema: facciamo le nostre
misure, calcoliamo le frequenze relative e siccome queste soddisfano le proprieta
(1)—(3) (vedi I’Osservazione 2.15 e la prossima sezione) otteniamo dei numeri che
hanno tutto il diritto di essere chiamati probabilita. Ma nella maggior parte dei
casi non ¢ questo che ci interessa.

Nella maggior parte dei casi noi vogliamo usare le frequenze relative per misu-
rare un’altra distribuzione di probabilita. Infatti, tipicamente siamo in una delle
seguenti due situazioni:

3 Ovviamente, questo apre il problema di come si fa a generare un numero a caso con un
computer. .. problema, per fortuna, gia risolto da matematici e informatici.
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— non siamo in grado di trattare I'intera popolazione, per cui vogliamo misurare
la distribuzione di probabilita dell’intera popolazione (definita per esempio
tramite le frequenze relative dell’intera popolazione, che perd non possiamo
ottenere) usando le frequenze relative di un campione (come nel caso del peso
dei neonati);

—  tramite ipotesi teoriche abbiamo dedotto una distribuzione di probabilita a
priori, e vogliamo usare le frequenze relative per verificare se questa e 'effettiva
distribuzione di probabilita. Per esempio, per verificare la legge di disgiunzione
di Mendel potremmo calcolare le frequenze relative dei genotipi di un gran
numero di figli per vedere se coincidono con quelle predette nell’Esempio 2.16
(oppure per verificare se un dado non & truccato potremmo chiedere al nostro
assistente di passare un’altra notte insonne. . .)

In entrambi i casi, perché le frequenze relative misurino davvero la distribuzione
(teorica o incognita) di probabilita a cui siamo interessati devono essere verificate
tre condizioni importanti:

1.  Dev’essere possibile ripetere la misura o I’esperimento un gran numero di volte
e in condizioni pressoché costanti. Solo due lanci non ci potranno mai dire se
un dado ¢ truccato o meno; e un miliardo di lanci effettuati cambiando dado
ogni volta non servono a stabilire se uno specifico dado ¢ truccato o non lo e.

2. I tentativi effettuati — la scelta del campione — devono essere davvero casuali,
e non dipendere da fattori estranei che possano falsare i risultati. Anche se al
tuo assistente & antipatico il numero 6, non puo escludere dall’esperimento i
lanci il cui risultato sia 6.

3. Clascuna misura o esperimento dev’essere indipendente dalle precedenti. Al
tuo assistente non e permesso di appoggiare il dado sul tavolo senza tirarlo se
il risultato precedente era 1, e di tirarlo negli altri casi; deve comportarsi nello
stesso modo indipendentemente dai risultati precedenti.

Vediamo un paio di esempi per chiarire queste idee.

ESEMPIO 2.22 Vogliamo calcolare la probabilita che a uno studente dell’Univer-
sita di Pisa piaccia andare in discoteca. Nel’A.A. 2005/06 gli iscritti erano 51130;
chiaramente non possiamo aspettarci che basti intervistare 5 studenti per avere ri-
sultati significativi. Le interviste devono essere effettuate tutte nello stesso periodo
di tempo (se ci mettiamo dieci anni, gli studenti sono cambiati, le mode pure, e le
risposte ottenute all’inizio non sono pit confrontabili con quelle ottenute alla fine),
e dobbiamo porre a ciascun intervistato le stesse domande. La scelta degli intervi-
stati e cruciale: devono essere scelti a caso. Per esempio, scegliere il campione solo
fra gli studenti incontrati in discoteca un sabato sera darebbe dei risultati proba-
bilmente piuttosto falsati. Infine, la scelta di chi intervistare non puo dipendere da
chi abbiamo gia intervistato. Se, una volta intervistato uno studente, passiamo a
intervistare i suoi amici, probabilmente otterremo risposte piu rappresentative dei
suoi gusti (in quanto gli amici tendono ad avere gusti simili) che dei gusti degli
studenti in generale.

ESEMPIO 2.23  Vuoi misurare le reazioni di alcune cavie (umane o animali) a un
certo stimolo. Hai a disposizione un certo numero di (pitt o meno) volontari, e il
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tuo assistente (che la notte prima ha dormito) ne sceglie a caso uno. Effettuato
Pesperimento, riaffidi la cavia al tuo assistente che (non avendo letto queste di-
spense) la rimette assieme alle altre. Questo & un errore. Le cavie (sicuramente
se umane, ma anche se animali) comunicano fra di loro; e quindi la reazione della
cavia successiva potrebbe dipendere dalle informazioni ricevute dalla cavia prece-
dente. Questo e evidente se si tratta di esseri umani, ma vale anche per gli animali:
se la cavia precedente & spaventata, potrebbe trasmettere paura (o per lo meno
preoccupazione) alle altre cavie, e questo potrebbe falsare la reazione delle cavie
successive allo stimolo.

Siamo al cuore del metodo scientifico: si fanno delle ipotesi sul fenomeno in
studio; si deducono delle probabilita a priori; si misurano, con un esperimento
condotto con le regole di cui sopra, le frequenze relative. Se queste coincidono con
le probabilita a priori, siamo felici e scriviamo un articolo; se invece differiscono,
vuol dire che dobbiamo modificare le nostre ipotesi, perché ci sono in gioco dei
fattori che non abbiamo considerato.

EsEMPIO 2.24 Hai fatto l'ipotesi che un certo dado non sia truccato, e ne hai
dedotto una distribuzione uniforme della probabilita. Hai fatto passare una notte
insonne al tuo assistente a tirare il dado, che ha ottenuto la Tabella 2.3. Per quanto
detto nell’Osservazione 2.10, sei costretto a dedurre che molto probabilmente il tuo
dado e truccato.

EseEMpPIO 2.25 Com’e noto, il sesso del nascituro dipende da quale cromosoma
della coppia “XY” viene trasmesso dal padre. Come prime ipotesi, potremmo
assumere che il numero degli spermatozoi col cromosoma X sia uguale al numero
degli spermatozoi col cromosoma Y e che la possibilita di fecondazione non dipenda
dal cromosoma portato dallo spermatozoo. Queste ipotesi portano a concludere una
distribuzione di probabilita uniforme: la probabilita a priori che nasca un maschio
& uguale alla probabilita che nasca una femmina, il 50% in entrambi i casi. Invece,
misure effettuate sul campo mostrano che nascono sistematicamente pitt maschi
che femmine. Per esempio, in Italia nel 2005 sono nati 284 472 maschi su un totale
di 554951 bambini; quindi la probabilita di un maschio in Italia nel 2005 e di
circa il 51.3%, mentre quella di una femmina & di circa il 48.7%. Anche se con
cifre lievemente diverse, il fenomeno si ripete analogo negli altri anni e in altre
popolazioni. Quindi siamo costretti a concludere che le possibilita di fecondazione
dipendano dal cromosoma portato dallo spermatozoo (attenzione: qui stiamo anche
supponendo che gli aborti, spontanei o meno, non siano legati al sesso del nascituro.
In alcune popolazioni, questa ipotesi non & verificata, gli aborti femminili sono piu
frequenti degli aborti maschili). In effetti, sembra che spermatozoi con cromosomi
diversi abbiano mobilita diversa a seconda della concentrazione di certi ormoni
femminili, concentrazione che cambia nel corso del ciclo mestruale, e che la mobilita
influenzi le possibilita di fecondazione; ma non c’e¢ ancora una spiegazione completa
del fenomeno.

Osservazione 2.17 Attenzione: quando abbiamo detto che usiamo le frequenze re-
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lative per misurare una distribuzione di probabilita a priori teorica o incognita,
abbiamo sottinteso un fatto cruciale. Perché il ragionamento funzioni, occorre
sapere che effettuando un gran numero di misure/esperimenti indipendenti le fre-
quenze relative approssimano sempre meglio le probabilita a priori. Questo, se ci
pensi un attimo, non ¢ affatto ovvio, sopratutto se la distribuzione di probabilita
a priori non ¢ uniforme. Per fortuna, esiste un risultato matematico, il Teorema di
Glivenko-Cantelli, conseguenza della legge dei grandi numeri forte di Kolmogorov,
che ci assicura che le cose stanno proprio cosi. Sfortunatamente, le tecniche che
permettono di enunciare precisamente e dimostrare questo risultato sono ben oltre
lo scopo di queste dispense. Devi tenere pero ben presente che questo teorema non
dice due cose: non dice quante misure sono necessarie per arrivare a una buona
approssimazione delle probabilita a priori, e non dice che le frequenze assolute de-
vono approssimare sempre meglio il prodotto numero di tentativi per probabilita
a priori.

EsSEMPIO 2.26  Facendo tirare un dado 100 volte non truccato al tuo (ormai esau-
sto) assistente ottieni 15 volte 1; con 1000 lanci ottieni 161 volte 1; con 10000 lanci
ottieni 1650 volte 1. Le frequenze relative sono 15/100 = 0.15, 161/1000 = 0.161
e 1650/10000 = 0.165, che sono approssimazioni sempre migliori della probabilita
a priori 1/6 = 0.16. Invece, la differenza fra il numero dei tentativi diviso 6 e le
frequenze assolute aumenta, passando da 1.6 a 5.6 a 16.6.

2.5 Assiomi della probabilita

I discorsi fatti finora appartengono probabilmente piu alla filosofia della scienza che
alla matematica propriamente detta. Per il matematico conta solo fino a un certo
punto come sono state definite le probabilita; quello che importa sono le proprieta
di cui godono, e che conseguenze se ne possono trarre.

Nelle due sezioni precedenti abbiamo visto come per lavorare con le probabilita
fossero fondamentali le proprieta (1)—(3). Il matematico allora parte da qui: una
distribuzione di probabilita & qualunque cosa soddisfi le proprieta (1)—(3).

Vediamo di precisare questa affermazione. Dato uno spazio degli eventi 2,
indichiamo con A la famiglia di tutti* i sottoinsiemi di Q. Una distribuzione (o
misura) di probabilita p su £ & un modo di associare un numero reale p(F) a ogni
evento F € A in modo che
(P1) p(2) =0ep(Q) =1;

(P2) p(E) €[0,1] per ogni E € A;

(P3) se By N E; = allora p(Ey U Ey) = p(E1) + p(E2).

Dovrebbe esserti evidente (se non lo € ripensaci finché non te ne convinci) che gli
assiomi (P1)—(P3) sono la traduzione matematica delle proprieta (1)—(3) enunciate
nella Sezione 2.3. Per il matematico, qualunque cosa che soddisfa queste proprieta
ha diritto di essere chiamata distribuzione di probabilita.

4 Ge0e finito; se €2 & infinito, spesso conviene non considerarli tutti. Vedi la Curiosita 2.1
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Un buon esempio da tenere a mente (anche per capire meglio alcune cose che
faremo fra poco) ¢ il seguente:

EseEmpio 2.27 Il rapporto di aree come probabilita. Prendiamo come 2 un sot-
toinsieme del piano di area positiva, per esempio un cerchio, e sia A la famiglia dei
sottoinsiemi di € (di cui possiamo calcolare 'area; vedi la Curiosita 2.1). Allora a
ogni sottoinsieme F € A possiamo associare il rapporto fra la sua area e I’area di
tutto €2

_ Area(F)

p(E) = Area(Q)

In questo modo abbiamo definito una distribuzione di probabilita su €. Infatti,
che si abbia p(2) = 1 & ovvio; se poniamo, per convenzione, che l'insieme vuoto
ha area nulla, allora p(&) = 0, e (P1) & soddisfatta. Siccome l’area & non negativa
p(E) & sempre maggiore di zero; inoltre, siccome E C Q Parea di E non puo essere
maggiore dell’area di ), per cui p(F) < 1 sempre, e anche (P2) & soddisfatta. Infine,
se F ed E5 sono insiemi disgiunti, 'area dell’unione ¢ chiaramente la somma delle
aree: Area(E; U Ey) = Area(E;) + Area(E;). Dividendo per Area(2) otteniamo
proprio p(Eq U E2) = p(E1) 4+ p(E2), e anche (P3) & verificata.

CuURIOSITA 2.1 Una scoperta decisamente inaspettata della matematica contemporanea & che
esistono dei sottoinsiemi del piano di cui non & possibile misurare I’area, in alcun modo (ma
non ti preoccupare; sono talmente orrendi che se non sei un matematico non ti capitera mai di
incontrarli). Questo vuol dire che la probabilitd come rapporto di aree non puo essere definita
su tutti i possibili sottoinsiemi di €2, ma solo su alcuni, pitt decenti, di cui si puo calcolare ’area.
Per superare questo problema, si & deciso che per parlare di distribuzione di probabilita basta
poter associare una probabilita a una famiglia di sottoinsiemi, e non necessariamente a tutti.
Questa famiglia A di sottoinsiemi non puo essere qualsiasi, perd. Deve contenere sia £ che
I’insieme vuoto &; se contiene un insieme F deve contenere anche il suo complementare Q\ E;
e se contiene una successione finita o infinita di insiemi E;, E2, F5, ... allora deve contenere
anche 'unione E; UE>;UFE5U- - -. Data una famiglia A di sottoinsiemi di €2 con queste proprieta
(in termini tecnici A si chiama o-algebra), una misura di probabilita p su A ¢ un modo di
associare a ciascun elemento E € A un numero reale p(E) in modo che siano verificate (P1)—
(P3) e la proprieta (P4): data una successione infinita E1, E3, 3, ... di elementi di A a due
a due disgiunti, p(E; U E; U - - -) & uguale alla somma infinita p(E;) + p(E2) + - - - (parleremo
delle somme infinite in un prossimo capitolo). Con questo trucco si riesce a parlare in modo
efficace di probabilita anche nel caso di spazi degli eventi infiniti particolarmente complicati.

