Capitolo 2

Teoria locale delle superfici

2.1 Definizione di superficie

Vogliamo ora studiare le superfici nello spazio. Dinuovo, si pone il problema della definizione. Per le proprieta

locali possiamo usare un approccio simile a quello delle curve e limitarci a considerare delle applicazioni C'*°

da aperti nel piano a valori nello spazio; per le proprieta globali invece conviene procedere come per le linee.
L’ovvia generalizzazione del concetto di curva e quello di superficie immersa:

Definizione 2.1.1: Una superficie immersa (o parametrizzata) nello spazio & un’applicazione ¢:U — R? di
classe C, dove U C R? & un aperto, tale che il differenziale dpy: R? — R? abbia rango massimo (cioe¢ 2) in
ogni punto x € U.

Osservazione 2.1.1. 1l differenziale dp, € rappresentato dalla matrice jacobiana

Jac(p)(@) = | 22(a) 222 () |,

dove ¢ = (', %, ¢%).
In questa definizione ’enfasi ¢ sulla mappa. Non stiamo richiedendo né che sia un omemomorfismo

con I'immagine né che sia globalmente iniettiva; entrambe queste proprieta sono vere localmente, pero. Per
dimostrarlo, ci serve un lemma.

Lemma 2.1.1: Sia ¢:U — R® una superficie immersa, dove U C R? ¢ aperto. Allora per ogni zo € U
esistono un intorno aperto Q C R? di (z,0) € U x R, un intorno aperto W C R® di ¢(xy), e un diffeomorfi-
smo G:Q — W tale che G(x,0) = ¢(z) per ogni (z,0) € 2N (U x {0}).

Dimostrazione: Per definizione di superficie immersa, il differenziale di ¢ = (¢!, 92, ¢3) in o ha rango 2;
quindi la matrice Jacobiana di ¢ calcolata in zy ha un minore 2 x 2 con determinante non nullo. A meno di
riordinare le coordinate possiamo supporre che il minore sia quello ottenuto scartando la terza riga, cioe

At
det (@(%0)) s 7é 0.

Sia G:U x R — R? data da
G(xl,asQ,t) = cp(scl,x2) +(0,0,¢)

(se per trovare il minore con determinante non nullo avessimo scartato la prima o la seconda riga al-
lora G sarebbe stata definita sommando a ¢ nel primo caso (¢,0,0), e (0,¢,0) nel secondo caso). Chia-
ramente, G(x,0) = ¢(z) per ogni z € U, e

i

p— 8SD .
det(dG(mmo)) = det <8Z‘J ($O)>i,j:172 7£ 05

il teorema della funzione inversa ci fornisce quindi un intorno Q C U x R di (20, 0) e un intorno W C R?
di p(x0) con W NS C o(U) tale che G|q sia un diffeomorfismo fra Q e W, come voluto. O
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In particolare abbiamo

Corollario 2.1.2: Sia ¢:U — R? una superficie immersa. Allora ogni o € U ha un intorno Uy C U tale
che ¢|y,: Uy — R® sia un omeomorfismo con I'immagine.

Dimostrazione: Sia G:Q — W il diffeomorfismo fornito dal lemma precedente, m: R?* — R? la proiezione
sulle prime due coordinate, e Uy = (2N (U x {0})). Allora ¢|y, = G|y, x{o} ¢ un omeomomorfismo con
I'immagine, come richiesto. ]

Osservazione 2.1.2. Potremmo definire il concetto di superfici immerse equivalenti come fatto per le
curve, tramite un cambiamento di parametro. Sfortunatamente, perd, non esiste una parametrizzazione
canonica analoga alla parametrizzazione rispetto alla lunghezza d’arco. Il motivo, in parole povere, ¢ il
seguente: un diffeomorfismo fra due intervalli di R che conserva le lunghezze (e 'orientazione) & necessaria-
mente una traslazione, mentre esistono infiniti diffeomorfismi non lineari fra aperti di R? che conservano le
aree (e lorientazione). Infatti, per conservare le lunghezze e lorientazione un diffeomorfismo A fra intervalli
deve soddisfare (perché?) h’ = 1, mentre per conservare le aree e l'orientazione un diffeomorfismo H fra
aperti del piano deve soddisfare (perché?) detJac(H) = 1, che & una condizione molto meno stringente.
Per esempio, tutti i diffeomorfismi della forma H(z,y) = (x + f (y),y), dove f & una qualsiasi funzione
differenziabile di una variabile, conservano aree e orientazione.

Piu interessante, e importante anche per ’estensione a dimensione piu alta, & la generalizzazione del
concetto di linea.

Definizione 2.1.2: Un sottoinsieme S C R® & una superficie (regolare) nello spazio se per ogni p € S esistono
un aperto U C R? e un’applicazione p:U — R? di classe C* tale che:

(a) p(U) C S & un intorno aperto di p in S (ovvero, equivalentemente, esiste un intorno aperto V. C R* di p
in R? tale che o(U) =V N S);

(b) ¢ & un omeomorfismo con I'immagine;

(c) il differenziale dy, ha rango massimo per ogni x € U.

L’applicazione @ & detta parametrizzazione locale in p; se O € U e ¢(O) = p diremo che la parametrizzazione
locale & centrata in p. L'inversa ¢~ ':p(U) — U & detta carta locale in p; I'intorno ¢(U) di p in S & detto
intorno coordinato, e le coordinate (z'(p),z2(p)) = ¢~!(p) sono dette coordinate locali di p.

Osservazione 2.1.3. Se p:U — S & una parametrizzazione locale di una superficie S € R?, e y:U; — U
& un diffeomorfismo, dove U ¢ un altro aperto di R?, allora ¢ = oy & ancora una parametrizzazione locale
di S (perché?). In particolare, se p = p(z9) € S e x ¢ la traslazione x(z) = x + xo, allora ¢ = p o x & una
parametrizzazione locale di S centrata in p.

Osservazione 2.1.4. Se ¢:U — S & una parametrizzazione locale di una superficie S C R®*, e W c U &
un aperto di R?, allora anche |y & una parametrizzazione locale di S (perché?). In particolare, possiamo
trovare parametrizzazioni locali con dominio piccolo quanto ci pare.

Osservazione 2.1.5. Richiedendo che le parametrizzazioni locali siano di classe C” con r > 1 si definisce il
concetto di superficie regolare di classe C". Molto di quanto faremo & valido anche per superfici di classe C”
con r sufficientemente grande (di solito » = 4 & sufficiente), ma alcune cose (quali la caratterizzazione dei
vettori tangenti come derivazioni) richiederanno regolarita C*°.

Esercizio 2.1.1.  Sia S C R® una superficie, e S; C S un aperto di S. Dimostra che anche S; & una superficie.

Definizione 2.1.3: Un atlante di un insieme S C R* & una famiglia A = {¢,} di parametrizzazioni lo-
cali ¢o: Uy — S tali che S =, va(Ua).

Dunque una superficie (regolare) & un sottoinsieme di R* fatto localmente come un aperto del piano.
Come vedremo, la filosofia che regola lo studio delle superfici & usare le parametrizzazioni locali per trasferire
concetti, proprieta e dimostrazioni dagli aperti del piano ad aperti sulle superfici, e viceversa.

Osservazione 2.1.6. Non esiste nulla di analogo al Teorema 1.1.9; le superfici regolari in generale non
ammettono una parametrizzazione globale, anche quando non sono compatte.
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Vediamo alcuni esempi.

EsEMPIO 2.1.1. Sia U C R? un aperto, e f € C(U). Allora il grafico ry = {(x,f(x)) e R? | x € U}
di f & una superficie regolare, con atlante costituito da una sola parametrizzazione locale, la p:U — R?

data da ¢(z) = (x, f(x)). Infatti, la condizione (a) della definizione di superficie & chiaramente soddisfatta.

Lam:T'y — U data dalla proiezione sulle prime due coordinate 7T(J:1, 22, f(ac)) = (2!, 2?) & l'inversa (continua)

di ¢, per cui anche la condizione (b) ¢ soddisfatta. Infine,
1
Jac(@)(@) = | 0

ha rango massimo in ogni punto, e ci siamo.

Osservazione 2.1.7. Un grafico ha quindi un atlante costituito da un solo elemento. Piu in generale,
I'immagine di una superficie immersa che sia un omeomorfismo con l'immagine ¢ una superficie regolare
coperta da un solo intorno coordinato.

EsEMPIO 2.1.2.  Vogliamo far vedere che la sfera

S*={peR’||p| =1}

& una superficie regolare trovandone un’atlante. Sia U = {(z,7) € R? | 22 4+ y? < 1} il disco unitario aperto
nel piano, e definiamo @1, ...,ps: U — R? ponendo

¢1(z,y) = (=, ;
p2(z,y) = (z,y, =1 —2? — y?),
p3(z,y) = (v, V1 -2 —y2y),
pa(z,y) = (w,—\/l—xz—y27y),
es(z,y) = (V1-2% -y x,y),
pe(z,y) = (—V1—2%—y*2,y)

Ragionando come nell’esempio precedente ¢ facile vedere che le ¢; sono tutte parametrizzazioni locali di 52,
e che 5% = ;1 (U)U---Uye(U). Nota che omettendone anche una sola non si copre tutta la sfera.

ESEMPIO 2.1.3.  Descriviamo un altro atlante sulla sfera. Posto U = {(6,¢) e R* |0 < 0 < 7,0 < ¢ < 2},
sia p1: U — R? data da
©1(0, @) = (sin 6 cos ¢, sin 0 sin ¢, cos 0);

vogliamo dimostrare che ¢ € una parametrizzazione locale della sfera. Il parametro 8 € usualmente chiamato
colatitudine (la latitudine & w/2 — 0), mentre ¢ ¢ la longitudine. Prima di tutto,

901(U) :SQ\{(Ivy’Z) |y:(),:1:20}

¢ un aperto di S, per cui la condizione (a) ¢ soddisfatta. Poi,

cosfcos¢ —sinfsing
Jac(p1)(0,¢) = | cosfsing sinfcose |,
—sinf 0

e si verifica subito che questa matrice ha sempre rango 2 (in quanto sinf # 0 quando (6, ¢) € U), per cui la
condizione (c) ¢ soddisfatta. Inoltre, se (z,y, 2) € ¢1(U), ricaviamo subito § = arccos(z); essendo siné # 0
troviamo pure (cos¢,sin¢) in termini di z, y e 2z, e quindi anche ¢ & univocamente determinato, cioé
la @1 e globalmente iniettiva. Per concludere dovremmo far vedere che & un omeomorfismo con I'immagine
(cioe che ¢;* & continua); ma vedremo fra poco (Proposizione 2.1.6) che questo ¢ una conseguenza delle
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altre condizioni, per cui lasciamo la verifica per esercizio (ma vedi anche il prossimo esempio). Infine,
sia o: U — R? data da
©2(0, ¢) = (—sin cos ¢, cos 0, —sin O sin ).

