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Capitolo 1

Algebra multilineare

1.1 Prodotto tensoriale

Se V e W sono due spazi vettoriali sul campo K, indicheremo con Hom(V, W ) lo spazio vettoriale delle
applicazioni K-lineari da V in W . In particolare, lo spazio duale di V è lo spazio vettoriale V ∗ = Hom(V, K).
Inoltre, useremo spesso il delta di Kronecker, che è il simbolo

δhk = δh
k =

{
1 se h = k,
0 se h 6= k.

Ricordiamo alcune proprietà fondamentali degli spazi Hom(V, W ) e V ∗:

Proposizione 1.1.1: Siano V e W due spazi vettoriali di dimensione finita sul campo K, e B = {v1, . . . , vn}
una base di V . Allora:

(i) L’applicazione che a ogni L ∈ Hom(V, W ) associa la n-upla
(
L(v1), . . . , L(vn)

)
∈ Wn è un isomorfismo

fra Hom(V, W ) e Wn. In particolare, dim Hom(V, W ) = (dimV )(dimW ), e dimV ∗ = dimV .
(ii) Se indichiamo con vh ∈ V ∗ l’elemento definito da vh(vk) = δh

k , allora B∗ = {v1, . . . , vn} è una base
di V ∗, detta base duale di V ∗.

(iii) L’applicazione Φ: V → (V ∗)∗ data da Φ(v)(ϕ) = ϕ(v) è un isomorfismo canonico fra V e il biduale (V ∗)∗.
(iv) Se (· , ·):V × V → K è un prodotto scalare non-degenere, allora l’applicazione Ψ:V → V ∗ data

da Ψ(v) = (·, v) è un isomorfismo.

Esercizio 1.1.1. Dimostra la Proposizione 1.1.1.

In particolare, ogni elemento di Hom(V, W ) è univocamente determinato dai valori che assume su una
base. Data una n-pla (w1, . . . , wn) ∈Wn, l’elemento L di Hom(V, W ) che soddisfa la condizione L(vj) = wj

per j = 1, . . . , n è definito da

L(λ1v1 + · · ·+ λnvn) = λ1w1 + · · ·+ λnwn

per ogni λ1, . . . , λn ∈ K.
Vogliamo introdurre costruzioni analoghe e ottenere risultati simili per applicazioni multilineari.

Definizione 1.1.1: Siano V1, . . . , Vn, W spazi vettoriali sul campo K. Un’applicazione Φ:V1×· · ·×Vn →W si
dice multilineare (o n-lineare) se è lineare separatamente in ciascuna variabile. L’insieme M(V1, . . . , Vn;W )
delle applicazioni multilineari da V1 × · · · × Vn in W è chiaramente uno spazio vettoriale su K.

Per capire meglio il contenuto della prossima proposizione, premettiamo un’osservazione.

Osservazione 1.1.1. Supponiamo dati n numeri interi d1, . . . , dn ∈ N∗ e uno spazio vettoriale W di
dimensione d. Allora lo spazio vettoriale W d1···dn può essere descritto come lo spazio delle “matrici” a n
indici, i cui elementi sono vettori di W , e in cui il j-esimo indice varia fra 1 e dj (per j = 1, . . . , n). In altre
parole, ogni vettore w ∈W d1···dn può essere scritto come

w = (wµ1...µn
)(µ1,...,µn)∈{1,...,d1}×···×{1,...,dn}
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con wµ1...µn ∈ W per ogni n-upla (µ1, . . . , µn) ∈ {1, . . . , d1} × · · · × {1, . . . , dn}. In particolare, data una
base {w1, . . . , wd} di W otteniamo una base di W d1···dn considerando i vettori wν1,...,νn,ν al variare di
ν1 ∈ {1, . . . d1}, . . . , νn ∈ {1, . . . , dn}, ν ∈ {1, . . . , d}, dove l’elemento di posto (µ1, . . . , µn) di wν1,...,νn,ν è
dato da

(wν1,...,νn,ν)µ1...µn
= δµ1ν1 · · · δµnνn

wν . (1.1.1)

In particolare, il vettore eν1...νn
della base canonica di Kd1···dn , che ha un 1 al posto (ν1, . . . , νn) e 0 altrove,

ha come (µ1, . . . , µn)-esimo elemento il numero

(eν1...νn
)µ1...µn

= δµ1ν1 · · · δµnνn
.

Proposizione 1.1.2: Siano V1, . . . , Vn e W spazi vettoriali di dimensione finita sul campo K, di dimen-
sione rispettivamente d1, . . . , dn, d. Per j = 1, . . . , n scegliamo una base Bj = {vj,1, . . . , vj,dj

} di Vj , e sia
{w1, . . . , wd} una base di W . Allora l’applicazione A:M(V1, . . . , Vn;W )→W d1···dn data da

A(Φ) =
(
Φ(v1,µ1 , . . . , vn,µn

)
)
(µ1,...,µn)∈{1,...,d1}×···×{1,...,dn}

è un isomorfismo. In particolare,

dimM(V1, . . . , Vn;W ) = (dimV1) · · · (dimVn) · (dimW ),

e una base di M(V1, . . . , Vn;W ) è {Φν1,...,νn,ν}(ν1,...,νn,ν)∈{1,...,d1}×···×{1,...,dn}×{1,...,d}, dove Φν1,...,νn,ν è de-
finita da

Φν1,...,νn,ν(v1,µ1 , . . . , vn,µn) = δµ1ν1 · · · δµnνnwν .

Dimostrazione: L’applicazione A è chiaramente lineare. Ora, per ogni applicazione Φ ∈M(V1, . . . , Vn;W ) e
ogni vj =

∑dj

µ=1 ajµvj,µ ∈ Vj , si ha

Φ(v1, . . . , vn) =
d1∑

µ1=1

· · ·
dn∑

µn=1

a1µ1 · · · anµn
Φ(v1,µ1 , . . . , vn,µn

);

in particolare, A(Φ) = O implica Φ = O, e quindi A è iniettiva. Viceversa, se scegliamo arbitrariamente
wµ1...µn ∈W possiamo definire una Φ ∈M(V1, . . . , Vn;W ) tale che Φ(v1,µ1 , . . . , vn,µn) = wµ1...µn ponendo

Φ(v1, . . . , vn) =
d1∑

µ1=1

· · ·
dn∑

µn=1

a1µ1 · · · anµnwµ1...µn , (1.1.2)

per cui A è surgettiva. Infine, una base di M(V1, . . . , Vn;W ) si ottiene applicando A−1 a una base di W d1···dn ;
l’ultima affermazione segue quindi da (1.1.1).

In altre parole, anche le applicazioni multilineari sono completamente determinate dai valori che assu-
mono su n-uple di elementi delle basi. Quando in seguito costruiremo un’applicazione multilineare prescri-
vendo il suo valore sulle basi e poi invocando questo risultato, diremo che stiamo estendendo per multilinea-
rità.

Esercizio 1.1.2. Siano V1, . . . , Vn W spazi vettoriali sul campo K. Dimostra che gli spazi M(V1, . . . , Vn;W ),
Hom

(
V1, M(V2, . . . , Vn; W )

)
e M

(
V1, . . . , Vn−1; Hom(Vn, W )

)
sono canonicamente isomorfi. [Suggerimento:

se Φ ∈ M(V1, . . . , Vn;W ), considera Φ̂ ∈ Hom
(
V1, M(V2, . . . , Vn;W )

)
e Φ̃ ∈ M

(
V1, . . . , Vn−1; Hom(Vn, W )

)
definite da

Φ̂(v1)(v2, . . . , vn) = Φ̃(v1, . . . , vn−1)(vn) = Φ(v1, . . . , vn) ∈W

per ogni v1 ∈ V1, . . . , vn ∈ Vn.]

Vogliamo descrivere ora una procedura che ci permette di trasformare un’applicazione multilineare in
una lineare cambiando opportunamente il dominio.
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Teorema 1.1.3: Dati V1, . . . , Vn spazi vettoriali di dimensione finita su K, poniamo T = M(V ∗1 , . . . , V ∗n ; K).
Sia inoltre F ∈M(V1, . . . , Vn;T ) data da

F (v1, . . . , vn)(ϕ1, . . . , ϕn) = ϕ1(v1) · · ·ϕn(vn),

per ogni v1 ∈ V1, . . . , vn ∈ Vn, ϕ1 ∈ V ∗1 , . . . , ϕn ∈ V ∗n . Allora:

(i) Per ogni spazio vettoriale W su K e ogni applicazione multilineare Φ: V1×· · ·×Vn →W esiste un’unica
applicazione lineare Φ̃: T →W tale che Φ = Φ̃ ◦ F (proprietà universale del prodotto tensoriale).

(ii) Se (T ′, F ′) è un’altra coppia soddisfacente (i) allora esiste un unico isomorfismo Ψ:T → T ′ tale che
F ′ = Ψ ◦ F (unicità del prodotto tensoriale).

Dimostrazione: (i) Per j = 1, . . . , n scegliamo una base Bj = {vj,1, . . . , vj,dj} di Vj , dove dj = dimVj , e sia
B∗j = {v1

j , . . . , v
dj

j } la corrispondente base duale. Poniamo ϕµ1...µn = F (v1,µ1 , . . . , vn,µn) ∈ T ; siccome

ϕµ1...µn(vν1
1 , . . . , vνn

n ) = δν1
µ1
· · · δνn

µn
,

la Proposizione 1.1.2 e l’Osservazione 1.1.1 ci dicono che {ϕµ1...µn
} è una base di T . Ora, se Φ̃ esiste si deve

avere
Φ̃(ϕµ1...µn

) = Φ̃
(
F (v1,µ1 , . . . , vn,µn

)
)

= Φ(v1,µ1 , . . . , vn,µn
);

quindi la Proposizione 1.1.1.(i) ci assicura che esiste un’unica applicazione lineare Φ̃ con le proprietà richieste.
(ii) Se applichiamo (i) alla F ′:V1 × · · · × Vn → T ′ otteniamo una Ψ:T → T ′ tale che Ψ ◦ F = F ′.

Rovesciando i ruoli di T e T ′ otteniamo una Ψ′:T ′ → T tale che Ψ′ ◦ F ′ = F . Quindi (Ψ′ ◦Ψ) ◦ F = F ; ma
anche idT ◦F = F , e l’unicità in (i) implica Ψ′ ◦Ψ = idT . Analogamente si dimostra che Ψ ◦Ψ′ = idT ′ , e ci
siamo.

Definizione 1.1.2: Diremo che due coppie (T1, F1) e (T2, F2), con Tj spazi vettoriali e Fj :V1 × · · · × Vn → Tj

applicazioni n-lineari, sono isomorfe se esiste un isomorfismo Ψ: T1 → T2 tale che F2 = Ψ ◦ F1.

Definizione 1.1.3: Una coppia (T, F ) soddisfacente le proprietà del Teorema 1.1.3.(i) verrà detta prodotto
tensoriale di V1, . . . , Vn, e indicata con V1⊗· · ·⊗Vn; il Teorema 1.1.3.(ii) ci assicura che il prodotto tensoriale
è ben definito a meno di isomorfismi. Gli elementi della forma F (v1, . . . , vn), detti indecomponibili, verranno
indicati con la scrittura v1 ⊗ · · · ⊗ vn.

Osservazione 1.1.2. La dimostrazione del Teorema 1.1.3.(ii) mostra chiaramente come l’unicità del pro-
dotto tensoriale sia conseguenza della proprietà universale.

Osservazione 1.1.3. Il Teorema 1.1.3 e la Proposizione 1.1.2 chiaramente implicano che

dim(V1 ⊗ · · · ⊗ Vn) = (dimV1) · · · (dimVn).

Esercizio 1.1.3. Dimostra che V ⊗K e K⊗V sono canonicamente isomorfi a V per ogni spazio vettoriale V
di dimensione finita sul campo K.

Ci possono essere altre realizzazioni concrete del prodotto tensoriale di spazi vettoriali (vedi per esempio
l’Esercizio 1.1.5); ma noi lo penseremo sempre come spazio di applicazioni multilineari. In particolare, presi
v1 ∈ V1, . . . , vn ∈ Vn allora v1 ⊗ · · · ⊗ vn agisce su V ∗1 × · · · × V ∗n con la seguente regola:

v1 ⊗ · · · ⊗ vn(ϕ1, . . . , ϕn) = ϕ1(v1) · · ·ϕn(vn)

per ogni ϕ1 ∈ V ∗1 , . . . , ϕn ∈ V ∗n .

Osservazione 1.1.4. Se Bj = {vj,1, . . . , vj,dj
} è una base di Vj , per j = 1, . . . , n, allora una base

di V1 ⊗ · · · ⊗ Vn è composta dagli elementi indecomponibili della forma v1,µ1 ⊗ · · · ⊗ vn,µn
. In partico-

lare, gli elementi indecomponibili formano un sistema di generatori di V1 ⊗ · · · ⊗ Vn, ma attenzione: non
tutti gli elementi di V1 ⊗ · · · ⊗ Vn sono indecomponibili. Per esempio, tutti gli elementi indecomponibili di
V ⊗ V sono applicazioni bilineari degeneri (dato v1 ⊗ v2 ∈ V ⊗ V , se prendiamo ϕ1 ∈ V ∗ non nullo tale che
ϕ1(v1) = O, allora v1 ⊗ v2(ϕ1, ·) ≡ O, per cui v1 ⊗ v2 è degenere), e quindi nessuna applicazione bilineare
non degenere di V ∗ × V ∗ in K può essere rappresentata da un singolo elemento indecomponibile.
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Osservazione 1.1.5. Se λ ∈ K e v1 ∈ V1, . . . , vn ∈ Vn, la multilinearità di F implica che

λ(v1 ⊗ · · · ⊗ vn) = (λv1)⊗ · · · ⊗ vn = · · · = v1 ⊗ · · · ⊗ (λvn).

Analogamente, se v′j , v′′j ∈ Vj si ha

v1 ⊗ · · · ⊗ (v′j + v′′j )⊗ · · · ⊗ vn = v1 ⊗ · · · ⊗ v′j ⊗ · · · ⊗ vn + v1 ⊗ · · · ⊗ v′′j ⊗ · · · ⊗ vn.

Queste regole determinano completamente la manipolazione algebrica degli elementi del prodotto tensoriale,
come vedremo nell’Esercizio 1.1.5.

Esercizio 1.1.4. Dato un insieme S, indichiamo con K〈S〉 l’insieme

K〈S〉 = {f : S → K | f(s) 6= 0 solo per un numero finito di elementi s ∈ S}.

(i) Dimostra che K〈S〉 è uno spazio vettoriale su K, detto spazio vettoriale libero generato da S.
(ii) Identificando ogni s ∈ S con la funzione in K〈S〉 che vale 1 in s e 0 altrove, dimostra che S è una base

di K〈S〉, e quindi che ogni elemento v ∈ K〈S〉 si scrive in modo unico come combinazione lineare formale
finita di elementi di S a coefficienti in K, cioè nella forma

v =
k∑

j=1

λjsj

per opportuni k ∈ N, λ1, . . . , λk ∈ K e s1, . . . , sk ∈ S.
(iii) Dimostra che per ogni funzione α:S → V a valori in uno spazio vettoriale V qualsiasi esiste un’unica

applicazione lineare A ∈ Hom(K〈S〉, V ) tale che A|S = α (proprietà universale dello spazio vettoriale
libero).

(iv) Dimostra che se (W, ι) è una coppia composta da uno spazio vettoriale W e un’applicazione iniet-
tiva ι:S → W tale che per ogni funzione α:S → V a valori in uno spazio vettoriale V qualsiasi
esiste un’unica applicazione lineare Ã ∈ Hom(W, V ) tale che Ã ◦ ι = α allora esiste un isomorfismo
T : K〈S〉 →W tale che T |S = ι.

Esercizio 1.1.5. Siano V1, . . . , Vn spazi vettoriali sul campo K, e indichiamo con K〈V1 × · · · × Vn〉 lo spazio
vettoriale libero generato da V1×· · ·×Vn (vedi l’esercizio precedente). Sia R il sottospazio di K〈V1×· · ·×Vn〉
generato dagli elementi della forma

λ(v1, . . . , vn)− (v1, . . . , λvj , . . . , vn),
(v1, . . . , v

′
j , . . . , vn) + (v1, . . . , v

′′
j , . . . , vn)− (v1, . . . , v

′
j + v′′j , . . . , vn),

e sia T = R〈V1×· · ·×Vn〉/R lo spazio quoziente. Infine, sia π:V1×· · ·×Vn → T l’applicazione che associa a
ciascun elemento di V1 × · · · × Vn la sua classe d’equivalenza in T . Dimostra che (T, π) soddisfa la proprietà
universale del prodotto tensoriale, e deduci quindi che se V1, . . . , Vn hanno dimensione finita allora (T, π) è
isomorfo al prodotto tensoriale (V1 ⊗ · · · ⊗ Vn, F ).

