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Bestiario

In questo capitolo presenteremo le principali classi di funzioni reali di variabile reale
che si incontrano nella pratica scientifica. Vedremo anche alcune delle tecniche
principali per trovare funzioni di un certo tipo che approssimano meglio possibile
dei dati sperimentali.

4.1 Funzioni lineari

Le funzioni reali di variabile reale pitt semplici (dopo le costanti. .. ) sono le funzioni
lineari. Rappresentano relazioni di proporzionalita: una funzione ¢ lineare se il suo
valore varia in modo proporzionale alla variazione dell’argomento. In altre parole,
una funzione f ¢ lineare se esiste un numero reale m € R (di solito non nullo)
tale che se la variabile indipendente x varia di una quantita p allora la variabile
dipendente f(x) varia di mp.

Vediamo come si deduce da questa definizione la formula che descrive una
funzione lineare. Supponiamo di variare il valore della variabile indipendente
da zg a x; la variazione e quindi uguale a p = x — x¢, e tradizionalmente si
indica con Az = z — xp. Se f:R — R & una funzione lineare, la variazione
Af = f(x) — f(xo) del suo valore deve soddisfare la relazione

Af=mAzx.
Inserendo in questa formula le definizioni di Af e Az otteniamo
f(@) = f(zo) = Af =mAz = m(z — 20) ,

per cui
flx)=mz+d, (4.1)
con d = f(xg) — mzyo.

Viceversa, supponiamo che la funzione f:R — R sia data dalla formula (4.1).
Allora

Af = f(x) = f(zo) = max +d— (mxo + d) = m(x — x9) = mAzx,
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cioe f rappresenta una relazione di proporzionalité.

Riassumendo, le funzioni lineari (a volte chiamate anche funzioni lineari affini,
riservando il termine “lineare” alle funzioni di questo tipo con d = 0) sono tutte e
sole le funzioni della forma (4.1) per opportuni m, d € R.

Nella pratica sperimentale, capita spesso di trovare dati che dipendono in ma-
niera lineare da una variabile (almeno per certi intervalli della variabile; vedi 1’Os-
servazione 4.1); si pone quindi il problema di come trovare la legge che esprime
questa relazione a partire dai dati sperimentali. In altre parole, vogliamo recupe-
rare i coefficienti m e d conoscendo alcuni punti del grafico della funzione. Vediamo
un esempio molto semplice, ma gia significativo, di questa situazione.

ESEMPIO 4.1 E noto che la percentuale di semi che germogliano di una certa
pianta dipende dalla temperatura. Per una determinata varieta di pomodoro, é
stato verificato che alla temperatura di 12 °C germoglia il 40% dei semi, mentre
alla temperatura di 15 °C germoglia il 70% dei semi. Trova la relazione fra la
temperatura e la percentuale di semi germogliati, supponendo che si tratti di una
relazione lineare. Indichiamo con P(T') la percentuale di semi che germoglia alla
temperatura di 7" °C. Siccome abbiamo supposto che la funzione P:R — R che
associa alla temperatura T la percentuale P(T) sia lineare, possiamo scrivere

P(T) =mT +d

per opportuni m, d € R; il nostro obiettivo & usare i dati sperimentali per calco-
lare m e d. Noi sappiamo che P(12) = 40 e P(15) = 70; dunque

30 = 70 — 40 = P(15) — P(12) = AP = mAT = m(15 — 12) = 3m ,

(attenzione: in questo esempio la variabile indipendente si chiama T' e la varia-
biile dipendente P, per cui abbiamo scritto AT e AP invece di Az e Af) da cui
deduciamo 30
m=—=10.
3

Per ricavare d basta notare che si deve avere
40=P(12)=m-124d=10-12+d=120+d,

per cui

d=—-80.

Quindi 'unica funzione lineare che rappresenta correttamente i dati sperimentali &
P(T)=10T —80. (4.2)

Osservazione 4.1 E importante notare che per arrivare a questa soluzione abbiamo
supposto a priori che la funzione da trovare fosse di tipo lineare; & un’ipotesi, e non
una conseguenza. Del resto, da due sole coppie di dati & ben difficile immagi-
nare, senza altre informazioni, quale possa essere I’andamento della funzione che
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volevamo studiare. Quale sia U'ipotesi giusta da fare (se lineare, quadratica, espo-
nenziale o di altro tipo) puo venire suggerito da quanto sappiamo sul fenomeno bio-
logico che stiamo studiando. Altrimenti, conviene fare molte pit misure e cercare
di capire quale sia la funzione che meglio approssima i dati che abbiamo ottenuti,
tenendo presente che le misure sono sicuramente affette da errori sperimentali. Ne
parleremo in dettaglio nella Sezione 4.3.

Come gia accennato nel capitolo precedente, lo scopo di ottenere una formula
come la (4.2) ¢ effettuare predizioni. Ci permette di dare risposte plausibili!, senza
bisogno di altre misure, a domande del tipo: quale percentuale di semi germogliera
alla temperatura di 14 °C? A quale temperatura germogliera il 50% dei semi?

ESEMPIO 4.2 Supponiamo quindi che la relazione fra la percentuale di semi che
germogliano e la temperatura per questa varieta di pomodori sia data dalla for-
mula (4.2). Allora la percentuale di semi che germogliano a 14 °C &

P(14) = 10 - 14 — 80 = 140 — 80 = 60% .

Trovare la temperatura T a cui germoglia il 50% dei semi equivale invece a risolvere
lequazione P(T) = 50, cioe

50=P(T)=10T —80;
quindi 107 = 130, cioe T = 13 °C.

EsEMPIO 4.3 Per la stessa varieta di pomodori, vogliamo trovare quale percen-
tuale di semi germogliera alla temperatura di 10 °C, e a quale temperatura germo-
gliera il 90% dei semi. La risposta alla prima domanda & P(10) = 10-10—80 = 20%,
mentre per rispondere alla seconda domanda risolviamo I'equazione P(T') = 90 ot-
tenendo 7' = 17 °C.

Le predizioni dell’Esempio 4.2 sono frutto di una interpolazione. Infatti, ab-
biamo dati sperimentali sia per valori della variabile indipendente inferiori a quelli
coinvolti in queste predizioni, sia per valori superiori: sappiamo cosa succede a 12 e
15 °C, e deduciamo cosa accade a 13 e 14 °C. Invece, le predizioni dell’Esempio 4.3
sono frutto di una estrapolazione: i valori della variabile indipendente coinvolti
nelle predizioni (10 e 17 °C) sono esterni all’intervallo dei valori della variabile
indipendente per cui abbiamo dati sperimentali. Le estrapolazioni sono sempre
molto pit rischiose delle interpolazioni, in quanto I'ipotesi iniziale (che la relazione
fosse di tipo lineare) potrebbe valere solo all’interno di un determinato intervallo
di valori.

EsEMPIO 4.4 Usando la (4.2) “prediciamo” che alla temperatura di 19 °C germo-
gliera il P(19) = 10-19 — 80 = 110% dei semi, cosa piuttosto improbabile a meno

1 Plausibili, e non certe: vedi I’Osservazione 4.2.
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di generazione spontanea di nuovi semi dal nulla... Analogamente, la “predizione”
che alla temperatura di 5 °C germogli il P(5) = 10-5 — 80 = —30% dei semi ha
ben poco senso.

Dunque quando si ipotizza un certo andamento per dei dati sperimentali e
importante indicare con chiarezza l'intervallo dei valori per cui si ritiene valida
I’ipotesi; al di fuori di quei valori I'estrapolazione potrebbe non avere senso anche
se la funzione che rappresenta 'andamento dei dati & ancora definita.

Osservazione 4.2 Determinare 'intervallo dei valori in cui la formula ottenuta puo
essere valida € spesso un esercizio di buon senso: nel nostro caso, una percentuale
maggiore del 100% o negativa non ha senso, per cui dobbiamo escludere i valori che
danno risultati del genere. Nella pratica sperimentale, c¢’¢ perdo un ulteriore passo
importante da fare: confrontare le predizioni sensate (le interpolazioni) ottenute
con nuovi risultati sperimentali. Infatti, le nostre predizioni sono basate su un’ipo-
tesi (che la funzione fosse di tipo lineare), ipotesi che dobbiamo verificare nei fatti.
Se le nostre predizioni sono in buon accordo con le nuove misure (tenendo presente
gli inevitabili errori sperimentali) allora possiamo dirci soddisfatti della nostra ipo-
tesi; se invece non lo sono, dobbiamo cambiare ipotesi (vedi gli Esempio 4.7 e 4.9,
e I'Esercizio 4.2 della Sezione 4.4).

Lasciamo ora crescere in pace i nostri pomodori, e vediamo come si affrontano
in generale i problemi che abbiamo risolto in questo caso particolare. Supponiamo
di avere due coppie Py = (x0,%0) € Pi = (x1,y1) di dati; vogliamo trovare una
funzione lineare f(x) = mz + d tale che Py e P, appartengano al grafico di f, cio¢
tale che f(xg) =yo e f(x1) = y1. Imitando il procedimento usato nell’Esempio 4.1
troviamo

Y1 —yo = f(z1) — f(zo) = Af = mAx = m(z1 — x0) ,

per cui
_i-w _Af

m = )
r1—x9 Ax

Osservazione 4.3 Ovviamente stiamo supponendo che x; # xg, in quanto altri-
menti Py e P, non potrebbero (perché?) essere due punti del grafico di una sola
funzione (a meno che non siano uguali, nel qual caso striglia il tuo assistente e
imponigli di misurare due coppie di dati diverse, se vuole sperare di ottenere un
qualche risultato).

Una volta trovato m, ¢ facile recuperare anche d: infatti
d= f(xg) — mxg = yo — mxo .
Nota che

f(xr) —may = f(xo) + (f(21) — flzo)) — mao — m(x1 — x0)
= f(xg) — mao + Af —mAzx = f(x9) — maxg ,
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per cui si ottiene lo stesso valore di d sia usando Py sia usando P;.

Osservazione 4.4 Dalla formula Af = mAx possiamo dedurre che

£(2) = (o + &) = f(ao) + me — 20) = flzo) + 50 - (2~ 20)

formula che ritroveremo in un contesto diverso nel prossimo capitolo.

Dunque ci basta conoscere due punti del grafico di una funzione lineare per
ricavare l’espressione della funzione. Viceversa, data la funzione ¢ facile tracciarne
il grafico. Infatti, sappiamo gia che il grafico di f(x) = maz+d dev’essere una retta;
quindi ci basta trovarne due punti. Per esempio, un punto puo essere l'intersezione
con l'asse delle ordinate: ponendo x# = 0 troviamo il punto? (0,d). Una volta
ottenuto un punto Py = (zo,yo) del grafico, ogni altro punto P; = (z1,y1) si
ottiene con la formula

(x1,91) = P+ (Asr:,mAa:) ,

dove Az = 1 — x¢.

Osservazione 4.5 1 grafici delle funzioni lineari sono tutte e sole le rette non paral-
lele all’asse delle ordinate. Per avere tutte le rette dobbiamo considerare gli insiemi
di equazione ax + by + ¢ = 0. Quando b # 0 ricaviamo y = —(a/b)z — (c/b), cioé
il grafico della funzione lineare f(x) = mz +d con m = —a/b e d = —c/b. Se
invece b = 0 (e a # 0) otteniamo x = —c/a, per cui ¢ la retta parallela all’asse
delle ordinate passante per il punto (—c/a,0). Analogamente, se a = 0 e b # 0
otteniamo y = —c/b, che & la retta parallela all’asse delle ascisse passante per il
punto (0, —¢/b) — ovvero il grafico della funzione costante f(z) = —c/b.

Nell’Esempio 4.2, oltre a ricavare l'ordinata conoscendo I'ascissa (la percentuale
conoscendo la temperatura), abbiamo risolto il problema inverso di trovare ’a-
scissa conoscendo 'ordinata (la tenperatura conoscendo la percentuale). In altre
parole, dato il valore yo abbiamo risolto l’equazione lineare f(x) = yo. Siccome
f(x) = mx + d, vediamo subito che:

—  sem # 0 l'equazione f(z) = yo ha come unica soluzione = = (yo — d)/m;

-  sem =0 ed+# yp equazione f(x) = yo non ha soluzioni;

- sem =0 ed=yp l'equazione f(x) = yo ha infinite soluzioni (ogni valore di x
va bene).

Osservazione 4.6 Se m # 0, dire che 'equazione f(z) = yo ha un’unica soluzione
quale che sia yy € R equivale a dire che la funzione f:R — R data da f(z) = ma+d
¢ invertibile. L’inversa & la funzione f~1:R — R che fornisce la soluzione dell’e-

quazione: f~1(y) = (y —d)/m.

2 Per questo motivo d € a volte chiamato intercetta delle ordinate. Invece, il coefficiente m
& spesso chiamato coefficiente angolare, per motivi che vedremo nella Sezione 4.10.
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La relazione Af = mAx permette di determinare facilmente quando una fun-
zione lineare & crescente o decrescente. In generale, una funzione & crescente se
aumentando il valore dell’argomento aumenta anche il valore della funzione; ed &
decrescente se invece aumentando il valore dell’argomento il valore della funzione
diminuisce. In altre parole, f & crescente se z¢p < 7 implica f(z¢) < f(z1), mentre
¢ decrescente se x¢ < zp implica f(zo) > f(x1). In altre parole ancora, il gra-
fico di una funzione crescente sale andando verso destra; quello di una funzione
decrescente invece scende.

Osservazione 4.7 Una funzione ¢ invece strettamente crescente se xy < xp im-
plica f(zo) < f(x1), escludendo la possibilita che si abbia f(xg) = f(z1); ed &
strettamente decrescente se o < xp implica f(xg) > f(x1). Infine una funzione
crescente o decrescente si dice monotona (e non monotona, anche se lidea ¢ la
stessa: € una funzione che non cambia mai modo di crescere).