Ragionando come prima si vede che anche 5 € una parametrizzazione locale, con
0o (U) = 8?2\ {(z,y,2) € R* | 2 = 0,2 < 0},

per cui {1, 2} ¢ un’atlante di S2.

EsEmPIO 2.1.4. (Superfici di rotazione) Sia I C R un intervallo aperto, o:1 — R? una curva piana
regolare semplice non chiusa di sostegno C, e supponiamo anche che ¢ sia un omeomorfismo con I'immagine.
Sia S C R® linsieme ottenuto ruotando C attorno a un asse ¢ contenuto nel piano di C' ma che non
interseca C; vogliamo far vedere che S & una superficie regolare, detta superficie di rotazione (o di rivoluzione),
di generatrice C' e asse di rotazione ¢. Possiamo supporre che la curva C' sia contenuta nel piano xz e che
I'asse sia l’asse z; quindi possiamo scrivere o(t) = (f(t),0,¢(t)) con f(t) > 0 per ogni t € I. Definiamo
allora ¢1: I x (0,27) € R ponendo

p1(t,0) = (f(t) cos B, f(t) sin G,g(t)),

e @o: I x (—m,m) — R con la stessa formula. Fissato to € I, le curve 6 — 1 (tg,6) sono dette paralleli di S;
fissato 0y € R, le curve t — ¢1(t,00) sono dette meridiani di S. E chiaro che S & I'unione delle immagini
di 1 e pg; ci basta allora dimostrare che ¢1 e @2 sono parametrizzazioni locali per ottenere che S & una
superficie. Dimostriamolo per ¢1; il caso di 5 € assolutamente analogo. Che I'immagine di (7 sia un aperto
di S & ovvio. Essendo f(t) > 0 per ogni t € I, si verifica subito che il differenziale di ¢; ha sempre rango
massimo (esercizio). Rimane da verificare che ¢1 ¢ un omeomorfismo con I'immagine. Cominciamo con far
vedere che & invertibile. Da ¢1(¢,0) = (x,y, 2) ricaviamo ¢(t) = z e f(t) = /22 + y?; essendo o iniettiva,
da questo ricaviamo un unico t € I, e quindi un unico 6 € (0,2) tale che x = f(t)cosf e y = f(t)sin#b;
quindi 7 e invertibile. Inoltre, essendo ¢ un omeomorfismo con I'immagine, ¢ dipende in modo continuo
da z e \/x2 + y2; se dimostriamo che anche # dipende in modo continuo da (z,v,z) abbiamo che ¢;* &
continua. Ora, se 6 # m abbiamo

6  sin(0/2) sinff  y/f(t) Y

tan — =

2 " cos(0/2) 1+cos® 1+z/f(t) =+ /22 + 42

per cui

6 = 2arctan S S
T+ /2% +y?

dipende in modo continuo da (x,y, z). Se invece 6 appartiene a un piccolo intervallo centrato in 7, in modo

analogo si trova che
9 = 2arccotan | — 2 ,
—x+ /2?2 +y?

e anche in questo caso ci siamo.

Esercizio 2.1.2. Dimostra che I'insieme ottenuto ruotando il sostegno C' di una curva piana regolare semplice
chiusa attorno a un asse ¢ contenuto nel piano di C' ma che non interseca C' € ancora una superficie regolare.

Esercizio 2.1.3. Sia o:[a,b] — R? una curva regolare semplice chiusa il cui sostegno C' sia contenuto nel
piano zz e sia simmetrico rispetto all’asse z (cioé (x,0,2) € C se e solo se (—z,0,2) € C). Dimostra che
I'insieme ottenuto ruotando C attorno all’asse z € una superficie regolare. In particolare, questo dimostra di
nuovo che la sfera ¢ una superficie regolare.

Vediamo ora un modo generale per ottenere superfici regolari. Cominciamo con una definizione:
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Definizione 2.1.4: Sia V. C R" un aperto, e F:V — R™ di classe C*°. Diremo che p € V & un punto critico
di F se dF,:R™ — R"™ non & surgettivo. Indicheremo con Crit(F') l'insieme dei punti critici di F. Sep € V
¢ un punto critico, F(p) € R™ sara detto valore critico. Un y € F(V) C R™ che non ¢ un valore critico &
detto valore regolare.

Esercizio 2.1.4. Dimostra che I'insieme dei punti critici di un’applicazione F' di classe C'*° ¢ un chiuso del
dominio di F.

Osservazione 2.1.8. Se f:V — R & una funzione C'*° definita su un aperto V.C R", e p € V, allora
dfp:R™ — R non & surgettivo se e solo se & 'applicazione nulla. In altri termini, p € V' & un punto critico
di f se e solo se il gradiente di f si annulla in p.

Un risultato che non possiamo dimostrare in questo corso, e che non utilizzeremo, ma che vale la pena
di citare esplicitamente ¢ il famoso

Teorema 2.1.3: (Sard) Sia F:V — R™ un’applicazione di classe C*°. Allora l'insieme dei valori critici ha
misura nulla in R™.

In altri termini, quasi ogni punto del codominio € un valore regolare, fatto che spiega ’ampia applicabilita
del seguente risultato:

Proposizione 2.1.4: Sia V C R? aperto, e f € C>®(V). Se a € R & un valore regolare di f, allora I'insieme
di livello f=1(a) = {p € V| f(p) = a} & una superficie regolare.

Dimostrazione: Sia py = (70,0, 20) € f *(a). Essendo a un valore regolare di f, il gradiente di f non si
annulla in pg per cui, a meno di permutare le coordinate, possiamo supporre che 9f/9z(pg) # 0. Sia allora
F:V — R? data da F(z,y,2) = (:v,y7 f(z,y, z)), chiaramente,

det Jac(F)(po) = g—i(po) # 0.

Possiamo quindi applicare il teorema della funzione inversa e trovare intorni VCVdipyeW CR?di F(po)
tali che F|y:V — W sia un diffeomorfismo. Posto G = (¢', g%, ¢*) = F~! abbiamo

(U,’U, w) =Fo G(U,’U, w) = (gl (uvvvw)vgz(uvvvw)u f(G(U,’U,’lU)))
per cui gl(ua ’U,’U}) = u, 92(u7v7w) =, €
V(u,v,w) € W f(u,v,g?’(u,v,w)) = w; (2.1.1)

in particolare (u,v, g*(u,v,w)) € V per ogni (u,v,w) € W. Poniamo U = {(u,v) € R* | (u,v,a) € W}; &
chiaramente un aperto di R? e possiamo definire p:U — R® con ¢(u,v) = (u,v,g3(u,v,a)). La (2.1.1) ci
dice che o(U) = f~1(a) NV, e quindi ¢ & una parametrizzazione locale di f~1(a) in po. O
Esercizio 2.1.5.  Sia V' C R® un aperto e f € C°°(V). Dimostra che per ogni a € R Iinsieme f~'(a)\Crit(f),
se non & vuoto, & una superficie regolare.

Definizione 2.1.5: Una superficie della forma f~'(a), dove f € C°°(V) per qualche aperto V di R®, e a € R
€ un valore regolare, ¢ detta superficie di livello per f.

Esempio 2.1.5. L’ellissoide di equazione
2

2
i

562 Z_l
ZTrtaET

& una superficie. Infatti & Pinsieme f~'(1) dove f:R® — R & data da

Siccome grad(f) = (2z/a?,2y/b*,22/c*), Punico punto critico di f & 'origine e 'unico valore critico di f & 0.
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Esercizio 2.1.6. Dimostra usando la proposizione precedente che il toro di equazione

22 =12 — (V22 + 42 —a)?

ottenuto ruotando attorno all’asse z la circonferenza di raggio r < a e centro (a,0,0) contenuta nel piano xz,
¢ una superficie regolare.

Concludiamo questo paragrafo con due risultati generali.

Proposizione 2.1.5: Ogni superficie regolare ¢ localmente un grafico. In altre parole, se S C R® ¢ una
superficie regolare e p € S, allora esiste una parametrizzazione locale ¢: U — S in p che ha una delle seguenti
tre forme:
(z,y, f(z.y)), oppure
QD(J%y) = (xaf(‘r7y)7y)a oppure

(flz, ), 2,9),

per un’opportuna f € C*°(U). In particolare, esiste sempre un aperto 2 C R3 tale che S C Q sia chiusa
in €.

Dimostrazione: Sia ¢ = (¢!, 92, ¢%):U; — R® una parametrizzazione locale centrata in p. A meno di
permutare le coordinate possiamo supporre che

3(¢1,¢2)(O)#0

o(z!, z2) ’

quindi posto F = (¢, p?) possiamo trovare un intorno V C U; di O e un intorno U C R? di F(O) tali che
Fl|y:V — U sia un diffeomorfismo. Sia F~1:U — V linversa, e poniamo f = ¢? o F~1:U — R. Notiamo
che F o F~! =idy; quindi

¢OF71(U,U) = (u,v,f(u,v)),

cioe o F~1 & una parametrizzazione locale in p della forma voluta.
Infine, per ogni p € S sia V), C R? aperto tale che p € Vp N S sia localmente un grafico. Allora V,NS e
chiuso in V,, e S & chiusa (perché?) in Q@ =J,cq Vp- O

ESEMPIO 2.1.6. Il cono a una falda S = {(,y,2) € R* | 2 = \/2Z + %2} non & una superficie regolare.
Se lo fosse, dovrebbe essere il grafico di una funzione C* nell’intorno di (0,0,0). Siccome le proiezioni sui
piani xz e yz non sono iniettive, dovrebbe essere un grafico sul piano xy; ma allora dovrebbe essere il grafico

della funzione /22 + y2, che non ¢ di classe C*°.

Esercizio 2.1.7. Sia S C R® un sottoinsieme tale che per ogni p € S esista un intorno aperto W di p in R?
tale che W NS sia un grafico su uno dei tre piani coordinati. Dimostra che allora S & una superficie regolare.