La seguente proposizione contiene degli utili isomorfismi canonici fra prodotti tensoriali (e spazi di
applicazioni lineari):

Proposizione 1.1.4: Siano V , W , V1, . . . , Vn, V ′j spazi vettoriali di dimensione finita sul campo K. Allora

(i) Sia σ una permutazione di {1, . . . , n}, e F̃ :V1 × · · · × Vn → Vσ(1) ⊗ · · · ⊗ Vσ(n) data da

F̃ (v1, . . . , vn) = vσ(1) ⊗ · · · ⊗ vσ(n).

Allora (Vσ(1) ⊗ · · · ⊗ Vσ(n), F̃ ) è isomorfo a (V1 ⊗ · · · ⊗ Vn, F ).
(ii) Scelto j ∈ {1, . . . , n− 1}, sia F̃ :V1 × · · · × Vn → (V1 ⊗ · · · ⊗ Vj)⊗ (Vj+1 ⊗ · · · ⊗ Vn) data da

F̃ (v1, . . . , vn) = (v1 ⊗ · · · ⊗ vj)⊗ (vj+1 ⊗ · · · ⊗ vn).



1.1 Prodotto tensoriale 5

Allora
(
(V1 ⊗ · · · ⊗ Vj)⊗ (Vj+1 ⊗ · · · ⊗ Vn), F̃

)
è isomorfo a (V1 ⊗ · · · ⊗ Vn, F ).

(iii) Sia F̃ :V1 × · · · × (Vj ⊕ V ′j )× · · · × Vn → (V1 ⊗ · · · ⊗ Vj ⊗ · · · ⊗ Vn)⊕ (V1 ⊗ · · · ⊗ V ′j ⊗ · · · ⊗ Vn) data da

F̃ (v1, . . . , (vj , v
′
j), . . . , vn) = (v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vn, v1 ⊗ · · · ⊗ v′j ⊗ · · · ⊗ vn).

Allora
(
(V1⊗· · ·⊗Vj⊗· · ·⊗Vn)⊕(V1⊗· · ·⊗V ′j⊗· · ·⊗Vn), F̃

)
è isomorfo a

(
V1⊗· · ·⊗(Vj⊕V ′j )⊗· · ·⊗Vn, F

)
.

(iv) Sia F̃ :V ∗ ×W ∗ → (V ⊗W )∗ data da

F̃ (ϕ, ψ)(v ⊗ w) = ϕ(v)ψ(w).

Allora
(
(V ⊗W )∗, F̃

)
è isomorfo a (V ∗ ⊗W ∗, F ).

(v) Sia F̃ :V ∗ ×W → Hom(V, W ) data da

F̃ (ϕ, w)(v) = ϕ(v)w.

Allora
(
Hom(V, W ), F̃ ) è isomorfo a (V ∗ ⊗W, F ).

(vi) L’applicazione A:M(V1, V2;W )→ Hom(V1 ⊗ V2, W ) data da

A(Φ)(v1 ⊗ v2) = Φ(v1, v2)

ed estesa per linearità, è un isomorfismo fra M(V1, V2;W ) e Hom(V1 ⊗ V2, W ).

Dimostrazione: (i) Essendo F̃ un’applicazione n-lineare, la proprietà universale del prodotto tensoriale ci
fornisce una A:V1 ⊗ · · · ⊗ Vn → Vσ(1) ⊗ · · · ⊗ Vσ(n) lineare e tale che F̃ = A ◦ F . Ora, l’immagine di A è
un sottospazio vettoriale di Vσ(1) ⊗ · · · ⊗ Vσ(n) che include F̃ (V1 × · · · × Vn); siccome quest’ultimo insieme,
contenendo tutti i vettori indecomponibili, genera Vσ(1) ⊗ · · · ⊗ Vσ(n), l’applicazione A è necessariamente
surgettiva. Ma V1 ⊗ · · · ⊗ Vn e Vσ(1) ⊗ · · · ⊗ Vσ(n) hanno la stessa dimensione, e quindi A è l’isomorfismo
cercato.

(ii), (iii) e (iv) si dimostrano in modo assolutamente analogo (esercizio).
Anche la (v) si può dimostrare nello stesso modo, ma possiamo anche scrivere in maniera esplicita

l’isomorfismo A:V ∗ ⊗W → Hom(V, W ). Infatti, si verifica subito (esercizio) che estendendo per linearità la

A(ϕ⊗ w)(v) = ϕ(v)w

otteniamo un isomorfismo che soddisfa F̃ = A ◦ F . Nota che, a meno di identificare gli spazi vettoriali con i
loro biduali, questo è esattamente l’isomorfismo dell’Esercizio 1.1.2 applicato a V ∗ ⊗W = M(V, W ∗; K).

(vi) L’applicazione A è lineare e iniettiva fra spazi vettoriali della stessa dimensione, per cui è un
isomorfismo, che realizza esplicitamente la proprietà universale del prodotto tensoriale.

Osservazione 1.1.6. In particolare, combinando gli ultimi tre isomorfismi vediamo che M(V1, V2; W ) è ca-
nonicamente isomorfo a V ∗1 ⊗V ∗2 ⊗W . Più in generale, con la stessa tecnica si verifica che M(V1, . . . , Vn;W ) è
canonicamente isomorfo a V ∗1 ⊗· · ·⊗V ∗n⊗W , che a sua volta è canonicamente isomorfo a M(V1, . . . , Vn; K)⊗W .

Esempio 1.1.1. Uno dei misteri dell’algebra lineare elementare è come mai due nozioni piuttosto diverse,
quali le applicazioni lineari fra due spazi vettoriali e le forme bilineari a valori nel campo base, vengono
rappresentate dallo stesso tipo di oggetti (le matrici). La soluzione del mistero è la Proposizione 1.1.4.(v).
Infatti, dati due spazi vettoriali V e W di dimensione n ed m rispettivamente, la scelta di due basi fornisce
un isomorfismo fra lo spazio delle matrici Mm,n(K) e lo spazio delle applicazioni lineari Hom(V, W ). Grazie
alla Proposizione 1.1.4, quest’ultimo è canonicamente isomorfo a V ∗ ⊗ W , cioè allo spazio delle applica-
zioni bilineari M(V, W ∗; K). Ma la scelta delle basi fornisce anche un isomorfismo di W ∗ con W , e quindi
di M(V, W ∗; K) con Mm,n(K), per cui siamo passati dalle matrici come applicazioni lineari alle matrici come
forme bilineari.⌈

Vi è un’altra interpretazione del prodotto tensoriale in termini matriciali. Dati u ∈ Km e v ∈ Kn,

l’elemento indecomponibile u⊗ v è un’applicazione bilineare di (Km)∗ × (Kn)∗ in K, che è rappresentata da
una matrice m× n a coefficienti in K. È facile vedere (esercizio) che questa matrice è esattamente u · vT .
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Definizione 1.1.4: Dati u ∈ Km e v ∈ Kn, diremo prodotto di Kronecker di u e v la matrice u⊗ v ∈Mm,n(K)
data da u⊗ v = u · vT , il cui elemento di posto (i, j) è uivj . Più in generale, se A ∈Mm,n(K) e B ∈Mh,k(K)
sono due matrici, diremo prodotto di Kronecker di A e B la matrice

A⊗B =

∣∣∣∣∣∣
a11B

T · · · a1nBT

...
. . .

...
am1B

T · · · amnBT

∣∣∣∣∣∣ ∈Mmk,nh(K).

Esercizio 1.1.6. (i) Dimostra che ogni matrice in Mm,n(K) di rango 1 è della forma u ⊗ v per oppor-
tuni u ∈ Km e v ∈ Kn.

(ii) Dimostra che ogni matrice in Mm,n(K) di rango d ≥ 1 è somma di d matrici di rango 1.
(iii) Interpreta il prodotto di Kronecker di matrici in termini di prodotti tensoriali.

Esempio 1.1.2. Se V è uno spazio vettoriale sul campo K, si vede subito che V ⊗ K è isomorfo a V
(esercizio). Se K = R possiamo invece considerare V ⊗C. Come spazio vettoriale reale, V ⊗C ha dimensione
doppia rispetto a V ; ma la cosa interessante è che V ⊗C ha una naturale struttura di spazio vettoriale su C,
con dimensione (complessa) uguale alla dimensione (reale) di V . Infatti, ogni elemento di V ⊗C è somma di
un numero finito di elementi della forma vj ⊗ λj , con vj ∈ V e λj ∈ C; quindi possiamo definire il prodotto
di un numero complesso λ per un elemento di V ⊗ C ponendo

λ ·
r∑

j=1

vj ⊗ λj =
r∑

j=1

vj ⊗ (λλj),

ed è facile verificare che in questo modo si ottiene uno spazio vettoriale su C. In particolare, se {v1, . . . , vn}
è una base di V , una base su R di V ⊗C è data da {v1 ⊗ 1, v1 ⊗ i, . . . , vn ⊗ 1, vn ⊗ i}, mentre una base su C
è semplicemente data da {v1 ⊗ 1, . . . , vn ⊗ 1}.
Definizione 1.1.5: Sia V uno spazio vettoriale su R di dimensione finita. Lo spazio vettoriale complesso V ⊗C

viene detto complessificazione di V , e indicato con V C.

⌋

1.2 L’algebra tensoriale

In geometria differenziale sono particolarmente utili alcuni spazi ottenuti tramite prodotti tensoriali.

Definizione 1.2.1: Sia V uno spazio vettoriale sul campo K di dimensione finita. Allora possiamo costruire i
seguenti spazi vettoriali:

T 0
0 (V ) = T0(V ) = T 0(V ) = K, T 1(V ) = T 1

0 (V ) = V, T1(V ) = T 0
1 (V ) = V ∗,

T p(V ) = T p
0 (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸

p volte

, Tq(V ) = T 0
q (V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸

q volte

, T p
q (V ) = T p(V )⊗ Tq(V ),

T •(V ) =
⊕
p≥0

T p(V ), T (V ) =
⊕

p,q≥0

T p
q (V ), T•(V ) =

⊕
q≥0

Tq(V ).

Chiaramente, dimT p
q (V ) = (dimV )p+q, mentre T (V ) ha dimensione infinita. Un elemento di T p

q (V ) è detto
tensore p-controvariante e q-covariante, o tensore di tipo

(
p
q

)
, mentre, per motivi che vedremo fra un attimo,

lo spazio T (V ) è detto algebra tensoriale di V .

Osservazione 1.2.1. Ricordo che T p
q (V ) è lo spazio delle applicazioni multilineari da (V ∗)p × V q a K, e

in particolare l’azione degli elementi indecomponibili è data da

u1 ⊗ · · · ⊗ up ⊗ ω1 ⊗ · · · ⊗ ωq(η1, . . . , ηp, v1, . . . , vq) = η1(u1) · · · ηp(up) · ω1(v1) · · ·ωq(vq),

dove u1, . . . , up, v1, . . . , vq ∈ V e ω1, . . . , ωq, η1, . . . , ηp ∈ V ∗. Inoltre, l’Esercizio 1.1.2 implica anche che
T p

q (V ) è isomorfo allo spazio delle applicazioni multilineari da (V ∗)p×V q−1 a V ∗, e a quello delle applicazioni
multilineari da (V ∗)p−1 × V q a V . In particolare, T 1

1 (V ) è isomorfo a Hom(V, V ).
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Ora vogliamo definire su T (V ) un prodotto. Se α ∈ T p1
q1

(V ) e β ∈ T p2
q2

(V ) definiamo α⊗ β ∈ T p1+p2
q1+q2

(V )
ponendo

α⊗ β(η1, . . . , ηp1+p2 , v1, . . . , vq1+q2) = α(η1, . . . , ηp1 , v1, . . . , vq1)β(ηp1+1, . . . , ηp1+p2 , vq1+1, . . . , vq1+q2).

Siccome ogni elemento di T (V ) è somma di un numero finito di elementi di questo tipo, per distributività
possiamo allora definire un prodotto ⊗:T (V ) × T (V ) → T (V ), e

(
T (V ),+,⊗

)
risulta (esercizio) essere un

anello con unità 1 ∈ T 0
0 (V ). Inoltre, per ogni λ ∈ K e v, w ∈ T (V ) abbiamo

λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw),

e quindi
(
T (V ),+,⊗, ·

)
è un’algebra, giustificandone il nome.

Osservazione 1.2.2. Attenzione: il prodotto in T (V ) non è commutativo. Per esempio, prendiamo
V = R2 con base canonica {e1, e2} e base duale {e1, e2}. Allora e1 ⊗ e2 ed e2 ⊗ e1 appartengono a T 2

0 (R2),
e quindi sono applicazioni bilineari su (R2)∗ × (R2)∗. Ma

e1 ⊗ e2(e1, e2) = e1(e1)e2(e2) = 1 6= 0 = e1(e2)e2(e1) = e2 ⊗ e1(e1, e2),

per cui e1 ⊗ e2 6= e2 ⊗ e1.

Osservazione 1.2.3. Spazi vettoriali isomorfi hanno algebre tensoriali isomorfe. Infatti, sia L:V → W
un isomorfismo fra spazi vettoriali di dimensione finita su K, e indichiamo con L∗:W ∗ → V ∗ l’isomorfismo
duale. Allora (L∗)−1:V ∗ →W ∗ è ancora un isomorfismo, e possiamo definire T (L):T (V )→ T (W ) ponendo

T (L)(v1 ⊗ · · · ⊗ vp ⊗ ω1 ⊗ · · · ⊗ ωq) = L(v1)⊗ · · · ⊗ L(vp)⊗ (L∗)−1(ω1)⊗ · · · ⊗ (L∗)−1(ωq)

ed estendendo per linearità. Si vede subito che T (L) è un isomorfismo di algebre che conserva il tipo.

Esercizio 1.2.1. Dimostra che per ogni applicazione lineare L ∈ Hom(V, W ) esistono un unico omomorfismo
di algebre T •(L):T •(V )→ T •(W ) e un unico omomorfismo di algebre T•(L):T•(W )→ T•(V ) che conservano
il tipo e tali che T •(L)|V = L e T•(L)|W∗ = L∗.

Capita spesso che strutture definite sullo spazio vettoriale V possano essere estese all’intera algebra
tensoriale. Un esempio tipico è quello del prodotto scalare:

Proposizione 1.2.1: Sia 〈· , ·〉:V × V → R un prodotto scalare definito positivo su uno spazio vettoriale V
di dimensione finita su R. Allora esiste un unico prodotto scalare definito positivo 〈〈· , ·〉〉: T (V )× T (V )→ R
che soddisfa le seguenti condizioni:

(i) T p
q (V ) è ortogonale a Th

k (V ) se p 6= h o q 6= k;
(ii) 〈〈λ, µ〉〉 = λµ per ogni λ, µ ∈ R = T 0(V );
(iii) 〈〈v, w〉〉 = 〈v, w〉 per ogni v, w ∈ T 1(V ) = V ;
(iv) 〈〈v∗, w∗〉〉 = 〈v, w〉 per ogni v, w ∈ T 1(V ), dove v∗, w∗ ∈ T1(V ) sono dati da v∗ = 〈·, v〉 e w∗ = 〈·, w〉;
(v) 〈〈α1 ⊗ α2, β1 ⊗ β2〉〉 = 〈〈α1, β1〉〉 · 〈〈α2, β2〉〉 per ogni α1, β1 ∈ T p1

q1
(V ) e α1, β2 ∈ T p2

q2
(V ).