Ora, dire che xg < x7 equivale a dire che Ax = x1 — o > 0; analogamente,
dire che f(zg) < f(z1) equivale a dire che Af = f(x1) — f(xg) > 0 (rispettiva-
mente, f(zg) > f(r1) equivale a Af < 0). Se f & una funzione lineare, sappiamo
che Af = mAux; quindi
—  sem > 0 allora Az > 0 implica Af > 0, cioe f & strettamente crescente;

—  sem < 0 allora Az > 0 implica Af < 0, cioe f & strettamente decrescente;
— sem =0 allora Af =0, cioe f & costante.

Conoscere la crescenza o la decrescenza di una funzione aiuta a trovarne i punti di
massimo e di minimo. Diremo che un punto zy ¢ un punto di massimo (rispettiva-
mente, punto di minimo) per una funzione f su un intervallo [a, ] se f(z¢) > f(x)
per ogni z € [a,b] (rispettivamente, f(xg) < f(z) per ogni x € [a,b]). In altre pa-
role, z¢ & un punto di massimo (minimo) se (xo, f(xo)) ¢ un punto del grafico di f
sopra l'intervallo [a, b] con l'ordinata pit alta (bassa). Il valore assunto dalla fun-
zione (lordinata del grafico) in un punto di minimo (rispettivamente, di massimo)
sull’intervallo [a, b] viene detto (valore) minimo (rispettivamente massimo) di f sul-
I'intervallo, e viene indicato con min f (rispettivamente, max f), o con Ien[inb f(z)
z€la,
(rispettivamente, Iél[aX f(x)) in caso sia importante ricordare Uintervallo che si sta
z€la,
considerando.

Osservazione 4.8 Trovare i punti di massimo o di minimo ¢ fondamentale per
le applicazioni della matematica. Infatti, in natura vale spesso un principio del
minimo sforzo: la configurazione che si realizza (fra le infinite possibili) & quella
che minimizza una qualche quantita. Per esempio, la luce segue il cammino piu
breve, i semi dei fiori cercano di disporsi in modo da minimizzare lo spreco di
spazio, e cosi via.

Vogliamo trovare minimo e massimo di una funzione f monotona sull’inter-
vallo [a,b]. Per definizione di intervallo, abbiamo a < = < b per ogni = € [a,b].
Se f & crescente, questo implica che f(a) < f(z) < f(b); quindi se f ¢ crescente
sull’intervallo [a,b] un punto di minimo ¢é a, con valore minimo f(a), e un punto
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di massimo € b, con valore massimo f(b). Un ragionamento analogo (controlla) ci
dice che se f ¢é decrescente sull’intervallo [a,b] un punto di minimo é b, con valore
minimo f(b), e un punto di massimo é a, con valore massimo f(a).

Osservazione 4.9 Se una funzione ¢ strettamente crescente o decrescente (cioe stret-
tamente monotona) su un intervallo chiuso allora ha un unico punto di minimo e
un unico punto di massimo (perché?). Se invece non & strettamente monotona,
potrebbe averne anche piu di uno; per esempio, se f & costante allora tutti i punti
sono contemporaneamente sia di massimo sia di minimo. Invece, il valore minimo
e il valore massimo su un dato intervallo sono sempre unici (perché?).

CURIOSITA 4.1  Attenzione: dimostrare che un punto di minimo o un punto di massimo esiste puo
essere a volte anche molto complicato. E certe volte potrebbe anche non esistere. Per esempio,
la funzione f(z) = = non ha né minimo né massimo sull’intera retta reale R: per quanto grande
o quanto piccolo tu scelga M € R esistono sempre z1, z2 € R tali che f(z1) < M < f(z2).
Lo stesso problema si verifica su intervalli limitati ma non chiusi: la stessa funzione f non
ha né minimo né massimo sull’'intervallo aperto (0,1) (perché? Ricordati che 0 e 1 non
appartengono all’intervallo considerato...). Per fortuna, il Teorema di Weierstrass assicura
che tutte le funzioni continue (che sono la quasi totalita delle funzioni che considereremo in
questo corso, e che definiremo nella Curiosita 4.9) hanno sempre almeno un punto di massimo
e almeno un punto di minimo su qualsiasi intervallo chiuso della retta reale. Un esempio di
funzione non continua che non ammette né massimo né minimo su un intervallo chiuso ¢ la
funzione f:[—1,1] — R definita da

[ |z| sex#-1,0,1,
f(x)_{l/Q 1,0,1

sex =—1,0, 1.

Prova a tracciarne il grafico.

Abbiamo osservato che le funzioni lineari con coefficiente angolare non nullo
sono sempre strettamente monotone; quindi quanto visto ci permette di trovarne
massimi e minimi su intervalli chiusi. Per l'esattezza, se f(x) = mz + d si ha

— sem > 0 il punto di minimo di f sull’intervallo [a,b] & a, mentre il punto di
massimo & b;

- sem < 0 il punto di minimo di f sull’intervallo [a,b] & b, mentre il punto di
massimo € a.

Informazioni su crescenza e decrescenza aiutano anche a risolvere le disequazioni.

Supponiamo di voler risolvere la disequazione f(x) > yo su un intervallo [a,b] in

cui la funzione f sia crescente. Ci sono tre casi possibili:

- seyo < minf = f(a), allora f(x) > yo per ogni = € [a,b], ciod tutti gli
x € [a, b] sono soluzione della disequazione;

- seyp > max f = f(b), allora f(x) < yo per ogni x € [a,b], cioe la disequazione
non ha soluzione in [a, b];

- se f(a) =min f < yo < max f = f(b) allora f(x) > yo per ogni x € [xg, b,
dove z ¢ la piu piccola soluzione (quando esiste; vedi la Curiosita 4.2) dell’e-
quazione f(x) = yo in [a, b].

CURIOSITA 4.2 Un’altra proprietd non completamente banale delle funzioni continue definite
su intervalli chiusi & che per ogni yo € [min f, max f] ’equazione f(z) = yo ammette sempre
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una soluzione piu piccola e una soluzione piu grande. Sfortunatamente, le funzioni monotone
non sono necessariamente continue; ma c’¢ un modo per aggirare il problema. Infatti, se f &
crescente sull’intervallo [a, b] allora per ogni yo € [min f, max f] esiste un pit piccolo zg € [a, ]
tale che f(x) > yo per ogni z > zo, e f(x) < yo per ogni z < zo. Se f & continua allora
necessariamente f(zo) = yo, come prima; se f non & continua potrebbe succedere che f(zo) sia
strettamente minore di yo. Quindi le soluzioni della disequazione f(z) > yo sono gli elementi
dell’intervallo chiuso [zg,b] se f(zo) = yo, e gli elementi dell’intervallo semiaperto (zo,b] se
f(zo) < yo. Un esempio di funzione crescente non continua & la f:[—1,1] — R data da:

flz) = T se —1<z<0,
T lz+1 se0<z<1.

Prova a tracciarne il grafico, e verifica che la disequazione f(z) > 1 ha come soluzione gli
elementi dell’intervallo semiaperto (0, 1].

Se vogliamo risolvere la disequazione f(x) < yo su un intervallo [a,b] in cui la

funzione f sia crescente, ci sono di nuovo tre casi possibili:

—  seyo <minf = f(a), allora f(z) > yo per ogni = € [a, b], cioe la disequazione
non ha soluzione in [a, b];

- seyp > max f = f(b), allora f(x) < yo per ogni z € [a,b], cioe tutti gli
x € [a, b] sono soluzione della disequazione;

- se f(a) =min f < yg < max f = f(b) allora f(z) < yo per ogni = € [a, zo],
dove z ¢ la piu grande soluzione (quando esiste; vedi la Curiosita 4.7) dell’e-
quazione f(x) = yo in [a, b].

Osservazione 4.10 Ragionamenti analoghi si applicano al caso di intervalli non
chiusi, di intervalli illimitati, alle disequazioni strette (cioé con > o < invece di >
e <), e alle funzioni decrescenti; lasciamo il compito di scrivere esplicitamente cosa
si ottiene nei vari casi a te e al tuo assistente. Attenzione: il tuo obiettivo non
dev’essere imparare a memoria tutti i casi possibili, ma capire come si ottengono,
in modo da poter ripetere il ragionamento quando ti serve solo nei casi che ti
servono (con notevole risparmio di tempo e di memoria).

Vediamo cosa questi ragionamenti ci dicono nel caso delle funzioni lineari. Vo-
gliamo risolvere la disequazione mx + d > yo; allora

- Sem >0 (cioe f(z) = mx+d & crescente) allora le soluzioni sono gli elementi
della semiretta [zg, +00), dove xg = (yo — d)/m = f~*(yo) & I'unica soluzione
dell’equazione mz + d = yjp.

—  Sem < 0 (cioe f(x) = max+d & decrescente) allora le soluzioni sono gli elementi
della semiretta (—oo,xq], dove zg = (yo — d)/m = f~1(yo) & I'unica soluzione
dell’equazione mz + d = .

In maniera analoga (esercizio per te) si risolve la disequazione mz + d < yq.

In particolare, se m > 0 la disequazione mx + d > yo ha soluzione una semi-
retta della forma (xg, +00) quale che sia yo € R. Questo vuol dire che se m > 0
possiamo rendere f(x) = mx+d arbitrariamente grande a patto di scegliere x suffi-
cientemente grande: per quanto grande sia M > 0 possiamo sempre trovare g > 0
(sufficientemente grande) tale che f(x) > M non appena x > xo. In simboli,

VM >0 Fzg>0:2>x= f(z)>M.



4.1 Funzioni lineari 133

Quando questo accade, si dice che f(z) ha limite 400 per z che tende a 400, e si
scrive
lim f(z)=4oc0.
r—+00

Sempre supponendo m > 0, hai anche visto che la disequazione mz + d < yq
ha soluzione una semiretta della forma (—oo, o) quale che sia yo € R. Questo
vuol dire che se m > 0 possiamo rendere f(z) = mx + d arbitrariamente negativa
a patto di scegliere x sufficientemente megativo: per quanto grande sia M > 0
possiamo sempre trovare xg < 0 (sufficientemente negativo) tale che f(z) < —M
non appena x < xg. In simboli,

VM >0 Fzp<0:z<zy= f(r)<-M.
Stavolta si dice che f(z) ha limite —oo per x che tende a —oo, e si scrive

lim f(z)=—-oc0.

r— —00

Se m < 0 la situazione si inverte. In questo caso la disequazione mx + d > yo
ha soluzione una semiretta della forma (—oo,z¢) quale che sia yo € R. Questo
vuol dire che se m < 0 possiamo rendere f(x) = mzx + d arbitrariamente grande
a patto di scegliere x sufficientemente negativo: per quanto grande sia M > 0
possiamo sempre trovare zp < 0 (sufficientemente negativo) tale che f(z) > M
non appena x < xg. In simboli,

VM >0 Fzp<0:z<zy= f(z)>M.
Si dice che f(z) ha limite +oo per x che tende a —oo, e si scrive

lim f(x)=+40.
r——00
Infine, se m > 0 la disequazione mx + d < yg ha soluzione una semiretta della
forma (xg,+00) quale che sia yo € R. Questo vuol dire che se m > 0 possiamo
rendere f(x) = mx + d arbitrariamente negativa a patto di scegliere x sufficien-
temente grande: per quanto grande sia M > 0 possiamo sempre trovare xg > 0
(sufficientemente grande) tale che f(x) < —M non appena x > zg. In simboli,

VM >0 Fz0>0: 2>z = f(z)<-M.
Stavolta si dice che f(z) ha limite —oo per x che tende a 400, e si scrive

lim f(z)=—-o00.

Tr——+00

Riassumendo, il comportamento di una funzione lineare f(x) = mz 4 d quando
x e sufficientemente grande o sufficientemente negativo e dato da:

—  sem > 0 allora lirf = to0;

r—too
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- sem<0allora lim = Foo.

r—to0
Con questo abbiamo concluso lo studio delle funzioni lineari. Nelle prossime se-
zioni cercheremo (per quanto possibile) di studiare in modo analogo funzioni piu
complesse.

4.2 Funzioni quadratiche

Le funzioni lineari sono tutte monotone: sempre crescenti o decrescenti. Non tutti
i fenomeni naturali sono rappresentabili con funzioni monotone; spesso servono
funzioni che un po’ crescono e un po’ decrescono.

EseEmpio 4.5 Hai provato a far saltare il tuo assistente, sperando che la sua
altitudine fosse descritta da una funzione monotona. Invece, sfortunatamente, &
salito solo per poco e poi & tornato giu. La sua altitudine e stata inizialmente
crescente, ha raggiunto un massimo, e poi & diventata descrescente.

Inoltre, anche le funzioni monotone non ¢ detto che siano lineari, cio¢ che rap-
presentino relazioni di proporzionalita.

EseEmMPIO 4.6 La superficie esterna di una cellula sferica dipende dal quadrato del
raggio della cellula, per cui non aumenta in modo proporzionale al raggio.

11 tipo pit semplice di funzioni non monotone (e quindi non lineari) ¢ dato dalle
funzioni quadratiche: funzioni f:R — R della forma

flz)=az®+bx+c.
Il grafico di una funzione quadratica ¢ una curva chiamata parabola.

CURIOSITA 4.3 Pitul in generale, una parabola nel piano ¢ il luogo dei punti la cui distanza
da una retta data (detta direttrice della parabola) & uguale alla distanza da un punto dato
(detto fuoco della parabola). Si pud dimostrare che una parabola qualsiasi si ottiene sempre
ruotando e traslando il grafico di una funzione quadratica.

