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Capitolo 1

Curve

1.1 Il concetto di curva

Cos’è una curva (nel piano, nello spazio, in Rn)? Vediamo esempi di cose che sicuramente lo sono:

Esempio 1.1.1. Una retta nel piano. Può venire presentata in (almeno) tre modi diversi:

– come grafico: y = ax + b o x = ay + b;
– come luogo di zeri: ax + by + c = 0;
– come immagine di un’applicazione f : R→ R2 della forma f(t) = (at + b, ct + d).

Attenzione: negli ultimi due casi i coefficienti non sono univocamente determinati dalla retta.

Esempio 1.1.2. Un grafico. Se I ⊆ R è un intervallo e f : I → R è una funzione (almeno) continua, allora
il suo grafico

Γf =
{(

t, f(t)
) ∣∣ t ∈ I

}
⊂ R2

è sicuramente una curva. Nota che si ha Γf = {(x, y) ∈ R2 | x ∈ I, y − f(x) = 0}, per cui un grafico può
essere considerato come un luogo di zeri.

Esempio 1.1.3. Una circonferenza, di equazione (x− x0)2 + (y − y0)2 = r2. Nota che non è un grafico.

Una prima idea potrebbe essere la seguente: una curva è qualcosa di “dimensione 1” dentro il piano
(o dentro Rn). Un modo per scendere di dimensione, passando dalla dimensione 2 del piano alla dimen-
sione 1 delle curve, è imporre una condizione: per esempio, potremmo considerare insiemi della forma
C = {(x, y) ∈ U | f(x, y) = 0} ⊂ R2 per opportune funzioni f : U → R, dove U ⊆ R2 è aperto. Tutti gli
esempi precedenti ricadono in questa categoria, e l’esperienza fatta con l’algebra lineare sembra indicare che
potrebbe essere una buona idea.

Ma bisogna stare attenti. Prima di tutto, non appena f è continua l’insieme C è chiuso in U — e fin
qui niente di male. Ma

Proposizione 1.1.1: Sia U ⊆ Rn aperto. Allora un sottoinsieme C ⊆ U è chiuso in U se e solo se esiste
una funzione continua f :U → R tale che C = {x ∈ U | f(x) = 0} = f−1(0).

Dimostrazione: Basta prendere f(x) = d(x, C) = inf{‖x − y‖ | y ∈ C}. Infatti, f è continua, e x ∈ C se e
solo se f(x) = 0 (perché?).

Dunque usando le funzioni continue otteniamo anche insiemi che decisamente non hanno alcun diritto
a essere chiamati curve. Potremmo allora limitarci alle funzioni differenziabili. Ma anche in questo caso
bisogna stare attenti:

Esempio 1.1.4. Se f : R2 → R è data da f(x, y) = xy, allora C = {f(x, y) = 0} è l’unione dei due assi
coordinati, cioè l’unione di due curve, non una curva sola.

L’insieme C dell’esempio precedente è quasi una curva. L’unico punto in cui c’è un problema è l’origine,
dove le due rette si intersecano. Ed effettivamente l’origine è un punto speciale anche per f : è l’unico punto
del piano in cui il gradiente di f si annulla. Non è difficile vedere che è questa la causa del problema, usando
il seguente teorema di Analisi:
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Teorema 1.1.2: (della funzione implicita) Sia F : Ω → Rn una funzione di classe Ck, con k ∈ N∗ ∪ {∞},
dove Ω è un aperto di Rm+n. Indichiamo con (x, y) le coordinate di Rm+n, dove x ∈ Rm e y ∈ Rn. Sia
p0 = (x0, y0) ∈ Ω tale che

F (p0) = O e det
∂F

∂y
(p0) 6= 0.

Allora esistono un intorno U ⊂ Rm+n di p0, un intorno V ⊂ Rm di x0 e un’applicazione g: V → Rn di
classe Ck tale che U ∩{p ∈ Ω | F (p) = O} è costituito da tutti e soli i punti della forma

(
x, g(x)

)
con x ∈ V .

Allora:

Proposizione 1.1.3: Sia Ω ⊆ R2 aperto, f : Ω→ R di classe C1 e p ∈ Ω tale che f(p) = 0 ma ∇f(p) 6= O.
Allora esiste un intorno U di p tale che U ∩ {f = 0} sia un grafico.

Dimostrazione: Scriviamo p = (x0, y0); a meno di scambiare le coordinate possiamo supporre che ∂f
∂y (p) 6= 0.

Allora il Teorema della funzione implicita ci dice che esistono un intorno U di p, un intervallo aperto I ⊆ R
contenente x0 e una funzione g: I → R di classe C1 tali che U ∩ {f = 0} sia esattamente il grafico di g.

Dunque nei punti in cui il gradiente della funzione f è non nullo, l’equazione f(x, y) = 0 effettivamente
definisce qualcosa che ha tutta l’aria di essere una curva. Ma che problema potranno procurare i punti in
cui il gradiente si annulla (che sono detti punti singolari di f)? Magari sono semplicemente punti in cui
s’intersecano varie curve, come nell’esempio precedente. . .

(S)fortunatamente, la situazione è ben più complicata di cos̀ı:

Teorema 1.1.4: (Whitney) Sia U ⊆ Rn aperto. Allora un sottoinsieme C ⊆ U è chiuso in U se e solo se
esiste una funzione f :U → R di classe C∞ tale che C = f−1(0).

Per la dimostrazione ci servono alcuni risultati preliminari.

Lemma 1.1.5: Esiste una funzione α: R → [0, 1) monotona, di classe C∞ e tale che α(t) = 0 se e solo se
t ≤ 0.

Dimostrazione: Poniamo

α(t) =
{

e−1/t se t > 0,
0 se t ≤ 0.

L’unica cosa che dobbiamo verificare è che sia di classe C∞ nell’origine. Per questo basta dimostrare che i
limiti destro e sinistro di tutte le derivate nell’origine coincidono, ovvero che

lim
t→0+

α(n)(t) = 0

per ogni n ≥ 0. Supponiamo di aver dimostrato l’esistenza per ogni n ∈ N di un polinomio pn di grado 2n
tale che

∀t > 0 α(n)(t) = e−1/tpn(1/t). (1.1.1)

In tal caso

lim
t→0+

α(n)(t) = lim
s→+∞

pn(s)
es

= 0;

quindi per concludere basta dimostrare (1.1.1). Procediamo per induzione su n. Per n = 0 basta pren-
dere p0 ≡ 1. Supponiamo che (1.1.1) sia verificata per n ≥ 0; allora

α(n+1)(t) =
d

dt

[
e−1/tpn(1/t)

]
= e−1/t

[
1
t2

pn(1/t)− 1
t2

p′n(1/t)
]

,

per cui basta scegliere pn+1(s) = s2
(
pn(s)− p′n(s)

)
.
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Corollario 1.1.6: Per ogni intervallo chiuso [a, b] ⊂ R esiste una funzione β: R → [0, 1] di classe C∞ tale
che β(t) = 1 se e solo se t ≤ a e β(t) = 0 se e solo se t ≥ b.

Dimostrazione: Basta prendere

β(t) =
α(b− t)

α(b− t) + α(t− a)
,

dove α: R→ R è la funzione del Lemma 1.1.5.

Corollario 1.1.7: Dati p0 ∈ Rn e r > 0 esiste una funzione f : Rn → [0, 1] di classe C∞ tale che f(p) = 1
se e solo se p ∈ B(p0, r), e f(p) = 0 se e solo se p /∈ B(p0, 2r), dove B(p, r) è la palla aperta di centro p e
raggio r.

Dimostrazione: Sia β: R→ [0, 1] la funzione costruita nel corollario precedente partendo dall’intervallo [r, 2r].
Allora f(p) = β(‖p− p0‖2) è come richiesto.

Lemma 1.1.8: Sia V ⊆ Rn un aperto. Allora possiamo trovare una successione di punti {pk}k∈N ⊆ Qn e
una successione di numeri razionali {rk}k∈N ⊆ Q+ tali che V =

⋃
k∈N B(pk, rk).

Dimostrazione: Sia p ∈ U . Essendo U aperto, esiste ε > 0 tale che B(p, ε) ⊂ V . Scegliamo allora q ∈ Qn

e r ∈ Q+ tali che ‖p− q‖ < r < ε/2. Chiaramente, p ∈ B(q, r); inoltre, se x ∈ B(q, r) abbiamo

‖p− x‖ ≤ ‖p− q‖+ ‖q − x‖ < 2r < ε,

per cui B(q, r) ⊆ B(p, ε) ⊂ V . Dunque ogni punto di V appartiene a una palla di centro e raggio razionali
completamente contenuta in V ; siccome di tali palle ne esiste al più una quantità numerabile, abbiamo la
tesi.

Ed eccoci arrivati alla

Dimostrazione del Teorema 1.1.4: Se C = f−1(0) sappiamo già che C dev’essere chiuso in U . Viceversa,
supponiamo che C sia chiuso in U ; allora V = U \ C è aperto in U , e quindi in Rn. Il Lemma 1.1.8 ci dice
che abbiamo V =

⋃
k∈N B(pk, rk) con pk ∈ Qk e rk ∈ Q per ogni k ∈ N. Sia fk:U → [0, 1] la restrizione a U

della funzione ottenuta applicando il Corollario 1.1.7 a pk e rk/2.
Chiaramente, fk ≡ 0 fuori da B(pk, rk), e lo stesso vale per tutte le sue derivate. Quindi il modulo di fk

e di tutte le sue derivate deve avere un massimo in B(pk, rk), che è un insieme compatto. Ne consegue che
per ogni m, k ∈ N troviamo cm

k > 0 tale che il valore assoluto di una qualsiasi derivata di ordine m di fk è
minore o uguale di cm

k in tutto U . Sia ck = max{1, c0
k, . . . , ck

k}, e poniamo

f =
∞∑

k=0

fk

2kck
.

Prima di tutto, questa serie è maggiorata da
∑

k 2−k, per cui converge uniformemente. Per costruzione, non
appena k ≥ m una qualsiasi derivata di ordine m del termine k-esimo della serie è limitata da 2−k; quindi
anche le serie delle derivate convergono uniformemente, e f ∈ C∞(U).

Ora, se p ∈ C allora p /∈ B(pk, rk) per ogni k ∈ N, per cui fk(p) = 0 per ogni k ∈ N, e f(p) = 0. Viceversa,
se p ∈ U\C deve esistere k0 ∈ N tale che p ∈ B(pk0 , rk0) ⊂ V ; quindi fk0(p) > 0 e f(p) ≥ fk0(p)/2k0ck0 > 0.

Dunque definire una curva tramite equazioni non è l’approccio migliore. Un’idea più efficiente è dire
che una curva è localmente fatta come R:

Definizione 1.1.1: Una linea (o 1-sottovarietà) è un sottoinsieme connesso C ⊂ Rn tale che per ogni p ∈ C esi-
ste un intorno U ⊂ Rn di p, un intervallo aperto I ⊆ R, e un’applicazione σ: I → Rn (detta parametrizzazione
locale) di classe C∞ tali che
(i) σ(I) = C ∩ U ;
(ii) σ è un omeomorfismo con l’immagine;
(ii) σ′(t) 6= O per ogni t ∈ I.
Diremo inoltre che una parametrizzazione locale σ è rispetto alla lunghezza d’arco se ‖σ′‖ ≡ 1.
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Esempio 1.1.5. Un grafico in R2 è una linea. Un insieme che è localmente un grafico (nel senso della
Proposizione 1.1.3) è una linea. Una figura 8 non è una linea.

Esercizio 1.1.1. Dimostra che il grafico della funzione valore assoluto non è una linea.

Osservazione 1.1.1. Una linea C non ha punti interni. Infatti, se p ∈ C fosse un punto interno, allora
C conterrebbe una palla di centro p e raggio r; in particolare, U ∩ C \ {p} sarebbe connesso quale che sia
l’intorno U di p. Ma se scegliamo U come nella definizione di linea, U ∩C \ {p} dovrebbe essere omeomorfo
a un intervallo aperto privato di un punto, che è sconnesso, contraddizione.

Osservazione 1.1.2. Le condizioni (i) e (ii) nella definizione di linea ci dicono che l’insieme C è, dal punto
di vista topologico, localmente fatto come un intervallo. La condizione (iii) invece ha tre scopi: fornisce un
vettore tangente alla linea, escludendo spigoli quali quelli che si trovano nel grafico della funzione |t|; assicura
che anche dal punto di vista differenziale la struttura sia la stessa (come capiremo meglio quando parleremo
di cambiamenti di parametro); evita altre possibili singolarità, quali le cuspidi che si trovano nell’immagine
dell’applicazione σ(t) = (t2, t3).