Una volta stabilito con precisione quali sono le proprieta di cui deve godere una
distribuzione di probabilita, il matematico comincia a vedere che conseguenze puo
trarne. Per esempio, I'assioma (P3) si applica a due eventi incompatibili. E se ne
abbiamo tre, a due a due incompatibili? Vediamo. Supponiamo di avere tre eventi
F1, FEs, F5 adue a due incompatibili nel senso che E1NFEy; = F1NE3 = EsNE3 = &.
L’assioma (P3) ci dice che

p(E1 U Ep) = p(Er) + p(E2) .
D’altra parte, noi sappiamo che

(EluEg)ﬂEgz(ElﬂEg)U(EgﬁEg):QU@:@;
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quindi I'assioma (P3) ci dice anche che
p((E1 U E3) U E3) = p(Ey U Ey) + p(Es) .

Mettendo il tutto insieme, e ricordando che I'unione e associativa, otteniamo
p(E1 U Es U E3) = p(Ey) + p(E2) + p(E3) .

Dunque anche la probabilita dell’'unione di tre eventi a due a due incompatibili &
uguale alla somma delle probabilita. In maniera analoga (convincitene!) si riesce
a far vedere che questo vale per un qualsiasi numero finito di eventi: se E1,..., Ey
sono degli eventi a due a due incompatibili, allora

p(ElLJ-'-UEk) :p(E1)+--~—|-p(Ek) . (21)

Una conseguenza di questo risultato € un fatto che abbiamo implicitamente usato
pitt volte nelle sezioni precedenti. Supponiamo che E = {x1,..., 2} sia un evento
costituito da un numero finito di eventi semplici. Siccome gli eventi semplici sono
sempre a due a due incompatibili, possiamo applicare la formula (2.1) e ricavare

p(E) = p(x1) + -+ p(zy) , (2.2)

cioe la probabilita di un evento composto da un numero finito di elementi é sempre
uguale alla somma delle probabilita dei suoi elementi.

Se conosciamo la probabilita di un evento, riusciamo a calcolare la probabi-
lita del suo complementare? La risposta ¢ affermativa, grazie agli assiomi (P1)
e (P3). Infatti, se E & un evento e 2\ E il suo complementare, noi sappiamo che
EN(Q\E)=@ eche FU((Q\ E) =Q. Allora gli assiomi (P1) e (P3) implicano

1=p(Q) =p(EU(Q\E)) =p(E) +p(Q\ E),
per cui abbiamo ottenuto la formula
p(Q\E) =1-p(E) . (2.3)

L’assioma (P3) ci fornisce la probabilita dell’'unione di due eventi quando gli
eventi sono incompatibili. Riusciamo a trovare una formula per la probabilita del-
I'unione di due eventi £ ed E5 qualsiasi? Anche stavolta la risposta ¢ affermativa,
ma occorre ragionare un pochino. Ovviamente, vogliamo applicare 1’assioma (P3).
Per farlo, dobbiamo scrivere I'unione F1 U Es come unione di due insiemi disgiunti.
Per esempio, possiamo scrivere E; U Es come unione di Fy con Ep \ Es; allora
lassioma (P3) ci da

p(E1 U Es) = p(Ey \ E2) + p(E3) .
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Dobbiamo ora trovare una formula per calcolare la probabilita di E; \ Ea2. Ma
basta osservare che F; si puod scrivere come unione degli eventi disgiunti E; \ Es
ed E1 N Es; quindi p(Ey) = p(Ey \ E2) + p(E1 N E3), ovvero

p(EL\ E2) = p(Er) — p(E1 N Ey) . (2.4)
Mettendo tutto insieme otteniamo
p(Er U Ez) = p(E1) + p(E2) — p(Exr N E2) (2.5)

formula che esprime la probabilita dell’'unione di eventi in termini della probabilita
dei singoli eventi e della probabilita dell’intersezione.

Osservazione 2.18 Prova a interpretare le formule (2.3), (2.4) ed (2.5) nel caso
della probabilita vista come rapporto di aree (Esempio 2.27), magari facendo un
disegno, e vedrai come sono del tutto naturali.

EsEmPIO 2.28 Sia Q = {1,2,3,4,5,6} il solito spazio degli eventi del tiro di un
dado non truccato, con la solita distribuzione di probabilita uniforme, e conside-
riamo gli eventi “minore o uguale a 37 E; = {1,2,3}, e “pari” Fy = {2,4,6}.
Entrambi questi eventi hanno probabilita 1/2. L’evento intersezione ¢ “pari mi-
nore o uguale a 37 F; N Fy = {2}, e ha probabilita 1/6. Allora la (2.5) ci dice che
I’evento unione “pari oppure minore o uguale a 3” deve avere probabilita

1
p(EyUEy) = -+

1 5
2 2

1 .
6 6
e infatti By U By = {1,2,3,4,6}.

2.6 Eventi indipendenti

La formula (2.5) esprime la probabilita dell’evento unione in funzione della proba-
bilita dei due eventi e dell’evento intersezione. Cosa possiamo dire sulla probabilita
dell’evento intersezione? In generale poco. E la probabilita che avvengano entrambi
gli eventi; dipendera quindi da che relazione c’e fra i due eventi.

EsempIo 2.29 Sia Q = {1,2,3,4,5,6} il solito spazio degli eventi del tiro di
un dado a 6 facce non truccato, con la distribuzione uniforme di probabilita, e
consideriamo gli eventi “pari” E; = {2,4,6}, “minore o uguale di 3” Ey = {1,2,3}
e “dispari” E3 = {1,3,5}. La probabilitd di questi tre eventi ¢ 3/6 = 1/2 in
ciascun caso. Le probabilita delle tre intersezioni sono invece diverse. Infatti,
E\NE; = {2}, per cui p(E1NE>2) = 1/6, mentre E1NE3 = & per cui p(E1NE3) =0,
e EoN By ={1,3}, per cui p(E; N E3) =1/3.

La conseguenza di questo esempio & che non puo esistere una formula gene-
rale, sempre valida, che dia la probabilita dell’intersezione solo in funzione della
probabilita degli eventi. Ma osserviamo i seguenti esempi.
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EseEmMpio 2.30 Sia  lo spazio degli eventi del lancio di due dadi a 6 facce
distinti, con la distribuzione di probabilita uniforme, e consideriamo gli eventi
“primo dado 4” Ey = {(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)} e “secondo dado 6”
E, ={(1,6),(2,6),(3,6),(4,6),(5,6),(6,6)}. Abbiamo p(E;) = p(E3) = 1/6, men-
tre 'evento intersezione Eq N Ey = {(4,6)} ha probabilita p(Ey N E3) = 1/36, che
¢ anche uguale al prodotto p(E7) - p(Es).

EsEMPIO 2.31  Consideriamo stavolta il lancio di due dadi “a 3 facce” non truccati
distinti. Un modo per ottenere un dado a 3 facce non truccato consiste nell’'usare
un dado a 6 facce non truccato e nel dichiarare che un risultato di 4 equivale a
un 1, un 5 a un 2, e un 6 a un 3. In altre parole, lo spazio degli eventi del lancio di
un dado a 3 facce non truccato & Q = {{1,4},{2,5},{3,6}}, con la distribuzione
uniforme di probabilita. Lo spazio degli eventi del lancio di due dadi a 3 facce
distinti ha quindi 3 - 3 = 9 elementi, con distribuzione della probabilita uniforme;
Pevento “primo dado 2, secondo dado 3” ha quindi probabilita 1/9. Ora, possiamo
giungere a questo risultato anche in un altro modo. Lanciando il primo dado a 6
facce, si ottiene 2 col corrispondente dado a tre facce in 2 casi su 6. Analogamente,
lanciando il secondo dado a 6 facce, si ottiene 3 col corrispondente dado a tre
facce in 2 casi su 6. Siccome i due dadi sono indipendenti, cioe non si influenzano
a vicenda, il numero di casi in cui lanciando i due dadi a 6 facce si ottiene la
coppia (2, 3) coi corrispondenti dadi a 3 facce & uguale al prodotto del numero casi
con cui si ottiene 2 col primo dado per il numero dei casi con cui si ottiene 3 col
secondo dado, cioe 4 = 2 - 2. Il numero totale dei casi possibili del lancio dei due
dadi a sei facce ¢ 6 -6 = 36. Siccome stiamo usando la distribuzione di probabilita
uniforme, 1’Osservazione 2.16 ci assicura che la probabilita di ottenere (2,3) con
la coppia di dadi a 3 facce (I'intersezione dei due eventi) ¢ 4/36 = (2/6) - (2/6).
Abbiamo ottenuto nuovamente 1/9, ma in questo modo vediamo chiaramente come
il risultato ottenuto sia uguale al prodotto delle probabilita dei due eventi che
abbiamo intersecato.

Quello che questi esempi sembrano suggerire € che se due eventi non si in-
fluenzano a vicenda allora la probabilita dell’evento intersezione e il prodotto delle
probabilita dei due eventi.

Trasformiamo questo suggerimento in una definizione: diremo che due eventi
E ed E3 sono indipendenti se e solo se p(Ey N E3) = p(Ey)p(Es2).

Osservazione 2.19 Attenzione a non fare confusione. La formula (2.5) ¢ una for-
mula sempre vera, valida per qualsiasi coppia di eventi. La formula

p(Ey N E2) = p(E1)p(E2)

invece € una condizione sui due eventi; se & verificata diciamo che gli eventi sono
indipendenti, ma pud benissimo non essere verificata (e in tal caso gli eventi non
sono indipendenti).

EsEMPIO 2.32 Gli eventi Fy ed Ey dell’Esempio 2.29 (come pure gli eventi E;
ed Ej3, e gli eventi Es ed E3) non sono indipendenti, perché la probabilita dell’inter-
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sezione non e uguale al prodotto delle probabilita. Questo & anche intuitivamente
ragionevole: sapere che ¢ accaduto l’evento F; (risultato pari) chiaramente influisce
sull’evento Es (risultato minore o uguale di 3 con lo stesso tiro dello stesso dado),
perché riduce il numero di modi in cui Fs puo essersi verificato. Invece, gli eventi
E; ed Es dell’Esempio 2.30 sono indipendenti. Anche questo € intuitivamente sen-
sato: il risultato del lancio del primo dado non influisce in alcun modo sul risultato
del lancio del secondo dado.

EseEmMPIO 2.33 Un cassetto contiene 12 calzini bianchi e 4 calzini neri. Qual
¢ la probabilita di estrarne un paio spaiato? Per rispondere a questa domanda
chiariamo prima come vogliamo effettuare ’estrazione. Il modo naturale di proce-
dere se vogliamo indossarli consiste nell’estrarne prima uno e poi ’altro; in questo
caso si parla di estrazione senza rimbussolamento. Se invece vogliamo limitarci ad
annotare il colore dei calzini senza indossarli, possiamo estrarne uno, segnarci il
colore, rimetterlo dentro ed estrarre il secondo; in questo caso si parla di estrazione
con rimbussolamento. Vediamo come cambia la probabilita. Nel primo caso (assu-
mendo che i calzini siano indistinguibili, per cui ciascuno abbia la stessa probabilita
di essere estratto), alla prima estrazione abbiamo una probabilita di 12/16 = 3/4
di estrarre un calzino bianco, e di 4/16 = 1/4 di estrarre un calzino nero. Se
abbiamo estratto un calzino bianco, la probabilita di estrarre poiun calzino nero
¢ 4/15 (ricorda che ora il cassetto contiene un calzino in meno). Essendo le due
estrazioni indipendenti, la probabilita di estrarre prima un calzino bianco e poi uno
nero & (3/4) - (4/15) = 1/5. In modo analogo si vede che la probabilita di estrarre
prima un calzino nero e poi uno bianco & (1/4) - (12/15) = 1/5; quindi ’assioma
(P3) ci dice che la probabilita di estrarre (senza rimbussolamento) un paio spaiato
e1l/5+1/5=2/5.

Nel caso con rimbussolamento, la probabilita di estrarre prima un calzino bianco
e poi un calzino nero & (3/4) - (1/4) = 3/16, dove di nuovo abbiamo usato I'indi-
pendenza delle due estrazioni. Analogamente la probabilita di estrarre prima un
calzino nero e poi uno bianco ¢ (1/4) - (3/4) = 3/16, per cui la probabilita di
estrarre con rimbussolamento un paio spaiato ¢ 3/16 4+ 3/16 = 3/8, lievemente
minore rispetto a quella senza rimbussolamento.

CURIOSITA 2.2 La definizione precisa di indipendenza per pit1 di 2 eventi & un attimo complicata.
Si dice che n eventi Ei,..., E, sono indipendenti fra loro se e solo se per ogni 2 < k < n e
ogni scelta di k eventi E; ..., Eik fra Fq,...,E, si ha

p(Eiyy N---NE;, ) =p(Ei)--p(Ei,) -

Attenzione: il fatto che tre eventi FE;, FE», E3 siano a due a due indipendenti non implica che
i tre eventi assieme siano indipendenti. Per esempio, nel caso del lancio di due dadi a 6 facce
distinti, consideriamo gli eventi “primo dado 17 E; = {(1,1), (1,2), (1,3), (1,4),(1,5),(1,6)},

® Un altro modo per vederlo, che conferma l'indipendenza delle due estrazioni, ¢ il se-
guente: abbiamo 12 modi (su 16) per estrarre un calzino bianco la prima volta, e 4 modi
(su 15) di estrarre un calzino nero la seconda volta, per cui abbiamo 12-4 modi (su 16-15)
per estrarre prima un calzino bianco e poi un calzino nero.
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“secondo dado 2” E> = {(1,2),(2,2),(3,2),(4,2),(5,2),(6,2)}, e “scomma dei dadi uguale a 77
E; = {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}. Allora si verifica subito che i tre eventi sono a
due a due indipendenti (cioe p(E1 N E>) = p(E1)p(E-) e cosl via), ma i tre eventi assieme non
sono indipendenti: p(E1 N Ex N E3) =0 # (1/6)% = p(E1)p(E2)p(Es).