Il primo obiettivo di questa sezione & trovare come collegare le proprieta geo-
metriche ('aspetto) del grafico di una funzione quadratica ai suoi coefficienti. Co-
minciamo studiando la funzione quadratica piu semplice di tutte:

fla) =a?,

il cui grafico e rappresentato nella Figura 4.1.
La prima osservazione evidente ¢ che f(x) > 0 sempre, e che f(z) = 0 se e solo
se = 0. In particolare,
(a) f(z) = 2? ha un solo punto di minimo Z = 0, con valore minimo § = f(Z) = 0;
il punto (Z,7) = (0,0) & detto vertice della parabola grafico di f.
(b) la parabola grafico di f(x) = z? interseca l’asse delle ordinate nel punto di
ordinata ¢ = f(0) = 0.
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Figura 4.1 f(z) = 2°.

Chiaramente, (—x)? = 22, cioe¢ f(—z) = f(z) per qualsiasi x. In altri termini,

(c) il grafico di f(x) = 2% & simmetrico rispetto alla retta z = T = 0 (I'asse delle
ordinate), che ¢ detta asse della parabola grafico di f.

Osservazione 4.11 Una funzione f:R — R tale che f(—z) = f(x) per ogni z € R
si dice funzione pari; se invece f(—x) = —f(x) per ogni z € R si dice che f ¢ una
funzione dispari. Un esempio di funzione dispari ¢ f(z) = 2.

CURIOSITA 4.4 Ogni funzione f:R — R si pud scrivere (in modo unico) come somma di

una funzione pari e una funzione dispari. Infatti, ponendo fi(z) = %(f(:v) + f(—:r))

e fo(z) = %(f(m) — f(—x)) si vede subito che fi & pari, f_ & dispari, e f = fi + f_.

Ora, se 0 < 2y < x1 abbiamo f(x¢) = 23 < 27 = f(z1); invece se 79 < 21 < 0
abbiamo 0 < —z1 < —z¢ e f(21) = f(—21) = (—21)? < (—20)? = f(—x0) = f(x0).
Quindi

(d) f(z) = 22 & strettamente decrescente nella semiretta (—oo, 7] e strettamente
crescente nella semiretta [Z, +00), dove T = 0. In questo caso, si dice anche
che la parabola ha la concavita rivolta verso I'alto.

Inoltre, per ogni yo > 0 la diseguaglianza f(x) > yo ha come soluzione le semi-
rette (\/%0, +00) e (=00, —/yo). Quindi possiamo rendere f(x) arbitrariamente
grande a patto di prendere z sufficientemente grande o sufficientemente negativo;
usando la simbologia dei limiti introdotta nella sezione precedente possiamo dire
che
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(e) se f(z) = x? allora EIiIl f(x) = +o0.

Per concludere la descrizione geometrica della parabola grafico di f(x) = 2% dob-

biamo misurarne in qualche modo la larghezza. Un modo per farlo & vedere come

cresce l'ordinata allontandosi dal vertice: se cresce molto la parabola ¢ stretta, se

cresce poco la parabola e larga. Nel nostro caso si ha

(f) se f(x) = x? allora f(z)— f(Z) = 1-(z—7)?%, dove T = 0. In particolare, allon-
tanandosi di un’unita dal vertice 'ordinata varia di a = f(z + 1) — f(Z) = 1.

Possiamo effettuare un’analisi analoga sul grafico della funzione f(x) = —22. In

questo caso si ottiene (vedi la Figura 4.2):

Figura 4.2 f(z) = —2°.

(a) f(z) = —2? ha un solo punto di massimo T = 0, e il valore massimo &
y = f(z) = 0; il punto (Z,y) = (0,0) & sempre detto vertice della parabola
grafico di f.

(b) il grafico di f(z) = —x? interseca l'asse delle ordinate nel punto di ordi-
nata ¢ = f(0) = 0.

(c) il grafico di f(z) = —a? & simmetrico rispetto alla retta x =7 = 0 (1'asse delle
ordinate), che & ancora detta asse della parabola grafico di f.

(d) f(xz) = —a? & strettamente crescente nella semiretta (—oco,T| e strettamente
decrescente nella semiretta [Z, +00), dove T = 0. In questo caso, si dice che la
parabola ha la concavita rivolta verso il basso.

(e) se f(x) = —x? allora im f(x) = —cc.

(f) se f(z) = —2? allora f(x)—f(%) = —1-(z—7)?, con T = 0. In particolare, allon-
tanandosi di un’unita dal vertice Pordinata varia di a = f(Z+1) — f(T) = —1.
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Vogliamo far vedere che ogni parabola grafico di funzione quadratica soddisfa op-
portune variazioni delle proprieta (a)—(f), ed & completamente determinata dalle
coordinate (Z,7) del vertice e dalla larghezza a = f(T 4+ 1) — f(Z). Per farlo, ve-
diamo come possiamo spostare il vertice e cambiare la larghezza, e che effetto ha
sulla funzione quadratica.

Come primo passo, proviamo a variare la larghezza della parabola. Abbiamo
visto che la parabola grafico di z? sale di 1 unitd se ci spostiamo dal vertice di
1 unita. Se invece salisse di ¢ > 1 unita spostandoci dal vertice di 1 unita la
parabola sarebbe pil stretta (in quanto raggiungiamo l'ordinata 1 prima di z = 1);
se salisse di 0 < a < 1 unita spostandoci dal vertice di 1 unita la parabola sarebbe
pit larga (in quanto raggiungiamo l'ordinata dopo z = 1). Per ottenere questo
effetto & sufficiente moltiplicare la funzione per a, cioé passare dalla funzione z2

alla funzione az?2.

Osservazione 4.12 Questo procedimento si puo applicare anche per a negativi. In
questo caso a = —|a| < 0, per cui moltiplicare per a equivale a moltiplicare prima
per |a] > 0 (modificando la larghezza della parabola) e poi per —1. Quest’ul-
tima operazione effettua una simmetria rispetto all’asse delle ascisse, ribaltando il
grafico; vedi la Figura 4.3.

10+

-10+

Figura 4.3 f(z) = 22% ¢ f(z) = —82°.

Osservazione 4.13 Moltiplicare per a le ordinate corrisponde a cambiare I'unita
di misura (e l'orientazione, se a < 0) sull’asse delle ordinate: si ottiene lo stesso
effetto dividendo per |a| I'unita di misura (e invertendo l'orientazione se a < 0).
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Infatti, la vecchia unita di misura, che aveva ordinata 1 nelle vecchie coordinate
ora ha ordinata a, per cui la nuova unita di misura (che ha coordinata 1 nelle nuove
coordinate) & 1/]a| volte la vecchia (con orientazione opposta se a < 0).

Le proprieta della funzione f(x) = ax? si ottengono subito da quelle di 2
(tenendo presente il segno di a):

(a) f(z) = ax? ha un solo punto di minimo (se a > 0; di massimo se a < 0) T = 0,
e il valore minimo (o massimo) ¢ § = f(Z) = 0; il vertice della parabola ha
ancora coordinate (Z,7) = (0,0).

(b) 1l grafico di f(z) = az? interseca I'asse delle ordinate nel punto di ordi-
nata ¢ = f(0) = 0.

(c) 1l grafico di f(z) = az? & simmetrico rispetto all’asse x = 7 = 0.

(d) Il grafico di f(x) = az? ha la concavita rivolta verso 'alto se a > 0, e rivolta
verso il basso se a < 0.

(e) Se f(x) = ax? allora Tgrjrtloof(x) =4oosea>0,e Tgrjrtloof(x) =—oosea < 0.

(f) Se f(x) = ax? allora f(z) — f(T) = a- (x — T)?, dove T = 0. In particolare,
allontanandosi di un’unita dal vertice 'ordinata varia di f(z + 1) — f(Z) = a.

Proviamo ora a spostare in direzione verticale il vertice della parabola grafico di az?.
Per portare il vertice nel punto (0,+) ¢ sufficiente traslare 'intero grafico di una
distanza pari a v nella direzione verticale. In altre parole, dobbiamo sommare ~
alle ordinate del grafico, cioé passare dalla funzione ax? alla funzione az? + v; vedi
la Figura 4.4.

-2t

Figura 4.4 f(z) = az® + 7.
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Osservazione 4.14 In generale, traslando verticalmente di una quantita - il grafico
di una funzione f si ottiene il grafico della funzione f 4 ~. Inoltre, invece di
traslare in direzione verticale il grafico di una quantita v avremmo potuto traslare
in direzione verticale gli assi della quantita —v (cioé sottrarre 7 alle ordinate)
ottenendo lo stesso risultato. In altre parole, traslare il piano in direzione verticale
di una quantita v equivale a sottrarre v alle ordinate.

Le proprieta della funzione f(z) = ax? ++ si ottengono subito da quelle di az?:
(a) f(x) = ax® + v ha un solo punto di minimo (se a > 0; di massimo se a < 0)
T = 0, e il valore minimo (o massimo) ¢ § = f(Z) = ~; il vertice della parabola
ha ora coordinate (z,7) = (0,7).
(b) 1l grafico di f(x) = az? + v interseca 'asse delle ordinate nel punto di ordi-
nata ¢ = f(0) = ~.
(c) 1l grafico di f(z) = az?® + 7 & simmetrico rispetto all’asse x = T = 0.
(d) 1l grafico di f(z) = az® + 7 ha la concavita rivolta verso l'alto se a > 0, e
rivolta verso il basso se a < 0.
(e) Se f(z) = ax® + v allora lim f(z) = +oosea>0,e lim f(z)= —oc se
r—+oo r—+o0
a <0.
(f) Se f(z) = ax?®+ allora f(z) — f(Z) = a- (x —T)?, dove T = 0. In particolare,
allontanandosi di un’unitd dal vertice Pordinata varia di f(Z+ 1) — f(T) = a.
11 passo successivo consiste nel traslare orizzontalmente il vertice (e quindi I’asse)
della parabola. Abbiamo visto che traslare verso I’alto di una quantita -y il grafico &
equivalente a sottrarre 7 alle ordinate (cio¢ a spostare gli assi verso il basso di una
quantita 7). Per lo stesso motivo, traslare in direzione orizzontale di una quantita 3
il grafico equivale a traslare in direzione orizzontale gli assi della quantita — (3, cioé a
sottrarre (3 alle ascisse. In altre parole, il grafico della funzione f(z) = a(z—3)%+7,
ottenuta sostituendo z — 8 a x in ax? + v, & ottenuto traslando orizzontalmente di
una quantita 3 il grafico di az® 4+ 7. Ne segue che (vedi la Figura 4.5)

(a) f(z) = a(z — 8)* + v ha un solo punto di minimo (se a > 0; di massimo se
a < 0) T =0, e il valore minimo (o massimo) ¢ § = f(T) = ~; il vertice della
parabola ha quindi coordinate (Z,7) = (3, 7).

(b) I grafico di f(x) = a(x — 3)% + v interseca 'asse delle ordinate nel punto di
ordinata ¢ = f(0) = a3? + 7.

(c) Il grafico di f(x) = a(x — 8)? + 7 & simmetrico rispetto all’asse z = T = 3.

(d) Il grafico di f(z) = a(z — 3)% + ~ ha la concavita rivolta verso I'alto se a > 0,
e rivolta verso il basso se a < 0.

(e) Se f(z) =a(z—pB)*+vallora lim f(z)=+ocosea>0,e lim f(x)=—o0

r—to0 r—Fo0
se a < 0.

(f) Se f(z) = a(z — B)? + v allora f(z) — f(T) = a- (x — T)?, con T = . Quindi

allontanandosi di un’unita dal vertice 'ordinata varia di f(z + 1) — f(Z) = a.

Osservazione 4.15 Vale la pena notare che ¢’¢ un’altra operazione ancora che po-
tremmo a priori fare: moltiplicare le ascisse per un valore o # 0, che equivale (come
nel caso delle ordinate) a dividere per || l'unita di misura sull’asse delle ascisse (e
a invertire l'orientazione se a < 0). In questo modo arriveremmo a una funzione
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-2t
Figura 4.5 f(z) =a(z — 3)* + 1.

della forma a(ax —3)? +7. Vedremo perd fra un attimo che, per le funzioni quadra-
tiche, questa operazione non & necessaria: abbiamo gia ottenuto tutte le funzioni
quadratiche possibile senza bisogno di ulteriori operazioni. Invece potrebbe essere
utile per studiare funzioni piti complicate.

Ora, f(z) = a(x — B3)* + v ¢ chiaramente una funzione quadratica: infatti
svolgendo il quadrato troviamo

a(z = B)* +v = ax® — 2afz + af? + v = az® + br + ¢,

dove
b= —2af, c=aB*+~. (4.3)

La cosa interessante e che vale anche il viceversa: ogni funzione quadratica si puo
scrivere nella forma a(z — 8)? + 7. Infatti, se, invertendo le (4.3) (e supponendo
ovviamente a # 0), poniamo

otteniamo

2a
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I risultati che abbiamo ottenuto sul grafico delle funzioni della forma a(x — 3) +~
si possono quindi tradurre nel caso di funzioni quadratiche qualsiasi:

(a) f(z) = az? + bxr + ¢ ha un solo punto di minimo (se a > 0; di massimo se
a < 0) T = —b/2a, e il valore minimo (o massimo) ¢ § = f(T) = ¢ — b?/4a; il
vertice della parabola ha quindi coordinate (Z,7) = (—=b/2a,c — b*/4a).

(b) Il grafico di f(z) = az? + bz + c interseca I’asse delle ordinate nel punto di
ordinata f(0) = c.

(c) Il grafico di f(x) = az? + bx + ¢ ¢ simmetrico rispetto all’asse x = T = —b/2a.

(d) T grafico di f(x) = az? + bz + ¢ ha la concavita rivolta verso l'alto se a > 0,
e rivolta verso il basso se a < 0. In altre parole, se a > 0 la funzione
& strettamente decrescente nella semiretta (—oo, —b/2a] e strettamente cre-
scente nella semiretta [—b/2a,+00), mentre se ¢ < 0 la funzione & stretta-
mente crescente nella semiretta (—oo, —b/2a] e strettamente decrescente nella
semiretta [—b/2a, +00).

