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Aritmetica

1.1 Numeri e unità di misura

La Matematica è tradizionalmente nota per occuparsi di numeri e figure. Anche
se questo ormai non è più vero (la Matematica si occupa di strutture, siano esse
numeriche, geometriche, algebriche, analitiche, fisiche, biologiche, o cavalleggeri
prussiani), i numeri forniscono un buon punto di partenza per un corso introduttivo.

Il primo tipo di numeri che si incontra sono i numeri naturali:

0, 1, 2, 3, . . . ;

l’insieme dei numeri naturali sarà indicato con il simbolo N.
Fin da piccolo hai utilizzato i numeri naturali per contare oggetti, mele in un

cestino o cellule su un vetrino (s̀ı, eri una bambina precoce). Ben presto ti sei
però reso conto che i numeri naturali non bastavano; per misurare la temperatura
d’inverno o il conto in banca degli zii (e, più in generale, per poter effettuare
la sottrazione di due numeri naturali qualsiasi, senza limitazioni) servivano anche
numeri negativi; era importante poter contare anche al di sotto dello zero. A questo
scopo è stato introdotto l’insieme Z dei numeri interi (o numeri relativi):

0,+1,−1,+2,−2, . . . .

Il passaggio successivo, dalle parti del nono compleanno, tagliando la torta, è stato
l’introduzione delle frazioni, cioè dell’insieme Q dei numeri razionali:

0, 1,−1, 1/2,−1/2, 2,−2, 1/3,−1/3, 2/3,−2/3, . . .

Curiosità 1.1 È possibile elencare uno per volta, in un ordine preciso, tutti i numeri razionali,
proseguendo la lista qui sopra con le frazioni di denominatore 4, e poi 5, e cos̀ı via. Questo
vuol dire che è possibile contare i numeri razionali; i numeri razionali sono tanti quanti i
numeri naturali. In termini tecnici, si dice che esiste una corrispondenza biunivoca (o una
bigezione) fra l’insieme Q e l’insieme N.
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Come certo ricorderai, ogni numero razionale si può esprimere come numero
decimale periodico, e ogni numero decimale periodico corrisponde a un ben deter-
minato numero razionale. Per esempio1,

1
3

= 0.3 = 0.333333 . . . , −227
105

= −2.1619047 = −2.16190476190476 . . .

L’insieme di tutti i numeri decimali, periodici e no, è l’insieme dei numeri reali, e
verrà indicato con R. Non ci interessa dare qui una definizione formalmente precisa
dei numeri reali; è molto importante però che tu abbia ben presente tre cose.

(a) Numeri come
√

2, π o il numero di Nepero e sono tutti numeri reali. Questo
vuol dire che si possono scrivere come numeri decimali, con una parte deci-
male che può essere composta da infinite cifre. Più precisamente,

√
2, π, e

(e molti altri) sono numeri irrazionali, cioè sono numeri reali che non si pos-
sono esprimere come frazione. In particolare, la loro parte decimale non è mai
periodica.

Curiosità 1.2 Come si fa a vedere che
√

2 è irrazionale? Bisogna verificare che nessun numero
razionale al quadrato fa esattamente due. Supponiamo che non sia cos̀ı, e che p/q sia un
numero razionale (ridotto ai minimi termini) che al quadrato fa 2, cioè tale che (p/q)2 = 2.
Questo è equivalente a dire che

p2 = 2q2 .

In particolare, p2 è pari. Ma l’unico modo in cui un quadrato può essere pari è se la base è
pari; quindi anche p è pari, e possiamo scrivere p = 2n. Ma allora 4n2 = p2 = 2q2, per cui

q2 = 2n2 .

Ma questo vuol dire che anche q è pari, per cui p/q non è ridotta ai minimi termini, contro
quanto avevamo supposto all’inizio. Quindi supporre che esista un numero razionale che
elevato al quadrato faccia 2 conduce necessariamente a una contraddizione. In altre parole,
un tale numero razionale non può esistere, e

√
2 è irrazionale. In maniera analoga puoi provare

a verificare che anche
√

3 è irrazionale e, se te la senti, puoi cercare di scoprire per quali numeri
naturali n la radice quadrata

√
n è irrazionale.

Curiosità 1.3 Un dettaglio sottile ma non irrilevante: cos̀ı come abbiamo fatto vedere che
non esiste un numero razionale il cui quadrato sia 2, dovremmo far vedere che invece esiste
un numero reale il cui quadrato sia 2. Senza questa informazione,

√
2 sarebbe soltanto un

simbolo tipografico, una speranza fatta segno, e non un numero reale in carne ed ossa. Per
fortuna, esistono delle procedure (che forse avrai studiato alle scuole medie, e che sono usate
dalle calcolatrici) per costruire esplicitamente un numero reale il cui quadrato sia uguale a 2,
risolvendo al meglio questo dilemma. Si ottiene

√
2 = 1.414213562373 . . . ,

dove i puntini indicano cifre decimali che non si ripetono mai in modo periodico, e che quindi
non siamo in grado di predirre conoscendo solo le precedenti.

1 In questi appunti useremo sempre il punto decimale, e non la virgola decimale.
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(b) Qualunque espressione decimale finita di un numero irrazionale è soltanto
un’approssimazione. Gli esseri umani (e i computer) sono esseri finiti; non
siamo in grado di trattare un numero infinito di cifre contemporaneamente.
Questo non ci crea nessun problema con i numeri razionali, che possiamo espri-
mere come rapporto di due numeri interi, e quindi di quantità finite. Invece,
questo ci crea un problema serio con i numeri reali, che possiamo esprimere
solo tramite una successione infinita di cifre decimali. Come se ne viene fuori?
Risposta: approssimando. Invece di considerare l’intera successione di cifre
decimali, ci fermiamo a un certo punto. La cosa fondamentale da tener pre-
sente è che in questo modo non otteniamo il numero reale di partenza, ma solo
una sua approssimazione: abbiamo introdotto un errore. Per esempio, π non
è uguale (=) a 3.14, ma è circa (') 3.14; il vero valore di π differisce da 3.14
per un errore che inizia con 0.00 . . ., e quindi sarà compreso fra 0 e 9 millesimi.
Anche una scrittura come

π ' 3.14159265358979

continua a essere approssimata, sia pure con un errore molto più piccolo. Nella
maggior parte dei casi, un’approssimazione di questo livello è più che sufficiente
(le misure che si fanno sono spesso soggette a errori molto maggiori. . . ); basta
ricordarsi che si sta lavorando con un valore approssimato, e non con il valore
esatto. Ne riparleremo nelle Sezioni 1.4 e 1.6.

(c) I numeri reali sono in corrispondenza biunivoca con i punti di una retta: a
ogni numero reale corrisponde uno e un sol punto della retta, e viceversa. Il
procedimento con cui si mettono in corrispondenza numeri reali e punti di
una retta corrisponde alla creazione di una scala di misura; per questo motivo
conviene ricordarlo in dettaglio.

Il primo passo per costruire questa corrispondenza consiste nella scelta dell’origine,
il punto della retta (della scala di misura) a cui associare lo zero, il punto di partenza
per le misure successive. È una scelta del tutto arbitraria; qualsiasi punto della
retta va bene. Questa arbitrarietà è un vantaggio: permette di scegliere l’origine
nel modo più adatto al problema che si deve affrontare.

Esempio 1.1 Supponiamo di dover misurare altezze, di montagne o di fosse ocea-
niche. La scelta convenzionale dell’origine è il livello del mare: dichiariamo (ar-
bitrariamente, ma in maniera funzionale al tipo di misura che ci interessa) che
il livello del mare è ad altezza zero. Se invece vogliamo misurare l’altezza di uno
specifico grattacielo, o la profondità di una specifica caverna, probabilmente ci con-
viene mettere l’origine alla base del grattacielo o all’entrata della caverna (anche
se si trova a tremila metri d’altezza sul livello del mare).

Esempio 1.2 Per misurare la temperatura sono in uso comune tre scale di misura:
i gradi Celsius (o centigradi) ◦C, i gradi Fahrenheit ◦F, e i gradi Kelvin ◦K. Queste
tre scale hanno origini diverse. Lo 0 dei gradi Celsius corrisponde alla temperatura
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del punto di congelamento dell’acqua alla pressione atmosferica standard2. Lo 0
dei gradi Kelvin corrisponde allo zero assoluto, la temperatura che rappresenta la
completa assenza di calore. Infine, ci sono varie versioni su come Fahrenheit stabil̀ı
l’origine della sua scala delle temperature: come punto di congelamento di una
particolare miscela di acqua e sale, o come la temperatura minima da lui misurata
nel rigido inverno del 1708 nella città di Danzica. L’origine della scala Fahrenheit
attualmente in uso è invece scelta in modo che 0◦C corrisponda a 32◦F.

Il secondo passo nella costruzione della corrispondenza consiste nella scelta
dell’unità di misura: il punto della retta a cui associare il numero reale 1. Il
segmento fra il punto corrispondente a 0 e quello corrispondente a 1 serve da cam-
pione a cui rapportare tutte le altre misure che faremo con la scala che stiamo
costruendo — o, in un altro linguaggio, a cui rapportare le altre associazioni fra
punti della retta e numeri reali. Di nuovo, la scelta dell’unità di misura è del tutto
arbitraria, e dipende dal tipo di misure che dobbiamo effettuare.

Esempio 1.3 Se il nostro obiettivo è misurare l’altezza di montagne o grattacieli,
il metro è una unità di misura ragionevole; se invece dobbiamo misurare l’altezza
di formiche o cellule, forse è il caso di ricorrere a unità di misura più piccole, quali
i millimetri o i micron. Tra parentesi, la definizione attuale di metro è la distanza
percorsa dalla luce nel vuoto assoluto in 1/299 792 458 di secondo (di conseguenza,
la velocità della luce nel vuoto è esattamente uguale a 299 792 458 metri al secondo,
e non “circa uguale” come succedeva con l’originaria definizione di metro, che era
1/10 000 000 della distanza fra l’equatore e il polo Nord misurata lungo il parallelo
passante per Parigi).

Esempio 1.4 La definizione originale di 1◦C è 1/100 della differenza di tempera-
tura fra il punto di ebollizione e il punto di congelamento dell’acqua alla pressione
atmosferica standard. Invece, 1◦K corrisponde a 1/273.16 della differenza fra la
temperatura del punto triplo dell’acqua (vedi la Nota 2) e lo zero assoluto3. Infine,
1◦F corrisponde a 1/32 della differenza fra il punto di congelamento dell’acqua alla
pressione atmosferica standard e 0◦F.

Vale la pena di notare che nella scelta dell’unità di misura è implicita anche una
scelta di orientazione: dobbiamo decidere in quale delle due semirette determinate
dall’origine mettere i numeri positivi, se a destra o a sinistra. Usualmente si mette
la semiretta positiva a destra; ma in alcuni casi può convenire la scelta opposta.

2 Più precisamente, questa era la definizione fino al 1954. La definizione corrente è
fatta in modo che 0.01◦C corrisponda alla temperatura del punto triplo dell’acqua, quella
particolare combinazione di temperatura e pressione in cui ghiaccio, acqua e vapore acque
coesistono in ugual misura.
3 La definizione attuale di grado Celsius è scelta in modo che lo zero assoluto corrisponda
esattamente a −273.15◦C, per cui la scala Celsius e la scala Kelvin differiscono solo per
la posizione dell’origine e non per l’unità di misura.
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Esempio 1.5 Dopo aver posto l’origine delle altezze sul livello del mare, se dob-
biamo misurare l’altezza di montagne ci conviene stabilire che la semiretta positiva
è quella che punta verso l’alto, in modo da poter dire che il Monte Bianco misura
4792 metri (ghiaccio escluso), e non −4792 metri. Ma se invece ci interessa misu-
rare la profondità delle fosse oceaniche ci conviene scegliere come semiretta positiva
quella che punta verso il basso. Per esempio, la fossa delle Marianne è profonda
10911 metri rispetto al livello del mare.