In realtà, questa definizione funzionerà meglio con superfici e oggetti di dimensione più alta; in dimen-
sione 1 è eccessivamente complicata. Infatti vale il seguente

Teorema 1.1.9: Ogni linea ha una parametrizzazione globale. Più esattamente, per ogni linea C ⊂ Rn

esiste sempre un’applicazione σ̂: R→ C surgettiva, di classe C∞, con σ̂′(t) 6= O per ogni t ∈ R e tale che

(a) se C non è compatta allora σ̂ è un omeomorfismo fra R e C;
(b) se C è compatta allora σ̂ è periodica e induce un omeomorfismo fra S1 e C.

In altre parole, viste dall’interno le linee sono globalmente tutte come R o come S1.
Dimostrazione: Prima di tutto dimostriamo che in ogni punto di C esiste una parametrizzazione rispetto
alla lunghezza d’arco. Fissato p ∈ C, sia σ: I → U ∩C una parametrizzazione locale qualunque con p = σ(t0)
per qualche t0 ∈ I. Poniamo

g(t) =
∫ t

t0

‖σ′(s)‖ ds;

allora g′(t) = ‖σ′(t)‖ > 0, per cui g: I → J = h(I) è un diffeomorfismo (monotono crescente) fra due
intervalli. Quindi σ1 = σ ◦ g−1:J → C ∩ U è ancora una parametrizzazione locale; inoltre σ1(0) = p e

σ′1(t) =
σ′

(
g−1(t)

)∥∥σ′
(
g−1(t)

)∥∥ ,

per cui ‖σ′1‖ ≡ 1, come richiesto.
Fissiamo ora p0 ∈ C e una parametrizzazione rispetto alla lunghezza d’arco σ0: I0 → C con σ0(0) = p0.

Sia σ: I → C un’altra parametrizzazione locale rispetto alla lunghezza d’arco tale che σ0(I0) ∩ σ(I) 6= ∅;
vogliamo far vedere che σ0 e σ differiscono solo per una traslazione. Sia J0 = σ−1

0

(
σ0(I0) ∩ σ(I)

)
⊆ I0,

J = σ−1
(
σ0(I0) ∩ σ(I)

)
⊆ I, e h = σ−1 ◦ σ0:J0 → J . La funzione h è chiaramente un omeomorfismo di

aperti di R; inoltre è (almeno) di classe C1. Infatti, fissiamo t0 ∈ J0. Allora da σ ◦ h = σ0 otteniamo

σ0(t)− σ0(t0)
t− t0

=
σ
(
h(t)

)
− σ

(
h(t0)

)
h(t)− h(t0)

· h(t)− h(t0)
t− t0

per ogni t ∈ J0. Facendo tendere t a t0 il primo quoziente converge a σ′0(t0), e il secondo a σ′
(
h(t0)

)
. Siccome

σ = (σ1, σ2) è una parametrizzazione locale, esiste un indice j per cui σ′j
(
h(t0)

)
6= 0; quindi

lim
t→t0

h(t)− h(t0)
t− t0

=
σ′0,j(t0)

σ′j
(
h(t0)

)
esiste, e dunque h è derivabile. Inoltre, lo stesso ragionamento con lo stesso j funziona per tutti i t in un
intorno di t0, per cui troviamo

h′ =
σ′0,j

σ′j ◦ h
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in un intorno di t0, e quindi h′ è continua.
Ora, da σ ◦ h = σ0 deduciamo anche σ′

(
h(t)

)
h′(t) = σ′0(t), per cui |h′| ≡ 1. Dunque il grafico Γ di h è

costituito da segmenti di pendenza ±1, tanti quante sono le componenti connesse di J0 (e quindi di J). In
ciascuna di queste componenti, quindi, abbiamo h(t) = ±t + a per un opportuno a ∈ R.

Il grafico Γ di h è contenuto nel rettangolo I0× I; vogliamo dimostrare che gli estremi dei segmenti di Γ
sono necessariamente sul bordo del rettangolo. Prima di tutto, notiamo che (s0, s) ∈ Γ sse s = h(s0), che
implica

σ(s) = σ0(s0). (1.1.2)

Sia ora, per assurdo, (t0, t) ∈ I0×I un estremo di un segmento di Γ. Essendo un estremo, t0 ∈ ∂J0; ma d’altra
parte, essendo (t0, t) sul bordo del grafico, per continuità la (1.1.2) implica che σ(t) = σ0(t0) ∈ σ0(I0)∩σ(I),
per cui t0 ∈ J0, contraddizione.

Ora, Γ è il grafico di una funzione iniettiva; quindi ciascun lato del rettangolo può essere toccato da al
più un estremo di Γ (perché?). Ma questo implica che Γ — e quindi J0 — ha al più 2 componenti connesse;
e se ne ha due, entrambe hanno la stessa pendenza.

Notiamo infine che se la pendenza di Γ è −1, ponendo σ1(t) = σ(−t) otteniamo una parametrizzazione
locale rispetto alla lunghezza d’arco con la stessa immagine di σ ma tale che h1 = σ−1

1 ◦σ0 abbia pendenza 1
(e diremo che σ0 e σ1 hanno la stessa orientazione).

Sia ora σ1: I1 → C un’altra parametrizzazione locale rispetto alla lunghezza d’arco tale che σ1(0) = p0;
per quanto visto, senza perdita di generalità possiamo anche supporre che il grafico di h = σ−1

1 ◦ σ0 sia
composto da segmenti di pendenza 1. Siccome p0 ∈ σ0(I0) ∩ σ1(I1) e h(0) = 0, sulla componente connessa
di J0 contenente 0 abbiamo h = id; quindi questa componente è I0 ∩ I1, e abbiamo σ0 ≡ σ1 sull’intersezione
dei domini.

In altre parole, due parametrizzazioni locali rispetto alla lunghezza d’arco σ0: I0 → C e σ1: I1 → C
che partono dallo stesso punto p0 = σ0(0) = σ1(0) con la stessa orientazione coincidono sull’intersezione dei
domini. Questo ci permette quindi di definire una nuova applicazione σ̃: I0 ∪ I1 → C ponendo

σ̃(t) =
{

σ0(t) se t ∈ I0,
σ1(t) se t ∈ I1.

(1.1.3)

Siamo pronti per il ragionamento finale. La parametrizzazione locale rispetto alla lunghezza d’arco
σ0: I0 → C è fissata una volta per tutte. Indichiamo con C l’insieme delle parametrizzazioni locali σ1: I1 → C
rispetto alla lunghezza d’arco tali che 0 ∈ I1, σ1(0) = σ0(0) e σ1 ha la stessa orientazione di σ0. Per quanto
appena visto, abbiamo che σ1 coincide con σ0 sull’intersezione dei domini per ogni σ1 ∈ C.

Supponiamo esista una σ1 ∈ C tale che σ0(I0)∩σ1(I1) abbia due componenti connesse. Questo vuol dire
che l’estensione σ̃ data da (1.1.3) torna su se stessa, cioè è periodica di un qualche periodo ` > 0, ed è iniettiva
ristretta a [t0, t0 + `) per qualche t0 ≤ 0. Ma allora possiamo prolungarla per periodicità a una σ̂: R → C
con σ̂(R) = σ0(I0) ∪ σ1(I1). In particolare, σ̂(R) è aperto in C. Ma, d’altra parte, σ̂(R) = σ̂([t0, t0 + `])
è compatto, e quindi chiuso in C. La connessione di C obbliga quindi ad avere σ̂(R) = C; dunque C è
compatta, e σ̂ induce un omeomorfismo fra S1 e C, per cui siamo nel caso (b).

Supponiamo invece che σ0(I0)∩σ1(I1) abbia sempre una sola componente connessa, quale che sia σ1 ∈ C.
Questo vuol dire che per ogni σ1 ∈ C l’estensione σ̃ data da (1.1.3) è ancora una parametrizzazione rispetto
alla lunghezza d’arco, che estende sia σ0 che σ1, e appartiene a C. Dunque tutte le possibili parametrizzazioni
locali rispetto alla lunghezza d’arco che partono da p0 e con la stessa orientazione di σ0 si raccordano formando
una parametrizzazione rispetto alla lunghezza d’arco σ̂:J → C massimale, dove J è un intervallo aperto.
Chiaramente, σ̂(J) è aperto in C; se dimostriamo che è anche chiuso la connessione di C implicherà σ̂(J) = C,
e quindi saremo nel caso (a) — in quanto ogni intervallo aperto è diffeomorfo a R.

Supponiamo per assurdo che σ̂(J) non sia chiuso in C, e sia p ∈ C \ σ̂(J) un punto aderente a σ̂(J).
Ora, esiste sicuramente una parametrizzazione rispetto alla lunghezza d’arco in p, la cui immagine inter-
seca necessariamente σ̂(J); ma allora procedendo come prima possiamo usare questa parametrizzazione per
estendere ulteriormente σ̂. Per la massimalità di σ̂, questa estensione non può essere globalmente iniettiva;
quindi è periodica, e il ragionamento precedente ci porta a dedurre che C è compatta e omeomorfa a S1.
Ma in questo caso esiste una parametrizzazione σ1 tale che σ0(I0) ∩ σ1(I1) abbia due componenti connesse,
contraddizione, e abbiamo finito.
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Questo risultato suggerisce che per studiare le linee conviene studiare le loro parametrizzazioni globali.
Ma allora tanto vale fare il passo completo e prendere come principale oggetto di studio non l’insieme C ma
la sua parametrizzazione (globale) σ. E questo ci porta alla prima definizione del prossimo paragrafo.

1.2 Teoria locale delle curve

Eccoci quindi alla definizione ufficiale di curva.

Definizione 1.2.1: Una curva (di classe Ck, con k ∈ N∪{∞}) in Rn è un’applicazione σ: I → Rn di classe Ck,
dove I ⊆ R è un intervallo. L’immagine σ(I) sarà detta sostegno della curva; la variabile t ∈ I è il parametro
della curva. Se I = [a, b] e σ(a) = σ(b), diremo che la curva è chiusa.

Osservazione 1.2.1. Se I non è un intervallo aperto, e k ≥ 1, dire che σ è di classe Ck in I vuol dire che
σ si estende a un’applicazione Ck definita in un intervallo aperto contenente propriamente I.

Osservazione 1.2.2. Nel seguito considereremo quasi sempre solo curve di classe C∞. I pochi casi in cui
sarà importante lavorare anche con una regolarità minore verranno indicati esplicitamente.

Definizione 1.2.2: Sia σ: I → Rn una curva di classe (almeno) C1. Il vettore σ′(t) è il vettore tangente alla
curva nel punto σ(t). Se σ′(t) 6= O per ogni t ∈ I diremo che σ è regolare.

Osservazione 1.2.3. Nel caso di una curva σ: [a, b]→ Rn chiusa di classe Ck, diremo che è regolare solo
se si ha anche σ′(a) = σ′(b), σ′′(a) = σ′′(b), . . . , σ(k)(a) = σ(k)(b). In particolare, una curva chiusa regolare
si prolunga sempre a un’applicazione σ̂: R→ Rn di classe Ck e periodica.

Esempio 1.2.1. Grazie al Teorema 1.1.9, ogni linea è una curva regolare.

Esempio 1.2.2. Dati v0, v1 ∈ Rn con v1 6= O, la curva regolare σ: R → Rn data da σ(t) = v0 + tv1 è la
retta passante per v0 nella direzione di v1.

Esempio 1.2.3. Le due curve σ1, σ2: R→ R2 date da

σ1(t) = (x0 + r cos t, y0 + r sin t) e σ2(t) = (x0 + r cos 2t, y0 + r sin 2t),

hanno entrambe come sostegno la circonferenza di centro (x0, y0) ∈ R2 e raggio r > 0.

Esempio 1.2.4. La curva σ: R → R3 data da σ(t) = (a cos t, a sin t, bt) con a > 0, b ∈ R∗ è detta elica
circolare di raggio a e passo b.

Esempio 1.2.5. La cuspide σ: R→ R2 data da σ(t) = (t2, t3) è una curva non regolare.

Esempio 1.2.6. La curva σ: R → R2 data da σ(t) = (t, |t|) è una curva continua, ma non è una curva di
classe C1.

In realtà, a noi interessa più il sostegno della curva che la curva stessa. Quindi introduciamo la seguente
relazione d’equivalenza:

Definizione 1.2.3: Diremo che due curve σ: I → Rn e σ̃: Ĩ → Rn di classe Ck sono equivalenti se esiste un
diffeomorfismo h: Ĩ → I di classe Ck tale che σ̃ = σ ◦ h; diremo anche che σ̃ è una riparametrizzazione
di σ, e che h è un cambiamento di parametro. Infine, se h′ > 0 ovunque diremo che σ e σ̃ hanno la stessa
orientazione; altrimenti diremo che hanno orientazione opposta.

