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Capitolo 1

Curve

1.1 II concetto di curva
Cos’& una curva (nel piano, nello spazio, in R")? Vediamo esempi di cose che sicuramente lo sono:

EsEMPIO 1.1.1. Una retta nel piano. Pud venire presentata in (almeno) tre modi diversi:

— come grafico: y=ax+box=ay+b;
— come luogo di zeri: ax + by 4+ ¢ = 0;
— come immagine di un’applicazione f:R — R? della forma f(t) = (at + b, ct + d).

Attenzione: negli ultimi due casi i coeflicienti non sono univocamente determinati dalla retta.

EseEmPIO 1.1.2. Un grafico. Se I C R & un intervallo e f: I — R ¢ una funzione (almeno) continua, allora
il suo grafico

I'y={(tf(t)|tel} cR?

¢ sicuramente una curva. Nota che si ha I'y = {(z,y) € R? | z € I,y — f(z) = 0}, per cui un grafico puod
essere considerato come un luogo di zeri.

Esemp1o 1.1.3. Una circonferenza, di equazione (x — )2 + (y — y0)? = r2. Nota che non & un grafico.

Una prima idea potrebbe essere la seguente: una curva ¢ qualcosa di “dimensione 1” dentro il piano
(o dentro R™). Un modo per scendere di dimensione, passando dalla dimensione 2 del piano alla dimen-
sione 1 delle curve, & imporre una condizione: per esempio, potremmo considerare insiemi della forma
C = {(z,y) € U | f(x,y) = 0} C R? per opportune funzioni f:U — R, dove U C R? ¢ aperto. Tutti gli
esempi precedenti ricadono in questa categoria, e I’esperienza fatta con ’algebra lineare sembra indicare che
potrebbe essere una buona idea.

Ma bisogna stare attenti. Prima di tutto, non appena f € continua l'insieme C' & chiuso in U — e fin
qui niente di male. Ma

Proposizione 1.1.1: Sia U C R"™ aperto. Allora un sottoinsieme C' C U ¢ chiuso in U se e solo se esiste
una funzione continua f:U — R tale che C = {z € U | f(x) = 0} = f~1(0).

Dimostrazione: Basta prendere f(z) = d(z,C) = inf{||Jx — y|| | y € C}. Infatti, f & continua, e x € C se e
solo se f(z) =0 (perché?). 0

Dunque usando le funzioni continue otteniamo anche insiemi che decisamente non hanno alcun diritto
a essere chiamati curve. Potremmo allora limitarci alle funzioni differenziabili. Ma anche in questo caso
bisogna stare attenti:

EsEMPIO 1.1.4. Se f:R?* — R & data da f(x,y) = 2y, allora C = {f(z,y) = 0} & l'unione dei due assi
coordinati, cioe¢ I'unione di due curve, non una curva sola.

L’insieme C dell’esempio precedente & quasi una curva. L’unico punto in cui ¢’¢ un problema e ’origine,
dove le due rette si intersecano. Ed effettivamente ’origine € un punto speciale anche per f: & I'unico punto
del piano in cui il gradiente di f si annulla. Non e difficile vedere che & questa la causa del problema, usando
il seguente teorema di Analisi:
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Teorema 1.1.2: (della funzione implicita) Sia F:Q — R" una funzione di classe C*, con k € N* U {0},
dove © ¢ un aperto di R™*™. Indichiamo con (x,y) le coordinate di R™*", dove x € R™ ey € R™. Sia
po = (xo,y0) € Q tale che
OF
F(po)=0 e  det 8—(170) # 0.
Y
Allora esistono un intorno U € R™'™ di po, un intorno V. C R™ di zo e un’applicazione g:V — R™ di
classe C* tale che UN{p € Q| F(p) = O} & costituito da tutti e soli i punti della forma (z,g(x)) conxz € V.

Allora:

Proposizione 1.1.3: Sia Q C R? aperto, f:Q — R di classe C' e p € Q tale che f(p) = 0 ma Vf(p) # O.
Allora esiste un intorno U di p tale che U N {f = 0} sia un grafico.

Dimostrazione: Scriviamo p = (zg, yo); @ meno di scambiare le coordinate possiamo supporre che g—i(p) #0.
Allora il Teorema della funzione implicita ci dice che esistono un intorno U di p, un intervallo aperto I C R
contenente x( e una funzione g: I — R di classe C! tali che U N {f = 0} sia esattamente il grafico di g. [

Dunque nei punti in cui il gradiente della funzione f & non nullo, I’equazione f(x,y) = 0 effettivamente
definisce qualcosa che ha tutta I'aria di essere una curva. Ma che problema potranno procurare i punti in
cui il gradiente si annulla (che sono detti punti singolari di f)? Magari sono semplicemente punti in cui
s’intersecano varie curve, come nell’esempio precedente. . .

(S)fortunatamente, la situazione & ben pit complicata di cosi:

Teorema 1.1.4: (Whitney) Sia U C R™ aperto. Allora un sottoinsieme C C U é chiuso in U se e solo se
esiste una funzione f:U — R di classe C*° tale che C' = f~1(0).

Per la dimostrazione ci servono alcuni risultati preliminari.

Lemma 1.1.5: Esiste una funzione a: R — [0,1) monotona, di classe C* e tale che a(t) = 0 se e solo se
t <0.

Dimostrazione: Poniamo

—1/t
a(t){g set >0,
set <O0.

L’unica cosa che dobbiamo verificare ¢ che sia di classe C* nell’origine. Per questo basta dimostrare che i
limiti destro e sinistro di tutte le derivate nell’origine coincidono, ovvero che

lim o™ (t) =0

t—0t

per ogni n > 0. Supponiamo di aver dimostrato 1’esistenza per ogni n € N di un polinomio p,, di grado 2n
tale che

Vi >0 oM () = e Vip, (1/t). (1.1.1)
In tal caso
lim o™ (t) = lim Pa(s) =0;
t—0+ s—+oo e

quindi per concludere basta dimostrare (1.1.1). Procediamo per induzione su n. Per n = 0 basta pren-
dere pp = 1. Supponiamo che (1.1.1) sia verificata per n > 0; allora

1 1,

am (1) = % [e*l/tpn(l/t)} =/ L—2pn(1/t) — mPa(1/)]

per cui basta scegliere py,11(s) = s2(pn(s) — pl,(s))- O
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Corollario 1.1.6: Per ogni intervallo chiuso [a,b] C R esiste una funzione 5:R — [0, 1] di classe C™ tale
che B(t) =1seesoloset <aep(t)=0seesoloset>b.

Dimostrazione: Basta prendere

dove a: R — R ¢ la funzione del Lemma 1.1.5. O

Corollario 1.1.7: Dati pg € R"™ e r > 0 esiste una funzione f:R"™ — [0,1] di classe C* tale che f(p) =1
se e solo se p € B(po,r), e f(p) = 0 se e solo se p ¢ B(pg,2r), dove B(p,r) & la palla aperta di centro p e
raggio r.

Dimostrazione: Sia 3:R — [0, 1] la funzione costruita nel corollario precedente partendo dall’intervallo [r, 2r].
Allora f(p) = B(|lp — po||?) & come richiesto. 0

Lemma 1.1.8: Sia V C R" un aperto. Allora possiamo trovare una successione di punti {pytrey C Q" e
una successione di numeri razionali {ri}ren C Q7 tali che V =, cny Bk, )

Dimostrazione: Sia p € U. Essendo U aperto, esiste £ > 0 tale che B(p,e) C V. Scegliamo allora ¢ € Q"
er € Q" tali che ||p — ¢|| < r < £/2. Chiaramente, p € B(q,r); inoltre, se x € B(g,r) abbiamo

lp—z|| <llp—qll +1llg—=z|| <2r<e,

per cui B(gq,r) € B(p,e) C V. Dunque ogni punto di V' appartiene a una palla di centro e raggio razionali
completamente contenuta in V; siccome di tali palle ne esiste al pit una quantita numerabile, abbiamo la
tesi. ]

Ed eccoci arrivati alla

Dimostrazione del Teorema 1.1.4: Se C = f~1(0) sappiamo gia che C' dev’essere chiuso in U. Viceversa,
supponiamo che C' sia chiuso in U; allora V = U \ C ¢ aperto in U, e quindi in R"™. Il Lemma 1.1.8 ci dice
che abbiamo V' = | J,. .y B(pk, &) con py € Q" e r, € Q per ogni k € N. Sia fi: U — [0, 1] la restrizione a U
della funzione ottenuta applicando il Corollario 1.1.7 a py e r4/2.

Chiaramente, fj, = 0 fuori da B(pg, i), e lo stesso vale per tutte le sue derivate. Quindi il modulo di fj
e di tutte le sue derivate deve avere un massimo in B(pg, k), che & un insieme compatto. Ne consegue che
per ogni m, k € N troviamo ¢}’ > 0 tale che il valore assoluto di una qualsiasi derivata di ordine m di fj &
minore o uguale di ¢’ in tutto U. Sia ¢, = max{1, 02, e ,cZ}, e poniamo

— f
f= Z Qkik'
k=0

Prima di tutto, questa serie ¢ maggiorata da -, 27% per cui converge uniformemente. Per costruzione, non
appena k > m una qualsiasi derivata di ordine m del termine k-esimo della serie & limitata da 27%; quindi
anche le serie delle derivate convergono uniformemente, e f € C*°(U).

Ora,sep € Callorap ¢ B(py, i) per ogni k € N, per cui f(p) = O perogni k € N, e f(p) = 0. Viceversa,
sep € U\C deve esistere ko € N tale che p € B(py,,7%,) C V; quindi fi,(p) > 0e f(p) > fr, (p)/2%cr, > 0.0J

Dunque definire una curva tramite equazioni non & I'approccio migliore. Un’idea piu efficiente e dire
che una curva e localmente fatta come R:

Definizione 1.1.1: Una linea (o 1-sottovarieta) & un sottoinsieme connesso C' C R" tale che per ogni p € C esi-
ste un intorno U C R" di p, un intervallo aperto I C R, e un’applicazione o: I — R" (detta parametrizzazione
locale) di classe C*° tali che

(i) o(I)=CnNU;

(ii) o & un omeomorfismo con I'immagine;

(ii) o'(t) # O per ogni t € I.

Diremo inoltre che una parametrizzazione locale o ¢ rispetto alla lunghezza d’arco se ||o’|| = 1.
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EsemMpIo 1.1.5. Un grafico in R? ¢ una linea. Un insieme che & localmente un grafico (nel senso della
Proposizione 1.1.3) & una linea. Una figura 8 non & una linea.

Esercizio 1.1.1. Dimostra che il grafico della funzione valore assoluto non ¢ una linea.

Osservazione 1.1.1. Una linea C non ha punti interni. Infatti, se p € C fosse un punto interno, allora
C' conterrebbe una palla di centro p e raggio r; in particolare, U N C' \ {p} sarebbe connesso quale che sia
Pintorno U di p. Ma se scegliamo U come nella definizione di linea, U N C'\ {p} dovrebbe essere omeomorfo
a un intervallo aperto privato di un punto, che € sconnesso, contraddizione.