E infine ecco il risultato promesso nell’Esempio 2.1.3:

Proposizione 2.1.6: Sia S C R® una superficie, U C R? un aperto, e ¢: U — R® una superficie immersa
tale che p(U) C S. Allora:
(i) ¢(U) é aperto in S;
(ii) se ¢ é globalmente iniettiva, allora per ogni p € p(U) esistono un intorno W C R? di p in R® con
WnS CeU)euna d: W — R? di classe C* tali che (W) CU e ®lwns = ¢ !wns. In particolare,
0t p(U) — U & continua, per cui ¢ & una parametrizzazione locale di S.

Dimostrazione: Sia p = ¢(xg,y0) € (U). Essendo S una superficie, possiamo trovare un intorno Wy di p
in R? tale che Wy N S sia un grafico; per fissare le idee diciamo che Wy N S e il grafico sul piano zy di
una funzione f. Sia m:R> — R? la proiezione sul piano zy, Uy = e tWy) CUeh=mop:Uy — R?.
Se (z,y) € Uy abbiamo ¢*(z,y) = f(¢'(2,v),9*(z,y)), per cui la terza riga della matrice jacobiana di ¢
in (x,y) & combinazione lineare delle prime due. Siccome abbiamo supposto che il differenziale di ¢ abbia
sempre rango 2, ne segue che le prime due righe della matrice jacobiana di ¢ devono essere linearmente indi-
pendenti, e quindi dh(, ) ¢ invertibile. Il teorema della funzione inversa ci fornisce allora un intorno U; C Uy
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di (x0,y0) e un intorno V; € R? di h(zo, o) = 7(p) tale che h|y,:U; — V; sia un diffeomorfismo. In parti-
colare, p(Uy) = (m|s)~1(V1) & aperto in S, per cui ¢(U) & un intorno di p in S. Essendo p generico, ¢(U) &
aperto in S, e (i) ¢ dimostrata.

Supponiamo ora che ¢ sia globalmente iniettiva, per cui ¢~ 1:p(U) — U ¢ definita. Essendo ¢(U)
aperto in S, a meno di restringere Wy possiamo supporre che Wy NS C p(U). Poniamo W = Wy N7~ 1 (1)
e ® = h~! o m; per dimostrare (ii) ci rimane solo da far vedere che ®|yns = 90_1|Wm5.

Sia g € WNS. Essendo ¢ € WiN7~1(V}), si deve poter scrivere q = (u, v, f(u, U)) con (u,v) € Vi; d’altra
parte, essendo ¢ € o(U), deve esistere un unico (z,y) € U tale che ¢ = ¢(z,y). Ma allora (u,v) = h(zx,y),
per cui (z,y) = h~Y(u,v) € Uy e p~1(q) = (z,y) = h~ o w(q) = ®(g), come richiesto. O

In altre parole, se sappiamo gia che S & una superficie, per verificare se un’applicazione ¢: U — R* da un
aperto U di R? a valori in S & una parametrizzazione locale basta controllare che ¢ sia globalmente iniettiva
e che dy, abbia rango 2 per ogni z € U.

Osservazione 2.1.9. La proposizione precedente e il Lemma 2.1.1 potrebbero far sospettare che possa
essere vero un enunciato del tipo “Sia p:U — R® una superficie immersa globalmente iniettiva, e po-
niamo S = @(U). Allora per ogni p € p(U) esiste un intorno W C R* di p in R® e una ®: W — R? di
classe C* tali che ®(W) C U e ®|wns = ¢ '|wns. In particolare, o=1:p(U) — U é continua, e S & una
superficie regolare.” Abbiamo anche una “dimostrazione” di questo enunciato: “Siccome, per ipotesi, ¢ € una
superficie immersa, possiamo applicare il Lemma 2.1.1. Sia p = ¢(z9) € ¢(U), e G: Q — W il diffeomorfismo
fornito dal Lemma 2.1.1; a meno di restringere €, possiamo anche supporre che Q = Uy x (—6,6), dove § > 0
e U; C U & un opportuno intorno di zg. Allora ® = 7o G, dove m:R®> — R? & la proiezione sulle prime
due coordinate, & come desiderato. Infatti, per ogni ¢ € W N (U) il punto G~1(q) = (y,t) € Q & I'unico che
soddisfa G(y,t) = ¢. Ma G(¢7(q),0) = ¢(¢ (q)) = ¢, per cui G7(q) = (¢ '(g),0), e ci siamo.” Invece,
questo enunciato & falso e questa dimostrazione é sbagliata. L’errore (sottile) nella dimostrazione & che (un
minuto di pausa: prima di continuare a leggere cerca di trovare da solo ’errore. Ecco, continua a pensarci. ..
ancora non ci sei? Torna indietro e leggi accuratamente, riflettendo su ogni passaggio, soprattutto verso
la fine... trovato lerrore? Ottimo; adesso puoi proseguire con la lettura) se ¢ € W N (U) non ¢ detto
che ¢~ !(q) appartenga a Uy, per cui (ga_l(q)7 0) non appartiene al dominio di G, e quindi non possiamo né
dire che G(¢7'(q),0) = ¢(¢~'(q)) = ¢ né dedurre che G~'(¢q) = (¢7*(g),0). Ovviamente, il fatto che la
dimostrazione sia sbagliata non implica necessariamente che I’enunciato sia falso. Ma ’enunciato ¢ falso, e
difatti ’Esempio 2.1.7 conterra un controesempio. Riassumendo, si puo dedurre la continuita dell’inversa
di una superficie immersa ¢ globalmente iniettiva solo se si sa gia che l'immagine di ¢ é contenuta in una
superficie regolare; altrimenti potrebbe non essere vero.

ESEMPIO 2.1.7. Sia 0:R — R? la curva

(t,0) per —oo < t <0,
o(t) = { curva regolare per 0 <t <1,
(0,e7%) per 1 <t < +oo,

dove la “curva regolare” collega in modo C™ e iniettivo gli altri due pezzi, e definiamo ¢: R* — R® ponendo

o(t,u) = (U(t), u)

La ¢ & chiaramente una superficie immersa globalmente iniettiva, ma non ¢ un omeomorfismo con 1'im-
magine, e S = ¢(U) non ¢ una superficie regolare. Non ¢ un omeomorfismo con 'immagine in quanto
©([0,400) x [~1,1]) & compatto mentre [0, +00) x [~1,1] non lo & La ¢! non ¢ continua in quanto ¢ non
¢ aperta: p((—1,1) x (—1,1)) non & aperto in S. E S non & una superficie regolare, in quanto nell'intorno
del punto (0,0,0) € S non ¢ un grafico su nessuno dei tre piani coordinati.
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2.2 Funzioni differenziabili

Le parametrizzazioni locali sono gli strumenti che permettono di concretizzare 'idea che una superficie e
localmente fatta come un aperto del piano; vediamo come usarle per dire quando una funzione definita su
una superficie ¢ differenziabile. L’idea & la seguente:

Definizione 2.2.1: Sia S C R® una superficie, e p € S. Una funzione f: S — R & di classe C™ (o differenziabile)
in p se esiste una parametrizzazione locale p: U — S in p tale che fop: U — R sia di classe C*° in un intorno
di ¢~1(p). Diremo che f ¢ di classe C* se lo ¢ in ogni punto. Lo spazio delle funzioni C* su S sara indicato
con C*°(S).

Osservazione 2.2.1. Una funzione differenziabile f: S — R & automaticamente continua. Infattisia I C R
aperto e p € f~1(I). Per ipotesi esiste una parametrizzazione locale p:U — S in p tale che f o ¢ sia di
classe C* (e quindi in particolare continua) in un intorno di ¢=!(p). Allora (f o ¢)~*(I) = ¢~ *(f71(1))
¢ un intorno di ¢~ !(p). Ma ¢ & un omeomorfismo con I'immagine; quindi f~!(I) dev’essere un intorno
di ¢(¢7*(p)) = p. Siccome p era arbitrario, ne segue che f~!(I) & aperto in S, e quindi che f & continua.

Il problema con questa definizione e che potrebbe dipendere dalla parametrizzazione locale scelta: a
priori, potrebbe esistere un’altra parametrizzazione locale 1 in p tale che fo) non sia differenziabile in 1~ (p).
Per fortuna, il seguente teorema implica che questo non puo capitare.

Teorema 2.2.1: Sia S una superficie, e p:U — S, ¢:V — S due parametrizzazioni locali tali che si
abbia Q = o(U) N (V) # @. Allora Papplicazione h = ¢~ ! o ¢:9p~1(Q) — »~1(Q) & un diffeomorfismo.

Dimostrazione: L’applicazione h ¢ un omeomorfismo, in quanto composizione di omeomorfismi; dobbiamo
dimostrare che lei e la sua inversa sono di classe C°.

Sia 29 € ¥71Q), yo = h(x0) € 1 (Q) e p = ¥(x0) = p(yo) € Q. La Proposizione 2.1.6 ci fornisce un
intorno W di p € R® e un’applicazione ®: W — R? di classe C™ tale che ®lwns = ¢~ L. Ora, la continuita
di v ci assicura che esiste un intorno Vi C ¥ ~1(Q) di x¢ tale che (Vi) C W. Ma allora hly, = ® o 9|y, e
quindi A & di classe C*° in xy. Essendo z( generico, h e di classe C'°° dappertutto.

Analogamente si dimostra che h™! & di classe C*, per cui h ¢ un diffeomorfismo. O

Corollario 2.2.2: Sia S C R?® una superficie, f:S — R una funzione, e p € S. Se esiste una parametrizza-
zione locale p: U — S in p tale che f o sia di classe C* in un intorno di ¢~ *(p), allora f o) ¢ di classe C>
in un intorno di ¥ ~(p) per ogni parametrizzazione locale 1:V — S di S in p.

Dimostrazione: Infatti possiamo scrivere

fovy=(fop)o(p o),

e il teorema precedente ci assicura che f o & di classe C* in un intorno di 9 ~*(p) se e solo se f o ¢ & di
classe C® in un intorno di p~(p). O

Quindi la definizione di funzione differenziabile su una superficie non dipende dalle parametrizzazioni
locali; per testare se una funzione ¢ differenziabile possiamo usare una qualsiasi parametrizzazione locale.
Lo stesso approccio ci permette di definire il concetto di applicazione differenziabile fra due superfici:

Definizione 2.2.2: Se Sy, S C R? sono due superfici, diremo che una applicazione F:S; — S5 & di classe C'*°
(o differenziabile) se per ogni p € S; esistono una parametrizzazione locale ¢1: Uy — S in p e una parame-
trizzazione locale py: Uy — Sy in F(p) tali che @5 o F o ¢ sia di classe C™ (dove definita). Se inoltre F &
invertibile con inversa di classe C*°, diremo che F' ¢ un diffeomorfismo, e che S; e Sy sono diffeomorfe.

