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Bestiario

In questo capitolo presenteremo le principali classi di funzioni reali di variabile reale
che si incontrano nella pratica scientifica. Vedremo anche alcune delle tecniche
principali per trovare funzioni di un certo tipo che approssimano meglio possibile
dei dati sperimentali.

4.1 Funzioni lineari

Le funzioni reali di variabile reale più semplici (dopo le costanti. . . ) sono le funzioni
lineari. Rappresentano relazioni di proporzionalità: una funzione è lineare se il suo
valore varia in modo proporzionale alla variazione dell’argomento. In altre parole,
una funzione f è lineare se esiste un numero reale m ∈ R (di solito non nullo)
tale che se la variabile indipendente x varia di una quantità p allora la variabile
dipendente f(x) varia di mp.

Vediamo come si deduce da questa definizione la formula che descrive una
funzione lineare. Supponiamo di variare il valore della variabile indipendente
da x0 a x; la variazione è quindi uguale a p = x − x0, e tradizionalmente si
indica con ∆x = x − x0. Se f : R → R è una funzione lineare, la variazione
∆f = f(x)− f(x0) del suo valore deve soddisfare la relazione

∆f = m ∆x .

Inserendo in questa formula le definizioni di ∆f e ∆x otteniamo

f(x)− f(x0) = ∆f = m ∆x = m(x− x0) ,

per cui
f(x) = mx + d , (4.1)

con d = f(x0)−mx0.
Viceversa, supponiamo che la funzione f : R → R sia data dalla formula (4.1).

Allora

∆f = f(x)− f(x0) = mx + d− (mx0 + d) = m(x− x0) = m∆x ,
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cioè f rappresenta una relazione di proporzionalità.
Riassumendo, le funzioni lineari (a volte chiamate anche funzioni lineari affini,

riservando il termine “lineare” alle funzioni di questo tipo con d = 0) sono tutte e
sole le funzioni della forma (4.1) per opportuni m, d ∈ R.

Nella pratica sperimentale, capita spesso di trovare dati che dipendono in ma-
niera lineare da una variabile (almeno per certi intervalli della variabile; vedi l’Os-
servazione 4.1); si pone quindi il problema di come trovare la legge che esprime
questa relazione a partire dai dati sperimentali. In altre parole, vogliamo recupe-
rare i coefficienti m e d conoscendo alcuni punti del grafico della funzione. Vediamo
un esempio molto semplice, ma già significativo, di questa situazione.

Esempio 4.1 È noto che la percentuale di semi che germogliano di una certa
pianta dipende dalla temperatura. Per una determinata varietà di pomodoro, è
stato verificato che alla temperatura di 12 ◦C germoglia il 40% dei semi, mentre
alla temperatura di 15 ◦C germoglia il 70% dei semi. Trova la relazione fra la
temperatura e la percentuale di semi germogliati, supponendo che si tratti di una
relazione lineare. Indichiamo con P (T ) la percentuale di semi che germoglia alla
temperatura di T ◦C. Siccome abbiamo supposto che la funzione P : R → R che
associa alla temperatura T la percentuale P (T ) sia lineare, possiamo scrivere

P (T ) = mT + d

per opportuni m, d ∈ R; il nostro obiettivo è usare i dati sperimentali per calco-
lare m e d. Noi sappiamo che P (12) = 40 e P (15) = 70; dunque

30 = 70− 40 = P (15)− P (12) = ∆P = m∆T = m(15− 12) = 3m ,

(attenzione: in questo esempio la variabile indipendente si chiama T e la varia-
biile dipendente P , per cui abbiamo scritto ∆T e ∆P invece di ∆x e ∆f) da cui
deduciamo

m =
30
3

= 10 .

Per ricavare d basta notare che si deve avere

40 = P (12) = m · 12 + d = 10 · 12 + d = 120 + d ,

per cui
d = −80 .

Quindi l’unica funzione lineare che rappresenta correttamente i dati sperimentali è

P (T ) = 10T − 80 . (4.2)

Osservazione 4.1 È importante notare che per arrivare a questa soluzione abbiamo
supposto a priori che la funzione da trovare fosse di tipo lineare; è un’ipotesi, e non
una conseguenza. Del resto, da due sole coppie di dati è ben difficile immagi-
nare, senza altre informazioni, quale possa essere l’andamento della funzione che
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volevamo studiare. Quale sia l’ipotesi giusta da fare (se lineare, quadratica, espo-
nenziale o di altro tipo) può venire suggerito da quanto sappiamo sul fenomeno bio-
logico che stiamo studiando. Altrimenti, conviene fare molte più misure e cercare
di capire quale sia la funzione che meglio approssima i dati che abbiamo ottenuti,
tenendo presente che le misure sono sicuramente affette da errori sperimentali. Ne
parleremo in dettaglio nella Sezione 4.3.

Come già accennato nel capitolo precedente, lo scopo di ottenere una formula
come la (4.2) è effettuare predizioni. Ci permette di dare risposte plausibili1, senza
bisogno di altre misure, a domande del tipo: quale percentuale di semi germoglierà
alla temperatura di 14 ◦C? A quale temperatura germoglierà il 50% dei semi?

Esempio 4.2 Supponiamo quindi che la relazione fra la percentuale di semi che
germogliano e la temperatura per questa varietà di pomodori sia data dalla for-
mula (4.2). Allora la percentuale di semi che germogliano a 14 ◦C è

P (14) = 10 · 14− 80 = 140− 80 = 60% .

Trovare la temperatura T a cui germoglia il 50% dei semi equivale invece a risolvere
l’equazione P (T ) = 50, cioè

50 = P (T ) = 10T − 80 ;

quindi 10T = 130, cioè T = 13 ◦C.

Esempio 4.3 Per la stessa varietà di pomodori, vogliamo trovare quale percen-
tuale di semi germoglierà alla temperatura di 10 ◦C, e a quale temperatura germo-
glierà il 90% dei semi. La risposta alla prima domanda è P (10) = 10·10−80 = 20%,
mentre per rispondere alla seconda domanda risolviamo l’equazione P (T ) = 90 ot-
tenendo T = 17 ◦C.

Le predizioni dell’Esempio 4.2 sono frutto di una interpolazione. Infatti, ab-
biamo dati sperimentali sia per valori della variabile indipendente inferiori a quelli
coinvolti in queste predizioni, sia per valori superiori: sappiamo cosa succede a 12 e
15 ◦C, e deduciamo cosa accade a 13 e 14 ◦C. Invece, le predizioni dell’Esempio 4.3
sono frutto di una estrapolazione: i valori della variabile indipendente coinvolti
nelle predizioni (10 e 17 ◦C) sono esterni all’intervallo dei valori della variabile
indipendente per cui abbiamo dati sperimentali. Le estrapolazioni sono sempre
molto più rischiose delle interpolazioni, in quanto l’ipotesi iniziale (che la relazione
fosse di tipo lineare) potrebbe valere solo all’interno di un determinato intervallo
di valori.

Esempio 4.4 Usando la (4.2) “prediciamo” che alla temperatura di 19 ◦C germo-
glierà il P (19) = 10 · 19− 80 = 110% dei semi, cosa piuttosto improbabile a meno

1 Plausibili, e non certe: vedi l’Osservazione 4.2.
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di generazione spontanea di nuovi semi dal nulla. . . Analogamente, la “predizione”
che alla temperatura di 5 ◦C germogli il P (5) = 10 · 5 − 80 = −30% dei semi ha
ben poco senso.

Dunque quando si ipotizza un certo andamento per dei dati sperimentali è
importante indicare con chiarezza l’intervallo dei valori per cui si ritiene valida
l’ipotesi; al di fuori di quei valori l’estrapolazione potrebbe non avere senso anche
se la funzione che rappresenta l’andamento dei dati è ancora definita.

Osservazione 4.2 Determinare l’intervallo dei valori in cui la formula ottenuta può
essere valida è spesso un esercizio di buon senso: nel nostro caso, una percentuale
maggiore del 100% o negativa non ha senso, per cui dobbiamo escludere i valori che
danno risultati del genere. Nella pratica sperimentale, c’è però un ulteriore passo
importante da fare: confrontare le predizioni sensate (le interpolazioni) ottenute
con nuovi risultati sperimentali. Infatti, le nostre predizioni sono basate su un’ipo-
tesi (che la funzione fosse di tipo lineare), ipotesi che dobbiamo verificare nei fatti.
Se le nostre predizioni sono in buon accordo con le nuove misure (tenendo presente
gli inevitabili errori sperimentali) allora possiamo dirci soddisfatti della nostra ipo-
tesi; se invece non lo sono, dobbiamo cambiare ipotesi (vedi gli Esempio 4.7 e 4.9,
e l’Esercizio 4.2 della Sezione 4.4).

Lasciamo ora crescere in pace i nostri pomodori, e vediamo come si affrontano
in generale i problemi che abbiamo risolto in questo caso particolare. Supponiamo
di avere due coppie P0 = (x0, y0) e P1 = (x1, y1) di dati; vogliamo trovare una
funzione lineare f(x) = mx + d tale che P0 e P1 appartengano al grafico di f , cioè
tale che f(x0) = y0 e f(x1) = y1. Imitando il procedimento usato nell’Esempio 4.1
troviamo

y1 − y0 = f(x1)− f(x0) = ∆f = m∆x = m(x1 − x0) ,

per cui

m =
y1 − y0

x1 − x0
=

∆f

∆x
.

Osservazione 4.3 Ovviamente stiamo supponendo che x1 6= x0, in quanto altri-
menti P0 e P1 non potrebbero (perché?) essere due punti del grafico di una sola
funzione (a meno che non siano uguali, nel qual caso striglia il tuo assistente e
imponigli di misurare due coppie di dati diverse, se vuole sperare di ottenere un
qualche risultato).

Una volta trovato m, è facile recuperare anche d: infatti

d = f(x0)−mx0 = y0 −mx0 .

Nota che

f(x1)−mx1 = f(x0) +
(
f(x1)− f(x0)

)
−mx0 −m(x1 − x0)

= f(x0)−mx0 + ∆f −m∆x = f(x0)−mx0 ,
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per cui si ottiene lo stesso valore di d sia usando P0 sia usando P1.

Osservazione 4.4 Dalla formula ∆f = m∆x possiamo dedurre che

f(x) = f
(
x0 + ∆x) = f(x0) + m(x− x0) = f(x0) +

∆f

∆x
· (x− x0) ,

formula che ritroveremo in un contesto diverso nel prossimo capitolo.

Dunque ci basta conoscere due punti del grafico di una funzione lineare per
ricavare l’espressione della funzione. Viceversa, data la funzione è facile tracciarne
il grafico. Infatti, sappiamo già che il grafico di f(x) = mx+d dev’essere una retta;
quindi ci basta trovarne due punti. Per esempio, un punto può essere l’intersezione
con l’asse delle ordinate: ponendo x = 0 troviamo il punto2 (0, d). Una volta
ottenuto un punto P0 = (x0, y0) del grafico, ogni altro punto P1 = (x1, y1) si
ottiene con la formula

(x1, y1) = P0 +
(
∆x, m∆x

)
,

dove ∆x = x1 − x0.

Osservazione 4.5 I grafici delle funzioni lineari sono tutte e sole le rette non paral-
lele all’asse delle ordinate. Per avere tutte le rette dobbiamo considerare gli insiemi
di equazione ax + by + c = 0. Quando b 6= 0 ricaviamo y = −(a/b)x − (c/b), cioè
il grafico della funzione lineare f(x) = mx + d con m = −a/b e d = −c/b. Se
invece b = 0 (e a 6= 0) otteniamo x = −c/a, per cui è la retta parallela all’asse
delle ordinate passante per il punto (−c/a, 0). Analogamente, se a = 0 e b 6= 0
otteniamo y = −c/b, che è la retta parallela all’asse delle ascisse passante per il
punto (0,−c/b) — ovvero il grafico della funzione costante f(x) = −c/b.

Nell’Esempio 4.2, oltre a ricavare l’ordinata conoscendo l’ascissa (la percentuale
conoscendo la temperatura), abbiamo risolto il problema inverso di trovare l’a-
scissa conoscendo l’ordinata (la tenperatura conoscendo la percentuale). In altre
parole, dato il valore y0 abbiamo risolto l’equazione lineare f(x) = y0. Siccome
f(x) = mx + d, vediamo subito che:

– se m 6= 0 l’equazione f(x) = y0 ha come unica soluzione x = (y0 − d)/m;
– se m = 0 e d 6= y0 l’equazione f(x) = y0 non ha soluzioni;
– se m = 0 e d = y0 l’equazione f(x) = y0 ha infinite soluzioni (ogni valore di x

va bene).

Osservazione 4.6 Se m 6= 0, dire che l’equazione f(x) = y0 ha un’unica soluzione
quale che sia y0 ∈ R equivale a dire che la funzione f : R→ R data da f(x) = mx+d
è invertibile. L’inversa è la funzione f−1: R → R che fornisce la soluzione dell’e-
quazione: f−1(y) = (y − d)/m.

2 Per questo motivo d è a volte chiamato intercetta delle ordinate. Invece, il coefficiente m
è spesso chiamato coefficiente angolare, per motivi che vedremo nella Sezione 4.10.
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La relazione ∆f = m∆x permette di determinare facilmente quando una fun-
zione lineare è crescente o decrescente. In generale, una funzione è crescente se
aumentando il valore dell’argomento aumenta anche il valore della funzione; ed è
decrescente se invece aumentando il valore dell’argomento il valore della funzione
diminuisce. In altre parole, f è crescente se x0 ≤ x1 implica f(x0) ≤ f(x1), mentre
è decrescente se x0 ≤ x1 implica f(x0) ≥ f(x1). In altre parole ancora, il gra-
fico di una funzione crescente sale andando verso destra; quello di una funzione
decrescente invece scende.

Osservazione 4.7 Una funzione è invece strettamente crescente se x0 < x1 im-
plica f(x0) < f(x1), escludendo la possibilità che si abbia f(x0) = f(x1); ed è
strettamente decrescente se x0 < x1 implica f(x0) > f(x1). Infine una funzione
crescente o decrescente si dice monotòna (e non monòtona, anche se l’idea è la
stessa: è una funzione che non cambia mai modo di crescere).