Osservazione 1.1.2. Le condizioni (i) e (ii) nella definizione di linea ci dicono che I'insieme C' ¢, dal punto
di vista topologico, localmente fatto come un intervallo. La condizione (iii) invece ha tre scopi: fornisce un
vettore tangente alla linea, escludendo spigoli quali quelli che si trovano nel grafico della funzione |¢[; assicura
che anche dal punto di vista differenziale la struttura sia la stessa (come capiremo meglio quando parleremo
di cambiamenti di parametro); evita altre possibili singolarita, quali le cuspidi che si trovano nell’immagine
dell’applicazione o(t) = (t2,t3).

In realta, questa definizione funzionera meglio con superfici e oggetti di dimensione piu alta; in dimen-
sione 1 € eccessivamente complicata. Infatti vale il seguente

Teorema 1.1.9: Ogni linea ha una parametrizzazione globale. Piu esattamente, per ogni linea C C R"
esiste sempre un’applicazione 6: R — C' surgettiva, di classe C*°, con 6'(t) # O per ogni t € R e tale che

(a) se C' non é compatta allora & é un omeomorfismo fraR e C;
(b) se C & compatta allora 6 ¢ periodica e induce un omeomorfismo fra S e C.

In altre parole, viste dall’interno le linee sono globalmente tutte come R o come S*.

Dimostrazione: Prima di tutto dimostriamo che in ogni punto di C' esiste una parametrizzazione rispetto
alla lunghezza d’arco. Fissato p € C, sia o: I — UNC una parametrizzazione locale qualunque con p = o(tg)

per qualche ¢ty € I. Poniamo
t
— o)l ds
to

allora ¢'(t) = |lo’(¢)|| > 0, per cui g:I — J = h(I) & un diffeomorfismo (monotono crescente) fra due
intervalli. Quindi o7 =0 og~!:J — C NU & ancora una parametrizzazione locale; inoltre o1 (0) = p e

o (gfl(t))
lo" (g~ )]

o1(t) =

per cui ||o}]| = 1, come richiesto.

Fissiamo ora pg € C' e una parametrizzazione rispetto alla lunghezza d’arco o¢: Iy — C con co(0) = pg.
Sia 0:I — C un’altra parametrizzazione locale rispetto alla lunghezza d’arco tale che oo(lp) No(I) # @;
vogliamo far vedere che o( e o differiscono solo per una traslazione. Sia Jy = 061(00(10) N U(I)) C I,
J =01 (U(](I(]) N J(I)) CI,eh=01o0g:Jy — J. La funzione h & chiaramente un omeomorfismo di
aperti di R; inoltre & (almeno) di classe C'!. Infatti, fissiamo tq € Jo. Allora da o o h = o otteniamo

oot) —oolte) _ o (h(t) — o (h(ta)) h(t) = hto)

t—to h(t) — h(to) t—to

per ogni ¢ € Jy. Facendo tendere ¢ a to il primo quoziente converge a o{(to), e il secondo a o’ (h(to)). Siccome
o = (01,02) ¢ una parametrizzazione locale, esiste un indice j per cui o7} (h(to)) # 0; quindi

h(t) — h(to) _ 00,;(to)

ot t—1o o (h(t))

esiste, e dunque h e derivabile. Inoltre, lo stesso ragionamento con lo stesso j funziona per tutti i ¢ in un
intorno di gy, per cui troviamo
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in un intorno di ¢y, e quindi A’ & continua.

Ora, da 0 o h = 0 deduciamo anche o’ (h(t))h/(t) = o{,(t), per cui |[h/| = 1. Dunque il grafico I' di h &
costituito da segmenti di pendenza +1, tanti quante sono le componenti connesse di Jy (e quindi di J). In
ciascuna di queste componenti, quindi, abbiamo h(t) = 4t + a per un opportuno a € R.

Il grafico I' di h € contenuto nel rettangolo Iy x I; vogliamo dimostrare che gli estremi dei segmenti di I"
sono necessariamente sul bordo del rettangolo. Prima di tutto, notiamo che (sg,s) € I sse s = h(sg), che
implica

o(s) = oo(s0). (1.1.2)

Sia ora, per assurdo, (tg,t) € Iox I un estremo di un segmento di I'. Essendo un estremo, ty € 9Jy; ma d’altra
parte, essendo (to,t) sul bordo del grafico, per continuita la (1.1.2) implica che o(t) = o¢(tg) € oo(Ip) No (1),
per cui ¢y € Jy, contraddizione.

Ora, I' e il grafico di una funzione iniettiva; quindi ciascun lato del rettangolo puo essere toccato da al
piltt un estremo di ' (perché?). Ma questo implica che I' — e quindi Jy — ha al pitt 2 componenti connesse;
e se ne ha due, entrambe hanno la stessa pendenza.

Notiamo infine che se la pendenza di I & —1, ponendo o1 (t) = o(—t) otteniamo una parametrizzazione
locale rispetto alla lunghezza d’arco con la stessa immagine di o ma tale che h; = o7 Lo gy abbia pendenza 1
(e diremo che og e o1 hanno la stessa orientazione).

Sia ora o1: [; — C un’altra parametrizzazione locale rispetto alla lunghezza d’arco tale che o1(0) = po;
per quanto visto, senza perdita di generalita possiamo anche supporre che il grafico di h = oy Lo oy sia
composto da segmenti di pendenza 1. Siccome py € o¢(lp) No1(I1) e h(0) = 0, sulla componente connessa
di Jy contenente 0 abbiamo h = id; quindi questa componente ¢ Iy N I7, e abbiamo oy = o1 sull’intersezione
dei domini.

In altre parole, due parametrizzazioni locali rispetto alla lunghezza d’arco og: Iy — C e 01:1; — C
che partono dallo stesso punto pg = 0¢(0) = 01(0) con la stessa orientazione coincidono sull’intersezione dei
domini. Questo ci permette quindi di definire una nuova applicazione : Iy U I; — C ponendo

s = {2y e (19

Siamo pronti per il ragionamento finale. La parametrizzazione locale rispetto alla lunghezza d’arco
oo: Ip — C' ¢ fissata una volta per tutte. Indichiamo con C l'insieme delle parametrizzazioni locali o1: [y — C'
rispetto alla lunghezza d’arco tali che 0 € Iy, 01(0) = 0¢(0) e o1 ha la stessa orientazione di gg. Per quanto
appena visto, abbiamo che o7 coincide con o sull’intersezione dei domini per ogni o1 € C.

Supponiamo esista una o1 € C tale che oo(Iy) Noy(I1) abbia due componenti connesse. Questo vuol dire
che lestensione & data da (1.1.3) torna su se stessa, cioe & periodica di un qualche periodo £ > 0, ed ¢ iniettiva
ristretta a [to, o + £) per qualche tg < 0. Ma allora possiamo prolungarla per periodicita a una 6:R — C
con 6(R) = 0¢(lp) Uoi(l1). In particolare, 6(R) e aperto in C. Ma, d’altra parte, 6(R) = &([to, o + £])
& compatto, e quindi chiuso in C. La connessione di C obbliga quindi ad avere 6(R) = C; dunque C &
compatta, e & induce un omeomorfismo fra S* e C, per cui siamo nel caso (b).

Supponiamo invece che oo (ly)Noq (1) abbia sempre una sola componente connessa, quale che sia oy € C.
Questo vuol dire che per ogni o1 € C l'estensione ¢ data da (1.1.3) & ancora una parametrizzazione rispetto
alla lunghezza d’arco, che estende sia o che o1, e appartiene a C. Dunque tutte le possibili parametrizzazioni
locali rispetto alla lunghezza d’arco che partono da pg e con la stessa orientazione di og si raccordano formando
una parametrizzazione rispetto alla lunghezza d’arco 6:J — C massimale, dove J € un intervallo aperto.
Chiaramente, 6(J) & aperto in C; se dimostriamo che & anche chiuso la connessione di C implichera 6(J) = C,
e quindi saremo nel caso (a) — in quanto ogni intervallo aperto & diffeomorfo a R.

Supponiamo per assurdo che &(J) non sia chiuso in C, e sia p € C'\ 6(J) un punto aderente a &(J).
Ora, esiste sicuramente una parametrizzazione rispetto alla lunghezza d’arco in p, la cui immagine inter-
seca necessariamente &(J); ma allora procedendo come prima possiamo usare questa parametrizzazione per
estendere ulteriormente &. Per la massimalita di &, questa estensione non puo essere globalmente iniettiva;
quindi & periodica, e il ragionamento precedente ci porta a dedurre che C' & compatta e omeomorfa a S*.
Ma in questo caso esiste una parametrizzazione o tale che oo(ly) No1(I1) abbia due componenti connesse,
contraddizione, e abbiamo finito. Il



6 Geometria e Topologia Differenziale, A.A. 2005/06

Questo risultato suggerisce che per studiare le linee conviene studiare le loro parametrizzazioni globali.
Ma allora tanto vale fare il passo completo e prendere come principale oggetto di studio non I'insieme C' ma
la sua parametrizzazione (globale) o. E questo ci porta alla prima definizione del prossimo paragrafo.

1.2 Teoria locale delle curve
Eccoci quindi alla definizione ufficiale di curva.

Definizione 1.2.1: Una curva (di classe C*, con k € NU{oo}) in R™ & un’applicazione o: I — R" di classe C*,
dove I C R & un intervallo. L’immagine o (I) sard detta sostegno della curva; la variabile ¢ € I & il parametro
della curva. Se I = [a,b] e o(a) = o(b), diremo che la curva & chiusa.

Osservazione 1.2.1. Se I non ¢ un intervallo aperto, e k > 1, dire che o ¢ di classe C* in I vuol dire che
o si estende a un’applicazione C* definita in un intervallo aperto contenente propriamente I.

Osservazione 1.2.2. Nel seguito considereremo quasi sempre solo curve di classe C*°. I pochi casi in cui
sara importante lavorare anche con una regolarita minore verranno indicati esplicitamente.

Definizione 1.2.2: Sia o:1 — R™ una curva di classe (almeno) C!. I vettore o’(t) ¢ il vettore tangente alla
curva nel punto o(t). Se o’(t) # O per ogni t € I diremo che o & regolare.

Osservazione 1.2.3. Nel caso di una curva o: [a,b] — R™ chiusa di classe C*, diremo che & regolare solo
se si ha anche o'(a) = o/(b), 0" (a) = 0" (b),...,0%) (a) = o™ (b). In particolare, una curva chiusa regolare
si prolunga sempre a un’applicazione 6: R — R" di classe C* e periodica.

Esempio 1.2.1. Grazie al Teorema 1.1.9, ogni linea € una curva regolare.

EseMpPIO 1.2.2. Dati vg, v1 € R" con v1 # O, la curva regolare o: R — R" data da o(t) = vo + tv; ¢ la
retta passante per vg nella direzione di v;.

Esempio 1.2.3. Le due curve o1, 09: R — R? date da
o1(t) = (zo + rcost,yp + rsint) e oa(t) = (xo + 7 cos2t,yo + rsin 2t),

hanno entrambe come sostegno la circonferenza di centro (zg,yo) € R? e raggio r > 0.

ESEMPIO 1.2.4. La curva o:R — R® data da o(t) = (acost,asint,bt) con a > 0, b € R* & detta elica
circolare di raggio a e passo b.

EsEMPIO 1.2.5. La cuspide o: R — R? data da o(t) = (¢?,¢%) & una curva non regolare.

ESEMPIO 1.2.6. La curva o:R — R? data da o(t) = (t,]t|) ¢ una curva continua, ma non & una curva di
classe C*.