Una volta scelta l’unità di misura, possiamo cominciare a misurare. Riportando
il segmento unità di misura più volte sulla sua stessa semiretta otteniamo i punti
che devono essere associati ai numeri naturali: a 2 volte l’unità di misura viene
associato il numero 2, a 27 volte l’unità di misura viene associato il numero 27,
e cos̀ı via. Ripetendo la stessa operazione sull’altra semiretta otteniamo i numeri
interi negativi −1, −2, e cos̀ı via.

Per ottenere i numeri razionali basta suddividere il segmento unità di misura.
Per trovare il punto a cui associare il numero razionale p/q, con q positivo, basta
suddividere l’unità di misura in q parti uguali, e riportare il segmento ottenuto p
volte partendo dall’origine e procedendo nel verso positivo se p è positivo (o −p
volte procedendo nel verso negativo se p è negativo).

In questo modo abbiamo associato a ogni numero razionale uno e un solo punto
della retta; ma rimangono dei punti della retta a cui non abbiamo ancora associato
alcun numero. Per esempio, il teorema di Pitagora ci dice che la diagonale di un
quadrato di lato unitario è un segmento di lunghezza

√
2. Siccome, come abbiamo

visto,
√

2 è un numero irrazionale, se mettiamo un estremo della diagonale nell’ori-
gine, l’altro estremo corrisponde a un punto della retta a cui non è associato alcun
numero razionale.

I numeri reali servono esattamente a riempire questi buchi: usando le espansioni
decimali infinite riusciamo a coprire tutti i punti della retta. Per questo motivo i
numeri reali sono lo strumento ideale per effettuare e registrare misurazioni.

Curiosità 1.4 S’intende che noi non abbiamo dimostrato che i numeri reali sono tanti quanti
i punti della retta; l’abbiamo soltanto affermato. Del resto, non avendo dato una definizione
precisa né di cos’è un numero reale né di cos’è un punto di una retta, non si poteva pretendere
di più. Inoltre, per le applicazioni è essenzialmente irrilevante conoscere i dettagli di queste
definizioni; vale però la pena sottolineare che non sono semplici o immediate, tanto che sono
state completamente chiarite solo nella seconda metà del diciannovesimo secolo.

Curiosità 1.5 Una delle conseguenze della costruzione dei numeri reali come numeri decimali
infiniti è che mentre i numeri razionali sono tanti quanti i numeri naturali, i numeri reali sono
sostanzialmente di più: non esiste alcuna corrispondenza biunivoca fra i numeri naturali (o
interi o razionali) e i numeri reali. Sono talmente tanti di più che se si prende un punto a
caso sulla retta si è praticamente certi di beccare un numero irrazionale (ed è possibile dare
un significato matematicamente preciso a questa frase).

Curiosità 1.6 Esistono anche i numeri complessi, che possono essere messi in corrispondenza
biunivoca con i punti del piano.

Quando devi studiare un problema specifico, la scelta di un’unità di misura
adeguata è fondamentale. Ovviamente nel corso dei millenni l’uomo ha sviluppato
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un enorme quantitativo di differenti unità di misura. Per una corretta e chiara
comunicazione scientifica tra persone di diverse culture si sono quindi dovute sta-
bilire alcune unità di misura standard, uguali per tutti. Le unità fondamentali
(dimensionate) sono sette:
– il metro m, per la lunghezza;
– il grammo g, per la massa;
– il secondo s, per il tempo;
– l’Ampère A, per l’intensità di corrente elettrica;
– il grado Kelvin ◦K, per la temperatura;
– la candela cd, per l’intensità luminosa;
– la mole mol, per la quantità di materia.

Partendo da queste sette unità fondamentali, e dall’unità adimensionale
– il radiante rad, per gli angoli (di cui riparleremo fra qualche capitolo),
è possibile ottenere tutte le altre.

Come già osservato prima (Esempio 1.3), a volte è più utile esprimere le mi-
sure usando un opportuno multiplo o sottomultiplo delle unità di misura standard.
Come sai, dato che abbiamo 10 dita, contiamo in base 10, ovvero il nostro sistema
di numerazione si basa su 10 cifre (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) che acquistano diverso
valore a seconda della loro posizione. Per questo motivo si usano (quasi) sempre le
potenze di 10 per esprimere multipli e sottomultipli delle unità fondamentali.

I multipli sono:

10 100 1000 106 109 1012 1015 1018 1021 1024

Prefisso deca etto kilo mega giga tera peta exa zetta yotta
Simbolo da h k M G T P E Z Y

I sottomultipli sono:

0.1 0.01 0.001 10−6 10−9 10−12 10−15 10−18 10−21 10−24

Prefisso deci centi milli micro nano pico femto atto zepto yocto
Simbolo d c m µ n p f a z y

Il fatto che vengano usate comunemente le sette unità fondamentali e i loro
multipli secondo le tabelle qua sopra non vuol dire che riusciamo ad avere una
visione intuitiva di cosa questi siano. Per essere più precisi, spesso non abbiamo
una nozione intuitiva chiara di quanto grande sia un numero grande.

Esempio 1.6 Pensa a cos’è un secondo. . . È intuitivo, vero? Lo sai benissimo
cos’è un secondo! Poco più di un battito del cuore. . . E un kilosecondo? È circa
un “quarto d’ora accademico”, o per essere esatti, 16 minuti e 40 secondi. Un
megasecondo, cioè un milione di secondi? Poco più di 11 giorni e mezzo! (11
giorni, 13 ore, 46 minuti e 40 secondi, per la precisione). Invece, sai cos’è successo
“solo” un gigasecondo fa, un miliardo di secondi fa? Tu non eri ancora nato, era
in corso la lotta per la conquista dello spazio fra Stati Uniti e Unione Sovietica,
e la missione “Soyuz 17” aveva da poco lasciato la Terra. . . era il 1975, 31 anni,
259 gioni, 1 ora, 46 minuti e 40 secondi fa. Circa un terasecondo fa l’uomo di
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Cro-Magnon (Homo Sapiens Sapiens) conquistava l’Europa (1 Ts sono circa 31700
anni). Due petasecondi (circa 63 milioni di anni) fa si estinguevano i dinosauri,
forse a causa di un meteorite. Mezzo exasecondo (circa 15, 5 miliardi di anni) fa
il Big Bang dava origine al nostro Universo dando il via a una folle corsa che ci
avrebbe portati ai dinosauri, all’uomo di Cro-Magnon, alle conquiste spaziali e al
corso di Matematica e Statistica per Biologi. Uno zettasecondo fa nessuno ha idea
di cosa ci fosse (ammesso che ci fosse qualcosa). Le potenze di dieci (o in questo
caso di mille) sono davvero potenti: in pochi piccoli passi ci hanno portato da un
battito del cuore all’età dell’Universo!

Osservazione 1.1 Per tradizione ogni giorno usiamo anche unità di misura che
hanno multipli e sottomultipli non basati sul 10 e le sue potenze. Un esempio è
dato dal tempo:
– un minuto sono 60 secondi;
– un’ora sono 60 minuti (3600 s);
– un giorno sono 24 ore (86400 s);
– un anno sono 365 o 366 giorni (circa 365.24 in media);
per non parlare delle settimane (7 giorni), dei mesi (tra 28 e 31 giorni) dei lustri (5
anni) e chi più ne ha più ne metta. Anche per gli angoli, sebbene l’unità di misura
ufficiale sia il radiante (1 rad corrisponde a 1/(2π) di angolo giro), sono spesso
usate anche le unità di misura derivate dai babilonesi e dagli assiri, su base 60:
– un grado ◦ è 1/360 di angolo giro;
– un minuto ′ è 1/60 di grado;
– un secondo ′′ è 1/60 di minuto.

1.2 Operazioni

In questa sezione ricordiamo velocemente alcune delle proprietà elementari della
somma e del prodotto fra numeri reali:

(i) (a + b) + c = a + (b + c)

(proprietà associativa della somma);

(ii) a + 0 = 0 + a = a

(esistenza dell’elemento neutro per la somma);

(iii) a + (−a) = (−a) + a = 0

(esistenza dell’opposto);

(iv) a + b = b + a

(proprietà commutativa della somma);
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(v) a · (b + c) = a · b + a · c e (b + c) · a = b · a + c · a

(proprietà distributive della somma rispetto al prodotto);

(vi) (a · b) · c = a · (b · c)

(proprietà associativa del prodotto);

(vii) a · 1 = 1 · a = a

(esistenza dell’elemento neutro per il prodotto);

(viii) a · 1
a

=
1
a
· a = 1

(esistenza dell’inverso);

(ix) a · b = b · a

(proprietà commutativa del prodotto).
Da queste proprietà si deducono quelle delle potenze. Ricordo che se a è un

numero reale non nullo e n è un numero naturale positivo, allora

an = a · · · · · a︸ ︷︷ ︸
n volte

.

La proprietà associativa del prodotto ci dice che an · am non è altro che il prodotto
di a per se stesso n + m volte, per cui

an · am = an+m . (1.1)

Ora, se n è più grande di m, effettuare il quoziente an/am equivale a cancellare m
dei fattori presenti nel prodotto an. Rimangono n−m fattori, per cui

an

am
= an−m . (1.2)

Se invece n è più piccolo di m, effettuando il quoziente an/am possiamo cancellare
tutti gli n fattori a denominatore, e ci restano m − n fattori a denominatore.
Quindi in questo caso an/am = 1/am−n. Questo suggerisce di introdurre le potenze
negative: se poniamo per definizione

a−n =
1
an

,
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allora (1.2) rimane vera anche quando n è più piccolo di m.
Rimane il caso n = m. Ora, an/an = 1; quindi se poniamo per definizione

a0 = 1

allora le (1.1) e (1.2) sono vere per ogni numero reale non nullo a e ogni coppia di
numeri interi, positivi, negativi o nulli, m ed n.

Facciamo un altro piccolo passo. Se moltiplichiamo una potenza an per se stessa
otteniamo (an)2 = an · an = an+n = a2n. Più in generale, la (1.1) implica

(an)m = anm (1.3)

per ogni numero reale non nullo a e ogni coppia di numeri interi m ed n.
Il nostro prossimo obiettivo è dare un senso all’espressione ap/q, dove a è un

numero reale positivo e p/q è un numero razionale qualsiasi, in modo che le proprietà
(1.1)–(1.3) rimangano valide. In particolare, richiediamo che

a−p/q =
1

ap/q
e ap/q = (a1/q)p ,

per cui se scopriamo come definire a1/q siamo in grado di calcolare ap/q per qualsiasi
numero razionale p/q. Ma perché (1.3) valga si deve avere

(a1/q)q = aq/q = a1 = a .

Quindi l’unica possibilità che abbiamo è dire che a1/q è l’unica radice reale q-
esima positiva di a. In questo modo abbiamo definito la potenza ar di base a ed
esponente r per ogni numero reale positivo a e ogni numero razionale r. Quando
parleremo di logaritmi, faremo vedere come dare un senso alla scrittura ax per ogni
numero reale positivo a e ogni numero reale x.

Esempio 1.7 Per esempio, 21/2 =
√

2, 271/3 = 3
√

27 = 3, e

85/6 = (81/3)5/2 = 25/2 = 22 · 21/2 = 4
√

2 .

Osservazione 1.2 Per noi la radice q-esima di un numero positivo è sempre un
numero positivo. Anche quando q è pari, cioè quando esistono sia una radice
positiva sia una negativa. Se vogliamo considerare la radice negativa, indicheremo
esplicitamente il segno. Per esempio, le radici quarte di 7 sono 4

√
7 e − 4

√
7, e le

soluzioni dell’equazione x2 = 150 sono x = ±
√

150. In particolare,
√

x2 = |x|, e
non è uguale a x.

Osservazione 1.3 Abbiamo definito le potenze frazionarie solo dei numeri reali
positivi, e non di quelli negativi, perché talvolta i numeri negativi non hanno radici
reali. Per esempio, non esiste nessun numero reale il cui quadrato sia −1, per cui
non siamo in grado di definire (−1)1/2 rispettando la regola (1.3).