(e) Se f(z) =ax®+bx+callora lim f(z)=+oosea>0,e wgrjrzloo f(z) =—oc

r—+oo

se a < 0.
(f) Se f(x) = az?® + bx + c allora f(z) — f(T) = a- (x — )%, dove T = —b/2a. In
particolare, f(Z + 1) — f(T) = a.

Dunque data la formula ora siamo in grado di tracciare il grafico. Vediamo ora
come risolvere il problema inverso: dato il grafico (o, almeno, alcuni punti del
grafico) ricavare la formula.

Un primo caso & quando abbiamo le coordinate (Z,7) del vertice e (supponendo
che il vertice non sia sull’asse delle ordinate, cioé che T # 0) il punto (0,¢) di
intersezione del grafico con I'asse delle ordinate. Allora i conti precedenti, e in
particolare le (4.3), ci dicono che la funzione dev’essere f(z) = ax? + bx + ¢ con a
e b dati da
c-y

z2

b= —2aT, a=

Se invece il vertice € sull’asse delle ordinate, cioé T = 0, allora sappiamo soltanto
che f(x) = ax? + ¢ con ¢ = ; per trovare a servono altre informazioni (quali, per
esempio, la larghezza della parabola).

Spesso, invece, conosciamo alcuni punti del grafico, senza pero sapere quale sia
il vertice. Per determinare la funzione, servono tre punti; vediamo come in un
esempio.

EseEmpIO 4.7  Torniamo a studiare i semi di pomodoro dell’Esempio 4.1. Sai gia
che alla temperatura di 12 °C germoglia il 40% dei semi, mentre alla temperatura
di 15 °C germoglia il 70% dei semi. Un’ulteriore misurazione ha rivelato che alla
temperatura di 9 °C germoglia il 20% dei semi. Dimostra che allora la relazione
fra la temperatura e la percentuale di semi che gemogliano non puo essere lineare.
Supponendo che sia quadratica, determinala. Indichiamo nuovamente con P(T)
la percentuale di semi che germogliano alla temperatura 7. Noi sappiamo che
P(9) = 20, P(12) = 40 e P(15) = 70. Se P fosse una funzione lineare, AP/AT
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dovrebbe essere costante; invece

P(15) — P(12) 70— 40
15— 12 R

20 _40—-20 _ P(12) - P(9)

3 3 12-9

— 10 #

Supponiamo allora che P:R — R sia una funzione quadratica, cioe che si abbia
P(T) = aT? + bT + c¢; dobbiamo trovare a, b, ¢ € R in modo da avere P(9) = 20,
P(12) = 40 e P(15) = 70. In altre parole, a, b e ¢ devono soddisfare il seguente
sistema di equazioni lineari:

81la + 9b+ ¢ = P(9) =20,
144a 4 12b+ ¢ = P(12) = 40 , (4.6)
2250+ 15b + ¢ = P(15) = 70 .

Per risolvere questo sistema, sottraiamo la prima equazione dalla seconda, e la
seconda dalla terza; otteniamo

{63a+3b:20, (47)

8la+3b=30.
Sottraendo di nuovo la prima equazione dalla seconda otteniamo

10 5
18a = 10 io¢ =—=—.
a , cioe a 2= 9

Sostituendo questo valore nella seconda equazione in (4.7) troviamo
5 -
81-§+3b:207 cioe b= —-5;

e sostituendo i valori di a e b trovati nella prima equazione in (4.6) recuperiamo
infine

5
81-5—9'54—(}:20, cioe ¢=20.

Quindi la formula cercata e
5 2
P(T) = §T — 5T+ 20.

Questa formula ha qualche vantaggio su quella lineare. Per esempio, non ¢ mai
negativa; infatti, ha minimo per T = —(=5)/2(5/9) = 9/2, con valore minimo
P(9/2) = 20 — (—5)?/4(5/9) = 35/4 > 0. Ma anche lei pud essere valida solo
in un determinato intervallo di temperature. Infatti, P(T") ricomincia ad aumen-
tare quando la temperatura scende sotto 9/2 °C, comportamento biologicamente
alquanto improbabile; e P(T) > 100 se T & troppo grande (o sufficientemente
negativo). Per esempio, P(18) = 110.
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Il procedimento usato nel precedente esempio puo essere applicato a qual-
siasi funzione quadratica. Supponiamo di voler trovare la funzione quadratica
f(x) = az? + bx + ¢ il cui grafico passi per i punti (z1,v1), (z2,y2) e (73,93),
con x1, T2 ed xz tutti distinti. Vogliamo quindi trovare a, b e ¢ in modo che
f(z;) =y; per j =1, 2, 3. In altre parole, a, b e ¢ devono risolvere il sistema

r2a+xb+c=1y,
x%a—l—xgb—&—c:yg,
r3a+x3b+c=1y;3 .

Sottraiamo la prima equazione dalla seconda, e la seconda dalla terza; otteniamo

(3?%—96%)@4-(332—331)5:(@2—?!1 ) (48)
(2% —23)a+ (23 — 22)b=1y3 — Y2 . ’

Siccome 73 — 22 = (w2 — x1)(72 + 1) € X2 — 21 # 0, possiamo dividere la prima

equazione per s — x1. Analogamente possiamo dividere la seconda equazione
per x3 — x2, e otteniamo

T2—T1

(z3 +22)a+b=L=L .

{ (xo+x1)a+b=L2=4
Sottraendo di nuovo la prima equazione dalla seconda otteniamo

Yz — Y2 Y2 — Y1
(x3 —x1)a = - .
T3 — T2 To — X1

Siccome x3 — x1 # 0, da questa equazione possiamo ricavare a; sostituendo il
valore trovato nel sistema precedente otteniamo b, e sostituendo nel sistema iniziale
troviamo anche c.

Osservazione 4.16 La generica funzione lineare dipendeva da due parametri (m
e d); per determinarla avevamo bisogno di conoscere due punti del grafico. La
generica funzione quadratica dipende da tre parametri (a, b e ¢); per determinarla
abbiamo bisogno di conoscere tre punti del grafico. Tutto cid non & un caso: si puo
dimostrare che se abbiamo una famiglia di funzioni dipendenti da k parametri, per
determinare univocamente una funzione della famiglia servono k condizioni (indi-
pendenti in un senso opportuno), quali il conoscere k punti del grafico. Vedremo
un altro esempio di questo fenomeno nella Sezione 4.4.

La (4.5) ¢ molto utile anche per risolvere le equazioni di secondo grado. L’idea
¢ che I'equazione ax? +bx + ¢ = yo ha soluzione se e solo se la retta y = yo interseca
il grafico di f(z) = ax?® + bz + c. Questo accade solo se 0 a > 0 e yy & maggiore
del minimo di f, oppure a < 0 e yy € minore del massimo di f. Quindi bisogna
confrontare yo con l'ordinata § = v del vertice, che si legge facilmente da (4.5).
Per la precisione, 'equazione az? + bx + ¢ = g, diventa

Yo—7

alz—B)+y=yo, cioe (x—ﬁ)QzT.
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Quindi ha soluzione reale se e solo se (yo —y)/a > 0, e in tal caso le soluzioni sono

S /yog’Y:*bi\/bQ*‘la(C*yo) (4.9)

2a '

11 caso yo = 0 & particolarmente interessante (e tutti gli altri possono esservi ricon-
dotti sostituendo ¢ — gy al posto di ¢). La quantita

D =b* — dac = —4ay

¢ detta discriminante della funzione f(z) = ax?+bx +c. 1l discriminante & positivo
se e solo se a e l'ordinata 3 del vertice hanno segno opposto, e si annulla se e
solo se I'ordinata del vertice si annulla, cioe se e solo se il vertice ¢ sull’asse delle
ascisse. Insomma, o usando la posizione del vertice e la concavita del grafico,
oppure usando il segno del discriminante in (4.9), giungiamo alla conclusione che
I'equazione ax? 4+ bx + ¢ =0 ha

—  due soluzioni reali distinte se D > 0, cioe se a e ¥ hanno segno opposto;
— un’unica soluzione reale se D = 0, cioe se ¥ = 0, e in tal caso la soluzione ¢ 7;
—  nessuna soluzione reale se D < 0, cioe se a e ¥ hanno lo stesso segno.

Come esercizio, riotteni questo risultato tracciando il grafico di ax? 4 bz + ¢ nei
vari casi.

Usando le informazioni che abbiamo sulla crescenza e decrescenza delle funzioni
quadratiche, possiamo facilmente trovare i massimi e i minimi in intervalli chiusi.
Ci sono due casi da considerare:

—  se l'intervallo [ag, a1] non contiene I'ascissa del vertice di f(x) = az? + bx + ¢,
allora f & monotona in quell’intervallo, per cui (come abbiamo visto nella pre-
cedente sezione) i punti di minimo e massimo di f in [ag, a;1] sono gli estremi ag
e aj.

—  se lintervallo [ag, a1] contine I'ascissa T del vertice, sappiamo gia che il punto
di minimo (se ¢ > 0) o di massimo (se a < 0) &¢ T. Siccome f ¢ monotona nei
due intervalli [ag,Z] e [T, a1], si vede subito (perché?) che il punto di massimo
(se a > 0) o di minimo (se a < 0) & quello® fra i due estremi ag e a; su cui f
assume il valore piut grande (se a > 0) o piu piccolo (se a < 0).

Queste tecniche ci permettono anche di risolvere facilmente le disequazioni di se-
condo grado. Perché la disequazione az? + bx + ¢ > yo possa avere soluzione
occorre che il grafico di f(z) = axz? + bz + ¢ sia in qualche punto al di sopra
della retta y = yo. Mettendo insieme (4.9) con cid che sappiamo sulla crescenza e
decrescenza di f troviamo

e sea>0e
—  yo <7, la disequazione az? + bx + ¢ > yo ¢ soddisfatta per tutti i valori
di z € R;

3O entrambi se f(ao) = f(a1).
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~  yo > ¥, la disequazione az? + bx + ¢ > yo & soddisfatta per x € (—oo,z_] e
per z € [z4,+00), dove x4 sono dati da (4.9);

o sea<0e
—  yo > 7, la disequazione az? + bx + ¢ > yo non & mai soddisfatta;
—  yo <7, la disequazione az? + bz + ¢ > yo ¢ soddisfatta per z € [vy,z_],
dove z sono dati da (4.9).

Analoghi risultati (esercizio: se sei confuso, aiutati tracciando il grafico nei vari
casi) si trovano per la disequazione ax? + bx + ¢ < yo.

Osservazione 4.17 Quando yo = 0, il segno di 7§ ¢ legato al segno di a tramite il
segno del discriminante. In particolare, se a > 0 abbiamo y > 0 se e solo se D < 0,
mentre se a < 0 abbiamo 0 > 7 se e solo se D < 0. Quindi quando y = 0 possiamo
riformulare (esercizio per te) i risultati precedenti usando a e D invece di a e 3.

Osservazione 4.18 Come fatto nella scorsa sezione, i risultati sulle disequazioni ci
permettono anche di studiare ’andamento all’infinito delle funzioni quadratiche.
Per esempio, abbiamo appena visto che se a > 0 allora per ogni yy € R possiamo
trovare x4+ € R tali che f(z) > yo non appena x > x4 oppure x < z_. In
altre parole, possiamo rendere f(x) arbitrariamente grande a patto di scegliere
sufficientemente grande o sufficientemente negativo. Usando la terminologia gia
introdotta, abbiamo quindi dimostrato che

a>0 — lim az?+br+c=+oc0,

r—+o00

in accordo con quanto avevamo gia visto. In maniera analoga si dimostra che

a<0 — lim az’+br+c=—00.

z—+o00

4.3 Il metodo dei minimi quadrati

In questa sezione presenteremo due applicazioni dello studio delle funzioni quadra-
tiche che abbiamo appena completato.

La prima applicazione consiste nel mantenere una promessa fatta nell’Osserva-
zione 3.27. Siano z1,...,T, € R dei numeri reali (dei dati); vogliamo trovare il
punto di minimo della funzione

Se sviluppiamo i quadrati, vediamo subito che f € una funzione quadratica:

n

f(x) :Z(x2 — 2v,x + 27) = na? — 2 (ixl> x+i$22 7
1=1 i=1

=1
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per cui f(x) = az? + bz + ¢ con

n
a=n, b:—Qin, c:Zz?.
i=1 i
Quindi il punto di minimo di f &

b 1«
2 _Z ey
2a n 4 v
=1

cioe la media aritmetica dei dati, come promesso.

La seconda applicazione consiste in un metodo (detto metodo dei minimi qua-
drati) per trovare la retta che meglio approssima un dato insieme di dati.

Supponiamo di avere n coppie di dati (z1,41),. .., (Zn,yn), € di sospettare che
le ordinate dipendano in modo lineare dalle ascisse. Anche se la nostra ipotesi
e corretta, € molto improbabile che le n coppie di dati giacciano esattamente su
una retta, in quanto non possiamo evitare gli errori sperimentali; abbiamo quindi
bisogno di una tecnica che ci fornisca la “migliore” (in un senso da specificare)
approssimazione lineare di questi dati, e al contempo una misura della bonta di
questa approssimazione — in quanto, se la “migliore” approssimazione fosse cattiva
vorrebbe dire che la nostra ipotesi di dipendenza lineare non ¢ compatibile con i
dati, e quindi dev’essere scartata.