Analogamente, sapere che p(F1 N F> N F3) = p(F1)p(F>)p(F3) non implica che i tre eventi
siano indipendenti a due a due (e quindi non implica che siano indipendenti tutti assieme).
Per esempio, prendiamo Fy; = Q\ {(1,1),(2,1),(3,1),(4,1),(5,1),(1,2),(2,2),(3,2),(3,4)},
F, ={(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(6,2),(6,1)} ed F5 = E3. Allora si vede subito che
FiNF>NFs = {(6,1)} per cui p(FyNF2NFs) = 1/36 = (27/36)(8/36)(6/36) = p(Fy)p(F2)p(Fs)
ma p(Fy N F3) = 1/18 # (8/36)(6/36) = p(Fy)p(F3).

Il succo di questo ragionamento € che n eventi E1,..., E, sono indipendenti se e solo se
la probabilita dell’intersezione di qualsiasi di essi & uguale al prodotto delle probabilita.

2.7 La legge di Hardy-Weinberg

Vogliamo ora discutere alcune applicazioni alla genetica del concetto di eventi in-
dipendenti.

Supponiamo di avere una popolazione composta da molti individui, e consi-
deriamo un gene con due possibili alleli A e a; vogliamo studiare come varia la
distribuzione dei genotipi da una generazione all’altra. Indichiamo con pa (rispet-
tivamente, paq, Paq) la probabilita che un individuo preso a caso nella popolazione
abbia genotipo AA (rispettivamente, Aa, aa); in particolare, paa + paa + Paa = 1.
Supponiamo anche che la distribuzione dei genotipi sia la stessa per i due sessi;
che tutti gli individui della popolazione siano fertili; e che il genotipo non influenzi
gli accoppiamenti, per cui il genotipo del padre e quello della madre sono indi-
pendenti. Il nostro primo obiettivo & calcolare la distribuzione di probabilita dei
genotipi della generazione dei figli in funzione di quella dei genitori, applicando la
legge di disgiunzione di Mendel.

Supponiamo che il padre abbia genotipo AA (evento che ha probabilita paa)
e la madre abbia genotipo AA (evento che ha probabilita paa). Per ipotesi, i
due eventi sono indipendenti; quindi la probabilita che entrambi i genitori abbiano
genotipo AA ¢ il prodotto delle probabilita, cio¢ p? 4. Questa coppia di genitori
ha necessariamente un figlio con genotipo AA, per cui la probabilita di trovare
una coppia con entrambi i genitori e il figlio di genotipo AA & p% 4. Supponiamo
invece che il padre abbia genotipo Aa (evento che ha probabilita p4,) e la madre
ancora genotipo AA (evento che ha probabilita pas). Per ipotesi, i due eventi
sono indipendenti; quindi la probabilita che i genitori abbiano questi genotipi € il
prodotto delle probabilita, cioe paapa,. Per la legge di disgiunzione di Mendel,
questa coppia di genitori ha un figlio con genotipo AA con probabilitah 1/2; e
un figlio con genotipo Aa con probabilita 1/2. Quindi la probabilitd di trovare
una coppia di genitori con quei genotipi e il figlio di genotipo AA € paapaa/2,
e la probabilita di trovare una coppia di genitori con quei genotipi e il figlio di
genotipo Aa & ancora pAgapAa/2.

Ragionando in questo modo costruiamo la Tabella 2.5, in cui le colonne corri-
spondono al genotipo del padre, le righe a quello della madre, e le caselle centrali
contengono le probabilita di trovare una coppia di genitori con i genotipi della riga
e colonna corrispondenti, e un figlio con il genotipo indicato.
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AA: paa Aa: paa aa: Pag
AA: piA AA: %pAApAa AA: 0
AA: paa Aa: 0 Aa: %pAApAa Aa: pAAPaa
aa: 0 aa: 0 aa: 0
AA: %pAApAa AA: %pia AA: 0
Aa: paa Aa: $paapaa Aa: 1p7, Aa: $PAaPaa
aa: 0 aa: ipia aa: %pAapaa
AA: 0 AA: 0 AA: 0
aa: Paq Aa: paAPaa Aa: $PAaPaa Aa: 0
aa: 0 aa: $PAaPaa aa: Pa,

TABELLA 2.5

Siccome gli eventi contenuti nelle caselle centrali della Tabella 2.5 sono a due
a due mutuamente esclusivi, per trovare la probabilitd p% , che un figlio abbia
genotipo AA basta sommare tutte le probabilita delle caselle centrali corrispondenti
al genotipo AA:

2
pha =044 +2 3paapac+ 102, = (Paa+ 3paa)” - (2.6)

In modo analogo troviamo la probabilita pff, che un figlio abbia genotipo Aa, e la
probabilita pZ che un figlio abbia genotipo aa:

pia = 2%pAApAa + 2pAApaa + %p?Aa + 2%pAapaa
= 2(pAA + %pAa)(paa + %pAa)

, 27)
paFa = ip,%;a +2- %pAapaa +pia = (%pAa +paa)2 .

Non ¢ finita qui. Le varie probabilita paa, PAq € Pae NON sono completamente
indipendenti fra di loro, in quanto anche i genitori sono figli di qualcuno. Infatti,
le possiamo ottenere tutte a partire da un unico dato: la probabilita ps della
presenza dell’allele A nel genotipo di un individuo preso a caso nella popolazione®.
Chiaramente, se indichiamo con p, la probabilita della presenza dell’allele a nel
genotipo di un individuo preso a caso nella popolazione, abbiamo p, = 1 — p4,
ovVVero

pA+pa:1-

La legge di disgiunzione di Mendel implica (perché?) che la presenza di uno o
I’altro allele in un cromosoma ¢ indipendente da quale allele e presente nell’altro

6 Per il discorso successivo non & importante come sia stata calcolata pa, se come fre-
quenza relativa o in altro modo.
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cromosoma. Quindi la probabilitd p44 che un individuo abbia genotipo AA & il
prodotto della probabilita p4 che abbia un allele A con la probabilita p4 che abbia
un secondo allele A; quindi pas = p%. Analogamente, p,, = p2. Infine, siccome
ci sono due modi per ottenere un genotipo Aa, abbiamo pa, = 2pap,. Dunque
otteniamo
baA = pix ) PAa = 2PAPa » Paa = PZ . (28)
Diremo che una popolazione con distribuzione di genotipi che soddisfa la (2.8) per
opportuni valori p4 e p, = 1 — p4 ha una distribuzione (o equilibrio) di Hardy-
Weinberg; a volte, la chiameremo semplicemente popolazione di Hardy-Weinberg.
Siamo all’ultimo passaggio. Mettiamo la (2.8) nelle (2.6) e (2.7); usando 'iden-
tita pa + p, = 1 otteniamo

Pha = (04 + 32papa)? = pAi(pa +pa)® = P4 = paa

VO 2 1 2 1 _ _ 2 _ _
Paa = 204 + 5204Pa) (P + 52PAPa) = 2P APa(PA = Pa)” = 2PAPa = PAa »
phy = (A2papa +12)* = P2(Pa + pa)? = P2 = Paa -

In altre parole, se una popolazione ha una distribuzione di Hardy-Weinberg, la
distribuzione di probabilita dei genotipi fra i figli e identica alla distribuzione di
probabilita dei genotipi fra i genitori! In altre parole, la distribuzione dei genotipi
in una popolazione di Hardy-Weinberg non cambia da una generazione all’altra.

Questo risultato e detto legge di Hardy-Weinberg, ed & stato scoperto indipen-
dentemente dal matematico inglese G.H. Hardy e dal medico tedesco W. Weinberg
nel 1908.

Osservazione 2.20 1 conti che abbiamo fatto hanno un’ulteriore conseguenza in-
teressante. Supponiamo che la popolazione di partenza non abbia una distribu-
zione di Hardy-Weinberg, per esempio perché ottenuta mescolando (a causa di
una migrazione) due popolazioni con differente distribuzione degli alleli. In questo
caso, PaA, PAa € P> non soddisfano (2.8). Nonostante cio, la popolazione dei figli
¢ di Hardy-Weinberg! Infatti, guardando (2.6) e (2.7) si vede subito che basta
porre pii = paa + 3paa € pL = paa + 3P aa per avere ph, = (pF)?, pk, = 27 pE,
pE = (p5)2, e pfl + pI = 1, come richiesto dalla (2.8). In altre parole, la popola-
zione dei figli di una popolazione qualsiasi € sempre di Hardy- Weinberg, e quindi
la distribuzione det genotipi in una popolazione qualsiasi si stabilizza dalla seconda
generazione in pot.

Osservazione 2.21 Vale la pena ribadire che la legge di Hardy-Weinberg e le sue
conseguenze si applicano solo in situazioni in cui il genotipo dei padri e quello delle
madri sono indipendenti e scelti a caso. In particolare, non si applicano per alleli
che favoriscono I'accoppiamento, né in popolazioni piccole con molti accoppiamenti
fra famigliari. Ma su grandi popolazioni e per buona parte dei geni la legge di
Hardy-Weinberg ¢ ampiamente rispettata.

EsEMPIO 2.34 Vediamo come calcolare la probabilita che Leonardo e Martina
abbiano un figlio con fenotipo Rh™ senza sapere nulla sui loro genotipi. Ovvia-
mente, ci serve un qualche dato per partire. Il dato pit semplice da recuperare in
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questo caso ¢ la distribuzione dei fenotipi; in Italia, il 15.1% della popolazione ha
fenotipo Rh™, e 1'84.9% ha fenotipo Rh™. Il fenotipo Rh™ & generato soltanto dal
genotipo Rh™Rh™, per cui possiamo dire che la probabilita p__ che un italiano
preso a caso abbia genotipo Rh™Rh™ & 0.151. Invece, il fenotipo Rh™ & generato
dai genotipi Rb*Rht e RhTRh™, per cui possiamo dire che p,, + py_ = 0.849,
dove py, (rispettivamente, p,_) & la probabilita del genotipo Rh*Rh™ (rispetti-
vamente, Rh™Rh ™).

A questo punto possiamo procedere in modo furbo o in modo pedante. 11 modo
furbo e il seguente: la popolazione italiana considerata soddisfa le ipotesi della
legge di Hardy-Weinberg; quindi, la distribuzione dei genotipi nei figli & uguale
a quella nei genitori; quindi, la probabilita che il figlio abbia fenotipo Rh™ (cioe
genotipo Rh™Rh™) ¢ p__ = 0.151 = 15.1%.

1l modo pedante consiste nel fare tutti i conti. Indichiamo con py (rispettiva-
mente, p_) la probabilita di presenza dell’allele Rh™ (rispettivamente, Rh™) in un
italiano preso a caso. Siccome la popolazione italiana ¢ di Hardy-Weinberg, sap-
piamo che p__ = p? ; quindi ricaviamo p_ = 1/0.151 ~ 0.389 e p, = 1—p_ ~ 0.611.
Otteniamo allora py4 = pi ~ 0.374 e py_ = 2pip_ ~ 0.475. Nota che i valori
ricavati di p4 4 e di p4_ sono tali che py +p,_ ~ 0.849, che ¢ proprio la frequenza
relativa misurata nella popolazione italiana del fenotipo Rh™.

Adesso calcoliamo la probabilita che Leonardo e Martina abbiano un certo ge-
notipo e loro figlio sia Rh™. Usando il fatto che i genotipi di padre e madre sono
indipendenti e usando nuovamente la legge di disgiunzione di Mendel otteniamo la
Tabella 2.6, in cui abbiamo elencato solo le situazioni in cui Leonardo e Martina
possono avere un figlio con fenotipo Rh™ (negli altri casi la probabilita che possano
avere un figlio con fenotipo Rh~ ¢ 0).

Genotipi Probabilita
Leonardo Rh*Rh™, Martina Rh*Rh™, Figlio Rh"Rh™  1p?_ ~5.6%
Leonardo Rh*Rh™, Martina Rh™Rh ™, Figlio Rh™"Rh™ %p+_p__ ~ 3.6%
Leonardo Rh™Rh™, Martina RhtRh ™, Figlio Rh™Rh™ %p__p+_ ~ 3.6%
Leonardo Rh™Rh™, Martina Rh™ Rh™, Figlio Rh " Rh™ p2_ ~23%

TABELLA 2.6

Siccome questi eventi sono a due a due incompatibili, la probabilita che il figlio
di Leonardo e Martina abbia fenotipo Rh™ ¢ la somma di queste probabilita, che
& proprio 15.1%, come predetto dalla legge di Hardy-Weinberg.

Osservazione 2.22 Esiste una legge di Hardy-Weinberg anche per geni con piu
di due alleli. Supponiamo che un gene abbia n alleli Ay,...,A,, con relative
probabilita pa,,...,pa,, soddisfacenti ovviamente pa, +---+pa, = 1. Se valgono
le solite ipotesi della legge di Hardy-Weinberg, la legge di disgiunzione di Mendel
ci dice che la probabilita di trovare nella popolazione un genotipo omozigota A;A;
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Pa;A; :p,%li ) (29)

mentre la probabilita di trovare un genotipo eterozigota A;A; con i # j e

PAA; =2pA,D4A; - (2.10)

Anche stavolta chiameremo di Hardy-Weinberg una popolazione che soddisfa (2.9)
e (2.10). Allora procedendo come prima si puo verificare che la distribuzione dei
genotipi in una popolazione di Hardy-Weinberg e costante da una generazione
all’altra, e che ogni popolazione diventa di Hardy-Weinberg dopo una generazione.