10 Capitolo 1

Curiosità 1.7 A dire il vero, bisognerebbe far vedere che effettivamente la radice q-esima reale
di un numero reale positivo esiste sempre. Questo si può fare una volta definito con precisione
il concetto di numero reale; confronta la Curiosità 1.3.

Concludiamo ricordando che, se a e b sono due numeri reali, sappiamo stabilire
qual è il più grande e qual è il più piccolo. Scriveremo a ≤ b (oppure b ≥ a)
se a è minore o uguale a b (se b è maggiore o uguale ad a), che è vero anche
quando a = b. Se invece vogliamo dire che a è strettamente minore di b (ovvero che
b è strettamente maggiore di a) scriveremo a < b (rispettivamente, a > b). Infine,
indicheremo con max{a, b} il massimo (cioè il più grande) fra a e b, e con min{a, b}
il minimo (cioè il più piccolo) fra a e b.

1.3 Notazione scientifica e ordini di grandezza

Ogni numero reale positivo x può essere scritto in notazione scientifica, cioè nella
forma

x = a · 10b ,

dove 1 ≤ a < 10 e b è un numero intero, che può essere positivo o negativo. Il
numero a si chiama mantissa, e il numero b esponente od ordine di grandezza di x.

Esempio 1.8 Il numero di Avogadro (molecole in una mole di materia) è

6.022 · 1023 mol−1 = 602 200 000 000 000 000 000 000 mol−1 .

Esempio 1.9 Il diametro della capside di un virus herpes simplex è di circa

105 nm = 105 · 10−9 m = 1.05 · 10−7 m = 0.000000105 m .

Attenzione! 105 · 10−9 non è in notazione scientifica, secondo la definizione data,
perché la mantissa 105 è maggiore di 10. Il diametro della capside di un virus
herpes simplex in notazione scientifica è 1.05 · 10−7 m.

Osservazione 1.4 Un numero della forma a·10k è rappresentato in notazione usuale
da un numero maggiore o uguale a 1 con k + 1 cifre prima della virgola se k ≥ 0,
e da un numero minore di uno con k − 1 zeri dopo la virgola se k < 0. Viceversa,
un numero maggiore o uguale a 1 rappresentato in notazione usuale con k + 1 ci-
fre prima della virgola in notazione scientifica ha esponente k e mantissa ottenuta
spostando verso sinistra la virgola in modo da lasciare una sola cifra prima della
virgola. Infine, un numero minore di uno con k − 1 zeri dopo la virgola in nota-
zione scientifica ha esponente −k e mantissa ottenuta spostando verso destra la
virgola fino ad avere esattamente una cifra non nulla prima della virgola. Possiamo
rappresentare il tutto con un diagramma, dove a rappresenta una cifra non nulla:

a ︸ ︷︷ ︸
k cifre

. = a. ︸ ︷︷ ︸
k cifre

· 10k ;

0. 0 . . . . . .0︸ ︷︷ ︸
k−1 zeri

a = a. · 10−k .
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Qual è l’utilità della notazione scientifica? Ha più di un vantaggio:

– per numeri molto grandi (o molto piccoli) si evita di scrivere molti zeri (e
si evitano errori, nei lavori scientifici e agli esami) rendendoli di più facile
comprensione4;

– identifica l’ordine di grandezza;
– aiuta a identificare le cifre significative.

Delle cifre significative riparleremo nella prossima sezione; qui ci concentriamo
un attimo sull’ordine di grandezza. Due quantità, misurate nella stessa unità di
misura, hanno lo stesso ordine di grandezza se scritte in notazione scientifica hanno
lo stesso esponente.

Esempio 1.10 Una mucca (massa circa 350 kg = 3.5 · 105 g) e un toro (massa
circa 500 kg = 5 · 105g) hanno una massa dello stesso ordine di grandezza.

Osservazione 1.5 Attenzione! “Essere dello stesso ordine di grandezza” è una
nozione che dipende dall’unità di misura scelta. Per esempio, se per la massa al
posto del grammo scegliamo come unità di misura il “toro medio” tm, allora un toro
pesa circa 1·100 tm, e una mucca circa 7·10−1 tm, per cui in questa (singolare) unità
di misura una mucca e un toro non hanno masse dello stesso ordine di grandezza.

La nozione di ordine di grandezza è comoda ma non terribilmente precisa. La
cosa diventa evidente quando si confrontano quantità con ordini di grandezza di-
versi.

La differenza di ordini di grandezza fra due quantità è la differenza degli espo-
nenti delle quantità scritte in notazione scientifica rispetto alla stessa unità di
misura.

Esempio 1.11 La distanza Terra-Sole dTS ' 1.5 · 108 km e il raggio terrestre
RT ' 6.3 · 103 km differiscono per 5 ordini di grandezza.

Osservazione 1.6 Per parlare di differenza di ordini di grandezza è fondamentale
che le due quantità siano misurate rispetto alla stessa unità di misura!

Cerchiamo di capire esattamente che informazioni dà la differenza di ordini di
grandezza. Se abbiamo due grandezze x1 = a1 · 10b1 e x2 = a2 · 10b2 , la differenza
di ordini di grandezza è d = b1 − b2, mentre il rapporto tra x1 e x2 è

x1

x2
=

a1 · 10b1

a2 · 10b2
=

a1

a2
· 10b1

10b2
=

a1

a2
· 10d .

4 Anche se non di più facile interpretazione intuitiva da parte del nostro cervello. . . come
abbiamo già notato prima con i terasecondi e compagnia, abbiamo molta difficoltà a
interpretare numeri troppo grandi — o piccoli — che sfuggono alla nostra percezione
quotidiana.
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Siccome 1 ≤ a1, a2 < 10 si ha 1/10 < a1/a2 < 10, e quindi

10d−1 <
x1

x2
< 10d+1.

In altre parole, dire che x1 ed x2 differiscono per d ordini di grandezza equivale a dire
che il rapporto x1/x2 è maggiore di 10d−1 e minore di 10d+1, che è un’informazione
significativa ma non terribilmente precisa.

Esempio 1.12 La differenza di ordine di grandezza di età fra un anziano di
99 = 9.9 · 101 anni e un bambino di 1 = 1 · 100 anno è la stessa che c’è tra un
bambino di 10 = 1 · 101 anni e uno di 9 = 9 · 100 anni.

Curiosità 1.8 Una definizione più precisa e rigorosa di differenza di ordini di grandezza deve
basarsi sul rapporto delle grandezze, e non soltanto sulla differenza degli esponenti. Per
esempio, potremmo definire differenza precisa di ordini di grandezza tra due quantità x1 e x2

quel numero intero e tale che

10e−0.5 ≤ x1

x2
< 10e+0.5 ,

e diremo che x1 e x2 sono dello stesso ordine di grandezza preciso se e = 0. Con questa
definizione una mucca e un toro hanno una massa dello stesso ordine di grandezza preciso,
anche misurate rispetto al toro medio. Il bambino di 9 e quello di 10 anni hanno un’età dello
stesso ordine di grandezza preciso, mentre l’età dell’anziano e del bambino che ha appena
iniziato a camminare differiscono di due ordini di grandezza precisi.

Vediamo ora come si fanno le operazioni in notazione scientifica. Vogliamo
sommare o sottrarre due numeri espressi in notazione scientifica (i nostri soliti
x1 = a1 · 10b1 e x2 = a2 · 10b2). Il procedimento è il seguente:
– si portano allo stesso esponente, moltiplicando e dividendo x2 per 10b1 :

x2 = a2 · 10b2 = a2 · (10b2 · 10−b1) · 10b1 =
(
a2 · 10b2−b1

)
· 10b1 ;

– si sommano o sottraggono le mantisse mantenendo lo stesso esponente:

x1 ± x2 =
(
a1 ± a2 · 10b2−b1

)
· 10b1 ;

– si determina l’ordine di grandezza del risultato e lo si scrive nuovamente in
notazione scientifica, come indicato nell’Osservazione 1.2.

Esempio 1.13 Vogliamo calcolare la massa del virus herpes simplex, sapendo che
il nucleo ha massa 2 · 10−16 g, la capside nuda vuota (un rivestimento proteico del
nucleo) ha massa 5 · 10−16 g, e l’inviluppo (un ulteriore rivestimento) 1.3 · 10−15 g.
Dobbiamo sommare questi tre valori. I primi due termini hanno già lo stesso
esponente. Riportiamo il terzo addendo allo stesso esponente:

1.3 · 10−15 g = 1.3 · (10−15 · 1016) · 10−16 = 13 · 10−16 g.

Sommando le mantisse otteniamo una massa totale di 20·10−16 g. Infine, riportando
il risultato in notazione scientifica otteniamo 2 · 10−15 g.
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Esercizio 1.1 Sapendo che un atomo di idrogeno ha massa di circa 1.7 · 10−27 g
e uno di ossigeno ha massa di circa 2.65 · 10−26 g, calcola la massa di una molecola
d’acqua H2O (composta da un atomo di ossigeno e due di idrogeno).

Grazie alle proprietà delle potenze, è particolarmente semplice effettuare molti-
plicazioni e divisioni in notazione scientifica. Per trovare il prodotto (o il rapporto)
di x1 = a1 · 10b1 e x2 = a2 · 10b2

– si moltiplicano (o dividono) le mantisse;
– si sommano (o sottraggono) gli esponenti;
– si scrive il risultato in notazione scientifica.

Esempio 1.14 Vogliamo ottenere una stima di quanto sangue umano c’è al
mondo. La popolazione umana è di circa sei miliardi di persone, ovvero 6 · 109.
Ogni persona ha mediamente 5.6 litri di sangue, ovvero circa

5.6 dm3 = 5.6 · (10−1 m)3 = 5.6 · 10−3 m3 .

Per ottenere il volume totale del sangue umano al mondo moltiplichiamo le mantisse
6 · 5.6 = 33.6; sommiamo gli esponenti 9 + (−3) = 6; portiamo il risultato in
notazione scientifica 33.6 · 106 m3 = 3.36 · 107 m3. Pertanto nel mondo ci sono
(circa) 3.36 · 107 m3 di sangue umano.

Esercizio 1.2 Sapendo che la Torre di Pisa è approssimativamente un cilindro di
altezza 56 m e raggio di base 8 m, quante Torri di Pisa servirebbero per contenere
tutto il sangue umano presente al mondo?

1.4 Approssimazioni

Come abbiamo visto, i numeri reali si rappresentano con successioni infinite di
cifre decimali; questo ha come conseguenza il fatto che in pratica i calcoli con i
numeri reali sono necessariamente approssimati. Ci sono tipicamente due metodi
per eseguire queste approssimazioni: per troncamento, o per arrotondamento.

Il troncamento consiste semplicemente nel dimenticarsi le successive cifre deci-
mali.

Esempio 1.15 Se tronchiamo π = 3.14159265358979 . . . (la presenza dei puntini
segnala che stiamo lavorando con il valore esatto del numero reale π, anche se non
siamo in grado di scriverlo tutto) alla quarta cifra decimale otteniamo π ' 3.1415;
se lo tronchiamo alla ottava cifra decimale otteniamo π ' 3.14159265.

Osservazione 1.7 È importante tenere ben distinto il concetto e il simbolo di
“uguale” “=” dal concetto e simbolo di “circa” “'”. Per intenderci, π è circa
3.1415, e non è uguale a 3.1415.

Curiosità 1.9 Dire che tronchiamo un numero alla k-esima cifra decimale vuol dire che scar-
tiamo le cifre decimali dalla (k+1)-esima in poi. L’errore che introduciamo può quindi variare
da 0 (se tutte le cifre decimali scartate erano uguali a 0) a 10−k (se tutte le cifre decimali
scartate erano uguali a 9).
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Chiaramente, il troncamento introduce un errore che può anche essere signifi-
cativo, se la prima cifra decimale scartata è vicina a 9.

Esempio 1.16 Siccome π = 3.14159 . . ., il valore 3.1416 è un’approssimazione a
quattro cifre decimali di π migliore di quella ottenuta per troncamento.