In realta, a noi interessa piu il sostegno della curva che la curva stessa. Quindi introduciamo la seguente
relazione d’equivalenza:

Definizione 1.2.3: Diremo che due curve o: 1 — R™ e 6:1 — R" di classe C* sono equivalenti se esiste un
diffeomorfismo h: I — I di classe C* tale che & = ¢ o h; diremo anche che & & una riparametrizzazione
di o, e che h & un cambiamento di parametro. Infine, se A’ > 0 ovunque diremo che o e ¢ hanno la stessa
orientazione; altrimenti diremo che hanno orientazione opposta.

Osservazione 1.2.4. Per noi, un diffeomorfismo di classe C* & un omeomorfismo h tale che sia h che la
sua inversa h~! siano di classe C*. Per esempio, h(x) = 2z & un diffeomorfismo di classe C> di R con se
stesso, mentre g(z) = 2, pur essendo un omeomorfismo di R con se stesso, non ¢ un diffeomorfismo, neppure
di classe C*, perché la funzione inversa g~ (z) = z'/3 non ¢ di classe C.

Esercizio 1.2.1. Dimostra che quella appena definita ¢ effettivamente una relazione d’equivalenza sull’in-
sieme delle curve di classe C*.

Data una curva o, vogliamo trovare un rappresentante piu bello degli altri nella sua classe di equivalenza.
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Definizione 1.2.4: Sia I = [a,b] un intervallo. Una partizione P di I & una (k + 1)-upla (to,...,t;) con
a=ty <ty <---<t,=>b. Se P ¢ una partizione di I, poniamo ||P|| = max; [t; —t;_1].

Definizione 1.2.5: Data una curva o: [a,b] — R" e una partizione P di [a, b], poniamo

k
L(o,P) = llo(t;) = o(tj-1)]-
j=1

Diremo che o ¢ rettificabile se il limite

L(c)= lim L(o,P
(o) \|P\|Ho( )

esiste finito. Tale limite verra chiamato lunghezza di o.

Teorema 1.2.1: Ogni curva o: [a,b] — R" di classe C* ¢ rettificabile, e si ha

b
L(o) = / o ()] dt.

Dimostrazione: Essendo o di classe C!, I'integrale ¢ finito. Quindi dobbiamo dimostrare che per ogni € > 0
esiste & > 0 tale che se P ¢ una partizione di [a,b] con ||P| < § allora

b
/ o' ()|l dt — L(a,P)| < e. (1.2.1)
Prima di tutto notiamo che per ogni partizione P = (tg,...,t;) e ogni j = 1,...,k si ha
tj tj
lott) ~ o0l = | [ o0t < [ Joola
ti 1 ti—1
per cui sommando su j troviamo
b
La.P) < [ ool de (1.2.2)

quale che sia la partizione P.
Ora, fissato € > 0, I'uniforme continuita di ¢’ sull’intervallo compatto [a, b] ci fornisce un § > 0 tale che
€
Vs, t € [a,b] [t —s| <6 = |o'(t) —'(s)]| < e (1.2.3)
—a
Sia P = (to,...,t;) una partizione di [a, b] con ||P|| < 6. Per ogni j =1,...,k e s € [t;_1,t;] abbiamo
t.

ot~ ot = [ s [ (@0 @) d= - t)r )+ [ (@0 -0 () .

tj,1 tj71 tj71

Quindi
t
tj—1

g
> (t; = t-o)llo" ()l = 5=t = t5-1);

dove I'ultimo passaggio segue dal fatto che s, t € [t;_1,t;] implica |t — s| < J, e quindi possiamo appli-
care (1.2.3). Dividendo per t; — t;_1 otteniamo

lo(t;) —a(ti—1)ll £
=G0 o sy - 2
-1 a

da cui integrando rispetto a s su [t;_1,;] segue che

ndm—awqmz@f%fnw%m—/”Hw@—w@wm

lo(t;) — o(t;—1)] Z/j 0" (s)] ds — bf

tj—1

ti —ti—1).
a( J J 1)
Sommando su j =1, ...,k otteniamo quindi

b
L(o,P) > / o ()]l ds — <,
a
che insieme alla (1.2.2) ci da la (1.2.1). O
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Osservazione 1.2.5. Due curve equivalenti hanno sempre la stessa lunghezza: infatti, se 07 = oo h, dove
h:[a1,b1] — [a,b] & un cambiamento di parametro, allora

b1 by b
Loy = [Nttt = [’ (b | W 0ldt = [ o)) dr = Lio).

ai ay a
Quindi la lunghezza di una curva dipende solo dalla sua classe d’equivalenza (ma non solo dal sostegno: le
due curve dell’Esempio 1.2.3 ristrette a [0,27] hanno lunghezze diverse pur avendo lo stesso sostegno. 1l
problema & causato dal fatto che una delle due curve non ¢ iniettiva).

Il Teorema precedente suggerisce la seguente definizione:

Definizione 1.2.6: Sia o:I — R™ una curva. Fissato to € I, diremo lunghezza d’arco di o (misurata a partire

da to) la funzione s: I — R data da
t

st) = | o' (7l dr.
to
Diremo inoltre che o & parametrizzata rispetto alla lunghezza d’arco se ||o’|| = 1, cioe se la lunghezza d’arco
coincide col parametro ¢ a meno di una traslazione: s(t) = ¢ — to.

Osservazione 1.2.6. Nel seguito useremo sempre la lettera s per indicare il parametro lunghezza d’arco,
e la lettera t per indicare un parametro qualsiasi. Inoltre, le derivate rispetto al parametro lunghezza d’arco
saranno indicate con un punto, mentre le derivate rispetto a un parametro qualsiasi con un apice. Per
esempio, scriveremo & per do/ds, e o’ per do/dt. La relazione fra & e ¢’ segue facilmente dalla formula di
derivazione di funzione composta:

o'(1) = (1) = T (s(0)) - 5 (1) = o' D) 5 (5(1).

Analogamente
1

= oy 7 ¢ )

dove in quest’ultima formula la lettera s indica sia il parametro che la funzione lunghezza d’arco. Come
vedrai, I’'uso della stessa lettera per indicare questi due concetti diversi non creera, una volta abituati, alcuna
confusione.

Proposizione 1.2.2: Siao:I — R" una curva regolare. Fissatotg € I, indichiamo con s: I — R la lunghezza
d’arco di o misurata a partire da tg. Allora o1 = 0 0 s~! & (a meno di traslazioni nel parametro) I'unica
curva regolare parametrizzata rispetto alla lunghezza d’arco equivalente a o e con la sua stessa orientazione.

Dimostrazione: 1l fatto che oy sia una curva regolare parametrizzata rispetto alla lunghezza d’arco equiva-
lente a ¢ e con la sua stessa orientazione e gia stato verificato all’inizio della dimostrazione del Teorema 1.1.9.

Rimane da verificare 'unicita. Sia oo un’altra curva verificante le ipotesi. Essendo equivalente a o,
deve esistere un cambiamento di parametro h tale che o5 = o1 o h. Essendo sia o1 che oy parametrizzate
rispetto alla lunghezza d’arco otteniamo |h’'| = 1; siccome hanno la stessa orientazione deduciamo b’ = 1,
cioe h(t) =t + c per un opportuno c € R, e quindi o9 differisce da o1 per una traslazione, come voluto. [

Dunque ogni curva regolare ¢ equivalente a una (essenzialmente unica) curva parametrizzata rispetto
alla lunghezza d’arco. Per questo motivo, a meno di avviso contrario nel seguito supporremo sempre che
ogni curva regolare sia parametrizzata rispetto alla lunghezza d’arco.

Definizione 1.2.7: Se la curva o e parametrizzata rispetto alla lunghezza d’arco, il versore t = ¢ sara detto
versore tangente alla curva nel punto o(s).

Osservazione 1.2.7. Se o ¢ una curva regolare con una parametrizzazione qualunque, allora t = o’/||o’||.
In un certo senso, la variazione di t ci dice quanto la curva o si discosta dall’essere una retta:

Esercizio 1.2.2. Dimostra che il sostegno di una curva regolare o: I — R" & contenuto in una retta se e solo
se il versore tangente t: I — R"™ di o ¢ costante.

Per questo motivo introduciamo la seguente
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Definizione 1.2.8: La curvatura di una curva o parametrizzata rispetto alla lunghezza d’arco ¢ data da

K(s) = [[tE(s)] = [15(s)]-
Diremo che o & biregolare se x non si annulla mai. In questo caso il raggio di curvatura di o nel punto o(s)
er(s) =1/k(s).

EsempIo 1.2.7. Sia 0:0,277] — R? la circonferenza di centro lorigine e raggio r > 0 data da

o(s) = (rcos(s/r),rsin(s/r)).

Si verifica subito che ¢ € parametrizzata rispetto alla lunghezza d’arco, e che

t(s) = 6(s) = (—sin(s/r),cos(s/r)).
Quindi

t(s) = % (— cos(s/r), — Sin(s/r)),

per cui ¢ ha curvatura costante 1/r (e questo & il motivo per cui inverso della curvatura si chiama raggio
di curvatura).

E ragionevole pensare che se k(s) # 0 allora il versore t(s)/k(s) contiene informazioni geometriche
rilevanti sulla curva; in un certo senso, dice in che direzione si sta piegando la curva.
Ora, il vettore t non puo essere qualunque. Infatti, essendo t un versore, abbiamo

(t,t) =1,

e derivando otteniamo

In altre parole, t & sempre ortogonale a t.

Definizione 1.2.9: Sia o una curva biregolare. Allora il versore n(s) = t
alla curva nel punto o(s). Il piano passante per o(s) e parallelo a Span(
alla curva in o(s).

(s)/llt (s)| detto versore normale
t(s),n(s)) ¢ detto piano osculatore

Osservazione 1.2.8. Se 0:1 — R? & una curva regolare nel piano, per ogni s € I esiste un unico ver-
sore n(s) ortogonale a t(s) e tale che la coppia {t(s),n(s)} abbia la stessa orientazione della base canonica.
Essendo t L t, deve esistere &(s) € R tale che t(s) = &(s)n(s). La funzione &: I — R cosi definita & detta
curvatura orientata di o, ed & legata alla curvatura usuale dall’identita k = |R|.

Nel resto di questo paragrafo (a parte un esercizio finale) considereremo soltanto curve nello spazio R3
o nel piano R?.

Se il sostegno di una curva regolare ¢ contenuto in un piano, ¢ chiaro (perché?) che il piano osculatore
della curva e costante. Questo fa pensare che si possa misurare quanto una curva non € piana vedendo
quanto varia il piano osculatore. Siccome un piano (per l'origine in RB) ¢ completamente determinato dalla
sua direzione ortogonale, siamo portati alla seguente

Definizione 1.2.10: Sia ¢:1 — R® una curva biregolare. Il versore binormale alla curva in o(s) ¢ dato da
b(s) = t(s) A n(s), dove A indica il prodotto vettore in R®. La terna {t,n,b} di applicazioni a valori
in R® ¢ detta riferimento di Frenet associato alla curva; per ogni s € I la terna {t(s),n(s),b(s)} & una base
ortonormale di R®, con la stessa orientazione della base canonica di R?, che varia 1ungo la curva.

Proposizione 1.2.3: Sia 0:1 — R® una curva biregolare. Allora il sostegno di o & contenuto in un piano
se e solo se il versore binormale é costante.