Ora, dire che x0 < x1 equivale a dire che ∆x = x1 − x0 > 0; analogamente,
dire che f(x0) < f(x1) equivale a dire che ∆f = f(x1) − f(x0) > 0 (rispettiva-
mente, f(x0) > f(x1) equivale a ∆f < 0). Se f è una funzione lineare, sappiamo
che ∆f = m∆x; quindi
– se m > 0 allora ∆x > 0 implica ∆f > 0, cioè f è strettamente crescente;
– se m < 0 allora ∆x > 0 implica ∆f < 0, cioè f è strettamente decrescente;
– se m = 0 allora ∆f ≡ 0, cioè f è costante.
Conoscere la crescenza o la decrescenza di una funzione aiuta a trovarne i punti di
massimo e di minimo. Diremo che un punto x0 è un punto di massimo (rispettiva-
mente, punto di minimo) per una funzione f su un intervallo [a, b] se f(x0) ≥ f(x)
per ogni x ∈ [a, b] (rispettivamente, f(x0) ≤ f(x) per ogni x ∈ [a, b]). In altre pa-
role, x0 è un punto di massimo (minimo) se

(
x0, f(x0)

)
è un punto del grafico di f

sopra l’intervallo [a, b] con l’ordinata più alta (bassa). Il valore assunto dalla fun-
zione (l’ordinata del grafico) in un punto di minimo (rispettivamente, di massimo)
sull’intervallo [a, b] viene detto (valore) minimo (rispettivamente massimo) di f sul-
l’intervallo, e viene indicato con min f (rispettivamente, max f), o con min

x∈[a,b]
f(x)

(rispettivamente, max
x∈[a,b]

f(x)) in caso sia importante ricordare l’intervallo che si sta

considerando.

Osservazione 4.8 Trovare i punti di massimo o di minimo è fondamentale per
le applicazioni della matematica. Infatti, in natura vale spesso un principio del
minimo sforzo: la configurazione che si realizza (fra le infinite possibili) è quella
che minimizza una qualche quantità. Per esempio, la luce segue il cammino più
breve, i semi dei fiori cercano di disporsi in modo da minimizzare lo spreco di
spazio, e cos̀ı via.

Vogliamo trovare minimo e massimo di una funzione f monotona sull’inter-
vallo [a, b]. Per definizione di intervallo, abbiamo a ≤ x ≤ b per ogni x ∈ [a, b].
Se f è crescente, questo implica che f(a) ≤ f(x) ≤ f(b); quindi se f è crescente
sull’intervallo [a, b] un punto di minimo è a, con valore minimo f(a), e un punto
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di massimo è b, con valore massimo f(b). Un ragionamento analogo (controlla) ci
dice che se f è decrescente sull’intervallo [a, b] un punto di minimo è b, con valore
minimo f(b), e un punto di massimo è a, con valore massimo f(a).

Osservazione 4.9 Se una funzione è strettamente crescente o decrescente (cioè stret-
tamente monotona) su un intervallo chiuso allora ha un unico punto di minimo e
un unico punto di massimo (perché?). Se invece non è strettamente monotona,
potrebbe averne anche più di uno; per esempio, se f è costante allora tutti i punti
sono contemporaneamente sia di massimo sia di minimo. Invece, il valore minimo
e il valore massimo su un dato intervallo sono sempre unici (perché?).

Curiosità 4.1 Attenzione: dimostrare che un punto di minimo o un punto di massimo esiste può
essere a volte anche molto complicato. E certe volte potrebbe anche non esistere. Per esempio,
la funzione f(x) = x non ha né minimo né massimo sull’intera retta reale R: per quanto grande
o quanto piccolo tu scelga M ∈ R esistono sempre x1, x2 ∈ R tali che f(x1) < M < f(x2).
Lo stesso problema si verifica su intervalli limitati ma non chiusi: la stessa funzione f non
ha né minimo né massimo sull’intervallo aperto (0, 1) (perché? Ricordati che 0 e 1 non
appartengono all’intervallo considerato. . . ). Per fortuna, il Teorema di Weierstrass assicura
che tutte le funzioni continue (che sono la quasi totalità delle funzioni che considereremo in
questo corso, e che definiremo nella Curiosità 4.9) hanno sempre almeno un punto di massimo
e almeno un punto di minimo su qualsiasi intervallo chiuso della retta reale. Un esempio di
funzione non continua che non ammette né massimo né minimo su un intervallo chiuso è la
funzione f : [−1, 1]→ R definita da

f(x) =

{ |x| se x 6= −1, 0, 1,
1/2 se x = −1, 0, 1.

Prova a tracciarne il grafico.

Abbiamo osservato che le funzioni lineari con coefficiente angolare non nullo
sono sempre strettamente monotone; quindi quanto visto ci permette di trovarne
massimi e minimi su intervalli chiusi. Per l’esattezza, se f(x) = mx + d si ha
– se m > 0 il punto di minimo di f sull’intervallo [a, b] è a, mentre il punto di

massimo è b;
– se m < 0 il punto di minimo di f sull’intervallo [a, b] è b, mentre il punto di

massimo è a.
Informazioni su crescenza e decrescenza aiutano anche a risolvere le disequazioni.
Supponiamo di voler risolvere la disequazione f(x) ≥ y0 su un intervallo [a, b] in
cui la funzione f sia crescente. Ci sono tre casi possibili:
– se y0 ≤ min f = f(a), allora f(x) ≥ y0 per ogni x ∈ [a, b], cioè tutti gli

x ∈ [a, b] sono soluzione della disequazione;
– se y0 > max f = f(b), allora f(x) < y0 per ogni x ∈ [a, b], cioè la disequazione

non ha soluzione in [a, b];
– se f(a) = min f < y0 ≤ max f = f(b) allora f(x) ≥ y0 per ogni x ∈ [x0, b],

dove x0 è la più piccola soluzione (quando esiste; vedi la Curiosità 4.2) dell’e-
quazione f(x) = y0 in [a, b].

Curiosità 4.2 Un’altra proprietà non completamente banale delle funzioni continue definite
su intervalli chiusi è che per ogni y0 ∈ [min f, max f ] l’equazione f(x) = y0 ammette sempre
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una soluzione più piccola e una soluzione più grande. Sfortunatamente, le funzioni monotone
non sono necessariamente continue; ma c’è un modo per aggirare il problema. Infatti, se f è
crescente sull’intervallo [a, b] allora per ogni y0 ∈ [min f, max f ] esiste un più piccolo x0 ∈ [a, b]
tale che f(x) ≥ y0 per ogni x > x0, e f(x) < y0 per ogni x < x0. Se f è continua allora
necessariamente f(x0) = y0, come prima; se f non è continua potrebbe succedere che f(x0) sia
strettamente minore di y0. Quindi le soluzioni della disequazione f(x) ≥ y0 sono gli elementi
dell’intervallo chiuso [x0, b] se f(x0) = y0, e gli elementi dell’intervallo semiaperto (x0, b] se
f(x0) < y0. Un esempio di funzione crescente non continua è la f : [−1, 1]→ R data da:

f(x) =

{
x se −1 ≤ x ≤ 0,
x + 1 se 0 < x ≤ 1.

Prova a tracciarne il grafico, e verifica che la disequazione f(x) ≥ 1 ha come soluzione gli
elementi dell’intervallo semiaperto (0, 1].

Se vogliamo risolvere la disequazione f(x) ≤ y0 su un intervallo [a, b] in cui la
funzione f sia crescente, ci sono di nuovo tre casi possibili:
– se y0 < min f = f(a), allora f(x) > y0 per ogni x ∈ [a, b], cioè la disequazione

non ha soluzione in [a, b];
– se y0 ≥ max f = f(b), allora f(x) ≤ y0 per ogni x ∈ [a, b], cioè tutti gli

x ∈ [a, b] sono soluzione della disequazione;
– se f(a) = min f ≤ y0 < max f = f(b) allora f(x) ≤ y0 per ogni x ∈ [a, x0],

dove x0 è la più grande soluzione (quando esiste; vedi la Curiosità 4.?) dell’e-
quazione f(x) = y0 in [a, b].

Osservazione 4.10 Ragionamenti analoghi si applicano al caso di intervalli non
chiusi, di intervalli illimitati, alle disequazioni strette (cioè con > o < invece di ≥
e ≤), e alle funzioni decrescenti; lasciamo il compito di scrivere esplicitamente cosa
si ottiene nei vari casi a te e al tuo assistente. Attenzione: il tuo obiettivo non
dev’essere imparare a memoria tutti i casi possibili, ma capire come si ottengono,
in modo da poter ripetere il ragionamento quando ti serve solo nei casi che ti
servono (con notevole risparmio di tempo e di memoria).

Vediamo cosa questi ragionamenti ci dicono nel caso delle funzioni lineari. Vo-
gliamo risolvere la disequazione mx + d ≥ y0; allora
– Se m > 0 (cioè f(x) = mx + d è crescente) allora le soluzioni sono gli elementi

della semiretta [x0,+∞), dove x0 = (y0 − d)/m = f−1(y0) è l’unica soluzione
dell’equazione mx + d = y0.

– Se m < 0 (cioè f(x) = mx+d è decrescente) allora le soluzioni sono gli elementi
della semiretta (−∞, x0], dove x0 = (y0 − d)/m = f−1(y0) è l’unica soluzione
dell’equazione mx + d = y0.

In maniera analoga (esercizio per te) si risolve la disequazione mx + d ≤ y0.
In particolare, se m > 0 la disequazione mx + d > y0 ha soluzione una semi-

retta della forma (x0,+∞) quale che sia y0 ∈ R. Questo vuol dire che se m > 0
possiamo rendere f(x) = mx+d arbitrariamente grande a patto di scegliere x suffi-
cientemente grande: per quanto grande sia M > 0 possiamo sempre trovare x0 > 0
(sufficientemente grande) tale che f(x) > M non appena x > x0. In simboli,

∀M > 0 ∃x0 > 0 : x > x0 =⇒ f(x) > M .
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Quando questo accade, si dice che f(x) ha limite +∞ per x che tende a +∞, e si
scrive

lim
x→+∞

f(x) = +∞ .

Sempre supponendo m > 0, hai anche visto che la disequazione mx + d < y0

ha soluzione una semiretta della forma (−∞, x0) quale che sia y0 ∈ R. Questo
vuol dire che se m > 0 possiamo rendere f(x) = mx + d arbitrariamente negativa
a patto di scegliere x sufficientemente negativo: per quanto grande sia M > 0
possiamo sempre trovare x0 < 0 (sufficientemente negativo) tale che f(x) < −M
non appena x < x0. In simboli,

∀M > 0 ∃x0 < 0 : x < x0 =⇒ f(x) < −M .

Stavolta si dice che f(x) ha limite −∞ per x che tende a −∞, e si scrive

lim
x→−∞

f(x) = −∞ .

Se m < 0 la situazione si inverte. In questo caso la disequazione mx + d > y0

ha soluzione una semiretta della forma (−∞, x0) quale che sia y0 ∈ R. Questo
vuol dire che se m < 0 possiamo rendere f(x) = mx + d arbitrariamente grande
a patto di scegliere x sufficientemente negativo: per quanto grande sia M > 0
possiamo sempre trovare x0 < 0 (sufficientemente negativo) tale che f(x) > M
non appena x < x0. In simboli,

∀M > 0 ∃x0 < 0 : x < x0 =⇒ f(x) > M .

Si dice che f(x) ha limite +∞ per x che tende a −∞, e si scrive

lim
x→−∞

f(x) = +∞ .

Infine, se m > 0 la disequazione mx + d < y0 ha soluzione una semiretta della
forma (x0,+∞) quale che sia y0 ∈ R. Questo vuol dire che se m > 0 possiamo
rendere f(x) = mx + d arbitrariamente negativa a patto di scegliere x sufficien-
temente grande: per quanto grande sia M > 0 possiamo sempre trovare x0 > 0
(sufficientemente grande) tale che f(x) < −M non appena x > x0. In simboli,

∀M > 0 ∃x0 > 0 : x > x0 =⇒ f(x) < −M .

Stavolta si dice che f(x) ha limite −∞ per x che tende a +∞, e si scrive

lim
x→+∞

f(x) = −∞ .

Riassumendo, il comportamento di una funzione lineare f(x) = mx + d quando
x è sufficientemente grande o sufficientemente negativo è dato da:
– se m > 0 allora lim

x→±∞
= ±∞;
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– se m < 0 allora lim
x→±∞

= ∓∞.

Con questo abbiamo concluso lo studio delle funzioni lineari. Nelle prossime se-
zioni cercheremo (per quanto possibile) di studiare in modo analogo funzioni più
complesse.

4.2 Funzioni quadratiche

Le funzioni lineari sono tutte monotone: sempre crescenti o decrescenti. Non tutti
i fenomeni naturali sono rappresentabili con funzioni monotone; spesso servono
funzioni che un po’ crescono e un po’ decrescono.

Esempio 4.5 Hai provato a far saltare il tuo assistente, sperando che la sua
altitudine fosse descritta da una funzione monotona. Invece, sfortunatamente, è
salito solo per poco e poi è tornato giù. La sua altitudine è stata inizialmente
crescente, ha raggiunto un massimo, e poi è diventata descrescente.

Inoltre, anche le funzioni monotone non è detto che siano lineari, cioè che rap-
presentino relazioni di proporzionalità.

Esempio 4.6 La superficie esterna di una cellula sferica dipende dal quadrato del
raggio della cellula, per cui non aumenta in modo proporzionale al raggio.

Il tipo più semplice di funzioni non monotone (e quindi non lineari) è dato dalle
funzioni quadratiche: funzioni f : R→ R della forma

f(x) = ax2 + bx + c .

Il grafico di una funzione quadratica è una curva chiamata parabola.

Curiosità 4.3 Più in generale, una parabola nel piano è il luogo dei punti la cui distanza
da una retta data (detta direttrice della parabola) è uguale alla distanza da un punto dato
(detto fuoco della parabola). Si può dimostrare che una parabola qualsiasi si ottiene sempre
ruotando e traslando il grafico di una funzione quadratica.