Dimostrazione: Sia {v1, . . . , vn} una base di V ortonormale rispetto a 〈· , ·〉; in particolare, {v∗1 , . . . , v∗2} è la
base duale di V ∗. Una base di T p

q (V ) è allora composta da tutti i possibili tensori della forma

vI = vi1 ⊗ · · · ⊗ vip
⊗ v∗ip+1

⊗ · · · ⊗ v∗ip+q
(1.2.1)

al variare di I = (i1, . . . , ip+q) ∈ {1, . . . , n}p+q.
Ora, supponiamo che un prodotto scalare 〈〈· , ·〉〉 che soddisfi (i)–(v) esista. Allora si vede subito che

{v1, . . . , vn} e {v∗1 , . . . , v∗n} sono ortonormali rispetto a 〈〈· , ·〉〉, e quindi〈〈∑
I

λIvI ,
∑

J

µJvJ

〉〉
=

∑
I

∑
J

λIµJ〈〈vI , vJ〉〉 =
∑

I

∑
J

λIµJ〈〈vi1 , vj1〉〉 · · · 〈〈v∗ip+q
, v∗jp+q

〉〉

=
∑

I

λIµI ,
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per cui 〈〈· , ·〉〉 se esiste è unico.
Per l’esistenza, indichiamo con 〈〈· , ·〉〉 l’unico prodotto scalare definito positivo su T (V ) rispetto a cui

gli elementi della forma (1.2.1) formano una base ortonormale. Chiaramente, (i)–(iv) sono soddisfatte;
dobbiamo verificare (v). Ma infatti abbiamo〈〈(∑

I1

λ1
I1

vI1

)
⊗

(∑
I2

λ2
I2

vI2

)
,

(∑
J1

µ1
J1

vJ1

)
⊗

(∑
J2

µ2
J2

vJ2

)〉〉
=

∑
I1,I2,J1,J2

λ1
I1

λ2
I2

µ1
J1

µ2
J2
〈〈vI1 ⊗ vI2 , vJ1 ⊗ vJ2〉〉

=
∑
I1,I2

λ1
I1

λ2
I2

µ1
I1

µ2
I2

=
〈〈∑

I1

λ1
I1

vI1 ,
∑
J1

µ1
J1

vJ1

〉〉
·
〈〈∑

I2

λ2
I2

vI2 ,
∑
J2

µ2
J2

vJ2

〉〉
,

e ci siamo.

Concludiamo questo paragrafo introducendo una famiglia di applicazioni lineari tipiche dell’algebra
tensoriale:

Definizione 1.2.2: La contrazione su T p
q (V ) di tipo

(
i
j

)
con 1 ≤ i ≤ p e 1 ≤ j ≤ q è l’applicazione lineare

Ci
j :T

p
q (V )→ T p−1

q−1 (V ) definita sugli elementi indecomponibili da

Ci
j(v1 ⊗ · · · ⊗ vp ⊗ ω1 ⊗ · · · ⊗ ωq) = ωj(vi) v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vp ⊗ ω1 ⊗ · · · ⊗ ω̂j ⊗ · · · ⊗ ωq

(dove l’accento circonflesso indica elementi omessi nel prodotto tensoriale), ed esteso per linearità.

Per esempio, C11 :T 1
1 (V )→ K è data sugli elementi indecomponibili da

C11(v ⊗ ω) = ω(v),

mentre C12 :T 2
2 (V )→ T 1

1 (V ) è data sugli elementi indecomponibili da

C12(v1 ⊗ v2 ⊗ ω1 ⊗ ω2) = ω2(v1) v2 ⊗ ω1.

1.3 Algebra esterna

L’Osservazione 1.2.3 ci dice che ogni automorfismo L di uno spazio vettoriale T induce un automorfismo
T (L) dell’algebra tensoriale T (V ). I sottospazi di T (V ) che sono mandati in se stessi da ogni automorfismo
del tipo T (L) sono chiaramente intrinsecamente associati allo spazio vettoriale V (e non a una sua particolare
realizzazione), e quindi ci aspettiamo che siano particolarmente interessanti.

Definizione 1.3.1: Un sottospazio vettoriale S di T (V ) che sia invariante sotto l’azione di T (L) per ogni
automorfismo L di V , cioè tale che T (L)(S) = S per ogni automorfismo L di V , è detto spazio tensoriale.

I principali esempi di spazi tensoriali sono dati dall’insieme dei tensori simmetrici e dall’insieme dei
tensori alternanti. Attenzione: da qui in poi assumeremo sempre che il campo K abbia caratteristica zero (e
gli esempi principali da tenere in mente sono K = R e K = C).

Osservazione 1.3.1. Indicheremo con Sp il gruppo simmetrico su p elementi, cioè il gruppo delle permu-
tazioni di {1, . . . , p}. È noto che ogni permutazione σ ∈ Sp si può scrivere come prodotto di trasposizioni;
questa scrittura non è unica, ma la parità del numero delle trasposizioni necessarie per scrivere σ lo è. In
altre parole, se σ = τ1 · · · τr è una decomposizione di σ ∈ Sp come prodotto di trasposizioni, il segno sgn(σ)
di σ dato da

sgn(σ) = (−1)r ∈ {+1,−1}
è ben definito indipendentemente dalla particolare decomposizione di σ come prodotto di trasposizioni scelta
per calcolarlo. In particolare si ha sgn(στ) = sgn(σ) sgn(τ) e sgn(σ−1) = sgn(σ) per ogni σ, τ ∈ Sp.
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Definizione 1.3.2: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare ϕ:V × · · · × V →W
è simmetrica se

ϕ(vσ(1), . . . , vσ(p)) = ϕ(v1, . . . , vp)

per ogni p-upla (v1, . . . , vp) ∈ V p e ogni permutazione σ di {1, . . . , p}. Lo spazio tensoriale Sp(V ) (rispettiva-
mente, Sp(V )) dei tensori simmetrici p-covarianti (rispettivamente, p-controvarianti) è allora il sottospazio
di Tp(V ) (rispettivamente, T p(V )) costituito dalle applicazioni multilineari simmetriche a valori in K.

Definizione 1.3.3: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare ϕ:V × · · · × V →W
è alternante (o antisimmetrica) se

ϕ(vσ(1), . . . , vσ(p)) = sgn(σ) ϕ(v1, . . . , vp)

per ogni p-upla (v1, . . . , vp) ∈ V p e ogni permutazione σ di {1, . . . , p}. Lo spazio tensoriale
∧

p(V ) (rispetti-
vamente,

∧p(V )) dei tensori alternanti p-covarianti (rispettivamente, p-controvarianti) è allora il sottospazio
di Tp(V ) (rispettivamente, T p(V )) costituito dalle applicazioni multilineari alternanti a valori in K.

Esercizio 1.3.1. Dimostra che per ogni applicazione p-lineare ϕ: V × · · · × V →W le seguenti affermazioni
sono equivalenti:
(i) ϕ è simmetrica;
(ii) il valore di ϕ non cambia scambiando due argomenti, cioè

ϕ(v1, . . . , vi, . . . , vj , . . . , vp) = ϕ(v1, . . . , vj , . . . , vi, . . . , vp)

per ogni v1, . . . , vp ∈ V e 1 ≤ i < j ≤ p;
(iii) se ϕi1...ip

sono le coordinate di ϕ rispetto alla base {vi1 ⊗ · · · ⊗ vip} di Tp(V ), dove {v1, . . . , vn} è una
base di V ∗, allora ϕiσ(1)...iσ(p) = ϕi1...ip

per ogni σ ∈ Sp.

Esercizio 1.3.2. Dimostra che per ogni applicazione p-lineare ϕ: V × · · · × V →W le seguenti affermazioni
sono equivalenti:
(i) ϕ è alternante;
(ii) il valore di ϕ cambia di segno scambiando due argomenti, cioè

ϕ(v1, . . . , vi, . . . , vj , . . . , vp) = −ϕ(v1, . . . , vj , . . . , vi, . . . , vp)

per ogni v1, . . . , vp ∈ V e 1 ≤ i < j ≤ p;
(iii) ϕ si annulla ogni volta che due argomenti sono uguali, cioè

ϕ(v1, . . . , v, . . . , v, . . . , vp) = 0

per ogni v1, . . . , v, . . . , vp ∈ V ;
(iv) ϕ(v1, . . . , vp) = 0 non appena i vettori v1, . . . , vp ∈ V sono linearmente dipendenti;
(v) se ϕi1...ip sono le coordinate di ϕ rispetto alla base {vi1 ⊗ · · · ⊗ vip} di Tp(V ), dove {v1, . . . , vn} è una

base di V ∗, allora ϕiσ(1)...iσ(p) = sgn(σ)ϕi1...ip per ogni σ ∈ Sp.

Esercizio 1.3.3. Dimostra che gli spazi Sp(V ), Sp(V ),
∧p(V ) e

∧
p(V ) sono effettivamente spazi tensoriali.

Ora, il prodotto tensoriale di due tensori simmetrici o alternanti non è necessariamente simmetrico o
alternante.

Esempio 1.3.1. Sia V = R2, e indichiamo con {e1, e2} la base canonica, e con {e1, e2} la corrispondente
base duale. Chiaramente, e1, e2 ∈ V =

∧1
V = S1(V ) = V , mentre e1 ⊗ e2 /∈

∧2
V ∪ S2(V ). Infatti,

e1 ⊗ e2(e1, e2) = e1(e1)e2(e2) = 1 6= 0 = ±e1(e2)e2(e1) = ±e1 ⊗ e2(e2, e1).

Esercizio 1.3.4. Dimostra che v1 ⊗ v2 − v2 ⊗ v1 ∈
∧2

V e che v1 ⊗ v2 + v2 ⊗ v1 ∈ S2(V ) per ogni coppia
v1, v2 ∈ V di elementi di uno spazio vettoriale V .

Quest’ultimo esercizio fa sospettare che sia possibile definire un prodotto sui tensori alternanti (o simme-
trici) in modo da ottenere un tensore alternante (o simmetrico). Per introdurlo, cominciamo con lo studiare
meglio i tensori alternanti e simmetrici.
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Proposizione 1.3.1: Sia B = {v1, . . . , vn} una base dello spazio vettoriale V sul campo K, e φ:Bp →W una
qualsiasi applicazione a valori in un altro spazio vettoriale W . Allora φ si può estendere a una applicazione
p-lineare alternante (rispettivamente, simmetrica) Φ: V × · · · × V →W se e solo se

φ(vµσ(1) , . . . , vµσ(p)) = sgn(σ)φ(vµ1 , . . . , vµp
) (1.3.1)

(rispettivamente, φ(vµσ(1) , . . . , vµσ(p)) = φ(vµ1 , . . . , vµp
)) per ogni permutazione σ di {1, . . . , p}, e ogni p-upla

(vµ1 , . . . , vµp
) di elementi di B.

Dimostrazione: Per la Proposizione 1.1.2, ogni φ:Bp → W si estende in modo unico a un’applicazione
p-lineare a valori in W tramite la (1.1.2), dove wµ1...µp

= φ(vµ1 , . . . , vµp
), ed è chiaro che l’estensione è

alternante se e solo se vale la (1.3.1). Il ragionamento nel caso simmetrico è identico.

Osservazione 1.3.2. In questo paragrafo d’ora in poi tratteremo solo i tensori alternanti e simmetrici
controvarianti; risultati del tutto analoghi valgono anche per i tensori alternanti e simmetrici covarianti, in
quanto Sp(V ) = Sp(V ∗) e

∧
p(V ) =

∧p(V ∗). Inoltre, saremo principalmente interessati al caso alternante.

La Proposizione 1.3.1 implica che una ϕ ∈
∧p

V è completamente determinata dai valori che assume
sulle p-uple della forma (vi1 , . . . , vip) con 1 ≤ i1 < · · · < ip ≤ n, dove B∗ = {v1, . . . , vn} è una base di V ∗.
Analogamente, una φ ∈ Sp(V ) è completamente determinata dai valori che assume sulle p-uple della forma
(vi1 , . . . , vip) con 1 ≤ i1 ≤ · · · ≤ ip ≤ n. Quindi

Corollario 1.3.2: Sia V uno spazio vettoriale di dimensione n ≥ 1 sul campo K, e p ∈ N. Allora

dimSp(V ) =
(

n + p− 1
p

)
,

dim
∧p

V =
{ (

n
p

)
se 0 ≤ p ≤ n,

0 se p > n.

In particolare,

dim
⊕

0≤p≤n

∧p
V = 2n.

Dimostrazione: Per quanto visto, la dimensione di
∧p

V è uguale alla cardinalità dell’insieme delle p-uple
(i1, . . . , ip) con 1 ≤ i1 < · · · < ip ≤ n, cardinalità che è ben nota essere

(
n
p

)
per 0 ≤ p ≤ n e 0 altrimenti. In

particolare,

dim
⊕

0≤p≤n

∧p
V =

n∑
p=0

(
n

p

)
= 2n.

Analogamente, la dimensione di Sp(V ) è uguale alla cardinalità dell’insieme delle p-uple (i1, . . . , ip) con
1 ≤ i1 ≤ · · · ≤ ip ≤ n. Ora, si ha 1 ≤ i1 ≤ · · · ≤ ip ≤ n se e solo se

1 ≤ i1 < i2 + 1 < i3 + 2 < · · · < ip + p− 1 ≤ n + p− 1.

Quindi l’insieme delle p-uple (i1, . . . , ip) con 1 ≤ i1 ≤ · · · ≤ ip ≤ n ha la stessa cardinalità dell’insieme delle
p-uple (j1, . . . , jp) con 1 ≤ j1 < · · · < jp ≤ n + p − 1, e la tesi segue dal fatto che quest’ultimo insieme ha
cardinalità

(
n+p−1

p

)
.

Osservazione 1.3.3. In particolare, se V ha dimensione n allora dim
∧n

V = 1. Non è difficile trovare un
generatore di

∧n
V : fissata una base {v1, . . . , vn}, definiamo ω ∈

∧n
V ponendo

ω(ϕ1, . . . , ϕn) = det
(
ϕi(vj)

)
per ogni ϕ1, . . . , ϕn ∈ V ∗. Siccome ω valutato sulla base duale di V ∗ è uguale al determinante della matrice
identica, cioè 1, ne deduciamo che ω 6= O; e quindi ogni altro elemento di

∧n
V è un multiplo di ω.
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Esercizio 1.3.5. Sia {v1, . . . , vn} una base di uno spazio vettoriale V , e 1 ≤ p ≤ n. Preso un multi-indice
I = (i1, . . . , ip) con 1 ≤ i1 < · · · < ip ≤ n, definiamo vI ∈

∧p
V ponendo

vI(ϕ1, . . . , ϕp) = det
(
ϕh(vik

)
)

per ogni ϕ1, . . . , ϕp ∈ V ∗. Dimostra che la famiglia delle applicazioni p-alternanti vI al variare di I è una
base di

∧p
V .

Definizione 1.3.4: Sia V uno spazio vettoriale di dimensione finita sul campo K. L’algebra esterna di V è lo
spazio tensoriale ∧

V =
⊕

0≤p≤n

∧p
V,

mentre l’algebra simmetrica di V è lo spazio tensoriale

S(V ) =
⊕
p≥0

Sp(V ).

Abbiamo già osservato che
∧

V e S(V ) non sono sottoalgebre di T (V ). Vogliamo allora introdurre un
nuovo prodotto su

∧
V e un nuovo prodotto su S(V ) in modo da renderli delle algebre. Cominciamo con la

Definizione 1.3.5: Sia V uno spazio vettoriale di dimensione finita su un campo K. L’operatore di antisim-
metrizzazione è l’applicazione lineare A:T •(V )→

∧
V definita da

A(α)(φ1, . . . , φp) =
1
p!

∑
σ∈Sp

sgn(σ) α(φσ(1), . . . , φσ(p))

per ogni α ∈ T p(V ), e φ1, . . . , φp ∈ V ∗. Analogamente, l’operatore di simmetrizzazione S:T •(V )→ S(V ) è
dato da

S(α)(φ1, . . . , φp) =
1
p!

∑
σ∈Sp

α(φσ(1), . . . , φσ(p))

per ogni α ∈ T p(V ), e φ1, . . . , φp ∈ V ∗.

Per ogni τ ∈ Sp si ha

A(α)(φτ(1), . . . , φτ(p)) =
1
p!

∑
σ∈Sp

sgn(σ) α(φτ(σ(1)), . . . , φτ(σ(p)))

=
1
p!

∑
ρ∈Sp

sgn(τ−1ρ) α(φρ(1), . . . , φρ(p)) = sgn(τ)A(α)(φ1, . . . , φp),

per cui l’immagine di A è effettivamente contenuta in
∧

V . È inoltre evidente che A è lineare, e che è
l’identità ristretta a

∧
V .

Esercizio 1.3.6. Dimostra che S:T •(V )→ S(V ) è lineare, ha immagine contenuta in S(V ), ed è l’identità
ristretta a S(V ).

Esercizio 1.3.7. Dato α ∈ T p(V ) dimostra che S(α) è l’unico tensore p-controvariante simmetrico tale che
S(α)(φ, . . . , φ) = α(φ, . . . , φ) per tutti i φ ∈ V ∗.