Esercizio 2.1 La distribuzione dei gruppi sanguigni nella popolazione italiana é:
gruppo A 44%, gruppo B 11%, gruppo AB 5%, gruppo 0 40%. Il gruppo sanguigno
¢ determinato da un gene con tre alleli, che indicheremo con A, B e 0. Il fenotipo A
corrisponde ai genotipi AA e A0, il fenotipo B corrisponde ai genotipi BB e B0, il
fenotipo AB corrisponde al genotipo AB, e il fenotipo 0 corrisponde al genotipo 00.

(i) Supponendo che la popolazione italiana sia di Hardy-Weinberg, calcola le pro-
babilita di ogni singolo allele e di ogni singolo genotipo.

(ii) Verifica che i risultati ottenuti nel punto precedente siano in accordo con I'i-
potesi di distribuzione di Hardy-Weinberg.

(iii) Trova in modo furbo e in modo pedante la probabilita che Leonardo e Martina
abbiano un figlio con gruppo sanguigno 0.

Un’altra applicazione del concetto di probabilita indipendenti e dell’equilibrio
di Hardy-Weinberg ¢ il test del DNA. La situazione e la seguente: la polizia ¢ in
possesso di un campione del DNA (ricavato da sangue, sperma o altro materiale
organico) del colpevole di un reato. Viene prelevato un campione di DNA di un
sospetto, e si verifica che alcuni geni (o, pill in generale, marcatori genetici, cioe
zone del DNA variabili nella popolazione”) del sospetto sono uguali a quelli del
colpevole. Qual ¢ la probabilita che si tratti di una coincidenza? In altri termini,
qual ¢ la probabilita che un individuo preso a caso nella popolazione abbia gli stessi
marcatori genetici del colpevole?

Ormai dovrebbe essere chiaro come si procede. Si parte dalla probabilita della
presenza nella popolazione di ciascuno degli alleli dei marcatori genetici coinvolti.
Supponendo che la popolazione sia di Hardy-Weinberg, si usano (2.9) e (2.10) per
calcolare la probabilita del genotipo di ciascuno dei marcatori genetici del colpevole.
Infine, supponendo che i vari marcatori genetici siano scelti in modo da essere
indipendenti fra loro (ipotesi non sempre verificata; in alcuni casi la presenza di un
certo allele in un dato gene favorisce la presenza di un allele specifico in un altro
gene), si moltiplicano le probabilita dei vari genotipi e si ottiene la probabilita che
un individuo preso a caso abbia gli stessi genotipi del colpevole in quei marcatori
genetici. Ma vediamo un esempio numerico.

7 T marcatori genetici nell’'uomo costituiscono meno dello 0.1% dell’intero DNA umano;
i1 99.9% del DNA ¢ lo stesso per tutti gli individui.
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EseEMPIO 2.35 Due marcatori genetici spesso usati nei test del DNA sono il
CSF1P0 e il TPOX; & noto che sono indipendenti fra loro. Uno studio effettuato
nella Polonia meridionale ha trovato 8 alleli diversi per CSF1PO0, e 5 alleli diversi
per TPOX, con le distribuzioni di probabilita riportate nella Tabella 2.7.

Allele Probabilita Allele Probabilita

TPOX 1 0.556 CSF1P0 1 0.008
2 0.125 2 0.032

3 0.081 3 0.355

4 0.214 4 0.266

5 0.024 5 0.262

6 0.060

7 0.004

8 0.013

TABELLA 2.7

11 DNA del colpevole & risultato essere eterozigote con alleli 2 e 4 nel marca-
tore genetico TPOX, e omozigota di allele 5 nel marcatore genetico CSF1P0. La
Tabella 2.7 ci dice (perché?) che la probabilita che un individuo preso a caso nella
popolazione abbia genotipo eterozigote “24” in TPOX e 2-0.125 - 0.214 = 0.0535,
mentre la probabilita che un individuo preso a caso nella popolazione abbia geno-
tipo omozigote “55” in CSF1P0 & (0.262)? = 0.068644. Quindi la probabilita che
un individuo preso a caso nella popolazione sia eterozigote “24” in TPOX e omozi-
gote “55: in CSF1P0 ¢ 0.0535-0.068644 ~ 0.00367 = 0.367%. In altre parole, meno
di 4 individui su 1000 della popolazione studiata puo avere il DNA del colpevole.

Osservazione 2.23 Bisogna fare attenzione a come si usa il test del DNA nel de-
cidere se un sospettato e colpevole o innocente. Il test del DNA ci permette di
assolvere con certezza un sospettato: se il DNA & diverso da quello del colpevole,
non e stato lui. Ma non ci permette di condannare con certezza un sospettato,
anche se la probabilita che un individuo preso a caso nella popolazione abbia lo
stesso DNA del colpevole ¢ minima. Ci sono sia motivi matematici che motivi
extramatematici per questo. Per esempio, nella nostra analisi abbiamo supposto
che il colpevole faccia parte della stessa popolazione del sospettato; se non & cosi,
la distribuzione di probabilita del DNA del colpevole & diversa da quella usata per
i nostri conti, e quindi il risultato che abbiamo ottenuto non & significativo. Se poi
(e questo & un motivo extramatematico) il sospettato ¢ in grado di dimostrare che
era in un altro continente quando & avvenuto lo stupro, allora ¢ innocente anche in
presenza di un test del DNA che indica una probabilita su 6 miliardi. Questo non
deve stupirti: le probabilita forniscono una stima della plausibilita di un evento, e
non un’indicazione certa che quell’evento sia o meno avvenuto.

Esercizio 2.2 Usando i dati della Tabella 2.7, calcola la probabilita che un in-
dividuo preso a caso sia omozigote “11”7 in TPOX ed eterozigote “34” in CSF1P0.
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2.8 Probabilita condizionata

Confronta le tre domande seguenti:

(a) Qual & la probabilitd che Leonardo e Martina abbiano un figlio con fenotipo
Rh=?

(b) Qual ¢ la probabilitd che Leonardo e Martina abbiano fenotipo Rh™ e loro
figlio abbia fenotipo Rh™7

(¢) Qual & la probabilitd che Leonardo e Martina abbiano un figlio con fenotipo
Rh~, sapendo che Leonardo e Martina hanno fenotipo Rh™?

La prima domanda chiede semplicemente di calcolare la probabilita dell’evento “fi-
glio con fenotipo Rh™”, indipendentemente da cosa succeda e da cosa sappiamo
sui genitori — e abbiamo visto nella sezione precedente come usare la legge di
Hardy-Weinberg per rispondere a domande del genere (Esempio 2.34), ottenendo
una probabilita di circa il 15.1%. La seconda domanda chiede di calcolare la pro-
babilita che avvengano contemporaneamente i due eventi “Leonardo e Martina con
fenotipo Rh*”, e “figlio con fenotipo Rh~”. Se Leonardo o Martina hanno ge-
notipo omozigote Rh*Rh™, non possono avere un figlio con fenotipo Rh~; quindi
la risposta alla seconda domanda & uguale alla probabilita che Leonardo e Mar-
tina abbiano genotipo RhtRh™ e il figlio abbia genotipo Rh™Rh™, probabilita che
nell’Esempio 2.34 abbiamo visto essere circa 5.6%.

La terza domanda ¢ di natura un po’ diversa: ci chiede di calcolare la pro-
babilita dell’evento “figlio con fenotipo Rh™" conoscendo il fenotipo dei genitori.
Rispetto alla prima domanda, abbiamo un’informazione in piu (il fenotipo dei ge-
nitori); rispetto alla seconda domanda, non stiamo chiedendo con quale probabilita
avvengano due eventi assieme, ma bensi con quale probabilita avviene un evento
sapendo che l'altro ¢ gia avvenuto.

In altre parole, stiamo cercando un modo di calcolare la probabilita di un
evento B sapendo che 'evento A ¢ gia avvenuto. Questa informazione chiaramente
cambia lo spazio degli eventi (dobbiamo escludere tutti gli eventi incompatibili
con A); quindi & ragionevole che cambi anche la probabilita. Ma come?

Per avere un’idea di quale puo essere una risposta ragionevole a questa domanda,
torniamo all’esempio di probabilitdh data come rapporto di aree (Esempio 2.27).
Sapere che 'evento A & accaduto corrisponde a considerare solo il sottoinsieme A
nell’intero spazio degli eventi 2. In questo “sottospazio degli eventi”, I’evento B
¢ rappresentato dall’intersezione B N A. Quindi se la probabilita di B nell’intero
spazio degli eventi corrispondeva al rapporto fra ’area di B e 'area di (2, la pro-
babilita di B nel sottospazio degli eventi dato da A corrispondera al rapporto fra
larea di BN A e I'area di A. Ma possiamo esprimere questo rapporto in maniera
piu furba (e generalizzabile in tutti gli altri casi). Infatti,

Area(BNA)  Area(BN A)/Area(2) p(ANB)
Area(A)  Area(A)/Area()  p(A)

Questa formula ci suggerisce la seguente definizione. Diremo probabilita condizio-
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nata (o condizionale) p(B|A) dell’evento B rispetto all’evento A il quoziente

p(BNA)

p(BlA) = P

(2.11)

ovviamente, p(B|A) & definito solo se ’evento A ha probabilita non nulla. A volte
si trova scritto p(B dato A) invece di p(B|A).

Come detto prima, p(B|A) dev’essere interpretata come la probabilita che sia
avvenuto I’evento B sapendo che ’evento A & accaduto. Ma vediamo alcuni esempi.

EseEmpio 2.36 Vogliamo calcolare la probabilita che la somma del lancio di 2
dadi a sei facce non truccati sia maggiore o uguale a 8 sapendo che il risultato del
primo dado & pari. L’evento A “risultato del primo dado pari” contiene 18 elementi,
per cui p(4) = 18/36 = 1/2. Fra questi, solo 9 appartengono anche all’evento B
“somma maggiore o uguale a 8” (sono gli elementi dell’evento B N A); quindi la
probabilita che la somma sia maggiore o uguale a 8 sapendo che il primo dado
¢ pari ¢ uguale a 9/18 (numero di successi diviso numero di tentativi). D’altra
parte, siccome l'evento BN A contiene 9 elementi, abbiamo p(BNA) = 9/36 = 1/4,
per cui otteniamo p(B|A) = p(BN A)/p(A) = (1/4)/(1/2) = 1/2, in accordo con
Iinterpretazione intuitiva della probabilita condizionata.

EsEMPIO 2.37 Abbiamo il solito cassetto contenente 12 calzini bianchi e 4 calzini
neri. Vogliamo calcolare la probabilita di estrarre (senza rimbussolamento) un paio
spaiato sapendo che il primo calzino estratto & nero. Dobbiamo calcolare p(B|A),
dove A ¢ 'evento “primo calzino estratto nero” e B & 'evento “ i calzini estratti
sono spaiati”. Nell’Esempio 2.33 abbiamo visto che la probabilita dell’evento A &
p(A) = 1/4. L’evento B N A corrisponde a estrarre prima un calzino nero e poi
un calzino bianco, e sempre nell’Esempio 2.33 abbiamo calcolato p(BN A) = 1/5;
quindi otteniamo
1/5 4

D’altra parte, & chiaro che la probabilita di estrarre (senza rimbussolamento) un
paio spaiato se il primo calzino estratto ¢ nero coincide con la probabilita di estrarre
un calzino bianco da un cassetto contenente 12 calzini bianchi e 3 calzini neri.
Questa probabilita & 12/15 = 4/5, in accordo con quanto appena trovato.

EsEMPIO 2.38 Vogliamo finalmente calcolare la probabilita che Leonardo e Mar-
tina abbiano un figlio con fenotipo Rh™ negativo sapendo che sia Leonardo sia Mar-
tina hanno fenotipo Rh™. Indicando con A l'evento “Leonardo e Martina hanno
fenotipo Rh™” e con B l'evento “il figlio ha fenotipo Rh™”, dobbiamo calcolare
la probabilita condizionata p(B|A), partendo ovviamente dai dati visti nell’Esem-
pio 2.34. Siccome i fenotipi di Leonardo e Martina sono indipendenti, la probabilita
che entrambi abbiano fenotipo Rh™ & il quadrato della probabilita che uno di loro
due abbia fenotipo RhT, cioe p(A) = (84.9/100)? ~ 0.72. All’inizio di questa
sezione abbiamo anche calcolato la probabilita che Leonardo e Martina abbiano
fenotipo Rh™ e il figlio abbia fenotipo Rh™, ottenendo p(B N A) ~ 0.056. Quindi



64  Capitolo 2

p(BJ]A) ~ 0.056/0.72 ~ 0.078. Quindi la probabilita che Leonardo e Martina ab-
biano un figlio con fenotipo Rh™ negativo sapendo che sia Leonardo sia Martina
hanno fenotipo Rht & di circa il 7.8%.

Esercizio 2.3 Calcola (usando i dati dell’Esempio 2.34) la probabilita condizio-
nata che Leonardo e Martina abbiano un figlio con fenotipo Rh™ negativo sapendo
che Leonardo ha fenotipo Rht e Martina ha fenotipo Rh~.

Esercizio 2.4 Calcola (usando i dati dell’Esempio 2.34) la probabilita condizio-
nata che Leonardo e Martina abbiano un figlio con fenotipo Rh™ negativo sapendo
che Leonardo e Martina hanno genotipo eterozigote Rh"Rh™, e confronta il ri-
sultato che hai ottenuto con la legge di disgiunzione di Mendel. In particolare,
per rispondere a questa domanda ti serve davvero conoscere la distribuzione di
probabilita dei vari genotipi o puoi farne a meno?