Osservazione 1.2.4. Per noi, un diffeomorfismo di classe Ck è un omeomorfismo h tale che sia h che la
sua inversa h−1 siano di classe Ck. Per esempio, h(x) = 2x è un diffeomorfismo di classe C∞ di R con se
stesso, mentre g(x) = x3, pur essendo un omeomorfismo di R con se stesso, non è un diffeomorfismo, neppure
di classe C1, perché la funzione inversa g−1(x) = x1/3 non è di classe C1.

Esercizio 1.2.1. Dimostra che quella appena definita è effettivamente una relazione d’equivalenza sull’in-
sieme delle curve di classe Ck.

Data una curva σ, vogliamo trovare un rappresentante più bello degli altri nella sua classe di equivalenza.
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Definizione 1.2.4: Sia I = [a, b] un intervallo. Una partizione P di I è una (k + 1)-upla (t0, . . . , tk) con
a = t0 < t1 < · · · < tn = b. Se P è una partizione di I, poniamo ‖P‖ = maxj |tj − tj−1|.
Definizione 1.2.5: Data una curva σ: [a, b]→ Rn e una partizione P di [a, b], poniamo

L(σ,P) =
k∑

j=1

‖σ(tj)− σ(tj−1)‖.

Diremo che σ è rettificabile se il limite

L(σ) = lim
‖P‖→0

L(σ,P)

esiste finito. Tale limite verrà chiamato lunghezza di σ.

Teorema 1.2.1: Ogni curva σ: [a, b]→ Rn di classe C1 è rettificabile, e si ha

L(σ) =
∫ b

a

‖σ′(t)‖ dt.

Dimostrazione: Essendo σ di classe C1, l’integrale è finito. Quindi dobbiamo dimostrare che per ogni ε > 0
esiste δ > 0 tale che se P è una partizione di [a, b] con ‖P‖ < δ allora∣∣∣∣∣

∫ b

a

‖σ′(t)‖ dt− L(σ,P)

∣∣∣∣∣ < ε. (1.2.1)

Prima di tutto notiamo che per ogni partizione P = (t0, . . . , tk) e ogni j = 1, . . . , k si ha

‖σ(tj)− σ(tj−1)‖ =

∥∥∥∥∥
∫ tj

tj−1

σ′(t) dt

∥∥∥∥∥ ≤
∫ tj

tj−1

‖σ′(t)‖ dt,

per cui sommando su j troviamo

L(σ,P) ≤
∫ b

a

‖σ′(t)‖ dt (1.2.2)

quale che sia la partizione P.
Ora, fissato ε > 0, l’uniforme continuità di σ′ sull’intervallo compatto [a, b] ci fornisce un δ > 0 tale che

∀s, t ∈ [a, b] |t− s| < δ =⇒ ‖σ′(t)− σ′(s)‖ <
ε

b− a
. (1.2.3)

Sia P = (t0, . . . , tk) una partizione di [a, b] con ‖P‖ < δ. Per ogni j = 1, . . . , k e s ∈ [tj−1, tj ] abbiamo

σ(tj)− σ(tj−1) =
∫ tj

tj−1

σ′(s) dt +
∫ tj

tj−1

(
σ′(t)− σ′(s)

)
dt = (tj − tj−1)σ′(s) +

∫ tj

tj−1

(
σ′(t)− σ′(s)

)
dt.

Quindi

‖σ(tj)− σ(tj−1)‖ ≥ (tj − tj−1)‖σ′(s)‖ −
∫ tj

tj−1

∥∥σ′(t)− σ′(s)
∥∥ dt

≥ (tj − tj−1)‖σ′(s)‖ −
ε

b− a
(tj − tj−1),

dove l’ultimo passaggio segue dal fatto che s, t ∈ [tj−1, tj ] implica |t − s| < δ, e quindi possiamo appli-
care (1.2.3). Dividendo per tj − tj−1 otteniamo

‖σ(tj)− σ(tj−1)‖
tj − tj−1

≥ ‖σ′(s)‖ − ε

b− a
,

da cui integrando rispetto a s su [tj−1, tj ] segue che

‖σ(tj)− σ(tj−1)‖ ≥
∫ tj

tj−1

‖σ′(s)‖ ds− ε

b− a
(tj − tj−1).

Sommando su j = 1, . . . , k otteniamo quindi

L(σ,P) ≥
∫ b

a

‖σ′(s)‖ ds− ε,

che insieme alla (1.2.2) ci dà la (1.2.1).
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Osservazione 1.2.5. Due curve equivalenti hanno sempre la stessa lunghezza: infatti, se σ1 = σ ◦h, dove
h: [a1, b1]→ [a, b] è un cambiamento di parametro, allora

L(σ1) =
∫ b1

a1

‖σ′1(t)‖ dt =
∫ b1

a1

∥∥σ′
(
h(t)

)∥∥ |h′(t)| dt =
∫ b

a

‖σ′(τ)‖ dτ = L(σ).

Quindi la lunghezza di una curva dipende solo dalla sua classe d’equivalenza (ma non solo dal sostegno: le
due curve dell’Esempio 1.2.3 ristrette a [0, 2π] hanno lunghezze diverse pur avendo lo stesso sostegno. Il
problema è causato dal fatto che una delle due curve non è iniettiva).

Il Teorema precedente suggerisce la seguente definizione:

Definizione 1.2.6: Sia σ: I → Rn una curva. Fissato t0 ∈ I, diremo lunghezza d’arco di σ (misurata a partire
da t0) la funzione s: I → R data da

s(t) =
∫ t

t0

‖σ′(τ)‖ dτ.

Diremo inoltre che σ è parametrizzata rispetto alla lunghezza d’arco se ‖σ′‖ ≡ 1, cioè se la lunghezza d’arco
coincide col parametro t a meno di una traslazione: s(t) = t− t0.

Osservazione 1.2.6. Nel seguito useremo sempre la lettera s per indicare il parametro lunghezza d’arco,
e la lettera t per indicare un parametro qualsiasi. Inoltre, le derivate rispetto al parametro lunghezza d’arco
saranno indicate con un punto, mentre le derivate rispetto a un parametro qualsiasi con un apice. Per
esempio, scriveremo σ̇ per dσ/ds, e σ′ per dσ/dt. La relazione fra σ̇ e σ′ segue facilmente dalla formula di
derivazione di funzione composta:

σ′(t) =
dσ

dt
(t) =

dσ

ds

(
s(t)

)
· ds

dt
(t) = ‖σ′(t)‖ σ̇

(
s(t)

)
.

Analogamente

σ̇(s) =
1∥∥σ′

(
s−1(s)

)∥∥ σ′
(
s−1(s)

)
,

dove in quest’ultima formula la lettera s indica sia il parametro che la funzione lunghezza d’arco. Come
vedrai, l’uso della stessa lettera per indicare questi due concetti diversi non creerà, una volta abituati, alcuna
confusione.

Proposizione 1.2.2: Sia σ: I → Rn una curva regolare. Fissato t0 ∈ I, indichiamo con s: I → R la lunghezza
d’arco di σ misurata a partire da t0. Allora σ1 = σ ◦ s−1 è (a meno di traslazioni nel parametro) l’unica
curva regolare parametrizzata rispetto alla lunghezza d’arco equivalente a σ e con la sua stessa orientazione.

Dimostrazione: Il fatto che σ1 sia una curva regolare parametrizzata rispetto alla lunghezza d’arco equiva-
lente a σ e con la sua stessa orientazione è già stato verificato all’inizio della dimostrazione del Teorema 1.1.9.

Rimane da verificare l’unicità. Sia σ2 un’altra curva verificante le ipotesi. Essendo equivalente a σ,
deve esistere un cambiamento di parametro h tale che σ2 = σ1 ◦ h. Essendo sia σ1 che σ2 parametrizzate
rispetto alla lunghezza d’arco otteniamo |h′| ≡ 1; siccome hanno la stessa orientazione deduciamo h′ ≡ 1,
cioè h(t) = t + c per un opportuno c ∈ R, e quindi σ2 differisce da σ1 per una traslazione, come voluto.

Dunque ogni curva regolare è equivalente a una (essenzialmente unica) curva parametrizzata rispetto
alla lunghezza d’arco. Per questo motivo, a meno di avviso contrario nel seguito supporremo sempre che
ogni curva regolare sia parametrizzata rispetto alla lunghezza d’arco.

Definizione 1.2.7: Se la curva σ è parametrizzata rispetto alla lunghezza d’arco, il versore t = σ̇ sarà detto
versore tangente alla curva nel punto σ(s).

Osservazione 1.2.7. Se σ è una curva regolare con una parametrizzazione qualunque, allora t = σ′/‖σ′‖.
In un certo senso, la variazione di t ci dice quanto la curva σ si discosta dall’essere una retta:

Esercizio 1.2.2. Dimostra che il sostegno di una curva regolare σ: I → Rn è contenuto in una retta se e solo
se il versore tangente t: I → Rn di σ è costante.

Per questo motivo introduciamo la seguente
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Definizione 1.2.8: La curvatura di una curva σ parametrizzata rispetto alla lunghezza d’arco è data da

κ(s) = ‖ṫ(s)‖ = ‖σ̈(s)‖.

Diremo che σ è biregolare se κ non si annulla mai. In questo caso il raggio di curvatura di σ nel punto σ(s)
è r(s) = 1/κ(s).

Esempio 1.2.7. Sia σ: [0, 2πr]→ R2 la circonferenza di centro l’origine e raggio r > 0 data da

σ(s) =
(
r cos(s/r), r sin(s/r)

)
.

Si verifica subito che σ è parametrizzata rispetto alla lunghezza d’arco, e che

t(s) = σ̇(s) =
(
− sin(s/r), cos(s/r)

)
.

Quindi

ṫ(s) =
1
r

(
− cos(s/r),− sin(s/r)

)
,

per cui σ ha curvatura costante 1/r (e questo è il motivo per cui l’inverso della curvatura si chiama raggio
di curvatura).

È ragionevole pensare che se κ(s) 6= 0 allora il versore ṫ(s)/κ(s) contiene informazioni geometriche
rilevanti sulla curva; in un certo senso, dice in che direzione si sta piegando la curva.

Ora, il vettore ṫ non può essere qualunque. Infatti, essendo t un versore, abbiamo

(t, t) ≡ 1,

e derivando otteniamo
(ṫ, t) ≡ 0.

In altre parole, ṫ è sempre ortogonale a t.

Definizione 1.2.9: Sia σ una curva biregolare. Allora il versore n(s) = ṫ(s)/‖ṫ(s)‖ è detto versore normale
alla curva nel punto σ(s). Il piano passante per σ(s) e parallelo a Span

(
t(s),n(s)

)
è detto piano osculatore

alla curva in σ(s).

Osservazione 1.2.8. Se σ: I → R2 è una curva regolare nel piano, per ogni s ∈ I esiste un unico ver-
sore n(s) ortogonale a t(s) e tale che la coppia {t(s),n(s)} abbia la stessa orientazione della base canonica.
Essendo ṫ ⊥ t, deve esistere κ̃(s) ∈ R tale che ṫ(s) = κ̃(s)n(s). La funzione κ̃: I → R cos̀ı definita è detta
curvatura orientata di σ, ed è legata alla curvatura usuale dall’identità κ = |κ̃|.

Nel resto di questo paragrafo (a parte un esercizio finale) considereremo soltanto curve nello spazio R3

o nel piano R2.
Se il sostegno di una curva regolare è contenuto in un piano, è chiaro (perché?) che il piano osculatore

della curva è costante. Questo fa pensare che si possa misurare quanto una curva non è piana vedendo
quanto varia il piano osculatore. Siccome un piano (per l’origine in R3) è completamente determinato dalla
sua direzione ortogonale, siamo portati alla seguente

Definizione 1.2.10: Sia σ: I → R3 una curva biregolare. Il versore binormale alla curva in σ(s) è dato da
b(s) = t(s) ∧ n(s), dove ∧ indica il prodotto vettore in R3. La terna {t,n,b} di applicazioni a valori
in R3 è detta riferimento di Frenet associato alla curva; per ogni s ∈ I la terna {t(s),n(s),b(s)} è una base
ortonormale di R3, con la stessa orientazione della base canonica di R3, che varia lungo la curva.