Per questo motivo, di solito si preferisce procedere per arrotondamento. Se la
prima cifra decimale scartata è 0, 1, 2, 3 o 4, si approssima per difetto, come nel
troncamento. Se invece la prima cifra decimale scartata è 5, 6, 7, 8 o 9, si appros-
sima per eccesso, aumentando di 1 il valore dell’ultima cifra decimale lasciata5.

Esempio 1.17 L’arrotondamento di π alla quarta cifra decimale è π ' 3.1416,
mentre l’arrotondamento di π all’ottava cifra decimale è π ' 3.14159265.

Osservazione 1.8 Nel resto di questi appunti il simbolo ' indicherà sempre un’ar-
rotondamento, e mai un troncamento.

Curiosità 1.10 Supponiamo di voler arrotondare alla k-esima cifra decimale. Se la prima cifra
decimale scartata è fra 0 e 4, l’errore che introduciamo arrotondando varia da 0 (se tutte le
cifre decimali scartate erano uguali a 0) a un massimo di 5 · 10−(k+1) (se le cifre decimali
scartate erano un 4 seguito da infiniti 9). Analogamente, se la prima cifra decimale è scartata
è fra 5 e 9, l’errore che introduciamo arrotondando varia da 0 (se tutte le cifre decimali scartate
erano uguali a 9) a un massimo di 5 · 10−(k+1) (se le cifre decimali scartate erano un 5 seguito
da infiniti 0). Quindi in ogni caso l’errore che si effettua arrotondando è minore o uguale a
quello che si effettua troncando, e l’errore massimo per arrotondamento è di 5 · 10−(k+1), la
metà dell’errore massimo per troncamento.

Anche le misure sono necessariamente approssimate. Gli strumenti di misura
hanno una precisione finita, e ciascuna misura è soggetta a errori (si spera casuali);
quindi il valore della misura è noto a meno di un errore (che si spera piccolo).
Nella pratica sperimentale, è fondamentale tenere traccia di questi errori; quando
si riporta il risultato di una misura, bisogna indicare non soltanto il valore ottenuto,
ma anche una stima dell’errore effettuato.

Esempio 1.18 Misure ripetute della lunghezza dell’assone di un dato neurone
di un ratto forniscono i seguenti risultati: 73 µm, 71 µm, 75 µm, 74 µm. I valori
ottenuti sono quindi tutti compresi nell’intervallo che va da 71µm a 75 µm. Rispetto
al punto centrale di questo intervallo (73 µm), i valori ottenuti variano di al più
2 µm (la metà della lunghezza dell’intervallo) per eccesso o per difetto. Dunque
possiamo riassumere le nostre misurazioni dicendo che la lunghezza dell’assone di
questo neurone è 73± 2 µm o, in notazione scientifica, (7.3± 0.2) · 10−5 m.

5 Quando la prima cifra decimale scartata è 5, a volte può convenire approssimare per
difetto. Per esempio, se stiamo effettuando approssimazioni sul risultato di misure, allora
può convenire bilanciare l’errore commesso approssimando il 5 per eccesso con alcune
approssimazioni per difetto, in modo che considerando nell’insieme tutte le misure gli
errori si compensino.
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Osservazione 1.9 Oltre a quella appena descritta, esistono varie altre tecniche per
estrarre da una serie di misure un valore stimato e un errore; ne riparleremo nei
capitoli dedicati alla Statistica.

La notazione introdotta nel precedente esempio è quella standard usata per
indicare dei valori noti solo con una certa approssimazione. Per la precisione, la
scrittura

x = v ± e

significa che il valore vero x della misura è contenuto nell’intervallo centrato nel
valore stimato v e di lunghezza il doppio dell’errore assoluto e. In altre parole,
x = v ± e è equivalente alla doppia disuguaglianza

v − e ≤ x ≤ v + e .

Esempio 1.19 Nell’esempio precedente, il valore stimato della lunghezza dell’as-
sone è v = 7.3 · 10−5 m, con un errore assoluto e = 0.2 · 10−5 m, per cui il valore
vero x è contenuto nell’intervallo di estremi v−e = 7.1·10−5 m e v+e = 7.5·10−5 m.

Esempio 1.20 La scrittura π = 3.14 ± 0.002 significa che il valore effettivo di π
è compreso fra 3.14− 0.002 = 3.138 e 3.14+0.002 = 3.142, cioè 3.138 ≤ π ≤ 3.142.

Osservazione 1.10 Indicheremo spesso con [a, b] l’intervallo chiuso della retta reale
di estremi a e b (supponendo, s’intende, che a ≤ b). In altre parole, il numero reale x
appartiene ad [a, b] se e solo se a ≤ x ≤ b. In modo analogo, indicheremo con (a, b)
l’intervallo aperto della retta reale costituito dai numeri x tali che a < x < b; in
altre parole, togliendo gli estremi all’intervallo chiuso [a, b] otteniamo l’intervallo
aperto (a, b). Togliendo solo uno dei due estremi otteniamo gli intervalli semiaperti:
(a, b] è l’insieme dei numeri x tali che a < x ≤ b, mentre [a, b) è l’insieme dei
numeri x tali che a ≤ x < b.

Osservazione 1.11 Spesso (ma non sempre! Bisogna verificare caso per caso cosa
viene inteso da ciascun singolo autore) si usa la notazione scientifica per evidenziare
le cifre significative di una misura. La convenzione più comune è che tutte le
cifre di un numero in notazione scientifica sono significative (cioè non modificate
dall’errore) tranne l’ultima, che è puramente indicativa.

Esempio 1.21 Se scriviamo la lunghezza dell’assone del neurone del ratto come
x ' 7.3 ·10−5 m intendiamo dire che siamo certi che la lunghezza vera dell’assone è
almeno 7 · 10−5 m ed è certamente inferiore a 8 · 10−5 m, per cui la cifra 7 è sicura
(significativa); inoltre la cifra indicativa 3 segnala che il valore vero è probabilmente
più vicino a 7.1 · 10−5 m di quanto lo sia a 7.9 · 10−5 m.

Osservazione 1.12 Le convenzioni sulle cifre significative si prestano troppo facil-
mente ad ambiguità ed equivoci; è molto meglio (e deontologicamente più corretto)
presentare sempre i risultati indicando valore stimato ed errore assoluto.
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1.5 Uguaglianze e disuguaglianze

Capita spesso di dover effettuare ulteriori operazioni sul valore di una misura.
Per esempio, se vogliamo trovare il volume di una fibra muscolare, che possiamo
assumere cilindrica, conviene misurarne la lunghezza l e lo spessore d, e poi ricavare
il volume V con la formula V = π(d/2)2l (ricorda che dire che la fibra ha spessore d
vuol dire che è un cilindro di raggio d/2). Ora, sia la lunghezza che lo spessore
sono stati misurati con un certo errore, per cui anche il valore del volume sarà
soggetto a un qualche errore. Ma quanto? Come facciamo a ricavare l’errore sul
volume conoscendo l’errore sulla lunghezza e sullo spessore (e sull’approssimazione
di π che vogliamo usare)?

Obiettivo della prossima sezione è esattamente studiare la propagazione degli
errori, cioè capire come variano gli errori agendo con operazioni aritmetiche. Ora,
abbiamo visto che una scrittura del tipo x = v±e è equivalente alla doppia disugua-
glianza v−e ≤ x ≤ v+e. Quindi per studiare la propagazione degli errori dobbiamo
studiare come si comportano le disuguaglianze rispetto alle quattro operazioni.

Cominciamo ricordando come si comportano le uguaglianze. Se due numeri sono
uguali, ed effettuiamo la stessa operazione su entrambi, chiaramente otteniamo due
risultati uguali. In particolare

a = b implica



a + c = b + c per ogni c,
a− c = b− c per ogni c,
−a = −b,
ac = bc per ogni c,
a/c = b/c per ogni c diverso da 0,
1/a = 1/b se a, b 6= 0.

Osservazione 1.13 ATTENZIONE: mai dividere per zero! Il che vuol dire che se
effettuiamo una divisione per una quantità letterale, dobbiamo imporre che i valori
attribuiti alle lettere non annullino la quantità.

Passiamo ora alle disuguaglianze. Se un numero è minore di un altro, e som-
miamo o sottraiamo a entrambi la stessa quantità, chiaramente il primo risultato
rimane minore del secondo. In altre parole,

a ≤ b implica
{

a + c ≤ b + c per ogni c,
a− c ≤ b− c per ogni c.

Osservazione 1.14 Chiaramente, sia qui sia nel seguito, valgono risultati analo-
ghi per le disuguaglianze col minore stretto (a < b) e per le disuguaglianze col
maggiore (a ≥ b e a > b).

Osservazione 1.15 In questa sezione otterremo sempre gli stessi risultati per la
somma e per la differenza. Questo non deve stupire: sottrarre un numero c è la
stessa cosa di sommare il numero −c.

Il comportamento delle disuguaglianze rispetto al prodotto o alla divisione è un
poco più complicato. Non ci sono problemi con i numeri positivi: se un numero è
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minore di un altro, e moltiplichiamo o dividiamo entrambi per la stessa quantità
positiva, il primo risultato rimane minore del secondo:

a ≤ b implica
{

ac ≤ bc per ogni c > 0,
a/c ≤ b/c per ogni c > 0.

Se invece moltiplichiamo per −1, la disuguaglianza s’inverte:

a ≤ b implica − a ≥ −b.

Osservazione 1.16 Un modo per capire il perché di questa differenza fra numeri
positivi e negativi è considerare la retta reale. Un numero positivo più è distante
dall’origine più è grande; invece, un numero negativo più è distante dall’origine più
è piccolo. Siccome la moltiplicazione per −1 scambia numeri positivi e negativi ma
lascia invariata la distanza dall’origine, deve necessariamente invertire l’ordine.

Prima di proseguire vale la pena ricordare il concetto di valore assoluto. Il
valore assoluto (o modulo) |x| di un numero reale x è la sua distanza dall’origine:

|x| =
{

x se x ≥ 0,
−x se x < 0.

In particolare, x = −|x| per ogni numero negativo x < 0.

Curiosità 1.11 Più in generale si ha x = sgn(x) · |x| per ogni numero reale x, dove

sgn(x) =

{
+1 se x ≥ 0,
−1 se x < 0.

Torniamo ora alla nostra disuguaglianza a ≤ b. Moltiplicare (o dividere) en-
trambi i membri per un numero negativo c < 0 equivale a moltiplicarli prima per
−1 e poi per il numero positivo |c| (o per il numero positivo 1/|c|). Siccome la mol-
tiplicazione per −1 inverte il senso della disuguaglianza mentre la moltiplicazione
per un numero positivo lo conserva, otteniamo

a ≤ b implica
{

ac ≥ bc per ogni c < 0,
a/c ≥ b/c per ogni c < 0.

Infine vediamo cosa succede per l’inverso. Supponiamo di avere a ≤ b, e conside-
riamo prima il caso in cui siano entrambi positivi. Allora moltiplicando entrambi i
membri per 1/b > 0 otteniamo a/b ≤ 1; moltiplicando quest’ultima disuguaglianza
per 1/a > 0 otteniamo 1/b ≤ 1/a. Se invece sia a sia b sono negativi, moltiplicando
entrambi i membri per 1/b < 0 invertiamo la disuguaglianza ottenendo a/b ≥ 1.
Ma moltiplicandola per 1/a < 0 la invertiamo ancora, per cui alla fine otteniamo
di nuovo 1/b ≤ 1/a. Infine, se a è negativo e b è positivo abbiamo che 1/a è ancora
negativo e 1/b è ancora positivo, per cui 1/a < 1/b. Riassumendo:

a ≤ b implica
{

1/a ≥ 1/b se 0 < a ≤ b o a ≤ b < 0,
1/a < 0 < 1/b se a < 0 < b.
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Per studiare la propagazione degli errori dobbiamo combinare fra loro due (o
più) misure ciascuna col proprio errore, per cui dobbiamo combinare fra loro due
(o più) disuguaglianze. Supponiamo allora di avere le due disuguaglianze a1 ≤ a2

e b1 ≤ b2; vogliamo provare a sommarle, sottrarle, moltiplicarle e (quando possibile)
dividerle.