Il primo obiettivo di questa sezione è trovare come collegare le proprietà geo-
metriche (l’aspetto) del grafico di una funzione quadratica ai suoi coefficienti. Co-
minciamo studiando la funzione quadratica più semplice di tutte:

f(x) = x2 ,

il cui grafico è rappresentato nella Figura 4.1.
La prima osservazione evidente è che f(x) ≥ 0 sempre, e che f(x) = 0 se e solo

se x = 0. In particolare,
(a) f(x) = x2 ha un solo punto di minimo x = 0, con valore minimo y = f(x) = 0;

il punto (x, y) = (0, 0) è detto vertice della parabola grafico di f .
(b) la parabola grafico di f(x) = x2 interseca l’asse delle ordinate nel punto di

ordinata c = f(0) = 0.
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Figura 4.1 f(x) = x2.

Chiaramente, (−x)2 = x2, cioè f(−x) = f(x) per qualsiasi x. In altri termini,

(c) il grafico di f(x) = x2 è simmetrico rispetto alla retta x = x = 0 (l’asse delle
ordinate), che è detta asse della parabola grafico di f .

Osservazione 4.11 Una funzione f : R → R tale che f(−x) = f(x) per ogni x ∈ R
si dice funzione pari; se invece f(−x) = −f(x) per ogni x ∈ R si dice che f è una
funzione dispari. Un esempio di funzione dispari è f(x) = 2x.

Curiosità 4.4 Ogni funzione f : R → R si può scrivere (in modo unico) come somma di

una funzione pari e una funzione dispari. Infatti, ponendo f+(x) = 1
2

(
f(x) + f(−x)

)
e f−(x) = 1

2

(
f(x)− f(−x)

)
si vede subito che f+ è pari, f− è dispari, e f = f+ + f−.

Ora, se 0 ≤ x0 < x1 abbiamo f(x0) = x2
0 < x2

1 = f(x1); invece se x0 < x1 ≤ 0
abbiamo 0 ≤ −x1 < −x0 e f(x1) = f(−x1) = (−x1)2 < (−x0)2 = f(−x0) = f(x0).
Quindi

(d) f(x) = x2 è strettamente decrescente nella semiretta (−∞, x] e strettamente
crescente nella semiretta [x,+∞), dove x = 0. In questo caso, si dice anche
che la parabola ha la concavità rivolta verso l’alto.

Inoltre, per ogni y0 > 0 la diseguaglianza f(x) > y0 ha come soluzione le semi-
rette (

√
y0, +∞) e (−∞,−√y0). Quindi possiamo rendere f(x) arbitrariamente

grande a patto di prendere x sufficientemente grande o sufficientemente negativo;
usando la simbologia dei limiti introdotta nella sezione precedente possiamo dire
che
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(e) se f(x) = x2 allora lim
x→±∞

f(x) = +∞.

Per concludere la descrizione geometrica della parabola grafico di f(x) = x2 dob-
biamo misurarne in qualche modo la larghezza. Un modo per farlo è vedere come
cresce l’ordinata allontandosi dal vertice: se cresce molto la parabola è stretta, se
cresce poco la parabola è larga. Nel nostro caso si ha
(f) se f(x) = x2 allora f(x)−f(x) = 1 ·(x−x)2, dove x = 0. In particolare, allon-

tanandosi di un’unità dal vertice l’ordinata varia di a = f(x + 1)− f(x) = 1.
Possiamo effettuare un’analisi analoga sul grafico della funzione f(x) = −x2. In
questo caso si ottiene (vedi la Figura 4.2):
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Figura 4.2 f(x) = −x2.

(a) f(x) = −x2 ha un solo punto di massimo x = 0, e il valore massimo è
y = f(x) = 0; il punto (x, y) = (0, 0) è sempre detto vertice della parabola
grafico di f .

(b) il grafico di f(x) = −x2 interseca l’asse delle ordinate nel punto di ordi-
nata c = f(0) = 0.

(c) il grafico di f(x) = −x2 è simmetrico rispetto alla retta x = x = 0 (l’asse delle
ordinate), che è ancora detta asse della parabola grafico di f .

(d) f(x) = −x2 è strettamente crescente nella semiretta (−∞, x] e strettamente
decrescente nella semiretta [x,+∞), dove x = 0. In questo caso, si dice che la
parabola ha la concavità rivolta verso il basso.

(e) se f(x) = −x2 allora lim
x→±∞

f(x) = −∞.

(f) se f(x) = −x2 allora f(x)−f(x) = −1·(x−x)2, con x = 0. In particolare, allon-
tanandosi di un’unità dal vertice l’ordinata varia di a = f(x+1)− f(x) = −1.
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Vogliamo far vedere che ogni parabola grafico di funzione quadratica soddisfa op-
portune variazioni delle proprietà (a)–(f), ed è completamente determinata dalle
coordinate (x, y) del vertice e dalla larghezza a = f(x + 1) − f(x). Per farlo, ve-
diamo come possiamo spostare il vertice e cambiare la larghezza, e che effetto ha
sulla funzione quadratica.

Come primo passo, proviamo a variare la larghezza della parabola. Abbiamo
visto che la parabola grafico di x2 sale di 1 unità se ci spostiamo dal vertice di
1 unità. Se invece salisse di a > 1 unità spostandoci dal vertice di 1 unità la
parabola sarebbe più stretta (in quanto raggiungiamo l’ordinata 1 prima di x = 1);
se salisse di 0 < a < 1 unità spostandoci dal vertice di 1 unità la parabola sarebbe
più larga (in quanto raggiungiamo l’ordinata dopo x = 1). Per ottenere questo
effetto è sufficiente moltiplicare la funzione per a, cioè passare dalla funzione x2

alla funzione ax2.

Osservazione 4.12 Questo procedimento si può applicare anche per a negativi. In
questo caso a = −|a| < 0, per cui moltiplicare per a equivale a moltiplicare prima
per |a| > 0 (modificando la larghezza della parabola) e poi per −1. Quest’ul-
tima operazione effettua una simmetria rispetto all’asse delle ascisse, ribaltando il
grafico; vedi la Figura 4.3.
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Figura 4.3 f(x) = 2x2 e f(x) = −8x2.

Osservazione 4.13 Moltiplicare per a le ordinate corrisponde a cambiare l’unità
di misura (e l’orientazione, se a < 0) sull’asse delle ordinate: si ottiene lo stesso
effetto dividendo per |a| l’unità di misura (e invertendo l’orientazione se a < 0).
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Infatti, la vecchia unità di misura, che aveva ordinata 1 nelle vecchie coordinate
ora ha ordinata a, per cui la nuova unità di misura (che ha coordinata 1 nelle nuove
coordinate) è 1/|a| volte la vecchia (con orientazione opposta se a < 0).

Le proprietà della funzione f(x) = ax2 si ottengono subito da quelle di x2

(tenendo presente il segno di a):

(a) f(x) = ax2 ha un solo punto di minimo (se a > 0; di massimo se a < 0) x = 0,
e il valore minimo (o massimo) è y = f(x) = 0; il vertice della parabola ha
ancora coordinate (x, y) = (0, 0).

(b) Il grafico di f(x) = ax2 interseca l’asse delle ordinate nel punto di ordi-
nata c = f(0) = 0.

(c) Il grafico di f(x) = ax2 è simmetrico rispetto all’asse x = x = 0.
(d) Il grafico di f(x) = ax2 ha la concavità rivolta verso l’alto se a > 0, e rivolta

verso il basso se a < 0.
(e) Se f(x) = ax2 allora lim

x→±∞
f(x) = +∞ se a > 0, e lim

x→±∞
f(x) = −∞ se a < 0.

(f) Se f(x) = ax2 allora f(x) − f(x) = a · (x − x)2, dove x = 0. In particolare,
allontanandosi di un’unità dal vertice l’ordinata varia di f(x + 1)− f(x) = a.

Proviamo ora a spostare in direzione verticale il vertice della parabola grafico di ax2.
Per portare il vertice nel punto (0, γ) è sufficiente traslare l’intero grafico di una
distanza pari a γ nella direzione verticale. In altre parole, dobbiamo sommare γ
alle ordinate del grafico, cioè passare dalla funzione ax2 alla funzione ax2 + γ; vedi
la Figura 4.4.
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Figura 4.4 f(x) = ax2 + γ.
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Osservazione 4.14 In generale, traslando verticalmente di una quantità γ il grafico
di una funzione f si ottiene il grafico della funzione f + γ. Inoltre, invece di
traslare in direzione verticale il grafico di una quantità γ avremmo potuto traslare
in direzione verticale gli assi della quantità −γ (cioè sottrarre γ alle ordinate)
ottenendo lo stesso risultato. In altre parole, traslare il piano in direzione verticale
di una quantità γ equivale a sottrarre γ alle ordinate.

Le proprietà della funzione f(x) = ax2 +γ si ottengono subito da quelle di ax2:

(a) f(x) = ax2 + γ ha un solo punto di minimo (se a > 0; di massimo se a < 0)
x = 0, e il valore minimo (o massimo) è y = f(x) = γ; il vertice della parabola
ha ora coordinate (x, y) = (0, γ).

(b) Il grafico di f(x) = ax2 + γ interseca l’asse delle ordinate nel punto di ordi-
nata c = f(0) = γ.

(c) Il grafico di f(x) = ax2 + γ è simmetrico rispetto all’asse x = x = 0.
(d) Il grafico di f(x) = ax2 + γ ha la concavità rivolta verso l’alto se a > 0, e

rivolta verso il basso se a < 0.
(e) Se f(x) = ax2 + γ allora lim

x→±∞
f(x) = +∞ se a > 0, e lim

x→±∞
f(x) = −∞ se

a < 0.
(f) Se f(x) = ax2 +γ allora f(x)− f(x) = a · (x−x)2, dove x = 0. In particolare,

allontanandosi di un’unità dal vertice l’ordinata varia di f(x + 1)− f(x) = a.

Il passo successivo consiste nel traslare orizzontalmente il vertice (e quindi l’asse)
della parabola. Abbiamo visto che traslare verso l’alto di una quantità γ il grafico è
equivalente a sottrarre γ alle ordinate (cioè a spostare gli assi verso il basso di una
quantità γ). Per lo stesso motivo, traslare in direzione orizzontale di una quantità β
il grafico equivale a traslare in direzione orizzontale gli assi della quantità −β, cioè a
sottrarre β alle ascisse. In altre parole, il grafico della funzione f(x) = a(x−β)2+γ,
ottenuta sostituendo x− β a x in ax2 + γ, è ottenuto traslando orizzontalmente di
una quantità β il grafico di ax2 + γ. Ne segue che (vedi la Figura 4.5)

(a) f(x) = a(x − β)2 + γ ha un solo punto di minimo (se a > 0; di massimo se
a < 0) x = β, e il valore minimo (o massimo) è y = f(x) = γ; il vertice della
parabola ha quindi coordinate (x, y) = (β, γ).

(b) Il grafico di f(x) = a(x − β)2 + γ interseca l’asse delle ordinate nel punto di
ordinata c = f(0) = aβ2 + γ.

(c) Il grafico di f(x) = a(x− β)2 + γ è simmetrico rispetto all’asse x = x = β.
(d) Il grafico di f(x) = a(x− β)2 + γ ha la concavità rivolta verso l’alto se a > 0,

e rivolta verso il basso se a < 0.
(e) Se f(x) = a(x−β)2 +γ allora lim

x→±∞
f(x) = +∞ se a > 0, e lim

x→±∞
f(x) = −∞

se a < 0.
(f) Se f(x) = a(x− β)2 + γ allora f(x)− f(x) = a · (x− x)2, con x = β. Quindi

allontanandosi di un’unità dal vertice l’ordinata varia di f(x + 1)− f(x) = a.

Osservazione 4.15 Vale la pena notare che c’è un’altra operazione ancora che po-
tremmo a priori fare: moltiplicare le ascisse per un valore α 6= 0, che equivale (come
nel caso delle ordinate) a dividere per |α| l’unità di misura sull’asse delle ascisse (e
a invertire l’orientazione se α < 0). In questo modo arriveremmo a una funzione



140 Capitolo 4

-2 -1 1 2 3

-2

2

4

6

8

Figura 4.5 f(x) = a(x− β)2 + γ.

della forma a(αx−β)2+γ. Vedremo però fra un attimo che, per le funzioni quadra-
tiche, questa operazione non è necessaria: abbiamo già ottenuto tutte le funzioni
quadratiche possibile senza bisogno di ulteriori operazioni. Invece potrebbe essere
utile per studiare funzioni più complicate.

Ora, f(x) = a(x − β)2 + γ è chiaramente una funzione quadratica: infatti
svolgendo il quadrato troviamo

a(x− β)2 + γ = ax2 − 2aβx + aβ2 + γ = ax2 + bx + c ,

dove
b = −2aβ , c = aβ2 + γ . (4.3)

La cosa interessante è che vale anche il viceversa: ogni funzione quadratica si può
scrivere nella forma a(x − β)2 + γ. Infatti, se, invertendo le (4.3) (e supponendo
ovviamente a 6= 0), poniamo

β = − b

2a
, γ = c− aβ2 = c− b2

4a
=

4ac− b2

4a
, (4.4)

otteniamo

ax2 + bx + c = a

(
x +

b

2a

)2

+ c− b2

4a
= a(x− β)2 + γ . (4.5)
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I risultati che abbiamo ottenuto sul grafico delle funzioni della forma a(x−β)2 + γ
si possono quindi tradurre nel caso di funzioni quadratiche qualsiasi:

(a) f(x) = ax2 + bx + c ha un solo punto di minimo (se a > 0; di massimo se
a < 0) x = −b/2a, e il valore minimo (o massimo) è y = f(x) = c − b2/4a; il
vertice della parabola ha quindi coordinate (x, y) = (−b/2a, c− b2/4a).

(b) Il grafico di f(x) = ax2 + bx + c interseca l’asse delle ordinate nel punto di
ordinata f(0) = c.

(c) Il grafico di f(x) = ax2 + bx + c è simmetrico rispetto all’asse x = x = −b/2a.
(d) Il grafico di f(x) = ax2 + bx + c ha la concavità rivolta verso l’alto se a > 0,

e rivolta verso il basso se a < 0. In altre parole, se a > 0 la funzione
è strettamente decrescente nella semiretta (−∞,−b/2a] e strettamente cre-
scente nella semiretta [−b/2a,+∞), mentre se a < 0 la funzione è stretta-
mente crescente nella semiretta (−∞,−b/2a] e strettamente decrescente nella
semiretta [−b/2a,+∞).