Definizione 1.3.6: Sia V uno spazio vettoriale di dimensione finita sul campo K, α ∈
∧p

V e β ∈
∧q

V . Allora
il prodotto esterno di α e β è il (p + q)-tensore alternante dato da

α ∧ β =
(p + q)!

p!q!
A(α⊗ β) ∈

∧p+q
V .

Estendendo per bilinearità otteniamo il prodotto esterno ∧:
∧

V ×
∧

V →
∧

V . La quadrupla (
∧

V,+,∧, ·)
è detta algebra esterna di V .
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Definizione 1.3.7: Sia V uno spazio vettoriale di dimensione finita sul campo K, α ∈ Sp(V ) e β ∈ Sq(V ).
Allora il prodotto simmetrico di α e β è il (p + q)-tensore simmetrico dato da

α¯ β =
(p + q)!

p!q!
S(α⊗ β) ∈ Sp+q(V ).

Estendendo per bilinearità otteniamo il prodotto simmetrico ¯:S(V ) × S(V ) → S(V ). La quadrupla(
S(V ),+,¯, ·

)
è detta algebra simmetrica di V .

Osservazione 1.3.4. Attenzione: in alcuni testi il prodotto esterno è definito dalla formula

α ∧ β = A(α⊗ β) ∈
∧p+q

V

per ogni α ∈
∧p

V e β ∈
∧q

V . Analogamente, in alcuni testi (non necessariamente gli stessi) il prodotto
simmetrico è definito dalla formula α¯ β = S(α⊗ β).

Proposizione 1.3.3: Sia V uno spazio vettoriale di dimensione finita sul campo K. Allora la quadru-
pla (

∧
V, +,∧, ·) è un’algebra con unità e anticommutativa, nel senso che è un’algebra con unità tale che

α ∧ β = (−1)pqβ ∧ α (1.3.2)

per ogni α ∈
∧p

V e β ∈
∧q

V .

Dimostrazione: La distributività di ∧ rispetto alla somma e al prodotto per scalari seguono subito dalla
definizione e dalla linearità diA, ed è chiaro che 1 ∈

∧0
V è un’unità. Rimangono da dimostrare l’associatività

e l’anticommutatività (1.3.2).
Cominciamo con l’associatività. Prendiamo α ∈

∧p
V , β ∈

∧q
V , γ ∈

∧r
V e φ1, . . . , φp+q+r ∈ V ∗.

Allora

(α ∧ β) ∧ γ(φ1, . . . , φp+q+r)

=
(p + q + r)!
(p + q)!r!

A
(
(α ∧ β)⊗ γ

)
(φ1, . . . , φp+q+r)

=
1

(p + q)!r!

∑
τ∈Sp+q+r

sgn(τ)(α ∧ β)⊗ γ(φτ(1), . . . , φτ(p+q+r))

=
1

(p + q)!r!

∑
τ∈Sp+q+r

sgn(τ)(α ∧ β)(φτ(1), . . . , φτ(p+q))γ(φτ(p+q+1), . . . , φτ(p+q+r))

=
1

(p + q)!
1

p!q!r!
×

×
∑

τ∈Sp+q+r

∑
σ∈Sp+q

sgn(τ) sgn(σ)α(φστ (1), . . . , φστ (p))β(φστ (p+1), . . . , φστ (p+q))γ(φτ(p+q+1), . . . , φτ(p+q+r)),

dove
(
στ (1), . . . , στ (p + q)

)
è la (p + q)-upla ottenuta applicando la permutazione σ ∈ Sp+q alla p + q-upla(

τ(1), . . . , τ(p + q)
)
. Ora, è chiaro che

(
στ (1), . . . , στ (p + q), τ(p + q + 1), . . . , τ(p + q + r)

)
è ancora una

permutazione di (1, . . . , p + q + r), il cui segno è esattamente sgn(τ) sgn(σ). Inoltre, ogni permutazione
in Sp+q+r può essere ottenuta tramite questo procedimento in esattamente (p + q)! modi diversi; quindi
abbiamo

(α ∧ β) ∧ γ(φ1, . . . , φp+q+r)

=
1

p!q!r!

∑
ρ∈Sp+q+r

sgn(ρ)α(φρ(1), . . . , φρ(p))β(φρ(p+1), . . . , φρ(p+q))γ(φρ(p+q+1), . . . , φρ(p+q+r)). (1.3.3)

In maniera analoga si dimostra che quest’ultima espressione è uguale a α∧ (β ∧ γ)(φ1, . . . , φp+q+r), e l’asso-
ciatività è verificata.
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Rimane da dimostrare la anticommutatività. Se α ∈
∧p

V e β ∈
∧q

V abbiamo

α ∧ β(φ1, . . . , φp+q) =
1

p!q!

∑
τ∈Sp+q

sgn(τ)α(φτ(1), . . . , φτ(p))β(φτ(p+1), . . . , φτ(p+q)),

= (−1)pq 1
p!q!

∑
ρ∈Sp+q

sgn(ρ)α(φρ(q+1), . . . , φρ(q+p))β(φρ(1), . . . , φρ(q))

= (−1)pqβ ∧ α(φ1, . . . , φp+q),

per ogni φ1, . . . , φp+q ∈ V ∗, e ci siamo.

Esercizio 1.3.8. Sia V uno spazio vettoriale di dimensione finita sul campo K. Dimostra che la quadru-
pla

(
S(V ),+,¯, ·

)
è un’algebra con unità commutativa.

Osservazione 1.3.5. Ripetendo il ragionamento che ha portato alla (1.3.3) si dimostra che per ogni r-
upla α1 ∈

∧k1 V, . . . , αr ∈
∧kr V e per ogni φ1, . . . , φk1+···+kr ∈ V ∗ si ha

α1 ∧ · · · ∧ αr(φ1, . . . , φk1+···+kr )

=
1

k1! · · · kr!

∑
τ∈Sk1+···+kr

sgn(τ) α1(φτ(1), . . . , φτ(k1)) · · ·αr(φτ(k1+···+kr−1+1), . . . , φτ(k1+···+kr)).

In particolare,
v1 ∧ · · · ∧ vp(φ1, . . . , φp) =

∑
τ∈Sp

sgn(τ)φτ(1)(v1) · · ·φτ(p)(vp)

= det
(
φh(vk)

) (1.3.4)

per ogni v1, . . . , vp ∈ V e φ1, . . . , φp ∈ V ∗.

Esercizio 1.3.9. Dimostra che

v1 ∧ · · · ∧ vp =
∑

τ∈Sp

sgn(τ) vτ(1) ⊗ · · · ⊗ vτ(p)

per ogni v1, . . . , vp ∈ V .

Esercizio 1.3.10. Dimostra che il prodotto esterno è l’unica applicazione da
∧

V ×
∧

V in
∧

V che sia
associativa, bilineare, anticommutativa e soddisfi (1.3.4).

Osservazione 1.3.6. L’anticommutatività implica chiaramente che se α ∈
∧p

V con p dispari allora
α ∧ α = O. Questo non è più vero se p è pari: per esempio, se α = e1 ∧ e2 + e3 ∧ e4 ∈

∧2 R4 si ha

α ∧ α = 2e1 ∧ e2 ∧ e3 ∧ e4 6= O.

Avendo a disposizione il prodotto esterno non è difficile trovare una base dell’algebra esterna:

Proposizione 1.3.4: Sia B = {v1, . . . , vn} una base di uno spazio vettoriale V . Allora una base di
∧p

V è
data da

Bp = {vi1 ∧ · · · ∧ vip
| 1 ≤ i1 < · · · < ip ≤ n}.

Dimostrazione: Siccome Bp contiene dim
∧p

V elementi, ci basta dimostrare che sono linearmente indipen-
denti. Sia {v1, . . . , vn} la base duale di V ∗; la Proposizione 1.1.2 ci dice che per vedere se gli elementi
di Bp sono linearmente indipendenti basta calcolare il loro valore sulle p-uple di elementi della base duale e
verificare che si ottengono vettori linearmente indipendenti di Knp

. Siccome i vi1 ∧ · · · ∧ vip
sono alternanti,
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è sufficiente calcolarne il valore su p-uple (vj1 , . . . , vjp) con 1 ≤ j1 < · · · < jp ≤ n. Usando (1.3.4) otteniamo
quindi

vi1 ∧ · · · ∧ vip(vj1 , . . . , vjp) =
∑

τ∈Sp

sgn(τ)vjτ(1)(vi1) · · · vjτ(p)(vip)

=
∑

τ∈Sp

sgn(τ)δjτ(1)
i1
· · · δjτ(p)

ip

=
{

0 se (j1, . . . , jp) 6= (i1, . . . , ip),
1 se (j1, . . . , jp) = (i1, . . . , ip),

in quanto i1 < · · · < ip e l’unica permutazione che conserva l’ordine è l’identità, e ci siamo.

Esercizio 1.3.11. Sia {v1, . . . , vn} una base dello spazio vettoriale V . Per ogni multi-indice I = (i1, . . . , ip)
con 1 ≤ i1 < · · · < ip ≤ n dimostra che vI = vi1 ∧ · · · ∧ vip , dove vI ∈

∧p(V ) è definito nell’Esercizio 1.3.5.

Osservazione 1.3.7. Sia (v1, . . . , vp) una p-upla di elementi di uno spazio vettoriale V . Se due di questi
elementi coincidono, l’anticommutatività implica che v1∧· · ·∧vp = O. Più in generale, si vede subito (eserci-
zio) che v1∧· · ·∧vp = O se v1, . . . , vp sono linearmente dipendenti. Viceversa, se {v1, . . . , vp} sono linearmente
indipendenti, possiamo completarli a una base di V e la Proposizione 1.3.4 ci assicura che v1 ∧ · · · ∧ vp 6= O.
In effetti, l’elemento v1 ∧ · · · ∧ vp risulta essere univocamente determinato (a meno di una costante molti-
plicativa non nulla) dal p-piano generato da {v1, . . . , vp}. Più precisamente, sia {w1, . . . , wp} un’altra base
dello stesso p-piano, e sia A = (ak

h) ∈ GL(p, K) la matrice tale che wh = a1
hv1 + · · ·+ ap

hvp per h = 1, . . . , p.
Allora

w1 ∧ · · · ∧ wp = (detA) v1 ∧ · · · ∧ vp.

Infatti se φ1, . . . , φp ∈ V ∗ si ha

w1 ∧ · · · ∧ wp(φ1, . . . , φp) =
∑

τ∈Sp

sgn(τ)φτ(1)(w1) · · ·φτ(p)(wp)

=
p∑

j1=1

· · ·
p∑

jp=1

aj1
1 · · · ajp

p

∑
τ∈Sp

sgn(τ)φτ(1)(vj1) · · ·φτ(p)(vjp
)

=
p∑

j1=1

· · ·
p∑

jp=1

aj1
1 · · · ajp

p vj1 ∧ · · · ∧ vjp
(φ1, . . . , φp)

=
∑

σ∈Sp

sgn(σ)aσ(1)
1 · · · aσ(p)

p v1 ∧ · · · ∧ vp(φ1, . . . , φp)

= det(A)v1 ∧ · · · ∧ vp(φ1, . . . , φp),

grazie all’anticommutatività.

Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 1.3.12. Dimostra che per ogni ω ∈
∧n

V , T ∈ Hom(V ∗, V ∗) e φ1, . . . , φn ∈ V ∗, dove n = dimV ,
si ha ω

(
T (φ1), . . . , T (φn)

)
= (detT )ω(φ1, . . . , φn).

Esercizio 1.3.13. Dimostra che T 2(V ) = S2(V )⊕
∧2

V , e che e1⊗e2⊗e3 /∈ S3(R3)⊕
∧3 R3, dove {e1, e2, e3}

è la base canonica di R3.

Esercizio 1.3.14. Se V e W sono spazi vettoriali di dimensione finita sul campo K, dimostra che ogni
applicazione lineare L ∈ Hom(V, W ) si estende a un’applicazione lineare L̃ ∈ Hom(

∧
V,

∧
W ) tale che

L̃(1) = 1 e L̃(v1 ∧ · · · ∧ vp) = L(v1) ∧ · · · ∧ L(vp) per ogni v1, . . . , vp ∈ V .

Esercizio 1.3.15. Sia V uno spazio vettoriale di dimensione finita, e F :V p →
∧p

V l’applicazione p-lineare
alternante data da F (v1, . . . , vp) = v1 ∧ · · · ∧ vp. Dimostra che la coppia (

∧p
V, F ) è l’unica coppia (a meno

di isomorfismi) che soddisfa la seguente proprietà universale: per ogni applicazione p-lineare alternante
A:V p → W a valori in uno spazio vettoriale W esiste un’unica applicazione lineare Ã:

∧p
V → W tale

che A = Ã ◦ F .
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Esercizio 1.3.16. Sia V uno spazio vettoriale di dimensione finita. Dimostra che (
∧p

V )∗ è isomorfo
a

∧p(V ∗). (Suggerimento: Usa l’esercizio precedente e l’applicazione Φ: (V ∗)p → (
∧p

V )∗ definita da

Φ(φ1, . . . , φp)(v1 ∧ · · · ∧ vp) = det
(
φi(vj)

)
per v1, . . . , vp ∈ V e φ1, . . . , φp ∈ V ∗.)

Esercizio 1.3.17. Se 〈· , ·〉 è un prodotto scalare sullo spazio vettoriale V , sia 〈〈· , ·〉〉 il prodotto scalare
su T (V ) costruito nella Proposizione 1.2.1. Dimostra che

〈〈v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp〉〉 = p! det(〈vi, wj〉)
per ogni v1, . . . , vp, w1, . . . , wp ∈ V .

Esercizio 1.3.18. Enuncia e dimostra per l’algebra simmetrica S(V ) risultati analoghi a quelli contenuti nei
quattro esercizi precedenti.

Esercizio 1.3.19. Sia {e1, e2, e3} la base canonica di R3. Dimostra che per ogni u, w ∈ R3 =
∧1 R3 le

coordinate di u ∧ v ∈
∧2 R3 rispetto alla base {e2 ∧ e3, e3 ∧ e1, e1 ∧ e2} sono esattamente le coordinate del

classico prodotto vettore di u e v rispetto alla base canonica.

1.4 Tensori simplettici⌈
Dedichiamo quest’ultimo paragrafo a un tipo particolare di 2-tensori covarianti alternanti, utili in di-

verse questioni di geometria differenziale e di fisica matematica. Di nuovo, lavoriamo su un campo K di
caratteristica zero.

Definizione 1.4.1: Un 2-tensore covariante ω ∈ T2(V ) è detto non-degenere se ω(v, w) = 0 per ogni w ∈ V
implica v = O. Un tensore simplettico è un 2-tensore covariante alternante non-degenere. Una coppia (V, ω)
dove V è uno spazio vettoriale e ω ∈

∧
2 V è un tensore simplettico, è detta spazio vettoriale simplettico.

Esercizio 1.4.1. Sia ω ∈ T2(V ) un 2-tensore covariante su uno spazio vettoriale V di dimensione finita.
Dimostra che le seguenti affermazioni sono equivalenti:
(i) ω è non-degenere.
(ii) L’applicazione ω̃:V → V ∗ data da ω̃(v)(w) = ω(v, w) per ogni v, w ∈ V è un isomorfismo.
(iii) Scelta una base {v1, . . . , vn} di V ∗, la matrice (ωhk) delle coordinate di ω rispetto alla base {vh ⊗ vk}

di T2(V ) è invertibile.

Esempio 1.4.1. Sia V uno spazio vettoriale di dimensione 2n. Scegliamo una base {v1, w1, . . . , vn, wn}, e
indichiamo con {v1, w1, . . . , vn, wn} la corrispondente base duale. Sia allora ω ∈

∧
2 V dato da

ω =
n∑

j=1

vj ∧ wj . (1.4.1)

Vogliamo dimostrare che ω è un tensore simplettico. Prima di tutto, la sua azione sugli elementi della base
è data da

ω(vi, wj) = −ω(wj , vi) = δij , ω(vi, vj) = ω(wi, wj) = 0 (1.4.2)

per ogni 1 ≤ i, j ≤ n. Supponiamo allora che v =
∑

i(a
ivi + biwi) ∈ V sia tale che ω(v, w) = 0 per

ogni w ∈ V . In particolare 0 = ω(v, vj) = −bj e 0 = ω(v, wj) = aj per 1 ≤ j ≤ n; quindi v = O e ω è
non-degenere.