La somma è facile. Sommando b1 a entrambi i membri di a1 ≤ a2 otte-
niamo a1 + b1 ≤ a2 + b1; sommando a2 a entrambi i membri di b1 ≤ b2 otte-
niamo a2 + b1 ≤ a2 + b2. Combinando il tutto otteniamo{

a1 ≤ a2

b1 ≤ b2
implica a1 + b1 ≤ a2 + b2 . (1.4)

Del resto, se a una cosa più piccola sommiamo una cosa più piccola è naturale
ottenere una cosa più piccola...

Anche la differenza è facile. Moltiplicando b1 ≤ b2 per −1 otteniamo −b2 ≤ −b1;
quindi sommando questa disuguaglianza ad a1 ≤ a2 otteniamo{

a1 ≤ a2

b1 ≤ b2
implica a1 − b2 ≤ a2 − b1 . (1.5)

Osservazione 1.17 Attenzione: da a1 ≤ a2 e b1 ≤ b2 non possiamo dedurre nulla
sulle dimensioni relative di a1 − b1 e a2 − b2. A volte è più grande a1 − b1,
a volte a2 − b2. Per esempio, se a1 = 1, a2 = 3, b1 = 0 e b2 = 1 otte-
niamo a1−b1 = 1 < 2 = a2−b2. Ma se b2 = 4 troviamo a1−b1 = 1 > −1 = a2−b2.
L’unica disuguaglianza che è vera in entrambi i casi è a1− b2 ≤ a2− b1, come avrai
cura di verificare.

Passiamo al prodotto. Come prevedibile, avremo risultati diversi a seconda dei
segni dei numeri coinvolti. Cominciamo col caso più semplice: supponiamo di avere
a1 ≤ a2 e b1 ≤ b2, con a1, a2, b1 e b2 positivi. Allora ragionando come fatto per la
somma (moltiplicando invece che sommando) otteniamo{ 0 < a1 ≤ a2

0 < b1 ≤ b2
implica a1b1 ≤ a2b2 . (1.6)

Siccome 0 < b1 ≤ b2 implica 0 < 1/b2 ≤ 1/b1, otteniamo anche{ 0 < a1 ≤ a2

0 < b1 ≤ b2
implica

a1

b2
≤ a2

b1
. (1.7)

Se invece b1 e b2 sono negativi, da b1 ≤ b2 < 0 moltiplicando per −1 otte-
niamo 0 < |b2| ≤ |b1|. Quindi a1|b2| ≤ a2|b1|, e moltiplicando di nuovo per −1
ricaviamo { 0 < a1 ≤ a2

b1 ≤ b2 < 0 implica a1b2 ≥ a2b1 .

Analogamente, da b1 ≤ b2 < 0 ricaviamo 1/b2 ≤ 1/b1 < 0, e quindi{ 0 < a1 ≤ a2

b1 ≤ b2 < 0 implica
a1

b1
≥ a2

b2
.
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Se invece a1 e a2 sono negativi, in maniera analoga (esercizio per te) otteniamo

{
a1 ≤ a2 < 0
0 < b1 ≤ b2

implica
{

a1b2 ≤ a2b1 ,
a1/b1 ≤ a2/b2 ,

e {
a1 ≤ a2 < 0
b1 ≤ b2 < 0 implica

{
a1b1 ≥ a2b2 ,
a1/b2 ≥ a2/b1 .

Osservazione 1.18 Mentre le formule che abbiamo ottenuto per i numeri positivi
sono facili e coincidono con quanto uno si aspetta, quelle con i numeri negativi sono
più intricate. La buona notizia è che non è necessario impararle a memoria. Al con-
trario, è (quasi. . . ) meglio non saperle a memoria: è molto più utile (e importante)
saperle ricavare. Infatti, tutte queste formule si ricavano semplicemente partendo
dal fatto che ogni numero negativo è ottenuto moltiplicando per −1 un numero po-
sitivo, e dal fatto che la moltiplicazione per −1 inverte il verso delle disuguaglianze.
Tenendo presenti questi due fatti (e tenendo chiusi gli appunti!) domani prova a
ricavare da solo queste formule; vedrai che, con un po’ d’allenamento, sarà molto
più semplice (e infinitamente più utile) che impararle a memoria.

Se b1 e b2 sono di segni opposti e a1 e a2 sono positivi, allora semplicemente
guardando i segni otteniamo

{ 0 < a1 ≤ a2

b1 < 0 < b2
implica

{
a1b1 < 0 < a2b2 , a2b1 < 0 < a1b2 ,
a1
b1

< 0 < a2
b2

, a2
b1

< 0 < a1
b2

.

Analogamente, se a1 e a2 sono entrambi negativi guardando i segni otteniamo

{
a1 ≤ a2 < 0
b1 < 0 < b2

implica
{

a1b2 < 0 < a2b1 , a2b2 < 0 < a1b1 ,
a1
b2

< 0 < a2
b1

, a2
b2

< 0 < a1
b1

.

Infine, se anche a1 e a2 sono di segni opposti può succedere di tutto; non ci sono
disuguaglianze sempre valide.

Esempio 1.22 Prendiamo a1 = −1 < 0 < 1 = a2 e b1 = −2 < 0 < b2 = 1.
In questo caso a2b1 < a1b2 e a2b2 < a1b1. Ma basta prendere b1 = −1/2 per
ottenere a1b2 < a2b1 e a1b1 < a2b2, cioè le disuguaglianze opposte.

1.6 Propagazione degli errori

Siamo finalmente in grado di studiare la propagazione degli errori, come promesso.
Supponiamo di aver fatto due misure x e y, e di aver ottenuto v1 come valore
stimato per x con errore assoluto e1, mentre per y abbiamo ottenuto v2 come
valore stimato e e2 come errore assoluto; in formule, x = v1 ± e1 e y = v2 ± e2.
Vogliamo trovare quanto valgono i valori stimati e gli errori di x + y, x − y, xy
e x/y.
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Come abbiamo visto, le scritture x = v1 ± e1 e y = v2 ± e2 equivalgono alle
disuguaglianze

v1 − e1 ≤ x ≤ v1 + e1 e v2 − e2 ≤ y ≤ v2 + e2 . (1.8)

La formula (1.4) sulla somma delle disuguaglianze (applicata sia alle disuguaglianze
di sinistra che a quelle di destra) ci dice quindi che

(v1 + v2)− (e1 + e2) ≤ x + y ≤ (v1 + v2) + (e1 + e2) .

In altre parole, il valore stimato vsomma della somma è la somma dei valori stimati,
e l’errore assoluto esomma della somma è la somma degli errori assoluti:

vsomma = v1 + v2 , esomma = e1 + e2 .

Esempio 1.23 Torniamo al neurone di ratto introdotto nell’Esempio 1.18. Una
serie di misurazioni della larghezza d del soma (la parte iniziale, contenente il
nucleo) del neurone ha fornito il valore d = (6 ± 0.1) · 10−6 m, cioè un valore
stimato v1 = 6 ·10−6 m con un errore assoluto e1 = 0.1 ·10−6 m. Le misure dell’as-
sone di questo neurone ci avevano fornito una lunghezza l = (7.3 ± 0.2) · 10−5 m,
cioè un valore stimato v2 = 7.3 · 10−5 m e un errore assoluto e2 = 0.2 · 10−5 m.
Vogliamo trovare la lunghezza dell’intero neurone. Trascurando i dendriti (brevi
protuberanze filiformi del soma), la lunghezza L del neurone è ottenuta sommando
la larghezza del soma con la lunghezza dell’assone. Otteniamo quindi un va-
lore stimato v1 + v2 = 6 · 10−6 + 7.3 · 10−5 m= 7.9 · 10−5 m e un errore asso-
luto e1 + e2 = 0.1 · 10−6 + 0.2 · 10−5 m = 0.21 · 10−5 m. Quindi la lunghezza totale
del neurone è L = (7.9± 0.21) · 10−5 m.

Per vedere cosa succede con la sottrazione, notiamo che moltiplicando per −1
le disuguaglianze di y otteniamo −v2 − e2 ≤ y ≤ −v2 + e2; sommandole a quelle
di x troviamo

(v1 − v2)− (e1 + e2) ≤ x− y ≤ (v1 − v2) + (e1 + e2) .

In altre parole, il valore stimato della differenza vdiff è la differenza dei valori
stimati, ma l’errore assoluto ediff della differenza è la somma degli errori assoluti:

vdiff = v1 − v2 , ediff = e1 + e2 .

Esempio 1.24 Stamattina ti sei svegliato con la luna a rovescio, e decidi di sot-
trarre la larghezza del soma alla lunghezza dell’assone, invece di sommarla. Il valore
stimato della differenza D è v2−v1 = 7.3 ·10−5−6 ·10−6 m = 6.7 ·10−5 m, mentre
l’errore assoluto è lo stesso di prima e1 + e2 = 0.21 · 10−5 m, per cui otteniamo
D = (6.7± 0.21) · 10−5 m.

Passiamo al prodotto. Per semplificarci la vita (e perché è la situazione di gran
lunga più comune nella pratica sperimentale) supporremo di avere sempre solo
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misure positive, in modo da poter tranquillamente moltiplicare le disuguaglianze
senza che queste cambino verso. La regola (1.6) applicata a (1.8) ci dà

(v1 − e1)(v2 − e2) ≤ xy ≤ (v1 + e1)(v2 + e2)

che possiamo riscrivere come

(v1v2 + e1e2)− (v1e2 + v2e1) ≤ xy ≤ (v1v2 + e1e2) + (v1e2 + e1v2) .

Ops. Il valore stimato del prodotto vprod non è uguale al prodotto dei valori
stimati v1v2, ma bisogna aggiungervi anche il prodotto e1e2 degli errori assoluti;
e l’errore assoluto eprod del prodotto non solo si guarda bene dall’essere uguale al
prodotto degli errori assoluti, ma mescola valori stimati e errori assoluti:

vprod = v1v2 + e1e2 , eprod = v1e2 + e1v2 .

Davvero non si può fare di meglio? Vediamo un attimo cosa succede nel nostro
neurone di ratto.

Esempio 1.25 Stavolta vogliamo calcolare l’area A del soma del neurone, suppo-
nendo (per semplicità) che il soma sia un disco di diametro d = (6± 0.1) · 10−6 m,
e applicando l’usuale formula A = πr2, dove r = d/2 è il raggio del soma. Prima
di tutto, siccome 1/2 è un numero che conosciamo con precisione perfetta ed er-
rore assoluto nullo (cioè v2 = 1/2 ed e2 = 0), i conti appena fatti ci dicono che
il valore stimato di r = (1/2)d è v = (1/2)v1 = 3 · 10−6 m, con errore asso-
luto e = (1/2)e1 = 0.05 · 10−6 m, per cui r = (3 ± 0.05) · 10−6 m. Per calcolare
r2 = r · r usiamo le formule appena ricavate ottenendo

v · v + e · e = 9.0025 · 10−12 m2 e v · e + e · v = 0.3 · 10−12 m2 ;

quindi r2 = (9.0025 ± 0.3) · 10−12 m2. Usando il valore π = 3.14 ± 0.002 discusso
nell’Esempio 1.20 in maniera analoga a sopra per calcolare A = πr2 otteniamo

A = (28.26845± 0.960005) · 10−12 m2 .

Ora, la precisione di cinque cifre decimali nel valore stimato dell’area in pre-
senza di un errore assoluto che interviene già sulla prima cifra decimale è chia-
ramente ridicola; le cifre decimali dalla terza in poi non contengono alcuna in-
formazione significativa. Aumentando lievemente l’errore assoluto in modo da es-
sere certi di non escludere alcun valore per quanto improbabile, possiamo usare
A = (28.26 ± 0.962) · 10−12 m2 come valore dell’area altrettanto significativo di
quello ottenuto applicato pedissequamente le regole. Ma se ora moltiplichiamo i
valori stimati di r e di π otteniamo proprio 3.14 · v · v = 28.26 · 10−12 m2; quindi
sembrerebbe che in questo caso il valore stimato del prodotto coincida col prodotto
dei valori stimati. Che è successo?
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Il punto è che se gli errori assoluti sono “piccoli” (come si spera siano) allora il
termine e1e2 sarà molto più piccolo sia del termine v1v2 sia dell’errore assoluto del
prodotto, per cui il valore stimato del prodotto sarà approssimativamente uguale
al prodotto dei valori stimati.