Cominciamo con definire quanto il grafico di una funzione lineare f(z) = max+d
approssima l'insieme {(z1,%1),..., (Zn,yn)}. La coppia (z;,y;) appartiene al gra-
fico di f se e solo se y; = mx; +d; quindi l'errore d; = mx; +d—1y; misura la distanza
che ¢’¢ fra il dato sperimentale (z;,;) e il dato teorico (z;, f(z;)) che si avrebbe se
la funzione f rappresentasse esattamente il fenomeno che stiamo studiando. Ab-
biamo quindi n errori, d1,...,d,; tenendo presente che a noi non importa il segno
dell’errore ma solo la sua grandezza, e ricordando quanto fatto studiando la va-
rianza, una misura di quanto la funzione f(z) = max + d approssima i dati & data
dalla media dei quadrati degli errori:

n

1< 1
S(m,d) = EZ(S? = EZ(mxi—i—d—yi)Q .
i=1

=1

Nota che la funzione S dipende dai due parametri m e d che determinano la funzione
lineare f; quindi .S & una funzione di due variabili reali.

Il nostro obiettivo & trovare il punto di minimo di S, cio¢ i valori 7 e d di m
e d che rendono S(m, d) pilt piccola possibile?. La corrispondente funzione lineare
f(x) = Tz +d sara allora quella che meglio approssima i dati da cui siamo partiti; e
ci rimarra solo da trovare una misura di quanto buona sia questa approssimazione.

Per trovare questo punto di minimo procederemo in questo modo. Prima di
tutto faremo vedere che, per ogni m € R fissato, la funzione d — S(m,d) & una

4 Ede questo il motivo per cui questo metodo si chiama dei minimi quadrati.
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funzione quadratica di d con coefficiente del termine quadrato positivo; quindi am-
mette un unico punto di minimo, che indicheremo con dy(m); vedremo anche come
dipende da m. Poi dimostreremo che anche la funzione S (m, do(m)) & una funzione
quadratica (di m, stavolta) con coefficiente del termine quadrato positivo; quindi
anche lei ha un unico punto di minimo 7, a cui corrisponde il valore d = do (7).
Allora (7, d) & il punto di minimo cercato. Infatti, per ogni (m,d) € R? abbiamo

S(m,d) > S(m,do(m)) > S(m, do(m)) = S(m, d)

come voluto (studia bene la precedente catena di disuguaglianze fin quando non
sei certo d’aver capito perché ¢ vera e perché ¢ proprio quello che ci serve).
Ok, cominciamo. Sviluppando i quadrati nella definizione di S(m, d) otteniamo

n

1
S(m,d) = - Z(xfmZ +d? 4 y? + 2x;md — 2xy;m — 2y;d)
i=1

n

1 1 — I
:d2+2(mf—§)d+m252x?—QmEZ%yi-l-ﬁzy?,
=1 i=1 =1

dove T ¢ la media aritmetica di x1,...,z, e ¥ € la media aritmetica di y1,...,Yn-
Quindi per ogni m fissato d — S(m, D) ¢ effettivamente una funzione quadratica
di d, in quanto possiamo scrivere S(m,d) = ad? + bd + ¢ con

a=1, b=2(mT—-7), c=m ﬁle _2mﬁzlxiyi+ﬁ;yi .
i= i=

i=1

In particolare, a = 1 > 0 e il punto di minimo dy(m) di questa funzione &

Per calcolare S(m, do(m)) ricordiamoci che il valore minimo di una funzione
quadratica (con a > 0) & ¢ — b2 /4a, per cui

1o I 1o 1
S(m,do(m)) :mQEZx? —2mE;xiyi + g;yf - Z4(m§—y)2

i=1
1 m
2 _ 2
m+ — - —
n;ﬂyl Y

= [%;szzl m? — 2 [%;xlyzfg

:de—l—l;m—I—E.

Dunque abbiamo ottenuto, come promesso, una funzione quadratica di m, con
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Inoltre, il coefficiente a del termine quadrato & positivo; infatti, I'Osservazione 3.32
ci dice che

17L ) )
~———E > — 7% = Media(z}) — Media(z;)? = V i) >0,
a n s 1ml T edia(x?) edia(x;) ar(z;) >

come voluto®.
Quindi la funzione S (m, do(m)) ammette un unico punto di minimo

b . %Z?:1xiyi_f'y

M= = , 410
2a Ly a2 —7? (4.10)

e la funzione S(m,d) ammette un unico punto di minimo (77, d) con
d=7—-mz=. (4.11)

La retta grafico della funzione f(z) = mz+d che meglio approssima i dati si chiama
retta di regressione (lineare).

Osservazione 4.19 Mentre il modo migliore di calcolare d & usare la formula (4.11),
ci sono altre formule per il calcolo di 7 oltre a (4.10). Prima di tutto notiamo che
possiamo scrivere (4.10) cosi:

Media(z;y;) — Media(z;)Media(y;)

m= , 4.12
Media(z?) — Media(z;)? (4.12)
o anche come L
Y-y
ey (4.13)
dove Ty ¢ la media aritmetica dei prodotti 211, . .., Znyn, € 22 & la media aritme-
tica dei quadrati 2%, ..., 22, per cui m ¢ la differenza fra la media dei prodotti e il

prodotto delle medie divisa per la differenza fra la media dei quadrati e il quadrato
della media.

Un’altra formula si ottiene notando che, come abbiamo gia visto, il denomina-
tore di (4.10) & uguale a Var(z;) = 23" (T — 2;)*>. Una formula analoga vale
anche per il numeratore: infatti

1 n
— E Ty —T Y =
n -

i=1

n

n
inyi_f%zyi_y
i=1

i=1

n
Zmi—i—f-y
=1

S|
S|

(T —2) ([T —vi)

I
S

s
Il
—

5 La varianza non puo essere nulla, a meno che tutti gli x; siano uguali; ma in tal caso
sapremmo gia che i dati giacciono su una retta (verticale), e quindi non avremmo neppure
cominciato questi conti.
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per cui possiamo scrivere

n — —
Zi:l(nm _xl)(y - yl) ) (414>
> e (T — i)
Quale formula usare dipende dalle situazioni, da quali altri calcoli hai gia effettuato
o devi effettuare, da quale ti ricordi meglio e anche dai tuoi gusti personali.

m =

Rimane da stabilire quanto bene la retta di regressione approssima i dati. Una
prima informazione ci & data dal valore minimo che abbiamo trovato,

_ b2
S(m,d) =¢— —=¢é—am’

a
_ 2
:lzn:yzfyzi [ ey wiyi — T 7]
n i=1 ' %Z?:l w?_EQ

(2 -7")@>—7°) — @y -7 7)°
22 — 72 ’

dove 32 & la media aritmetica di y3,...,y2, come al solito. Ora, le coppie di dati
stanno tutte sulla retta di regressione se e solo se S(7,d) = 0. Pero il valore
di S(m, d) da solo non & una buona misura della qualita della retta di regressione,
in quanto ha il solito problema degli errori assoluti: se i dati sono grandi allora
Perrore € grande in valore assoluto, anche quando & piccolo rispetto ai valori assoluti
dei dati. Ci serve invece un errore relativo. Siccome S(7, d) misura la media degli
errori quadratici nelle ordinate, la quantita giusta a cui confrontarla & lo scarto
quadratico medio delle ordinate, cioe la varianza® Var(y;) = 42 —7%. Quindi siamo
condotti a considerare la quantita

S(m,d) _ (rg —7-7)°

Var(y:) (22 -7 (y2 —7%)
che & sempre maggiore o uguale di zero, e si annulla se e solo se tutti i dati sono
sulla retta di regressione. Inoltre, & anche sempre minore o uguale di 1 (perché?);
quindi anche se i dati sono molto grandi rimane con valore assoluto limitato.
Abbiamo quasi finito: rimane da fare un passaggio analogo a quello che porta
dalla varianza alla deviazione standard. La quantita S(m, d)/Var(y;) si annulla se
e solo se (Ty — f-y)z/(ﬁ—EQ)(F —7%) = 1, cioe (estraendo la radice quadrata) se

e solo se (Ty —f@)/\/(ﬁ —72)(y? — 7°) = 1. Introduciamo allora il coefficiente
di correlazione di Pearson
y—z-y

CP =
V@ -2 -7

e[-1,1].

6 Che & nulla se e solo se tutte le y; sono uguali; ma in tal caso i dati sono chiaramente
su una retta (orizzontale), e di nuovo non ci saremmo imbarcati in questi calcoli.
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Per quanto abbiamo detto, il coefficiente di correlazione di Pearson misura la bonta
dell’approssimazione fornita dalla retta di regressione: se & sufficientemente vicino
a1l oa —1, allora ’approssimazione ¢ buona; se invece ¢ vicino a 0, vuol dire che i
dati non seguono affatto un andamento lineare.

Osservazione 4.20 “Sufficientemente vicino a +1” di solito vuol dire almeno 0.9 in
valore assoluto; almeno 0.95 ¢ anche meglio.

Osservazione 4.21 11 segno del coefficiente di Pearson ¢ lo stesso di .

Osservazione 4.22 1 conti fatti nell’Osservazione 4.19 ci forniscono un’altra formula
per il coefficiente di Pearson:

TY—T-Y S (@ — )Y — i)

P = DS(z:)DS(y:) \/Zle(f —xi)? 1 (T = y;)? |

Concludiamo questa sezione con un esempio di calcolo della retta di regressione
e del coefficiente di Pearson; altri esempi li vedremo nella Sezione 4.9.

EsEmpio 4.8 Riprendiamo il nostro gruppo di 15 cavie; vogliamo vedere se c’e
una relazione lineare fra il loro peso (in decigrammi) e la loro eta (in giorni; sono
cavie molto giovani). Per procedere prepariamo una tabella (Tabella 4.1) con cinque
colonne: l'etd (la nostra x), il peso (la nostra y), i prodotti 2y, i quadrati 22, e i
quadrati y2. Poi calcoliamo la media aritmetica dei dati di ciascuna colonna; con
questi dati possiamo trovare i coefficienti della retta di regressione e il coefficiente
di Pearson.

Cavia Eta (x) Peso (y) xy z2 y?
1 61 28 1708 3721 784
2 76 32 2432 5776 1024
3 80 37 2960 6400 1369
4 66 29 1914 4356 841
) 71 31 2201 5041 961
6 68 30 2040 4624 900
7 78 32 2496 6084 1024
8 55 26 1430 3025 676
9 74 32 2368 5476 1024
10 60 27 1620 3600 729
11 65 29 1885 4225 841
12 70 30 2100 4900 900
13 64 28 1792 4096 784
14 73 31 2263 5329 961
15 68 31 2108 4624 961

Media 68.6 30.2 2087.8 4751.8 918.6
TABELLA 4.1
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Usando per esempio la formula (4.13) otteniamo

Ty —T-y  2087.8 —68.6-30.2
2 -7 A4751.8 —68.62

=y—m-T~302-0.351-67~6.136,

m =

~ (0.351,

Ul

per cui la retta di regressione &
f(xz) =0.3512 + 6.136 .

Il coefficiente di Pearson ¢

cp — TY—T-Y _ 2087.8 — 68.6 - 30.2 ~0.927

\/@ _ 2 E—g?) V/(4T5L8 — 68.6%)(918.6 - 30.2%)

per cui la retta di regressione approssima piuttosto bene i dati, come si puo vedere
dalla Figura 4.6, che contiene sia i dati sia la retta di regressione.

38

361

34|

32

30

28+

26+

55 60 65 70 75 80 85

Figura 4.6 Retta di regressione.

Esercizio 4.1 Calcola la retta di regressione e il coefficiente di Pearson partendo
dai dati della Tabella 4.1 ma supponendo che la cavia 3 abbia 55 giorni d’eta.

Osservazione 4.23 Come hai visto (vero?) risolvendo il precedente esercizio, la
presenza anche di un solo dato spurio puo falsare di molto la retta di regressione,
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e dare un coefficiente di Pearson molto basso. Per questo motivo nella pratica
sperimentale conviene sempre esaminare i dati raccolti per eliminare dati evidente-
mente spuri, e (possibilmente) investigare i motivi che hanno portato alla presenza
dei dati spuri (semplici errori o un fenomeno nuovo?).

4.4 Funzioni polinomiali

Dopo le funzioni quadratiche, si possono considerare funzioni di terzo grado, o di

) b
quarto grado, o piu in generale funzioni polinomiali, cioé funzioni f: R — R espresse
da un polinomio:

f(@) = ana™ + an 12" '+ + a1z +ag, (4.15)

dove n € N ¢ il grado della funzione polinomiale (o del polinomio), e ag,...,a, € R
sono i coefficienti; si suppone sempre che a, # 0. Non abbiamo ancora gli stru-
menti necessari’ per effettuare uno studio dettagliato di queste funzioni; mi limitero
quindi a citare alcuni fatti, in parte analoghi a quanto abbiamo gia visto, che pos-
sono essere utili nel loro studio. La Figura 4.7 comunque contiene i grafici di alcune
funzioni polinomiali, giusto per darti un’idea di che faccia possano avere.

-4

Figura 4.7 Funzioni polinomiali.

La prima osservazione e che per x molto grande in valore assoluto, ’addendo
anz™ in (4.15) & molto piu grande degli altri, per cui il comportamento della fun-
zione f per x molto grande in valore assoluto & dettato dal comportamento di a,,z".
In particolare:

-  sea, >0en ¢ pari allora

lim a,z"+---4+ap= lim a,z" =+o0;
r—too r—+o0

7 Ne introdurremo molti nel prossimo capitolo.
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- sea, >0en édispari allora

lim a,z" +---+ag = ligl anpx”™ = +00 ;

r—to0 r—+o0
-  sea, <0emn e pari allora

lim ap,z"+---4+ap= lim a,2" = —00;

r—too r—+o0
-  sea, <0en e dispari allora

lim a,z"+---+ag= lim a,z" = Foo.

r—too r—+o0
CURIOSITA 4.5 Vediamo come dimostrare correttamente questa affermazione. Poniamo

_ 2nmax{|aol,...,|an|}

R
lan|

>2n>1.