(e) Se f(x) = ax2 + bx + c allora lim
x→±∞

f(x) = +∞ se a > 0, e lim
x→±∞

f(x) = −∞
se a < 0.

(f) Se f(x) = ax2 + bx + c allora f(x)− f(x) = a · (x− x)2, dove x = −b/2a. In
particolare, f(x + 1)− f(x) = a.

Dunque data la formula ora siamo in grado di tracciare il grafico. Vediamo ora
come risolvere il problema inverso: dato il grafico (o, almeno, alcuni punti del
grafico) ricavare la formula.

Un primo caso è quando abbiamo le coordinate (x, y) del vertice e (supponendo
che il vertice non sia sull’asse delle ordinate, cioè che x 6= 0) il punto (0, c) di
intersezione del grafico con l’asse delle ordinate. Allora i conti precedenti, e in
particolare le (4.3), ci dicono che la funzione dev’essere f(x) = ax2 + bx + c con a
e b dati da

b = −2ax , a =
c− y

x2 .

Se invece il vertice è sull’asse delle ordinate, cioè x = 0, allora sappiamo soltanto
che f(x) = ax2 + c con c = y; per trovare a servono altre informazioni (quali, per
esempio, la larghezza della parabola).

Spesso, invece, conosciamo alcuni punti del grafico, senza però sapere quale sia
il vertice. Per determinare la funzione, servono tre punti; vediamo come in un
esempio.

Esempio 4.7 Torniamo a studiare i semi di pomodoro dell’Esempio 4.1. Sai già
che alla temperatura di 12 ◦C germoglia il 40% dei semi, mentre alla temperatura
di 15 ◦C germoglia il 70% dei semi. Un’ulteriore misurazione ha rivelato che alla
temperatura di 9 ◦C germoglia il 20% dei semi. Dimostra che allora la relazione
fra la temperatura e la percentuale di semi che gemogliano non può essere lineare.
Supponendo che sia quadratica, determinala. Indichiamo nuovamente con P (T )
la percentuale di semi che germogliano alla temperatura T . Noi sappiamo che
P (9) = 20, P (12) = 40 e P (15) = 70. Se P fosse una funzione lineare, ∆P/∆T
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dovrebbe essere costante; invece

P (15)− P (12)
15− 12

=
70− 40

3
= 10 6= 20

3
=

40− 20
3

=
P (12)− P (9)

12− 9
.

Supponiamo allora che P : R → R sia una funzione quadratica, cioè che si abbia
P (T ) = aT 2 + bT + c; dobbiamo trovare a, b, c ∈ R in modo da avere P (9) = 20,
P (12) = 40 e P (15) = 70. In altre parole, a, b e c devono soddisfare il seguente
sistema di equazioni lineari: 81a + 9b + c = P (9) = 20 ,

144a + 12b + c = P (12) = 40 ,
225a + 15b + c = P (15) = 70 .

(4.6)

Per risolvere questo sistema, sottraiamo la prima equazione dalla seconda, e la
seconda dalla terza; otteniamo { 63a + 3b = 20 ,

81a + 3b = 30 .
(4.7)

Sottraendo di nuovo la prima equazione dalla seconda otteniamo

18a = 10 , cioè a =
10
18

=
5
9

.

Sostituendo questo valore nella seconda equazione in (4.7) troviamo

81 · 5
9

+ 3b = 20 , cioè b = −5 ;

e sostituendo i valori di a e b trovati nella prima equazione in (4.6) recuperiamo
infine

81 · 5
9
− 9 · 5 + c = 20 , cioè c = 20 .

Quindi la formula cercata è

P (T ) =
5
9
T 2 − 5T + 20 .

Questa formula ha qualche vantaggio su quella lineare. Per esempio, non è mai
negativa; infatti, ha minimo per T = −(−5)/2(5/9) = 9/2, con valore minimo
P (9/2) = 20 − (−5)2/4(5/9) = 35/4 > 0. Ma anche lei può essere valida solo
in un determinato intervallo di temperature. Infatti, P (T ) ricomincia ad aumen-
tare quando la temperatura scende sotto 9/2 ◦C, comportamento biologicamente
alquanto improbabile; e P (T ) > 100 se T è troppo grande (o sufficientemente
negativo). Per esempio, P (18) = 110.
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Il procedimento usato nel precedente esempio può essere applicato a qual-
siasi funzione quadratica. Supponiamo di voler trovare la funzione quadratica
f(x) = ax2 + bx + c il cui grafico passi per i punti (x1, y1), (x2, y2) e (x3, y3),
con x1, x2 ed x3 tutti distinti. Vogliamo quindi trovare a, b e c in modo che
f(xj) = yj per j = 1, 2, 3. In altre parole, a, b e c devono risolvere il sistema x2

1a + x1b + c = y1 ,
x2

2a + x2b + c = y2 ,
x2

3a + x3b + c = y3 .

Sottraiamo la prima equazione dalla seconda, e la seconda dalla terza; otteniamo{
(x2

2 − x2
1)a + (x2 − x1)b = y2 − y1 ,

(x2
3 − x2

2)a + (x3 − x2)b = y3 − y2 .
(4.8)

Siccome x2
2 − x2

1 = (x2 − x1)(x2 + x1) e x2 − x1 6= 0, possiamo dividere la prima
equazione per x2 − x1. Analogamente possiamo dividere la seconda equazione
per x3 − x2, e otteniamo {

(x2 + x1)a + b = y2−y1
x2−x1

,

(x3 + x2)a + b = y3−y2
x3−x2

.

Sottraendo di nuovo la prima equazione dalla seconda otteniamo

(x3 − x1)a =
y3 − y2

x3 − x2
− y2 − y1

x2 − x1
.

Siccome x3 − x1 6= 0, da questa equazione possiamo ricavare a; sostituendo il
valore trovato nel sistema precedente otteniamo b, e sostituendo nel sistema iniziale
troviamo anche c.

Osservazione 4.16 La generica funzione lineare dipendeva da due parametri (m
e d); per determinarla avevamo bisogno di conoscere due punti del grafico. La
generica funzione quadratica dipende da tre parametri (a, b e c); per determinarla
abbiamo bisogno di conoscere tre punti del grafico. Tutto ciò non è un caso: si può
dimostrare che se abbiamo una famiglia di funzioni dipendenti da k parametri, per
determinare univocamente una funzione della famiglia servono k condizioni (indi-
pendenti in un senso opportuno), quali il conoscere k punti del grafico. Vedremo
un altro esempio di questo fenomeno nella Sezione 4.4.

La (4.5) è molto utile anche per risolvere le equazioni di secondo grado. L’idea
è che l’equazione ax2 +bx+c = y0 ha soluzione se e solo se la retta y = y0 interseca
il grafico di f(x) = ax2 + bx + c. Questo accade solo se o a > 0 e y0 è maggiore
del minimo di f , oppure a < 0 e y0 è minore del massimo di f . Quindi bisogna
confrontare y0 con l’ordinata y = γ del vertice, che si legge facilmente da (4.5).
Per la precisione, l’equazione ax2 + bx + c = y0 diventa

a(x− β)2 + γ = y0 , cioè (x− β)2 =
y0 − γ

a
.
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Quindi ha soluzione reale se e solo se (y0− γ)/a ≥ 0, e in tal caso le soluzioni sono

x± = β ±
√

y0 − γ

a
=
−b±

√
b2 − 4a(c− y0)

2a
. (4.9)

Il caso y0 = 0 è particolarmente interessante (e tutti gli altri possono esservi ricon-
dotti sostituendo c− y0 al posto di c). La quantità

D = b2 − 4ac = −4ay

è detta discriminante della funzione f(x) = ax2 +bx+c. Il discriminante è positivo
se e solo se a e l’ordinata y del vertice hanno segno opposto, e si annulla se e
solo se l’ordinata del vertice si annulla, cioè se e solo se il vertice è sull’asse delle
ascisse. Insomma, o usando la posizione del vertice e la concavità del grafico,
oppure usando il segno del discriminante in (4.9), giungiamo alla conclusione che
l’equazione ax2 + bx + c = 0 ha

– due soluzioni reali distinte se D > 0, cioè se a e y hanno segno opposto;
– un’unica soluzione reale se D = 0, cioè se y = 0, e in tal caso la soluzione è x;
– nessuna soluzione reale se D < 0, cioè se a e y hanno lo stesso segno.

Come esercizio, riotteni questo risultato tracciando il grafico di ax2 + bx+ c nei
vari casi.

Usando le informazioni che abbiamo sulla crescenza e decrescenza delle funzioni
quadratiche, possiamo facilmente trovare i massimi e i minimi in intervalli chiusi.
Ci sono due casi da considerare:

– se l’intervallo [a0, a1] non contiene l’ascissa del vertice di f(x) = ax2 + bx + c,
allora f è monotona in quell’intervallo, per cui (come abbiamo visto nella pre-
cedente sezione) i punti di minimo e massimo di f in [a0, a1] sono gli estremi a0

e a1.
– se l’intervallo [a0, a1] contine l’ascissa x del vertice, sappiamo già che il punto

di minimo (se a > 0) o di massimo (se a < 0) è x. Siccome f è monotona nei
due intervalli [a0, x] e [x, a1], si vede subito (perché?) che il punto di massimo
(se a > 0) o di minimo (se a < 0) è quello3 fra i due estremi a0 e a1 su cui f
assume il valore più grande (se a > 0) o più piccolo (se a < 0).

Queste tecniche ci permettono anche di risolvere facilmente le disequazioni di se-
condo grado. Perché la disequazione ax2 + bx + c ≥ y0 possa avere soluzione
occorre che il grafico di f(x) = ax2 + bx + c sia in qualche punto al di sopra
della retta y = y0. Mettendo insieme (4.9) con ciò che sappiamo sulla crescenza e
decrescenza di f troviamo

• se a > 0 e
– y0 ≤ y, la disequazione ax2 + bx + c ≥ y0 è soddisfatta per tutti i valori

di x ∈ R;

3 O entrambi se f(a0) = f(a1).
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– y0 > y, la disequazione ax2 + bx + c ≥ y0 è soddisfatta per x ∈ (−∞, x−] e
per x ∈ [x+,+∞), dove x± sono dati da (4.9);

• se a < 0 e
– y0 > y, la disequazione ax2 + bx + c ≥ y0 non è mai soddisfatta;
– y0 ≤ y, la disequazione ax2 + bx + c ≥ y0 è soddisfatta per x ∈ [x+, x−],

dove x± sono dati da (4.9).

Analoghi risultati (esercizio: se sei confuso, aiutati tracciando il grafico nei vari
casi) si trovano per la disequazione ax2 + bx + c ≤ y0.

Osservazione 4.17 Quando y0 = 0, il segno di y è legato al segno di a tramite il
segno del discriminante. In particolare, se a > 0 abbiamo y ≥ 0 se e solo se D ≤ 0,
mentre se a < 0 abbiamo 0 > y se e solo se D < 0. Quindi quando y = 0 possiamo
riformulare (esercizio per te) i risultati precedenti usando a e D invece di a e y.

Osservazione 4.18 Come fatto nella scorsa sezione, i risultati sulle disequazioni ci
permettono anche di studiare l’andamento all’infinito delle funzioni quadratiche.
Per esempio, abbiamo appena visto che se a > 0 allora per ogni y0 ∈ R possiamo
trovare x± ∈ R tali che f(x) ≥ y0 non appena x ≥ x+ oppure x ≤ x−. In
altre parole, possiamo rendere f(x) arbitrariamente grande a patto di scegliere x
sufficientemente grande o sufficientemente negativo. Usando la terminologia già
introdotta, abbiamo quindi dimostrato che

a > 0 =⇒ lim
x→±∞

ax2 + bx + c = +∞ ,

in accordo con quanto avevamo già visto. In maniera analoga si dimostra che

a < 0 =⇒ lim
x→±∞

ax2 + bx + c = −∞ .

4.3 Il metodo dei minimi quadrati

In questa sezione presenteremo due applicazioni dello studio delle funzioni quadra-
tiche che abbiamo appena completato.

La prima applicazione consiste nel mantenere una promessa fatta nell’Osserva-
zione 3.27. Siano x1, . . . , xn ∈ R dei numeri reali (dei dati); vogliamo trovare il
punto di minimo della funzione

f(x) =
n∑

i=1

(x− xi)2 .

Se sviluppiamo i quadrati, vediamo subito che f è una funzione quadratica:

f(x) =
n∑

i=1

(x2 − 2xix + x2
i ) = nx2 − 2

(
n∑

i=1

xi

)
x +

n∑
i=1

x2
i ,
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per cui f(x) = ax2 + bx + c con

a = n , b = −2
n∑

i=1

xi , c =
n∑

i=1

x2
i .

Quindi il punto di minimo di f è

x = − b

2a
=

1
n

n∑
i=1

xi ,

cioè la media aritmetica dei dati, come promesso.
La seconda applicazione consiste in un metodo (detto metodo dei minimi qua-

drati) per trovare la retta che meglio approssima un dato insieme di dati.
Supponiamo di avere n coppie di dati (x1, y1), . . . , (xn, yn), e di sospettare che

le ordinate dipendano in modo lineare dalle ascisse. Anche se la nostra ipotesi
è corretta, è molto improbabile che le n coppie di dati giacciano esattamente su
una retta, in quanto non possiamo evitare gli errori sperimentali; abbiamo quindi
bisogno di una tecnica che ci fornisca la “migliore” (in un senso da specificare)
approssimazione lineare di questi dati, e al contempo una misura della bontà di
questa approssimazione — in quanto, se la “migliore” approssimazione fosse cattiva
vorrebbe dire che la nostra ipotesi di dipendenza lineare non è compatibile con i
dati, e quindi dev’essere scartata.

Cominciamo con definire quanto il grafico di una funzione lineare f(x) = mx+d
approssima l’insieme {(x1, y1), . . . , (xn, yn)}. La coppia (xi, yi) appartiene al gra-
fico di f se e solo se yi = mxi+d; quindi l’errore δi = mxi+d−yi misura la distanza
che c’è fra il dato sperimentale (xi, yi) e il dato teorico

(
xi, f(xi)

)
che si avrebbe se

la funzione f rappresentasse esattamente il fenomeno che stiamo studiando. Ab-
biamo quindi n errori, δ1, . . . , δn; tenendo presente che a noi non importa il segno
dell’errore ma solo la sua grandezza, e ricordando quanto fatto studiando la va-
rianza, una misura di quanto la funzione f(x) = mx + d approssima i dati è data
dalla media dei quadrati degli errori:

S(m, d) =
1
n

n∑
i=1

δ2
i =

1
n

n∑
i=1

(mxi + d− yi)2 .