Ma cosa vuol dire “piccolo”? Certo non ci riferiamo a una piccolezza assoluta;
un errore di 10−6 m è minuscolo se stiamo misurando grattacieli, enorme se stiamo
misurando molecole. Quello che conta è che l’errore assoluto e sia “piccolo” rispetto
al valore stimato v, cioè che sia “piccolo” l’errore relativo e/v.

Quanto piccolo dipende dal problema in esame, ma di solito è sufficiente richie-
dere che l’errore relativo sia minore di un decimo, e/v < 10−1. Infatti, in tal caso
abbiamo

v1v2 ≤ v1v2 + e1e2 =
(

1 +
e1

v1

e2

v2

)
v1v2 < v1v2 + 10−2v1v2 ,

per cui la differenza fra il valore stimato del prodotto e il prodotto dei valori stimati
è in notazione scientifica avvertibile (perché?) solo alla seconda cifra decimale (e lo
sarebbe alla quarta se gli errori relativi fossero minori di 10−2, e cos̀ı via). Inoltre,
l’errore assoluto del prodotto è dato da

eprod = v1e2 + e1v2 = v1v2

(
e1

v1
+

e2

v2

)
; (1.9)

quindi se gli errori relativi sono dell’ordine di 10−1 l’errore assoluto agisce al livello
della prima cifra decimale in notazione scientifica (della seconda se gli errori relativi
fossero minori di 10−2, e cos̀ı via), mangiandosi qualsiasi correzione possa essere
introdotta dal termine e1e2.

Riassumendo possiamo quindi dire che se gli errori relativi sono piccoli (diciamo
minori di 10−1) allora il valore stimato del prodotto è approssimativamente uguale
al prodotto dei valori stimati. Inoltre, l’errore assoluto del prodotto è uguale al
prodotto dei valori stimati moltiplicato per la somma degli errori relativi:

vprod ' v1v2 , eprod = v1v2

(
e1

v1
+

e2

v2

)
.

Esempio 1.26 Nel caso del nostro neurone, l’errore relativo sulla larghezza del
soma è e1/v1 = 0.016 ' 1.67 · 10−2, mentre l’errore relativo sul valore di π è di
circa 6.4 · 10−4. In entrambi i casi l’errore relativo è decisamente inferiore a 10−1,
ed effettivamente abbiamo visto che in questo caso il prodotto dei valori stimati
fonisce un’ottima approssimazione del valore stimato del prodotto. Infine, usando
la formula (1.9) per il calcolo dell’errore assoluto otteniamo che l’errore assoluto
dell’area è di circa 0.962 · 10−12 m2, in accordo con quanto visto nell’Esempio 1.25.

E come si calcola l’errore relativo del prodotto? La formula esatta è

eprod

vprod
=

v1e2 + e1v2

v1v2 + e1e2
=

(
e1

v1
+

e2

v2

)
1

1 + (e1e2/v1v2)
,
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dove l’ultima uguaglianza è ricavata dividendo numeratore e denominatore per v1v2.
Ora, se entrambi gli errori relativi sono piccoli, diciamo minori di 10−1, otteniamo
che 1 + (e1e2/v1v2) < 1 + 10−2, per cui

0.9900 =
1

1 + 10−2
<

1
1 + (e1e2/v1v2)

< 1 .

In altre parole, 1
1+(e1e2/v1v2)

differisce da 1 per talmente poco, meno di 1/100, che
nel calcolo dell’errore relativo possiamo approssimarlo con 1. In altre parole, se
gli errori relativi sono piccoli (diciamo minori di 10−1) allora l’errore relativo del
prodotto è approssimativamente uguale alla somma degli errori relativi:

eprod

vprod
' e1

v1
+

e2

v2
.

Esempio 1.27 L’errore relativo dell’area del soma calcolato con i valori esatti
ottenuti nell’Esempio 1.25 è 0.96005/28.26845 ' 0.03396; la somma degli errori
relativi è circa 0.01666 + 0.01666 + 0.00064 = 0.03396.

Il prodotto è sistemato; passiamo all’inverso. Da v1−e1 ≤ x ≤ v1+e1 otteniamo

1
v1 + e1

≤ 1
x
≤ 1

v1 − e1
.

Come si ricavano valore stimato ed errore assoluto dell’inverso da questa disugua-
glianza? Basta osservare che il valore stimato dev’essere il punto medio dell’inter-
vallo, e l’errore assoluto dev’essere la metà della lunghezza dell’intervallo. Quindi
il valore stimato vinv dell’inverso è dato da

vinv =
1
2

(
1

v1 + e1
+

1
v1 − e1

)
=

v1 − e1 + v1 + e1

2(v1 + e1)(v1 − e1)
=

v1

v2
1 − e2

1

=
1
v1

1
1− (e1/v1)2

.

Questo è il valore stimato esatto. Ma, come prima, se l’errore relativo e1/v1 è
piccolo allora il fattore 1

1−(e1/v1)2
è molto vicino a 1; quindi se l’errore relativo è

piccolo (diciamo minore di 10−1) allora il valore stimato vinv dell’inverso è appros-
simativamente uguale all’inverso del valore stimato:

vinv '
1
v1

.

Curiosità 1.12 Quando parleremo delle derivate e dello sviluppo di Taylor, vedremo che per
|x| < 1 vale un’espansione di questo genere:

1

1 + x
= 1− x + x2 − x3 + x4 − x5 + · · ·

Questo vuol dire che, quando |x| è piccolo, se 1 è una buona approssimazione di 1/(1 + x)
allora 1− x è un’approssimazione migliore, 1− x + x2 una ancora migliore, e cos̀ı via.
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L’errore assoluto einv dell’inverso è, come detto, metà della lunghezza dell’in-
tervallo, per cui è dato da

einv =
1
2

(
1

v1 − e1
− 1

v1 + e1

)
=

v1 + e1 − (v1 − e1)
2(v1 − e1)(v1 + e1)

=
e1

v2
1 − e2

1

=
1
v1

e1

v1

1
1− (e1/v1)2

.

Confrontando con la formula precedente vediamo che l’errore assoluto dell’inverso
è uguale al valore stimato dell’inverso moltiplicato per l’errore relativo:

einv = vinv
e1

v1
.

Siccome l’errore relativo è il quoziente fra l’errore assoluto e il valore stimato otte-
niamo anche che l’errore relativo dell’inverso è uguale all’errore relativo originale:

einv

vinv
=

e1

v1
.

Siccome il quoziente si ottiene moltiplicando il numeratore per l’inverso del
denominatore, da quanto visto ricaviamo le regole della propagazione degli errori
anche per il quoziente: se gli errori relativi sono piccoli (diciamo minori di 10−1) al-
lora il valore stimato vquoz del quoziente è approssimativamente uguale al quoziente
dei valori stimati. Inoltre, l’errore assoluto equoz del quoziente è approssimativa-
mente uguale al quoziente dei valori stimati moltiplicato per la somma degli errori
relativi, e l’errore relativo è approssimativamente uguale alla somma degli errori
relativi:

vquoz '
v1

v2
, equoz '

v1

v2

(
e1

v1
+

e2

v2

)
,

equoz

vquoz
' e1

v1
+

e2

v2
.

Esempio 1.28 Vogliamo calcolare la velocità media tenuta dai primatisti mon-
diali sui 100 metri (a ottobre 2006 sono Asafe Powell, giamaicano, e Justin Gatlin,
statunitense). Supponendo che la lunghezza della pista sia precisa al centimetro,
possiamo valutarla con l = 100 ± 0.01 m. Il record mondiale è t = 9.77 ± 0.005 s,
in quanto la federazione mondiale arrotonda il risultato alla seconda cifra deci-
male. Gli errori relativi sono rispettivamente 0.01/100 = 10−4 per la lunghezza,
e 0.005/9.77 ' 5 · 10−4 per il tempo. In entrambi i casi si tratta di errori relativi
decisamente piccoli, per cui possiamo permetterci di usare le formule approssimate
per la propagazione degli errori. Quindi la velocità media stimata è approssimati-
vamente 100/9.77 m/s ' 10.235 m/s, con un errore assoluto approssimativamente
uguale a 10.235 · 6 · 10−4 m/s ' 6.14 · 10−3 m/s. Dunque otteniamo una velocità
media di 10.235 ± 0.00614 m/s, che corrisponde (perché?) a 36.846 ± 0.022104
chilometri all’ora.
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Curiosità 1.13 Facendo i conti con precisione, si vede che l’errore relativo del quoziente è
esattamente uguale all’errore relativo del prodotto, ed è dato dalla formula

equoz

vquoz
=

(
e1

v1
+

e2

v2

)
1

1 + (e1e2/v1v2)
.

Invece il valore stimato del quoziente è dato da

vquoz =
v1

v2

(
1 +

e1e2

v1v2

)
1

1− (e2/v2)2
,

e l’errore assoluto del quoziente è dato da

equoz =
v1

v2

(
e1

v1
+

e2

v2

)
1

1− (e2/v2)2
.

1.7 Percentuali

L’errore relativo introdotto nella sezione precedente misura quale frazione del valore
stimato è data dall’errore assoluto. Nella pratica sperimentale (e non solo), l’errore
relativo è spesso espresso come percentuale del valore stimato. Più in generale, le
percentuali vengono usate ogni volta che si vogliono confrontare due quantità dello
stesso tipo, segnalando che una delle due è una certa frazione dell’altra. Infatti,
una percentuale non è altro che una frazione con denominatore uguale a 100 (e
numeratore non necessariamente intero):

y è il p% di x se e solo se
y

x
=

p

100
se e solo se y =

p

100
x .

In particolare, prendere una percentuale p% di una quantità x equivale a molti-
plicare x per p/100; il calcolo di una percentuale è sempre una moltiplicazione, e
una percentuale è sempre la percentuale di qualcosa. Ricordando questi due fatti
diventa facile manipolare le percentuali.

Esempio 1.29 La frase “Una soluzione contiene il 7% di solfato di rame” vuol
dire che, indicato con x il peso della soluzione in grammi, allora la soluzione con-
tiene y = 7x/100 grammi di solfato di rame. Per esempio, se x = 75 g allora
y = 525/100 g = 5.25 g.

Osservazione 1.19 Come regola pratica, date le quantità x e y, per trovare quale
percentuale p di x è la quantità y basta moltiplicare per 100 il quoziente y/x, in
quanto p = 100(y/x).

Esempio 1.30 Un mio collega ha un reddito lordo di 65000 euro lordi annui, e
quest’anno ha pagato 26650 euro di tasse (essendo un dipendente statale non ha
evaso neanche un centesimo). Qual è la sua aliquota IRPEF? Per rispondere basta
calcolare 100(26650/65000), e si trova l’aliquota del 41%.
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Esempio 1.31 La popolazione italiana al 1/1/2005 era di 58 462 375 abitanti,
di cui 28 376 804 maschi e 30 085 571 femmine. Qual è la percentuale di ma-
schi e femmine sulla popolazione totale? La percentuale di maschietti è data da
100(28 376 804/58 462 375) ' 48.54%, mentre la percentuale di femminucce è data
da 100(30 085 571/58 462 375) ' 51.46%. Attenzione: i valori 48.54 e 51.46 sono
delle approssimazioni, calcolati con arrotondamenti ma tenendo presente che la
somma deve dare 100%.

Osservazione 1.20 Oltre al percento %, si usa talvolta anche il “permille” %0;
funziona esattamente come il percento, sostituendo 1000 a 100 in tutti i conti.

Esempio 1.32 Sempre al 1/1/2005, in Italia c’erano 9091 ultracentenari. Che
percentuale sono della popolazione totale? In questo caso conviene usare il permille,
ottenendo 1000(9091/58 462 375) ' 0.16%0.