Se |z| > R abbiamo |z|7 > |z| > 2n|a;|/|ax|, cioé

e quindi

j=1

Ricordando le seguenti fondamentali proprieta del valore assoluto
la| = [o] < |lal = [bl| < la+b] < la|+ 6], la-b] =al-|t] ,

per |z| > R otteniamo

"~ a; 1 "~ a; 1 "~ Ja,;| 1 11
1+§ H>1- E Y1 — >1--=-.
a, i a, x| lan| |z|i — 2 2

j=1 j=1 j=1

Inoltre,

"a N " el 1 L3
e S D) ES ol 1oy 1.3
Qn TI an 7 lan]| |z|7 2 2

j=1 j=1 j=1

sempre per |z| > R. Siccome

n n a; 1
anx" + -+ ap = anx 1+Z——, )

a,
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non appena a,z" > 0 e |z| > R otteniamo
3 1
—an2" 2 anx™ + -+ a0 > = apT”,
2 2
mentre se a,z" < 0 e |z| > R otteniamo

1
50nTn <apz" 4+ +ao < 3 anx"

Queste due stime implicano immediatamente le affermazioni volute.

La seconda osservazione riguarda il numero di condizioni necessarie per deter-
minare i coefficienti di un polinomio di grado n. Abbiamo visto che il grafico di una
funzione lineare era completamente determinato dal passaggio per due punti, e che
il grafico di una funzione quadratica era completamente determinato dal passaggio
per tre punti. Analogamente, il grafico di un polinomio di grado n € completamente
determinato dal passaggio per n + 1 punti.

Il metodo per trovare il polinomio dati n + 1 punti & analogo a quello visto per

le funzioni quadratiche. Supponiamo di avere n + 1 punti (zo, o), - - -, (Tn, Yn) con
ascisse o, . . ., &, tutte distinte. Trovare un polinomio f(z) = an,a™+---+ag il cui
grafico passi per questi punti, cioe tale che f(z;) =y; per j =0,...,n, equivale a

risolvere il sistema lineare

—1
Lian + 20 ap_1+ -+ a0 =Yo ,

—1

CCZ‘CLH+1‘Z Ap—1+ -+ ayg=Yn,

di n + 1 equazioni nelle n + 1 incognite aq, ..., a,. Per risolvere questo sistema si
sottrae ogni equazione dalla successiva; se necessario, si dividono, come in (4.8), i
coeflicienti del sistema ottenuto per un opportuno fattore comune, utilizzando le
formule

k
xk)-’rl _ yk+1 — (x _ y) inyk—i , (416)
=0

e si ripete il procedimento col nuovo sistema. Dopo n passaggi si arriva a una sola
equazione lineare con a, come unica incognita; ricavata a, si sostituisce il valore
trovato nei sistemi precedenti, ricavando a,_1 € poi a,_o e cosi via fino ad ag.
Questa tecnica per determinare i coefficienti dei polinomi ¢ detta metodo delle
differenze.

CURIOSITA 4.6 La formula (4.16) si dimostra col seguente conto:

k k

k
(z —y) Zwiyk—i _ Zzi+1yk—i o inyk—(i—l)
=0

i=0 =0
k—1

k—1
— zk+1 + § xi+1yk—i _ E $h+1yk_h _ yk+1
=0

h=0

k41 k+1
=z -y ’
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dove abbiamo posto h = ¢ — 1 nell’ultima sommatoria.

EsEmpIO 4.9  Studiamo nuovamente i semi di pomodoro degli Esempi 4.1 e 4.7.
Sai gia che alla temperatura di 12 °C germoglia il 40% dei semi, alla temperatura
di 15 °C germoglia il 70% dei semi, e che alla temperatura di 9 °C germoglia il 20%
dei semi. Non contento, il tuo assistente effettua un’ulteriore misura, scoprendo
che alla temperatura di 18 °C germoglia 185% dei semi. Trova un polinomio di
terzo grado che rappresenta questi dati. Dobbiamo trovare ag, a1, az, ag € R che
soddisfano il sistema

7293 + 8las 4+ 9a1 + ag = 20,

1728a3 + 144as + 12a1 + ag = 40 ,
3375&3 + 225&2 + 15(11 +ag = 70 s
5832(13 —+ 324(12 —+ 180,1 —+ ag = 85 .

La prima serie di sottrazioni ci da

1647a3 + 81las + 3a1 = 30,

{ 999a3 + 63as + 3a1 = 20,
2457a3 + 99as + 3a; = 15 .

Siccome i coefficienti di a; sono uguali nelle tre equazioni, non abbiamo bisogno
di effettuare divisioni e possiamo procedere direttamente con la seconda serie di
sottrazioni:

{648(13 + 18a, =10,
810as + 18as = —15.

L’ultima sottrazione ci da 162a5 = —25, cio¢ ag = —25/162. Mettendo questo
valore nelle equazioni precedenti e risalendo troviamo ay = 55/9, a3 = —1265/18,
e ag = 270, per cui il polinomio cercato ¢

25,3 55, 1265
P(T) = 162T+9T 13 T4 270 .
La Figura 4.8 contiene sia i dati sia i grafici delle funzioni che abbiamo ottenuto
nei vari esempi.

Osservazione 4.24 Gli Esempi 4.1, 4.7 e 4.9 mostrano che i conti nel metodo
delle differenze sono piu semplici se le ascisse xg,...,Z, sono equispaziate, cioe
S€e 1 — o =X —T1 =" """ ==Tp—-1—Tn.-

Esercizio 4.2 Usa il metodo dei minimi quadrati per determinare la retta di
regressione per i dati dell’Esempio 4.9, calcola il coefficiente di Pearson, e confronta
pregi e difetti delle varie formule (retta di regressione inclusa) che abbiamo trovato
per rappresentare la relazione fra temperatura e percentuale di semi germinati.

L’ultima osservazione che ci servira riguarda le radici di un polinomio. Una
radice di un polinomio f(z) & un numero reale zo € R tale che f(zo) = 0. La regola
di Ruffini dice che zy € R & radice del polinomio f se e solo se esiste un polinomio ¢
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tale che f(z) = (z — z0)q(z), dove ¢ ha grado minore di uno rispetto al grado di f.
Ora, se x € radice anche di ¢, deve esistere un terzo polinomio ¢;, di grado minore
di quello di ¢, tale che q(z) = (¥ — xo)q1(x), per cui f(z) = (v — z0)*q1 ().
Ripetendo questo procedimento, prima o poi troveremo un numero naturale r > 0
(e minore o uguale del grado di f) e un polinomio ¢, tali che

f(@) = (& —z0)"qr(x)  con  gr(xo) #0;
il numero r & detto molteplicita di zy come radice di f.

CURIOSITA 4.7  Se g, ha una radice z; di molteplicitd s > 0, possiamo ripetere questa costruzione
con ¢, trovando un polinomio p, tale che f(z) = (z — zo)"(x — z1)*ps(z). Procedendo in
questo modo si riesce a dimostrare che ogni polinomio f si pud scrivere in modo unico come
prodotto

f(@) =ap: ()™ - p2(x)™ (4.17)
dove a € R ¢ il coefficiente direttore di f, r1,...,7, sono numeri interi maggiori di zero, e
P1,...,Dr sono polinomi monici (cioe con coefficiente direttore uguale a 1) irriducibili (cioé

non si possono scrivere come prodotto di due altri polinomi monici). I polinomi irriducibili
sono ’equivalente per i polinomi dei numeri primi per i numeri naturali; e (4.17) & ’equivalente
della decomposizione in fattori primi di un numero intero. Infine, si puo anche dimostrare
che i polinomi monici irriducibili a coefficienti reali sono o polinomi lineari della forma x — zq
oppure polinomi quadratici senza radici reali (cio¢ con discriminante negativo).
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4.5 Funzioni potenza

Un’altra famiglia importante di funzioni e costituito dalle funzioni potenza, che
sono funzioni della forma

f(@) = az?,

dove a # 0 ¢ un numero reale e p ¢ un numero razionale (ma vedi anche 1’'Osserva-
zione 4.26), detto esponente della funzione potenza.

Osservazione 4.25 Se p ¢ un numero naturale, p € N = {0,1,2,...}, la funzione
f(x) = axP & una particolare funzione polinomiale, e quindi ¢ definita su tutta la
retta reale: f:R — R. Se p & un numero intero negativo, p € Z~ = {—-1,-2,...},
la funzione f & una particolare funzione razionale (vedi la prossima sezione) ed &
definita per x # 0, cioe f:R* — R. Infine, se p € un numero razionale non intero,
p € Q\ Z, allora f & definita solo per & > 0, cio¢ f:RT — R.

Osservazione 4.26  Come vedremo nelle Sezioni 4.7 e 4.8 e nel prossimo capitolo, &
possibile dare un senso anche alle potenze irrazionali di un numero non negativo,
per cui potremo considerare funzioni potenza con esponente qualsiasi (ma solo con
argomento reale non negativo).

CURIOSITA 4.8 Supponiamo che p € R\ Q sia un numero irrazionale, e x € RT un numero non
negativo. Siccome i numeri razionali possono approssimare bene quanto vogliamo qualsiasi
numero reale, un modo per calcolare la potenza irrazionale x? si basa sul fatto che esiste un
numero reale y tale che la potenza razionale x? & arbitrariamente vicina a y non appena ¢
& un numero razionale sufficientemente vicino a p; allora si pone z? = y. Quindi le potenze
razionali forniscono approssimazioni arbitrariamente buone delle potenze irrazionali. Un altro
modo per esprimere questo concetto & dire che per ogni € > 0 (arbitrariamente piccolo) esiste
un ¢ > 0 (sufficientemente piccolo) tale che se ¢ ¢ un numero razionale che dista da p meno
di § (cioe |g — p| < §) allora z? dista da y meno di € (cioe |27 — y| < €).

Le funzioni potenza az? con p € N hanno un comportamento molto simile a
quello di ax se p ¢ dispari, e a quello di az? se p & pari. Infatti, con le tecniche
viste nelle Sezioni 4.1 e 4.2 ¢ facile dimostrare (esercizio per te e il tuo assistente)
che

—  se p ¢ dispari, la funzione f(z) = azP & monotona (crescente se a > 0, decre-
scente se a < 0), e

oo sea>0,

Foo sea<0;

r—+o0

lim ax? = {

— se p ¢ pari (e non nullo), la funzione f(x) = ax? ha un punto di minimo (se
a > 0) o un punto di massimo (se ¢ < 0) in z = 0, & monotona (crescente o
decrescente a seconda del segno di a), nelle semirette (—oo, 0] e [0, +00), €

+o0 sea >0,

lim axpz{
—o0 sea<0.

r—to0

Osservazione 4.27 Nota che il tipo di monotonia su Rt = [0, 400) e il limite a +o00
di ax? dipende solo dal segno di a e non dalla parita di p.
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Osservazione 4.28 11 confronto fra funzioni potenza con diverso esponente puo for-
nire interessanti conseguenze biologiche legate a questioni di scala. Prendiamo un
particolare individuo di una data specie animale (o vegetale), e scegliamo una sua
lunghezza caratteristica ¢: per esempio, possiamo indicare con ¢ il diametro della
testa. Tutte le altre lunghezze di questo particolare individuo sono banalmente pro-
porzionali a £: i coefficienti di proporzionalita si ottengono semplicemente dividendo
per ¢ la lunghezza che si vuole considerare. Se ora prendiamo un altro individuo
della stessa specie, i coefficienti di proporzionalita delle sue lunghezze rispetto a /¢
saranno un po’ diversi, ma non troppo diversi: per esempio, il secondo individuo
sara un po’ pit alto o un po’ pitt basso, ma facendo parte della stessa specie € molto
improbabile che sia alto piu del doppio o meno della meta. Quindi possiamo consi-
derare questa lunghezza ¢ come rappresentativa della specie; tutte le altre lunghezze
in tutti gli altri individui della stessa specie saranno proporzionali a ¢ con coeffi-
cienti di proporzionalita approssimativamente costanti. Di conseguenza, tutte le
superfici di individui della stessa specie saranno proporzionali a 2, con coefficienti
di proporzionalita approssimativamente costanti; e tutti i volums saranno propor-
zionali a 3, con coefficienti di proporzionalita approssimativamente costanti. Ora,
i fenomeni di scambio con ’esterno (assorbimento di ossigeno, emissione di calore,
eccetera) di un individuo avvengono usualmente attraverso la superficie, e quindi
avranno andamenti proporzionali a £2; invece, i fenomeni metabolici (consumo di
ossigeno, produzione di calore, eccetera) sono di solito proporzionali al volume (al
numero di cellule coinvolte), e quindi proporzionali a ¢3. La conseguenza di tutto
cio ¢ che (come sara chiarito dai prossimi esempi) non é possibile variare eccessiva-
mente le dimensioni di una data specie animale senza danneggiare ’equilibrio fra
il metabolismo interno e l'ambiente esterno che le permette di vivere; in un certo
senso, i rapporti fra il metabolismo e la forma di una specie ne determinano le
dimensioni ideali.

EsEmpiO 4.10 Con buona pace dei film dell’orrore, un ragno gigante, ottenuto
ingrandendo 100 volte un ragno usuale, ha poche possibilita di sopravvivere. Il
consumo di ossigeno & proporzionale al volume del ragno, volume che & passato da
un multiplo di #3 a un uguale multiplo di (10£)* = 1000¢3. D’altra parte, I’assorbi-
mento di ossigeno & proporzionale alla superficie interna dei polmoni, superficie che
¢ passata da un multiplo di 2 a un uguale multiplo di (10¢)? = 100¢2. 11 consumo
di ossigeno e quindi aumentato di 1000 volte, mentre 1’assorbimento di ossigeno
solo di 100 volte; il ragno gigante riceve solo 1/10 dell’ossigeno che gli servirebbe,
e quindi muore soffocato sotto gli occhi increduli dell’eroe del film.