Dimostrazione: Supponiamo che il sostegno di ¢ sia contenuto in un piano; in particolare deve esistere
un piano 7 passante per l'origine tale che o(s) — o(s’) € 7 per ogni s, s’ € I. Considerando il rapporto
incrementale, da questo si deduce subito che t(s) € 7 per ogni s € I. In maniera analoga si trova t(s) € =
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per ogni s € I, e quindi n(s) € m per ogni s € I. Quindi b(s) & sempre uno dei due versori normali a 7;
dovendo variare con continuita, & costante.

Viceversa, supponiamo che b sia un vettore costante; vogliamo dimostrare che il sostegno di ¢ & contenuto
in un piano. Ora, un piano € determinato da un suo punto e da un versore ortogonale: un punto p € R3
appartiene al piano passante per po € R® e ortogonale al vettore v € R® se e solo se (p — po,v) = 0.
Prendiamo ¢y € I; vogliamo dimostrare che il sostegno di ¢ & contenuto nel piano passante per o(tg) e
ortogonale a b. Questo equivale a far vedere che

(J(t),b) = (U(to),b),
ovvero che la funzione t — (o(t),b) & costante. Ma infatti abbiamo
d
L (6.,b) = (t,b) =0,
4 (o1) = (¢.b)
per cui il sostegno di o ¢ effettivamente contenuto nel piano di equazione (p — o (to),b) = 0. O

Vediamo cosa possiamo dire sulla derivata del versore binormale, derivata che dovrebbe misurare quanto
una curva biregolare non € piana. Anche b & un versore; quindi il ragionamento gia fatto per il versore
tangente ci dice che anche stavolta b 1 b. D’altra parte,

b=tAn+tAn=tAn,
per cui be perpendicolare anche a t; quindi b dev’essere un multiplo di n.

Definizione 1.2.11: Sia o:1 — R? una curva biregolare. La torsione di ¢ ¢ la funzione 7:1 — R tale che
b = —7rn. (Attenzione: in alcuni testi la torsione viene definita come l'opposto della funzione da noi
introdotta.)

Possiamo ora calcolare anche la derivata di n:
n=bAt+bAt=-nAt+bAkn=—kt+7b.

Definizione 1.2.12: Le tre equazioni

t = kn,
n=—rt +7b, (1.2.4)
b=-mn

)

sono dette formule di Frenet-Serret della curva biregolare o.

Osservazione 1.2.9. Il riferimento di Frenet dipende dall’orientazione della curva, mentre la curvatura e
la torsione no. Pill precisamente, se o: I — R? & una curva biregolare parametrizzata rispetto alla lunghezza
d’arco, e 01(s) = o(—s) & una curva parametrizzata rispetto alla lunghezza d’arco equivalente a o ma con
lorientazione opposta, allora abbiamo t1(s) = —t(—s), k1(s) = k(—$), n1(s) = n(—s), bi(s) = —b(—s),
e 71(s) = 7(—s), dove 'indice 1 ovviamente identifica gli oggetti e le quantita relative alla curva o.

Osservazione 1.2.10. La curvatura orientata di curve piane dipende invece dall’orientazione della curva.
Infatti, con le notazioni dell’osservazione precedente applicate a una curva piana o, troviamo t1(s) = —t(—s),
R1(s) = —R(—s) e ni(s) = —n(—s).

Osservazione 1.2.11. Ci sono delle formule di Frenet-Serret anche per le curve piane. Siccome, per il
solito motivo, n & ortogonale a n, & un multiplo di t. Derivando (t,n) = 0 troviamo (t,n) = —&, e quindi

t = &n,

n = —kt,
sono le formule di Frenet-Serret per le curve piane. Nell’Esercizio 1.2.11 vedremo formule analoghe per curve
in R™.

L’idea di fondo della teoria locale delle curve € che curvatura e torsione determinano completamente
una curva. Per esprimere esattamente cosa intendiamo, ci serve una definizione.
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Definizione 1.2.13: Un movimento rigido di R" & un isomorfismo affine p: R" — R" della forma p(x) = Az +0,
dove A € SO(n) ={A€GL(n,R)| ATA=Te det A=1},ebecR".

Esercizio 1.2.3. Sia 0:1 — R® una curva biregolare parametrizzata rispetto alla lunghezza d’arco, e
p:R?® — R® un movimento rigido. Dimostra che p o o & una curva biregolare parametrizzata rispetto alla
lunghezza d’arco con la stessa curvatura e la stessa torsione di o.

Quindi curvatura e torsione non possono distinguere due curve ottenute 'una dall’altra tramite un
movimento rigido; ma questa & I'unica ambiguita. Le formule di Frenet-Serret sono esattamente lo strumento
che ci permettera di dimostrarlo, usando il seguente teorema di Analisi:

Teorema 1.2.4: Dati un intervallo I C R, un punto ty € I, un vettore ug € R", e due applicazioni f: I — R"
e A:1 — M, ,(R) di classe C*, con k € N* U {oo}, esiste un’unica soluzione u:I — R™ di classe C* del
problema di Cauchy

{ u' = Au + f,

U(to) = Up.-

In particolare, la soluzione del problema di Cauchy per sistemi lineari di equazioni differenziali ordinarie
esiste su tutto lintervallo di definizione dei coefficienti.
E quindi:

Teorema 1.2.5: (fondamentale della teoria locale delle curve) Date due funzioni x: I — RT e 7:1 — R
di classe C* con k > 0 sempre, esiste un’unica (a meno di movimenti rigidi dello spazio) curva o:1 — R3
biregolare parametrizzata rispetto alla lunghezza d’arco con curvatura k e torsione T.

Dimostrazione: Cominciamo con lesistenza. Le formule di Frenet-Serret (1.2.4) sono un sistema lineare di
equazioni differenziali ordinarie in 9 incognite, le componenti di t, n e b, a cui possiamo quindi applicare il
Teorema 1.2.4.

Fissiamo allora un punto so € I e una base ortonormale {tg,ng, bp} con la stessa orientazione della base
canonica. Per il teorema appena citato, esiste un’unica terna di funzioni t, n, b: I — R? verificanti (1.24) e
tali che t(sg) = to, n(sg) = ng e b(sg) = by.

Ora, dalle (1.2.4) ricaviamo che le funzioni (t,t), (t,n), (t,b), (n,n), (n,b) e (b,b) soddisfano il
seguente sistema di equazioni differenziali lineari ordinarie

o+

t) = 2x(t,n),

n) = —k(t,t) + 7(t,b) + k(n,n),
ta b) = _T(t7 Il) + ’%(n7 b)7
n,n) = —2x(t,n) + 27(n, b),
n,b) = —k(t,b) — 7(n,n) + 7(b, b),
b,b) = —27(n, b),

S~—"
|

ey e L R e
AN AN N AN N /N

con condizioni iniziali
(t,t)(s0) =1, (t,n)(sg) =0, (t,b)(so) =0, (n,n)(sp) =1, (n,b)(sg) =0, (b,b)(sp) = 1.

Ma si verifica subito che (t,t) = (n,n) = (b,b) =1, (t,n) = (t,b) = (n,b) = 0 & una soluzione dello stesso
sistema di equazioni differenziali soddisfacente le stesse condizioni iniziali in sy. Quindi & I'unica soluzione,
per cui la terna {t(s),n(s),b(s)} & una terna ortonormale per ogni valore di s € I. Ha anche sempre
I'orientazione della base canonica di R®: infatti (t A n,b) & una funzione continua in I a valori in {+1, —1}
e vale +1 in sp; quindi (t An,b) = +1, come voluto.

Definiamo infine la curva o: I — R® ponendo

o(s) = /S:t(t) dt.

La curva o ¢ di classe C* con derivata t(s), per cui ¢ regolare, parametrizzata rispetto alla lunghezza d’arco
e con versore tangente t. Siccome le (1.2.4) c¢i danno ¢ = kn con x > 0 sempre, ne deduciamo che « ¢ la
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curvatura e n il versore normale di o (che risulta quindi biregolare). Ne segue che b & il versore binormale
e, di nuovo grazie a (1.2.4), 7 & la torsione di o.

Vediamo ora I'unicita. Sia o1: I — R® un’altra curva biregolare parametrizzata rispetto alla lunghezza
d’arco con curvatura s e torsione 7. Fissiamo sg € I; a meno di un movimento rigido possiamo supporre
che o(sg) = 01(s0) e che o e oy abbiano lo stesso riferimento di Frenet in sp. Per I'unicita della soluzione di
(1.2.4) ne segue che ¢ e o1 hanno lo stesso riferimento di Frenet in tutti i punti di I; in particolare, & = &7.

Ma allora

o(s) =o(so) + /S o(t)dt = o1(so) —|—/ a1(t) dt = o1(s),

So S0
eo| =o0. O

Osservazione 1.2.12. In modo assolutamente analogo si dimostra il seguente risultato: Data una funzione
~ . . . . . e . . 2

R: 1 — R di classe C°, esiste un’unica (a meno di movimenti rigidi del piano) curva o:1 — R* regolare
parametrizzata rispetto alla lunghezza d’arco con curvatura orientata k.

Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 1.2.4. Sia o:1 — R? una curva biregolare con una parametrizzazione qualunque. Dimostra che i
versori tangente, normale e binormale, la curvatura e la torsione di ¢ sono dati dalle formule

t O_/ O./ /\ 0.// (O_/ /\ 0_//) /\ 0_/ ||0./ /\ O.//H (a_/ /\ 0_//70_///)
= — = n——————— = =
lo”1l” llo” A o”||” lo” Ao [ lo"]]” lo’lI® llo” A a2
Esercizio 1.2.5. Sia 0:1 — R? una curva piana regolare, e scriviamo o(t) = (z(t),y(t)), dove t & un

parametro qualunque. Dimostra che la curvatura orientata di o ¢ data da

x/y// _ x”y’

()2 + (v)2)"*

[%:

Esercizio 1.2.6. Sia 0:1 — R? una curva piana regolare, e supponiamo sia data in coordinate polari
dall’equazione r = p(f) per un’opportuna funzione p. Dimostra che la lunghezza d’arco di o & data da

/]
s(6) = /9 VT (PR db,

e che la sua curvatura orientata ¢
2(p")* = pp” +p?
3/2
(0* +(p)?)
Esercizio 1.2.7. Dimostra che ogni curva piana regolare con curvatura orientata costante ¢ un arco di
circonferenza (o un segmento se & = 0).

E'/:

Esercizio 1.2.8. Sia 0:I — R? una curva piana regolare e F:R?> — R una funzione di classe C' tale

che Foo = 0. Dimostra che per ogni ¢ € I il vettore tangente ¢’(¢) & ortogonale al gradiente di F' calcolato

in o(¢).

Esercizio 1.2.9. Sia o: I — R® una curva biregolare. Dimostra che le seguenti condizioni sono equivalenti:
(i) esiste un vettore v € S? e una costante ag € R tali che (t,v) = ao;

(ii) esiste un piano per lorigine 7 tale che n(s) € 7 per ogni s € I;

(iii) esistono due costanti a, b € R non entrambe nulle tali che ax + br = 0.

Una curva soddisfacente una qualsiasi di queste condizioni si chiama elica. Dimostra che ogni elica ammette

una parametrizzazione della forma o(t) = v(t) + (t — to)v, dove 7y & una curva piana parametrizzata rispetto
alla lunghezza d’arco, e v € un vettore ortogonale al piano contenente ~.
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Esercizio 1.2.10. Sia o:1 — R? una curva biregolare parametrizzata rispetto alla lunghezza d’arco, con
curvatura k e torsione 7. Supponiamo che 7(s), %(s) # 0 per ogni s € I. Dimostra che il sostegno di o &
contenuto nella sfera unitaria S? se e solo se

1\? (L ?
K TK?
(Suggerimento: per dimostrare la sufficienza della condizione, fai vedere che applicazione

=0+ (1/k)n — (R/Tﬁz)b

Il
—

& costante.)