Esercizio 2.2.1. Dimostra che un’applicazione differenziabile fra superfici € necessariamente continua.

Esercizio 2.2.2. Sia F:S; — Sy un’applicazione fra superfici, e p € S;. Dimostra che se esistono una
parametrizzazione locale p1:U; — Sp in p e una parametrizzazione locale ¢5:Us — So in F(p) tali che
(pgl o F o ¢ sia di classe C* in un intorno di o7 '(p), allora w;l o F o1 e diclasse C* in un intorno
di ¢y !(p) per ogni parametrizzazione locale 1;: Vi — S; di S in p e ogni parametrizzazione locale thy: Vo — S
di S'in F(p).



2.2 Funzioni differenziabili 33

Esercizio 2.2.3. Definisci in maniera analoga i concetti di applicazione C'*° da un aperto di R"™ a valori in
una superficie, e di applicazione C'* da una superficie a valori in uno spazio euclideo R™.

La composizione di applicazioni C*° & ancora di classe C*°:

Proposizione 2.2.3: Se F: S; — Sy e G: So — S5 sono applicazioni di classe C*° fra superfici, allora anche
la composizione G o F: S1 — S3 é di classe C*°.

Dimostrazione: Dato p € Si, scegliamo una parametrizzazione locale ¢1: U; — S; di S7 in p, una parame-
trizzazione locale pq: Uy — Sy di So in F(p), e una parametrizzazione locale ¢3: Us — S3 di S5 in G(F(p))
Allora

p3 0 (GoF)opr=(p3' oGogps)o(py' o Fop)
e di classe C'*° dove definita, grazie all’Esercizio 2.2.2. O

EseMPIO 2.2.1. Una parametrizzazione locale ¢: U — ¢(U) C S & un diffeomorfismo fra U e ¢(U). Infatti
prima di tutto & per definizione invertibile. Poi, per testare la differenziabilita sua e dell’inversa possiamo
usare l'identita come parametrizzazione locale di U e lei stessa come parametrizzazione locale di S, per cui
dobbiamo solo verificare che =1 o poid e idop~! o ¢ siano di classe C*°, che & ovvio.

ESEMPIO 2.2.2. Se U C R™ ¢ aperto e F:U — R* & un’applicazione C*° la cui immagine & contenuta
in una superficie S, allora F' ¢ di classe C'*° anche come applicazione a valori in S. Infatti, sia ¢ una
parametrizzazione locale in un punto p € F(U); la Proposizione 2.1.6 ci dice che esiste una funzione ¥ di
classe C™ definita in un intorno di p tale che 1y~ o F = Wo F, e quest’ultima composizione & di classe C°.

ESEMPIO 2.2.3. Se S C R® & una superficie, allora I'inclusione ¢: S < R? & di classe C: infatti dire che ¢
¢ differenziabile & esattamente equivalente a dire (perché?) che le parametrizzazioni locali sono di classe C'*°
considerate come applicazioni a valori in R.

EsEmPIO 2.2.4. Se Q C R3 & un aperto di R? contenente la superficie S, e f € C*(9), allora la restrizio-
ne f = flg & di classe O su S. Infatti fop = fop e diclasse C* per ogni parametrizzazione locale .

In realta, ’esempio precedente fornisce tutte le funzioni C'*° su una superficie S:

Teorema 2.2.4: Sia S C R® una superficie, e @ C R* un aperto tale che S C € sia chiusa in Q. Allora una
funzione f: S — R & di classe C* su S se e solo se esiste una f € C*°(Q) tale che f|s = f.

Per dimostrare questo risultato vediamone prima una versione locale:

Proposizione 2.2.5: Sia S C R® una superficie, e p € S. Allora una f:S — R ¢ di classe C* in p se e solo
se esistono un intorno aperto W C R® di p e una funzione f € C>(W) tali che flwns = flwns-

Dimostrazione: In una direzione & 'Esempio 2.2.4. Viceversa, supponiamo che f sia di classe C* in p, e
sia ¢:U — S una parametrizzazione locale centrata in p. La Proposizione 2.1.6 ci fornisce un intorno W
di p in R3~e un’applicazione ®: W — R? di classe C™ tali che ®(W) C U e ®wns = ¢ '|wns. Allora la
funzione f = (fop)o® e C®°(W) & come voluto. O

Per proseguire ci servono un paio di definizioni e un lemma.

Definizione 2.2.3: Diremo che un ricoprimento ${ = {U, }aea di uno spazio topologico X & localmente finito
se ogni p € X ha un intorno U C X tale che U NU, # @ solo per un numero finito di indici . Un
ricoprimento U = {V3}gep ¢ un raffinamento di 4 se per ogni 5 € B esiste un a € A tale che Vg C U,.

Lemma 2.2.6: Sia Q C R" un aperto, e 34 = {U,}aca un ricoprimento aperto di Q. Allora esiste un
ricoprimento aperto localmente finito U = {Vg}gep di Q tale che:
(i) U é un raffinamento di 41;
(ii) per ogni 8 € B esistono pg € Q e rg > 0 tali che V3 = B(pg, 3r3);
(iii) posto Wz = B(pg,rg), anche 2 = {Wga}gecp € un ricoprimento di €.

Dimostrazione: L’aperto € ¢ localmente compatto e a base numerabile; quindi possiamo trovare una base
numerabile {P;} composta da aperti a chiusura compatta. Definiamo ora per induzione una famiglia {k;}
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crescente di compatti. Poniamo K; = P;. Se K; & definito, sia 7 > j il minimo intero per cui K; C J;_, P,
e poniamo o o
Kipin=PU---UP,.

In questo modo abbiamo K; C Ic(jﬂ e )= Uj K;.

Ora, per ogni p € ([D(Hg \K;_1)NU, scegliamo una pallina V,, ; , = B(p, 3rq,; ) centrata in p e tale che
B(p,3ra,jp) C (f(j+2 \ K;_1) NU,. Poniamo W, ;,, = B(p, ra,;p). Ora, al variare di o e p gli aperti Wy ;
formano un ricoprimento aperto di K41 \K 4, che & compatto; quindi possiamo estrarne un sottoricoprimento
finito {W,.}. Unendo questi ricoprimenti al variare di j otteniamo un ricoprimento aperto numerabile {Wjs}
di ; se indichiamo con V3 la pallina corrispondente a Wpg, per concludere dobbiamo solo dimostrare che il
ricoprimento aperto {Vz} ¢ localmente finito. Ma infatti per ogni p € Q possiamo trovare un indice j tale
che p € K j» € per costruzione solo un numero finito dei V3 intersecano K e ]

Definizione 2.2.4: Una partizione dell’unita su un aperto Q C R" & una famiglia {ps }aca C C°°(Q) tale che
(a) pa > 0su

(b) {supp(pas)} & un ricoprimento localmente finito di Q, dove supp(pa) = {p € Q| pa(p) # 0};

() Xapa =1

Diremo poi che la partizione dell’unitd {p,} & subordinata al ricoprimento aperto = {Uy}aeca se si
ha supp(ps) C U, per ogni indice o € A.

Osservazione 2.2.2. La proprieta (b) della definizione di partizione dell’unita implica che nell’intorno di
ciascun punto di €2 solo un numero finito di elementi della partizione dell’unita sono diversi da zero; quindi la
somma nella proprieta (c) & ben definita, in quanto in ciascun punto di €2 solo un numero finito di addendi sono
non nulli. Inoltre, siccome ) & a base numerabile, sempre la proprieta (b) implica (perché?) che supp(p,) # &
solo per una quantita al pit numerabile di indici . In particolare, se la partizione dell’'unita e subordinata
a un ricoprimento composto da una quantita piu che numerabile di aperti, allora p, = 0 per tutti gli indici
tranne al piti una quantita numerabile. Questo non deve stupire, in quanto in uno spazio topologico a base
numerabile da ogni ricoprimento aperto si pud sempre estrarre un sottoricoprimento numerabile (proprieta
di Lindeldf).

Teorema 2.2.7: Sia Q C R"™ un aperto. Allora ogni ricoprimento aperto 34 = {Uy}aca di ) ammette una
partizione dell’'unita subordinata a esso.

Dimostrazione: Sia U = {V3}sep il rafinamento dato dal Lemma 2.2.6, e gg € C°(R") data dal Co-
rollario 1.1.7; in particolare, {supp(gs)} ¢ un ricoprimento localmente finito di € che raffina 4. Quindi

prendendo
- 9s

PB=<=
Zﬁ'eB 9p’

otteniamo una partizione dell’unitd {pg}gep tale che per ogni 8 € B esiste un a(f8) € A per cui si
ha supp(ps) C Uqs(s). Ma allora ponendo
Pa = Z pp

BeB
a(B)=a

si verifica subito (esercizio) che {pa}aca € una partizione dell’unita subordinata a i, come voluto. O
Siamo pronti per la

Dimostrazione del Teorema 2.2.4: In una direzione ¢ 'Esempio 2.2.4. Viceversa, sia f € C™(S). La
Proposizione 2.2.5 ci dice che per ogni p € S possiamo trovare un intorno aperto U, C @ di p e una
funzione f, € C*(U,) tali che f,|v,ns = flu,ns. Sia inoltre fo\g € C(2\ S) la funzione identicamente
nulla. Allora 4 = {U,},es U{2\ S} & un ricoprimento aperto di 2; per il Teorema 2.2.7 esiste una partizione
dell'unita {p,}pes U {pa\s} subordinata a L. In particolare, per ogni p € S se estendiamo p, f, a zero fuori
dal supporto di p, otteniamo (perché?) una funzione C*° in tutto Q. Poniamo allora

f: prfzr (2.2.1)

peES
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Siccome nell’intorno di un qualsiasi punto di €2 solo un numero finito di addendi in (2.2.1) & non nullo, si
vede subito che f € C*°(Q2). Infine, siccome le f, sono tutte estensioni della stessa f e {p,} € una partizione

dell'unita, segue subito che f|g = f, e ci siamo. Ol

2.3 Piano tangente

Vogliamo definire il concetto di vettore tangente a una superficie in un punto. Il modo geometricamente piu
semplice ¢ il seguente:

Definizione 2.3.1: Sia S C R® un insieme, ¢ p € S. Un vettore tangente a S in p & un vettore della forma a'(0),
dove o: (—¢,¢) — R® & una curva di classe C il cui sostegno & contenuto in S e tale che ¢(0) = p. L’insieme
di tutti i possibili vettori tangenti a S in p e il cono tangente T,,S a S in p.