EsEmMpPIO 2.39 Supponiamo che un uomo abbia felicemente compiuto sessan-
t’anni. Come si calcola la probabilita che sopravviva fino ai settant’anni? Ov-
viamente, ci servono dei dati. Per i maschi italiani nel 2002, la probabilita di
morte in un certo intervallo d’eta (calcolata come rapporto fra il numero di morti
in quellintervallo d’eta nel 2002 e il numero totale di morti nel 2002) ¢ riassunta
nella Tabella 2.8.

Intervallo d’eta  Probabilita di morte

0-9 0.616%
10-19 0.377%
20-29 0.88%
30-39 1.029%
40-49 2.024%
50-59 5.203%
60-69 12.665%
70-79 27.126%
80-89 35.57%
90-999 14.51%

TABELLA 2.8

La probabilita dell’evento A “sopravvivere fino a sessant’anni” ¢ uguale alla
probabilita di morire dopo i sessant’anni, per cui

p(A) = 0.12665 + 0.27126 + 0.3557 + 0.1451 = 89.871% .

Siccome 'evento B “sopravvivere fino a settant’anni” ¢ chiaramente un sottoin-
sieme di A, abbiamo BN A = B. La probabilita di B & uguale alla probabilita di
morire dopo i settant’anni, per cui

p(BNA) =p(B) = 0.27126 + 0.3557 + 0.1451 = 77.206% .
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Dunque la probabilita di arrivare a settant’anni avendone compiuti sessanta e

~0.77206

= DogT1 0%

p(B|A)

Osservazione 2.24  Se gli eventi A e B sono indipendenti, abbiamo

ppl) = POEE OB ().

In altre parole, il fatto che sia accaduto I’evento A non muta le probabilita dell’e-
vento B, in perfetto accordo con l'idea intuitiva di cosa vuol dire che due eventi
sono indipendenti.

Riscrivendo in maniera diversa la definizione di probabilita condizionata, otte-
niamo la seguente identita:

p(A)p(B|A) = p(BN A) = p(AN B) = p(B)p(A|B) . (2.12)
Di conseguenza otteniamo la formula di Bayes

p(A)p(BJA)

p(ap) = BERSE

(2.13)

che collega la probabilita condizionata che sia avvenuto B sapendo A alla proba-
bilita condizionata che sia avvenuto A sapendo B.

Un’altra formula utile, la legge delle alternative, segue dal fatto che B ¢ 'unione
disgiunta di BN Ae BN (Q\ A). Infatti, da (2.12) segue

p(B)=p((BNA)UBNQ\A) =p(BNA)+p(BNQ\A)

2.14
=p(A)p(B|A) + p(Q\ A)p(BI2\ A) . (214
In parole povere, la legge delle alternative dice che la probabilita di A e uguale alla
somma del prodotto fra la probabilita condizionata di A sapendo che é avvenuto B
e la probabilita di B, con il prodotto fra la probabilita condizionata di A sapendo
che non é avvenuto B e la probabilita che non sia avvenuto B.
Un ultima formula utile permette di calcolare p(£2\ B|A) conoscendo p(B|A).
Infatti

MQ\BA):pagggyﬂA):pmj;afmA):l—MBA). (2.15)

EsemMPIO 2.40 1l tasso d’incidenza (o prevalenza) di una malattia in una popola-
zione ¢ la probabilita che un individuo scelto a caso nella popolazione sia malato.
Supponiamo di avere una popolazione composta da un 15% di soggetti a rischio
(cioe con caratteristiche che li rendono pin attaccabili dalla malattia), e di sapere
che il tasso d’incidenza della malattia e 0.2 fra i soggetti a rischio, e 0.006 fra i
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soggetti non a rischio. Vogliamo trovare: 'incidenza della malattia nell’intera po-
polazione; qual e la probabilita che un individuo malato sia un soggetto a rischio;
e qual e la probabilita che un individuo sano sia un soggetto a rischio.

Indichiamo con 2 l'intera popolazione, con A 'evento “soggetto a rischio”, e
con B l'evento “individuo malato”. I dati a nostra disposizione sono p(A) = 0.15,
la probabilita che un individuo sia a rischio; p(B|A) = 0.2, la probabilita condi-
zionata che un soggetto a rischio sia malato; e p(B|2\ A) = 0.006, la probabilita
condizionata che un soggetto non a rischio sia malato. Da questi dati vogliamo
ricavare: p(B), la probabilitd che un individuo sia malato; p(A4|B), la probabilita
condizionata che un individuo malato sia a rischio; e p(A|Q \ B), la probabilita
condizionata che un individuo sano sia a rischio.

Per calcolare p(B) conviene usare la legge delle alternative. L’unico dato che ci
manca & la probabilita p(Q2 \ A) che un individuo non sia a rischio; ma la (2.3) ci
da subito

p(Q\A)=1-p(A) =0.85.

Quindi
p(B) = p(A)p(B|A) + p(Q\ A)p(B|2\ A) =0.15-0.2 + 0.85 - 0.006 = 0.0351 ,

per cui 'incidenza della malattia sull’intera popolazione ¢ del 3.51%.
Per calcolare p(A|B) chiaramente conviene usare la formula di Bayes:

p(A)p(BJA)  0.15-0.2
p(B) ~0.0351

p(A|B) = ~ 0.855

cioé pitt di 8 malati su 10 sono soggetti a rischio Infine, calcoliamo p(A|2\ B)
usando la formula di Bayes e la (2.15):

_ p(A)p(Q\ BlA)  p(A)(1-p(BlA4)) 0151-02)
PN ===av e~ 1opB) 1ot SO

cioe solo circa 1 individuo sano su 8 ¢ a rischio.

Un test diagnostico & un esame il cui scopo € determinare se un dato indivi-
duo soffre di una certa malattia. La probabilita condizionata permette di definire
alcune caratteristiche di un test diagnostico: la specificita, la sensibilita, e i va-
lori predittivi. Se indichiamo con M™ T'evento “malato”, con M~ = Q\ M™
I'evento “sano”, con T I'evento “risultato del test positivo”, e con T~ = Q\ T'F
I’evento “risultato del test negativo”, allora la specificita Sp del test & la probabi-
litd condizionata p(T—|M ™), cioé la probabilitd di risultato negativo in individui
sani; maggiore € la specificitd minori sono i falsi positivi (cioe i casi in cui il test
da risultato positivo su un soggetto sano). La sensibilita Se ¢ la probabilita con-
dizionata p(T+|M™), ciot la probabilita di risultato positivo in individui malati;
maggiore € la sensibilitd minori sono i falsi negativi (cioe i casi in cui il test da ri-
sultato negativo su un soggetto malato). Specificita e sensibilita sono tipicamente
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calcolati sottoponendo al test una popolazione campione di cui si conosca gia, per
altre vie, il numero di malati e di sani (vedi ’esempio successivo).

Per il medico che vuole invece usare il test per stabilire se un suo paziente &
ammalato o meno, sono ben piu interessanti i valori predittivi. Il valore predittivo di
esito negativo Vp' ¢ la probabilita condizionata p(M ~|T ), cioe la probabilita che
un individuo con test negativo sia effettivamente sano, mentre il valore predittivo
di esito positivo Vp~ & la probabilita condizionata p(M*|T1), ciot la probabilita
che un individuo con test positivo sia effettivamente malato.

La formula di Bayes e la legge delle alternative ci permettono di ricavare i valori
predittivi a partire da specificita, sensibilitd e tasso d’incidenza p(M ™). Infatti,
abbiamo

p(M7)p(T~|M~) 1—p(M~)
p(T) p(T7)

Vp~ =p(M~|T™) = Sp.

La legge delle alternative e la (2.15) ci permettono di calcolare p(T~):

p(T7) = p(M 7 )p(T~|M™) + p(M " )p(T~|M™)
(1=p(M™))Sp+p(M™)(1 —p(TT|M™))

= (1=p(M*))Sp+p(MT)(1 - Se),

per cui

—p(M*Y)

(L= p(M*))Sp+ p(M+)(1 — Se)

Sp .
Analogamente,

p(MF)p(THIM*Y) — p(MT)
p(T+) C1-p(T7)
- p(M™)
p(M+)Se+ (1 —p(M+))(1 — Sp)

Vpt =p(MT|TT) =

EsSEMPIO 2.41 Hai effettuato un test diagnostico su un campione di 128 individui,
di cui 86 malati e 42 sani. Il tuo assistente ti comunica che 72 malati sono risultati
positivi al test, e che 30 individui sani sono risultati negativi al test; con questi dati
vuoi calcolare specificita, sensibilita e valori predittivi del test. La specificita ¢ la
probabilita che un individuo sano risulti negativo al test; quindi Sp = 30/42 ~ 0.71.
La sensibilita ¢ la probabilita che un individuo malato risulti positivo al test; quindi
Se=72/86 ~ 0.84. L’incidenza della malattia & la probabilita che un individuo nel
campione sia malato; quindi p(M ™) = 86/128 ~ 0.67. Da questi dati ricaviamo i
valori predittivi:

0.67
Vpt ~ 0.84 ~ 0.85
P = 0670841 (1—0.67)(1— 0.71) ’
1-0.
Vp~ ~ 0-67 0.71 ~ 0.69 ,

(1—0.67)-0.71 + 0.67(1 — 0.84)
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Quindi con questo test abbiamo una probabilita di circa 1'85% che un soggetto
positivo al test sia effettivamente malato, e una probabilita di circa il 69% che un
soggetto negativo al test sia effettivamente sano.

Esercizio 2.5 Nell’esempio precedente, 14 malati sono risultati negativi al test,
per cui il numero totale di risultati negativi & 44. Ricordando che il numero dei sani
con risultato del test negativo € 30, verifica che il valore esatto del valore predittivo
di esito negativo & Vp~ = 30/44. In modo analogo, verifica che il valore esatto del
valore predittivo di esito positivo & Vpt = 72/84. Secondo te, come mai abbiamo
ottenuto valori lievemente diversi da quelli calcolati nell’esempio?

Bisogna stare attenti nell’interpretare le probabilita condizionate, in quanto
ogni tanto portano a risultati apparentemente paradossali.

ESEMPIO 2.42 E passato qualche anno, e ora Leonardo e Martina hanno due
figli. Qual & la probabilita che siano entrambi maschi, sapendo che uno dei due
lo €7 E qual & la probabilita che siano entrambi maschi, sapendo che il primo
lo 7 Le due domande sembrano praticamente identiche, ma non lo sono: il ri-
sultato & diverso. Lo spazio degli eventi ¢ Q = {(M, M), (M, F),(F,M),(F,F)},
dove (M, F') vuol dire “primo figlio maschio, secondo femmina”, e cosi via. Nella
prima domanda, 'evento A & “Leonardo e Martina hanno almeno un figlio ma-
schio”, cioe A = {(M,M),(M,F),(F,M)}, e 'evento B & “entrambi i figli ma-
schi”, cioe B = {(M,M)}. Abbiamo visto nell’Esempio 2.7 che la probabi-
lita in Ttalia della nascita di un figlio maschio ¢ circa il 51.3%. Supponendo
che il sesso nella seconda nascita sia indipendente dal sesso nella prima, tro-
viamo p(B) = 0.513 - 0.513 ~ 26.3%. L’evento A si puo realizzare in due modi: il
primogenito & maschio (evento A; = {(M, M), (M, F)}), oppure il secondogenito &
maschio (evento Ay = {(M, M), (F,M)}). Ora A = A; U Ay, ma A; e Az non sono
incompatibili: A3 N Ay = B. Siccome p(A;) = p(A2) = 0.513, otteniamo

p(A) = p(A1) + p(A2) — p(B) ~ 0.513 + 0.513 — 0.263 = 0.763 = 76.3% .

Siccome B C A, abbiamo p(B N A) = p(B); quindi la risposta alla prima domanda

€
0.263
~ 220 34 5%
P(BJA) = Fas = 34.5%

La seconda domanda chiede invece di calcolare p(B|A;); siccome B C A; otteniamo

0.263

La morale di questo esempio & che ogni informazione, per quanto apparentemente
insignificante, puo modificare le probabilita condizionate.

Esercizio 2.6 Se p é la probabilita di avere un figlio maschio, verifica che, avendo
due figli, la probabilita che siano entrambi maschi sapendo che uno é maschio é
p/(2 — p), mentre la probabilita che siano entrambi maschi sapendo che il primo &
maschio & p.
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CURIOSITA 2.3 La probabilitd condizionata & una probabilita. Infatti, supponiamo di avere uno
spazio degli eventi Q con una distribuzione di probabilita p, e un evento A C 2 con p(A) > 0.
Se associamo a ogni evento B € A il numero pa(B) = p(B|A) si vede subito che questa
associazione soddisfa gli assiomi (P1)—(P3), per cui & una distribuzione di probabilita.

2.9 Calcolo combinatorio

Piti di una volta nelle sezioni precedenti abbiamo avuto bisogno di contare gli
elementi di un insieme (il numero dei possibili risultati di due dadi, distinti o
identici; il numero di possibili attribuzioni di trattamenti a cavie; eccetera). Questo
tipo di problemi ¢ materia del calcolo combinatorio.

Un principio che permette di risolvere diversi problemi di calcolo combinatorio
¢ il seguente principio base: Se devi compiere k scelte, e per la scelta i-esima hai
n; alternative possibili, allora il numero totale di alternative possibili per le k scelte
eny N Ng.