Esercizio 1.2.11. In questo esercizio vogliamo derivare delle formule di Frenet per curve in R™; il tuo compito
¢ sistemare i dettagli del ragionamento. Sia o:1 — R" una curva parametrizzata rispetto alla lunghezza
d’arco, e poniamo t; = d. Se o ¢ biregolare, per il solito motivo esistono un versore t, ortogonale a t; e
un 1 > 0 tali che t; = K1to. Ora, ty & ortogonale a ts, € (thfg) = —k1. Se supponiamo che to non sia
parallelo a t1 (ovvero che non sia contenuto nel piano generato da t; e ta, e diremo che o & 3-regolare), allora
possiamo trovare un versore ts ortogonale a t; e to, e un ko > 0 tali che t5 = —k1t; + Kaots. Proseguiamo.
Il vettore ts & ortogonale a t3 e a ty, e (ta,t3) = —ko. Se t3 non ¢ parallelo a t3 (e quindi non & contenuto
nel sottospazio generato da tq, ta, ts, e diremo che o & 4-regolare), possiamo trovare k3 > 0 e un versore ty4
ortogonale a t1, to, t3 tale che fg = —koty + Kk3t4. Continuando in questo modo arriveremo ad avere n — 1
versori t1,...,t,_1 ortogonali a due a due, e n — 2 funzioni positive k1, ..., K,_2 tali che

b = —Kjo1tjo1 + Ayt

per j=1,...,n— 2 (dove kg = 0). A questo punto esiste un unico versore t,, tale che {ti,...,t,} sia una
base ortonormale di R™ con la stessa orientazione della base canonica. Se supponiamo che t,_; non sia
contenuto nel sottospazio generato da ty,...,t,—1 (e quindi che la curva sia (n — 1)-regolare), troviamo un
Kn_1 Don necessariamente positivo tale che

tho1 = —kKn_atp_2+Kp_1t, € th, = —Kn_1tn_1.

La funzione &; € chiamata curvatura j-esima della curva o. Dimostra infine, sulla falsariga del Teorema 1.2.5,
che le curvature j-esime determinano univocamente la curva (n — 1)-regolare o parametrizzata rispetto alla
lunghezza d’arco a meno di movimenti rigidi di R™.

1.3 Teorema di Jordan per curve regolari

I prossimi due paragrafi sono dedicati a risultati di teoria globale delle curve piane, cioe a risultati che
mescolano la geometria differenziale delle curve con proprieta (topologiche o d’altro genere) del loro sostegno
preso tutto assieme.

Cominciamo con una definizione.

N

Definizione 1.3.1: Una curva o: [a,b] — R™ ¢ detta semplice se o ¢ iniettiva su [a,b) e su (a,b]. Una curva
continua semplice chiusa nel piano ¢ detta curva di Jordan.

Il Teorema della curva di Jordan dice che una curva continua semplice chiusa divide il piano in esatta-
mente due componenti connesse, di cui &€ bordo. Vogliamo ora esporre una dimostrazione di questo risultato
per curve regolari (in particolare differenziabili).

Osservazione 1.3.1. In questo paragrafo sara sufficiente supporre che le curve regolari siano di classe C?,
non necessariamente di classe C°.

Come vedremo, per la dimostrazione ci serviranno due ingredienti: 'intorno tubolare di una curva (per
dimostrare che il complementare di una curva di Jordan ha al pit due componenti connesse), e 'indice
di avvolgimento (per dimostrare che il complementare di una curva di Jordan ha almeno due componenti
connesse).

Cominciamo ricordando un classico teorema di Analisi, e un noto teorema di Topologia:
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Teorema 1.3.1: (della funzione inversa) Sia F:Q — R" una funzione di classe C*, con k € N* U {oco}, dove
Q ¢ un aperto di R"™. Sia pg € Q tale che

det Jac F(pg) # 0.

Allora esistono un intorno U C Q di pg e un intorno V. C R"™ di F(pg) tale che F|y:U — V sia un
diffeomorfismo con inversa di classe C*.

Teorema 1.3.2: (Numero di Lebesgue) Sia 84 = {Us}aeca un ricoprimento aperto di uno spazio metrico
compatto X. Allora esiste un numero § > 0, detto numero di Lebesgue del ricoprimento i, tale che per
ogni x € X esiste a € A tale che B(x,0) C U,.

Dimostrazione: Sia {Uy,...,U,} un sottoricoprimento finito di i, e per j = 1,...,n definiamo la funzione
continua f;: X — R tramite f;(z) = d(z, X \ U;). Infine poniamo f = max{fi,...,fn}. La funzione f
e continua; inoltre, se € X deve esistere un 1 < j < n tale che x € Uj, per cui f(z) > f;(z) > 0.
Dunque f > 0 sempre; sia § > 0 il minimo di f in X. Ma allora per ogni x € X deve esistere 1 < j < n tale
che f;(x) > 4, per cui la palla aperta di centro x e raggio 0 & tutta contenuta in U;, come voluto. ]

Definizione 1.3.2: Sia o:[a,b] — R? una curva regolare nel piano, di sostegno C' = o([a,b]); se o non ¢ chiusa,
porremo inoltre C° = o((a,b)). Se n(t) & il versore normale a o in o(t) = p € C, ed € > 0, indichiamo
con I, (p,e) il segmento o(t) + (—¢,e)n(¢) di lunghezza 2 centrato in p e ortogonale a . Indichiamo inoltre
con N, (e) 'unione dei segmenti I, (p, €), al variare di p € C° se o non & chiusa, e al variare dip € C se o &
chiusa.

Teorema 1.3.3: (Esistenza dell’intorno tubolare) Sia o [a,b] — R? una curva regolare semplice di classe C*.
Allora esiste g > 0 tale che I, (p1,e0) NIy (p2,c0) = @ per ogni p; # ps € C = o([a,b]). Inoltre, se 0 < e < g
linsieme N, (€) € un intorno aperto del sostegno di o (esclusi gli estremi se la curva non ¢ chiusa).

Dimostrazione: Prima di tutto ricordiamo che dire che la curva o & di classe C? in [a,b] vuol dire che si
estende a un’applicazione di classe C in un intorno aperto I di [a, b]. In particolare, se o & chiusa la possiamo
estendere a un’applicazione periodica di classe C? definita su tutto R.

Cominciamo col dimostrare Desistenza locale dell’intorno tubolare. Sia F: I x R — R? data da

F(t,z) = o(t) + 2n(t), (1.3.1)

in modo che Ny(¢) = F([a,b] x (—¢,¢)) se o ¢ chiusa, e Ny(¢) = F((a,b) x (—¢,¢)) se o non & chiusa.
Trattandosi di una curva nel piano, la regolarita del versore normale n ¢ uguale alla regolarita del versore
tangente t, che & di classe C'; quindi I’applicazione F & di classe C'. Ora, il determinante jacobiano di F

in (¢,0) ¢
oy (t)  oy(t)
() no(t)| 7

Fissato tg € [a, b], il Teorema della funzione inversa ci assicura che esistono dy,, ¢, > 0 tali che F ristretta a
(to — Oty, to + 01y) X (—€ty, €1, ) sia invertibile; e questo vuol dire esattamente che I, (p1,er,) N Ix(p2,ct,) = @
per ogni p1 = o(t1) # o(ta) = p2 con ty, ta € (tg — dty,t0 + 0t,) = Ui, Inoltre, siccome F ristretta
a Uy, X (—€¢,,€4,) © iniettiva e ha immagine aperta, otteniamo che o(Uy,) = F(Uy, X (—€4,,64,)) N C & un
aperto di C.

Abbiamo quindi un ricoprimento aperto {Ut}ie[q,5 di [a,b], che ¢ un insieme compatto; estraiamo
un sottoricoprimento finito {Uy,,..., U }. Allora § = {o(Uy,),...,0(Us.)} € un ricoprimento aperto del
sostegno C' di o, che & compatto; sia ¢ > 0 il numero di Lebesgue di . Allora g9 = min{ey,,...,e,,0/2}
& come voluto. Infatti, prendiamo p, ¢ € C distinti e supponiamo che esista py € I,(p,e9) N I5(gq,20). La
disuguaglianza triangolare ci dice allora che

det

lp —qll < llp — poll + [lpo — all < 2e¢ <6,

per cui p e ¢ devono appartenere a uno stesso o(Uy;). Ma allora I,(p,c0) N I5(q,0) # @ implica p = g,
contraddizione, e ci siamo.

In particolare, abbiamo dimostrato che F' & globalmente iniettiva su (a,b) x (—&g,&0), e che la sua
immagine N,(gg) ¢ un intorno aperto di a((a, b)) Se la curva ¢ chiusa, lo stesso ragionamento ci dice che
Ny (e0) € un intorno aperto di tutto il sostegno della curva. O
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Definizione 1.3.3: Sia o:[a,b] — R? una curva regolare semplice, e sia g9 > 0 dato dal teorema precedente.
Allora per ogni 0 < € < g I'insieme N, (&) ¢ detto intorno tubolare di raggio € della curva o.

Osservazione 1.3.2. Se ¢ € N, (¢), allora il punto pg = o(to) del sostegno C di ¢ piu vicino a ¢ & 'unico
punto p € C per cui q € I,(p,e). Infatti, se t — ||g — o(t)]|> ha un minimo in ¢y, allora derivando troviamo

(q —o(to),0’(to)) =0, e quindi q € I (po,ée).

EsEmMPIO 1.3.1. Fissato 2 < a < 3, sia 0:R — R? la curva data da o(t) = (¢, f(t)), dove f:R - R ¢ la

funzione
1

t*sins set>0
t) = t ’
f() {O set <0.

Siccome J
1 1 1
— (t%sin= ) = at® Lsin— — t* 2 cos —,
dt t t t
la funzione f e la curva o sono di classe C', ma non di classe C?; vogliamo far vedere che o (ristretta a un
qualsiasi intervallo chiuso contenente l'origine) non ha un intorno tubolare. Prima di tutto, ¢ facile vedere
che

(to‘_l (% cos% — asin%) 71)

n(t) =

\/1 + t2(a=1) (% cos% — asin %)2

per t > 0, e n(t) = (0,1) per t < 0. Se la curva o avesse un intorno tubolare, dovrebbe esistere un € > 0
tale che per ogni ¢t > 0 abbastanza piccolo il segmento che va da o(t) all’asse delle y parallelamente a n(t)
ha lunghezza almeno €. Ma la lunghezza di questo segmento &

e VIO (ot —asin )’

1 | ’
‘COSt ozsmt|

(1)

e per ogni € > 0 possiamo trovare un valore di ¢ arbitrariamente vicino a zero per cui £(t) < &, contraddizione.

Per introdurre il secondo ingrediente, I'indice di avvolgimento, ricordo alcuni fatti di topologia algebrica
elementare.

Definizione 1.3.4: Indichiamo con m:R — S! il rivestimento universale 7(t) = (cost,sint). Se ¢: X — St &
un’applicazione continua da uno spazio topologico X a valori in S L un sollevamento di ¢ & un’applicazione
continua ¢: X — R tale che mo ¢ = ¢.