Definizione 1.4.2: Sia (V, ω) uno spazio vettoriale simplettico. Il complemento simplettico di un sottospa-
zio W ⊆ V è il sottospazio

W⊥ = {v ∈ V | ω(v, w) = 0 per ogni w ∈W}.
Contrariamente al caso dei complementi ortogonali, non è detto che W ∩W⊥ = {O}. Per esempio, se

dimW = 1 allora l’antisimmetria di ω implica che W ⊆ W⊥. Questa osservazione suggerisce di classificare
i sottospazi di uno spazio vettoriale simplettico come segue:



16 Elementi di Geometria Differenziale, A.A. 2004/05

Definizione 1.4.3: Sia (V, ω) uno spazio vettoriale simplettico. Un sottospazio W ⊆ V di V sarà detto
simplettico se W ∩W⊥ = {O}; isotropo se W ⊆W⊥; coisotropo se W ⊇W⊥; Lagrangiano se W = W⊥.

Esercizio 1.4.2. Sia (V, ω) uno spazio vettoriale simplettico, e W ⊆ V un sottospazio di V . Dimostra che:
(i) dimW + dimW⊥ = dimV .
(ii) (W⊥)⊥ = W .
(iii) W è simplettico se e solo se ω|W×W è non-degenere.
(iv) W è isotropo se e solo se ω|W×W = O.
(v) W è Lagrangiano se e solo se ω|W×W = O e dim V = 2 dimW .

L’unico risultato che dimostriamo sui tensori simplettici è che possono sempre essere espressi nella forma
indicata dall’Esempio 1.4.2.

Proposizione 1.4.1: Sia (V, ω) uno spazio vettoriale simplettico. Allora dimV = 2n è pari, ed esiste una
base di V rispetto a cui ω è data da (1.4.1).

Dimostrazione: Si verifica facilmente che ω è della forma (1.4.1) rispetto a una base {v1, w1, . . . , vn, wn} di V
se e solo se l’azione di ω sui vettori della base è data da (1.4.2). Dimostreremo allora che esiste una base per
cui (1.4.2) vale procedendo per induzione su m = dimV .

Per m = 0 non c’è nulla da dimostrare. Supponiamo allora che (V, ω) sia uno spazio vettoriale simplettico
di dimensione m ≥ 1, e che la proposizione sia vera per tutti gli spazi vettoriali simplettici di dimensione
minore di m. Sia v1 ∈ V un vettore non nullo. Essendo ω non-degenere, esiste un vettore w1 ∈ V tale
che ω(v1, w1) 6= 0; a meno di moltiplicare w1 per una costante, possiamo anche supporre che ω(v1, w1) = 1.
Siccome ω è alternante, v1 e w1 sono linearmente indipendenti.

Sia W il sottospazio generato da v1 e w1. L’Esercizio 1.4.2.(i) ci assicura che dimW⊥ = m − 2.
Siccome ω|W×W è chiaramente non-degenere, l’Esercizio 1.4.2.(iii) implica che W è simplettico; ma al-
lora W ∩ W⊥ = {O} e quindi, grazie all’Esercizio 1.4.2.(ii), anche W⊥ è simplettico. Per l’ipotesi in-
duttiva, dimW⊥ è pari, ed esiste una base {v2, w2, . . . , vn, wn} di W⊥ che soddisfa (1.4.2). Ma allora
{v1, w1, v2, w2, . . . , vn, wn} è una base di V che soddisfa (1.4.2), e ci siamo.

Definizione 1.4.4: Sia (V, ω) uno spazio vettoriale simplettico. Una base {v1, w1, . . . , vn, wn} di V rispetto a
cui ω è data da (1.4.1) è detta base simplettica di V .

Esercizio 1.4.3. Sia (V, ω) uno spazio vettoriale simplettico di dimensione 2n. Dimostra che per ogni
sottospazio simplettico (rispettivamente, isotropo, coisotropo, Lagrangiano) W di V esiste una base simplet-
tica {v1, w1, . . . , vn, wn} di V tale che:
(i) se W è simplettico allora W = Span(v1, w1, . . . , vk, wk) per qualche 1 ≤ k ≤ n;
(ii) se W è isotropo allora W = Span(v1, . . . , vk) per qualche 1 ≤ k ≤ n;
(iii) se W è coisotropo allora W = Span(v1, . . . , vn, w1, . . . , wk) per qualche 1 ≤ k ≤ n;

(iv) se W è Lagrangiano allora W = Span(v1, . . . , vn).

⌋



Capitolo 2

Varietà

2.1 Varietà differenziabili

Una varietà topologica è un insieme localmente fatto come un aperto di Rn; se inoltre due realizzazioni
diverse di un pezzo dell’insieme come aperto di Rn determinano le stesse funzioni C∞, abbiamo una varietà
differenziabile.

Vediamo come concretizzare la frase precedente (che detta cos̀ı non ha molto senso).

Definizione 2.1.1: Sia M un insieme. Una n-carta (U, ϕ) di M è un’applicazione bigettiva ϕ:U → V ⊆ Rn,
dove U è un sottoinsieme di M e V è un aperto di Rn. Se p ∈ U diremo che (U, ϕ) è una carta in p; se inoltre
ϕ(p) = O ∈ Rn diremo che la carta è centrata in p. Se scriviamo in coordinate ϕ(q) =

(
x1(q), . . . , xn(q)

)
,

diremo che (x1, . . . , xn) sono le coordinate locali nella carta data. L’inversa ϕ−1:V → U è detta parametriz-
zazione locale (in p).

Definizione 2.1.2: Due n-carte (U, ϕ) e (V, ψ) su M sono compatibili se U ∩ V = ∅, oppure U ∩ V 6= ∅, gli
insiemi ϕ(U ∩ V ), ψ(U ∩ V ) sono aperti in Rn, e ψ ◦ ϕ−1: ϕ(U ∩ V ) → ψ(U ∩ V ) è un diffeomorfismo di
classe C∞. Il diffeomorfismo ψ ◦ ϕ−1 viene detto cambiamento di carta (o cambiamento di coordinate).

Vale la pena di sottolineare esplicitamente che il punto cruciale di questa definizione è il fatto che il
cambiamento di carta (che a priori è soltanto una bigezione) è un diffeomorfismo C∞. In altre parole, due
carte compatibili ricreano su M la stessa struttura differenziabile, lo stesso modo di calcolare le derivate
(oltre che, in particolare, la stessa topologia). È proprio questa compatibilità C∞ la chiave che permetterà
di usare ricoprimenti aperti formati da carte compatibili per definire in maniera efficiente e significativa il
concetto di varietà differenziabile come qualcosa localmente fatto come un aperto di Rn.

Osservazione 2.1.1. Se (U, ϕ) è una n-carta in p ∈M , e χ:ϕ(U)→ Rn è un diffeomorfismo con l’imma-
gine, allora (U, χ ◦ ϕ) è ancora una n-carta in p, compatibile con qualsiasi carta compatibile con (U, ϕ). In
particolare, se χ è la traslazione χ(x) = x−ϕ(p), ponendo ϕ̃ = χ ◦ϕ = ϕ−ϕ(p) otteniamo una carta (U, ϕ̃)
centrata in p e compatibile con qualsiasi carta compatibile con (U, ϕ).

Osservazione 2.1.2. Se (U, ϕ) è una n-carta in p ∈ M e W ⊂ ϕ(U) è un aperto di Rn contenente ϕ(p),
allora anche

(
ϕ−1(W ), ϕ|ϕ−1(W )

)
è una n-carta in p, compatibile con qualsiasi carta compatibile con (U, ϕ).

In particolare, possiamo trovare carte piccole quanto ci pare.

Definizione 2.1.3: Un atlante di dimensione n su un insieme M è una famiglia A = {(Uα, ϕα)} di n-carte a due
a due compatibili e tali che M =

⋃
α Uα. Una varietà (differenziabile) di dimensione n è una coppia (M,A),

dove M è un insieme e A è un atlante di dimensione n su M .

Osservazione 2.1.3. In queste note parleremo solo di varietà di classe C∞, ma è chiaro che lo stesso
approccio può essere usato per definire varietà di classe Ck con k ∈ N (o varietà analitiche reali, o varietà
olomorfe), semplicemente richiedendo che i cambiamenti di carta siano diffeomorfismi di classe Ck (o analitici
reali, od olomorfi) invece che C∞.

A volte nella definizione di varietà differenziabile si richiede che l’atlante A sia massimale (rispetto
all’inclusione) nella famiglia di tutti gli atlanti sull’insieme M . I prossimi esercizi mostrano che questa
richiesta non è necessaria, in quanto ogni atlante è contenuto in un unico atlante massimale:
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Esercizio 2.1.1. Diremo che due atlanti A e B su uno stesso insieme M sono compatibili se A∪B è ancora
un atlante su M . Dimostra che quella di compatibilità è una relazione d’equivalenza fra gli atlanti su M , e
che due atlanti A e B sono compatibili se e solo se ogni carta di A è compatibile con tutte le carte di B, e
ogni carta di B è compatibile con tutte le carte di A.

Esercizio 2.1.2. Sia A un atlante di dimensione n su un insieme M , e (U, ϕ), (V, ψ) due n-carte di M ,
entrambe compatibili con tutte le carte di A. Dimostra che allora (U, ϕ) e (V, ψ) sono compatibili fra loro.

Esercizio 2.1.3. Sia A un atlante di dimensione n su M . Dimostra che esiste un unico atlante Ã massimale
(rispetto all’inclusione) che contiene A, ottenuto considerando tutte le carte locali compatibili con quelle
di A. A volte, l’atlante Ã viene detto struttura differenziabile indotta da A.

Spesso e volentieri la definizione di varietà differenziabile prevede che l’insieme M sia uno spazio topolo-
gico, nel qual caso i domini delle carte locali devono essere degli aperti e le carte locali degli omeomorfismi con
l’immagine. In realtà, il prossimo esercizio mostra come la struttura di varietà cos̀ı come l’abbiamo definita
noi induce necessariamente una topologia su M anche quando M nasce semplicemente come insieme:

Esercizio 2.1.4. Sia A = {(Uα, ϕα)} un atlante di dimensione n su un insieme M . Dimostra che nel seguente
modo si definisce una topologia su M : diremo che A ⊆ M è aperto se e solo se ϕα(A ∩ Uα) è aperto in Rn

per ogni carta (Uα, ϕα) ∈ A. Dimostra inoltre che questa è l’unica topologia su M per cui tutti gli Uα

sono aperti e tutte le ϕα sono degli omeomorfismi con l’immagine. Questa topologia è detta indotta dalla
struttura di varietà differenziabile.

Definizione 2.1.4: Sia M uno spazio topologico. Diremo che una n-carta (U, ϕ) su M è compatibile con la
topologia data se U è aperto in M e ϕ è un omeomorfismo con l’immagine. Diremo che un atlante A su M
è compatibile con la topologia data se tutte le sue carte lo sono, per cui induce su M la topologia data.

Se nel seguito ci troveremo a definire una struttura di varietà differenziabile su uno spazio topologico,
a meno di avviso contrario supporremo sempre che la struttura di varietà differenziabile induca la topologia
data, e non un’altra; gli atlanti saranno sempre compatibili con la topologia.

Osservazione 2.1.4. Si può dimostrare che se uno spazio topologico M ammette una struttura di varietà
differenziabile di dimensione n non può ammettere anche una struttura di varietà differenziabile di dimen-
sione m 6= n. Questo segue dal fatto che due aperti di spazi euclidei di diversa dimensione non possono mai
essere omeomorfi, che è un risultato noto come Teorema dell’invarianza della dimensione.

Osservazione 2.1.5. Per motivi che discuteremo nel prossimo paragrafo, supporremo sempre che la to-
pologia indotta sulle nostre varietà sia di Hausdorff e a base numerabile. È facile (vedi l’Esempio 2.1.5 più
oltre) costruire esempi di varietà non Hausdorff; costruire esempi di varietà Hausdorff non a base numerabile
è molto più delicato, ma sfortunatamente esistono.

Osservazione 2.1.6. Chiaramente, la topologia di una varietà ha le stesse proprietà locali della topologia
di Rn. In particolare, è localmente compatta, localmente connessa e localmente connessa per archi (per cui
le componenti connesse sono aperte e coincidono con le componenti connesse per archi).

Esempio 2.1.1. Un aperto U di Rn è banalmente una varietà n-dimensionale, con un atlanteA = {(U, idU )}
costituito da un’unica carta.

Esempio 2.1.2. Sia U ⊂ Rn aperto, e F :U → Rm un’applicazione qualsiasi. Allora il grafico ΓF di F , che
è l’insieme

ΓF =
{(

x, F (x)
)
∈ Rn+m

∣∣ x ∈ U
}
⊂ Rn+m

è una varietà n-dimensionale, con un atlante costituito dall’unica carta ϕ: ΓF → U data da ϕ
(
x, F (x)

)
= x.

Attenzione: la topologia indotta da questa struttura di varietà differenziabile coincide con la topologia di ΓF

come sottospazio di Rn+m se e solo se F è continua (esercizio). Vedremo inoltre nell’Esericizio 2.5.2 che ΓF

è (in un senso naturale che definiremo nel paragrafo 2.5) una sottovarietà di Rn+m se e solo se F è C∞.

Esempio 2.1.3. Se M è una varietà e U ⊆M è aperto (rispetto alla topologia indotta, ovviamente), allora
anche U ha una naturale struttura di varietà, della stessa dimensione. Infatti, se {(Uα, ϕα)} è un atlante
di M , allora {(Uα ∩ U, ϕα|Uα∩U )} è un atlante per U .
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Esempio 2.1.4. Se M è una varietà m-dimensionale, e N è una varietà n-dimensionale, allora M × N
ha una struttura naturale di varietà (m + n)-dimensionale. Infatti, se A = {(Uα, ϕα)} è un atlante di M ,
e B = {(Vβ , ψβ)} è un atlante di N , allora A × B = {(Uα × Vβ , ϕα × ψβ)} è un atlante di M × N , dove
l’applicazione ϕα × ψβ :Uα × Vβ → Rn+m è definita da ϕα × ψβ(x, y) =

(
ϕα(x), ψβ(y)

)
.

Esempio 2.1.5. Sia M = R ∪ {0′}, dove 0′ è un punto non appartenente a R. Possiamo definire su M
una struttura di varietà differenziabile di dimensione 1 con le seguenti due carte: (R, idR) e (R∗ ∪ {0′}, ϕ),
dove ϕ: R∗ ∪ {0′} → R è data da

ϕ(x) =
{

x se x ∈ R∗,
0 se x = 0′.

Si verifica subito che {(R, idR), (R∗∪{0′}, ϕ)} è un atlante per M , ma la topologia indotta non è di Hausdorff:
i punti 0 e 0′ non hanno intorni disgiunti. Se ripetiamo l’operazione aggiungendo, invece di un punto solo,
una quantità più che numerabile di punti otteniamo una varietà non a base numerabile, ma neanche di
Hausdorff.

Esempio 2.1.6. Chiaramente, A = {(R, idR)} è un atlante sulla retta reale. Anche Ã = {(R, ϕ)},
dove ϕ(t) = t3, è un atlante su R, che induce la stessa topologia, ma le due carte (R, idR) e (R, ϕ) non
sono compatibili. Quindi persino sulla retta possiamo definire due diverse strutture di varietà differenziabili.
In realtà, vedremo che queste due strutture sono diverse ma diffeomorfe, per cui possono sostanzialmente
essere identificate (vedi l’Esempio 2.2.2).

Esempio 2.1.7. Sia V uno spazio vettoriale di dimensione n su R; vogliamo definire una naturale struttura
di varietà n-dimensionale su V . Fissata una base B di V , indichiamo con ϕB:V → Rn l’applicazione che
associa a ogni vettore v ∈ V le sue coordinate rispetto a B. Allora A = {(V, ϕB)} è un atlante di V costituito
da una sola carta. Due basi diverse inducono atlanti compatibili: infatti, se C è un’altra base di V , il
cambiamento di coordinate ϕC ◦ ϕ−1

B : Rn → Rn non è altro che l’applicazione lineare definita dalla matrice
di cambiamento di base.