Proposizione 1.2.3: Sia σ: I → R3 una curva biregolare. Allora il sostegno di σ è contenuto in un piano
se e solo se il versore binormale è costante.

Dimostrazione: Supponiamo che il sostegno di σ sia contenuto in un piano; in particolare deve esistere
un piano π passante per l’origine tale che σ(s) − σ(s′) ∈ π per ogni s, s′ ∈ I. Considerando il rapporto
incrementale, da questo si deduce subito che t(s) ∈ π per ogni s ∈ I. In maniera analoga si trova ṫ(s) ∈ π
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per ogni s ∈ I, e quindi n(s) ∈ π per ogni s ∈ I. Quindi b(s) è sempre uno dei due versori normali a π;
dovendo variare con continuità, è costante.

Viceversa, supponiamo che b sia un vettore costante; vogliamo dimostrare che il sostegno di σ è contenuto
in un piano. Ora, un piano è determinato da un suo punto e da un versore ortogonale: un punto p ∈ R3

appartiene al piano passante per p0 ∈ R3 e ortogonale al vettore v ∈ R3 se e solo se (p − p0, v) = 0.
Prendiamo t0 ∈ I; vogliamo dimostrare che il sostegno di σ è contenuto nel piano passante per σ(t0) e
ortogonale a b. Questo equivale a far vedere che(

σ(t),b
)
≡

(
σ(t0),b

)
,

ovvero che la funzione t 7→
(
σ(t),b

)
è costante. Ma infatti abbiamo

d

ds
(σ,b) = (t,b) ≡ 0,

per cui il sostegno di σ è effettivamente contenuto nel piano di equazione
(
p− σ(t0),b

)
= 0.

Vediamo cosa possiamo dire sulla derivata del versore binormale, derivata che dovrebbe misurare quanto
una curva biregolare non è piana. Anche b è un versore; quindi il ragionamento già fatto per il versore
tangente ci dice che anche stavolta ḃ ⊥ b. D’altra parte,

ḃ = ṫ ∧ n + t ∧ ṅ = t ∧ ṅ,

per cui ḃ è perpendicolare anche a t; quindi ḃ dev’essere un multiplo di n.

Definizione 1.2.11: Sia σ: I → R3 una curva biregolare. La torsione di σ è la funzione τ : I → R tale che
ḃ = −τn. (Attenzione: in alcuni testi la torsione viene definita come l’opposto della funzione da noi
introdotta.)

Possiamo ora calcolare anche la derivata di n:

ṅ = ḃ ∧ t + b ∧ ṫ = −τn ∧ t + b ∧ κn = −κt + τb.

Definizione 1.2.12: Le tre equazioni  ṫ = κn,
ṅ = −κt + τb,
ḃ = −τn,

(1.2.4)

sono dette formule di Frenet-Serret della curva biregolare σ.

Osservazione 1.2.9. Il riferimento di Frenet dipende dall’orientazione della curva, mentre la curvatura e
la torsione no. Più precisamente, se σ: I → R3 è una curva biregolare parametrizzata rispetto alla lunghezza
d’arco, e σ1(s) = σ(−s) è una curva parametrizzata rispetto alla lunghezza d’arco equivalente a σ ma con
l’orientazione opposta, allora abbiamo t1(s) = −t(−s), κ1(s) = κ(−s), n1(s) = n(−s), b1(s) = −b(−s),
e τ1(s) = τ(−s), dove l’indice 1 ovviamente identifica gli oggetti e le quantità relative alla curva σ1.

Osservazione 1.2.10. La curvatura orientata di curve piane dipende invece dall’orientazione della curva.
Infatti, con le notazioni dell’osservazione precedente applicate a una curva piana σ, troviamo t1(s) = −t(−s),
κ̃1(s) = −κ̃(−s) e n1(s) = −n(−s).

Osservazione 1.2.11. Ci sono delle formule di Frenet-Serret anche per le curve piane. Siccome, per il
solito motivo, ṅ è ortogonale a n, è un multiplo di t. Derivando (t,n) ≡ 0 troviamo (t, ṅ) = −κ̃, e quindi{

ṫ = κ̃n,
ṅ = −κ̃t,

sono le formule di Frenet-Serret per le curve piane. Nell’Esercizio 1.2.11 vedremo formule analoghe per curve
in Rn.

L’idea di fondo della teoria locale delle curve è che curvatura e torsione determinano completamente
una curva. Per esprimere esattamente cosa intendiamo, ci serve una definizione.
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Definizione 1.2.13: Un movimento rigido di Rn è un isomorfismo affine ρ: Rn → Rn della forma ρ(x) = Ax+b,
dove A ∈ SO(n) = {A ∈ GL(n, R) | AT A = I e det A = 1}, e b ∈ Rn.

Esercizio 1.2.3. Sia σ: I → R3 una curva biregolare parametrizzata rispetto alla lunghezza d’arco, e
ρ: R3 → R3 un movimento rigido. Dimostra che ρ ◦ σ è una curva biregolare parametrizzata rispetto alla
lunghezza d’arco con la stessa curvatura e la stessa torsione di σ.

Quindi curvatura e torsione non possono distinguere due curve ottenute l’una dall’altra tramite un
movimento rigido; ma questa è l’unica ambiguità. Le formule di Frenet-Serret sono esattamente lo strumento
che ci permetterà di dimostrarlo, usando il seguente teorema di Analisi:

Teorema 1.2.4: Dati un intervallo I ⊆ R, un punto t0 ∈ I, un vettore u0 ∈ Rn, e due applicazioni f : I → Rn

e A: I → Mn,n(R) di classe Ck, con k ∈ N∗ ∪ {∞}, esiste un’unica soluzione u: I → Rn di classe Ck del
problema di Cauchy {

u′ = Au + f,
u(t0) = u0.

In particolare, la soluzione del problema di Cauchy per sistemi lineari di equazioni differenziali ordinarie
esiste su tutto l’intervallo di definizione dei coefficienti.

E quindi:

Teorema 1.2.5: (fondamentale della teoria locale delle curve) Date due funzioni κ: I → R+ e τ : I → R
di classe C∞ con κ > 0 sempre, esiste un’unica (a meno di movimenti rigidi dello spazio) curva σ: I → R3

biregolare parametrizzata rispetto alla lunghezza d’arco con curvatura κ e torsione τ .

Dimostrazione: Cominciamo con l’esistenza. Le formule di Frenet-Serret (1.2.4) sono un sistema lineare di
equazioni differenziali ordinarie in 9 incognite, le componenti di t, n e b, a cui possiamo quindi applicare il
Teorema 1.2.4.

Fissiamo allora un punto s0 ∈ I e una base ortonormale {t0,n0,b0} con la stessa orientazione della base
canonica. Per il teorema appena citato, esiste un’unica terna di funzioni t, n, b: I → R3 verificanti (1.2.4) e
tali che t(s0) = t0, n(s0) = n0 e b(s0) = b0.

Ora, dalle (1.2.4) ricaviamo che le funzioni (t, t), (t,n), (t,b), (n,n), (n,b) e (b,b) soddisfano il
seguente sistema di equazioni differenziali lineari ordinarie

d
ds (t, t) = 2κ(t,n),
d
ds (t,n) = −κ(t, t) + τ(t,b) + κ(n,n),
d
ds (t,b) = −τ(t,n) + κ(n,b),
d
ds (n,n) = −2κ(t,n) + 2τ(n,b),
d
ds (n,b) = −κ(t,b)− τ(n,n) + τ(b,b),
d
ds (b,b) = −2τ(n,b),

con condizioni iniziali

(t, t)(s0) = 1, (t,n)(s0) = 0, (t,b)(s0) = 0, (n,n)(s0) = 1, (n,b)(s0) = 0, (b,b)(s0) = 1.

Ma si verifica subito che (t, t) ≡ (n,n) ≡ (b,b) ≡ 1, (t,n) ≡ (t,b) ≡ (n,b) ≡ 0 è una soluzione dello stesso
sistema di equazioni differenziali soddisfacente le stesse condizioni iniziali in s0. Quindi è l’unica soluzione,
per cui la terna {t(s),n(s),b(s)} è una terna ortonormale per ogni valore di s ∈ I. Ha anche sempre
l’orientazione della base canonica di R3: infatti (t ∧ n,b) è una funzione continua in I a valori in {+1,−1}
e vale +1 in s0; quindi (t ∧ n,b) ≡ +1, come voluto.

Definiamo infine la curva σ: I → R3 ponendo

σ(s) =
∫ s

s0

t(t) dt.

La curva σ è di classe C∞ con derivata t(s), per cui è regolare, parametrizzata rispetto alla lunghezza d’arco
e con versore tangente t. Siccome le (1.2.4) ci danno σ̈ = κn con κ > 0 sempre, ne deduciamo che κ è la
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curvatura e n il versore normale di σ (che risulta quindi biregolare). Ne segue che b è il versore binormale
e, di nuovo grazie a (1.2.4), τ è la torsione di σ.

Vediamo ora l’unicità. Sia σ1: I → R3 un’altra curva biregolare parametrizzata rispetto alla lunghezza
d’arco con curvatura κ e torsione τ . Fissiamo s0 ∈ I; a meno di un movimento rigido possiamo supporre
che σ(s0) = σ1(s0) e che σ e σ1 abbiano lo stesso riferimento di Frenet in s0. Per l’unicità della soluzione di
(1.2.4) ne segue che σ e σ1 hanno lo stesso riferimento di Frenet in tutti i punti di I; in particolare, σ̇ ≡ σ̇1.
Ma allora

σ(s) = σ(s0) +
∫ s

s0

σ̇(t) dt = σ1(s0) +
∫ s

s0

σ̇1(t) dt = σ1(s),

e σ1 ≡ σ.

Osservazione 1.2.12. In modo assolutamente analogo si dimostra il seguente risultato: Data una funzione
κ̃: I → R di classe C∞, esiste un’unica (a meno di movimenti rigidi del piano) curva σ: I → R2 regolare
parametrizzata rispetto alla lunghezza d’arco con curvatura orientata κ̃.

Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 1.2.4. Sia σ: I → R3 una curva biregolare con una parametrizzazione qualunque. Dimostra che i
versori tangente, normale e binormale, la curvatura e la torsione di σ sono dati dalle formule

t =
σ′

‖σ′‖ , b =
σ′ ∧ σ′′

‖σ′ ∧ σ′′‖ , n =
(σ′ ∧ σ′′) ∧ σ′

‖σ′ ∧ σ′′‖ ‖σ′‖ , κ =
‖σ′ ∧ σ′′‖
‖σ′‖3 , τ =

(σ′ ∧ σ′′, σ′′′)
‖σ′ ∧ σ′′‖2 .

Esercizio 1.2.5. Sia σ: I → R2 una curva piana regolare, e scriviamo σ(t) =
(
x(t), y(t)

)
, dove t è un

parametro qualunque. Dimostra che la curvatura orientata di σ è data da

κ̃ =
x′y′′ − x′′y′(

(x′)2 + (y′)2
)3/2

.

Esercizio 1.2.6. Sia σ: I → R2 una curva piana regolare, e supponiamo sia data in coordinate polari
dall’equazione r = ρ(θ) per un’opportuna funzione ρ. Dimostra che la lunghezza d’arco di σ è data da

s(θ) =
∫ θ

θ0

√
ρ2 + (ρ′)2 dθ,

e che la sua curvatura orientata è

κ̃ =
2(ρ′)2 − ρρ′′ + ρ2(

ρ2 + (ρ′)2
)3/2

.

Esercizio 1.2.7. Dimostra che ogni curva piana regolare con curvatura orientata costante è un arco di
circonferenza (o un segmento se κ̃ ≡ 0).

Esercizio 1.2.8. Sia σ: I → R2 una curva piana regolare e F : R2 → R una funzione di classe C1 tale
che F ◦ σ ≡ 0. Dimostra che per ogni t ∈ I il vettore tangente σ′(t) è ortogonale al gradiente di F calcolato
in σ(t).

Esercizio 1.2.9. Sia σ: I → R3 una curva biregolare. Dimostra che le seguenti condizioni sono equivalenti:

(i) esiste un vettore v ∈ S2 e una costante a0 ∈ R tali che (t, v) ≡ a0;
(ii) esiste un piano per l’origine π tale che n(s) ∈ π per ogni s ∈ I;
(iii) esistono due costanti a, b ∈ R non entrambe nulle tali che aκ + bτ ≡ 0.