Definizione 1.3.5: Siano ¢g, ¢1: X — Y due applicazioni continue fra spazi topologici. Un’omotopia fra ¢
e ¢1 & un’applicazione continua ®: [0, 1] x X — Y tale che ®(0, ) = ¢ e ®(1,-) = ¢1. Se esiste un’omotopia
fra ¢y e ¢1, diremo che ¢y e ¢; sono omotope. Se X = [a,b] & un intervallo della retta reale e ¢y e ¢; sono
chiuse, cioe ¢g(a) = ¢o(b) e ¢1(a) = ¢1(b), allora richiederemo sempre che 'omotopia ® sia di curve chiuse,
cioe ®(-,a) = (-, b).

Ci servira il seguente teorema di Topologia Algebrica:

Teorema 1.3.4: (i) Sia ¢:[a,b] — S* una curva continua, e ty € R tale che w(tg) = ¢(a). Allora esiste un
unico sollevamento ¢: [a,b] — R di ¢ tale che ¢(a) = to.

(ii) Sia ®:[0,1] x [a,b] — S un’applicazione continua in S, e tg € R tale che 7(ty) = ®(0,a). Allora esiste
un unico sollevamento ®: [0,1] x [a,b] — R di ® tale che ®(0,a) = to.

(iii) Pit in generale, se X & uno spazio topologico semplicemente connesso, ¢: X — S' & un’applicazione
continua, xo € X ety € R ¢ tale che m(tg) = ¢(x0), allora esiste un unico sollevamento X >R dig¢
tale che ¢(xq) = to.

(iv) Se q~51 e (;32 sono due sollevamenti di un’applicazione continua ¢: X — S', dove X & uno spazio topologico
connesso, allora esiste un k € 7 tale che c;~52 — q~51 = 2km.

(v) Se ¢o:[a,b] — S' & una curva continua non surgettiva, allora ¢y & omotopa alla curva costante

¢1(t) = (1,0).

Possiamo allora introdurre la seguente
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Definizione 1.3.6: Sia ¢:[0,1] — S* una curva continua chiusa. Se ¢:[0,1] — R & un sollevamento di ¢, allora
il grado di ¢ ¢ il numero

1 -
deg 6 = 5 (d(1) ~ 4(0)) € .
Nota che deg ¢ € necessariamente un numero intero, in quanto 7r(¢~)(l)) =¢(l) = ¢(0) = 7r(¢~>(0))

In parole povere, il grado € il numero di giri fatti da ¢ prima di chiudersi. E facile verificare che il grado
di ¢ non dipende dal sollevamento scelto, in quanto due sollevamenti diversi differiscono per una costante
additiva, grazie al Teorema 1.3.4.(iv). In particolare, una curva costante ha grado zero, in quanto ogni suo
sollevamento ¢ costante.

La proprieta principale del grado e:

Proposizione 1.3.5: Siano ¢g, ¢1:[0,1] — S due curve chiuse omotope. Allora

deg ¢g = deg ¢;.

In particolare, se ¢y € omotopa a una costante allora deg ¢g = 0.
Dimostrazione: Sia ®:[0,1] x [0,1] — S! un’omotopia di curve chiuse fra ¢g e ¢1, e poniamo ¢,(t) = ®(s,t);

in particolare, tutte le ¢, sono curve chiuse. Solleviamo ® a una ®:[0,1] x [0,/] — R. Siccome le ¢, sono

chiuse, ®(s,0) — ®(s,1) € 277 per ogni s € [0,1]. Ma allora s — ®(s,0) — ®(s,1) & una funzione continua a
valori in uno spazio totalmente sconnesso; quindi € necessariamente costante, e

21 deg ¢o = ®(0,0) — ®(0,1) = ®(1,0) — ®(1,1) = 2w deg ;.

O

Se ¢:[0,1] — S C R? & differenziabile possiamo dare una formula integrale per il sollevamento e il
calcolo del grado:

Proposizione 1.3.6: Sia ¢ = (¢1,$2):[0,1] — ST una curva di classe C', e scegliamo ¢ € R in modo che
¢(0) = (cos g, sinxg). Allora la funzione ¢:[0,1] — R data da

N t
ww:m+4wm&wwa@

& il sollevamento di ¢ tale che ¢(0) = .

Dimostrazione: Dobbiamo far vedere che cos ¢ = ¢ e sin ¢ = ¢, cioé che
0= (¢ — cos @)+ (¢g — sin )? = 2 — 2(¢1 cos ¢ + ¢po sin @),
per cui basta verificare che R ~
¢1c08s P+ Ppasing = 1.

Questa eguaglianza & vera per ¢ = 0; quindi basta controllare che la derivata di ¢ cosqg + ¢osino sia
identicamente nulla. Ma infatti, derivando ¢? 4+ ¢2 = 1 otteniamo

G197 + P2y =0, (1.3.2)
e quindi 3 ~ o } o R
(¢1cos @ + o sing)’ = ¢ cos g — ¢'p1sin P + Py sin @ + ¢’ Pz cos ¢
= (¢} + d102dy — ¢)¢3) cos b + (¢ + b1 — Pho?)sin g
= ¢\ (1 — ¢7 — ¢3) cos b + ¢h(1 — ¢3 — $7) sin @
=0.
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Corollario 1.3.7: Sia ¢ = (¢1,$2): [0,1] — S una curva chiusa di classe C'. Allora

1 l
deg = - [ (016, = i) .

Dimostrazione: Segue dalla proposizione precedente e dalla definizione di grado. Il
Se identifichiamo R? con C la formula precedente ha un’espressione anche pitt compatta:

Corollario 1.3.8: Sia ¢:[0,/] — S* C C una curva chiusa di classe C'. Allora

1 1 ¢I
degd = — | L at.
6P=o5 /0 b

Dimostrazione: Siccome ¢ ¢ a valori in S*, si ha 1/¢ = ¢, dove ¢ ¢ il complesso coniugato di ¢. Scri-
vendo ¢ = ¢1 + ¢ abbiamo

0= ($10] + d20h) + i(P10h — B d2) = i(P165 — P ¢2),

grazie a (1.3.2), e la tesi segue dal corollario precedente. Il

Data una curva chiusa continua nel piano, ci sono (almeno) due modi per associarvi una curva a valori
in S', e quindi un grado. In questo paragrafo ci interessa il primo modo, mentre nel prossimo paragrafo
useremo il secondo.

Definizione 1.3.7: Sia 0:[0,1] — R? una curva continua chiusa piana. Scelto un punto p ¢ o([0,1]) possiamo
definire ¢,:[0,1] — S* ponendo

o(t)—p
Pp(t) = -
: llo(t) — pl
L’indice di avvolgimento di o relativamente a p & allora definito come ¢,(0) = deg ¢; misura il numero di
volte che o ruota intorno a p.

Le proprieta principali dell’indice di avvolgimento sono contenute nel

Lemma 1.3.9: Sia 0:[0,]] — R? una curva chiusa continua piana, e sia C' una componente connessa
dell’aperto U = R*\ ¢([0,1]). Allora:

(i) tpy(0) = tp, (o) per ogni coppia di punti py, p1 € C;
(ii) se C ¢é la componente connessa illimitata di U allora v,(c) = 0 per ogni p € C.

Dimostrazione: (i) Sia a:[0,1] — C una curva con a(0) = pg e a(1) = p1, e definiamo ®: [0,1] x [0,1] — S!
ponendo
t) —
O(s,t) = M,
lo(t) = a(s)ll

La mappa ® ¢ un’omotopia di curve chiuse fra ¢,, e ¢,,, e quindi ¢y, (o) = ¢p, (0).

(ii) Siccome [0,1] & compatto, il sostegno di o & contenuto in un disco chiuso D di centro lorigine e
raggio R > 0 abbastanza grande (e, in particolare, esiste una sola componente connessa illimitata di U).
Sia pg € C'\ D; allora le linee congiungenti py a punti del sostegno di o sono tutte contenute nel settore di
vertice py e lati le semirette per py tangenti a D. Questo vuol dire che I'immagine di ¢,, ¢ contenuta in
un sottoinsieme proprio di S', e quindi ¢p, € omotopa a una curva costante. Siccome il grado di una curva
costante e nullo, otteniamo ¢p, (o) = 0. O

Nel caso di curve differenziabili, il Corollario 1.3.8 fornisce una formula integrale per il calcolo dell’indice
di avvolgimento:
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Lemma 1.3.10: Sia 0:[0,/] — C una curva di classe C' chiusa piana, e py ¢ C = o([0,1]). Allora Iindice
di avvolgimento di o relativamente a pg é dato da

1 1 A
po (o) = : / dz = — 7 dt.
21t Jo z — po 2mi Jo 0 —Dpo

Dimostrazione: Poniamo ¢ = (¢ — pg)/||c — po||. Un veloce conto mostra che
/ /
? —im-2 ;
¢ o —Ppo

quindi per avere la tesi basta dimostrare che I'integrale della parte reale di ¢’/(c — pg) & nullo. Ma infatti

a'(t)

d
Zlog ||lo(t) — pol| = Re ———2—
g llo(t) ~poll = Re -

dt

e quindi

l /

g

/ Re dt = log |lo(1) — po|| — log [[o(0) — po| = 0.
0 g —Po

O

Abbiamo quanto serve per dimostrare il

Teorema 1.3.11: (di Jordan per curve regolari) Sia 0:[0,]] — R? una curva piana, regolare, chiusa e
semplice, di classe C?, e indichiamo con C' = o([0,1]) il suo sostegno. Allora R? \ C' ha esattamente due
componenti connesse, e C' e la loro frontiera comune.

Dimostrazione: Scegliamo ¢ > 0 in modo che N,(¢) sia un intorno tubolare di ¢. Indichiamo con T4
(rispettivamente, T ) I'insieme dei punti di N, () della forma o(t)+dn(t) con § > 0 (rispettivamente, § < 0).
E chiaro che N,(¢)\ C = T UT-_. Inoltre, sia Ty che T_ sono connessi. Infatti, dati o(t;) + é1n(ty),
o(ta) + don(ts) € Ty, il cammino che partendo da o(t1) 4+ d1n(¢1) si muove prima parallelamente a o fino a
raggiungere o(t2) + d1n(t2) e poi parallelamente a n(ty) fino a raggiungere o(t2) 4 don(tz) € tutto contenuto
in Ty ; e in modo analogo si dimostra che 7T & connesso.

Dimostriamo prima di tutto che R? \ C ha al massimo due componenti connesse. Infatti, sia K una
componente connessa di R? \ C; chiaramente & # 0K C C. D’altra parte, se p € C esiste un intorno di p
contenente solo punti di C, di T e di 7. Quindi o T o T_ (o entrambi) intersecano K; essendo connessi,
abbiamo che K D T, oppure K D T_, e in particolare 0K O C. Ne segue che ci sono al massimo due
componenti connesse del complementare del sostegno di o, e che il loro bordo coincide con C.

Per dimostrare invece che ci sono almeno due componenti connesse del complementare di C, sce-
gliamo ¢y € (0,1), e per 0 < |§] < & poniamo ps = o(tg) + on(ty). Chiaramente, ps € T4 (rispettivamente
ps € T_) se § > 0 (rispettivamente, § < 0); quindi, essendo Ty connessi, il valore di ¢,, (o) dipende solo dal
segno di §. In particolare, il numero intero

A= ps (o) — LP—&(J)

¢ indipendente da § > 0. Dunque per concludere la dimostrazione ci basta far vedere che A # 0; infatti
in tal caso il Lemma 1.3.9 ci dice che necessariamente ps e p_s devono appartenere a componenti connesse
distinte di R*\ C.