Esempio 2.1.8. Il gruppo generale lineare GL(n, R) delle matrici n × n invertibili a coefficienti reali è
una varietà di dimensione n2, in quanto è un aperto dello spazio Mn,n(R) di tutte le matrici n × n a
coefficienti reali, spazio che possiamo ovviamente identificare con Rn2

. Più in generale, lo spazio GL(V )
degli automorfismi di uno spazio vettoriale V di dimensione n su R è una varietà di dimensione n2. Infatti,
fissata una base B di V , indichiamo con ϕB:GL(V ) → GL(n, R) ⊂ Rn2

l’applicazione che associa a ogni
automorfismo L ∈ GL(V ) la matrice che lo rappresenta rispetto alla base B. Allora A =

{(
GL(V ), ϕB

)}
è un atlante di GL(V ) costituito da una sola carta. Due basi diverse inducono atlanti compatibili: infatti,
se C è un’altra base di V , il cambiamento di coordinate ϕC ◦ ϕ−1

B :GL(n, R) → GL(n, R) non è altro che
l’applicazione X 7→ B−1XB, dove B ∈ GL(n, R) è la matrice di cambiamento di base.

Definizione 2.1.5: La sfera n-dimensionale di raggio R > 0 (e centro l’origine) è definita da

Sn
R = {x = (x1, . . . , xn+1) ∈ Rn+1 | ‖x‖ = R} ⊂ Rn+1.

La palla n-dimensionale di raggio R > 0 (e centro l’origine) è invece definita da

Bn
R = {y = (y1, . . . , yn) ∈ Rn | ‖y‖ < R} ⊂ Rn.

Quando R = 1, scriveremo Sn al posto di Sn
1 e Bn al posto di Bn

1 .

Esempio 2.1.9. La sfera Sn
R ammette una naturale struttura di varietà n-dimensionale, compatibile con

la topologia indotta da Rn+1. Per dimostrarlo, dobbiamo costruire un atlante; in effetti ne costruiremo tre,
uno in questo esempio e due negli esempi successivi, tutti compatibili. Per il primo atlante poniamo

U±j = {x ∈ Sn
R | ±xj > 0},

per j = 1, . . . , n + 1, in modo che Sn
R =

⋃n+1
j=1 (U+

j ∪ U−j ), e definiamo ϕ±j :U±j → Bn
R ⊂ Rn ponendo

ϕ±j (x) = (x1, . . . , xj−1, xj+1, . . . , xn).
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Chiaramente
(ϕ±j )−1(y) =

(
y1, . . . , yj−1,±

√
R2 − ‖y‖2, yj , . . . , yn

)
,

per cui ciascuna ϕ±j è una bigezione fra U±j e Bn
R, e le coppie (U±j , ϕ±j ) sono delle n-carte. Inoltre ciascun U±j

è aperto in Sn
R, e ciascuna ϕ±j è un omeomorfismo con l’immagine; quindi per concludere ci basta verificare

che queste carte sono a due a due compatibili. Per semplicità, verificheremo la compatibilità fra (U+
1 , ϕ+

1 )
e (U−2 , ϕ−2 ); la compatibilità fra le altre carte si verifica in modo del tutto analogo. Prima di tutto,

U+
1 ∩ U−2 = {x ∈ Sn

R | x1 > 0, x2 < 0},

per cui
ϕ+

1 (U+
1 ∩ U−2 ) = {y ∈ Bn

R | y1 < 0} e ϕ−2 (U+
1 ∩ U−2 ) = {y ∈ Bn

R | y1 > 0}
sono aperti di Rn. Inoltre,

ϕ−2 ◦ (ϕ+
1 )−1(y) =

(√
R2 − ‖y‖2, y2, . . . , yn

)
è un diffeomorfismo di classe C∞ fra ϕ+

1 (U+
1 ∩ U−2 ) e ϕ−2 (U+

1 ∩ U−2 ), e la compatibilità è verificata.

Esempio 2.1.10. L’atlante su Sn
R costruito nell’esempio precedente conteneva 2(n + 1) carte; vogliamo

ora costruire un atlante di Sn
R compatibile col precedente e che contenga solo due carte. L’idea è che le

carte locali sono date dalle proiezioni stereografiche. Sia N = (0, . . . , 0, R) ∈ Sn
R il polo nord, e indichiamo

con ϕN :Sn
R \ {N} → Rn la proiezione stereografica, cioè l’applicazione che a ciascun p ∈ Sn

R \ {N} associa
l’intersezione della retta passante per N e p con l’iperpiano {xn+1 = 0} ⊂ Rn+1 (iperpiano che identifichiamo
con Rn nel modo ovvio).

La retta per N e p = (p1, . . . , pn, pn+1) ∈ Sn
R \ {N} è parametrizzata da t 7→ N + t(p − N). Quindi

interseca l’iperpiano {xn+1 = 0} quando t soddisfa l’equazione R + t(pn+1 − R) = 0, per cui la proiezione
stereografica è data da

ϕN (p) =
R

R− pn+1
(p1, . . . , pn).

Per mostrare che ϕN è un omeomorfismo fra Sn
R \ {N} ed Rn calcoliamo l’inversa. Se ϕN (p) = x dobbiamo

avere xj = Rpj/(R − pn+1) per j = 1, . . . , n. Elevando al quadrato, sommando e ricordando che p ∈ Sn
R

otteniamo

‖x‖2 =
R2

(R− pn+1)2
(R2 − |pn+1|2).

Questa equazione in pn+1 ha solo due soluzioni: pn+1 = R, che dev’essere esclusa in quanto corrisponde
a p = N , e

pn+1 = R
‖x‖2 −R2

‖x‖2 + R2
.

Quindi

ϕ−1
N (x) =

(
2R2x1

‖x‖2 + R2
, . . . ,

2R2xn

‖x‖2 + R2
, R
‖x‖2 −R2

‖x‖2 + R2

)
è l’inversa di ϕN , per cui (Sn

R \ {N}, ϕN ) è una n-carta compatibile con la topologia di Sn
R.

Ci serve un’altra carta per coprire il polo nord; useremo la proiezione stereografica ϕS :Sn
R \ {S} → Rn

dal polo sud S = (0, . . . , 0,−R) ∈ Sn
R. Ragionando come prima troviamo

ϕS(p) =
R

R + pn+1
(p1, . . . , pn) e ϕ−1

S (x) =
(

2R2x1

R2 + ‖x‖2 , . . . ,
2R2xn

R2 + ‖x‖2 , R
R2 − ‖x‖2
R2 + ‖x‖2

)
.

Le due carte (Sn
R \ {N}, ϕN ) e (Sn

R \ {S}, ϕS) sono compatibili. Infatti Sn
R \ {N} ∩ Sn

R \ {S} = Sn
R \ {N, S},

ϕN (Sn
R \ {N, S}) = Rn \ {O} = ϕS(Sn

R \ {N, S}),

e

ϕS ◦ ϕ−1
N (x) =

R2

‖x‖2 x = ϕN ◦ ϕ−1
S (x).
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Infine, vogliamo verificare la compatibilità di questo atlante con quello introdotto nell’esempio precedente.
Cominciamo con le carte (Sn

R \ {N}, ϕN ) e (U±j , ϕ±j ) per j = 1, . . . , n. Abbiamo

Sn
R \ {N} ∩ U±j = {p ∈ Sn

R | pn+1 6= R,±pj > 0},
ϕN (Sn

R \ {N} ∩ U±j ) = {x ∈ Rn | ±xj > 0}, ϕ±j (Sn
R \ {N} ∩ U±j ) = Bn

R.

Quindi

ϕN ◦ (ϕ±j )−1(x) =
R

R− xn
(x1, . . . , xj−1,±

√
R2 − ‖x‖2, xj , . . . , xn−1)

è di classe C∞. Anche ϕ±j ◦ ϕ−1
N è di classe C∞, in quanto è ottenuta togliendo una coordinata a ϕ−1

N , che
è di classe C∞ quando è considerata come applicazione a valori in Rn+1. Per verificare la compatibilità fra
(Sn

R \ {N}, ϕN ) e (U+
n+1, ϕ

+
n+1) basta notare che

Sn
R \ {N} ∩ U+

n+1 = {p ∈ Sn
R | 0 < pn+1 < R},

ϕN (Sn
R \ {N} ∩ U+

n+1) = {x ∈ Rn | ‖x‖ > R}, ϕ+
n+1(S

n
R \ {N} ∩ U±j ) = Bn

R \ {O},

e che

ϕN ◦ (ϕ+
n+1)

−1(x) =
R

R−
√

R2 − ‖x‖2
x, e ϕ+

n+1 ◦ ϕ−1
N (x) =

2R2

R2 + ‖x‖2 x.

La compatibilità fra (Sn
R \ {N}, ϕN ) e (U−n+1, ϕ

−
n+1), come pure la compatibilità fra (Sn

R \ {S}, ϕS) e le altre
carte, si verifica in modo analogo.

Esercizio 2.1.5. Dimostra che non esiste un atlante su Sn
R compatibile con la topologia naturale di Sn

R e
composto da una sola carta.

Esempio 2.1.11. Il terzo atlante che consideriamo su Sn
R ha più carte del precedente ma, come vedremo

in seguito, è molto più comodo per fare i conti. Per j = 1, . . . , n poniamo Uj = Sn
R \ {pj = 0, pj+1 ≥ 0},

mentre per j = n + 1 poniamo Un+1 = Sn
R \ {pn+1 = 0, p1 ≥ 0}. Sia poi V ⊂ Rn l’aperto

V = {(θ1, . . . , θn) ∈ Rn | 0 < θ1 < 2π, 0 < θj < π per j = 2, . . . , n}.

Definiamo ψj :V → Uj per j = 1, . . . , n + 1 con

ψj(θ1, . . . , θn) = R τj

(
sin θ1 · · · sin θn, cos θ1 sin θ2 · · · sin θn, cos θ2 sin θ3 · · · sin θn, . . . , cos θn−1 sin θn, cos θn

)
,

dove τj : Rn+1 → Rn+1 è la permutazione ciclica delle coordinate data da

τj(p1, . . . , pn+1) = (pn+3−j , pn+4−j , . . . , pn+1, p1, . . . , pn+2−j).

Si verifica senza troppa difficoltà che ciascuna ψj è di rango costante n (come applicazione a valori in Rn+1)
e una bigezione continua fra V e Uj . Con un po’ più di difficoltà (oppure usando l’Esercizio 2.5.3) si verifica
che è un omeomorfismo con l’immagine, per cui (Uj , ψ

−1
j ) è una n-carta di Sn

R, e che ψ−1
h ◦ψk è di classe C∞

per ogni 1 ≤ h, k ≤ n + 1. Siccome U1 ∪ · · · ∪ Un+1 = Sn
R, abbiamo trovato un nuovo atlante {(Uj , ψ

−1
j )},

le cui carte forniscono le coordinate sferiche sulla sfera. Non è difficile anche controllare che questo atlante
è compatibile con quelli introdotti negli esempi precedenti.

Esercizio 2.1.6. Verifica in dettaglio che le coordinate sferiche forniscono un atlante compatibile con quelli
degli Esempi 2.1.9 e 2.1.10.

Vediamo ora un esempio di varietà che non nasce come sottoinsieme di un qualche RN .

Esempio 2.1.12. Lo spazio proiettivo Pn(R) ammette una naturale struttura di varietà n-dimensionale.
Infatti, per j = 0, . . . , n poniamo Uj = {[x0 : · · · : xn] ∈ Pn(R) | xj 6= 0}, dove [x0 : · · · : xn] indicano le
coordinate omogenee, e definiamo ϕj :Uj → Rn ponendo

ϕj([x0 : · · · : xn]) = (x0/xj , . . . , xj−1/xj , xj+1/xj , . . . , xn/xj),
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in modo che
ϕ−1

j (y) = [y1 : · · · : yj−1 : 1 : yj : · · · : yn].
Le carte (U0, ϕ0) e (U1, ϕ1) sono compatibili: infatti,

ϕ0(U0 ∩ U1) = {y ∈ Rn | y1 6= 0} = ϕ1(U0 ∩ U1) e ϕ0 ◦ ϕ−1
1 (y) = (1/y1, y2/y1, . . . , yn/y1) = ϕ1 ◦ ϕ−1

0 (y).

In modo analogo si verifica la compatibilità delle altre carte, per cui {(Uj , ϕj)} è un atlante.

Esercizio 2.1.7. Indichiamo con π:Sn → Pn(R) la restrizione della proiezione naturale di Rn+1 \ {O}
su Pn(R) data da π(x0, . . . , xn) = [x0 : · · · : xn]. Dimostra che π è un omeomorfismo se n = 1, ed è il
rivestimento universale di Pn(R) se n > 1.

Per introdurre un’altra classe di esempi ci serve una definizione.

Definizione 2.1.6: Sia F : Ω→ Rm un’applicazione C∞ definita su un aperto Ω ⊆ Rn. Un punto p ∈ Ω è detto
punto critico di F se dFp: Rn → Rm non è surgettivo. Un valore critico è l’immagine di un punto critico. Un
valore regolare è un punto di F (Ω) ⊆ Rm che non è un valore critico. Indicheremo con Crit(F ) ⊆ Ω l’insieme
dei punti critici di F .

Esercizio 2.1.8. Sia F : Ω→ Rm un’applicazione C∞ definita su un aperto Ω ⊆ Rn. Dimostra che Crit(F )
è un chiuso di Ω.

Osservazione 2.1.7. Il famoso teorema di Sard asserisce che l’insieme dei valori critici di un’applicazione
differenziabile ha sempre misura nulla in Rm.

Richiamiamo inoltre il seguente teorema di Analisi:

Teorema 2.1.1: (della funzione inversa) Sia F : Ω→ Rn una funzione di classe Ck, con k ∈ N∗ ∪{∞}, dove
Ω è un aperto di Rn. Sia p0 ∈ Ω tale che

det Jac F (p0) 6= 0.

Allora esistono un intorno U ⊂ Ω di p0 e un intorno V ⊂ Rn di F (p0) tale che F |U :U → V sia un
diffeomorfismo con inversa di classe Ck.

Allora:

Proposizione 2.1.2: Sia Ω ⊆ Rm+n aperto, e F : Ω→ Rm un’applicazione di classe C∞. Se a ∈ F (Ω), allora
Ma = F−1(a) \ Crit(F ) ha una naturale struttura di varietà n-dimensionale, compatibile con la topologia
indotta da Rm+n. In particolare, se a è un valore regolare allora questo vale per F−1(a) = {p ∈ Ω | F (p) = a}.
Dimostrazione: Sia p0 ∈Ma. Siccome p0 non è un punto critico di F , lo Jacobiano di F ha rango massimo m
in p0 per cui, a meno di permutare le coordinate, possiamo supporre che

det

∣∣∣∣∣∣∣
∂F 1

∂xn+1 (p0) · · · ∂F 1

∂xn+m (p0)
...

. . .
...

∂F m

∂xn+1 (p0) · · · ∂F m

∂xn+m (p0)

∣∣∣∣∣∣∣ 6= 0.

Sia allora G: Ω → Rm+n data da G(x) =
(
x1, . . . , xn, F (x)

)
; chiaramente, det Jac(G)(p0) 6= 0. Possiamo

quindi applicare il teorema della funzione inversa e trovare intorni Ũ ⊆ Ω \ Crit(F ) di p0 e W ⊆ Rm+n

di G(p0) tali che G|Ũ : Ũ →W sia un diffeomorfismo. Posto H = (h1, . . . , hm+n) = G−1 abbiamo

(y1, . . . , yn+m) = G ◦H(y) =
(
h1(y), . . . , hn(y), F

(
H(y)

))
per cui hi(y) = yi, per i = 1, . . . , n e

∀y ∈W F
(
y1, . . . , yn, hn+1(y), . . . , hn+m(y)

)
= (yn+1, . . . , yn+m); (2.1.1)

in particolare
(
y1, . . . , yn, hn+1(y), . . . , hn+m(y)

)
∈ Ũ per ogni y ∈W . Poniamo U = Ma∩Ũ ; allora l’insieme

V = {x ∈ Rn | (x, a) ∈W}
è chiaramente un aperto di Rn, e possiamo definire ψ:V → Rn+m con ψ(x) =

(
x, hn+1(x, a), . . . , hn+m(x, a)

)
.

La (2.1.1) ci dice che ψ(V ) = F−1(a)∩ Ũ = U , e quindi ϕ = ψ−1 è una carta locale di F−1(a) in p0. Notiamo
esplicitamente che ϕ(x) = (x1, . . . , xn) è la proiezione sulle prime n coordinate.

Rimane da dimostrare che due carte ϕ, ϕ̃ ottenute in questo modo sono compatibili. Ma per quanto
visto ϕ̃ ◦ ϕ−1 = ϕ̃ ◦ ψ ha come coordinate alcune delle coordinate di ψ, e quindi è di classe C∞.