Osservazione 2.3.1.  Un cono (di vertice ’origine) in uno spazio vettoriale V' & un sottoinsieme C' C V tale
che av € C per ognia € Rewv € C. Non eé difficile verificare che il cono tangente a un insieme ¢ effettivamente
un cono in questo senso. Infatti, prima di tutto il vettore nullo & il vettore tangente a una curva costante,
per cui O € T),S per ogni p € S. Poi, se a € R* e O # v € T},S, scelta una curva o: (—¢,e) — S con o(0) = p
e 0’(0) = v, allora la curva o,: (—¢/|al,e/]al]) — S data da o,(t) = o(at) ¢ tale che 0,(0) =p e 0,(0) = av,
cioe av € T),S come richiesto.

ESEMPIO 2.3.1. Se S C R? & Punione di due rette per Dorigine, si verifica subito (esercizio) che TpS = S.

Il vantaggio di questa definizione di vettore tangente e I’evidente significato geometrico. Se S € una
superficie, pero, 'intuizione geometrica ci suggerisce che TS dovrebbe essere un piano, e non semplicemente
un cono. Sfortunatamente, questo non & evidente dalla definizione: la somma di due curve in S non &
necessariamente una curva in .S, per cui il modo “ovvio” di dimostrare che la somma di due vettori tangenti
& un vettore tangente non funziona. D’altra parte, ’esempio precedente mostra che se S non & una superficie
il cono tangente non ha nessun motivo per essere un piano; e quindi per ottenere un risultato del genere
dobbiamo sfruttare a fondo la definizione di superficie — ovvero tirare in ballo le parametrizzazioni locali.

Cominciamo col vedere cosa succede nel caso piu semplice, quello degli aperti nel piano:

ESEMPIO 2.3.2. Sia U C R? un aperto, e p € U. Ogni curva contenuta in U & piana, per cui i vettori
tangenti a U in p sono necessariamente contenuti in R?. Viceversa, se v € R? allora la curva o(t) =p+tv
ha sostegno contenuto in U per |t| abbastanza piccolo, e ha vettore tangente v. Quindi abbiamo dimostrato
che T,U = R”.

Seguendo la solita filosofia che le parametrizzazioni locali ci permettono di trasportare nozioni dagli
aperti del piano alle superfici otteniamo allora la seguente:

Proposizione 2.3.1: Sia S C R® una superficie, p € S, e p:U — S una parametrizzazione locale in p
con p(z,) = p. Allora dp,, ¢ un isomorfismo fra R* e T,S. In particolare, T,S = dip,, (R?) & sempre uno
spazio vettoriale di dimensione 2, e dy,, (R2) non dipende da ¢ ma solo da S e p.

Dimostrazione: Dato v € R?, possiamo trovare ¢ > 0 tale che z, + tv € U per ogni t € (—¢,¢€); quindi
la curva o,:(—¢,e) — S data da o,(t) = p(z, + tv) & ben definita, 0,(0) = p e 0,(0) = dys, (v), per
cui dgp,, (R*) C T,S.

Viceversa, sia o: (—&,¢) — S una curva con o(0) = p; a meno di diminuire ¢, possiamo supporre che il
sostegno di o sia contenuto in ¢(U). Grazie alla Proposizione 2.1.6.(ii) la composizione o, = ¢~ o o & una
curva di classe C* in U tale che ¢,(0) = x,; poniamo v = ¢’,(0) € R?. Allora

dgr,(v) = L2270 (0) = o1(0),

per cui 17,5 C dy,, (Rz). Quindi de,,: R? — T,S & surgettiva; essendo anche iniettiva, in quanto dy,, ha
rango massimo, & un isomorfismo fra R? e T, »S.
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Definizione 2.3.2: Sia S C R® una superficie, e p € S. Lo spazio vettoriale 1,5 C R? & detto piano tangente
a S in p.

Osservazione 2.3.2. Attenzione: come I’abbiamo definito noi, il piano tangente € un sottospazio vettoriale
di R?, e quindi passa per D'origine indipendentemente da quale sia il punto p € S. Quando si disegna il piano
tangente come un piano appoggiato alla superficie, non si sta disegnando 7,5 ma il suo traslato p + T),5,
che & un piano affine passante per p.

Osservazione 2.3.3. In un senso molto preciso che non abbiamo il tempo di illustrare qui, il piano tangente
¢ il piano che meglio approssima la superficie nel punto p.

Osservazione 2.3.4. Dalla definizione risulta evidente che se S C R? & una superficie, p€ S e U C S &
un aperto di S contenente p, allora T,U = T,,S. In particolare, se S = R? allora T,U = T][,]R2 = R? per ogni
aperto U del piano e ogni p € U.

Questa definizione di piano tangente ha un problema: dipende strettamente dal fatto che S & conte-
nuta in R®, mentre sarebbe piacevole avere un concetto di vettore tangente intrinseco a .S, indipendente
dall’'immersione nello spazio euclideo. In altre parole, ci piacerebbe avere una definizione di 7,5 come spazio
vettoriale astratto, dipendente solo da S e da p, e non come sottospazio di R®. Inoltre, visto che stiamo
parlando di “geometria differenziale”, prima o poi dovremo trovare il modo di fare derivate su una superficie.

Possiamo risolvere entrambi questi problemi in un colpo solo, in un modo che risulta essenziale per la
generalizzazione di vettore tangente a pitt di due dimensioni (e piuttosto utile anche per noi). L’idea cruciale
e contenuta nel seguente

EsEMPIO 2.3.3. Sia U C R? un aperto, e p € U. Allora a ogni vettore tangente v € T,U = R? possiamo
associare una derivata parziale:

1 +7}2

P

v = (v},v?) —

0] 0
Oxt Ox?
e tutte le derivate parziali sono di questo tipo. Quindi in un certo senso possiamo identificare T,U con
I’insieme delle derivate parziali.

a.. - 9
avp »

Il nostro obiettivo quindi e indentificare, anche nel caso delle superfici, i vettori tangenti con il tipo
giusto di derivata parziale. Per far cio, prima di tutto dobbiamo chiarire che oggetti vogliamo derivare.
L’osservazione di base & che per derivare una funzione in un punto basta conoscere il comportamento della
funzione in un intorno qualsiasi del punto; se il nostro obiettivo € solo calcolare la derivata in p, due funzioni
che coincidono in un intorno di p sono per noi equivalenti. Questa osservazione suggerisce la seguente

Definizione 2.3.3: Sia S C R® una superficie, e p € S. Indichiamo con F Dinsieme delle coppie u, N,
dove U C S & un intorno aperto di p in S, e f € C®°(U). Su F mettiamo la relazione d’equivalenza ~
definita come segue: (U, f) ~ (V,g) se esiste un intorno aperto W C U NV di p tale che f|ly = glw. Lo
spazio quoziente C°(p) = F/~ sard detto spiga dei germi di funzioni C* in p, e un elemento f € C*°(p)
¢ detto germe in p. Un elemento (U, f) della classe di equivalenza f ¢ detto rappresentante di f. Se sara
necessario ricordare su quale superficie stiamo lavorando, scriveremo Cg°(p) invece di C*(p).

Osservazione 2.3.5. Se U C S ¢ un aperto di una superficie S e p € U, allora C{°(p) = C(p).

Cio che vogliamo derivare sono quindi i germi di funzioni C*°. Prima di vedere come, osserviamo
che C*°(p) ha una naturale struttura algebrica.

Definizione 2.3.4: Un’algebra su un campo K & un insieme A su cui sono definite una somma 4+, un prodotto -
e un prodotto per scalari A- tali che (A,+,-) sia un anello, (A, 4+, \-) sia uno spazio vettoriale, e valga la
proprieta associativa (Af)g = A(fg) = f(A\g) per ogni A e Ke f, g € A.

Lemma 2.3.2: Sia S C R® una superficie, p € S, e f, g € C>°(p) due germi in p. Siano inoltre (Uy, f1),
(Ua, f2) due rappresentanti di £, e (V1,¢1), (Va, g2) due rappresentanti di g. Allora:
(i) (Uin Vi, fi + q1) e equivalente a (U2 N Va, fa + ga);
(ii) (U1 N V4, fig1) & equivalente a (Ux N Va, faga);
(iii) (U1, Af1) & equivalente a (Ua, Af2) per ogni A € R;
(iv) fi(p) = f2(p)-



2.3 Piano tangente 37

Dimostrazione: Cominciamo con (i). Siccome (Uy, f1) ~ (Ua, f2), esiste un intorno aperto W C Uy NUy di p
tale che f1|lw = falw. Analogamente, siccome (Vi,g1) ~ (Va, g2), esiste un intorno aperto WCVinVydip
tale che g1]y3, = g2ly3,- Ma allora (fi+ f2)|lyw o = (91+92)lwani» € quindi (UiNVi, fi+g1) ~ (UaNVa, fa+92)
in quanto WNW C U, NVy NU; N V.

La dimostrazione di (ii) € analoga, e (iii) e (iv) sono ovvie. O

Definizione 2.3.5: Siano f, g € C*°(p) due germi in un punto p € S. Indicheremo con f+g € C*°(p) il germe
rappresentato da (UNV, f+g¢), dove (U, f) & un qualsiasi rappresentante di f e (V, g) & un qualsiasi rappresen-
tante di g. Analogamente indicheremo con fg € C°°(p) il germe rappresentato da (UNV, fg), e, dato A € R,
con Af € C*(p) il germe rappresentato da (U, Af). Il Lemma 2.3.2 ci assicura che queste definizioni sono
ben poste, ed ¢ evidente (perché?) che C°°(p) con queste operazioni & un’algebra. Infine, per ogni f € C*°(p)
definiamo il suo valore f(p) € R in p ponendo f(p) = f(p) per un qualsiasi rappresentante (U, f) di £. Di
nuovo, il Lemma 2.3.2 ci assicura che f(p) ¢ ben definito.

Il fatto che la composizione di applicazioni differenziabili sia ancora un’applicazione differenziabile ci
permette di confrontare spighe su punti in superfici diverse. Infatti, sia F:S; — S un’applicazione di
classe C* fra superfici, e siano (V1,g1) e (Va, g2) due rappresentanti di un germe g € C* (F(p)) Allora ¢
evidente (esercizio) che (F~(V1),g1 0 F) e (F~'(V2), g2 o F) rappresentano lo stesso germe in p, che quindi
dipende solo da g (e da F'). Dunque possiamo introdurre la seguente

Definizione 2.3.6: Dati un’applicazione differenziabile fra superfici F': S; — S e un punto p € Sy, indicheremo
con Fy:Cg (F(p)) — CZ(p) I'applicazione che associa a un germe g € C'g (F(p)) di rappresentante (V,g)
il germe F(g) = go F € CF(p) di rappresentante (F~'(V),go F). Si verifica subito (esercizio) che Fjy &
un omomorfismo di algebre.