Ora, identifichiamo R? con C, e supponiamo o parametrizzata rispetto alla lunghezza d’arco. Allora il
versore normale di o si ottiene ruotando ¢ di w/2 radianti, operazione che nel campo complesso equivale a
moltiplicare per ¢, per cui possiamo scrivere n = id. Dunque per ogni § > 0 otteniamo

( 1 1 ) 5(t) = 2166 (to)o (t) .
o(t)—ps o(t) —p-s (o(t) — o (to))” + 626 (t0)>2
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Siccome o & di classe C* e (ty) # 0, possiamo scrivere o(t) — o(tg) = (t — to)d(to)[1 + r(t)], dove r(t) — 0
quando t — tg. Quindi

( 1 B 1 ) &(t) = 21 a(t)
o(t)—ps  o(t) —p_s (t —to)2[1L + 7(t)]2 + 82 6(to)
_ 2i6 (t —t0)? + 62 { N a(t) — d(to)]
(t—t0)? + 6% (t —to)?*[1 +7(t)] + 62 & (to)
2i0
DA
eon B 2i6 (t—t9)?
R(t) = TR {s(t) — () (2+ (1) (1 + 5(t)) (ETRE ‘;(t)]Q - 52] :

dove s(t) = (6(t) — 6(to))/c(to) — O per t — to. In particolare, per ogni 7 > 0 esiste A > 0 (indipendente
da ¢) tale che

26
[R(t)] <7 =12+ 0?

non appena |t — tg] < A. Fissato 0 < n < 1/6, prendiamo il A > 0 corrispondente e indichiamo con C la
parte di C' parametrizzata da o ristretta a |t — to| > A. Possiamo allora scrivere

1 1 1 1 oA 20
A= — = — — dz + — ———— + R(t) | dt.
LP&(O—) LP—5(U) 27”/6‘ (Z—pa Z_p6> Z+ 271 oA <(t—t0)2+62 + ( ))
Per quanto osservato prima, A ¢ un numero intero indipendente da §. Facciamo allora tendere § a zero nel

secondo membro. Il primo integrale converge a zero, in quanto l'integrando non ha singolarita in C. Per il
secondo integrale, tramite il cambiamento di variabile t — tyg = Js vediamo prima di tutto che

to+A A6 e’}
1 Ldt:l/ Ldsﬁl/ g
2mi Jy,_n (t—to)? + 02 ) a1+ s? T ) oo 1482

per 6 — 0. Inoltre,

1 to+A
1 / R(t) dt

- <ﬁ/ 2ds§ﬂ/ 5 ds = 1.
270 Jpy—x T )z lts T ) 1l+s

Mettendo tutto questo insieme otteniamo quindi che prendendo § abbastanza piccolo possiamo stimare

1 1 1 1 [loth 26 1| floth 1
|A—1\§—/ — dz+—/ T o dt—1 +—/ R(t)dt] < 3np < —.

2 |Je \z—ps z—Dp_s 27 Jyg—n (t—10)2 40 27 | Jio—a 2
Ma A & un numero intero; quindi necessariamente A = 1, e abbiamo finito. Il

Osservazione 1.3.3. Una curva regolare, semplice e chiusa contenuta in una superficie S che non & un
piano potrebbe non dividere la superficie S in esattamente due parti. Si puo adattare il concetto di intorno
tubolare in modo da far funzionare la prima parte della dimostrazione, e dimostrare che il complementare
del sostegno della curva ha al pit due componenti connesse. Possono pero avvenire due fenomeni nuovi.
Potrebbe essere impossibile definire in maniera coerente il versore normale alla curva, per cui non ¢ piu
possibile distinguere 7, da T, ed & quello che succede in superfici non orientabili quali il nastro di Mobius
(il concetto di orientabilita di una superficie verra definito nel paragrafo 2.4). Oppure, la stessa componente
connessa potrebbe contenere sia Ty che T_ (¢ il caso di S = S! x S!, il toro). In entrambi i casi, il
complementare della curva & connesso.

Come abbiamo gia osservato precedentemente, il complementare di un compatto nel piano ha esat-
tamente una sola componente connessa illimitata. Questo fatto (e la dimostrazione del Teorema 1.3.11)
suggeriscono la seguente
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Definizione 1.3.8: Sia o:[0,1] — R? una curva di Jordan (regolare di classe C?) nel piano. L’unica compo-
nente connessa limitata del complementare del sostegno di o ¢ detta interno di o. Il Lemma 1.3.9.(ii) e
la dimostrazione del Teorema 1.3.11 ci dicono che 'indice di avvolgimento di ¢ relativamente a un punto
qualsiasi del suo interno dev’essere uguale a +1. Diremo che o & orientata positivamente (rispettivamente,
orientata negativamente) se 'indice ¢ +1 (rispettivamente, —1).

Osservazione 1.3.4. Nella dimostrazione del Teorema 1.3.11 abbiamo visto che ¢p, (o) —¢p_,(0) = 1 sem-
pre; inoltre ¢y, (o) # 0 se e solo se p+5 appartiene all’interno di o, e in quel caso si deve avere ¢y, (o) = £1.
Ora, ps appartiene all’interno di o se e solo se n(#p) punta verso I'interno di o, che accade se e solo se o
& percorsa in senso antiorario. Quindi o € orientata positivamente (negativamente) se e solo & percorsa in
senso antiorario (in senso orario).

Concludiamo questo paragrafo con una serie di interessanti complementi ed esercizi.

N

Definizione 1.3.9: Una curva continua o:[a,b] — R™ & detta regolare (di classe C*) a tratti se esiste una
partizione a = to < t; < --- < t, = b di [a,b] tale che o[}, , ;) sia regolare (di classe Ckyperj=1,....r.
Diremo inoltre che o ¢ parametrizzata rispetto alla lunghezza d’arco se ristretta a ciascun intervallo [t;_1,;]
lo e.

Esercizio 1.3.1. Dimostra che il complementare del sostegno di una curva di Jordan regolare di classe C?
a tratti ha esattamente due componenti connesse.

Esercizio 1.3.2. Dimostra il Teorema dell’arco di Jordan: se C' C R? & il sostegno di una curva piana
o:la,b] — R? regolare di classe C? a tratti semplice non chiusa, allora R? \ C & connesso.

{ L’interno di una curva di Jordan ha una struttura topologica ben precisa:

Teorema 1.3.12: Sia 0:[0,1] — R* una curva regolare semplice chiusa di sostegno C. Allora l'interno di C
e semplicemente connesso.

Dimostrazione: 1l sostegno K di una curva chiusa contenuta nell’interno U di C' & un compatto, e quindi ha
distanza positiva da C, cioé min{||lz — y|| | x € K,y € C} > 0. Questo significa che possiamo trovare £ > 0
tale che K sia disgiunto da N.(o), e quindi costruire una poligonale semplice contenuta in N (o) il cui
interno contenga K. Di conseguenza ci basta dimostrare che I'interno di una qualsiasi poligonale semplice &
semplicemente connesso.

Procediamo per induzione sul numero n dei lati della poligonale. Se n = 3 abbiamo un triangolo, che
essendo convesso € chiaramente semplicemente connesso.

Supponiamo allora che 'interno di una qualsiasi poligonale semplice con n lati sia semplicemente con-
nesso, e sia P una poligonale semplice con n + 1 lati. Se P & convessa non c’e nulla da dimostrare. Se invece
non € convessa, possiamo trovare una retta £ che interseca P in due vertici non consecutivi, e tale che P
sia tutta contenuta in uno dei semipiani determinati da ¢. Infatti, prendiamo una retta qualsiasi che non
interseca P, e trasliamola fino al primo momento in cui interseca P, necessariamente in un vertice; a questo
punto ruotiamola, se necessario, fino a che non interseca P in un altro vertice. Essendo P non convesso, a
meno di ruotare la retta di partenza al piu n+ 1 volte, possiamo essere sicuri che questo secondo vertice non
¢ consecutivo, e quindi abbiamo trovato la retta £ cercata.

Scegliamo due vertici p; e pi di P contenuti in £ e tali che nessun altro vertice di P fra quelli compresi
fra p; e p, appartenga a {. Possiamo allora formare due nuove poligonali P’ e P”, entrambe con meno lati
di P: la poligonale P’ & formata sostituendo la spezzata da p; a pi con il segmento da p; a pj, mentre la
poligonale P” ¢ formata proprio dalla spezzata e dal segmento. Per ipotesi induttiva, gli interni di P’ e P”
sono semplicemente connessi.

Sia ora ¢ una curva chiusa il cui sostegno L sia contenuto nell’interno di P. La prima osservazione e che
o & omotopa a una poligonale chiusa (non necessariamente semplice) contenuta nell’interno di P. Infatti,
per compattezza possiamo ricoprire L con un numero finito di dischi contenuti nell’interno di P, ciascuno
dei quali interseca L in un connesso. All’interno di ciascuno di questi dischi possiamo deformare con una
omotopia lineare I'intersezione con L a un segmento, e in questo modo otteniamo una poligonale 7 omotopa
a o nell’interno di P.
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Siccome l'interno di P’ & semplicemente connesso, esiste un’omotopia 7' che deforma 7 a un punto
nell’interno di P’. Con un ragionamento analogo al precedente si vede che possiamo supporre che tutte le
curve 75 = T'(s,-) siano poligonali. Per concludere ci basta far vedere che possiamo deformare T' a una
omotopia di 7 con una curva costante all’interno di P.

Sia allora s € (0, 1) tale che la poligonale 75 non sia contenuta nell’interno di P. Questo vuol dire che deve
attraversare la spezzata S che collega p; con py. Siccome l'interno di P” & semplicemente connesso, possiamo
deformare con continuita ciascun pezzo di 7, contenuto nell’interno di P” a una spezzata contenuta in S
senza muovere gli estremi; e poi possiamo deformare quest’ultima a una spezzata contenuta nell’interno di P.
Chiaramente questa operazione puo essere effettuata mantenendo la dipendenza continua dal parametro s,
e quindi otteniamo una nuova omotopia fra 7 e una curva costante nell’interno di P, come voluto. Il

Esercizio 1.3.3. Dimostra che I'interno di una curva di Jordan regolare di classe C? a tratti ¢ semplicemente
€onnesso.

Osservazione 1.3.5. Si puo dimostrare che 'interno di una curva di Jordan continua ¢ omeomorfo a un
disco aperto. Questo & conseguenza di un risultato molto piu generale, che dice che ogni aperto semplicemente
connesso di R? & omeomorfo a un disco aperto. In realtd si pud dimostrare anche molto di pilt: ogni aperto
semplicemente connesso del piano distinto dal piano stesso e biolomorfo a un disco aperto (Teorema di

uniformizzazione di Riemann.) J

1.4 11 teorema delle tangenti

L’obiettivo di questo paragrafo & dimostrare un altro teorema di teoria globale delle curve, che sara utile
anche in seguito.