Una frase che si usa spesso è “la quantità x è aumentata del p%”. Questo vuol
dire che il valore finale y è ottenuto sommando a x il p% di x; in altre parole,

y = x +
p

100
x =

(
1 +

p

100

)
x .

Quindi “aumentare di una percentuale p%” vuol dire moltiplicare per 1 + (p/100).

Esempio 1.33 Il peso di un vitello di 56 kg è aumentato in un mese del 20%.
Quanto pesa ora il vitello? Per quanto appena detto, il peso attuale del vitello
è (1 + 20/100) · 56 kg = 67.2 kg.

Esempio 1.34 Un cugino del vitello precedente nello stesso mese è cresciuto
da 60 kg a 66 kg. Qual è l’aumento percentuale? La parola “percentuale” qui si
riferisce al peso iniziale (ricordati: una percentuale è sempre la percentuale di qual-
cosa; determinare cos’è questo qualcosa è fondamentale per non sbagliare). Il vitello
è ingrassato di 66−60 kg = 6 kg; quindi l’aumento percentuale è 100(6/60) = 10%.

Il fatto che un aumento percentuale corrisponde a effettuare una moltiplica-
zione ha come conseguenza il fatto che due aumenti percentuali consecutivi non si
sommano. Se una quantità x è aumentata prima del p% e poi del q%, il suo valore
finale è

y =
(
1 +

q

100

) (
1 +

p

100

)
x =

(
1 +

p + q + (pq/100)
100

)
x 6=

(
1 +

p + q

100

)
x ,

per cui l’aumento finale è del p + q + (pq/100) per cento.

Esempio 1.35 Se il vitello dell’esempio precedente nel mese successivo ingrassa
di un altro 10%, quanto pesa? Qual è l’aumento percentuale rispetto all’inizio?
Se gli aumenti percentuali si sommassero, l’aumento percentuale rispetto all’i-
nizio sarebbe del 10 + 10 = 20%, per cui il vitello dopo due mesi peserebbe
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(1 + 20/100)60 kg = 72 kg. Ma questo conto è sbagliato. Infatti, l’aumento
percentuale nel secondo mese va calcolato sul peso raggiunto alla fine del primo
mese; quindi il peso finale è (1 + 10/100)66 kg = 72.6 kg. In due mesi il vitello
è dunque ingrassato di 12.6 kg, per cui l’aumento percentuale rispetto all’inizio
è 100(12.6/60) = 21%. Nota che 21 = 10 + 10 + (10 · 10/100), in accordo con
quanto visto sopra.

In maniera analoga, “diminuire di una percentuale q%” vuol dire moltiplicare
per 1− (q/100), che è equivalente ad aumentare del −q%.

Osservazione 1.21 In particolare, un aumento del 50% seguito da una diminuzione
del 50% non riporta al punto di partenza! Infatti(

1− 50
100

) (
1 +

50
100

)
x =

(
1− 50 · 50/100

100

)
x =

75
100

x ,

per cui un aumento del 50% seguito da una diminuzione del 50% ci porta al 75%
del valore di partenza.

Osservazione 1.22 Siccome la moltiplicazione è commutativa, aumentare (o dimi-
nuire) prima del p% e poi del q% è la stessa cosa dell’aumentare (o diminuire)
prima del q% e poi del p%.

Esempio 1.36 Una popolazione di cavie è infettata con una malattia che provoca
la morte del 4% delle cavie la prima settimana, e del 6% dei sopravvissuti la seconda
settimana. Quale percentuale delle cavie è ancora viva dopo due settimane? E se
fossero morte il 6% la prima settimana e il 4% la seconda? Indichiamo con x
il numero totale di cavie. Dopo la prima settimana sono morte (4/100)x cavie,
per cui ne sono sopravvissute (96/100)x. La seconda settimana ne muoiono altre
(6/100)(96/100)x = (5.76/100)x. Quindi in totale è morto il 4 + 5.76 = 9.76%
delle cavie, per cui ne è sopravvissuto il 100 − 9.76 = 90.24%. Nel secondo caso,
dopo la prima settimana sono morte (6/100)x cavie, per cui ne sono sopravvissute
(94/100)x. La seconda settimana ne muoiono (4/100)(94/100)x = (3.76/100)x.
Quindi in totale è morto il 6 + 3.76 = 9.76% delle cavie, per cui anche stavolta ne
è sopravvissuto il 100− 9.76 = 90.24%.

Concludiamo con un esempio che sottolinea come sia importante precisare di
cosa si vuole calcolare la percentuale.

Esempio 1.37 Due popolazioni di cavie, composte entrambe dallo stesso numero
di animali, vengono infettate da una stessa malattia. Una delle due popolazioni
viene trattata con un medicinale sperimentale. Dopo una settimana, il 6% della
popolazione trattata è morto, contro l’8% della popolazione non trattata. Qual è
il miglioramento percentuale dovuto al medicinale? La domanda è ambigua: non è
definito il concetto di “miglioramento percentuale”, né precisato qual è la quantità
rispetto a cui si vuole calcolare la percentuale. Se “miglioramento percentuale”
vuol dire “percentuale del numero di morti in meno rispetto alla popolazione”
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allora il miglioramento percentuale è 8 − 6 = 2%. Se invece “miglioramento per-
centuale” vuol dire “percentuale del numero di morti in meno rispetto al numero
totale di morti della popolazione non trattata” allora il miglioramento percentuale
è 100(2/100)/(8/100) = 25%. Lascio a te decidere quale delle due interpretazioni
è più significativa, e quale delle due interpretazioni verrebbe usata da un pubblici-
tario che deve promuovere la medicina. . .

1.8 Teoria intuitiva degli insiemi

In Matematica e in tutte le scienze capita molto frequentemente di dover conside-
rare insiemi (classi, collezioni, famiglie, agglomerati. . . ) di oggetti; di conseguenza,
sono state creati una terminologia e delle notazioni (cioè nomi e simboli) per faci-
litarne l’uso.

Se A è un insieme, scriveremo a ∈ A per indicare che l’elemento a appartiene
all’insieme A, e a /∈ A per indicare che a non appartiene ad A. Se B è un altro
insieme i cui elementi appartengono tutti anche ad A, diremo che B è un sottoin-
sieme di A (o che è contenuto in A), e scriveremo B ⊆ A (oppure A ⊇ B, che si
legge “A contiene B”). Se inoltre B è effettivamente diverso da A — cioè A con-
tiene degli elementi che non appartengono a B — diremo che B è un sottoinsieme
proprio di A, e scriveremo B ⊂ A (o A ⊃ B). Tra parentesi, due insiemi A e B
sono uguali, e scriveremo A = B, se e solo se hanno esattamente gli stessi elementi.
L’insieme vuoto, cioè l’insieme privo di elementi, sarà indicato con ∅.

Esempio 1.38 Sia F l’insieme di tutti i felini. Il mio gatto Grog è un felino,
per cui appartiene a F ; in simboli, Grog ∈ F . Invece, il cane Snoopy dei miei
vicini non è un felino, per cui Snoopy /∈ F . Tutti i gatti sono dei felini, per cui se
indichiamo con G l’insieme dei gatti abbiamo G ⊆ F e F ⊇ G. Ma l’insieme dei
felini è strettamente più grande dell’insieme dei gatti; per esempio, i giaguari non
sono gatti. Quindi più precisamente possiamo scrivere G ⊂ F e F ⊃ G. Oltre a
Grog, a casa mia abita anche una gatta di nome Daga, e nessun altro felino. Quindi
l’insieme M dei felini che abitano a casa mia coincide con l’insieme composto da
Grog e Daga; in simboli, M = {Grog, Daga}. A meno di sconvolgenti scoperte
zoologiche, non esistono felini volanti; quindi l’insieme V dei felini volanti è uguale
all’insieme vuoto (entrambi gli insiemi non hanno elementi), cioè V = ∅.

Osservazione 1.23 Attenzione a distingure gli elementi dagli insiemi composti da
un solo elemento. L’insieme {Grog} è una cosa diversa dal gatto Grog; l’insieme
non miagola, il gatto s̀ı. La distinzione si riflette anche nelle notazioni: mentre
Grog ∈ F , in quanto Grog è un elemento dell’insieme F di tutti i felini, dobbiamo
scrivere {Grog} ⊂ F , in quanto {Grog} è un sottoinsieme (e non un elemento)
dell’insieme di tutti i felini.

Curiosità 1.14 Se vuoi farti venire un mal di testa, considera l’insieme U di tutti gli insiemi
che non sono elementi di se stessi (per esempio, l’insieme dei felini non è un felino, per cui
non è un elemento di se stesso), e chiediti se U è un elemento di se stesso oppure no. Questo
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esempio mostra come l’apparentemente semplice teoria degli insiemi può avere degli aspetti
estremamente delicati, con cui i matematici stanno lottando da un paio di secoli.

Una situazione che capiterà spesso sarà quella di dover considerare “il sottoin-
sieme B degli elementi dell’insieme A che godono della proprietà tale”. In simboli,
questa definizione sarà abbreviata in6

B = {a ∈ A | a gode della proprietà tale} .

Esempio 1.39 Il sottoinsieme B dei numeri naturali multipli di 3 può essere
rappresentato da

B = {n ∈ N | n è divisibile per 3} ,

o anche da
B = {n ∈ N | n = 3k per qualche k ∈ N} .

Come sicuramente saprai già, ci sono alcune operazioni naturali che si possono
eseguire sugli insiemi. Siano A e B due insiemi qualunque. Allora

– l’intersezione A∩B di A e B è l’insieme contenente solo gli elementi che stanno
sia in A sia in B; se A ∩B = ∅, diremo che gli insiemi A e B sono disgiunti.

– l’unione A∪B di A e B è l’insieme che contiene tutti gli elementi di A assieme
a tutti gli elementi di B;

– la differenza A\B di A e B è l’insieme che contiene esattamente quegli elementi
di A che non stanno in B;

– il prodotto cartesiano A × B di A e B è l’insieme delle coppie ordinate (a, b)
dove a è un qualunque elemento di A e b è un qualunque elemento di B.

Esempio 1.40 Sia A l’insieme dei numeri naturali pari minori di 8, e B l’insieme
dei numeri naturali minori di 3, cioè

A = {n ∈ N | n è pari e n < 8} = {0, 2, 4, 6} ,

B = {n ∈ N | n < 3} = {0, 1, 2} .

Allora

A ∩B = {0, 2} , A ∪B = {0, 1, 2, 4, 6} , A \B = {4, 6} , B \A = {1} ,

A×B={(0, 0), (0, 1), (0, 2), (2, 0), (2, 1), (2, 2), (4, 0), (4, 1), (4, 2), (6, 0), (6, 1), (6, 2)},
B×A={(0, 0), (0, 2), (0, 4), (0, 6), (1, 0), (1, 2), (1, 4), (1, 6), (2, 0), (2, 2), (2, 4), (2, 6)}.

Se poi C è l’insieme dei numeri naturali dispari minori di 5 allora C = {1, 3}
e A ∩ C = ∅, cioè A e C sono disgiunti.

6 Alcuni testi si usano i due punti : al posto della barra |.
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Osservazione 1.24 Quando descriviamo un insieme elencandone gli elementi, ogni
elemento va considerato una volta sola. Per esempio, {1, 2, 3, 2} e {1, 2, 3} sono lo
stesso insieme: {1, 2, 3, 2} = {1, 2, 3}. Un insieme è completamente determinato
dai suoi elementi.