Per esempio, supponi di dover fare 3 scelte (kK = 3), e di avere 2 alternative
per la prima scelta (n; = 2), 4 alternative per la seconda scelta (ny = 4), e 3
alternative per la terza scelta (n3 = 3). La prima scelta puo essere effetuata
in due modi diversi. Dato che la seconda scelta puo essere effettuata in 4 modi
diversi, abbiamo due possibilita per la prima e 4 per la seconda, per un totale di
2-4 = 8 possibilita per la coppia (ordinata) delle prime due scelte. Analogamente,
se abbiamo 8 possibilita per la coppia delle prime due scelte, e 3 alternative per la
terza scelta, otteniamo 8 - 3 = 24 possibilita per la tripla di scelte.

Vediamo qualche esempio molto semplice di applicazione di questo principio.

ESEMPIO 2.43  Quante triple di risultati distinti possiamo ottenere tirando un
dado a 6 facce, uno a 8 facce e uno a 20 facce? 1l dado a 6 facce ha 6 risultati
possibili, quello a 8 facce ne ha 8, e quello a 20 facce ne ha 20. Il principio base ci
dice allora che il numero totale di possibili triple ottenibili ¢ 6 - 8 - 20 = 960.

ESEMPIO 2.44  Quante parole (sensate o meno) di 4 lettere possiamo scrivere con
Ualfabeto italiano? Siccome 'alfabeto italiano &€ composto da 21 lettere, possiamo
scegliere ciascuna lettera in 21 modi diversi. Quindi si tratta di effettuare 4 scelte,
ognuna con 21 alternative; la risposta quindi & 21 -21 - 21 -21 = 21% = 194 481.

ESEMPIO 2.45  Supponiamo di avere un’urna contenente 90 palline numerate da 1
a 90. Quante possibili sequenze ordinate di numeri possiamo ottenere estraendo
(con rimbussolamento) 5 palline? Siccome dopo ogni estrazione rimettiamo la
pallina estratta nell’'urna, ogni estrazione ha 90 risultati possibili. Quindi la risposta
¢ 905 = 5904900 000.

Questi ultimi due esempi sono chiaramente casi dello stesso fenomeno. Una
disposizione con ripetizione di n oggetti k alla volta consiste nell’effettuare k scelte
consecutive fra n oggetti; ogni oggetto pud venire scelto anche piu di una volta.
Dunque abbiamo k scelte, e n alternative per ogni scelta. Il principio base quindi
ci dice che il numero D, j di possibili disposizioni con ripetizione di n oggetti k
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alla volta ¢
Dy =n. (2.16)

La situazione diventa un poco piu interessante se escludiamo le ripetizioni.

ESEMPIO 2.46  Quante parole (sensate o meno) di 4 lettere tutte distinte pos-
siamo scrivere con l’alfabeto italiano? Come prima, possiamo scegliere la prima
lettera in 21 modi diversi. Ma per seconda non possiamo usare la lettera scelta
prima; quindi per la seconda lettera abbiamo solo 20 alternative. La terza lettera
dev’essere diversa dalle prime due; quindi puo essere scelta solo in 19 modi diversi.
Analogamente, la quarta lettera dev’essere diversa dalle altre tre, e quindi abbiamo
18 alternative. Il principio base ci fornisce allora la risposta 21-20-19-18 = 143 640.

EseEmPIO 2.47  Supponiamo di avere un’urna contenente 90 palline numerate da 1
a 90. Quante possibili sequenze ordinate di numeri possiamo ottenere estraendo
(senza rimbussolamento) 5 palline? Siccome dopo ogni estrazione non rimettiamo
la pallina estratta nell’'urna, ogni estrazione ha un risultato possibile in meno ri-
spetto alla precedente. Quindi la risposta ¢ 90 - 89 - 88 - 87 - 86 = 5273912 160.

Anche in questo caso € chiaro cosa sta succedendo. Una disposizione senza
ripetizioni di n oggetti k alla volta consiste nell’effettuare k scelte consecutive fra
n oggetti, ma ogni oggetto puo venire scelto al massimo una volta sola. Dunque
abbiamo n alternative per la prima scelta, n — 1 per la seconda, n — 2 per la terza,
e cosl via, fino ad avere n — k + 1 alternative per la k-esima scelta. Il principio
base quindi ci dice che il numero P, j di possibili disposizioni senza ripetizioni di
n oggetti k alla volta e

Pop=nn-1)(n—k+1). (2.17)

s

Un caso particolarmente importante ¢ n = k. Una permutazione su n oggetti
e una disposizione senza ripetizioni di n oggetti presi n alla volta. Siccome non
abbiamo ripetizioni, ogni oggetto viene scelto esattamente una volta, per cui una
permutazione non ¢ altro che un modo di mettere in sequenza gli n oggetti. La
formula (2.17) ci dice che il numero P, = P, ,, di permutazioni su n oggetti ¢

P,=n(n—1)---2-1. (2.18)

Molto spesso, il numero 1-2---n viene indicato con n!, che si legge n fattoriale.
Per esempio,

=1, 20=12=2, 31=1.23=6, 4 =1.2.3.4=24, 5 =41.5=120.
Usando questo simbolo, la formula (2.18) diventa

P,=n!.
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Inoltre, si vede subito che per n > k la (2.17) diventa

n! P,
P, = = . 2.1
PSR T P (2.19)

Osservazione 2.25 Per convenzione si pone 0! = 1. In questo modo la (2.19) & vera
anche per n = k.

ESEMPIO 2.48 Supponendo che le nascite siano distribuite in modo casuale su
tutto ’anno, e trascurando il 29 febbraio, qual é il minimo k per cui la proba-
bilita che in un gruppo di k persone scelte a caso ce ne stano 2 con lo stesso
compleanno sia maggiore di 1/29 Per rispondere, calcoliamo la probabilita che
k persone prese a caso abbiano tutte compleanno diverso. Per quanto visto, ci
sono Dsgs . = 365 possibili disposizioni di 365 compleanni k alla volta. Fra
queste, solo Psg5 , = 365!/(365 — k)! sono composte da compleanni tutti diversi.
Quindi la probabilita che k persone prese a caso abbiano tutte compleanno diverso
¢ Psg5.1/Dses ki, € la probabilita che fra k persone prese a caso almeno due abbiano
lo stesso compleanno ¢ 1 — Psg5 1/ D3gs . Ora,

Posa _ 365 | Pasa 365 364 Pusg (365 364) 363
Dsgs1 365 7 Dagsa2 365 365 Dsgsz  \365 365/ 365
e, in generale,

P51 _ Pygs -1 365 —k+1 < Psgs -1
Dsgs ;. Dsgs p—1 365 D3gs 1—1

Quindi all’aumentare di k il quoziente Psgs r/Dses , decresce, e la probabilita
1 — Psg5,1/D3es i cresce. Calcolando si trova facilmente che il minimo valore di
k per cui questa probabilita ¢ maggiore di 1/2 & k = 23, quando vale circa 0.507.
Quindi in un gruppo di 23 persone prese a caso c’¢ una probablitd maggiore del 50%
che due di loro abbiano lo stesso compleanno. Se poi il gruppo contiene almeno
k = 41 persone, allora la probabilita ¢ maggiore del 90%.

Adesso vediamo di risolvere un problema un poco piu complicato.

EsEmpIO 2.49  Quanti sottoinsiemi di 4 lettere distinte si possono formare con
lalfabeto italiano? Abbiamo visto che con l'alfabeto italiano possiamo formare
P»y 4 parole con 4 lettere distinte. Due parole diverse danno lo stesso sottoinsieme
se e solo se sono composte dalle stesse lettere, cioe se e solo se sono una permuta-
zione dell’altra. Dunque possiamo ottenere tutte le parole composte da 4 lettere
distinte scegliendo prima un sottoinsieme di 4 lettere distinte, e poi scegliendo
una permutazione di queste 4 lettere. Il principio base ci dice allora che Py; 4 de-
v’essere uguale al prodotto del numero che cerchiamo con Py, per cui la risposta
¢ Pay 4/Py = 5985.
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EsEMPIO 2.50  Supponiamo di avere un’urna contenente 90 palline numerate da 1
a 90. Quante possibili cinquine possiamo ottenere estraendo (senza rimbussola-
mento) 5 palline? Una cinquina ¢ il risultato dell’estrazione di 5 palline distinte
ordinate in ordine crescente. Ogni cinquina pu® venire ottenuta estraendo una
sua permutazione qualsiasi; ci sono Py 5 estrazioni possibili e Ps permutazioni
possibili. Come nell’esempio precedente, otteniamo quindi Pyg5/P5 = 43949 268
cinquine possibili.

Una combinazione senza ripetizioni di n oggetti k alla volta &€ un sottoinsieme
degli n oggetti composto da k elementi. Ognuna delle P, permutazioni dei k oggetti
forma una disposizione senza ripetizione di n oggetti k alla volta; viceversa, ognuna
delle P, j, disposizione senza ripetizione di n oggetti k alla volta si ottiene in un solo
modo con questa tecnica. Quindi se indichiamo con C,, j; il numero delle possibili
combinazioni senza ripetizione di n oggetti k alla volta otteniamo C,, 1 P, = P, 1,
cioe

Pmk n!

= = . 2.2
Cne = o (n — k)Ik! (2:20)

EsEMPIO 2.51  Quanti genotipi puo avere un gene con 7 alleli? 1 genotipi omo-
zigoti sono chiaramente 7. I genotipi eterozigoti sono invece combinazioni senza
ripetizioni dei 7 alleli presi 2 alla volta, per cui sono C7 5 = 7!/5!121 = (7-6)/2 = 21.
Quindi in totali ci sono 28 genotipi possibili.

Il numero C), \ € spesso chiamato coefficiente binomiale, ed & indicato col sim-

bolo (7): ) )
(0=

ed ¢ definito per 0 < k < n; nota che la convenzione 0! = 1 implica
(6)=()-1
0 n
N _ (™ n\ nn-1) [ n
1) \n-1)" 2) 2 \n-2)"

(Z) " _n]!g)!k! “ - _T:))!(n mysTh (n " k) (2.21)

per ogni 0 < k < n.

Il nome “coefficiente binomiale” deriva dal fatto che compare nello sviluppo
delle potenze del binomio. Se ci pensi un attimo, il quadrato e il cubo del binomio
si possono scrivere in questo modo:

2 2 2
(a+b)? =a*+2ab+b* = <O)a2+ (1)ab+ (2>b2 )

3 3 3 3
a+0b) =a®+3a%b+ 3ab®> + 0> = a® + ab + ab® + b .
0 1 2 3
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In generale, nello sviluppo di (a+b)™ il termine a™~*b* ¢ ottenuto scegliendo b in k
dei fattori a 4+ b del prodotto, ed a nei restanti n — k fattori. Quindi il coefficiente
di a”~*b* & uguale al numero di modi con cui possiamo scegliere k fattori distinti
fra gli n disponibili, e 'ordine non conta. In altre parole, il coefficiente di a™~*b*
¢ esattamente C, p = (Z), per cui abbiamo la formula generale per la potenza del
binomio:

n_ (T n Y\ n-1 N\ n—kpk n n—1 ny\.n
(a+b) —<0)a —I—(l)a b+ +(k>a b + +<n1>ab +(n>b .

(2.22)

Osservazione 2.26  Per esprimere somme come questa € stato introdotto ’utilissimo
simbolo di sommatoria Y . Una somma del tipo a1 + -+ + a,, in cui dobbiamo
sommare n termini a; dipendenti da un indice ¢ che varia da 1 a n, si puo scrivere
col simbolo di sommatoria come segue:

n
a1—|—-~-—|—an:Zai: Z a; .
i=1

1<i<n

L’indice puo variare anche in altri intervalli, e puo assumere anche altri nomi; per
esempio, la formula (2.22) puo essere scritta in questo modo:

(a+b)" = zn: <Z) a"FbE (2.23)

k=0

Il vantaggio del simbolo di sommatoria & che, oltre a essere piu compatto, evidenzia
bene la dipendenza del singolo addendo dall’indice di sommatoria. Altre utili infor-
magzioni sul simbolo di sommatoria le troverai nei complementi a questo capitolo;
qui mi preme ricordare che esiste anche il simbolo [] di produttoria, che & equi-
valente della sommatoria per il prodotto. Per esempio, la definizione di fattoriale
si puo scrivere in questo modo:

n
n!:Hj.
j=1

I coefficienti binomiali godono di una quantita incredibile di proprieta. Una
delle pitt note viene rivelata se costruiamo il cosidetto triangolo di Tartaglia (o
di Pascal) mettendo i coeflicienti binomiali in riga uno sopra l'altro come nella
Tabella 2.9.

Si nota subito che ogni numero in questo triangolo & uguale alla somma dei
due numeri subito sopra di lui (e questo vale anche per i numeri sul bordo se
immaginiamo di bordare il triangolo con degli zeri). In altre parole, il trangolo di
Tartaglia ci suggerisce la seguente identita:

()=o) () o
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TABELLA 2.9

per 1 < k < n —1. Non ¢ difficile verificare che questa identita ¢ sempre vera.
Infatti, facendo denominatore comune si trova

n—1 n—1\ (n—1)! (n—1)!

(k—1>+< k )‘(nk)!(k1)!+(nk1)zk!

(k+n—Fk)(n—-1)! n! _(n
e (k) '

La formula per lo sviluppo del binomio fornisce altre due identita che a volte sono

utili:
| g:o <Z) =2", e ;(—1)’“@) =0. (2.25)
Infatti, ) )
% (i) - 2 (1) =av =2,
| kzn:_o(_l)k(;:) - kzn:_o (Z) I EDE = -1t =0,

Verificale sulle righe del triangolo di Tartaglia.

EseEmpiO 2.52  Una gabbia contiene 15 cavie, etichettate con i numeri da 1 a 15.