Osservazione 1.4.1. I risultati di questo paragrafo valgono per curve regolari di classe C'' a tratti.
Iniziamo introducendo il secondo modo con cui si puo associare un grado a una curva chiusa piana.
Definizione 1.4.1: Sia 0:[0,1] — R? una curva regolare chiusa piana, e sia t:[0,1] — S* il versore tangente

di ¢. L’indice di rotazione di o € il numero intero

p(o) =degt € Z .
Misura il numero di giri del versore tangente a o.
Esercizio 1.4.1. Sia o = (01, 02):[0,1] — R? una curva regolare chiusa piana. Dimostra che

1 /! ool —aidl
plo) = —/ — = < (t.
2r Jo - lo'|?

In realta, in futuro avremo bisogno dell’indice di rotazione per curve regolari a tratti; quindi introdu-
ciamo le seguenti definizioni.

Definizione 1.4.2: Sia o:[a,b] — R? una curva piana regolare a tratti, e scegliamo una partizione
a=ty <ty <---<tp=>b
di [a, b] tale che oy

t,_1,t;] Sia regolare per j = 1,..., k. Supponiamo anche che o sia parametrizzata rispetto
alla lunghezza d’arco in ciascuno dei segmenti in cui e regolare, e poniamo

o(t;) = lim &(t)

t—t
J

perj=1,...,k, ¢
o(tf) = lim &(t)

t—tT
J
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per j =0,...,k— 1. Inoltre, se o & chiusa poniamo anche &(t,) = o(t; ) e 6(t)) = &(tf). Diremo che t; &
una cuspide se (t;) = —d(tj). Se t; non & una cuspide, I'angolo esterno ¢; € (—m,7) & I'angolo fra ¢(t;)
e d(t;), preso positivo se {5 (¢ ), &(t;)} & una base positiva di R?, negativo altrimenti. I punti in cui 'angolo
esterno e diverso da zero saranno detti vertici della curva. Infine, un poligono curvilineo € una curva regolare
a tratti semplice chiusa parametrizzata rispetto alla lunghezza d’arco e priva di cuspidi.

Definizione 1.4.3: Sia o:[a,b] — R? un poligono curvilineo nel piano, e a = tm < t1 < --- < t, = b
una partizione di [a,b] tale che of;,_, ;) sia regolare per j = 1,... k. Definiamo la funzione angolo di
rotazione 0: [a, b] — R nel seguente modo: sia 6:[a,t;) — R il sollevamento di ¢: [a,t;) — S* scelto in modo
che 0(a) € (—m,n]. In altre parole, 6 ¢ la determinazione continua dell’angolo fra 'asse x e & che inizia
in (—m, 7). Poniamo poi
O(t1) = lim 6(t) + 1,
t—t,

dove €7 & ’angolo esterno in ¢;. Definiamo analogamente 6 su [t1,t2), cioe 6: [t1,t2) — R & il sollevamento di
i [t1,t2) — ST che parte da 6(t1), e poniamo nuovamente

9(752) = lim H(t) +€27

t—ty

dove g4 & 'angolo esterno in 3. Continuando in questo modo definiamo € su tutto I'intervallo [a, b); poniamo
infine

0(b) = lim 0(t) + ex,

t—b—

dove ¢ & ’angolo esterno in b = t;. Allora diremo indice di rotazione della curva o il numero

1
= —(60(b) —6(a)).
p(0) = 5 (0(0) - 0(a)
Siccome ¢(t) = &(t7), lindice di rotazione dev’essere un numero intero. Chiaramente, se invertiamo

Porientazione della curva allora 'indice di rotazione cambia di segno.
Il risultato principale di questo paragrafo e il seguente teorema di Hopf:
Teorema 1.4.1: (delle tangenti, o Umlaufsatz) L’indice di rotazione di un poligono curvilineo & £1.

Dimostrazione: Cominciamo supponendo che il poligono curvilineo o: [a, b] — R?, parametrizzato rispetto
alla lunghezza d’arco, non abbia vertici; in particolare, & ¢ continua e ¢(a) = &(b). Siccome o & chiusa,
possiamo estenderla per periodicitd a una curva, che continueremo a denotare con o: R — R?, periodica di
periodo b — a, con derivata continua. Inoltre indichiamo con (o1, 02) le due coordinate di o.

Se [, b] & un qualunque intervallo di lunghezza b— a, chiaramente p(0|[&75}) = p(0|{a,p)); quindi possiamo
scegliere il nostro intervallo [a,b] in modo che o9(t) abbia minimo per ¢t = a; inoltre, a meno di traslazioni
possiamo anche supporre che o(a) = O. Dunque il sostegno di o & contenuto nel semipiano superiore,
e d3(a) = 0, per cui a meno di invertire 'orientazione della curva abbiamo ¢(a) = &(b) = ey, il primo vettore
della base canonica di R?.

Indichiamo con 6:[a,b] — R l’angolo di rotazione, cioe il sollevamento di ¢ che parte da 6(a) = 0.
Vogliamo definire un angolo secante n: T — R (dove T & il triangolo T = {(t1,t3) € R? | a < t; < ty < b}),
che rappresenti 'angolo fra I’asse z e il vettore da o(t;) a o(t2). Per far cio, definiamo H:T — S ponendo

o(t2) —o(t1)
[o(t2) — o(ta)ll
é’(tl) sSe tl = tQ;
—c(a) se (t1,t2) = (a,b).

set; <tye (tl,tz) 7& (a7b);
H(ty,t2) =

L’applicazione H ¢ continua lungo il segmento t; = t5 in quanto

H(ty,t2) lim oltz) —o(h) / a(tz) —a(t1)

C (tta)—(tt)  ta—t to —ty

e
" feon A

lim
(t1,t2)—(t,t)



1.4 1l teorema delle tangenti 23

Analogamente, H & continua in (a,b): infatti

lm  H(ty,ts) = lim o(ta) —o(ti +b—a) - lim a(s) — o(ta)
(t1,t2)—(a,b) (t1,t2)—(a,b) ||U(t2) — U(tl +b— a)|| (s,t2)—(b,b) ||o'(5) — g-(t2)||
(b)
= —7 = H(a,b).
o)

Essendo T' semplicemente connesso, possiamo sollevare H a un’unica n: T — R continua tale che 7(a,a) = 0;
la funzione 7 & il nostro angolo secante. In particolare, anche ¢ — n(t,t) ¢ un sollevamento di &; sic-
come 6(a) = 0 =n(a,a), dobbiamo avere 0(t) = n(t,t) per ogni ¢, e quindi

plo) = = (6(8) — 6(a)) = = n(b.b).

2 2T

Vogliamo trovare il valore di n(b,b) percorrendo gli altri due lati del triangolo T. Per costruzione il vet-
tore o(t) — o(a) € sempre puntato verso il semipiano superiore; quindi n(a,t) € [0,7] per ogni ¢t € [a,b].
In particolare, essendo H(a,b) = —d(a) = —e;, dobbiamo avere n(a,b) = w. Analogamente, il vettore
o(b)—o(t) & sempre puntato verso il semipiano inferiore; essendo 7(a, b) = w, dobbiamo avere 7(t,b) € [, 27]
per ogni ¢ € [a,b]. In particolare, essendo H(b,b) = 6(b) = ey, troviamo 7(b,b) = 27, e la tesi & dimostrata
nel caso di poligono curvilineo liscio.

Ora supponiamo che o abbia dei vertici; per dimostrare il teorema ci basta trovare un poligono curvilineo
liscio che abbia lo stesso indice di rotazione di o. Per far ci0o, cambieremo o vicino a ciascun vertice in modo
da renderla regolare ovunque.

Sia allora o(t;) un vertice di angolo esterno &;, e scegliamo un numero positivo 0 < a < 3 (7—|e;|); usando
la periodicita di o, a meno di cambiare I'intervallo di definizione possiamo anche supporre che t; # a, b. Per
come abbiamo definito ’angolo di rotazione, si ha

lim 6(t) = 0(¢;) e lim 6(¢) = 0(t;) — &i.

t—t’ t—t-
k2 k2

Quindi possiamo trovare un § > 0 tale che |0(t) — (Q(ti) — sl)| < aquando t;_1 < t; — 6 <t < t;e
|0(t) — 0(t;)| < @ quando ¢; <t < t1 +J < t;41. In particolare,

10(t) — 6(s)| < 20+ |eg] < 7 (1.4.1)

per ogni s, t € (t; — d,t; + §). Dunque l'angolo di rotazione di o varia meno di 7 in questo intervallo.
L’immagine C tramite o di [a,b] \ (¢; — d,t; + J) & un compatto non contenente o(¢;); quindi possiamo
trovare v > 0 tale che C' N B(a(ti),r) = @. Siano t*, t** € (t; — d,t; + §) rispettivamente il primo e
'ultimo valore di ¢ per cui o(t) € dB(o(t;),r); in particolare, 5(t*) punta verso l'interno di (o & tangente
a) OB(o(t;),r), mentre ¢(**) punta verso l'esterno di (o & tangente a) dB(c(t;),r). Rimpiazziamo il pezzo
di o da t* a t** con (vedi il prossimo esercizio) una curva regolare 7 contenuta in B(a(ti), r), tangente a o
in o(t*) e o(t**), e il cui versore tangente rimanga sempre in un semipiano aperto contenente &(t*) e o(¢**).
In particolare, la variazione dell’angolo di rotazione di 7 da t* a t** & compresa fra —7 e m, e rappresenta
Pangolo fra ¢(t*) e 6(¢**); quindi, grazie alla (1.4.1) questa variazione ¢ esattamente uguale a 0(t**) — 6(t*).
In altre parole, il poligono curvilineo ottenuto inserendo 7 al posto di |« ¢-+] ha esattamente lo stesso indice
di rotazione di o. Ripetendo 'operazione in tutti i vertici di o otteniamo un poligono curvilineo liscio con
lo stesso indice di rotazione di o, e ci siamo. ]

FEsercizio 1.4.2. Siano dati un numero r > 0 e due punti distinti p1, ps € 9B(0,r) C R?%. Scegliamo poi
due vettori vy, vo € S* tali che vy # —vs, (v1,p1) <0 e (v, p2) > 0. Dimostra che esiste una curva regolare
7:[a,b] — R? parametrizzata rispetto alla lunghezza d’arco il cui sostegno sia tutto contenuto in B(O,r),
tale che o(a) = p1, d(a) = v1, o(b) = pa e 6(b) = vq, e tale che esista un semipiano aperto contenente &(s)
per ogni s € [a,b]. (Suggerimento: nella maggior parte dei casi un’iperbole funziona.)
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Definizione 1.4.4: Diremo che un poligono curvilineo & orientato positivamente se il suo indice di rotazione
e +1.

Osservazione 1.4.2. Una curva di Jordan o regolare di classe C? & orientata positivamente secondo la
Definizione 1.3.8 se e solo se lo & anche secondo questa definizione. Infatti, I’Osservazione 1.3.4 ci dice
che o & orientata positivamente secondo la Definizione 1.3.8 se e solo se il versore normale punta verso
il suo interno. Nella situazione in cui ci siamo posti all’inizio della dimostrazione del Teorema precedente,
I'interno di o dev’essere necessariamente nel semipiano superiore; quindi o € orientata positivamente secondo
la Definizione 1.3.8 se e solo se il versore normale a ¢ in o(a) ¢ (0,1), e quindi se e solo se d(a) = (1,0)
senza bisogno di cambiare orientazione, e dunque, grazie al resto della dimostrazione, se e solo se 'indice di
rotazione di o & +1. Quindi le due definizioni sono perfettamente compatibili.