Una curva soddisfacente una qualsiasi di queste condizioni si chiama elica. Dimostra che ogni elica ammette
una parametrizzazione della forma σ(t) = γ(t) + (t− t0)v, dove γ è una curva piana parametrizzata rispetto
alla lunghezza d’arco, e v è un vettore ortogonale al piano contenente γ.
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Esercizio 1.2.10. Sia σ: I → R3 una curva biregolare parametrizzata rispetto alla lunghezza d’arco, con
curvatura κ e torsione τ . Supponiamo che τ(s), κ̇(s) 6= 0 per ogni s ∈ I. Dimostra che il sostegno di σ è
contenuto nella sfera unitaria S2 se e solo se(

1
κ

)2

+
(

κ̇

τκ2

)2

≡ 1.

(Suggerimento: per dimostrare la sufficienza della condizione, fai vedere che l’applicazione

β = σ + (1/κ)n− (κ̇/τκ2)b

è costante.)

Esercizio 1.2.11. In questo esercizio vogliamo derivare delle formule di Frenet per curve in Rn; il tuo compito
è sistemare i dettagli del ragionamento. Sia σ: I → Rn una curva parametrizzata rispetto alla lunghezza
d’arco, e poniamo t1 = σ̇. Se σ è biregolare, per il solito motivo esistono un versore t2 ortogonale a t1 e
un κ1 > 0 tali che ṫ1 = κ1t2. Ora, ṫ2 è ortogonale a t2, e (t1, ṫ2) = −κ1. Se supponiamo che ṫ2 non sia
parallelo a t1 (ovvero che non sia contenuto nel piano generato da t1 e t2, e diremo che σ è 3-regolare), allora
possiamo trovare un versore t3 ortogonale a t1 e t2, e un κ2 > 0 tali che ṫ2 = −κ1t1 + κ2t3. Proseguiamo.
Il vettore ṫ3 è ortogonale a t3 e a t1, e (t2, ṫ3) = −κ2. Se ṫ3 non è parallelo a t2 (e quindi non è contenuto
nel sottospazio generato da t1, t2, t3, e diremo che σ è 4-regolare), possiamo trovare κ3 > 0 e un versore t4

ortogonale a t1, t2, t3 tale che ṫ3 = −κ2t2 + κ3t4. Continuando in questo modo arriveremo ad avere n− 1
versori t1, . . . , tn−1 ortogonali a due a due, e n− 2 funzioni positive κ1, . . . , κn−2 tali che

ṫj = −κj−1tj−1 + κjtj+1

per j = 1, . . . , n− 2 (dove κ0 ≡ 0). A questo punto esiste un unico versore tn tale che {t1, . . . , tn} sia una
base ortonormale di Rn con la stessa orientazione della base canonica. Se supponiamo che ṫn−1 non sia
contenuto nel sottospazio generato da t1, . . . , tn−1 (e quindi che la curva sia (n− 1)-regolare), troviamo un
κn−1 non necessariamente positivo tale che

ṫn−1 = −κn−2tn−2 + κn−1tn e ṫn = −κn−1tn−1.

La funzione κj è chiamata curvatura j-esima della curva σ. Dimostra infine, sulla falsariga del Teorema 1.2.5,
che le curvature j-esime determinano univocamente la curva (n− 1)-regolare σ parametrizzata rispetto alla
lunghezza d’arco a meno di movimenti rigidi di Rn.

1.3 Teorema di Jordan per curve regolari

I prossimi due paragrafi sono dedicati a risultati di teoria globale delle curve piane, cioè a risultati che
mescolano la geometria differenziale delle curve con proprietà (topologiche o d’altro genere) del loro sostegno
preso tutto assieme.

Cominciamo con una definizione.

Definizione 1.3.1: Una curva σ: [a, b] → Rn è detta semplice se σ è iniettiva su [a, b) e su (a, b]. Una curva
continua semplice chiusa nel piano è detta curva di Jordan.

Il Teorema della curva di Jordan dice che una curva continua semplice chiusa divide il piano in esatta-
mente due componenti connesse, di cui è bordo. Vogliamo ora esporre una dimostrazione di questo risultato
per curve regolari (in particolare differenziabili).

Osservazione 1.3.1. In questo paragrafo sarà sufficiente supporre che le curve regolari siano di classe C2,
non necessariamente di classe C∞.

Come vedremo, per la dimostrazione ci serviranno due ingredienti: l’intorno tubolare di una curva (per
dimostrare che il complementare di una curva di Jordan ha al più due componenti connesse), e l’indice
di avvolgimento (per dimostrare che il complementare di una curva di Jordan ha almeno due componenti
connesse).

Cominciamo ricordando un classico teorema di Analisi, e un noto teorema di Topologia:
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Teorema 1.3.1: (della funzione inversa) Sia F : Ω→ Rn una funzione di classe Ck, con k ∈ N∗ ∪{∞}, dove
Ω è un aperto di Rn. Sia p0 ∈ Ω tale che

det Jac F (p0) 6= 0.

Allora esistono un intorno U ⊂ Ω di p0 e un intorno V ⊂ Rn di F (p0) tale che F |U :U → V sia un
diffeomorfismo con inversa di classe Ck.

Teorema 1.3.2: (Numero di Lebesgue) Sia U = {Uα}α∈A un ricoprimento aperto di uno spazio metrico
compatto X. Allora esiste un numero δ > 0, detto numero di Lebesgue del ricoprimento U, tale che per
ogni x ∈ X esiste α ∈ A tale che B(x, δ) ⊂ Uα.

Dimostrazione: Sia {U1, . . . , Un} un sottoricoprimento finito di U, e per j = 1, . . . , n definiamo la funzione
continua fj : X → R tramite fj(x) = d(x, X \ Uj). Infine poniamo f = max{f1, . . . , fn}. La funzione f
è continua; inoltre, se x ∈ X deve esistere un 1 ≤ j ≤ n tale che x ∈ Uj , per cui f(x) ≥ fj(x) > 0.
Dunque f > 0 sempre; sia δ > 0 il minimo di f in X. Ma allora per ogni x ∈ X deve esistere 1 ≤ j ≤ n tale
che fj(x) ≥ δ, per cui la palla aperta di centro x e raggio δ è tutta contenuta in Uj , come voluto.

Definizione 1.3.2: Sia σ: [a, b]→ R2 una curva regolare nel piano, di sostegno C = σ([a, b]); se σ non è chiusa,
porremo inoltre Co = σ

(
(a, b)

)
. Se n(t) è il versore normale a σ in σ(t) = p ∈ C, ed ε > 0, indichiamo

con Iσ(p, ε) il segmento σ(t) + (−ε, ε)n(t) di lunghezza 2ε centrato in p e ortogonale a σ. Indichiamo inoltre
con Nσ(ε) l’unione dei segmenti Iσ(p, ε), al variare di p ∈ Co se σ non è chiusa, e al variare di p ∈ C se σ è
chiusa.

Teorema 1.3.3: (Esistenza dell’intorno tubolare) Sia σ: [a, b]→ R2 una curva regolare semplice di classe C2.
Allora esiste ε0 > 0 tale che Iσ(p1, ε0)∩Iσ(p2, ε0) = ∅ per ogni p1 6= p2 ∈ C = σ([a, b]). Inoltre, se 0 < ε ≤ ε0

l’insieme Nσ(ε) è un intorno aperto del sostegno di σ (esclusi gli estremi se la curva non è chiusa).

Dimostrazione: Prima di tutto ricordiamo che dire che la curva σ è di classe C2 in [a, b] vuol dire che si
estende a un’applicazione di classe C2 in un intorno aperto I di [a, b]. In particolare, se σ è chiusa la possiamo
estendere a un’applicazione periodica di classe C2 definita su tutto R.

Cominciamo col dimostrare l’esistenza locale dell’intorno tubolare. Sia F : I × R→ R2 data da

F (t, x) = σ(t) + xn(t), (1.3.1)

in modo che Nσ(ε) = F
(
[a, b] × (−ε, ε)

)
se σ è chiusa, e Nσ(ε) = F

(
(a, b) × (−ε, ε)

)
se σ non è chiusa.

Trattandosi di una curva nel piano, la regolarità del versore normale n è uguale alla regolarità del versore
tangente t, che è di classe C1; quindi l’applicazione F è di classe C1. Ora, il determinante jacobiano di F
in (t, 0) è

det
∣∣∣∣ σ′1(t) σ′2(t)
n1(t) n2(t)

∣∣∣∣ 6= 0.

Fissato t0 ∈ [a, b], il Teorema della funzione inversa ci assicura che esistono δt0 , εt0 > 0 tali che F ristretta a
(t0− δt0 , t0 + δt0)× (−εt0 , εt0) sia invertibile; e questo vuol dire esattamente che Iσ(p1, εt0)∩ Iσ(p2, εt0) = ∅
per ogni p1 = σ(t1) 6= σ(t2) = p2 con t1, t2 ∈ (t0 − δt0 , t0 + δt0) = Ut0 . Inoltre, siccome F ristretta
a Ut0 × (−εt0 , εt0) è iniettiva e ha immagine aperta, otteniamo che σ(Ut0) = F

(
Ut0 × (−εt0 , εt0)

)
∩ C è un

aperto di C.
Abbiamo quindi un ricoprimento aperto {Ut}t∈[a,b] di [a, b], che è un insieme compatto; estraiamo

un sottoricoprimento finito {Ut1 , . . . , Utr
}. Allora U = {σ(Ut1), . . . , σ(Utr

)} è un ricoprimento aperto del
sostegno C di σ, che è compatto; sia δ > 0 il numero di Lebesgue di U. Allora ε0 = min{εt1 , . . . , εtk

, δ/2}
è come voluto. Infatti, prendiamo p, q ∈ C distinti e supponiamo che esista p0 ∈ Iσ(p, ε0) ∩ Iσ(q, ε0). La
disuguaglianza triangolare ci dice allora che

‖p− q‖ ≤ ‖p− p0‖+ ‖p0 − q‖ < 2ε0 < δ,

per cui p e q devono appartenere a uno stesso σ(Utj
). Ma allora Iσ(p, ε0) ∩ Iσ(q, ε0) 6= ∅ implica p = q,

contraddizione, e ci siamo.
In particolare, abbiamo dimostrato che F è globalmente iniettiva su (a, b) × (−ε0, ε0), e che la sua

immagine Nσ(ε0) è un intorno aperto di σ
(
(a, b)

)
. Se la curva è chiusa, lo stesso ragionamento ci dice che

Nσ(ε0) è un intorno aperto di tutto il sostegno della curva.
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Definizione 1.3.3: Sia σ: [a, b] → R2 una curva regolare semplice, e sia ε0 > 0 dato dal teorema precedente.
Allora per ogni 0 < ε ≤ ε0 l’insieme Nσ(ε) è detto intorno tubolare di raggio ε della curva σ.

Osservazione 1.3.2. Se q ∈ Nσ(ε), allora il punto p0 = σ(t0) del sostegno C di σ più vicino a q è l’unico
punto p ∈ C per cui q ∈ Iσ(p, ε). Infatti, se t 7→ ‖q − σ(t)‖2 ha un minimo in t0, allora derivando troviamo(
q − σ(t0), σ′(t0)

)
= 0, e quindi q ∈ Iσ(p0, ε).

Esempio 1.3.1. Fissato 2 < α < 3, sia σ: R → R2 la curva data da σ(t) =
(
t, f(t)

)
, dove f : R → R è la

funzione

f(t) =
{

tα sin 1
t se t > 0,

0 se t ≤ 0.

Siccome
d

dt

(
tα sin

1
t

)
= αtα−1 sin

1
t
− tα−2 cos

1
t
,

la funzione f e la curva σ sono di classe C1, ma non di classe C2; vogliamo far vedere che σ (ristretta a un
qualsiasi intervallo chiuso contenente l’origine) non ha un intorno tubolare. Prima di tutto, è facile vedere
che

n(t) =

(
tα−1

(
1
t cos 1

t − α sin 1
t

)
, 1

)√
1 + t2(α−1)

(
1
t cos 1

t − α sin 1
t

)2

per t ≥ 0, e n(t) = (0, 1) per t ≤ 0. Se la curva σ avesse un intorno tubolare, dovrebbe esistere un ε > 0
tale che per ogni t > 0 abbastanza piccolo il segmento che va da σ(t) all’asse delle y parallelamente a n(t)
ha lunghezza almeno ε. Ma la lunghezza di questo segmento è

`(t) = t3−α

√
1 + t2(α−1)

(
1
t cos 1

t − α sin 1
t

)2∣∣cos 1
t − α sin 1

t

∣∣ ,

e per ogni ε > 0 possiamo trovare un valore di t arbitrariamente vicino a zero per cui `(t) < ε, contraddizione.

Per introdurre il secondo ingrediente, l’indice di avvolgimento, ricordo alcuni fatti di topologia algebrica
elementare.