Osservazione 2.3.6. Una convenzione molto comune (e molto utile) della matematica contemporanea
consiste nell'indicare con una stella in alto (come in F™*) un’applicazione associata in modo canonico a
un’applicazione data ma che procede in direzione inversa: la F' va da S; a S, mentre F* va dai germi
in Sy ai germi in S7. La stessa convenzione prevede di usare la stella in basso (come in Fy) per indicare
un’applicazione associata che invece proceda nella stessa direzione dell’applicazione data (vedi per esempio
le Definizioni 2.3.8 e 2.3.10 piu oltre).

Lemma 2.3.3: (i) Si ha (ids), = id per ogni punto p di una superficie S.

(ii) Siano F:Sy — S e G:Sy — S applicazioni C* fra superfici ¢ p € S1. Allora (G o F)j = FJ o Gp
per ogni p € Sy.

(iii) Se F:S1 — Sy é un diffeomorfismo allora F;: C> (F(p)) — C(p) & un isomorfismo di algebre per
ogni p € S1. In particolare, se p:U — S & una parametrizzazione locale con ¢p(x,) = p € S, allora
w0y 0 (p) — CF(w,) & un isomorfismo di algebre.

Dimostrazione: (i) Ovvio.
(ii) Segue subito (esercizio) dall’'uguaglianza go (Go F) = (go G)o F.
(iil) Infatti (i) e (ii) implicano che (F‘l)}(p) ¢ l'inversa di F'. O

Adesso siamo finalmente in grado di definire cosa intendiamo per derivata parziale su una superficie.

Definizione 2.3.7: Sia S C R® una superficie, e p € S. Una derivazione in p ¢ una funzione R-lineare
D:C*(p) — R che soddisfa la regola di Leibniz:

D(fg) = f(p)D(g) + g(p)D(f).

Si verifica subito (esercizio) che I'insieme D(C*(p)) delle derivazioni di C°(p) ¢ un sottospazio vettoriale
del duale (come spazio vettoriale) di C*°(p).

ESEMPIO 2.3.4. Sia U C R? un aperto del piano, e p € U. Abbiamo gid osservato che T,U = R?. D’altra
parte, le derivate parziali in p sono chiaramente delle derivazioni di C'*°(p); quindi possiamo introdurre
un’applicazione lineare naturale o:: T, U — D(C"o(p)) ponendo

7]

0
alv) = E™ !

dat

+ v?
p

9
Ox?

p p
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Il punto cruciale e che I’applicazione « € in realta un isomorfismo fra T,U e D(COO (p)) Di piu, quello
che succede e che T},S e D(C§° (p)) sono canonicamente isomorfi per ogni superficie S e ogni p € S, fatto che
ci fornira la desiderata caratterizzazione intrinseca dei vettori tangenti. Per dimostrare tutto cio ci servono
ancora una definizione e un lemma.

Definizione 2.3.8: Sia p:U — S una parametrizzazione locale con ¢(z,) = p € S. Definiamo un’applica-
zione ¢,: D(C>(z,)) — D(C>(p)) ponendo ¢,(D) = D o ¢} , cioe

@«(D)(f) = D(f o p)

per ogni f € C=(p) e D € D(C*(z,)). Si verifica subito (perché?) che ¢.(D) & una derivazione, in
quanto ¢} & un isomorfismo di algebre, per cui 'immagine di ¢, ¢ effettivamente contenuta in D(C>(p)). Di
pit, ¢ facile vedere (esercizio) che ¢, & un isomorfismo di spazi vettoriali, con inversa (¢.) ' (D) = Do(p™1)%.
Osservazione 2.3.7. Vedremo in seguito che ¢, puo essere canonicamente identificato col differenziale
della parametrizzazione locale.

Lemma 2.3.4: Sia U C R" un aperto stellato rispetto al punto x, € R™. Allora per ogni f € C*>(U)

esistono gi,...,gn € C(U) tali che g;(x,) = gm’; (z0) €

f(x) JFZ *m] )g; ()
j=1

per ogni x € U.

Dimostrazione: Si ha
Lo N )
fa) = fao) = [ o tlaottla—ao))dt = 3o o) [ T (oot tla =)

per cui basta porre
g;(x) 7/ o (2o + t(x — z,)) dt
J 0 81‘.} o o .
O

E finalmente possiamo dimostrare la promessa caratterizzazione del piano tangente:

Teorema 2.3.5: Sia S C R® una superficie, e p € S. Allora il piano tangente T,S é canonicamente isomorfo
allo spazio D(C*(p)) delle derivazioni di C*(p).

Dimostrazione: Sia ¢:U — S una parametrizzazione locale centrata in p. Quanto fatto finora ci permette
di considerare il seguente diagramma commutativo:
ToU =R* - D(C=(0))
aso | [e (2.3.1)
<]
s L D)
dove a & I'applicazione introdotta nell’Esempio 2.3.4, e 8 = @, o a o (dpo)~*. Procederemo in due passi:
prima di tutto dimostreremo che « € un isomorfismo. Essendo dyo e ¢, isomorfismi, questo implichera
che anche § & un isomorfismo. Poi dimostreremo che & possibile esprimere § in modo indipendente dalla
parametrizzazione locale ¢ scelta; quindi § sara un isomorfismo canonico, indipendente da qualsiasi scelta,
e avremo finito.
Cominciamo allora col dimostrare che a ¢ un isomorfismo. Essendo chiaramente lineare, ci basta far

vedere che ¢ iniettiva e surgettiva.
Se v = (v',v?) € R? = TpU, si vede subito che

v = a(v)(x?)
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per j = 1, 2, dove x? & il germe nell’origine della funzione coordinata a7. In particolare, se v/ # 0 si
ha a(v)(x?) # 0, per cui v # O implica a(v) # O e « & iniettiva.
Per la surgettivita, sia D € D(C*(0)); vogliamo far vedere che D = a(v), dove v = (Dx!, Dx?). Prima
di tutto notiamo che
D1=D(1-1)=2D1,

e quindi Dc = 0 per ogni costante ¢ € R, dove ¢ ¢ il germe rappresentato da (R?, ¢). Sia ora f € C°(0)
qualsiasi. Applicando il Lemma 2.3.4 troviamo

2
— 1 2
Df = D(f(O)) + D(X g1 +Xx g2 ; XJ Dg] =+ g] DXJ ZDXJ (91'7 O‘(’U)(f)’

dove v = (Dx!, Dx?) come previsto, e ci siamo.

Dunque a e § sono degli isomorfismi; per concludere la dimostrazione ci basta far vedere che 8 non
dipende da ¢ ma solo da S e da p. Sia v € T},S; allora deve esistere una curva o: (—¢, ¢) — S tale che 0(0) = p
e 0’(0) = v. Vogliamo far vedere che

B)(E) = (fo0)'(0) (2.3.2)

per ogni f € C°(p) e ogni rappresentante (U, f) € f. Se dimostriamo questo abbiamo finito: infatti il
primo membro di (2.3.2) non dipende né da o né dal rappresentante scelto, mentre il secondo membro non
dipende da alcuna parametrizzazione locale. Dunque in tal caso 8 non dipende né da ¢ né da ¢ e quindi &
I’isomorfismo canonico cercato.

Ci rimane allora da dimostrare (2.3.2). Scriviamo o = ¢ o 0, come nella dimostrazione della Proposi-
zione 2.3.1, in modo da avere v = dpo(v,), dove v, = 0/,(0) € R®. Ma allora

BO)E) = (o1 000 (dp0) ™) (W)(F) = (2 0 0)(w)(F) = (w) (P5(0)) = ol )(F o p)
@020y + (210252 0) = (o9 00.) ) (233)

= (f o G)/(O)a

e ci siamo. O

Osservazione 2.3.8. Una conseguenza del diagramma (2.3.1) ¢ esattamente che, come promesso, ’appli-
cazione ¢, ¢ 'esatto analogo del differenziale di ¢ nel momento in cui interpretiamo i piani tangenti come
spazi di derivazioni.

D’ora in poi identificheremo sistematicamente 7,5 e D(C‘X’(p)) senza menzionare esplicitamente 1’i-
somorfismo (; un vettore tangente sard considerato sia come un vettore di R® che come una derivazione
dello spazio dei germi in p senza ulteriori commenti. In particolare, identificheremo sistematicamente i
vettori {e1, e} della base canonica di R? con le derivate parziali 9/dx|, e /0|, quale che sia p € R?.

L’isomorfismo fra R? e T,S fornito dalle parametrizzazioni locali ci permette di introdurre particolari
basi del piano tangente:

Definizione 2.3.9: Sia S C R® una superficie, e p € S. Se ¢:U — S ¢ una parametrizzazione locale centrata
in p, e {e1, e} ¢ la base canonica di R?, allora definiamo i vettori tangenti d/dz|,, /022, € T,S ponendo

% (0)

0 dp el
ui |, = 10(ei) = 5,7 (0= 55(0)
922(0)

Scriveremo spesso 9;|, (o anche, quando non ci sara pericolo di confusione, semplicemente 9;) invece
di 9/0x7|,. Chiaramente, {01]p, 02|p} € una base di T,,S.
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Osservazione 2.3.9. Prendiamo una parametrizzazione locale ¢: U — S centrata in un punto p € S, e
un vettore tangente v = v'd;|, + v2ds|, € T,S. Allora (2.3.3) ci dice che I’azione di v come derivazione &

data da
19(f o) 20(f o)

v(f) =v Ozt 02

(0)+v (0),
per qualsiasi germe f € C*(p) e qualsiasi rappresentante (V, f) di f. In particolare, se S & un aperto di R?,
allora i vettori e; ed ey della base canonica di R? = T,,U corrispondono alle derivate parziali 9/dz' e 9/dx.

Osservazione 2.3.10. Nell’osservazione precedente abbiamo descritto I'azione di un vettore tangente su
un germe esprimendo il vettore tangente in termini della base data da una parametrizzazione locale. Se
invece vediamo v = (v',v?,v%) € T},S come un vettore di R® possiamo descrivere la sua azione come segue:
dato f € C*(p), scegliamo un rappresentante (V, f) di f ed estendiamolo con la Proposizione 2.2.5 a una
funzione differenziabile f definita in un intorno W di p in R®. Sia infine o: (—€,e) = Sunacurvacono(0) =p

e 0’(0) =wv. Allora

o) = (f o) (0) = (o 0)( Z”Jaxj

Attenzione: mentre la combinazione lineare nel membro destro della formula precedente ¢ ben definita e
dipende soltanto dal vettore tangente v e dal germe f, ciascuna singola derivata parziale 0 f/0x? (p) dipende
dall’estensione f scelta, per cui non da alcuna informazione sulla superficie S per sé.