Nota che la funzione S dipende dai due parametri m e d che determinano la funzione
lineare f ; quindi S è una funzione di due variabili reali.

Il nostro obiettivo è trovare il punto di minimo di S, cioè i valori m e d di m
e d che rendono S(m, d) più piccola possibile4. La corrispondente funzione lineare
f(x) = mx+d sarà allora quella che meglio approssima i dati da cui siamo partiti; e
ci rimarrà solo da trovare una misura di quanto buona sia questa approssimazione.

Per trovare questo punto di minimo procederemo in questo modo. Prima di
tutto faremo vedere che, per ogni m ∈ R fissato, la funzione d 7→ S(m, d) è una

4 Ed è questo il motivo per cui questo metodo si chiama dei minimi quadrati.
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funzione quadratica di d con coefficiente del termine quadrato positivo; quindi am-
mette un unico punto di minimo, che indicheremo con d0(m); vedremo anche come
dipende da m. Poi dimostreremo che anche la funzione S

(
m, d0(m)

)
è una funzione

quadratica (di m, stavolta) con coefficiente del termine quadrato positivo; quindi
anche lei ha un unico punto di minimo m, a cui corrisponde il valore d = d0(m).
Allora (m, d) è il punto di minimo cercato. Infatti, per ogni (m, d) ∈ R2 abbiamo

S(m, d) ≥ S
(
m, d0(m)

)
≥ S

(
m, d0(m)

)
= S(m, d)

come voluto (studia bene la precedente catena di disuguaglianze fin quando non
sei certo d’aver capito perché è vera e perché è proprio quello che ci serve).

Ok, cominciamo. Sviluppando i quadrati nella definizione di S(m, d) otteniamo

S(m, d) =
1
n

n∑
i=1

(
x2

i m
2 + d2 + y2

i + 2ximd− 2xiyim− 2yid
)

= d2 + 2(mx− y)d + m2 1
n

n∑
i=1

x2
i − 2m

1
n

n∑
i=1

xiyi +
1
n

n∑
i=1

y2
i ,

dove x è la media aritmetica di x1, . . . , xn e y è la media aritmetica di y1, . . . , yn.
Quindi per ogni m fissato d 7→ S(m, D) è effettivamente una funzione quadratica
di d, in quanto possiamo scrivere S(m, d) = ad2 + bd + c con

a = 1 , b = 2(mx− y) , c = m2 1
n

n∑
i=1

x2
i − 2m

1
n

n∑
i=1

xiyi +
1
n

n∑
i=1

y2
i .

In particolare, a = 1 > 0 e il punto di minimo d0(m) di questa funzione è

d0(m) = − b

2a
= y −mx .

Per calcolare S
(
m, d0(m)

)
ricordiamoci che il valore minimo di una funzione

quadratica (con a > 0) è c− b2/4a, per cui

S
(
m, d0(m)

)
= m2 1

n

n∑
i=1

x2
i − 2m

1
n

n∑
i=1

xiyi +
1
n

n∑
i=1

y2
i −

1
4
4(mx− y)2

=

[
1
n

n∑
i=1

x2
i − x2

]
m2 − 2

[
1
n

n∑
i=1

xiyi − x · y
]

m +
1
n

m∑
i=1

y2
i − y2

= ãm2 + b̃m + c̃ .

Dunque abbiamo ottenuto, come promesso, una funzione quadratica di m, con

ã =
1
n

n∑
i=1

x2
i − x2 , b̃ = −2

[
1
n

n∑
i=1

xiyi − x · y
]

, c̃ =
1
n

n∑
i=1

y2
i − y2 .
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Inoltre, il coefficiente ã del termine quadrato è positivo; infatti, l’Osservazione 3.32
ci dice che

ã =
1
n

n∑
i=1

x2
i − x2 = Media(x2

i )−Media(xi)2 = Var(xi) > 0 ,

come voluto5.
Quindi la funzione S

(
m, d0(m)

)
ammette un unico punto di minimo

m = − b̃

2ã
=

1
n

∑n
i=1 xiyi − x · y

1
n

∑n
i=1 x2

i − x2
, (4.10)

e la funzione S(m, d) ammette un unico punto di minimo (m, d) con

d = y −m x . (4.11)

La retta grafico della funzione f(x) = mx+d che meglio approssima i dati si chiama
retta di regressione (lineare).

Osservazione 4.19 Mentre il modo migliore di calcolare d è usare la formula (4.11),
ci sono altre formule per il calcolo di m oltre a (4.10). Prima di tutto notiamo che
possiamo scrivere (4.10) cos̀ı:

m =
Media(xiyi)−Media(xi)Media(yi)

Media(x2
i )−Media(xi)2

, (4.12)

o anche come
m =

xy − x · y
x2 − x2

, (4.13)

dove xy è la media aritmetica dei prodotti x1y1, . . . , xnyn, e x2 è la media aritme-
tica dei quadrati x2

1, . . . , x
2
n, per cui m è la differenza fra la media dei prodotti e il

prodotto delle medie divisa per la differenza fra la media dei quadrati e il quadrato
della media.

Un’altra formula si ottiene notando che, come abbiamo già visto, il denomina-
tore di (4.10) è uguale a Var(xi) = 1

n

∑n
i=1(x − xi)2. Una formula analoga vale

anche per il numeratore: infatti

1
n

n∑
i=1

xiyi − x · y =
1
n

n∑
i=1

xiyi − x
1
n

n∑
i=1

yi − y
1
n

n∑
i=1

xi + x · y

=
1
n

n∑
i=1

(x− xi)(y − yi) ,

5 La varianza non può essere nulla, a meno che tutti gli xi siano uguali; ma in tal caso
sapremmo già che i dati giacciono su una retta (verticale), e quindi non avremmo neppure
cominciato questi conti.
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per cui possiamo scrivere

m =
∑n

i=1(x− xi)(y − yi)∑n
i=1(x− xi)2

. (4.14)

Quale formula usare dipende dalle situazioni, da quali altri calcoli hai già effettuato
o devi effettuare, da quale ti ricordi meglio e anche dai tuoi gusti personali.

Rimane da stabilire quanto bene la retta di regressione approssima i dati. Una
prima informazione ci è data dal valore minimo che abbiamo trovato,

S(m, d) = c̃− b̃2

4ã
= c̃− ãm2

=
1
n

n∑
i=1

y2
i − y2 −

[
1
n

∑n
i=1 xiyi − x · y

]2
1
n

∑n
i=1 x2

i − x2

=
(y2 − y2)(x2 − x2)− (xy − x · y)2

x2 − x2
,

dove y2 è la media aritmetica di y2
1 , . . . , y2

n, come al solito. Ora, le coppie di dati
stanno tutte sulla retta di regressione se e solo se S(m, d) = 0. Però il valore
di S(m, d) da solo non è una buona misura della qualità della retta di regressione,
in quanto ha il solito problema degli errori assoluti: se i dati sono grandi allora
l’errore è grande in valore assoluto, anche quando è piccolo rispetto ai valori assoluti
dei dati. Ci serve invece un errore relativo. Siccome S(m, d) misura la media degli
errori quadratici nelle ordinate, la quantità giusta a cui confrontarla è lo scarto
quadratico medio delle ordinate, cioè la varianza6 Var(yi) = y2− y2. Quindi siamo
condotti a considerare la quantità

S(m, d)
Var(yi)

= 1− (xy − x · y)2

(x2 − x2)(y2 − y2)
,

che è sempre maggiore o uguale di zero, e si annulla se e solo se tutti i dati sono
sulla retta di regressione. Inoltre, è anche sempre minore o uguale di 1 (perché?);
quindi anche se i dati sono molto grandi rimane con valore assoluto limitato.

Abbiamo quasi finito: rimane da fare un passaggio analogo a quello che porta
dalla varianza alla deviazione standard. La quantità S(m, d)

/
Var(yi) si annulla se

e solo se (xy−x · y)2
/
(x2−x2)(y2− y2) = 1, cioè (estraendo la radice quadrata) se

e solo se (xy−x ·y)
/√

(x2 − x2)(y2 − y2) = ±1. Introduciamo allora il coefficiente

di correlazione di Pearson

CP =
xy − x · y√

(x2 − x2)(y2 − y2)
∈ [−1, 1] .

6 Che è nulla se e solo se tutte le yi sono uguali; ma in tal caso i dati sono chiaramente
su una retta (orizzontale), e di nuovo non ci saremmo imbarcati in questi calcoli.
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Per quanto abbiamo detto, il coefficiente di correlazione di Pearson misura la bontà
dell’approssimazione fornita dalla retta di regressione: se è sufficientemente vicino
a 1 o a −1, allora l’approssimazione è buona; se invece è vicino a 0, vuol dire che i
dati non seguono affatto un andamento lineare.

Osservazione 4.20 “Sufficientemente vicino a ±1” di solito vuol dire almeno 0.9 in
valore assoluto; almeno 0.95 è anche meglio.

Osservazione 4.21 Il segno del coefficiente di Pearson è lo stesso di m.

Osservazione 4.22 I conti fatti nell’Osservazione 4.19 ci forniscono un’altra formula
per il coefficiente di Pearson:

CP =
xy − x · y

DS(xi)DS(yi)
=

∑n
i=1(x− xi)(y − yi)√∑n

i=1(x− xi)2
∑n

j=1(y − yj)2
.

Concludiamo questa sezione con un esempio di calcolo della retta di regressione
e del coefficiente di Pearson; altri esempi li vedremo nella Sezione 4.9.

Esempio 4.8 Riprendiamo il nostro gruppo di 15 cavie; vogliamo vedere se c’è
una relazione lineare fra il loro peso (in decigrammi) e la loro età (in giorni; sono
cavie molto giovani). Per procedere prepariamo una tabella (Tabella 4.1) con cinque
colonne: l’età (la nostra x), il peso (la nostra y), i prodotti xy, i quadrati x2, e i
quadrati y2. Poi calcoliamo la media aritmetica dei dati di ciascuna colonna; con
questi dati possiamo trovare i coefficienti della retta di regressione e il coefficiente
di Pearson.

Cavia Età (x) Peso (y) xy x2 y2

1 61 28 1708 3721 784
2 76 32 2432 5776 1024
3 80 37 2960 6400 1369
4 66 29 1914 4356 841
5 71 31 2201 5041 961
6 68 30 2040 4624 900
7 78 32 2496 6084 1024
8 55 26 1430 3025 676
9 74 32 2368 5476 1024
10 60 27 1620 3600 729
11 65 29 1885 4225 841
12 70 30 2100 4900 900
13 64 28 1792 4096 784
14 73 31 2263 5329 961
15 68 31 2108 4624 961

Media 68.6 30.2 2087.8 4751.8 918.6
Tabella 4.1
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Usando per esempio la formula (4.13) otteniamo

m =
xy − x · y
x2 − x2

=
2087.8− 68.6 · 30.2

4751.8− 68.62
' 0.351 ,

d = y −m · x ' 30.2− 0.351 · 67 ' 6.136 ,

per cui la retta di regressione è

f(x) = 0.351x + 6.136 .

Il coefficiente di Pearson è

CP =
xy − x · y√

(x2 − x2)(y2 − y2)
=

2087.8− 68.6 · 30.2√
(4751.8− 68.62)(918.6− 30.22)

' 0.927 ,

per cui la retta di regressione approssima piuttosto bene i dati, come si può vedere
dalla Figura 4.6, che contiene sia i dati sia la retta di regressione.

55 60 65 70 75 80 85

26

28

30

32

34

36

38

Figura 4.6 Retta di regressione.

Esercizio 4.1 Calcola la retta di regressione e il coefficiente di Pearson partendo
dai dati della Tabella 4.1 ma supponendo che la cavia 3 abbia 55 giorni d’età.

Osservazione 4.23 Come hai visto (vero?) risolvendo il precedente esercizio, la
presenza anche di un solo dato spurio può falsare di molto la retta di regressione,
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e dare un coefficiente di Pearson molto basso. Per questo motivo nella pratica
sperimentale conviene sempre esaminare i dati raccolti per eliminare dati evidente-
mente spuri, e (possibilmente) investigare i motivi che hanno portato alla presenza
dei dati spuri (semplici errori o un fenomeno nuovo?).

4.4 Funzioni polinomiali

Dopo le funzioni quadratiche, si possono considerare funzioni di terzo grado, o di
quarto grado, o più in generale funzioni polinomiali, cioè funzioni f : R→ R espresse
da un polinomio:

f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 , (4.15)

dove n ∈ N è il grado della funzione polinomiale (o del polinomio), e a0, . . . , an ∈ R
sono i coefficienti; si suppone sempre che an 6= 0. Non abbiamo ancora gli stru-
menti necessari7 per effettuare uno studio dettagliato di queste funzioni; mi limiterò
quindi a citare alcuni fatti, in parte analoghi a quanto abbiamo già visto, che pos-
sono essere utili nel loro studio. La Figura 4.7 comunque contiene i grafici di alcune
funzioni polinomiali, giusto per darti un’idea di che faccia possano avere.
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6

Figura 4.7 Funzioni polinomiali.

La prima osservazione è che per x molto grande in valore assoluto, l’addendo
anxn in (4.15) è molto più grande degli altri, per cui il comportamento della fun-
zione f per x molto grande in valore assoluto è dettato dal comportamento di anxn.
In particolare:
– se an > 0 e n è pari allora

lim
x→±∞

anxn + · · ·+ a0 = lim
x→±∞

anxn = +∞ ;

7 Ne introdurremo molti nel prossimo capitolo.
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– se an > 0 e n è dispari allora

lim
x→±∞

anxn + · · ·+ a0 = lim
x→±∞

anxn = ±∞ ;

– se an < 0 e n è pari allora

lim
x→±∞

anxn + · · ·+ a0 = lim
x→±∞

anxn = −∞ ;

– se an < 0 e n è dispari allora

lim
x→±∞

anxn + · · ·+ a0 = lim
x→±∞

anxn = ∓∞ .