1l tuo assistente ne sceglie 4 a caso. Qual é la probabilita che:

(a) le cavie scelte siano la 2, la 7, la 11 e la 127

(b) che tutte le cavie scelte abbiano etichette minori o uguali a 87

(c) che tutte le cavie scelte abbiano etichette minori o uguali a 8, sapendo che la
cavia 1 ¢ stata scelta?

Siccome le cavie sono scelte a caso, tutte le possibili selezioni di 4 cavie hanno

la stessa probabilita di verificarsi. Quindi se indichiamo con C' il numero delle

possibili selezioni di 4 cavie, la probabilita che le cavie scelte siano la 2, la 7, la 11



2.9 Calcolo combinatorio 75

ela 12 ¢ 1/C. Ora, siccome 'ordine in cui vengono scelte le cavie & irrilevante, C
e uguale al numero di combinazioni di 15 oggetti a 4 alla volta, cioe

= 1365 .

4) T 114 T T 4-3-2-1

15 15! 15-14-13-12
C=C15,4=( ) =

Dunque la risposta alla domanda (a) ¢ 1/1365 ~ 0.07%. Per rispondere alla do-
manda (b), basta notare che il numero di possibili selezioni di 4 cavie fra le prime

8¢
8 8!
Csu = = =70
o4 (4) 4141 ’

per cui la risposta alla seconda domanda ¢ 70/1365 ~ 5.1%. Infine, la domanda (c)
chiede di calcolare una probabilitd condizionata. Indichiamo con A 'evento “la
selezione contiene la cavia 1”7, e con B l'evento “la selezione contiene solo cavie
scelte fra le prime 8. Dobbiamo calcolare p(B|A) = p(B N A)/p(A). Siccome
stiamo usando una distribuzione di probabilitd uniforme, la probabilita p(E) di
un qualsiasi evento E ¢ data da p(F) = #FE/1365, dove #E indica il numero
di elementi di E. Quindi p(B|A) = #(B N A)/#A, per cui dobbiamo contare il
numero di elementi di A e il numero di elementi di B N A. Ora, il numero di
selezioni di 4 cavie che contengono la cavia 1 e chiaramente uguale al numero di
selezioni di 3 cavie fra le rimanenti 14; quindi #4 = Cia3 = (134) = 364. Invece,
il numero di selezioni di 4 cavie che contegono la cavia 1 e che sono scelte fra le
prime 8 e chiaramente uguale al numero di selezioni di 3 cavie fra le 7 numerate
da 2 a 8; quindi #(BNA) = Cr3 = (;) = 35. La risposta alla domanda (c) &
quindi p(B|A) = 35/364 ~ 9.6%.

EsEMPIO 2.53 Siamo ora in grado di calcolare le probabilita usate nell’Osserva-
zione 2.10. Vogliamo per esempio calcolare la probabilita che tirando 1000 volte un
dado a 6 facce non truccato si ottenga 1 per a; = 120 volte, 2 per ay = 412 volte,
3 per ag = 66 volte, 4 per ay = 222 volte, 5 per a5 = 127 volte, e 6 per ag = 53
volte. Siccome il dado non & truccato, e ci sono Dg 1000 = 61990 possibili sequenze
di 1000 lanci di dado, la probabilita di una specifica sequenza & 1/61°°°, Dobbiamo
contare quante sequenze contengono a; volte 1, as volte 2, e cosi via. Ora, ci sono
(12?0) modi diversi di selezionare gli a; lanci che devono fare 1. Una volta fatta
questa scelta, ci sono

1000 — a4 . az +as +aq + as + ag
as N a2

modi diversi di selezionare altri as lanci che devono fare 2. Proseguendo in questo

modo (e ricordando il principio base) si vede che il numero di possibili sequenze
con ay volte 1, as volte 2 e cosi via e

1000 as +as +aqg +as + ag az + aq + as + ag a4 + as + ag as + ag
ai as as aq as 7
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dove ovviamente non abbiamo scritto 'ultimo fattore (ZG) = 1. Quindi la probabi-
lita che un dado non truccato produca la Tabella 2.3 ¢

1 1000 /880 /468 /402 (/180
~4.148 - 107112
61000 ( 120) (412) (66) (222) (127) 810
Invece, la probabilita che 1000 lanci dello stesso dado si ottenga a; = 167 volte 1,
as = 166 volte 2, ag = 167 volte 3, ay = 166 volte 4, as = 167 volte 5, e ag = 167

volte 6 €
1 (1000Y /833\ /667 (500 /334

— ~ 6.855-107° .

61000 ( 167> <166> (167) (166) (167)
EsEmPIO 2.54 Possiamo fare un conto analogo anche con un dado truccato. Sup-
poniamo che un dado sia truccato in modo da dare risultato j con probabilita p;,
per j = 1,...,6. Siccome i lanci sono tutti indipendenti, la probabilita di otte-
nere una specifica sequenza di risultati che contenga a; risultati uguali a j, per
j =1,...,6, & uguale (perché?) al prodotto pj*---pg®. Contando le sequenze
di lanci come nell’esempio precedente vediamo che la probabilita che lanciando

a, + - - - + ag volte questo dado si ottenga a; volte j per j =1,...,6 ¢
a1, . a6 CL1+-~~+CL6
D1 p6< a1
« az +as +aq + as + ag as + aq + as + ag ag + as + ag as + ag
as as a4 as '

Per esempio, supponiamo che il nostro dado sia truccato con le probabilita date
dalle frequenze relative della Tabella 2.3. Allora la probabilita che lanciando 1000
volte questo dado si ottengano i risultati della Tabella 2.3 e

1000
0.121290.4124120.066560.2222220.1271270.053°3 ( 190 )

(880 (468 (402 (180 ~1.440-1077
412) \ 66 ) \222) \127

mentre la probabilita che si ottenga a; = 167 volte 1, as = 166 volte 2, ag = 167
volte 3, ay = 166 volte 4, a5 = 167 volte 5, e ag = 167 volte 6 &

1
0.121670.412%%60.066'670.2221660.127167().053167 ( 106070 )

833\ /667 /500 (334
~ 8535107110 .
x (166) (167) (166) <167)
Ci rimane da introdurre un ultimo concetto. Una combinazione con ripetizioni

di n oggetti k alla volta consiste nella scelta di k oggetti fra gli n disponibili, ma ogni
oggetto pud venire scelto pitt di una volta (come nelle disposizioni con ripetizioni)
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e non ¢ importante I’ordine delle scelte (come nelle combinazioni senza ripetizioni).
Anche il numero C,, ;; di combinazioni con ripetizioni di n oggetti k alla volta puo
essere espresso con un coefficiente binomiale; per ’esattezza si ha

. n+k—1 n+k—1)
Co = ( 7 ) = W (2.26)

Se sei interessato a come si ottiene questa formula, leggi la Curiosita 2.4.

EsEMPIO 2.55  Quanti possibili risultati diversi possiamo ottenere tirando 2 dadi
a 6 facce indistinguibili? E tirando 8 dadi indistinguibili a 8 facce? 1l fatto che i due
(o tre) dadi siano indistinguibili significa che consideriamo il risultato a meno del-
I’ordine. Quindi nel primo caso ci stiamo chiedendo in quanti modi diversi possiamo
ottenere 2 risultati fra i 6 possibili, con ripetizioni ammesse e senza considerare
Pordine; la risposta & quindi Cgo = (®7271) = 71/(52!) = 21, in accordo con I'E-
sempio 2.13. Analogamente, la risposta alla seconda domanda & C~’873 = (130) = 120.

ESEMPIO 2.56  Quanti genotipi puo avere un gene con 7 alleli? Chiaramente la

risposta ¢ C~’772 = (g) = 28, in accordo con I'Esempio 2.51.

CURIOSITA 2.4 Vediamo come si pud ottenere la formula (2.26). Il numero C'n,k conta in quanti
modi possiamo scegliere k numeri fra 1 ed n, con ripetizioni e a meno dell’ordine. Siccome
l'ordine non & rilevante, possiamo metterli in ordine crescente, e chiederci in quanti modi
possiamo scegliere i numeri a1, ..., ax in modo che si abbia

1<ar<a<--<ap<n.
Ora, sommiamo 1 ad a2, 2 ad as, e cosi via; otteniamo
1<ai<ar+1l<az+2<--<ar+(k—-1)<n+k-1,

cioe¢ una lista ordinata di k numeri distinti scelti fra 1 ed n + k — 1. In altre parole, una
combinazione con ripetizioni di n oggetti k alla volta ci ha fornito una combinazione senza
ripetizioni di n 4 k — 1 oggetti k alla volta. Viceversa, supponiamo di avere una combinazione
senza ripetizioni di n+k — 1 oggetti k alla volta, cioé di aver scelto k numeri distinti by, ..., by
fra 1 e n+ k — 1. Siccome l'ordine non conta, possiamo scrivere

1<bi<ba<---<b.<n+k—-1.
Sottraiamo ora 1 a ba, 2 a bz e cosi via; otteniamo
1<b1 <by—1<b—2<---<b—(k—1)<n,

cioe una lista ordinata di £ numeri, eventualmente ripetuti, scelti fra 1 ed n. In altre parole,
invertendo il processo precedente abbiamo trovato che una combinazione senza ripetizioni di
n + k — 1 oggetti k alla volta fornisce una combinazione con ripetizioni di n oggetti k alla
volta. Di conseguenza possiamo concludere che il numero delle combinazioni con ripetizioni
di n oggetti k alla volta € uguale al numero delle combinazioni senza ripetizioni di n + &k — 1
oggetti k alla volta, cioeé che

én,k = Cn+k—1,k = (n+: B 1) .
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2.10 Distribuzione binomiale

Nell’ultima sezione di questo capitolo vediamo un’applicazione dei coefficienti bi-
nomiali alla probabilita. Cominciamo con un paio di esempi.

EsEMPIO 2.57 Leonardo e Martina ora hanno tre figli. Qual é la probabilita che
siano due femmine e un maschio? Indichiamo con p la probabilita che un figlio sia
maschio, e con ¢ = 1 —p la probabilita che un figlio sia femmina; nell’Esempio 2.25
abbiamo visto che in Italia p ~ 0.513 e ¢ ~ 0.487. Supponiamo inoltre che le
nascite siano indipendenti, nel senso che il sesso dei figli gia nati non influisce su
quello dei nascituri. L’ipotesi di indipendenza ci dice allora che la probabilita che
il primogenito sia un maschio e gli altri femmine & pg? ~ 0.122. Ma questo non &
I'unico modo per ottenere un maschio e due femmine; il maschio potrebbe essere
il secondogenito, o il terzogenito. La probabilita che si verifichi ciascuno di questi
casi & sempre pg?, per cui la risposta finale & 3pg? ~ 0.365.

EsEmpPIO 2.58  Piu in generale, se Leonardo e Martina hanno n figli, qual ¢ la
probabilita che siano k maschi ed n — k femmine? Riesaminiamo l’esempio prece-
dente (con le stesse notazioni). La probabilitd di una specifica sequenza di nascite
con n—k femmine e k maschi ¢, per 'indipendenza, uguale a p*¢™~*. Ma a noi non
interessa l'ordine in cui sono avvenute le nascite, ma solo quanti figli sono maschi
e quante sono femmine. Quante sono le sequenze di nascite con esattamente k ma-
schi? Sono tante quante il numero di modi con cui possiamo scegliere k nascite fra
le n totali, indipendentemente dall’ordine, per cui ¢ il coefficiente binomiale C, .
Ne segue che la risposta alla nostra domanda e

Y\ k n—k
(3)a

Vediamo di generalizzare la situazione. Supponiamo di stare studiando un fe-
nomeno in cui un certo evento E puo verificarsi con probabilita p = p(E), e quindi
non verificarsi con probabilita ¢ = p(Q \ E) = 1 — p. Ripetiamo ’esperimento
n volte, con ogni ripetizione indipendente da tutte le precedenti, e ci chiediamo
qual e la probabilita che ’evento E sia avvenuto esattamente k volte. Ragionando
esattamente come nell’esempio precedente, otteniamo

p(k volte) = (Z) P (2.27)

La distribuzione di probabilita data da questa formula sullo spazio degli eventi
{1,...,n} & detta distribuzione di Bernoulli, e si applica in tutti i casi in cui si
studiano esperimenti con risposte dicotomiche del tipo “si/no”, “successo/falli-
mento”, “positivo/negativo”, eccetera; esperimenti di questo tipo vengono detti
dicotomici, o di Bernoulli.
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Osservazione 2.27 Se p =1/2 allora ¢ = 1/2, e la (2.27) diventa

n\ 1
p(k volte) = <k> on -

EsEMPIO 2.59  Supponiamo che la probabilita che un paziente sottoposto a una
data operazione muoia entro un mese sia del 12%. Qual ¢é la probabilita che su 4
operazioni almeno 3 pazienti sopravvivano pit di un mese? Se indichiamo con E
Pevento “paziente muore entro un mese”, 'evento complementare Q \ E & “pa-
ziente sopravvive pitt di un mese”. Sappiamo che p = p(E) = 0.12, per cui
g =p(Q2\ E) = 0.88. Supponiamo che ciascuna operazione sia indipendente dal-
Ialtra, per cui siamo in presenza di un fenomeno di Bernoulli. Dire che almeno
3 pazienti sopravvivono pit di un mese equivale a dire che al massimo 1 paziente
muore entro un mese. La (2.27) ci dice che la probabilita che esattamente un
paziente su 4 muoia entro un mese €

4
(1>pq3 =4-0.12-(0.88)% ~ 0.327 ,

mentre la probabilita che nessun paziente muoia entro un mese e

4
(O)p0q4 =1-1-(0.88)*~0.6.
Quindi la probabilita che su 4 operazioni almeno 3 pazienti sopravvivano piu di un
mese ¢ la somma di questi due valori, cioe 0.927 = 92.7%.