2.2 Applicazioni differenziabili 23

Esempio 2.1.13. Sia F : Rn+1 → R la funzione data da F (x) = ‖x‖2. Allora l’unico valore critico di F è lo
zero, e quindi Sn

R = F−1(R2) è (di nuovo!) una varietà n-dimensionale. Ovviamente, l’atlante fornito dalla
proposizione precedente è compatibile con quelli già incontrati (esercizio).

Esempio 2.1.14. Il determinante è una funzione di classe C∞ sullo spazio Mn,n(R) delle matrici n× n a
coefficienti reali. Se X = (xj

i ) ∈Mn,n(R) non è difficile verificare (esercizio) che

∂ det
∂xj

i

(X) = (−1)i+j det(Xj
i ),

dove Xj
i ∈ Mn−1,n−1(R) è il minore (i, j) di X, ottenuto cancellando la riga i-esima e la colonna j-esima

di X. Quindi i punti critici della funzione determinante det sono le matrici i cui minori di ordine n − 1
abbiano tutti determinante nullo, cioè

Crit(det) = {A ∈Mn,n(R) | rkA ≤ n− 2}.

Il determinante di una matrice di rango n − 2 è zero, per cui 0 è l’unico valore critico di det. Dunque il
gruppo speciale lineare

SL(n, R) = {A ∈Mn,n(R) | det A = 1}
è una varietà di dimensione n2 − 1.

Esercizio 2.1.9. Indichiamo con S(n, R) ⊂ Mn,n(R) lo spazio delle matrici simmetriche a coefficienti reali;
chiaramente, possiamo identificare S(n, R) con Rn(n+1)/2. Sia F :Mn,n(R)→ S(n, R) l’applicazione data da
F (X) = XT X. Dimostra che

dFX(A) = XT A + AT X

per ogni A, X ∈ Mn,n(R). Sia O(n) = {X ∈ Mn,n(R) | XT X = In} il gruppo ortogonale; dimostra
che per ogni X ∈ O(n) il differenziale dFX :Mn,n(R) → S(n, R) è surgettivo, e deduci che O(n) ha una
struttura di varietà differenziabile di dimensione n(n−1)/2. Dimostra infine che il gruppo speciale ortogonale
SO(n, R) = O(n) ∩ SL(n, R) ha una struttura di varietà differenziabile di dimensione n(n− 1)/2− 1.

2.2 Applicazioni differenziabili

Nella matematica contemporanea, ogni volta che si introduce una nuova classe di oggetti (per esempio, le
varietà), si cerca non appena possibile di definire anche le applicazioni ammissibili fra questi oggetti. Nel
caso delle varietà, si tratta delle applicazioni differenziabili.

Definizione 2.2.1: Siano M , N due varietà. Un’applicazione F :M → N è differenziabile (o di classe C∞)
in p ∈ M se esistono una carta (U, ϕ) in p e una carta (V, ψ) in F (p) tali che F (U) ⊆ V e la composizione
ψ ◦ F ◦ ϕ−1:ϕ(U) → ψ(V ) è di classe C∞ in un intorno di ϕ(p). Se F è differenziabile in ogni punto
di M diremo che è differenziabile (o di classe C∞). Un’applicazione differenziabile bigettiva con inversa
differenziabile è detta diffeomorfismo. L’insieme delle funzioni differenziabili da M in R verrà indicato
con C∞(M).

Osservazione 2.2.1. Un’applicazione F :M → N differenziabile in p ∈ M è automaticamente conti-
nua in p. Infatti, sia A un intorno aperto di F (p) in N ; dobbiamo dimostrare che F−1(A) è un intorno
di p. Scegliamo una carta (U, ϕ) in p e una carta (V, ψ) in F (p) tali che F (U) ⊆ V e la composizione
ψ ◦ F ◦ ϕ−1:ϕ(U) → ψ(V ) sia di classe C∞. Per definizione di topologia indotta dalla struttura di varietà,
A ∩ V è aperto in V , e quindi ψ(A ∩ V ) è aperto in ψ(V ). Ma allora

ϕ
(
F−1(A ∩ V )

)
= (ψ ◦ F ◦ ϕ−1)−1

(
ψ(A ∩ V )

)
è aperto in ϕ(U), e quindi F−1(A ∩ V ) è aperto in U , e quindi in M .

Il motivo per cui la Definizione 2.2.1 è una buona definizione è che per decidere se un’applicazione è
differenziabile una carta vale l’altra:
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Proposizione 2.2.1: Sia F :M → N differenziabile in p. Allora per ogni carta (Ũ , ϕ̃) in p e ogni carta (Ṽ , ψ̃)
in F (p) la composizione ψ̃ ◦ F ◦ ϕ̃−1 è di classe C∞ in ϕ̃(p).

Dimostrazione: Siano (U, ϕ) e (V, ψ) carte in p e F (p) tali che ψ ◦ F ◦ ϕ−1 sia di classe C∞ in ϕ(p). Allora

ψ̃ ◦ F ◦ ϕ̃−1 = (ψ̃ ◦ ψ−1) ◦ (ψ ◦ F ◦ ϕ−1) ◦ (ϕ ◦ ϕ−1)

è di classe C∞ in ϕ̃(p) in quanto composizione di applicazioni di classe C∞.

La composizione di applicazioni differenziabili è differenziabile:

Proposizione 2.2.2: Siano F :M → N e G:N → S due applicazioni differenziabili fra varietà. Allora anche
la composizione G ◦ F :M → S è differenziabile.

Dimostrazione: Preso p ∈M , sappiamo che per ogni carta (U, ϕ) in p, (V, ψ) in F (p) e (W, χ) in G
(
F (p)

)
le

applicazioni ψ ◦ F ◦ ϕ−1 e χ ◦G ◦ ψ−1 sono di classe C∞. Ma allora anche

χ ◦ (G ◦ F ) ◦ ϕ−1 = (χ ◦G ◦ ψ−1) ◦ (ψ ◦ F ◦ ϕ−1)

è di classe C∞, e ci siamo.

Esempio 2.2.1. Sia ϕ:U → V ⊆ Rn una carta locale di una varietà M . Allora ϕ è un diffeomorfismo fra U
e V . Infatti è chiaramente un omeomorfismo, e le ovvie identità id ◦ϕ ◦ ϕ−1 = id e ϕ ◦ ϕ−1 ◦ id = id dicono
esattamente che ϕ e ϕ−1 sono di classe C∞.

Esiste anche una versione locale del concetto di diffeomorfismo:

Definizione 2.2.2: Un’applicazione F :M → N fra varietà è un diffeomorfismo locale se ogni p ∈ M ha un
intorno aperto U ⊂M tale che F (U) sia aperto in N e F |U :U → F (U) sia un diffeomorfismo.

Possiamo ora dare un esempio promesso prima:

Esempio 2.2.2. Siano A e Ã i due atlanti su R introdotti nell’Esempio 2.1.6. Allora F : (R,A) → (R, Ã)
data da F (t) = t1/3 è un diffeomorfismo. Infatti è invertibile, e siccome

ϕ ◦ F ◦ (idR)−1(t) = t = idR ◦F−1 ◦ ϕ−1(t)

sia F che F−1 sono di classe C∞ rispetto a queste strutture differenziabili. Nota che F : (R,A) → (R,A)
non è differenziabile (mentre l’inversa lo è).

Osservazione 2.2.2. Per anni un grosso problema della geometria differenziale è stato se esistessero su
un qualche Rn due strutture differenziabili non diffeomorfe. La risposta finale è piuttosto sorprendente:
per n 6= 4, lo spazio Rn ha un’unica (a meno di diffeomorfismi) struttura differenziabile, mentre Donaldson
e Freedman nel 1984 hanno dimostrato che R4 ha un’infinità più che numerabile di strutture differenziabili
distinte, a due a due non diffeomorfe! Un altro risultato soprendente, dovuto a Kervaire e Milnor, è che S7 ha
esattamente 28 strutture differenziabili non diffeomorfe. Infine, è noto per ogni n ≥ 4 esistono varietà topo-
logiche compatte di dimensione n che non ammettono alcuna struttura di varietà differenziabile compatibile
con la topologia data, mentre Munkres e Moise hanno dimostrato che ogni varietà topologica di dimen-
sione al più 3 ammette esattamente una sola (a meno di diffeomorfismi) struttura di varietà differenziabile
compatibile con la topologia data.⌈

La prossima definizione identifica una classe particolarmente importante di varietà.

Definizione 2.2.3: Un gruppo di Lie è un gruppo G fornito anche di una struttura di varietà differenziabile
tale che il prodotto G×G→ G e l’inverso G→ G siano applicazioni di classe C∞.

Esercizio 2.2.1. Sia G un gruppo fornito di una struttura di varietà differenziabile tale che l’applicazione
µ: G×G→ G data da µ(g, h) = gh−1 sia di classe C∞. Dimostra che G è un gruppo di Lie.
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Esempio 2.2.3. Lo spazio euclideo Rn con la somma usuale è un gruppo di Lie. Più in generale, un qualsiasi
spazio vettoriale di dimensione finita considerato con la struttura di varietà introdotta nell’Esempio 2.1.7 è
un gruppo di Lie rispetto alla somma.

Esempio 2.2.4. Il gruppo generale lineare GL(n, R) con il prodotto usuale è un gruppo di Lie.

Esempio 2.2.5. I gruppi R∗ e C∗ ⊂ R2 col prodotto sono gruppi di Lie.

Esercizio 2.2.2. Dimostra che S1, inteso come l’insieme dei numeri complessi di modulo unitario, e col
prodotto di numeri complessi, è un gruppo di Lie.

Esercizio 2.2.3. Dimostra che se G1, . . . , Gr sono gruppi di Lie, allora il prodotto cartesiano G1 × · · · ×Gr

considerato col prodotto componente per componente è un gruppo di Lie. In particolare, il toro n-dimensio-
nale Tn = S1 × · · · × Sn è un gruppo di Lie abeliano.

Esercizio 2.2.4. Dimostra che SL(n, R) e O(n) sono gruppi di Lie.

Definizione 2.2.4: Un omomorfismo di gruppi di Lie è un’applicazione F :G → H fra gruppi di Lie che sia
differenziabile e un omomorfismo di gruppi. Un isomorfismo di gruppi di Lie è un diffeomorfismo che è anche
un isomorfismo di gruppi.

Esempio 2.2.6. L’esponenziale exp: R→ R∗ è un omomorfismo di gruppi di Lie, in quanto è differenziabile
e si ha et+s = et · es.

Esempio 2.2.7. Il rivestimento universale π: R → S1 dato da π(t) = eit è un omomorfismo di gruppi di
Lie. Più in generale, l’applicazione π: Rn → Tn data da π(t1, . . . , tn) = (eit1 , . . . , eitn

) è un omomorfismo di
gruppi di Lie.

Esempio 2.2.8. Il determinante det: GL(n, R)→ R∗ è un omomorfismo di gruppi di Lie.

Esercizio 2.2.5. Verifica le affermazioni contenute negli esempi precedenti.

Esercizio 2.2.6. Sia exp:Mn,n(R)→ GL(n, R) l’applicazione esponenziale definita da

exp(A) =
∞∑

k=0

1
k!

Ak,

dove Ak è il prodotto di A per se stessa k volte. Dimostra che exp è un omomorfismo di gruppi di Lie.

Definizione 2.2.5: Se G è un gruppo di Lie e h ∈ G, la traslazione sinistra Lh:G→ G e la traslazione destra
Rh:G → G sono rispettivamente definite da Lh(x) = hx e Rh(x) = xh. Sono chiaramente diffeomorfismi
di G con se stesso, ma non degli isomorfismi di gruppo di Lie. Invece, il coniugio Ch:G → G definito da
Ch(x) = hxh−1 è un isomorfismo di gruppi di Lie.

I gruppi di Lie appaiono spesso come gruppi di simmetria di una varietà:

Definizione 2.2.6: Sia G un gruppo di Lie, e M una varietà. Un’azione (differenziabile) di G su M è un’ap-
plicazione θ:G×M →M di classe C∞ tale che

θ
(
g1, θ(g2, p)

)
= θ(g1g2, p) e θ(e, p) = p

per tutti i g1, g2 ∈ G e p ∈ M , dove e ∈ G è l’elemento neutro di G. Per ogni g ∈ G sia θg:M → M
data da θg(p) = θ(g, p); allora si ha θg1 ◦ θg2 = θg1g2 e θe = idM . Diremo che l’azione è fedele se θg1 ≡ θg2

implica g1 = g2.

Esempio 2.2.9. Il gruppo GL(n, R) agisce su Rn per moltiplicazione.

Esempio 2.2.10. Un gruppo di Lie agisce su se stesso in (almeno) due modi: per traslazione sinistra, e
per coniugio.
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Definizione 2.2.7: Sia θ: G ×M → M un’azione di un gruppo di Lie G su una varietà M . L’orbita di un
punto p ∈ M è l’insieme G · p = {θg(p) | g ∈ G}. Si vede facilmente (esercizio) che le orbite costituiscono
una partizione di M , cioè che “essere in una stessa orbita” è una relazione d’equivalenza. Indicheremo
con M/G lo spazio quoziente delle orbite, e diremo che l’azione è transitiva se esiste un’unica orbita, cioè se
per ogni p, q ∈M esiste g ∈ G tale che θg(p) = q.

Lo spazio delle orbite M/G, in quanto quoziente di uno spazio topologico, ha una struttura naturale
di spazio topologico. Una domanda naturale è se ha una struttura di varietà differenziabile. La risposta in
generale è no: M/G potrebbe non essere neppure una varietà topologica.

Esempio 2.2.11. Il gruppo ortogonale O(n) agisce per moltiplicazione su Rn, e si vede facilmente (esercizio)
che Rn/O(n) è omeomorfo alla semiretta [0,+∞).

Ci sono però delle condizioni che assicurano che lo spazio delle orbite è ancora una varietà. Non avremo
occasione di dimostrare questo teorema, ma almeno possiamo enunciarlo.

Definizione 2.2.8: Sia θ:G × M → M un’azione di un gruppo di Lie G su una varietà M . Il gruppo di
isotropia Gp di un punto p ∈M è il sottogruppo di G costituito dagli elementi di G che fissano p, cioè

Gp = {g ∈ G | θg(p) = p}.

Diremo che G agisce liberamente su M se il gruppo d’isotropia di ogni punto si riduce al solo elemento
identico, cioè se θg(p) 6= p per ogni p ∈M e g ∈ G \ {e}.
Definizione 2.2.9: Una funzione continua f : X → Y fra spazi topologici è propria se l’immagine inversa di
ogni compatto in Y è compatta in X, cioè se f−1(K) è compatto in X per ogni compatto K ⊆ Y .

Definizione 2.2.10: Diremo che un’azione θ: G×M →M di un gruppo di Lie G su una varietà M è propria
se l’applicazione Θ:G ×M → M ×M data da Θ(g, p) =

(
θg(p), p

)
è propria (che è una cosa diversa dal

richiedere che θ sia propria).

Allora si può dimostrare il seguente

Teorema 2.2.3: Sia θ:G ×M → M un’azione di un gruppo di Lie G su una varietà M , e indichiamo con
π:M → M/G la proiezione naturale sullo spazio delle orbite. Supponiamo che l’azione sia libera e propria.
Allora esiste un’unica struttura di varietà differenziabile su M/G, compatibile con la topologia quoziente, e

tale che π sia differenziabile. Rispetto a questa struttura, M/G ha dimensione dimM − dimG.

⌋
Concludiamo questa sezione parlando di rivestimenti.

Definizione 2.2.11: Un’applicazione differenziabile π: M̃ →M fra varietà è un rivestimento liscio se è surget-
tiva e ogni p ∈ M possiede un intorno aperto U connesso tale che π ristretta a una qualsiasi componente
connessa Ũ di π−1(U) sia un diffeomorfismo fra Ũ e U .

Un rivestimento liscio è, in particolare, un rivestimento nel senso topologico del termine, ma il viceversa
non è detto che sia vero.

Esercizio 2.2.7. Sia π: M̃ → M un rivestimento topologico fra varietà. Dimostra che π è un rivestimento
liscio se e solo se (è differenziabile ed) è un diffeomorfismo locale. Trova un esempio di rivestimento topologico
fra varietà che sia differenziabile ma non sia un rivestimento liscio.

Il risultato che ci interessa in questo momento è il seguente:

Proposizione 2.2.4: Sia π: M̃ → M un rivestimento topologico di una varietà n-dimensionale M . Allora
esiste un’unica struttura di varietà differenziabile di dimensione n su M̃ tale che π sia un rivestimento liscio.