In maniera analoga, con buona pace dei film di fantascienza, un uomo rimpiccio-
lito di 10 volte si sentirebbe piuttosto male. Infatti, la perdita di calore attraverso
I’epidermide & proporzionale alla superficie del corpo, cioe a £2, e quindi si & ridotta
di 1/100. Ma il calore prodotto dal corpo umano, necessario alla nostra sopravvi-
venza visto che siamo animali a sangue caldo, & proporzionale al volume del corpo,
ciod a £3, e quindi si & ridotto di 1/1000. Quindi un uomo rimpicciolito 10 volte per-
derebbe attraverso l’epidermide 10 volte piu calore di quello che produce, e quindi
probabilmente morirebbe di freddo.
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Osservazione 4.29 La superficie di assorbimento dell’ossigeno nei polmoni in realta
ha una struttura frastagliata, di tipo frattale, e di conseguenza che ’assorbimento
di ossigeno e piu efficiente diventando proporzionale a /P con p > 2; ma in ogni
caso non raggiunge £3.

ESEMPIO 4.11 E noto che la forza muscolare di un muscolo delle gambe & ap-
prossimativamente proporzionale al numero di fibre muscolari che lo compongono,
e quindi & proporzionale alla superficie trasversa del muscolo, cioe a ¢2. Inoltre,
Penergia prodotta dal muscolo & proporzionale alla forza per la lunghezza, e quindi
¢ uguale a ¢ /2 per un’opportuna costante ¢; > 0. D’altra parte, ’energia neces-
saria per un salto di altezza h e proporzionale al prodotto dell’altezza per il peso
del corpo, e quindi & uguale a cyhf? per un’opportuna costante c; > 0. Ne segue
che la massima altezza possibile h di un salto deve soddisfare ¢ 03 = csht3, cioe
h = ¢1/cs; in particolare, h non dipende da £.

Ora, una pulce comune ¢ in grado di saltare a un’altezza pari a 200 volte la
propria altezza; quanto sara in grado di saltare una pulce 10 volte piu grande? E
una pulce 100 volte piu grande? La pulce comune ¢ in grado di saltare a un’al-
tezza h = 200c3/ per una costante c3 > 0 opportuna. Una pulce 10 volte piu grande
avra lunghezza caratteristica 10/, ma uguali costanti di proporzionalita c;, ¢ € c3.
Siccome la massima altezza possibile per un salto dipende solo dalle costanti di
proporzionalita, la pulce 10 volte pitu grande puo saltare solo alla stessa altezza
della pulce comune, e quindi al massimo a 20 volte la propria altezza. Analoga-
mente, una pulce 100 volte piu grande riuscira a saltare solo il doppio della propria
altezza, e una pulce mastodontica 1000 volte piu grande della pulce comune riuscira
a saltare solo un quinto della propria altezza. Per intenderci, se una pulce comune
alta circa 1 mm riesce a saltare 20 cm, una pulce alta 1 metro riuscirebbe a saltare
sempre soltanto 20 cm. ..

Le funzioni f(z) = az? con esponente p € Q" \ N razionale positivo non intero
sono definite solo su R*, e hanno comportamento analogo a quelle con esponente
naturale: sono crescenti se a > 0, decrescenti se a < 0, e il loro limite all’infinito
¢ uguale a +oo a seconda del segno di a. La Figura 4.9 contiene il grafico di
alcune di queste (con a = 1). Nota che quelle con esponente maggiore di 1 hanno
la concavita rivolta verso 1’alto, mentre quelle con esponente minore di 1 hanno
la concavita rivolta verso il basso. Nel prossimo capitolo vedremo come verificare
rigorosamente questa affermazione.

Pill interessanti sono le funzioni f(x) = az? con p € Q7; siccome (almeno
quando p € Z~) sono funzioni razionali, le discutiamo nella prossima sezione (Os-
servazione 4.31).

4.6 Funzioni razionali
Una funzione razionale ¢ un quoziente di polinomi:

AmE™ + Q1 2™ L+ -+ ag

fla) = bpd™ + by 121+ -+ by

b
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Figura 4.9 Funzioni potenza.
conm, n €N, ap,...,am, bo,...,bp € R e ap, b, #0 (e di solito si assume anche

n > 1, perché altrimenti f sarebbe un polinomio); il numero d = max{m,n} &
detto grado della funzione razionale. Ovviamente, lo studio dell’andamento delle
funzioni razionali generiche, come per i polinomi, richiede strumenti che ancora non
abbiamo; a parte alcune osservazioni finali, ci concentreremo quindi sulle funzioni
razionali di grado 1, note anche come funzioni lineari fratte.

L’esempio pin semplice di funzione lineare fratta ¢ la funzione (potenza)

con a # 0. Rappresenta le relazioni di proporzionalita inversa: infatti, un punto
(x,y) appartiene al grafico di f se e solo se

Ty =a,

per cui il prodotto fra I'argomento e il valore della funzione & costante su tutto il
dominio della funzione.

Osservazione 4.30 In particolare, basta conoscere un punto (zg, yo) del grafico per
determinare la funzione a/z, in quanto a = zoyo.

La prima osservazione importante ¢ che la funzione f(z) = a/x non é definita
su tutto l’asse reale: il suo dominio non & R. Infatti, il quoziente a/x non & definito
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per = 0, per cui la funzione f & definita solo su R* = R\ {0}. Si dice anche che
0 & una singolarita per la funzione f.

Quando una funzione ha una singolarita (un punto in cui non & definita), &
importante cercare di capire come si comporta vicino alla singolarita. Cominciamo
supponendo a > 0 e z > 0. Quando z > 0 diventa piccolo (per esempio, mi-
nore di 1/n per n arbitrariamente grande) allora 1/x diventa grande (per esempio,
maggiore di n) e quindi anche a/x diventa grande (per esempio, maggiore di an).
In altre parole, possiamo rendere f(x) = a/x arbitrariamente grande a patto di
scegliere x sufficientemente piccolo e positivo.

Abbiamo gia visto come tradurre in simboli i concetti di “arbitrariamente
grande” e “sufficientemente grande”; una procedura analoga si usa per il concetto
di “sufficientemente piccolo”. La frase precedente diventa: per ogni M > 0 (arbi-
trariamente grande) esiste § > 0 (sufficientemente piccolo) tale che se 0 < x < §
allora f(z) > M. In simboli,

VM >0 36>0 0<za<d= f(z)>M.

Usando la terminologia dei limiti, diremo che il limite di f(x) per x che tende a 0
da destra (o da sopra, o che tende a 07) é +o0:

lim f(z) =4o0.

z—0t

Quando = < 0 negativo diventa piccolo (in valore assoluto), 1/x diventa grande
in valore assoluto ma rimane negativo, cioe diventa molto negativo. Quindi, sem-
pre assumendo a > 0, possiamo rendere f(x) = a/x arbitrariamente negativa a
patto di scegliere x sufficientemente piccolo e megativo. In altre parole, per ogni
M > 0 (arbitrariamente grande) esiste 6 > 0 (sufficientemente piccolo) tale che se
—0 <z <0 allora f(x) < —M. In simboli,

VM >0 36>0 —-d<z<0= f(z)<—-M.

Usando la terminologia dei limiti, diremo che il limite di f(x) per x che tende a 0
da sinistra (o da sotto, o che tende a 07) é —o0:

lim f(z) =—-oc0.

r—0~

Una conseguenza di questo comportamento e che il grafico di f si avvicina sempre
pit all’asse delle ordinate quando z tende a zero (si avvicina in alto se z > 0,
in basso se < 0). Si dice che l'asse delle ordinate ¢ un asintoto verticale della
funzione f.
Ovviamente, se a < 0 i segni si invertono; lascio a te il compito di dimostrare
che
se a < 0 allora lim f(x) = Foo,

z—0

e di scrivere a parole e in simboli il significato di questa formula.
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Vediamo ora cosa succede allontanandoci da zero. Cominciamo come al solito
supponendo a > 0. Se 0 < zyp < x7 allora 0 < 1/x; < 1/z9 e 0 < a/x1 < a/xo;
quindi 0 < zg < x1 implica f(z¢) > f(x1) > 0, per cui f & strettamente decre-
scente nella semiretta (0, 4+00). In modo analogo si dimostra che f & strettamente
decrescente (ma negativa) nella semiretta (—o0,0). Se invece a < 0 s’inverte tutto;
riassumendo,

- se a > 0, la funzione f(z) = a/z & strettamente decrescente e negativa in
(—00,0), mentre ¢ strettamente decrescente e positiva in (0, +00);

- sea < 0, lafunzione f(z) = a/x & strettamente crescente e positiva in (—oo, 0),
mentre € strettamente crescente e negativa in (0, +00).

In particolare, quando x diventa grande (e a > 0) la funzione f(z) = a/x decresce
rimanendo positiva e diventando arbitrariamente piccola. Una cosa simile accade
quando z diventa molto negativo (e quando a < 0): cambia il segno, cambia la
crescenza, ma in ogni caso f(x) diventa arbitrariamente piccolo in valore assoluto
a patto di scegliere x sufficientemente grande o sufficientemente negativo. Ormai
avrai capito il trucco per tradurre espressioni quali “arbitrariamente piccolo”: la
frase precedente diventa “per ogni € > 0 (arbitrariamente piccolo) esiste M > 0
(sufficientemente grande) tale che se x > M o z < —M allora |f(z)] < €”. In
simboli,
Ve>0 IM>0: z>Mozxz<-M = |f(x)|<e,

o anche
lim f(z)=0,
r—+o0

che si legge “il limite di f(x) per x che tende a +oo & 07, o anche “f(z) tende
a 0 per = che tende a +00”. Una conseguenza di questo comportamento e che il
grafico di f si avvicina sempre piu all’asse delle ascisse quando x tende a oo (si
avvicina da sopra a +o0o se a > 0 e a —oo se a < 0, e da sotto a —oo se a > 0
e a oo se a < 0). Si dice che l'asse delle ascisse ¢ un asintoto orizzontale della
funzione f. La Figura 4.10 contiene il grafico di f(xz) = a/x con a > 0, che
riassume visivamente tutte le proprieta che abbiamo discusso, asintoti compresi.
Questo grafico ¢ un esempio di iperbole equilatera®.

Osservazione 4.31 Le funzioni potenza f(z) = aa? con p razionale negativo pos-
sono venire studiate con tecniche analoghe. In particolare, su (0,+00) sono tutte
positive e strettamente decrescenti (se a > 0, o negative e crescenti se a < 0),
hanno limite 0 a +o0o con la retta delle ascisse come asintoto orizzontale, e limite
+00 (a seconda del segno di a) per x che tende a 0", con la retta delle ordinate
come asintoto verticale. Su (—o0, 0) sono definite solo quando p € Z~, e in tal caso
hanno un andamento analogo a quello di a/z in (—o0,0) se p & dispari, e a quello

8 11 termine “equilatera” serve a indicare che i due asintoti sono ortogonali. In generale,
un’iperbole ¢ il luogo dei punti del piano per cui il valore assoluto delle differenze delle
distanze da due punti dati (detti fuochi) & costante. Un’iperbole ha sempre due asintoti,
ma non sono necessariamente ortogonali.
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Figura 4.10 f(z) =1/xz.

di |a/x| se p & pari. In particolare, se p & pari abbiamo che f(x) diventa arbitraria-
mente grande a patto di prendere x sufficientemente piccolo in valore assoluto, cioe
per ogni M > 0 (arbitrariamente grande) esiste § > 0 (sufficientemente piccolo)
tale che 0 < |z| < § implica f(z) > M, ovvero

lim f(z) = 400

z—0

senza bisogno di distinguere se x tende a 0 da destra o da sinistra.

Lo studio di qualsiasi funzione razionale fratta puo venire ricondotto a quello
di a/x, proprio come avevamo ricondotto lo studio di qualsiasi funzione quadratica
a quello di 2. Infatti, se ¢ # 0 si ha

ax—i—b_(a/c)x—l—b/c_%(x-i-d/C)-l-%—‘i—g_g_'_(bc—ad)/cQ (4.18)
cx+d  x+d/c x+d/c Cc x+d/c '

Ricordando la Sezione 4.2 vediamo che il grafico di f(z) = (az + b)/(cxz + d) si

ottiene a partire da quello di 1/x con le seguenti operazioni:

—~  moltiplichiamo le ordinate per (bc — ad)/c?;

—  sottralamo a/c alle ordinate, traslando il grafico in direzione verticale della
quantita a/c;

— sommiamo d/c alle ascisse, traslando il grafico in direzione orizzontale della
quantita —d/c.

Quindi la funzione f(z) = (ax +b)/(cx + d) soddisfa le seguenti proprieta:
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—  ha una singolarita in g = —d/c¢;

— il suo grafico & un’iperbole equilatera con asintoto orizzontale la retta y = a/c
e asintoto verticale la retta x = —d/c¢;

—  nelle semirette (—oo,—d/c) e (—d/c,+00) & strettamente decrescente se si
ha bc — ad > 0, mentre se bc — ad < 0 e strettamente crescente nelle stesse
semirette (ed & costante se bc — ad = 0).