Curiosità 4.5 Vediamo come dimostrare correttamente questa affermazione. Poniamo

R =
2n max{|a0|, . . . , |an|}

|an|
≥ 2n > 1 .

Se |x| > R abbiamo |x|j > |x| > 2n|aj |/|an|, cioè

|aj |
|an|

1

|x|j
<

1

2n
,

e quindi
n∑

j=1

|aj |
|an|

1

|x|j
< n · 1

2n
=

1

2
.

Ricordando le seguenti fondamentali proprietà del valore assoluto

|a| − |b| ≤
∣∣|a| − |b|∣∣ ≤ |a + b| ≤ |a|+ |b| , |a · b| = |a| · |b| ,

per |x| > R otteniamo

1 +

n∑
j=1

aj

an

1

xj
≥ 1−

∣∣∣∣∣
n∑

j=1

aj

an

1

xj

∣∣∣∣∣ ≥ 1−
n∑

j=1

|aj |
|an|

1

|x|j
≥ 1− 1

2
=

1

2
.

Inoltre,

1 +

n∑
j=1

aj

an

1

xj
≤ 1 +

∣∣∣∣∣
n∑

j=1

aj

an

1

xj

∣∣∣∣∣ ≤ 1 +

n∑
j=1

|aj |
|an|

1

|x|j
≤ 1 +

1

2
=

3

2
,

sempre per |x| > R. Siccome

anxn + · · ·+ a0 = anxn

(
1 +

n∑
j=1

aj

an

1

xj

)
,
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non appena anxn > 0 e |x| > R otteniamo

3

2
anxn ≥ anxn + · · ·+ a0 ≥

1

2
anxn ,

mentre se anxn < 0 e |x| > R otteniamo

3

2
anxn ≤ anxn + · · ·+ a0 ≤

1

2
anxn .

Queste due stime implicano immediatamente le affermazioni volute.

La seconda osservazione riguarda il numero di condizioni necessarie per deter-
minare i coefficienti di un polinomio di grado n. Abbiamo visto che il grafico di una
funzione lineare era completamente determinato dal passaggio per due punti, e che
il grafico di una funzione quadratica era completamente determinato dal passaggio
per tre punti. Analogamente, il grafico di un polinomio di grado n è completamente
determinato dal passaggio per n + 1 punti.

Il metodo per trovare il polinomio dati n + 1 punti è analogo a quello visto per
le funzioni quadratiche. Supponiamo di avere n + 1 punti (x0, y0), . . . , (xn, yn) con
ascisse x0, . . . , xn tutte distinte. Trovare un polinomio f(x) = anxn + · · ·+a0 il cui
grafico passi per questi punti, cioè tale che f(xj) = yj per j = 0, . . . , n, equivale a
risolvere il sistema lineare

xn
0an + xn−1

0 an−1 + · · ·+ a0 = y0 ,
...

xn
nan + xn−1

n an−1 + · · ·+ a0 = yn ,

di n + 1 equazioni nelle n + 1 incognite a0, . . . , an. Per risolvere questo sistema si
sottrae ogni equazione dalla successiva; se necessario, si dividono, come in (4.8), i
coefficienti del sistema ottenuto per un opportuno fattore comune, utilizzando le
formule

xk+1 − yk+1 = (x− y)
k∑

i=0

xiyk−i ; (4.16)

e si ripete il procedimento col nuovo sistema. Dopo n passaggi si arriva a una sola
equazione lineare con an come unica incognita; ricavata an si sostituisce il valore
trovato nei sistemi precedenti, ricavando an−1 e poi an−2 e cos̀ı via fino ad a0.
Questa tecnica per determinare i coefficienti dei polinomi è detta metodo delle
differenze.

Curiosità 4.6 La formula (4.16) si dimostra col seguente conto:

(x− y)

k∑
i=0

xiyk−i =

k∑
i=0

xi+1yk−i −
k∑

i=0

xiyk−(i−1)

= xk+1 +

k−1∑
i=0

xi+1yk−i −
k−1∑
h=0

xh+1yk−h − yk+1

= xk+1 − yk+1 ,
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dove abbiamo posto h = i− 1 nell’ultima sommatoria.

Esempio 4.9 Studiamo nuovamente i semi di pomodoro degli Esempi 4.1 e 4.7.
Sai già che alla temperatura di 12 ◦C germoglia il 40% dei semi, alla temperatura
di 15 ◦C germoglia il 70% dei semi, e che alla temperatura di 9 ◦C germoglia il 20%
dei semi. Non contento, il tuo assistente effettua un’ulteriore misura, scoprendo
che alla temperatura di 18 ◦C germoglia l’85% dei semi. Trova un polinomio di
terzo grado che rappresenta questi dati. Dobbiamo trovare a0, a1, a2, a3 ∈ R che
soddisfano il sistema 

729a3 + 81a2 + 9a1 + a0 = 20 ,
1728a3 + 144a2 + 12a1 + a0 = 40 ,
3375a3 + 225a2 + 15a1 + a0 = 70 ,
5832a3 + 324a2 + 18a1 + a0 = 85 .

La prima serie di sottrazioni ci dà{ 999a3 + 63a2 + 3a1 = 20 ,
1647a3 + 81a2 + 3a1 = 30 ,
2457a3 + 99a2 + 3a1 = 15 .

Siccome i coefficienti di a1 sono uguali nelle tre equazioni, non abbiamo bisogno
di effettuare divisioni e possiamo procedere direttamente con la seconda serie di
sottrazioni: { 648a3 + 18a2 = 10 ,

810a3 + 18a2 = −15 .

L’ultima sottrazione ci dà 162a3 = −25, cioè a3 = −25/162. Mettendo questo
valore nelle equazioni precedenti e risalendo troviamo a2 = 55/9, a1 = −1265/18,
e a0 = 270, per cui il polinomio cercato è

P (T ) = − 25
162

T 3 +
55
9

T 2 − 1265
18

T + 270 .

La Figura 4.8 contiene sia i dati sia i grafici delle funzioni che abbiamo ottenuto
nei vari esempi.

Osservazione 4.24 Gli Esempi 4.1, 4.7 e 4.9 mostrano che i conti nel metodo
delle differenze sono più semplici se le ascisse x0, . . . , xn sono equispaziate, cioè
se x1 − x0 = x2 − x1 = · · · = xn−1 − xn.

Esercizio 4.2 Usa il metodo dei minimi quadrati per determinare la retta di
regressione per i dati dell’Esempio 4.9, calcola il coefficiente di Pearson, e confronta
pregi e difetti delle varie formule (retta di regressione inclusa) che abbiamo trovato
per rappresentare la relazione fra temperatura e percentuale di semi germinati.

L’ultima osservazione che ci servirà riguarda le radici di un polinomio. Una
radice di un polinomio f(x) è un numero reale x0 ∈ R tale che f(x0) = 0. La regola
di Ruffini dice che x0 ∈ R è radice del polinomio f se e solo se esiste un polinomio q
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tale che f(x) = (x−x0)q(x), dove q ha grado minore di uno rispetto al grado di f .
Ora, se x0 è radice anche di q, deve esistere un terzo polinomio q1, di grado minore
di quello di q, tale che q(x) = (x − x0)q1(x), per cui f(x) = (x − x0)2q1(x).
Ripetendo questo procedimento, prima o poi troveremo un numero naturale r > 0
(e minore o uguale del grado di f) e un polinomio qr tali che

f(x) = (x− x0)rqr(x) con qr(x0) 6= 0 ;

il numero r è detto molteplicità di x0 come radice di f .

Curiosità 4.7 Se qr ha una radice x1 di molteplicità s > 0, possiamo ripetere questa costruzione
con qr, trovando un polinomio ps tale che f(x) = (x − x0)r(x − x1)sps(x). Procedendo in
questo modo si riesce a dimostrare che ogni polinomio f si può scrivere in modo unico come
prodotto

f(x) = ap1(x)r1 · · · p2(x)rk , (4.17)

dove a ∈ R è il coefficiente direttore di f , r1, . . . , rk sono numeri interi maggiori di zero, e
p1, . . . , pr sono polinomi monici (cioè con coefficiente direttore uguale a 1) irriducibili (cioè
non si possono scrivere come prodotto di due altri polinomi monici). I polinomi irriducibili
sono l’equivalente per i polinomi dei numeri primi per i numeri naturali; e (4.17) è l’equivalente
della decomposizione in fattori primi di un numero intero. Infine, si può anche dimostrare
che i polinomi monici irriducibili a coefficienti reali sono o polinomi lineari della forma x− x0

oppure polinomi quadratici senza radici reali (cioè con discriminante negativo).
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4.5 Funzioni potenza

Un’altra famiglia importante di funzioni è costituito dalle funzioni potenza, che
sono funzioni della forma

f(x) = axp ,

dove a 6= 0 è un numero reale e p è un numero razionale (ma vedi anche l’Osserva-
zione 4.26), detto esponente della funzione potenza.

Osservazione 4.25 Se p è un numero naturale, p ∈ N = {0, 1, 2, . . .}, la funzione
f(x) = axp è una particolare funzione polinomiale, e quindi è definita su tutta la
retta reale: f : R → R. Se p è un numero intero negativo, p ∈ Z− = {−1,−2, . . .},
la funzione f è una particolare funzione razionale (vedi la prossima sezione) ed è
definita per x 6= 0, cioè f : R∗ → R. Infine, se p è un numero razionale non intero,
p ∈ Q \ Z, allora f è definita solo per x ≥ 0, cioè f : R+ → R.

Osservazione 4.26 Come vedremo nelle Sezioni 4.7 e 4.8 e nel prossimo capitolo, è
possibile dare un senso anche alle potenze irrazionali di un numero non negativo,
per cui potremo considerare funzioni potenza con esponente qualsiasi (ma solo con
argomento reale non negativo).

Curiosità 4.8 Supponiamo che p ∈ R \ Q sia un numero irrazionale, e x ∈ R+ un numero non
negativo. Siccome i numeri razionali possono approssimare bene quanto vogliamo qualsiasi
numero reale, un modo per calcolare la potenza irrazionale xp si basa sul fatto che esiste un
numero reale y tale che la potenza razionale xq è arbitrariamente vicina a y non appena q
è un numero razionale sufficientemente vicino a p; allora si pone xp = y. Quindi le potenze
razionali forniscono approssimazioni arbitrariamente buone delle potenze irrazionali. Un altro
modo per esprimere questo concetto è dire che per ogni ε > 0 (arbitrariamente piccolo) esiste
un δ > 0 (sufficientemente piccolo) tale che se q è un numero razionale che dista da p meno
di δ (cioè |q − p| < δ) allora xq dista da y meno di ε (cioè |xq − y| < ε).

Le funzioni potenza axp con p ∈ N hanno un comportamento molto simile a
quello di ax se p è dispari, e a quello di ax2 se p è pari. Infatti, con le tecniche
viste nelle Sezioni 4.1 e 4.2 è facile dimostrare (esercizio per te e il tuo assistente)
che

– se p è dispari, la funzione f(x) = axp è monotona (crescente se a > 0, decre-
scente se a < 0), e

lim
x→±∞

axp =
{
±∞ se a > 0 ,
∓∞ se a < 0 ;

– se p è pari (e non nullo), la funzione f(x) = axp ha un punto di minimo (se
a > 0) o un punto di massimo (se a < 0) in x = 0, è monotona (crescente o
decrescente a seconda del segno di a), nelle semirette (−∞, 0] e [0,+∞), e

lim
x→±∞

axp =
{+∞ se a > 0 ,
−∞ se a < 0 .

Osservazione 4.27 Nota che il tipo di monotonia su R+ = [0,+∞) e il limite a +∞
di axp dipende solo dal segno di a e non dalla parità di p.
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Osservazione 4.28 Il confronto fra funzioni potenza con diverso esponente può for-
nire interessanti conseguenze biologiche legate a questioni di scala. Prendiamo un
particolare individuo di una data specie animale (o vegetale), e scegliamo una sua
lunghezza caratteristica `: per esempio, possiamo indicare con ` il diametro della
testa. Tutte le altre lunghezze di questo particolare individuo sono banalmente pro-
porzionali a `: i coefficienti di proporzionalità si ottengono semplicemente dividendo
per ` la lunghezza che si vuole considerare. Se ora prendiamo un altro individuo
della stessa specie, i coefficienti di proporzionalità delle sue lunghezze rispetto a `
saranno un po’ diversi, ma non troppo diversi: per esempio, il secondo individuo
sarà un po’ più alto o un po’ più basso, ma facendo parte della stessa specie è molto
improbabile che sia alto più del doppio o meno della metà. Quindi possiamo consi-
derare questa lunghezza ` come rappresentativa della specie; tutte le altre lunghezze
in tutti gli altri individui della stessa specie saranno proporzionali a ` con coeffi-
cienti di proporzionalità approssimativamente costanti. Di conseguenza, tutte le
superfici di individui della stessa specie saranno proporzionali a `2, con coefficienti
di proporzionalità approssimativamente costanti; e tutti i volumi saranno propor-
zionali a `3, con coefficienti di proporzionalità approssimativamente costanti. Ora,
i fenomeni di scambio con l’esterno (assorbimento di ossigeno, emissione di calore,
eccetera) di un individuo avvengono usualmente attraverso la superficie, e quindi
avranno andamenti proporzionali a `2; invece, i fenomeni metabolici (consumo di
ossigeno, produzione di calore, eccetera) sono di solito proporzionali al volume (al
numero di cellule coinvolte), e quindi proporzionali a `3. La conseguenza di tutto
ciò è che (come sarà chiarito dai prossimi esempi) non è possibile variare eccessiva-
mente le dimensioni di una data specie animale senza danneggiare l’equilibrio fra
il metabolismo interno e l’ambiente esterno che le permette di vivere; in un certo
senso, i rapporti fra il metabolismo e la forma di una specie ne determinano le
dimensioni ideali.