Esercizio 2.3.1. Sia S C R® una superficie e p € S. Dimostra che per ogni base {v1,v2} di T,,S esiste una
parametrizzazione locale ¢: U — S centrata in p tale che 01|, = v1 e Oa|p = va.

Osservazione 2.3.11. Se abbiamo due parametrizzazioni locali :U — S e ¢: U — S centrate in p € S
otteniamo due basi {91, 8,} e {d1,da} di T,S, dove ; = dp/d37(0), e (2',42) sono le coordinate in U.
Avendo due basi di uno stesso spazio vettorlale, deve esistere la matrice di cambiamento di base. Se indi-
chiamo con h = ¢! o ¢ il cambiamento di coordinate, abbiamo ¢ = ¢ o h e dunque

ozt N A

8j = %(0)81 + —(0)82,

dove abbiamo posto 92/0x7 = Oh'/0x?. Quindi la matrice di cambiamento di base ¢ la matrice jacobiana
del cambiamento di coordinate.

Abbiamo visto che un modo per definire superfici & come superficie di livello di una funzione differen-
ziabile. La seguente proposizione ci dice come trovare il piano tangente in questo caso:

Proposizione 2.3.6: Sia a € R un valore regolare per una funzione f € C*°(U), dove U C R* & un aperto.
Posto S = f~(a), per ogni p € S il piano tangente T,S ¢ il sottospazio di R? ortogonale a gradf(p).

Dimostrazione: Infatti, prendiamo v € T,S e sia 0:(—¢,6) — S una curva con 0(0) = p e ¢'(0) = v.
Derivando f oo = a e calcolando in 0 otteniamo

of
ozt

0 0
P00 + 55007 + s (o) =0,

per cui v & ortogonale a grad f(p). Dunque 7,,S C grad f(p)*; ma i due sottospazi hanno la stessa dimensione,
e quindi coincidono. Il

Esercizio 2.3.2. Sia f:W — R una funzione C*° definita in un aperto W C R3, prendiamo a € R e
poniamo S = f~*(a)\ Crit(f). Dimostra che per ogni p € S il piano tangente 7,,S coincide con il sottospazio
di R?® ortogonale a gradf(p).

Il modo in cui abbiamo introdotto I'applicazione ¢,, e la sua relazione con il differenziale usuale, sug-
gerisce la seguente definizione di differenziale per una qualsiasi applicazione di classe C*° fra superfici:
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Definizione 2.3.10: Sia F:S; — S5 un’applicazione C*° fra due superfici, e p € Sy. 1l differenziale di F in p
¢ I'applicazione lineare dFy:T,S1 — Tp(,)S2 definita da dF,(D) = D o F* per ogni derivazione D € T},S
di C*°(p). A volte si scrive (Fy), invece di dF,.

Esercizio 2.8.83. Siano F:S; — Sy e G: Sy — S3 applicazioni C'*° fra superfici, e p € S;. Dimostra che
d(GoF), = dGp)odFy, e che d(ids, ), = id. In particolare, se F' ¢ un diffeomorfismo allora dF}, ¢ invertibile
e (de)il = d(Fil)F(p).

Non e difficile vedere che aspetto prende il differenziale quando applicato a vettori intesi come vettori
tangenti a una curva:

Lemma 2.3.7: Sia F: S; — Ss un’applicazione C™ fra superfici e p € Sy. Se 0:(—6,0) — Sy & una curva
con 0(0) =p e o'(0) = v allora
dF,(v) = (F 0 0)'(0). (2.3.4)

Dimostrazione: Poniamo w = (F 0 0)'(0) € Tr(,)S2. Usando le notazioni introdotte nella dimostrazione del
Teorema 2.3.5, dobbiamo dimostrare che dF,(3(v)) = 8(w). Ma infatti se f € C*°(F(p)) abbiamo

/ !/

dF, (B(v)) (£) = B(v) (F*(£)) = Bv)(f o F) = ((f o F) 00) (0) = (f o (F 00)) (0) = B(w)(f),

grazie a (2.3.3). O

Come per la definizione di vettore tangente, siamo di fronte a due possibili modi di introdurre il diffe-
renziale, ognuno coi propri pregi e difetti. La (2.3.4) evidenzia il significato geometrico del differenziale; la
Definizione 2.3.10 rende invece evidente che il differenziale & un’applicazione lineare fra i piani tangenti, e
che valgono le proprieta indicate nell’Esercizio 2.3.3.

Osservazione 2.3.12. Pil in generale, se F': S — R" & un’applicazione C* e p € S, possiamo definire il
differenziale dF,:T,S — R" di F in p ponendo dF,(v) = (F o0 0)'(0), dove o: (—¢,e) — S & una qualsiasi
curva in S con 0(0) = p e ¢/(0) = v; non ¢ difficile (esercizio) verificare che dF,(v) dipende solo da v e non
dalla curva o, e che & un’applicazione lineare. In particolare, se f € C°°(S) e v € T,,S allora abbiamo

dfp(v) = (f 00)'(0) = v(f),

dove f e il germe di f in p, formula che mostra come 'azione del differenziale delle funzioni sui vettori
tangenti sia duale all’azione dei vettori tangenti sulle funzioni.

Vediamo ora come si esprime il differenziale in coordinate locali. Data un’applicazione differenzia-
bile F:S; — Sy fra superfici, scegliamo ¢: U — S7 una parametrizzazione locale centrata in p € S, e una
parametrizzazione locale ¢:U — Sy centrata in F(p) € Sy tali che F(e(U)) C @(U); in particolare, pos-
siamo esprimere F' in coordinate locali tramite la F = (13’1, FQ) = ¢~ 1o Foy. Vogliamo la matrice che
rappresenta dF), rispetto alle basi {01,092} di T,,51 e {31, 32} di Tr(p)S2, matrice che contiene per colonne
le coordinate rispetto alla base di arrivo dei trasformati tramite dF), dei vettori della base di partenza. Pos-
siamo procedere in due modi: o usando le curve, o usando le derivazioni. Una curva in S; tangente a 0; in p

e 0;(t) = ¢(te;), per cui

OFY . 9F? .

d
= %(0)61 + w(o)az

dFy(9;) = (F00;)'(0) = — (@0 Fltey))

t=0

Quindi la matrice che rappresenta dF, rispetto alle basi indotte dalle due parametrizzazioni locali ¢ esatta-
mente la matrice jacobiana dell’espressione F' di F' in coordinate locali. R .

Vediamo di riottenere lo stesso risultato usando le derivazioni. Vogliamo scrivere dF},(0;) = a; 01+ afag.

Ponendo ¢~! = (21, 22), si vede subito che

A ok _ sk 1 Seh:k,
8h(x)_5h_{0 se h # k,
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dove %* & il germe in p della funzione #*. Quindi

OF"
oai (0)=5.5(0),

coerentemente con quanto visto prima.

Osservazione 2.3.13. Attenzione: la matrice che rappresenta il differenziale di un’applicazione fra su-
perfici & una matrice 2 x 2, e non una matrice 3 x 3 0 3 X 2 0 2 X 3, in quanto i piani tangenti hanno
dimensione 2.

Il fatto che il differenziale di un’applicazione fra superfici sia rappresentato dalla matrice jacobiana
dell’espressione dell’applicazione in coordinate locali permette di trasferire facilmente alle superfici risultati
classici dell’analisi in R™ quali il teorema della funzione inversa:

Corollario 2.3.8: Sia F:S; — Sy un’applicazione differenziabile fra superfici. Sia p € S1 un punto tale
che dFy,:T,S1 — Tr(p)S2 sia un isomorfismo. Allora esistono un intorno V-C Sy di p e un intorno V- C S,

di F(p) tali che F|y:V — V sia un diffeomorfismo.

Dimostrazione: Sia ¢:U — S1 una qualsiasi parametrizzazione locale in p, e ¢ U — S, una qualsiasi carta
in F(p) con F(p(U)) € ¢(U). Allora la tesi segue (perché?) dal classico teorema della funzione inversa
Teorema 1.3.1 applicato a ¢~ ! o F o . ]

Concludiamo questo paragrafo con un’ultima caratterizzazione del piano tangente, questa volta pura-
mente algebrica:

Esercizio 2.3.4. Sia S C R® una superficie, e p € S. Posto m = {f € C=(p) | f(p) = 0}, dimostra che m
¢ 'unico ideale massimale di C'*°(p), e che T,S & canonicamente isomorfo al duale (come spazio vettoriale)
di m/m2.

2.4 Orientabilita

Un concetto importante in teoria delle superfici ¢ quello di orientabilita. In parole povere, una superficie &
orientabile se ha due “facce”, una interna e una esterna, mentre non ¢ orientabile se ha una faccia sola, come
il nastro di Mébius (vedi 'Esempio 2.4.3).

Ci sono (almeno) due modi per definire precisamente il concetto di orientabilita: uno intrinseco, e I'altro
legato all’immersione della superficie in R3. Cominciamo col primo.

Definizione 2.4.1: Sia S C R® una superficie. Diremo che due parametrizzazioni locali Ya:Uy — S e
pp:Ug — S determinano la stessa orientazione (o sono equiorientate) se det Jac(gogl 0 ¢a) > 0 ove defi-
nito, ciot su ¢ (¢a(Ua) Ns(Us)). Se invece det Jac(apgl 0pa) < 0su ;! (¢a(Us)Nps(Us)) # @, diremo
che le due parametrizzazioni locali determinano I’orientazione opposta. La superficie S ¢ detta orientabile
se esiste un atlante A = {p,} di S composto da carte a due a due equiorientate (e diremo che atlante &
orientato). Se fissiamo un tale atlante A diremo che la superficie S & orientata da A.

Osservazione 2.4.1. Attenzione: possono esistere coppie di parametrizzazioni locali che non determinano
né la stessa orientazione né quella opposta. Per esempio, puo succedere che ¢, (Us) N pg(Ug) abbia due
componenti connesse e det Jac(gogl 0 () sia positivo su una e negativo sull’altra; vedi I’'Esempio 2.4.3.