Esempio 1.41 Indichiamo con GA (rispettivamente, GB , GAB , G0) l’insieme dei
pazienti di un certo ospedale con gruppo sanguigno di tipo A (rispettivamente, B,
AB e 0), e con R+ (rispettivamente, R−) l’insieme dei pazienti dello stesso ospedale
il cui sangue contiene il fattore Rh (rispettivamente, in cui il fattore Rh è assente).
Allora GA∪R− è l’insieme dei pazienti con gruppo sanguigno di tipo A oppure con
sangue privo di fattore Rh (o entrambe le cose), GB ∩ R− è l’insieme dei pazienti
con gruppo sanguigno di tipo B e privi di fattore Rh, e GAB \ R− è l’insieme dei
pazienti con gruppo sanguigno di tipo AB e che non sono privi del fattore Rh, per
cui GAB \ R− = GAB ∩ R+. Quest’ultima uguaglianza segue (perché?) dal fatto
che ogni paziente o ha il fattore Rh o non ce l’ha (R+ ∪ R− è l’insieme di tutti
i pazienti dell’ospedale), e che un paziente non può contemporeanamente avere e
non avere il fattore Rh (R+ ∩R− = ∅, cioè R+ ed R− sono disgiunti).

Osservazione 1.25 In Matematica, la frase “questo e quello” è vera se e solo se
sono veri sia questo sia quello; la frase “questo o quello” è invece vera se e solo se
sono veri questo oppure quello o entrambi. Possiamo dire che l’insieme dei casi in
cui è vero “questo e quello” è l’intersezione dell’insieme dei casi in cui è vero questo
con l’insieme dei casi in cui è vero quello; mentre l’insieme dei casi in cui è vero
“questo o quello” è l’unione dell’insieme dei casi in cui è vero questo con l’insieme
dei casi in cui è vero quello.

Curiosità 1.15 Più raramente viene usata anche la frase “o questo o quello”, che è vera
se e solo se è vero questo oppure è vero quello ma non sono entrambi veri. Corrisponde
all’operazione insiemistica di differenza simmetrica: la differenza simmetrica di A e B è
(A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

Curiosità 1.16 Le operazioni di unione e intersezione sugli insiemi godono di proprietà algebri-
che in parte simili e in parte diverse rispetto alle proprietà algebriche della somma e prodotto
fra numeri. Per esempio, valgono le proprietà associative e commutative:

A∪ (B∪C) = (A∪B)∪C , A∪B = B∪A , A∩ (B∩C) = (A∩B)∩C , A∩B = B∩A .

Mentre solo la somma ha la proprietà distributiva rispetto al prodotto, e non il prodotto
rispetto alla somma, per unione e intersezione valgono entrambe le proprietà distributive:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) , A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) .

L’insieme vuoto gioca in un certo senso il ruolo di elemento neutro per l’unione:

A ∪∅ = ∅∪A = A , A ∩∅ = ∅∩A = ∅ .

Del tutto nuove sono invece le proprietà di idempotenza:

A ∪A = A , A ∩A = A .
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1.9 Logica elementare

Fare della matematica vuol dire giungere a determinate conclusioni facendo certi
ragionamenti7. Capita dunque spesso di usare frasi come “implica”, “per ogni” o
simili; per risparmiare tempo sono stati inventati dei simboli che le rappresentano.

Invece di “implica” a volte scriveremo “=⇒”, mentre “è equivalente a” sarà
talvolta sostituito da “⇐⇒”. Può succedere che “tale che” sia sostituito da due
punti “:” o da una barra verticale “|”. Invece di “per ogni” a volte scriveremo “∀”,
e al posto di “esiste” a volte scriveremo “∃”.

Esempio 1.42 Se P è l’insieme dei numeri pari, e N l’insieme dei numeri naturali,
la frase “per ogni numero pari a esiste un numero naturale m tale che a = 2m”
diventa

∀a ∈ P ∃m ∈ N: a = 2m .

Osservazione 1.26 Non si possono scambiare impunemente le frasi “per ogni” ed
“esiste”, o i simboli ∀ ed ∃. La frase “ogni cellula ha un nucleo” vuol dire “per
ogni cellula esiste un nucleo”, che è ben diverso dal dire “esiste un nucleo unico per
ogni cellula”, lo stesso nucleo per tutte. Con le notazioni dell’esempio precedente,
la formula

∀a ∈ P ∃m ∈ N: a = 2m

significa una cosa ben diversa dalla formula

∃m ∈ N : ∀a ∈ P a = 2m .

La prima formula vuol dire “per ogni numero pari a esiste un numero naturale m
(che dipende da a) tale che a = 2m”, che è ovviamente vero. La seconda formula
invece vuol dire che “esiste un numero naturale m (uno solo, ben determinato) tale
che per ogni numero pari a si ha a = 2m”, ovvero ogni numero pari è il doppio
del nostro m, lo stesso qualunque sia il numero pari considerato, affermazione
chiaramente falsa.

Capiterà più volte in seguito di dover negare una frase che comincia con “per
ogni” o con “esiste”. La negazione esatta di “per ogni a succede questo” è “non
per ogni a succede questo”, ovvero “esiste un a per cui non succede questo”, che è
ben diverso dal dire “per ogni a non succede questo”. Analogamente, la negazione
esatta di “esiste un b per cui succede questo” è “non esiste un b per cui succede
questo”, cioè “per ogni b non succede questo”.

Esempio 1.43 Vogliamo negare la frase “tutti i gatti sono verdi” (che è un modo
più corretto grammaticalmente di dire “per ogni gatto succede che il gatto è verde”).
Come abbiamo appena osservato, la negazione esatta è “non tutti i gatti sono
verdi”, ovvero “esiste almeno un gatto che non è verde”. La frase “nessun gatto è

7 Lo studio della struttura di questi ragionamenti è compito della Logica Matematica.
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verde” (cioè “non esiste un gatto verde”) pur essendo vera non è la negazione del
nostro enunciato originale “tutti i gatti sono verdi”; è un’affermazione molto più
forte, e molto più difficile da verificare (per far vedere che “tutti i gatti sono verdi”
è falsa basta trovare un solo gatto non verde; per far vedere che “nessun gatto è
verde” è vera devi controllare il colore di tutti i gatti sulla terra).

Esempio 1.44 Qual è la negazione della frase “esiste vita sugli altri pianeti del
sistema solare”? La risposta esatta è “non esiste vita sugli altri pianeti del sistema
solare”, cioè “tutti gli altri pianeti del sistema solare sono privi di vita”. L’affer-
mazione “esiste un pianeta del sistema solare privo di vita” non esclude che ci sia
un altro pianeta su cui esista la vita, per cui non è la risposta esatta.

Come forse già sai, una parte notevole della Matematica consiste nel decidere se
certe affermazioni sono vere o false. In alcuni casi, per stabilirlo basta un esempio;
in altri, invece, anche diecimila esempi sono inutili, ed è necessario un ragionamento
che copra in una volta sola tutti i casi possibili (in altre parole, è necessaria una
dimostrazione). Orbene, un tipico problema dello studente novizio è esattamente
capire quando è necessaria una dimostrazione, e quando invece è sufficiente un
esempio.

L’idea di fondo è che la dimostrazione è legata al “per ogni”, mentre l’esempio
all’“esiste”. Per vedere se l’affermazione “per ogni a succede questo” è vera, devi
dimostrarlo con un ragionamento valido per ogni valore di a. Invece, per vedere
se l’affermazione “esiste un b per cui succede questo” è vera ti basta trovare un
singolo esempio (un singolo valore di b) in cui questo sia verificato.

Esempio 1.45 Supponiamo di voler vedere se l’affermazione “ogni marine ame-
ricano possiede una divisa verde” è vera. In questo caso gli esempi sono inutili:
anche dopo aver controllato gli indumenti di migliaia di marine non potremmo
ancora escludere l’esistenza di un marine senza divise verdi. Ci serve un ragiona-
mento generale; possiamo per esempio dire che il regolamento militare prescrive
senza eccezioni che ogni marine abbia una divisa verde, e cos̀ı dimostrare la verità
della nostra affermazione senza bisogno di esempi.

Esempio 1.46 Adesso vogliamo invece stabilire la verità dell’affermazione “tal-
volta piove di domenica”. In questo caso basta un esempio; è sufficiente una do-
menica di pioggia per verificare che l’affermazione è corretta.

Riassumendo: quando ti viene chiesto di decidere se l’affermazione “per ogni a
succede questo” è vera o falsa, tu hai due possibilità: se ritieni che sia vera, devi
dimostrarlo per qualunque valore di a; se invece ritieni che sia falsa (cioè che sia
vero che “esiste un a per cui questo non succede”), ti basta trovare un esempio
in cui è falsa. Analogamente, per far vedere che l’affermazione “esiste un b per
cui succede questo” è vera basta trovare un esempio, cioè un b specifico per cui
“questo” succede; se invece ritieni sia falsa, devi dimostrare che per ogni valore di b
“questo” non accade.

Un’altra frase che compare spesso in matematica è “se succede A allora capita
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anche B”, che si abbrevia8 in “A implica B” o addirittura in “A =⇒ B”. È
importante rendersi conto che una frase del genere non dice nulla su B quando A
non si verifica.

Esempio 1.47 Anche se la frase “se si gioca di marted̀ı allora il Pontedera è in
testa alla classifica del campionato di serie A” fosse vera, non sapremmo nulla sulla
effettiva posizione in classifica del Pontedera, in quanto le partite si giocano la
domenica.

In particolare, la frase “se succede A allora capita anche B” è falsa se e solo se
contemporaneamente A è vera e B è falsa (si gioca di marted̀ı e il Pontedera non è
in testa alla classifica). Dunque la negazione di “A implica B” è “A non implica B”,
cioè “capita che A sia vera e B sia falsa”.

Esempio 1.48 Vogliamo vedere se è vero o falso che la presenza di un certo
gene a (affermazione A) provoca la malattia M (affermazione B). Se esiste anche
una sola persona con il gene a e senza la malattia M allora siamo sicuri che il
gene non provoca la malattia (è falso che A implica B, in quanto capita che A sia
vera e B falsa). L’esistenza di migliaia di persone con il gene a e la malattia M
invece non basta a dimostrare che la presenza del gene a implichi la malattia M ;
lo rende solo probabile. Ma attenzione: ci sono anche migliaia di persone che
hanno il gene a e gli occhi castani (o migliaia di persone che hanno il gene a e
hanno un’auto rossa) senza che questo significhi che la presenza del gene a influisce
sul colore degli occhi (o sulle preferenze nella scelta del colore dell’auto). Per
verificare con certezza assoluta che il gene a provoca la malattia M occorre un
ragionamento generale; per esempio, ricostruire il meccanismo fisiologico che dalla
presenza del gene a porta ai malfunzionamenti che sfociano nella malattia M .

Infine, è fondamentale rendersi conto che la presenza o meno della malattia M
in persone che non hanno il gene a non ci dice alcunché sulla relazione fra il gene
e la malattia. L’esistenza di persone sane senza il gene non vuol dire che persone
con il gene si debbano necessariamente ammalare; e l’esistenza di persone malate
senza il gene vuol dire soltanto che la malattia può essere causata anche da altri
fattori, ma non esclude che possa essere causata anche dal gene a da solo.

Concludiamo con un’ultima osservazione. La frase tanto amata dai matematici
“A se e solo se B” significa “A è equivalente a B”, cioè “A implica B e al contempo B
implica A”. In altre parole ancora, A se e solo se B significa che ogni qual volta A
è vera allora anche B è vera, e viceversa.

8 Si dice anche che A è condizione sufficiente perché accada B, e che B è condizione
necessaria perché succeda A.
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COMPLEMENTI

1C.1 L’alfabeto greco

Se provieni dal liceo classico, conoscerai di certo l’alfabeto greco; ma se provieni da
qualunque altra scuola potrebbe esserti molto meno noto (per non dire del tutto
sconosciuto). In Matematica l’uso delle lettere greche è praticamente continuo;
quindi è consigliabile saperle scrivere e riconoscere. Per aiutarti, qui di seguito
troverai l’elenco alfabetico delle lettere greche maiuscole e minuscole, con relativo
nome.

A α alfa I ι iota R ρ, % rho
B β beta K κ kappa Σ σ, ς sigma
Γ γ gamma Λ λ lambda T τ tau
∆ δ delta M µ mu Υ υ upsilon
E ε, ε epsilon N ν nu Φ φ, ϕ phi
Z ζ zeta Ξ ξ xi X χ chi
H η eta O o omicron Ψ ψ psi
Θ θ, ϑ theta Π π, $ pi Ω ω omega