Esempio 4.10 Con buona pace dei film dell’orrore, un ragno gigante, ottenuto
ingrandendo 100 volte un ragno usuale, ha poche possibilità di sopravvivere. Il
consumo di ossigeno è proporzionale al volume del ragno, volume che è passato da
un multiplo di `3 a un uguale multiplo di (10`)3 = 1000`3. D’altra parte, l’assorbi-
mento di ossigeno è proporzionale alla superficie interna dei polmoni, superficie che
è passata da un multiplo di `2 a un uguale multiplo di (10`)2 = 100`2. Il consumo
di ossigeno è quindi aumentato di 1000 volte, mentre l’assorbimento di ossigeno
solo di 100 volte; il ragno gigante riceve solo 1/10 dell’ossigeno che gli servirebbe,
e quindi muore soffocato sotto gli occhi increduli dell’eroe del film.

In maniera analoga, con buona pace dei film di fantascienza, un uomo rimpiccio-
lito di 10 volte si sentirebbe piuttosto male. Infatti, la perdita di calore attraverso
l’epidermide è proporzionale alla superficie del corpo, cioè a `2, e quindi si è ridotta
di 1/100. Ma il calore prodotto dal corpo umano, necessario alla nostra sopravvi-
venza visto che siamo animali a sangue caldo, è proporzionale al volume del corpo,
cioè a `3, e quindi si è ridotto di 1/1000. Quindi un uomo rimpicciolito 10 volte per-
derebbe attraverso l’epidermide 10 volte più calore di quello che produce, e quindi
probabilmente morirebbe di freddo.



4.6 Funzioni razionali 159

Osservazione 4.29 La superficie di assorbimento dell’ossigeno nei polmoni in realtà
ha una struttura frastagliata, di tipo frattale, e di conseguenza che l’assorbimento
di ossigeno è più efficiente diventando proporzionale a `p con p > 2; ma in ogni
caso non raggiunge `3.

Esempio 4.11 È noto che la forza muscolare di un muscolo delle gambe è ap-
prossimativamente proporzionale al numero di fibre muscolari che lo compongono,
e quindi è proporzionale alla superficie trasversa del muscolo, cioè a `2. Inoltre,
l’energia prodotta dal muscolo è proporzionale alla forza per la lunghezza, e quindi
è uguale a c1`

3 per un’opportuna costante c1 > 0. D’altra parte, l’energia neces-
saria per un salto di altezza h è proporzionale al prodotto dell’altezza per il peso
del corpo, e quindi è uguale a c2h`3 per un’opportuna costante c2 > 0. Ne segue
che la massima altezza possibile h di un salto deve soddisfare c1`

3 = c2h`3, cioè
h = c1/c2; in particolare, h non dipende da `.

Ora, una pulce comune è in grado di saltare a un’altezza pari a 200 volte la
propria altezza; quanto sarà in grado di saltare una pulce 10 volte più grande? E
una pulce 100 volte più grande? La pulce comune è in grado di saltare a un’al-
tezza h = 200c3` per una costante c3 > 0 opportuna. Una pulce 10 volte più grande
avrà lunghezza caratteristica 10`, ma uguali costanti di proporzionalità c1, c2 e c3.
Siccome la massima altezza possibile per un salto dipende solo dalle costanti di
proporzionalità, la pulce 10 volte più grande può saltare solo alla stessa altezza
della pulce comune, e quindi al massimo a 20 volte la propria altezza. Analoga-
mente, una pulce 100 volte più grande riuscirà a saltare solo il doppio della propria
altezza, e una pulce mastodontica 1000 volte più grande della pulce comune riuscirà
a saltare solo un quinto della propria altezza. Per intenderci, se una pulce comune
alta circa 1 mm riesce a saltare 20 cm, una pulce alta 1 metro riuscirebbe a saltare
sempre soltanto 20 cm. . .

Le funzioni f(x) = axp con esponente p ∈ Q+ \ N razionale positivo non intero
sono definite solo su R+, e hanno comportamento analogo a quelle con esponente
naturale: sono crescenti se a > 0, decrescenti se a < 0, e il loro limite all’infinito
è uguale a ±∞ a seconda del segno di a. La Figura 4.9 contiene il grafico di
alcune di queste (con a = 1). Nota che quelle con esponente maggiore di 1 hanno
la concavità rivolta verso l’alto, mentre quelle con esponente minore di 1 hanno
la concavità rivolta verso il basso. Nel prossimo capitolo vedremo come verificare
rigorosamente questa affermazione.

Più interessanti sono le funzioni f(x) = axp con p ∈ Q−; siccome (almeno
quando p ∈ Z−) sono funzioni razionali, le discutiamo nella prossima sezione (Os-
servazione 4.31).

4.6 Funzioni razionali

Una funzione razionale è un quoziente di polinomi:

f(x) =
amxm + am−1x

m−1 + · · ·+ a0

bnxn + bn−1xn−1 + · · ·+ b0
,
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Figura 4.9 Funzioni potenza.

con m, n ∈ N, a0, . . . , am, b0, . . . , bn ∈ R e am, bn 6= 0 (e di solito si assume anche
n ≥ 1, perché altrimenti f sarebbe un polinomio); il numero d = max{m, n} è
detto grado della funzione razionale. Ovviamente, lo studio dell’andamento delle
funzioni razionali generiche, come per i polinomi, richiede strumenti che ancora non
abbiamo; a parte alcune osservazioni finali, ci concentreremo quindi sulle funzioni
razionali di grado 1, note anche come funzioni lineari fratte.

L’esempio più semplice di funzione lineare fratta è la funzione (potenza)

f(x) =
a

x
= ax−1 ,

con a 6= 0. Rappresenta le relazioni di proporzionalità inversa: infatti, un punto
(x, y) appartiene al grafico di f se e solo se

xy = a ,

per cui il prodotto fra l’argomento e il valore della funzione è costante su tutto il
dominio della funzione.

Osservazione 4.30 In particolare, basta conoscere un punto (x0, y0) del grafico per
determinare la funzione a/x, in quanto a = x0y0.

La prima osservazione importante è che la funzione f(x) = a/x non è definita
su tutto l’asse reale: il suo dominio non è R. Infatti, il quoziente a/x non è definito
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per x = 0, per cui la funzione f è definita solo su R∗ = R \ {0}. Si dice anche che
0 è una singolarità per la funzione f .

Quando una funzione ha una singolarità (un punto in cui non è definita), è
importante cercare di capire come si comporta vicino alla singolarità. Cominciamo
supponendo a > 0 e x > 0. Quando x > 0 diventa piccolo (per esempio, mi-
nore di 1/n per n arbitrariamente grande) allora 1/x diventa grande (per esempio,
maggiore di n) e quindi anche a/x diventa grande (per esempio, maggiore di an).
In altre parole, possiamo rendere f(x) = a/x arbitrariamente grande a patto di
scegliere x sufficientemente piccolo e positivo.

Abbiamo già visto come tradurre in simboli i concetti di “arbitrariamente
grande” e “sufficientemente grande”; una procedura analoga si usa per il concetto
di “sufficientemente piccolo”. La frase precedente diventa: per ogni M > 0 (arbi-
trariamente grande) esiste δ > 0 (sufficientemente piccolo) tale che se 0 < x < δ
allora f(x) > M . In simboli,

∀M > 0 ∃δ > 0: 0 < x < δ =⇒ f(x) > M .

Usando la terminologia dei limiti, diremo che il limite di f(x) per x che tende a 0
da destra (o da sopra, o che tende a 0+) è +∞:

lim
x→0+

f(x) = +∞ .

Quando x < 0 negativo diventa piccolo (in valore assoluto), 1/x diventa grande
in valore assoluto ma rimane negativo, cioè diventa molto negativo. Quindi, sem-
pre assumendo a > 0, possiamo rendere f(x) = a/x arbitrariamente negativa a
patto di scegliere x sufficientemente piccolo e negativo. In altre parole, per ogni
M > 0 (arbitrariamente grande) esiste δ > 0 (sufficientemente piccolo) tale che se
−δ < x < 0 allora f(x) < −M . In simboli,

∀M > 0 ∃δ > 0: −δ < x < 0 =⇒ f(x) < −M .

Usando la terminologia dei limiti, diremo che il limite di f(x) per x che tende a 0
da sinistra (o da sotto, o che tende a 0−) è −∞:

lim
x→0−

f(x) = −∞ .

Una conseguenza di questo comportamento è che il grafico di f si avvicina sempre
più all’asse delle ordinate quando x tende a zero (si avvicina in alto se x > 0,
in basso se x < 0). Si dice che l’asse delle ordinate è un asintoto verticale della
funzione f .

Ovviamente, se a < 0 i segni si invertono; lascio a te il compito di dimostrare
che

se a < 0 allora lim
x→0±

f(x) = ∓∞ ,

e di scrivere a parole e in simboli il significato di questa formula.
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Vediamo ora cosa succede allontanandoci da zero. Cominciamo come al solito
supponendo a > 0. Se 0 < x0 < x1 allora 0 < 1/x1 < 1/x0 e 0 < a/x1 < a/x0;
quindi 0 < x0 < x1 implica f(x0) > f(x1) > 0, per cui f è strettamente decre-
scente nella semiretta (0,+∞). In modo analogo si dimostra che f è strettamente
decrescente (ma negativa) nella semiretta (−∞, 0). Se invece a < 0 s’inverte tutto;
riassumendo,

– se a > 0, la funzione f(x) = a/x è strettamente decrescente e negativa in
(−∞, 0), mentre è strettamente decrescente e positiva in (0,+∞);

– se a < 0, la funzione f(x) = a/x è strettamente crescente e positiva in (−∞, 0),
mentre è strettamente crescente e negativa in (0,+∞).

In particolare, quando x diventa grande (e a > 0) la funzione f(x) = a/x decresce
rimanendo positiva e diventando arbitrariamente piccola. Una cosa simile accade
quando x diventa molto negativo (e quando a < 0): cambia il segno, cambia la
crescenza, ma in ogni caso f(x) diventa arbitrariamente piccolo in valore assoluto
a patto di scegliere x sufficientemente grande o sufficientemente negativo. Ormai
avrai capito il trucco per tradurre espressioni quali “arbitrariamente piccolo”: la
frase precedente diventa “per ogni ε > 0 (arbitrariamente piccolo) esiste M > 0
(sufficientemente grande) tale che se x > M o x < −M allora |f(x)| < ε”. In
simboli,

∀ε > 0 ∃M > 0: x > M o x < −M =⇒ |f(x)| < ε ,

o anche
lim

x→±∞
f(x) = 0 ,

che si legge “il limite di f(x) per x che tende a ±∞ è 0”, o anche “f(x) tende
a 0 per x che tende a ±∞”. Una conseguenza di questo comportamento è che il
grafico di f si avvicina sempre più all’asse delle ascisse quando x tende a ±∞ (si
avvicina da sopra a +∞ se a > 0 e a −∞ se a < 0, e da sotto a −∞ se a > 0
e a +∞ se a < 0). Si dice che l’asse delle ascisse è un asintoto orizzontale della
funzione f . La Figura 4.10 contiene il grafico di f(x) = a/x con a > 0, che
riassume visivamente tutte le proprietà che abbiamo discusso, asintoti compresi.
Questo grafico è un esempio di iperbole equilatera8.

Osservazione 4.31 Le funzioni potenza f(x) = axp con p razionale negativo pos-
sono venire studiate con tecniche analoghe. In particolare, su (0,+∞) sono tutte
positive e strettamente decrescenti (se a > 0, o negative e crescenti se a < 0),
hanno limite 0 a +∞ con la retta delle ascisse come asintoto orizzontale, e limite
±∞ (a seconda del segno di a) per x che tende a 0+, con la retta delle ordinate
come asintoto verticale. Su (−∞, 0) sono definite solo quando p ∈ Z−, e in tal caso
hanno un andamento analogo a quello di a/x in (−∞, 0) se p è dispari, e a quello

8 Il termine “equilatera” serve a indicare che i due asintoti sono ortogonali. In generale,
un’iperbole è il luogo dei punti del piano per cui il valore assoluto delle differenze delle
distanze da due punti dati (detti fuochi) è costante. Un’iperbole ha sempre due asintoti,
ma non sono necessariamente ortogonali.
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Figura 4.10 f(x) = 1/x.

di |a/x| se p è pari. In particolare, se p è pari abbiamo che f(x) diventa arbitraria-
mente grande a patto di prendere x sufficientemente piccolo in valore assoluto, cioè
per ogni M > 0 (arbitrariamente grande) esiste δ > 0 (sufficientemente piccolo)
tale che 0 < |x| < δ implica f(x) > M , ovvero

lim
x→0

f(x) = +∞

senza bisogno di distinguere se x tende a 0 da destra o da sinistra.

Lo studio di qualsiasi funzione razionale fratta può venire ricondotto a quello
di a/x, proprio come avevamo ricondotto lo studio di qualsiasi funzione quadratica
a quello di x2. Infatti, se c 6= 0 si ha

ax + b

cx + d
=

(a/c)x + b/c

x + d/c
=

a
c (x + d/c) + b

c − ad
c2

x + d/c
=

a

c
+

(bc− ad)/c2

x + d/c
. (4.18)

Ricordando la Sezione 4.2 vediamo che il grafico di f(x) = (ax + b)/(cx + d) si
ottiene a partire da quello di 1/x con le seguenti operazioni:
– moltiplichiamo le ordinate per (bc− ad)/c2;
– sottraiamo a/c alle ordinate, traslando il grafico in direzione verticale della

quantità a/c;
– sommiamo d/c alle ascisse, traslando il grafico in direzione orizzontale della

quantità −d/c.
Quindi la funzione f(x) = (ax + b)/(cx + d) soddisfa le seguenti proprietà:
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– ha una singolarità in x0 = −d/c;
– il suo grafico è un’iperbole equilatera con asintoto orizzontale la retta y = a/c

e asintoto verticale la retta x = −d/c;
– nelle semirette (−∞,−d/c) e (−d/c, +∞) è strettamente decrescente se si

ha bc − ad > 0, mentre se bc − ad < 0 è strettamente crescente nelle stesse
semirette (ed è costante se bc− ad = 0).

La presenza dell’asintoto orizzontale y = a/c vuol dire che f(x) è arbitrariamente
vicina al valore a/c non appena x è sufficientemente grande o sufficientemente nega-
tivo. Ora, f(x) è arbitrariamente vicina ad a/c se e solo se la differenza f(x)− a/c
è arbitrariamente piccola in valore assoluto. Quindi dire che y = a/c è un asin-
toto orizzontale per f equivale a dire che per ogni ε > 0 (arbitrariamente piccolo)
esiste M > 0 (sufficientemente grande) tale che se x > M o x < −M allora
|f(x)− a/c| < ε. In simboli,

∀ε > 0 ∃M > 0: x > M o x < −M =⇒ |f(x)− a/c| < ε ,

o anche
lim

x→±∞
f(x) = a/c .