Quando abbiamo una parametrizzazione locale in p € S, possiamo orientare il piano tangente a S in p
dicendo che la base {01,002} associata alla parametrizzazione determina 'orientazione positiva del piano.
Quindi la definizione ci dice che S & orientabile se e solo se possiamo orientare contemporaneamente tutti i
piani tangenti a S in maniera coerente.

EsEmpio 2.4.1. Una superficie che possiede un atlante costituito da una sola parametrizzazione locale e
chiaramente orientabile. Per esempio, i grafici sono tutti orientabili.

ESEMPIO 2.4.2. Se una superficie ha un atlante costituito da due parametrizzazioni locali le cui immagini
abbiano intersezione connessa, allora ¢ orientabile. Infatti il determinante dello jacobiano del cambiamento di
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coordinate deve avere (perché?) segno costante sull’intersezione, e quindi a meno di scambiare le coordinate
nel dominio di una parametrizzazione (operazione che cambia il segno del determinante dello jacobiano del
cambiamento di coordinate), possiamo sempre fare in modo che le due parametrizzazioni determinino la
stessa orientazione. Per esempio, quindi, la sfera ¢ orientabile.

Osservazione 2.4.2. L’orientabilita e una proprieta globale di una superficie: non possiamo verificarla
controllando solo cosa succede su una parametrizzazione locale alla volta. L’immagine di una singola para-
metrizzazione locale & sempre orientabile; i problemi possono nascere da come si collegano fra di loro le varie
parametrizzazioni locali.

Per dare la seconda caratterizzazione delle superfici orientabili ci serve una nuova definizione.

Definizione 2.4.2: Un campo di vettori normali su una superficie S ¢ R® ¢ un’applicazione N: S — R? di
classe C* tale che N(p) sia ortogonale a T,S per ogni p € S. Se inoltre || N|| = 1 parleremo di campo di
versori normali a S.

In un certo senso, un campo di versori normali indica su tutta la superficie qual e la faccia esterna:
quella nella direzione del versore normale. Infatti:

Proposizione 2.4.1: Una superficie S C R?® & orientabile se e solo se esiste un campo di versori normali
suS.

Dimostrazione: Cominciamo con qualche osservazione generale. Sia ¢,:U, — S una parametrizzazione
locale di S, e per ogni p € p,(U,) poniamo

al,a A aQ,a

No(p) = ——F—(p),
(p) ||817a/\327a”(p)

dove ;.4 = O, /027 come al solito, e A & il prodotto vettore di R3. Siccome {01,0 02,0} & una base di 7,
il versore N, € ben definito, non nullo e ortogonale a 73,5; inoltre dipende chiaramente in modo C'*° da p.
Sia ora ¢g: Us — S un’altra parametrizzazione locale con ¢, (Uy) N pg(Ug) # @. Abbiamo visto che

dove abbiamo scritto come al solito go[;l 0 Qg = (ch, ZC%) Dunque
O1,a N\ 02 o = det Jac(gag1 0 y) 01,8 N D2 3, (2.4.1)

e quindi
al,a A a2,(1

101,00 A D2l

Supponiamo ora S orientabile, e sia A = {¢,} un atlante orientato. Se p € o (Ua) Np(Us), la (2.4.2)
ci dice che Ny (p) = Ns(p); quindi l'applicazione p — N, (p) non dipende dalla particolare parametrizzazione
locale scelta, e definisce un campo di versori normali su S.

Viceversa, sia N: S — R> un campo di versori normali su S, e sia A = {¢a} un qualsiasi atlante di S
tale che il dominio U, di ciascun ¢, sia connesso. Ora, per definizione di prodotto vettore abbiamo

a1 «@ A a2 «@ )
N, SLen%a ) _ g
( [01,a A Oza

g Ao

LB T2E (2.4.2)
01,5 A 02 5|

= sgn(det Jac(py " © ¢a))

su ciascun U,; essendo U, connesso, a meno di modificare ¢, scambiando le coordinate in U,, possiamo
supporre che il prodotto scalare sia identicamente 1. Ma allora

8 @ «
a7 P2a N O, =N
01,6 A D20l

su ciascun U,, e (2.4.2) implica che atlante ¢ orientato. O
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Definizione 2.4.3: Sia S C R® una superficie orientata da un atlante A. Diremo che un campo di versori
normali N determina l'orientazione data se N = 01 A 02/]|01 A D2 per ogni parametrizzazione locale ¢ € A.

Una conseguenza della proposizione precedente € che se S & una superficie orientata esiste sempre
(perché?) un unico campo di versori normale che determina l'orientazione data.

Definizione 2.4.4: Sia S C R® una superficie orientata, e N:S — S$2 un campo di versori normali che
determina l'orientazione data. Se p € S, diremo che una base {v1,v2} di T),S ¢ positiva (rispettivamente,
negativa) se la base {v1, v, N(p)} di R® ha la stessa orientazione (rispettivamente, 'orientazione opposta)
della base canonica di R”.

Esercizio 2.4.1.  Sia S C R® una superficie orientata da un atlante A = {¢,}. Presip € S e una base {v1,v2}
di 7,5, dimostra che {vy,v2} & una base positiva di T,,S se e solo se determina su 7,5 la stessa orientazione
della base {01,alp, 02.alp} Per ogni ¢, € A tale che p appartenga all'immagine di ¢,

Definizione 2.4.5: Sia S C R® una superficie orientata da un atlante A. Allora l'atlante A~ ottenuto scam-
biando le coordinate in tutte le parametrizzazioni di A, cio¢ ¢ € A~ se e solo se poy € A dove x(z,y) = (y,x),
¢ detto opposto di A.

Esercizio 2.4.2. Sia S C R® una superficie orientata da un atlante A. Dimostra che anche A~ ¢ orientato, ma
che le parametrizzazioni locali di A~ determinano tutte I’orientazione opposta rispetto alle parametrizzazioni
locali di A.

Una domanda naturale che ci si potrebbe porre € la seguente: quante orientazioni esistono su una super-
ficie connessa orientabile? Supponiamo di avere un atlante orientato A; allora anche ’atlante opposto A~ &
orientato. Quindi se ¢’¢ un’orientazione ne esiste sicuramente una seconda. Ora, se ci fosse una terza orien-
tazione dovrebbero esistere parametrizzazioni locali equiorientate ad alcune parametrizzazioni locali di A
ma non a tutte; e invece questo non ¢ possibile.

Corollario 2.4.2: Sia S una superficie orientata da un atlante A, e sia p: U — S un’altra parametrizzazione
locale, con U connesso. Allora o ¢ & equiorientata con tutte le parametrizzazioni locali di A, oppure lo é con
tutte le parametrizzazioni locali di A~ .

Dimostrazione: Sia N il campo di versori normali che determina l'orientazione data, e {91,0>} la base
associata a . Esattamente come nella dimostrazione della Proposizione 2.4.1 otteniamo che

01 N\ Oy
—— 2 =4N
01 A Oa|

su p(U), dove il segno & costante perché U & connesso. Quindi (2.4.2) implica che se il segno & positivo
allora ¢ determina la stessa orientazione di tutti gli elementi di .4, mentre se il segno & negativo determina
Iorientazione opposta. ]

In particolare, quindi, una superficie connessa o non ammette orientazioni o ne ammette esattamente
due.

Esercizio 2.4.3. Dimostra il Corollario 2.4.2 usando la definizione originale di superficie orientabile. (Sug-
gerimento: puo essere utile sapere che ogni aperto connesso di una superficie € anche connesso per archi,
fatto che si dimostra come per gli aperti del piano.)

Esercizio 2.4.4. Quante orientazioni ammette una superficie orientabile con r componenti connesse?

EseEmPIO 2.4.3. [l nastro di Mdbius. Sia C' la circonferenza nel piano xy di centro 'origine e raggio 2, e
£y il segmento nel piano yz dato da y = 2 e |z| < 1, di centro il punto ¢ = (0,2,0). Indichiamo con ¢y il
segmento ottenuto ruotando ¢ lungo C di un angolo € e contemporaneamente ruotando £y intorno a ¢ di un
angolo ¢/2. L'unione S = [Jpg(g 2. lo © detto nastro di Mébius; vogliamo dimostrare che ¢ una superficie

non orientabile. Posto U = {(u,v) € R?* |0 < u < 27, —1 < v < 1}, definiamo ¢, $:U — S con
o(u,v) = ((2 — vsin %) sin u, (2 — vsing) COS U, U COS g) ,

H(u,v) = ((2 — vsin (E + f)) cos U, — (2 — vsin (E + I)) sinu, v cos (E + I)) i
2 4 2 4 2 4
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Si verifica facilmente (esercizio) che {p, ¢} & un atlante per S, costituito da due carte la cui intersezione non
& connessa: infatti p(U) N @(U) = o(W1) U p(Wa), con

Wi ={(u,v) €U | 7/2 < u <27} e Wy ={(u,v) €U |0 <u<m/2}.

Ora, se (u,v) € Wy si ha ¢(u,v) = $(u — 7/2,v), mentre se (u,v) € Wa si ha o(u,v) = ¢(u + 37/2, —v);
quindi

A1  J(u—m/2,v) se (u,v) € Wy,
P op(u,v) = { (u+3m/2,—v) se (u,v) € Wa.

In particolare,

o +1 su Wa
det Jac(¢ ™t o) = { -1 su W;

Ora, supponiamo per assurdo che S sia orientabile, e sia N un campo di versori normali su S. A meno di
cambiare segno a N possiamo supporre che N sia dato da 9, A 9,/]|0u A Oy|| su (U), dove 9, = dp/0u
e 9y = Op/dv. D’altra parte, si deve avere N = 8, A8, /||0y ADy|| su @(U), dove 9, = dp/0u e 8, = 8@/,
con segno costante in quanto U & connesso. Ma la (2.4.2) applicata su Wj ci dice che il segno dovrebbe
essere +1, mentre applicata su Wy ci dice che il segno dovrebbe essere —1, contraddizione.

Una vasta famiglia di superfici orientabili & fornita dal seguente

Corollario 2.4.3: Sia a € R un valore regolare per una funzione f:U — R di classe C>, dove U C R® ¢ un
aperto. Allora la superficie S = f~'(a) ¢ orientabile.

Dimostrazione: Grazie al Lemma 2.3.6 ponendo N = grad f/||gradf|| otteniamo un campo di versori normali

su S. ]
Concludiamo il capitolo citando il seguente viceversa del corollario precedente, che non dimostreremo:

Teorema 2.4.4: Sia S C R® una superficie orientabile, e Q@ C R® un aperto contenente S tale che S sia
chiusa in Q. Allora esiste una funzione f € C*°(2) e un valore regolare a € R di f tali che S = f~1(a).