Definizione 1.3.4: Indichiamo con π: R → S1 il rivestimento universale π(t) = (cos t, sin t). Se φ:X → S1 è
un’applicazione continua da uno spazio topologico X a valori in S1, un sollevamento di φ è un’applicazione
continua φ̃:X → R tale che π ◦ φ̃ = φ.

Definizione 1.3.5: Siano φ0, φ1:X → Y due applicazioni continue fra spazi topologici. Un’omotopia fra φ0

e φ1 è un’applicazione continua Φ: [0, 1]×X → Y tale che Φ(0, ·) ≡ φ0 e Φ(1, ·) ≡ φ1. Se esiste un’omotopia
fra φ0 e φ1, diremo che φ0 e φ1 sono omotope. Se X = [a, b] è un intervallo della retta reale e φ0 e φ1 sono
chiuse, cioè φ0(a) = φ0(b) e φ1(a) = φ1(b), allora richiederemo sempre che l’omotopia Φ sia di curve chiuse,
cioè Φ(·, a) ≡ Φ(·, b).

Ci servirà il seguente teorema di Topologia Algebrica:

Teorema 1.3.4: (i) Sia φ: [a, b] → S1 una curva continua, e t0 ∈ R tale che π(t0) = φ(a). Allora esiste un
unico sollevamento φ̃: [a, b]→ R di φ tale che φ̃(a) = t0.

(ii) Sia Φ: [0, 1]× [a, b]→ S1 un’applicazione continua in S1, e t0 ∈ R tale che π(t0) = Φ(0, a). Allora esiste
un unico sollevamento Φ̃: [0, 1]× [a, b]→ R di Φ tale che Φ̃(0, a) = t0.

(iii) Più in generale, se X è uno spazio topologico semplicemente connesso, φ:X → S1 è un’applicazione
continua, x0 ∈ X e t0 ∈ R è tale che π(t0) = φ(x0), allora esiste un unico sollevamento φ̃:X → R di φ
tale che φ̃(x0) = t0.

(iv) Se φ̃1 e φ̃2 sono due sollevamenti di un’applicazione continua φ:X → S1, dove X è uno spazio topologico
connesso, allora esiste un k ∈ Z tale che φ̃2 − φ̃1 ≡ 2kπ.

(v) Se φ0: [a, b] → S1 è una curva continua non surgettiva, allora φ0 è omotopa alla curva costante
φ1(t) ≡ (1, 0).

Possiamo allora introdurre la seguente
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Definizione 1.3.6: Sia φ: [0, l]→ S1 una curva continua chiusa. Se φ̃: [0, l]→ R è un sollevamento di φ, allora
il grado di φ è il numero

deg φ =
1
2π

(
φ̃(l)− φ̃(0)

)
∈ Z.

Nota che deg φ è necessariamente un numero intero, in quanto π
(
φ̃(l)

)
= φ(l) = φ(0) = π

(
φ̃(0)

)
.

In parole povere, il grado è il numero di giri fatti da φ prima di chiudersi. È facile verificare che il grado
di φ non dipende dal sollevamento scelto, in quanto due sollevamenti diversi differiscono per una costante
additiva, grazie al Teorema 1.3.4.(iv). In particolare, una curva costante ha grado zero, in quanto ogni suo
sollevamento è costante.

La proprietà principale del grado è:

Proposizione 1.3.5: Siano φ0, φ1: [0, l]→ S1 due curve chiuse omotope. Allora

deg φ0 = deg φ1.

In particolare, se φ0 è omotopa a una costante allora deg φ0 = 0.

Dimostrazione: Sia Φ: [0, 1]× [0, l]→ S1 un’omotopia di curve chiuse fra φ0 e φ1, e poniamo φs(t) = Φ(s, t);
in particolare, tutte le φs sono curve chiuse. Solleviamo Φ a una Φ̃: [0, 1] × [0, l] → R. Siccome le φs sono
chiuse, Φ̃(s, 0)− Φ̃(s, l) ∈ 2πZ per ogni s ∈ [0, 1]. Ma allora s 7→ Φ̃(s, 0)− Φ̃(s, l) è una funzione continua a
valori in uno spazio totalmente sconnesso; quindi è necessariamente costante, e

2π deg φ0 = Φ̃(0, 0)− Φ̃(0, l) = Φ̃(1, 0)− Φ̃(1, l) = 2π deg φ1.

Se φ: [0, l] → S1 ⊂ R2 è differenziabile possiamo dare una formula integrale per il sollevamento e il
calcolo del grado:

Proposizione 1.3.6: Sia φ = (φ1, φ2): [0, l] → S1 una curva di classe C1, e scegliamo x0 ∈ R in modo che
φ(0) = (cos x0, sinx0). Allora la funzione φ̃: [0, l]→ R data da

φ̃(t) = x0 +
∫ t

0

(φ1φ
′
2 − φ′1φ2) ds

è il sollevamento di φ tale che φ̃(0) = x0.

Dimostrazione: Dobbiamo far vedere che cos φ̃ ≡ φ1 e sin φ̃ ≡ φ2, cioè che

0 ≡ (φ1 − cos φ̃)2 + (φ2 − sin φ̃)2 = 2− 2(φ1 cos φ̃ + φ2 sin φ̃),

per cui basta verificare che
φ1 cos φ̃ + φ2 sin φ̃ ≡ 1.

Questa eguaglianza è vera per t = 0; quindi basta controllare che la derivata di φ1 cos φ̃ + φ2 sin φ̃ sia
identicamente nulla. Ma infatti, derivando φ2

1 + φ2
2 ≡ 1 otteniamo

φ1φ
′
1 + φ2φ

′
2 ≡ 0, (1.3.2)

e quindi
(φ1 cos φ̃ + φ2 sin φ̃)′ = φ′1 cos φ̃− φ̃′φ1 sin φ̃ + φ′2 sin φ̃ + φ̃′φ2 cos φ̃

= (φ′1 + φ1φ2φ
′
2 − φ′1φ

2
2) cos φ̃ + (φ′2 + φ2φ1φ

′
1 − φ′2φ

2
1) sin φ̃

= φ′1(1− φ2
1 − φ2

2) cos φ̃ + φ′2(1− φ2
2 − φ2

1) sin φ̃

≡ 0.
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Corollario 1.3.7: Sia φ = (φ1, φ2): [0, l]→ S1 una curva chiusa di classe C1. Allora

deg φ =
1
2π

∫ l

0

(φ1φ
′
2 − φ′1φ2) dt.

Dimostrazione: Segue dalla proposizione precedente e dalla definizione di grado.

Se identifichiamo R2 con C la formula precedente ha un’espressione anche più compatta:

Corollario 1.3.8: Sia φ: [0, l]→ S1 ⊂ C una curva chiusa di classe C1. Allora

deg φ =
1

2πi

∫ l

0

φ′

φ
dt.

Dimostrazione: Siccome φ è a valori in S1, si ha 1/φ = φ, dove φ è il complesso coniugato di φ. Scri-
vendo φ = φ1 + iφ2 abbiamo

φ′φ = (φ1φ
′
1 + φ2φ

′
2) + i(φ1φ

′
2 − φ′1φ2) = i(φ1φ

′
2 − φ′1φ2),

grazie a (1.3.2), e la tesi segue dal corollario precedente.

Data una curva chiusa continua nel piano, ci sono (almeno) due modi per associarvi una curva a valori
in S1, e quindi un grado. In questo paragrafo ci interessa il primo modo, mentre nel prossimo paragrafo
useremo il secondo.

Definizione 1.3.7: Sia σ: [0, l] → R2 una curva continua chiusa piana. Scelto un punto p /∈ σ([0, l]) possiamo
definire φp: [0, l]→ S1 ponendo

φp(t) =
σ(t)− p

‖σ(t)− p‖ .

L’indice di avvolgimento di σ relativamente a p è allora definito come ιp(σ) = deg φp; misura il numero di
volte che σ ruota intorno a p.

Le proprietà principali dell’indice di avvolgimento sono contenute nel

Lemma 1.3.9: Sia σ: [0, l] → R2 una curva chiusa continua piana, e sia C una componente connessa
dell’aperto U = R2 \ σ([0, l]). Allora:

(i) ιp0(σ) = ιp1(σ) per ogni coppia di punti p0, p1 ∈ C;

(ii) se C è la componente connessa illimitata di U allora ιp(σ) = 0 per ogni p ∈ C.

Dimostrazione: (i) Sia α: [0, 1]→ C una curva con α(0) = p0 e α(1) = p1, e definiamo Φ: [0, 1]× [0, l]→ S1

ponendo

Φ(s, t) =
σ(t)− α(s)
‖σ(t)− α(s)‖ .

La mappa Φ è un’omotopia di curve chiuse fra φp0 e φp1 , e quindi ιp0(σ) = ιp1(σ).
(ii) Siccome [0, l] è compatto, il sostegno di σ è contenuto in un disco chiuso D di centro l’origine e

raggio R > 0 abbastanza grande (e, in particolare, esiste una sola componente connessa illimitata di U).
Sia p0 ∈ C \D; allora le linee congiungenti p0 a punti del sostegno di σ sono tutte contenute nel settore di
vertice p0 e lati le semirette per p0 tangenti a D. Questo vuol dire che l’immagine di φp0 è contenuta in
un sottoinsieme proprio di S1, e quindi φp0 è omotopa a una curva costante. Siccome il grado di una curva
costante è nullo, otteniamo ιp0(σ) = 0.

Nel caso di curve differenziabili, il Corollario 1.3.8 fornisce una formula integrale per il calcolo dell’indice
di avvolgimento:
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Lemma 1.3.10: Sia σ: [0, l] → C una curva di classe C1 chiusa piana, e p0 /∈ C = σ([0, l]). Allora l’indice
di avvolgimento di σ relativamente a p0 è dato da

ιp0(σ) =
1

2πi

∫
C

1
z − p0

dz =
1

2πi

∫ l

0

σ′

σ − p0
dt.

Dimostrazione: Poniamo φ = (σ − p0)/‖σ − p0‖. Un veloce conto mostra che

φ′

φ
= i Im

σ′

σ − p0
;

quindi per avere la tesi basta dimostrare che l’integrale della parte reale di σ′/(σ − p0) è nullo. Ma infatti

d

dt
log ‖σ(t)− p0‖ = Re

σ′(t)
σ(t)− p0

,

e quindi ∫ l

0

Re
σ′

σ − p0
dt = log ‖σ(l)− p0‖ − log ‖σ(0)− p0‖ = 0.

Abbiamo quanto serve per dimostrare il

Teorema 1.3.11: (di Jordan per curve regolari) Sia σ: [0, l] → R2 una curva piana, regolare, chiusa e
semplice, di classe C2, e indichiamo con C = σ([0, l]) il suo sostegno. Allora R2 \ C ha esattamente due
componenti connesse, e C è la loro frontiera comune.

Dimostrazione: Scegliamo ε > 0 in modo che Nσ(ε) sia un intorno tubolare di σ. Indichiamo con T+

(rispettivamente, T−) l’insieme dei punti di Nσ(ε) della forma σ(t)+δn(t) con δ > 0 (rispettivamente, δ < 0).
È chiaro che Nσ(ε) \ C = T+ ∪ T−. Inoltre, sia T+ che T− sono connessi. Infatti, dati σ(t1) + δ1n(t1),
σ(t2) + δ2n(t2) ∈ T+, il cammino che partendo da σ(t1) + δ1n(t1) si muove prima parallelamente a σ fino a
raggiungere σ(t2) + δ1n(t2) e poi parallelamente a n(t2) fino a raggiungere σ(t2) + δ2n(t2) è tutto contenuto
in T+; e in modo analogo si dimostra che T− è connesso.

Dimostriamo prima di tutto che R2 \ C ha al massimo due componenti connesse. Infatti, sia K una
componente connessa di R2 \ C; chiaramente ∅ 6= ∂K ⊆ C. D’altra parte, se p ∈ C esiste un intorno di p
contenente solo punti di C, di T+ e di T−. Quindi o T+ o T− (o entrambi) intersecano K; essendo connessi,
abbiamo che K ⊃ T+ oppure K ⊃ T−, e in particolare ∂K ⊇ C. Ne segue che ci sono al massimo due
componenti connesse del complementare del sostegno di σ, e che il loro bordo coincide con C.