La presenza dell’asintoto orizzontale y = a/c vuol dire che f(z) & arbitrariamente
vicina al valore a/c non appena x ¢ sufficientemente grande o sufficientemente nega-
tivo. Ora, f(x) ¢ arbitrariamente vicina ad a/c se e solo se la differenza f(z) —a/c
¢ arbitrariamente piccola in valore assoluto. Quindi dire che y = a/c & un asin-
toto orizzontale per f equivale a dire che per ogni € > 0 (arbitrariamente piccolo)
esiste M > 0 (sufficientemente grande) tale che se x > M o x < —M allora
|f(z) —a/c| < e. In simboli,

Ve>0 IM>0: z>Moz<-M=|f(z)—a/c|<e,

o anche

lim f(z) =a/c.
r—+oo

Analogamente, la presenza dell’asintoto verticale x = —d/c vuol dire che f(z) & ar-
bitrariamente grande (o arbitrariamente negativa) non appena x ¢ sufficientemente
vicino a g = —d/c. Ora, z ¢ sufficientemente vicina a xy se e solo se la diffe-
renza xr—xg € arbitrariamente piccola. Quindi dire che z = xg € un asintoto verticale
per f equivale (almeno quando bc — ad > 0) a dire che per ogni M > 0 (arbitra-
riamente grande) esiste € > 0 (sufficientemente piccolo) tale che se 0 < x — g < &
allora f(z) > M, e se —e < & —x9 < 0 allora f(xr) < —M. Usando il simbolo di
limite questo si scrive

lim f(z)=40c0 e lim f(z)=-0.

+ —
I—)ZO (11—>(110

Lascio a te il compito di scrivere cosa succede se be—ad < 0. La Figura 4.11 contiene
il grafico di una funzione lineare fratta con rappresentati anche gli asintoti.

Osservazione 4.32 Una conseguenza immediata di (4.18) & che i punti (z,y) del
grafico di f(x) = (ax + b)/(cx 4+ d) sono tutti i punti del piano che soddifano la
condizione

(z—a)(y—0B) =k
con a = —d/c, B=a/cek = (bc—ad)/c?.

Osservazione 4.33 Abbiamo visto cosa vuol dire che una funzione ha limite infinito
quando z tende all’infinito; cosa vuol dire che ha limite un valore finito quando =
tende all’infinito; e cosa vuol dire che ha limite infinito quando x tende a un valore
finito (da destra, da sinistra o da entrambi i lati). Rimane da dire cosa vuol dire
che ha limite un valore finito quando x tende a un valore finito. La definizione non
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-4t

Figura 4.11 f(z) = (z+1)/(z — 1).

dovrebbe stupirti: diremo che la funzione f ha limite ¢ quando x tende a xq, e
scriviamo

lim f(x)=1+¢

Tx—x0
se f(z) si avvicina arbitrariamente a ¢ a patto di prendere z sufficientemente vicino

a xo, 0, in altre parole, se per ogni € > 0 (arbitrariamente piccolo) esiste 6 > 0
(sufficientemente piccolo) tale che 0 < |z — xo| < 0 implica |f(z) — €| < e.

Osservazione 4.34 La condizione 0 < |xr — x| < ¢ ¢ equivalente a richiedere
0 < x—zy < 6 oppure =9 < xz — x9 < 0. Utilizzando solo una di queste due
condizioni otteniamo (come visto prima) il concetto di limite per = che tende a zg
da sopra (cioe x — x) oppure da sotto (cioe x — zy ).

CURIOSITA 4.9 Possiamo usare il concetto di limite per definire la continuita di una funzione. Per
Iesattezza, una funzione f: I — R, dove I C R & un intervallo, & continua in un punto xo € I
se

lim f(z) = f(z0) ,

z—zg
cioe se il suo valore in z, coincide con il suo limite (sia da sopra che da sotto) in zo, o, ancora,

se f(z) diventa arbitrariamente vicino a f(zo) a patto di prendere z sufficientemente vicino
a xo. La funzione f:I — R & poi detta continua se lo € in ogni punto del suo dominio I.

Vediamo ora un’applicazione biologica delle funzioni lineari fratte.
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EsSEMPIO 4.12 In un esperimento si trova® che la velocitd v (in cm/sec) con cui
un muscolo sartorio della coscia di una rana si espande per sollevare un peso p (in
grammi) soddisfa la relazione

70 —0p
v(p) = 0.95 (p n 12) .

In particolare, questa funzione ha una singolarita in p = —12; ma siccome chiara-
mente ci interessa solo per p > 0, la presenza della singolarita non € un problema.
E una funzione lineare fratta della forma (az +b)/(cx +d) con a = —0.95, b = 66.5,
c¢=1ed=12. In particolare, (bc —ad)/c?> = 77.9 > 0 per cui v & strettamente de-
crescente per p > —12 (in altre parole, maggiore il peso piu lentamente si estende il
muscolo, osservazione piuttosto ragionevole). Di conseguenza, la massima velocita
di estensione si ha per p = 0, cioé in assenza di carico, e vale v(0) =~ 5.54 cm/sec. 1l
limite all’infinito a/c = —0.95 & negativo; dunque il grafico deve intersecare I’asse
delle ascisse. Infatti v(70) = 0, che vuol dire che se p = 70 g la gamba della rana
non riesce a espandersi (velocita zero!), cioe la rana non riesce a sollevare un peso
di 70 g (o maggiore). In particolare, questa formula puo essere valida solo per valori
di p nell’intervallo [0, 70].

Vediamo ora cosa possiamo dire sul comportamento di una funzione razionale
qualsiasi
p(T)  apmT™ + a1 2™+ ag

LA B N T R (419

Cominciamo col capire dove & definita. Gli unici punti in cui potrebbero esserci dei
problemi sono le radici del denominatore ¢q. Se xy ¢ una radice di ¢ e il numeratore
non si annulla in xg, cioé p(xg) # 0, allora per calcolare f(xo) dovremmo dividere
per zero, che non ¢ possibile; quindi le radici del denominatore che non sono radici
del numeratore sono sicuramente singolarita per f. Se invece z( € radice anche
del numeratore, dobbiamo confrontare le molteplicita. Nella Sezione 4.4 abbiamo
visto che se z( & radice sia di p che di ¢ possiamo scrivere p(z) = (z — x0)"p1(x)
e q(z) = (z — z0)*q1(z) con p1(zo), q1(x0) # 0. Quindi

o (x — mo)rp1(x) = (1 — 20)" % ﬂ
f(z) = G rorale) = ( 0) (o) (4.20)

Ma allora se r > s il punto zy non ¢ una singolarita di f, in quanto ¢;(z¢) # 0;
invece zp rimane una singolarita di f se r < s, perché in tal caso & (x — x¢)"*
ad avere una singolarita in zy (I’esponente & negativo). Inoltre (4.20) implica che,
semplificando un’opportuna potenza di x—x(, possiamo esprimere f come quoziente
di polinomi tali che xy non sia una radice comune di numeratore e denominatore.
Ripetendo questo procedimento per tutte le radici del denominatore troviamo che

9 Nella Sezione 4.9 vedremo come il metodo dei minimi quadrati puo essere usato anche
per interpolare funzioni lineari fratte.
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ogni funzione razionale si puo esprimere come rapporto di polinomi privi di radici
comuni, e in tal caso le singolarita coincidono con le radici del denominatore.

Supponiamo allora che f(z) = p(x)/q(z) sia una funzione razionale tale che p
e ¢ non abbiano radici comuni, e sia xg una radice del denominatore di moltepli-
cita r > 0. Per quanto visto possiamo scrivere

= # p(l’) con i xZ
f(z) = (z — z0)" q1(z) p(0), ¢1(z0) #0 .

In particolare, p(z)/q1(z) ammette limite finito non nullo ¢ = p(xg)/q1(z0) per =
che tende a z, per cui il comportamento di f(x) per z vicino a xz( sara analogo
a quello di ¢/(x — z)". In particolare, il limite di f(x) per z che tende a zy (da
sopra o da sotto) sara uguale a quello di £/(x — xg)", e quindi varra +oo a seconda
del segno di £ e della parita di r (e se « tende a ¢ da sopra o da sotto). In ogni
caso, la retta x = x¢ € un asintoto verticale.

Osservazione 4.35 Nel ragionamento precedente abbiamo implicitamente usato al-
cune proprieta algebriche dei limiti. Per l'esattezza, le seguenti formule valgono
quast sempre:

lim [£(2) + g(a)] = Jim f() + lm g(z),

T—x0 T—x0

lim [£(2)g(2)] = lim f() - Jim g(z),

r—xo Tr—xo (421)
lim f(x)
lim f(@) =27 se lim g(x) #0.
a—zo g(x) lim g(x) z—x0
T—To

Il “quasi” si riferisce al fatto che possono sorgere dei problemi se qualcuno di questi
limiti e infinito. In particolare, se a secondo membro otteniamo una delle seguenti
forme indeterminate

+o0

+oo’

allora per scoprire quanto fa il limite a primo membro (ammesso che esistal) ab-
biamo bisogno di maggiori informazioni (e di metodi che vedremo nel prossimo

capitolo). Altre apparizioni di limiti infiniti non creano grossi problemi, invece: se
poniamo

+00+00 =400, —00—00=-—00,
{+o00o==200 perfelR,
+o0 +o0
é«:l:oo:T::I:oo per £ >0, €~:|:oo:7::|:oo per £ <0,
allora le formule (4.21) rimangono valide (come pure rimangono valide se al posto

di zp mettiamo +00). Infine, anche lo studio del limite di un quoziente quando il de-
nominatore tende a zero richiede maggiori informazioni. Se il limite del numeratore
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¢ non nullo (o infinito), il limite del walore assoluto del quoziente & +o00, ma il limite
del quoziente potrebbe essere +00, —oo 0 non esistere affatto. Infine, se anche il
limite del numeratore & nullo siamo in presenza della forma indeterminata 0/0, che
studieremo nel prossimo capitolo.

Infine, vediamo cosa possiamo dire sul comportamento di una funzione razio-
nale f, scritta nella forma (4.19), quando z tende all’infinito. Abbiamo visto (nella
Sezione 4.4) che per |z| abbastanza grande, p(x) si comporta come a,, ™ e q(z) si
comporta come b,z"; quindi f(z) si comporta come

amx™

am, m—n

byx™ b,
quando |z| & abbastanza grande.

CURIOSITA 4.10 Per l'esattezza, quanto visto nella Curiositd 4.5 ci dice che esiste un R > 0
sufficientemente grande tale che se |z| > R e ama™, byz™ > 0 allora %amm"" <p(z) < %amz""
e %bnx” <q(z) < %bnx", per cui

1apm x Am
Lam mn < p(@) _ F) < 3%mgm—n
3 bn q(x) by
Stime analoghe si ottengono anche per gli altri possibili segni di a,z™ e b,z".
Di conseguenza,
0 sen>m,
. . a _ A
lim f(z)= lim -Za2™ " ={ -— sen=m,
r—Fo0 z—to0 by, bn

+oo sen<m,

dove il segno nell’ultimo caso dipende dal segno di a,,/b,, dalla parita di m —n, e
da dove si sta calcolando il limite (se a +00 0 a —00).

EsEmpio 4.13 La legge che descrive il comportamento delle lenti convesse sottili

¢ 1

==, (4.22)
f

dove u ¢ la distanza fra I'oggetto e il centro della lente, v € la distanza fra 'immagine

e il centro della lente, e f & la lunghezza focale. Vogliamo studiare la dipendenza

della distanza s = u + v fra oggetto e immagine dalla distanza u dell’oggetto da

una lente di lunghezza focale f = 10 cm. Siccome v = s — u, otteniamo

SHN

1
=+
u

Lol b s w1 — s
10 u s—u u(s—u) uls T = A TTu—10"

Quindi la dipendenza ¢ data da una funzione razionale di grado 2. Notiamo prima
di tutto che s ha una singolarita in v = 10: questo vuol dire che quando 'oggetto
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si avvicina al fuoco della lente allora I'immagine scappa all'infinito (in quanto s(u)
tende a +o0o per u che tende a 10%). Se w < 10 allora s diventa negativa, cosa
fisicamente insensata; ma infatti la legge (4.22) vale solo per u, v > f.

Siccome il grado del numeratore & maggiore del grado del denominatore, e i
coefficienti dei termini di grado massimo del numeratore e del denominatore sono
positivi, abbiamo che s tende a +oco quando w tende all’infinito. Detta cosi &
un’affermazione fisicamente ovvia: se I’oggetto scappa all’infinito, la distanza dal-
Iimmagine (che & dall’altro lato della lente) tende all’infinito. Possiamo renderla
pero piu interessante notando che

u? _u(u—10)+10u_u+10(u—10)—|—100_u+10+ 100
u—10 u—10 N u—10 - u—10"

Siccome 100/(u — 10) tende a zero quando u tende a +oo, vediamo che s si com-
porta come 1+ 10 quando u diventa grande'’. Ma s = u+v; quindi v = s —u tende
a 10 quando u tende all’infinito — che fisicamente vuol dire che quando 'oggetto
scappa all’infinito 'immagine si avvicina quanto vogliamo al fuoco della lente.
Dunque s tende all’infinito sia quando u tende a +oo sia quando u tende a 10%.
Ma allora la funzione s non pud essere monotona nella semiretta (10, +00); inoltre,
scappando all’'infinito a entrambi gli estremi di (10, 400), sembra molto ragione-
vole supporre che abbia almeno un punto di minimo all’interno di questo intervallo.
Questo punto di minimo & chiaramente interessante, in quanto ci permette di tro-
vare la distanza minima fra 'oggetto e I'immagine; vedremo nel prossimo capitolo
come fare per (dimostrare che esiste e) trovare questo punto. La Figura 4.12 con-
tiene il grafico della funzione s assieme all’asintoto verticale e all’asintoto obliquo*!.

4.7 Funzioni esponenziali
4.8 Funzioni logaritmiche
4.9 Tecniche di interpolazione

4.10 Funzioni trigonometriche

10 F infatti il grafico di s si avvicina sempre piu alla retta grafico di u + 10; si dice che
questa retta € un asintoto obliquo per il grafico di s.
g il grafico di s € un’iperbole non equilatera.
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s(u) = u?/(u — 10).

50