EsEmpio 2.60 Supponiamo che la probabilita che un gene di ratto subisca una
mutazione se sottoposto a una radiazione di 1 Rentgen sia 2.5 - 1077, Qual ¢ la
probabilita di avere almeno 2 mutazioni in un campione di 10000 geni sottoposti
a una radiazione di 1 Reentgen? Ovviamente, supponiamo che il mutare o meno
di un gene sia indipendente da cosa succede agli altri. Allora siamo in presenza di
un fenomeno di Bernoulli, con p = 2.5-1077 e ¢ = 1 — 2.5-1077. Per calcolare
la probabilita che ci siano almeno 2 mutazioni potremmo calcolare la probabilita
che ce ne siamo esattamente 2, poi che ce ne siano esattamente 3, e cosl via fino a
10000, e sommare; compito improbo. E molto pitt semplice calcolare la probabilita
dell’evento complementare, cioe la probabilita che ci sia al massimo 1 mutazione.
La probabilita che non ce ne sia nessuna e

<10 000

. )poqmooo = (1-2.5-1077)10000 ~ 099750312 ,

mentre la probabilita che ce ne sia esattamente 1 e

10000
1

)pq9999 =10000- (2.5-1077) - (1 — 2.5-1077)?9%% ~ 0.00249376 .
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Quindi la probabilita che ci sia al pit una mutazione & circa
0.99750312 4 0.00249376 = 0.99999688 ,
e la probabilita che su 10000 geni ci siano almeno due mutazioni e circa

1 —0.99999688 = 31.2- 10" .

EseEMPIO 2.61 In Sassonia nel 1889 ¢ stato calcolato che la probabilita di avere un
figlio maschio era p ~ 0.519215, mentre la probabilita di avere una figlia femmina
era g ~ 0.480785. Supponendo, come abbiamo fatto finora, che il sesso del nasci-
turo sia indipendente da quello degli altri fratelli, possiamo calcolare la probabilita
delle varie combinazioni di maschi e femmine in famiglie con 12 figli. Un’indagine
effettuata su quella popolazione ha trovato 6115 famiglie con 12 figli®, e ha misu-
rato le frequenze relative delle varie combinazioni di maschi e femmine fra i figli. 1
risultati sono contenuti nella Tabella 2.10.

Dalla tabella risulta evidente che le frequenze osservate sono sistematicamente
maggiori delle probabilita teoriche per le famiglie con almeno 9 figli dello stesso
sesso, e sistematicamente minori per le famiglie con al piu 7 figli dello stesso sesso.
Questo risultato fa sospettare che in realta il sesso del nascituro non sia indipen-
dente dal sesso dei fratelli gia nati, ma che ci sia in atto un qualche meccanismo
che favorisce il formarsi di famiglie con molti figli dello stesso sesso.

COMPLEMENTI
2C.1 Sommatorie

In queste dispense capitera spesso di dover usare somme del tipo a; + - -+ + an,
dove a; & un numero (o un vettore, o una matrice, o altro ancora) dipendente
da un indice j che, di solito, ¢ un numero intero variabile in un certo insieme,
per esempio da 1 a n. Per trattare questo tipo di somme & stata introdotta una
notazione abbreviata molto comoda: la sommatoria ) ..

Nella sua versione pit semplice, Y si utilizza come segue:

n
Zaj: Z aj =a1+ -+ an .
j=1

1<j<n

8 In Italia nel 2001 ¢’erano solo 10001 famiglie con pil di 5 figli, contro 4 216 946 famiglie
con un solo figlio. ..
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Numero Numero

maschi  femmine
12 0
11 1
10 2
9 3
8 4
7 5
6 6
5 7
4 8
3 9
2 10
1 11
0 12

Probabilita
teorica

12

( N >p12q0 ~ (0.000 384
12
1
12

( 9 >p10q2 ~0.021725
1

>p11q1 ~ (0.004 263

pP¢® ~ 0.067041

—_
[\

—
[\)
A e A A A e A g

p2q¢* ~0.139703
p'¢° ~0.206977
p%¢% ~ 0.223 590
poq” ~ 0.177 459
ptg® ~0.102 707
p3q° ~ 0.042 280

(
(
<
(i
(
(
(

)plql1 ~ (0.001975

—_
[\

N N N

> p°¢'2 ~ 0.000 153

TABELLA 2.10.

Frequenza relativa
osservata
7

6115
45

6115
181

6115
478

6115
829

6115
1112

6115
1343

6115
1033

6115
670

6115
286

6115
104

6115
24

6115
3

6115

~ (.001 145

~ (.007 359

~ (0.029599

~ (0.078 168

~ (.135568

~ (0.181 848

~ 0.219624

~ 0.168 929

~ 0.109 567

~ (0.046 770

~ (.017007

~ (.003 925

~ 0.000491

Ma sono possibili anche costruzioni piti complesse, come

Z aj:a0+a2+a4+~~~+a2n.

0<j<2n
3 pari

Questa stessa somma, poteva anche essere scritta in modo pitt compatto come

In questa sezione cercheremo di descrivere brevemente come utilizzare al meglio
il simbolo di sommatoria, indicandone le principali proprieta e studiando qualche

esempio. Cominciamo con la definizione generale del simbolo di sommatoria.
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Se R(j) ¢ una condizione che coinvolge il numero intero j (qualcosa del tipo
“-3<j <3 oppure “0 < j <r e jpari”), allora il simbolo

DL
R(j)

indica la somma di tutti gli a; per cui l'intero j soddisfa la condizione R(j). Per
convenzione, se nessun intero j soddisfa la condizione R(j) si assume che la som-
matoria valga zero. A volte scriveremo anche ZR(j) a;; un’altra possibilita, se R(j)

¢ della forma a < j < 3, e
B8
>,
Jj=a

L’indice j & chiamato indice muto della sommatoria. L’indice muto serve soltanto
all’interno del simbolo di sommatoria, e non ha alcun significato intrinseco — vedi
la proprieta (B) piu oltre. Tipici indici muti sono h, 4, j, k, [, talvolta accentati o
con indici a loro volta.

Osservazione 2C.1 Per il momento useremo il simbolo di sommatoria solo per
indicare somme finite, cio¢ in situazioni in cui la condizione R(j) ¢ soddisfatta
soltanto da un numero finito di interi j. Il simbolo di sommatoria serve anche per
indicare somme infinite (ovvero le serie), di cui parleremo pit oltre.

Le principali proprieta del simbolo di sommatoria sono quattro.

(A) Proprieta distributiva, che riguarda il prodotto di sommatorie:

Z ap, Z bk = Z Z ahbk . (QC].)

R(h) S(k) R(h) \S(k)

Per esempio,

2 3
(Z ah) (Z bk) = (a1 + az)(by + bz + b3)
h—1

k=1
= (a1b1 + a1b2 + a1b3) + (a2bi + asbs + asbs)

Di solito, le parentesi nelle “somme multiple” come quella sul lato destro di (2C.1)
vengono tralasciate: invece di }°p (Zs(k) ahk> siscrive Y- gy 2o (k) Ak

(B) Cambiamento di variabile. L’indice muto di una sommatoria &, appunto,
muto, per cui non si lamenta se gli viene cambiato il nome. In altri termini, si ha

Zah:Zakzz:as, (2C.2)
R(k) R(s)

R(h)
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e cosi via, dove k, s e simili sono tutti indici non altrimenti presenti nella condi-
zione R o nei termini aj, (per intenderci: se ay = n*, oppure se R(k) & la relazione
“l < k < n”, non possiamo usare n come indice muto). Ma si pud fare di pit:
data una condizione R(h), indichiamo con A l'insieme degli h € Z che soddisfano
questa condizione. Una permutazione degli indici € un modo di associare a ciascun
elemento k di un insieme B C Z un elemento p(k) € A in modo che per ogni h € A
esista uno e un solo k € Z tale che p(k) = h. Allora se p & una permutazione degli
indici per la condizione R(h) si ha

Z ap = Z Ap(k) - (203)

R(h) R(p(k))

Infatti, su entrambi i lati di (2C.3) sono presenti gli stessi addendi. I casi pit
comuni di permutazione degli indici sono del tipo p(k) = +k % ¢, dove ¢ & un intero
fissato che non dipende da k. Per esempio, se p(k) = k — 1 abbiamo

2. m= D, wm= ) aa= ), an

1<h<n 1<k—1<n 2<k<n+1 2<h<n+1

dove nell’ultimo passaggio abbiamo utilizzato (2C.2).

(C) Proprieta commutativa. Quando effettuiamo una somma, l'ordine in cui
consideriamo gli addendi e irrilevante. Quindi

) Z Qhk = Z Z Ank - (2C.4)

R(h) S(k) S(k) R(h)

Per esempio,

Z Z athZ(ah1+ah2)=Zah1+zah2= Z Zahk'

R(h) 1<k<2 R(h) R(h) R(h) 1<k<2 R(h)

Potrebbe capitare anche un caso piu generale, in cui la condizione S(k) dipenda
anche da h — e quindi sara scritta S(h, k). In tal caso la (2C.4) diventa qualcosa

del tipo
Z Z Apk = Z Z Apk 5 (20.5)
)

R(h) S(h,k S'(k) R (h,k)

dove S’(k) & la condizione “esiste un intero h tale che sia R(h) sia S(h, k) sono
verificate”, e R'(h, k) ¢ la condizione “sia R(h) sia S(h, k) sono verificate”.

Un esempio per chiarire. Se R(h) ¢ la solita condizione 1 < h < n, ed S(h, k)
¢ la condizione 1 < k < h, allora la condizione S’(k) & “esiste un intero h tale che
1<h<nel<k<Ah’, cioe semplicemente “1 < k < n”, mentre la condizione
R/(h,k) & “devono valere sia 1 <h <mnchel <k <h” cioe “k <h <n”. Quindi

Do am= Y, > awm- (2C.6)

1<h<n 1<k<h 1<k<n k<h<n
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(D) Manipolazione del dominio. Se R(h) e S(h) sono due condizioni, abbiamo

Z ap + Z ap = Z ap + Z ap , (20.7)
S(h)

R(h) R(h) o S(h) R(h) e S(h)

dove “R(h) o S(h)” vuol dire che h soddisfa R(h) oppure soddisfa S(h), mentre
“R(h) e S(h)” vuol dire che h soddisfa sia R(h) che S(h). Per esempio, se m <n
si ha

Z ar + Z ap = Z ar | +am -

1<k<m m<k<n 1<k<n

Se poi non capita mai che R(h) ed S(h) siano simultaneamente verificate, allora la
seconda sommatoria sul lato destro di (2C.7) semplicemente scompare.

Vediamo ora qualche esempio di applicazione di queste regole.

EseEmpio 2C.1 La somma di una progressione aritmetica. Prendiamo a, b € R
ed n € N. Allora:

a+(a+b)+--+(at+nb)= Y (a+hb)

0<h<n
= > (at(m=-np)= > ((2a+nb)— (a+hbd))
0<n—h<n 0<n—h<n
= Y (2a+nb)— > (a+hbd)
0<h<n 0<h<n
=(m+1)(2a+nb)— Y (a+hb),
0<h<n

grazie a: (2C.3) assieme a (2C.2); il fatto che le condizioni “0 < n—h < n” e
“0 < h <n” sono verificate dagli stessi interi h; e il fatto che la prima sommatoria
nella penultima riga & semplicemente la somma di n+1 addendi che non dipendono
da h. Ma ora se confrontiamo la prima e I'ultima riga e dividiamo per 2 otteniamo
la formula cercata:

bn(n+1) .

> (a+hb)=a(n+1)+ 5

0<h<n

EsEmpio 2C.2 La somma di una progressione geometrica. Prendiamo a, x € R
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con x # 1, ed n € N. Allora

=a-+x Z az”

grazie a, nell’ordine: (2C.7); un caso molto particolare di (2C.1); (2C.3); (2C.7).

Confrontando la prima riga con 'ultima otteniamo

(1—2x) Z az® = a(l — 2"t |

0<k<n
e quindi la formula cercata:
A 1— xn+1
E ar” =a
1—=x
0<k<n

EsemMpio 2C.3 Poniamo

512 Z Z apag .

0<h<n 0<k<h

Allora si ha

S = Z Z apa = Z Z apar =

0<h<n 0<k<h 0<k<n k<h<n

S Y

0<h<n h<k<n

dove abbiamo usato (2C.6) e (2C.2). Se chiamiamo Sy quest’ultima sommatoria,
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abbiamo S7 = S5 e quindi

251 =51+ 5 = Z Z apay + Z apay,

0<h<n \0<k<h h<k<n
= g g apag + apap | = g E apag + E apap
0<h<n \0<k<n 0<h<n 0<k<n 0<h<n
_ 2
= ap, a | + ay,
0<h<n 0<k<n 0<h<n
2

[
(]
S
+
(]
S

grazie a, nell’ordine, (2C.7), (2C.1), e (2C.2). Abbiamo dunque ricavato la seguente
identita:

2

Z Zahakzé Zah + Za,%

0<h<n 0<k<h 0<h<n 0<h<n

Esempio 2C.4  Un altro simbolo che si utilizza spesso assieme alle sommatorie ¢
il delta di Kronecker d;;, definito da

5ij:{0 sei#j,

1 set=7.
In particolare si ha

i:bjdij =b; s
j=1

e quindi otteniamo formule del tipo

Zzaibj(sij = Zaizbj(sij = Zaibi .
=1

i=1 j=1 i=1 j=1