Per dimostrare invece che ci sono almeno due componenti connesse del complementare di C, sce-
gliamo t0 ∈ (0, l), e per 0 ≤ |δ| < ε poniamo pδ = σ(t0) + δn(t0). Chiaramente, pδ ∈ T+ (rispettivamente
pδ ∈ T−) se δ > 0 (rispettivamente, δ < 0); quindi, essendo T± connessi, il valore di ιpδ

(σ) dipende solo dal
segno di δ. In particolare, il numero intero

∆ = ιpδ
(σ)− ιp−δ

(σ)

è indipendente da δ > 0. Dunque per concludere la dimostrazione ci basta far vedere che ∆ 6= 0; infatti
in tal caso il Lemma 1.3.9 ci dice che necessariamente pδ e p−δ devono appartenere a componenti connesse
distinte di R2 \ C.

Ora, identifichiamo R2 con C, e supponiamo σ parametrizzata rispetto alla lunghezza d’arco. Allora il
versore normale di σ si ottiene ruotando σ̇ di π/2 radianti, operazione che nel campo complesso equivale a
moltiplicare per i, per cui possiamo scrivere n = iσ̇. Dunque per ogni δ > 0 otteniamo(

1
σ(t)− pδ

− 1
σ(t)− p−δ

)
σ̇(t) =

2iδσ̇(t0)σ̇(t)(
σ(t)− σ(t0)

)2 + δ2σ̇(t0)2
.
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Siccome σ è di classe C1 e σ̇(t0) 6= 0, possiamo scrivere σ(t)− σ(t0) = (t− t0)σ̇(t0)[1 + r(t)], dove r(t)→ 0
quando t→ t0. Quindi(

1
σ(t)− pδ

− 1
σ(t)− p−δ

)
σ̇(t) =

2iδ

(t− t0)2[1 + r(t)]2 + δ2

σ̇(t)
σ̇(t0)

=
2iδ

(t− t0)2 + δ2

(t− t0)2 + δ2

(t− t0)2[1 + r(t)]2 + δ2

[
1 +

σ̇(t)− σ̇(t0)
σ̇(t0)

]
=

2iδ

(t− t0)2 + δ2
+ R(t),

con

R(t) =
2iδ

(t− t0)2 + δ2

[
s(t)− r(t)

(
2 + r(t)

)(
1 + s(t)

) (t− t0)2

(t− t0)2[1 + r(t)]2 + δ2

]
,

dove s(t) =
(
σ̇(t) − σ̇(t0)

)
/σ̇(t0) → 0 per t → t0. In particolare, per ogni η > 0 esiste λ > 0 (indipendente

da δ) tale che

|R(t)| < η
2δ

(t− t0)2 + δ2

non appena |t − t0| < λ. Fissato 0 < η < 1/6, prendiamo il λ > 0 corrispondente e indichiamo con Ĉ la
parte di C parametrizzata da σ ristretta a |t− t0| > λ. Possiamo allora scrivere

∆ = ιpδ
(σ)− ιp−δ

(σ) =
1

2πi

∫
Ĉ

(
1

z − pδ
− 1

z − p−δ

)
dz +

1
2πi

∫ t0+λ

t0−λ

(
2iδ

(t− t0)2 + δ2
+ R(t)

)
dt.

Per quanto osservato prima, ∆ è un numero intero indipendente da δ. Facciamo allora tendere δ a zero nel
secondo membro. Il primo integrale converge a zero, in quanto l’integrando non ha singolarità in Ĉ. Per il
secondo integrale, tramite il cambiamento di variabile t− t0 = δs vediamo prima di tutto che

1
2πi

∫ t0+λ

t0−λ

2iδ

(t− t0)2 + δ2
dt =

1
π

∫ λ/δ

−λ/δ

1
1 + s2

ds→ 1
π

∫ ∞
−∞

1
1 + s2

ds = 1

per δ → 0. Inoltre, ∣∣∣∣∣ 1
2πi

∫ t0+λ

t0−λ

R(t) dt

∣∣∣∣∣ <
η

π

∫ λ/δ

−λ/δ

1
1 + s2

ds ≤ η

π

∫ ∞
−∞

1
1 + s2

ds = η.

Mettendo tutto questo insieme otteniamo quindi che prendendo δ abbastanza piccolo possiamo stimare

|∆−1| ≤ 1
2π

∣∣∣∣∫
Ĉ

(
1

z − pδ
− 1

z − p−δ

)
dz

∣∣∣∣+
∣∣∣∣∣ 1
2π

∫ t0+λ

t0−λ

2δ

(t− t0)2 + δ2
dt− 1

∣∣∣∣∣+ 1
2π

∣∣∣∣∣
∫ t0+λ

t0−λ

R(t) dt

∣∣∣∣∣ < 3η <
1
2
.

Ma ∆ è un numero intero; quindi necessariamente ∆ = 1, e abbiamo finito.

Osservazione 1.3.3. Una curva regolare, semplice e chiusa contenuta in una superficie S che non è un
piano potrebbe non dividere la superficie S in esattamente due parti. Si può adattare il concetto di intorno
tubolare in modo da far funzionare la prima parte della dimostrazione, e dimostrare che il complementare
del sostegno della curva ha al più due componenti connesse. Possono però avvenire due fenomeni nuovi.
Potrebbe essere impossibile definire in maniera coerente il versore normale alla curva, per cui non è più
possibile distinguere T+ da T−, ed è quello che succede in superfici non orientabili quali il nastro di Möbius
(il concetto di orientabilità di una superficie verrà definito nel paragrafo 2.4). Oppure, la stessa componente
connessa potrebbe contenere sia T+ che T− (è il caso di S = S1 × S1, il toro). In entrambi i casi, il
complementare della curva è connesso.

Come abbiamo già osservato precedentemente, il complementare di un compatto nel piano ha esat-
tamente una sola componente connessa illimitata. Questo fatto (e la dimostrazione del Teorema 1.3.11)
suggeriscono la seguente
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Definizione 1.3.8: Sia σ: [0, l] → R2 una curva di Jordan (regolare di classe C2) nel piano. L’unica compo-
nente connessa limitata del complementare del sostegno di σ è detta interno di σ. Il Lemma 1.3.9.(ii) e
la dimostrazione del Teorema 1.3.11 ci dicono che l’indice di avvolgimento di σ relativamente a un punto
qualsiasi del suo interno dev’essere uguale a ±1. Diremo che σ è orientata positivamente (rispettivamente,
orientata negativamente) se l’indice è +1 (rispettivamente, −1).

Osservazione 1.3.4. Nella dimostrazione del Teorema 1.3.11 abbiamo visto che ιpδ
(σ)− ιp−δ

(σ) = 1 sem-
pre; inoltre ιp±δ

(σ) 6= 0 se e solo se p±δ appartiene all’interno di σ, e in quel caso si deve avere ιp±δ
(σ) = ±1.

Ora, pδ appartiene all’interno di σ se e solo se n(t0) punta verso l’interno di σ, che accade se e solo se σ
è percorsa in senso antiorario. Quindi σ è orientata positivamente (negativamente) se e solo è percorsa in
senso antiorario (in senso orario).

Concludiamo questo paragrafo con una serie di interessanti complementi ed esercizi.

Definizione 1.3.9: Una curva continua σ: [a, b] → Rn è detta regolare (di classe Ck) a tratti se esiste una
partizione a = t0 < t1 < · · · < tr = b di [a, b] tale che σ|[tj−1,tj ] sia regolare (di classe Ck) per j = 1, . . . , r.
Diremo inoltre che σ è parametrizzata rispetto alla lunghezza d’arco se ristretta a ciascun intervallo [tj−1, tj ]
lo è.

Esercizio 1.3.1. Dimostra che il complementare del sostegno di una curva di Jordan regolare di classe C2

a tratti ha esattamente due componenti connesse.

Esercizio 1.3.2. Dimostra il Teorema dell’arco di Jordan: se C ⊂ R2 è il sostegno di una curva piana
σ: [a, b]→ R2 regolare di classe C2 a tratti semplice non chiusa, allora R2 \ C è connesso.⌈

L’interno di una curva di Jordan ha una struttura topologica ben precisa:

Teorema 1.3.12: Sia σ: [0, l]→ R2 una curva regolare semplice chiusa di sostegno C. Allora l’interno di C
è semplicemente connesso.

Dimostrazione: Il sostegno K di una curva chiusa contenuta nell’interno U di C è un compatto, e quindi ha
distanza positiva da C, cioè min{‖x− y‖ | x ∈ K, y ∈ C} > 0. Questo significa che possiamo trovare ε > 0
tale che K sia disgiunto da Nε(σ), e quindi costruire una poligonale semplice contenuta in Nε(σ) il cui
interno contenga K. Di conseguenza ci basta dimostrare che l’interno di una qualsiasi poligonale semplice è
semplicemente connesso.

Procediamo per induzione sul numero n dei lati della poligonale. Se n = 3 abbiamo un triangolo, che
essendo convesso è chiaramente semplicemente connesso.

Supponiamo allora che l’interno di una qualsiasi poligonale semplice con n lati sia semplicemente con-
nesso, e sia P una poligonale semplice con n + 1 lati. Se P è convessa non c’è nulla da dimostrare. Se invece
non è convessa, possiamo trovare una retta ` che interseca P in due vertici non consecutivi, e tale che P
sia tutta contenuta in uno dei semipiani determinati da `. Infatti, prendiamo una retta qualsiasi che non
interseca P , e trasliamola fino al primo momento in cui interseca P , necessariamente in un vertice; a questo
punto ruotiamola, se necessario, fino a che non interseca P in un altro vertice. Essendo P non convesso, a
meno di ruotare la retta di partenza al più n+1 volte, possiamo essere sicuri che questo secondo vertice non
è consecutivo, e quindi abbiamo trovato la retta ` cercata.

Scegliamo due vertici pj e pk di P contenuti in ` e tali che nessun altro vertice di P fra quelli compresi
fra pj e pk appartenga a `. Possiamo allora formare due nuove poligonali P ′ e P ′′, entrambe con meno lati
di P : la poligonale P ′ è formata sostituendo la spezzata da pj a pk con il segmento da pj a pk, mentre la
poligonale P ′′ è formata proprio dalla spezzata e dal segmento. Per ipotesi induttiva, gli interni di P ′ e P ′′

sono semplicemente connessi.
Sia ora σ una curva chiusa il cui sostegno L sia contenuto nell’interno di P . La prima osservazione è che

σ è omotopa a una poligonale chiusa (non necessariamente semplice) contenuta nell’interno di P . Infatti,
per compattezza possiamo ricoprire L con un numero finito di dischi contenuti nell’interno di P , ciascuno
dei quali interseca L in un connesso. All’interno di ciascuno di questi dischi possiamo deformare con una
omotopia lineare l’intersezione con L a un segmento, e in questo modo otteniamo una poligonale τ omotopa
a σ nell’interno di P .
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Siccome l’interno di P ′ è semplicemente connesso, esiste un’omotopia T che deforma τ a un punto
nell’interno di P ′. Con un ragionamento analogo al precedente si vede che possiamo supporre che tutte le
curve τs = T (s, ·) siano poligonali. Per concludere ci basta far vedere che possiamo deformare T a una
omotopia di τ con una curva costante all’interno di P .

Sia allora s ∈ (0, 1) tale che la poligonale τs non sia contenuta nell’interno di P . Questo vuol dire che deve
attraversare la spezzata S che collega pj con pk. Siccome l’interno di P ′′ è semplicemente connesso, possiamo
deformare con continuità ciascun pezzo di τs contenuto nell’interno di P ′′ a una spezzata contenuta in S
senza muovere gli estremi; e poi possiamo deformare quest’ultima a una spezzata contenuta nell’interno di P .
Chiaramente questa operazione può essere effettuata mantenendo la dipendenza continua dal parametro s,
e quindi otteniamo una nuova omotopia fra τ e una curva costante nell’interno di P , come voluto.

Esercizio 1.3.3. Dimostra che l’interno di una curva di Jordan regolare di classe C2 a tratti è semplicemente
connesso.

Osservazione 1.3.5. Si può dimostrare che l’interno di una curva di Jordan continua è omeomorfo a un
disco aperto. Questo è conseguenza di un risultato molto più generale, che dice che ogni aperto semplicemente
connesso di R2 è omeomorfo a un disco aperto. In realtà si può dimostrare anche molto di più: ogni aperto
semplicemente connesso del piano distinto dal piano stesso è biolomorfo a un disco aperto (Teorema di

uniformizzazione di Riemann.)
⌋

1.4 Il teorema delle tangenti

L’obiettivo di questo paragrafo è dimostrare un altro teorema di teoria globale delle curve, che sarà utile
anche in seguito.

Osservazione 1.4.1. I risultati di questo paragrafo valgono per curve regolari di classe C1 a tratti.

Iniziamo introducendo il secondo modo con cui si può associare un grado a una curva chiusa piana.