Analogamente, la presenza dell’asintoto verticale x = −d/c vuol dire che f(x) è ar-
bitrariamente grande (o arbitrariamente negativa) non appena x è sufficientemente
vicino a x0 = −d/c. Ora, x è sufficientemente vicina a x0 se e solo se la diffe-
renza x−x0 è arbitrariamente piccola. Quindi dire che x = x0 è un asintoto verticale
per f equivale (almeno quando bc − ad > 0) a dire che per ogni M > 0 (arbitra-
riamente grande) esiste ε > 0 (sufficientemente piccolo) tale che se 0 < x− x0 < ε
allora f(x) > M , e se −ε < x − x0 < 0 allora f(x) < −M . Usando il simbolo di
limite questo si scrive

lim
x→x+

0

f(x) = +∞ e lim
x→x−0

f(x) = −∞ .

Lascio a te il compito di scrivere cosa succede se bc−ad < 0. La Figura 4.11 contiene
il grafico di una funzione lineare fratta con rappresentati anche gli asintoti.

Osservazione 4.32 Una conseguenza immediata di (4.18) è che i punti (x, y) del
grafico di f(x) = (ax + b)/(cx + d) sono tutti i punti del piano che soddifano la
condizione

(x− α)(y − β) = k

con α = −d/c, β = a/c e k = (bc− ad)/c2.

Osservazione 4.33 Abbiamo visto cosa vuol dire che una funzione ha limite infinito
quando x tende all’infinito; cosa vuol dire che ha limite un valore finito quando x
tende all’infinito; e cosa vuol dire che ha limite infinito quando x tende a un valore
finito (da destra, da sinistra o da entrambi i lati). Rimane da dire cosa vuol dire
che ha limite un valore finito quando x tende a un valore finito. La definizione non
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Figura 4.11 f(x) = (x + 1)/(x− 1).

dovrebbe stupirti: diremo che la funzione f ha limite ` quando x tende a x0, e
scriviamo

lim
x→x0

f(x) = `

se f(x) si avvicina arbitrariamente a ` a patto di prendere x sufficientemente vicino
a x0, o, in altre parole, se per ogni ε > 0 (arbitrariamente piccolo) esiste δ > 0
(sufficientemente piccolo) tale che 0 < |x− x0| < δ implica |f(x)− `| < ε.

Osservazione 4.34 La condizione 0 < |x − x0| < δ è equivalente a richiedere
0 < x − x0 < δ oppure −δ < x − x0 < 0. Utilizzando solo una di queste due
condizioni otteniamo (come visto prima) il concetto di limite per x che tende a x0

da sopra (cioè x→ x+
0 ) oppure da sotto (cioè x→ x−0 ).

Curiosità 4.9 Possiamo usare il concetto di limite per definire la continuità di una funzione. Per
l’esattezza, una funzione f : I → R, dove I ⊆ R è un intervallo, è continua in un punto x0 ∈ I
se

lim
x→x0

f(x) = f(x0) ,

cioè se il suo valore in x0 coincide con il suo limite (sia da sopra che da sotto) in x0, o, ancora,
se f(x) diventa arbitrariamente vicino a f(x0) a patto di prendere x sufficientemente vicino
a x0. La funzione f : I → R è poi detta continua se lo è in ogni punto del suo dominio I.

Vediamo ora un’applicazione biologica delle funzioni lineari fratte.
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Esempio 4.12 In un esperimento si trova9 che la velocità v (in cm/sec) con cui
un muscolo sartorio della coscia di una rana si espande per sollevare un peso p (in
grammi) soddisfa la relazione

v(p) = 0.95
(

70− p

p + 12

)
.

In particolare, questa funzione ha una singolarità in p = −12; ma siccome chiara-
mente ci interessa solo per p ≥ 0, la presenza della singolarità non è un problema.
È una funzione lineare fratta della forma (ax+b)/(cx+d) con a = −0.95, b = 66.5,
c = 1 e d = 12. In particolare, (bc− ad)/c2 = 77.9 > 0 per cui v è strettamente de-
crescente per p > −12 (in altre parole, maggiore il peso più lentamente si estende il
muscolo, osservazione piuttosto ragionevole). Di conseguenza, la massima velocità
di estensione si ha per p = 0, cioè in assenza di carico, e vale v(0) ' 5.54 cm/sec. Il
limite all’infinito a/c = −0.95 è negativo; dunque il grafico deve intersecare l’asse
delle ascisse. Infatti v(70) = 0, che vuol dire che se p = 70 g la gamba della rana
non riesce a espandersi (velocità zero!), cioè la rana non riesce a sollevare un peso
di 70 g (o maggiore). In particolare, questa formula può essere valida solo per valori
di p nell’intervallo [0, 70].

Vediamo ora cosa possiamo dire sul comportamento di una funzione razionale
qualsiasi

f(x) =
p(x)
q(x)

=
amxm + am−1x

m−1 + · · ·+ a0

bnxn + bn−1xn−1 + · · ·+ b0
. (4.19)

Cominciamo col capire dove è definita. Gli unici punti in cui potrebbero esserci dei
problemi sono le radici del denominatore q. Se x0 è una radice di q e il numeratore
non si annulla in x0, cioè p(x0) 6= 0, allora per calcolare f(x0) dovremmo dividere
per zero, che non è possibile; quindi le radici del denominatore che non sono radici
del numeratore sono sicuramente singolarità per f . Se invece x0 è radice anche
del numeratore, dobbiamo confrontare le molteplicità. Nella Sezione 4.4 abbiamo
visto che se x0 è radice sia di p che di q possiamo scrivere p(x) = (x − x0)rp1(x)
e q(x) = (x− x0)sq1(x) con p1(x0), q1(x0) 6= 0. Quindi

f(x) =
(x− x0)rp1(x)
(x− x0)sq1(x)

= (x− x0)r−s p1(x)
q1(x)

. (4.20)

Ma allora se r ≥ s il punto x0 non è una singolarità di f , in quanto q1(x0) 6= 0;
invece x0 rimane una singolarità di f se r < s, perché in tal caso è (x − x0)r−s

ad avere una singolarità in x0 (l’esponente è negativo). Inoltre (4.20) implica che,
semplificando un’opportuna potenza di x−x0, possiamo esprimere f come quoziente
di polinomi tali che x0 non sia una radice comune di numeratore e denominatore.
Ripetendo questo procedimento per tutte le radici del denominatore troviamo che

9 Nella Sezione 4.9 vedremo come il metodo dei minimi quadrati può essere usato anche
per interpolare funzioni lineari fratte.
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ogni funzione razionale si può esprimere come rapporto di polinomi privi di radici
comuni, e in tal caso le singolarità coincidono con le radici del denominatore.

Supponiamo allora che f(x) = p(x)/q(x) sia una funzione razionale tale che p
e q non abbiano radici comuni, e sia x0 una radice del denominatore di moltepli-
cità r > 0. Per quanto visto possiamo scrivere

f(x) =
1

(x− x0)r

p(x)
q1(x)

con p(x0), q1(x0) 6= 0 .

In particolare, p(x)/q1(x) ammette limite finito non nullo ` = p(x0)/q1(x0) per x
che tende a x0, per cui il comportamento di f(x) per x vicino a x0 sarà analogo
a quello di `/(x − x0)r. In particolare, il limite di f(x) per x che tende a x0 (da
sopra o da sotto) sarà uguale a quello di `/(x−x0)r, e quindi varrà ±∞ a seconda
del segno di ` e della parità di r (e se x tende a x0 da sopra o da sotto). In ogni
caso, la retta x = x0 è un asintoto verticale.

Osservazione 4.35 Nel ragionamento precedente abbiamo implicitamente usato al-
cune proprietà algebriche dei limiti. Per l’esattezza, le seguenti formule valgono
quasi sempre:

lim
x→x0

[f(x) + g(x)] = lim
x→x0

f(x) + lim
x→x0

g(x) ,

lim
x→x0

[f(x)g(x)] = lim
x→x0

f(x) · lim
x→x0

g(x) ,

lim
x→x0

f(x)
g(x)

=
lim

x→x0
f(x)

lim
x→x0

g(x)
se lim

x→x0
g(x) 6= 0 .

(4.21)

Il “quasi” si riferisce al fatto che possono sorgere dei problemi se qualcuno di questi
limiti è infinito. In particolare, se a secondo membro otteniamo una delle seguenti
forme indeterminate

+∞−∞ , ±∞ · 0 ,
±∞
±∞ ,

allora per scoprire quanto fa il limite a primo membro (ammesso che esista!) ab-
biamo bisogno di maggiori informazioni (e di metodi che vedremo nel prossimo
capitolo). Altre apparizioni di limiti infiniti non creano grossi problemi, invece: se
poniamo

+∞+∞ = +∞ , −∞−∞ = −∞ ,

`±∞ = ±∞ per ` ∈ R ,

` · ±∞ =
±∞

`
= ±∞ per ` > 0 , ` · ±∞ =

±∞
`

= ∓∞ per ` < 0 ,

allora le formule (4.21) rimangono valide (come pure rimangono valide se al posto
di x0 mettiamo ±∞). Infine, anche lo studio del limite di un quoziente quando il de-
nominatore tende a zero richiede maggiori informazioni. Se il limite del numeratore
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è non nullo (o infinito), il limite del valore assoluto del quoziente è +∞, ma il limite
del quoziente potrebbe essere +∞, −∞ o non esistere affatto. Infine, se anche il
limite del numeratore è nullo siamo in presenza della forma indeterminata 0/0, che
studieremo nel prossimo capitolo.

Infine, vediamo cosa possiamo dire sul comportamento di una funzione razio-
nale f , scritta nella forma (4.19), quando x tende all’infinito. Abbiamo visto (nella
Sezione 4.4) che per |x| abbastanza grande, p(x) si comporta come amxm e q(x) si
comporta come bnxn; quindi f(x) si comporta come

amxm

bnxn
=

am

bn
xm−n

quando |x| è abbastanza grande.

Curiosità 4.10 Per l’esattezza, quanto visto nella Curiosità 4.5 ci dice che esiste un R > 0
sufficientemente grande tale che se |x| > R e amxm, bnxn > 0 allora 1

2
amxm ≤ p(x) ≤ 3

2
amxm

e 1
2
bnxn ≤ q(x) ≤ 3

2
bnxn, per cui

1

3

am

bn

xm−n ≤ p(x)

q(x)
= f(x) ≤ 3

am

bn

xm−n .

Stime analoghe si ottengono anche per gli altri possibili segni di amxm e bnxn.

Di conseguenza,

lim
x→±∞

f(x) = lim
x→±∞

am

bn
xm−n =


0 se n > m ,
am

bn
se n = m ,

±∞ se n < m ,

dove il segno nell’ultimo caso dipende dal segno di am/bn, dalla parità di m− n, e
da dove si sta calcolando il limite (se a +∞ o a −∞).

Esempio 4.13 La legge che descrive il comportamento delle lenti convesse sottili
è

1
u

+
1
v

=
1
f

, (4.22)

dove u è la distanza fra l’oggetto e il centro della lente, v è la distanza fra l’immagine
e il centro della lente, e f è la lunghezza focale. Vogliamo studiare la dipendenza
della distanza s = u + v fra oggetto e immagine dalla distanza u dell’oggetto da
una lente di lunghezza focale f = 10 cm. Siccome v = s− u, otteniamo

1
10

=
1
u

+
1

s− u
=

s

u(s− u)
=⇒ u(s− u) = 10s =⇒ s =

u2

u− 10
.

Quindi la dipendenza è data da una funzione razionale di grado 2. Notiamo prima
di tutto che s ha una singolarità in u = 10: questo vuol dire che quando l’oggetto
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si avvicina al fuoco della lente allora l’immagine scappa all’infinito (in quanto s(u)
tende a +∞ per u che tende a 10+). Se u < 10 allora s diventa negativa, cosa
fisicamente insensata; ma infatti la legge (4.22) vale solo per u, v ≥ f .

Siccome il grado del numeratore è maggiore del grado del denominatore, e i
coefficienti dei termini di grado massimo del numeratore e del denominatore sono
positivi, abbiamo che s tende a +∞ quando u tende all’infinito. Detta cos̀ı è
un’affermazione fisicamente ovvia: se l’oggetto scappa all’infinito, la distanza dal-
l’immagine (che è dall’altro lato della lente) tende all’infinito. Possiamo renderla
però più interessante notando che

u2

u− 10
=

u(u− 10) + 10u

u− 10
= u +

10(u− 10) + 100
u− 10

= u + 10 +
100

u− 10
.

Siccome 100/(u − 10) tende a zero quando u tende a +∞, vediamo che s si com-
porta come u+10 quando u diventa grande10. Ma s = u+v; quindi v = s−u tende
a 10 quando u tende all’infinito — che fisicamente vuol dire che quando l’oggetto
scappa all’infinito l’immagine si avvicina quanto vogliamo al fuoco della lente.

Dunque s tende all’infinito sia quando u tende a +∞ sia quando u tende a 10+.
Ma allora la funzione s non può essere monotona nella semiretta (10,+∞); inoltre,
scappando all’infinito a entrambi gli estremi di (10, +∞), sembra molto ragione-
vole supporre che abbia almeno un punto di minimo all’interno di questo intervallo.
Questo punto di minimo è chiaramente interessante, in quanto ci permette di tro-
vare la distanza minima fra l’oggetto e l’immagine; vedremo nel prossimo capitolo
come fare per (dimostrare che esiste e) trovare questo punto. La Figura 4.12 con-
tiene il grafico della funzione s assieme all’asintoto verticale e all’asintoto obliquo11.

4.7 Funzioni esponenziali

4.8 Funzioni logaritmiche

4.9 Tecniche di interpolazione

4.10 Funzioni trigonometriche

10 E infatti il grafico di s si avvicina sempre più alla retta grafico di u + 10; si dice che
questa retta è un asintoto obliquo per il grafico di s.
11 S̀ı, il grafico di s è un’iperbole non equilatera.
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Figura 4.12 s(u) = u2/(u− 10).