Definizione 1.4.1: Sia σ: [0, l] → R2 una curva regolare chiusa piana, e sia t: [0, l] → S1 il versore tangente
di σ. L’indice di rotazione di σ è il numero intero

ρ(σ) = deg t ∈ Z .

Misura il numero di giri del versore tangente a σ.

Esercizio 1.4.1. Sia σ = (σ1, σ2): [0, l]→ R2 una curva regolare chiusa piana. Dimostra che

ρ(σ) =
1
2π

∫ l

0

σ′1σ
′′
2 − σ′′1σ′2
‖σ′‖3 dt.

In realtà, in futuro avremo bisogno dell’indice di rotazione per curve regolari a tratti; quindi introdu-
ciamo le seguenti definizioni.

Definizione 1.4.2: Sia σ: [a, b]→ R2 una curva piana regolare a tratti, e scegliamo una partizione

a = t0 < t1 < · · · < tk = b

di [a, b] tale che σ|[tj−1,tj ] sia regolare per j = 1, . . . , k. Supponiamo anche che σ sia parametrizzata rispetto
alla lunghezza d’arco in ciascuno dei segmenti in cui è regolare, e poniamo

σ̇(t−j ) = lim
t→t−

j

σ̇(t)

per j = 1, . . . , k, e
σ̇(t+j ) = lim

t→t+
j

σ̇(t)



22 Geometria e Topologia Differenziale, A.A. 2005/06

per j = 0, . . . , k − 1. Inoltre, se σ è chiusa poniamo anche σ̇(t−0 ) = σ̇(t−k ) e σ̇(t+k ) = σ̇(t+0 ). Diremo che tj è
una cuspide se σ̇(t−j ) = −σ̇(t+j ). Se tj non è una cuspide, l’angolo esterno εj ∈ (−π, π) è l’angolo fra σ̇(t−j )
e σ̇(t+j ), preso positivo se {σ̇(t−j ), σ̇(t+j )} è una base positiva di R2, negativo altrimenti. I punti in cui l’angolo
esterno è diverso da zero saranno detti vertici della curva. Infine, un poligono curvilineo è una curva regolare
a tratti semplice chiusa parametrizzata rispetto alla lunghezza d’arco e priva di cuspidi.

Definizione 1.4.3: Sia σ: [a, b] → R2 un poligono curvilineo nel piano, e a = t0 < t1 < · · · < tk = b
una partizione di [a, b] tale che σ|[tj−1,tj ] sia regolare per j = 1, . . . , k. Definiamo la funzione angolo di
rotazione θ: [a, b]→ R nel seguente modo: sia θ: [a, t1)→ R il sollevamento di σ̇: [a, t1)→ S1 scelto in modo
che θ(a) ∈ (−π, π]. In altre parole, θ è la determinazione continua dell’angolo fra l’asse x e σ̇ che inizia
in (−π, π]. Poniamo poi

θ(t1) = lim
t→t−1

θ(t) + ε1,

dove ε1 è l’angolo esterno in t1. Definiamo analogamente θ su [t1, t2), cioè θ: [t1, t2)→ R è il sollevamento di
σ̇: [t1, t2)→ S1 che parte da θ(t1), e poniamo nuovamente

θ(t2) = lim
t→t−2

θ(t) + ε2,

dove ε2 è l’angolo esterno in t2. Continuando in questo modo definiamo θ su tutto l’intervallo [a, b); poniamo
infine

θ(b) = lim
t→b−

θ(t) + εk,

dove εk è l’angolo esterno in b = tk. Allora diremo indice di rotazione della curva σ il numero

ρ(σ) =
1
2π

(
θ(b)− θ(a)

)
.

Siccome σ̇(t+k ) = σ̇(t+0 ), l’indice di rotazione dev’essere un numero intero. Chiaramente, se invertiamo
l’orientazione della curva allora l’indice di rotazione cambia di segno.

Il risultato principale di questo paragrafo è il seguente teorema di Hopf:

Teorema 1.4.1: (delle tangenti, o Umlaufsatz ) L’indice di rotazione di un poligono curvilineo è ±1.

Dimostrazione: Cominciamo supponendo che il poligono curvilineo σ: [a, b] → R2, parametrizzato rispetto
alla lunghezza d’arco, non abbia vertici; in particolare, σ̇ è continua e σ̇(a) = σ̇(b). Siccome σ è chiusa,
possiamo estenderla per periodicità a una curva, che continueremo a denotare con σ: R → R2, periodica di
periodo b− a, con derivata continua. Inoltre indichiamo con (σ1, σ2) le due coordinate di σ.

Se [ã, b̃] è un qualunque intervallo di lunghezza b−a, chiaramente ρ(σ|[ã,b̃]) = ρ(σ|[a,b]); quindi possiamo
scegliere il nostro intervallo [a, b] in modo che σ2(t) abbia minimo per t = a; inoltre, a meno di traslazioni
possiamo anche supporre che σ(a) = O. Dunque il sostegno di σ è contenuto nel semipiano superiore,
e σ̇2(a) = 0, per cui a meno di invertire l’orientazione della curva abbiamo σ̇(a) = σ̇(b) = e1, il primo vettore
della base canonica di R2.

Indichiamo con θ: [a, b] → R l’angolo di rotazione, cioè il sollevamento di σ̇ che parte da θ(a) = 0.
Vogliamo definire un angolo secante η:T → R (dove T è il triangolo T = {(t1, t2) ∈ R2 | a ≤ t1 ≤ t2 ≤ b}),
che rappresenti l’angolo fra l’asse x e il vettore da σ(t1) a σ(t2). Per far ciò, definiamo H:T → S1 ponendo

H(t1, t2) =


σ(t2)− σ(t1)
‖σ(t2)− σ(t1)‖

se t1 < t2 e (t1, t2) 6= (a, b);

σ̇(t1) se t1 = t2;
−σ̇(a) se (t1, t2) = (a, b).

L’applicazione H è continua lungo il segmento t1 = t2 in quanto

lim
(t1,t2)→(t,t)

H(t1, t2) = lim
(t1,t2)→(t,t)

σ(t2)− σ(t1)
t2 − t1

/ ∥∥∥∥σ(t2)− σ(t1)
t2 − t1

∥∥∥∥ =
σ̇(t)
‖σ̇(t)‖ = H(t, t).
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Analogamente, H è continua in (a, b): infatti

lim
(t1,t2)→(a,b)

H(t1, t2) = lim
(t1,t2)→(a,b)

σ(t2)− σ(t1 + b− a)
‖σ(t2)− σ(t1 + b− a)‖ = lim

(s,t2)→(b,b)
− σ(s)− σ(t2)
‖σ(s)− σ(t2)‖

= − σ̇(b)
‖σ̇(b)‖ = H(a, b).

Essendo T semplicemente connesso, possiamo sollevare H a un’unica η:T → R continua tale che η(a, a) = 0;
la funzione η è il nostro angolo secante. In particolare, anche t 7→ η(t, t) è un sollevamento di σ̇; sic-
come θ(a) = 0 = η(a, a), dobbiamo avere θ(t) = η(t, t) per ogni t, e quindi

ρ(σ) =
1
2π

(
θ(b)− θ(a)

)
=

1
2π

η(b, b).

Vogliamo trovare il valore di η(b, b) percorrendo gli altri due lati del triangolo T . Per costruzione il vet-
tore σ(t) − σ(a) è sempre puntato verso il semipiano superiore; quindi η(a, t) ∈ [0, π] per ogni t ∈ [a, b].
In particolare, essendo H(a, b) = −σ̇(a) = −e1, dobbiamo avere η(a, b) = π. Analogamente, il vettore
σ(b)−σ(t) è sempre puntato verso il semipiano inferiore; essendo η(a, b) = π, dobbiamo avere η(t, b) ∈ [π, 2π]
per ogni t ∈ [a, b]. In particolare, essendo H(b, b) = σ̇(b) = e1, troviamo η(b, b) = 2π, e la tesi è dimostrata
nel caso di poligono curvilineo liscio.

Ora supponiamo che σ abbia dei vertici; per dimostrare il teorema ci basta trovare un poligono curvilineo
liscio che abbia lo stesso indice di rotazione di σ. Per far ciò, cambieremo σ vicino a ciascun vertice in modo
da renderla regolare ovunque.

Sia allora σ(ti) un vertice di angolo esterno εi, e scegliamo un numero positivo 0 < α < 1
2 (π−|εi|); usando

la periodicità di σ, a meno di cambiare l’intervallo di definizione possiamo anche supporre che ti 6= a, b. Per
come abbiamo definito l’angolo di rotazione, si ha

lim
t→t+

i

θ(t) = θ(ti) e lim
t→t−

i

θ(t) = θ(ti)− εi.

Quindi possiamo trovare un δ > 0 tale che
∣∣θ(t) − (

θ(ti) − εi

)∣∣ < α quando ti−1 < ti − δ < t < ti e
|θ(t)− θ(ti)| < α quando ti < t < t1 + δ < ti+1. In particolare,

|θ(t)− θ(s)| ≤ 2α + |εi| < π (1.4.1)

per ogni s, t ∈ (ti − δ, ti + δ). Dunque l’angolo di rotazione di σ varia meno di π in questo intervallo.
L’immagine C tramite σ di [a, b] \ (ti − δ, ti + δ) è un compatto non contenente σ(ti); quindi possiamo

trovare r > 0 tale che C ∩ B
(
σ(ti), r

)
= ∅. Siano t∗, t∗∗ ∈ (ti − δ, ti + δ) rispettivamente il primo e

l’ultimo valore di t per cui σ(t) ∈ ∂B
(
σ(ti), r

)
; in particolare, σ̇(t∗) punta verso l’interno di (o è tangente

a) ∂B
(
σ(ti), r

)
, mentre σ̇(t∗∗) punta verso l’esterno di (o è tangente a) ∂B

(
σ(ti), r

)
. Rimpiazziamo il pezzo

di σ da t∗ a t∗∗ con (vedi il prossimo esercizio) una curva regolare τ contenuta in B
(
σ(ti), r

)
, tangente a σ

in σ(t∗) e σ(t∗∗), e il cui versore tangente rimanga sempre in un semipiano aperto contenente σ̇(t∗) e σ̇(t∗∗).
In particolare, la variazione dell’angolo di rotazione di τ da t∗ a t∗∗ è compresa fra −π e π, e rappresenta
l’angolo fra σ̇(t∗) e σ̇(t∗∗); quindi, grazie alla (1.4.1) questa variazione è esattamente uguale a θ(t∗∗)− θ(t∗).
In altre parole, il poligono curvilineo ottenuto inserendo τ al posto di σ|[t∗,t∗∗] ha esattamente lo stesso indice
di rotazione di σ. Ripetendo l’operazione in tutti i vertici di σ otteniamo un poligono curvilineo liscio con
lo stesso indice di rotazione di σ, e ci siamo.

Esercizio 1.4.2. Siano dati un numero r > 0 e due punti distinti p1, p2 ∈ ∂B(O, r) ⊂ R2. Scegliamo poi
due vettori v1, v2 ∈ S1 tali che v1 6= −v2, (v1, p1) ≤ 0 e (v2, p2) ≥ 0. Dimostra che esiste una curva regolare
τ : [a, b] → R2 parametrizzata rispetto alla lunghezza d’arco il cui sostegno sia tutto contenuto in B(O, r),
tale che σ(a) = p1, σ̇(a) = v1, σ(b) = p2 e σ̇(b) = v2, e tale che esista un semipiano aperto contenente σ̇(s)
per ogni s ∈ [a, b]. (Suggerimento: nella maggior parte dei casi un’iperbole funziona.)
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Definizione 1.4.4: Diremo che un poligono curvilineo è orientato positivamente se il suo indice di rotazione
è +1.

Osservazione 1.4.2. Una curva di Jordan σ regolare di classe C2 è orientata positivamente secondo la
Definizione 1.3.8 se e solo se lo è anche secondo questa definizione. Infatti, l’Osservazione 1.3.4 ci dice
che σ è orientata positivamente secondo la Definizione 1.3.8 se e solo se il versore normale punta verso
il suo interno. Nella situazione in cui ci siamo posti all’inizio della dimostrazione del Teorema precedente,
l’interno di σ dev’essere necessariamente nel semipiano superiore; quindi σ è orientata positivamente secondo
la Definizione 1.3.8 se e solo se il versore normale a σ in σ(a) è (0, 1), e quindi se e solo se σ̇(a) = (1, 0)
senza bisogno di cambiare orientazione, e dunque, grazie al resto della dimostrazione, se e solo se l’indice di
rotazione di σ è +1. Quindi le due definizioni sono perfettamente compatibili.