Dimostrazione: Supponiamo che esista una struttura di varietà differenziabile su M̃ tale che π sia un rivesti-
mento liscio. Preso p̃ ∈ M̃ , sia U ⊆M un intorno ben rivestito di p = π(p̃); possiamo chiaramente supporre
che U sia il dominio di una carta ϕ centrata in p. Sia Ũ la componente connessa di π−1(U) contenente p̃;
essendo π un rivestimento liscio, (Ũ , ϕ ◦ π|Ũ ) è una n-carta di M̃ appartenente alla struttura differenziabile
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data. L’unione delle carte ottenute in questo modo al variare di p̃ ∈ M̃ è un atlante di M̃ , e quindi la
struttura di varietà differenziabile su M̃ , se esiste, è unica.

Viceversa, anche senza supporre che M̃ abbia una struttura di varietà differenziabile, è chiaro che le
coppie (Ũ , ϕ ◦ π|Ũ ) cos̀ı costruite sono delle n-carte su M̃ ; per dimostrare che formano un atlante di M̃

dobbiamo dimostrare che sono compatibili. Ma infatti, sia (Ṽ , ψ ◦ π|Ṽ ) un’altra carta costruita in questo
modo e tale che Ũ ∩ Ṽ 6= ∅. Allora U ∩ V 6= ∅, dove V = π(Ṽ ), e quindi

ψ ◦ π|Ũ∩Ṽ ◦ (ϕ ◦ π|Ũ∩Ṽ )−1 = ψ ◦ (ϕ|U∩V )−1

è di classe C∞ dove definita, come voluto.

Esercizio 2.2.8. Sia π: M̃ → M un rivestimento di spazi topologici. Dimostra che se M è di Hausdorff a
base numerabile allora anche M̃ è di Hausdorff a base numerabile.⌈

Concludiamo questo paragrafo con un ultimo esercizio:

Esercizio 2.2.9. Sia G un gruppo di Lie connesso. Dimostra che esiste un gruppo di Lie semplicemente

connesso G̃ e un rivestimento liscio π: G̃→ G che è anche un omomorfismo di gruppi di Lie.

⌋

2.3 Partizioni dell’unità

Nel seguito ci serviranno funzioni differenziabili con proprietà particolari. Cominciamo col far vedere che
per ogni compatto di una varietà differenziabile possiamo trovare una funzione differenziabile che sia iden-
ticamente uguale a 1 sul compatto, e identicamente nulla fuori da un intorno arbitrario del compatto. Ci
serve una piccola definizione:

Definizione 2.3.1: Sia M uno spazio topologico. Il supporto di una funzione f :M → R è l’insieme chiuso

supp(f) = {p ∈M | f(p) 6= 0}.

Proposizione 2.3.1: Sia K ⊆M un sottoinsieme compatto di una varietà n-dimensionale M , e sia V ⊇ K
un intorno aperto di K. Allora esiste una funzione g ∈ C∞(M) tale che g|K ≡ 1 e supp(g) ⊂ V . In
particolare, g|M\V ≡ 0.

Dimostrazione: Sia h: R→ R data da

h(t) =
{

0 se t ≤ 0,
e−1/t se t > 0,

e η: Rn → R data da

η(x) =
h(1− ‖x‖2)

h(1− ‖x‖2) + h(‖x‖2 − 1/4)
. (2.3.1)

Si vede subito che η ∈ C∞(Rn), η(Rn) ⊆ [0, 1], η|B1/2 ≡ 1, η(x) > 0 per ogni x ∈ B1 e η|Rn\B1 ≡ 0.
Ora, per ogni p ∈ K scegliamo una carta locale (Up, ϕp) centrata in p tale che Up ⊂ V e con inoltre

ϕp(Up) = B2 ⊂ Rn. Essendo K compatto, possiamo trovare p1, . . . , pk ∈ K tali che

K ⊂
k⋃

j=1

ϕ−1
pj

(B1/2) ⊂
k⋃

j=1

Upj
= W ⊂ V.

Definiamo gj : M → R ponendo

gj(q) =
{

η
(
ϕpj

(q)
)

se q ∈ Upj
,

0 se q /∈ Upj
;
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essendo gj |ϕ−1
pj

(B2\B1)
≡ 0, abbiamo gj ∈ C∞(M). Allora poniamo

g(q) = 1−
k∏

j=1

(
1− gj(q)

)
.

Chiaramente g ∈ C∞(M). Se q ∈ K allora esiste un j fra 1 e k tale che ϕ−1
pj

(B1/2), per cui gj(q) = 1 e
quindi g(q) = 1. Se invece q /∈W necessariamente g1(q) = · · · = gk(q) = 0, per cui g(q) = 0. In altre parole,
abbiamo g|K ≡ 1 e g|M\W ≡ 0, come voluto,

Corollario 2.3.2: Sia M una varietà, p ∈M e V ⊆M un intorno di p. Allora esiste una h ∈ C∞(M) tale
che h(p) = 0 e h|M\V ≡ 1.

Dimostrazione: Applicando la proposizione precedente a K = {p} otteniamo una funzione g ∈ C∞(M) tale
che g(p) = 1 e g|M\V ≡ 0. Allora h = 1− g è come voluto.

Grazie a questo risultato siamo anche in grado di estendere funzioni C∞ definite solo su un compatto a
funzioni C∞ definite su tutta la varietà. Per far ciò, ci basta definire in maniera opportuna le funzioni C∞

su un compatto:

Definizione 2.3.2: Sia K ⊆ M un compatto di una varietà M . Indicheremo con C∞(K) l’insieme delle
funzioni f :K → R continue che ammettono un’estensione di classe C∞ a un intorno aperto di K, cioè tali
che esistano un intorno aperto U di K e una f̃ ∈ C∞(U) con f̃ |K ≡ f .

Corollario 2.3.3: Sia M una varietà, K ⊆ M compatto, f ∈ C∞(K), e W ⊇ K un intorno aperto di K.

Allora esiste una f̂ ∈ C∞(M) tale che f̂ |K ≡ f e supp(f̂) ⊂W . In particolare, f̂ |M\W ≡ 0.

Dimostrazione: Sia f̃ :U → R un’estensione di f a un intorno aperto U del compatto K, e sia g ∈ C∞(M)
la funzione data dalla Proposizione 2.3.1 prendendo V = U ∩W . Poniamo

f̂(q) =
{

g(q)f̃(q) se q ∈ U ,
0 se q ∈M \ V ;

siccome supp(g) ⊂ U ∩W , la funzione f̂ è come voluto.

Nel seguito, ci capiterà di dover incollare oggetti definiti solo localmente. Avremo un ricoprimento
aperto di una varietà, un oggetto locale definito su ciascun aperto del ricoprimento, e vorremmo incollare
questi oggetti in modo da ottenere un singolo oggetto globale definito su tutta la varietà. Lo strumento
principe per effettuare questo incollamento è dato dalle partizioni dell’unità, che esistono solo su varietà di
Hausdorff a base numerabile, e che adesso definiamo.

Definizione 2.3.3: Diremo che un ricoprimento (non necessariamente aperto) U = {Uα} di uno spazio topolo-
gico X è localmente finito se ogni p ∈ X ha un intorno U ⊆ X tale che U ∩Uα 6= ∅ solo per un numero finito
di indici α. Un ricoprimento V = {Vβ} è un raffinamento di U se per ogni β esiste un α tale che Vβ ⊆ Uα.

Definizione 2.3.4: Una partizione dell’unità su una varietà M è una famiglia {ρα} ⊂ C∞(M) tale che
(a) ρα ≥ 0 su M per ogni indice α;
(b) {supp(ρα)} è un ricoprimento localmente finito di M ;
(c)

∑
α ρα ≡ 1.

Diremo poi che la partizione dell’unità {ρα} è subordinata al ricoprimento aperto U = {Uα} se supp(ρα) ⊂ Uα

per ogni indice α.

Osservazione 2.3.1. La proprietà (b) della definizione di partizione dell’unità implica che nell’intorno
di ciascun punto di M solo un numero finito di elementi della partizione dell’unità sono diversi da zero;
quindi la somma nella proprietà (c) è ben definita, in quanto in ciascun punto di M solo un numero finito di
addendi sono non nulli. Inoltre, siccome M è a base numerabile, sempre la proprietà (b) implica (perché?)
che supp(ρα) 6= ∅ solo per una quantità al più numerabile di indici α. In particolare, se la partizione
dell’unità è subordinata a un ricoprimento composto da una quantità più che numerabile di aperti, allora
ρα ≡ 0 per tutti gli indici tranne al più una quantità numerabile. Questo non deve stupire, in quanto in uno
spazio topologico a base numerabile da ogni ricoprimento aperto si può sempre estrarre un sottoricoprimento
numerabile (proprietà di Lindelöf).



2.4 Spazio tangente 29

Il nostro obiettivo è dimostrare l’esistenza di partizioni dell’unità subordinate a qualsiasi ricoprimento
aperto di una varietà. Questo risultato sarà conseguenza del seguente

Lemma 2.3.4: Sia M una varietà di Hausdorff a base numerabile, e U = {Uα} un ricoprimento aperto
di M . Allora esiste un atlante numerabile localmente finito A = {(Vβ , ϕβ)} tale che:

(i) {Vβ} è un raffinamento di U;
(ii) ϕβ(Vβ) = B2 per ogni β;
(iii) posto Wβ = ϕ−1

β (B1/2), anche {Wβ} è un ricoprimento di M .

Dimostrazione: La varietà M è localmente compatta e a base numerabile; quindi possiamo trovare una base
numerabile {Pj}j∈N tale che ogni Pj sia compatto. Definiamo ora una famiglia crescente di compatti Kj per
induzione. Poniamo K1 = P1. Se Kj è definito, sia r ∈ N il minimo intero maggiore o uguale a j per cui si
abbia Kj ⊂

⋃r
i=1 Pi, e poniamo

Kj+1 = P1 ∪ · · · ∪ Pr.

In questo modo abbiamo Kj ⊂ int(Kj+1) e M =
⋃

j Kj .
Ora, per ogni p ∈ (int(Kj+2) \ Kj−1) ∩ Uα scegliamo una carta (Vα,j,p, ϕα,j,p) centrata in p e tale

che Vα,j,p ⊂ (int(Kj+2) \ Kj−1) ∩ Uα e ϕα,j,p(Vα,j,p) = B2. Poniamo Wα,j,p = ϕ−1
α,j,p(B1/2). Ora, al

variare di α e p gli aperti Wα,j,p formano un ricoprimento aperto di Kj+1 \ int(Kj), che è compatto; quindi
possiamo estrarne un sottoricoprimento finito {Wj,r}. Unendo questi ricoprimenti al variare di j otteniamo
un ricoprimento aperto numerabile {Wβ} di M ; se indichiamo con (Vβ , ϕβ) la carta corrispondente a Wβ ,
dobbiamo solo dimostrare che l’atlante A = {(Vβ , ϕβ)} è localmente finito per concludere. Ma infatti per
ogni p ∈M possiamo trovare un indice j tale che p ∈ int(Kj), e per costruzione solo un numero finito dei Vβ

intersecano int(Kj).

Teorema 2.3.5: Sia M una varietà di Hausdorff a base numerabile. Allora ogni ricoprimento aperto
U = {Uα}α∈A di M ammette una partizione dell’unità subordinata a esso.

Dimostrazione: Sia A = {(Vβ , ϕβ)}β∈B l’atlante dato dal Lemma 2.3.4, e η ∈ C∞(Rn) data da (2.3.1).
Poniamo

gβ(q) =
{

η
(
ϕβ(q)

)
se q ∈ Vβ ,

0 se q /∈ ϕ−1
β (B1);

si vede subito che gβ ∈ C∞(M) e che {supp(gβ)}β∈B è un ricoprimento localmente finito di M che raffina U.
Quindi ponendo

ρ̃β =
gβ∑

β′∈B gβ′

otteniamo una partizione dell’unità {ρ̃β}β∈B tale che per ogni β ∈ B esiste un α(β) ∈ A per cui si
ha supp(ρ̃β) ⊂ Uα(β). Ma allora ponendo

ρα =
∑
β∈B

α(β)=α

ρ̃β

si verifica subito (esercizio) che {ρα}α∈A è una partizione dell’unità subordinata a U, come voluto.

2.4 Spazio tangente

Avendo definito il concetto di funzioni (e applicazioni) differenziabili, il meno che possiamo fare è cercare di
derivarle. Come vedremo, questo equivale più o meno all’introdurre il concetto di vettore tangente.

Definizione 2.4.1: Sia M una varietà, e p ∈M . Sulla famiglia

F = {(U, f) | U intorno aperto di p, f ∈ C∞(U)}

poniamo la relazione d’equivalenza ∼ cos̀ı definita: (U, f) ∼ (V, g) se esiste un aperto W ⊆ U∩V contenente p
tale che f |W ≡ g|W . L’insieme C∞(p) = F/ ∼ è detto spiga dei germi di funzioni differenziabili in p,
e un elemento f ∈ C∞(p) è detto germe in p. Un elemento (U, f) della classe di equivalenza f è detto
rappresentante di f . Se sarà necessario ricordare su quale varietà stiamo lavorando, scriveremo C∞M (p) invece
di C∞(p).
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Esercizio 2.4.1. Dimostra che per ogni f ∈ C∞(p) e ogni intorno V ⊆M di p esiste un rappresentante di f
definito su tutto M e nullo al di fuori di V .

L’insieme C∞(p) ha una naturale struttura di algebra:

Lemma 2.4.1: Sia p ∈M un punto di una varietà M , e f , g ∈ C∞(p) due germi in p. Siano inoltre (U1, f1),
(U2, f2) due rappresentanti di f , e (V1, g1), (V2, g2) due rappresentanti di g. Allora:

(i) (U1 ∩ V1, f1 + g1) è equivalente a (U2 ∩ V2, f2 + g2);
(ii) (U1 ∩ V1, f1g1) è equivalente a (U2 ∩ V2, f2g2);
(iii) (U1, λf1) è equivalente a (U2, λf2) per ogni λ ∈ R;
(iv) f1(p) = f2(p).

Dimostrazione: Cominciamo con (i). Siccome (U1, f1) ∼ (U2, f2), esiste un intorno aperto W ⊆ U1 ∩U2 di p
tale che f1|W ≡ f2|W . Analogamente, siccome (V1, g1) ∼ (V2, g2), esiste un intorno aperto W̃ ⊆ V1 ∩ V2 di p
tale che g1|W̃ ≡ g2|W̃ . Ma allora (f1+f2)|W∩W̃ ≡ (g1+g2)|W∩W̃ , e quindi (U1∩V1, f1+g1) ∼ (U2∩V2, f2+g2)
in quanto W ∩ W̃ ⊆ U1 ∩ V1 ∩ U2 ∩ V2.

La dimostrazione di (ii) è analoga, e la (iii) e la (iv) sono ovvie.

Definizione 2.4.2: Siano f , g ∈ C∞(p) due germi in un punto p ∈ M . Indicheremo con f + g ∈ C∞(p) il
germe rappresentato da (U ∩ V, f + g), dove (U, f) è un qualsiasi rappresentante di f e (V, g) è un qualsiasi
rappresentante di g. Analogamente indicheremo con fg ∈ C∞(p) il germe rappresentato da (U ∩ V, fg),
e, dato λ ∈ R, con λf ∈ C∞(p) il germe rappresentato da (U, λf). Il Lemma 2.4.1 ci assicura che queste
definizioni sono ben poste, ed è evidente che C∞(p) con queste operazioni è un’algebra. Infine, per ogni
f ∈ C∞(p) definiamo il suo valore f(p) ∈ R in p ponendo f(p) = f(p) per un qualsiasi rappresentante (U, f)
di f .

Infine, sia F :M → N un’applicazione di classe C∞, e siano (V1, g1) e (V2, g2) sono due rappresentanti di
un germe g ∈ C∞

(
F (p)

)
. Allora è evidente (esercizio) che

(
F−1(V1), g1◦F

)
e

(
F−1(V2), g2◦F

)
rappresentano

lo stesso germe in p, che quindi dipende solo da g (e da F ). Dunque possiamo introdurre la seguente

Definizione 2.4.3: Dati un’applicazione differenziabile fra varietà F :M → N e un punto p ∈M , indicheremo
con F ∗p :C∞

(
F (p)

)
→ C∞(p) l’applicazione che associa a un germe g ∈ C∞

(
F (p)

)
di rappresentante (V, g) il

germe F ∗p (g) = g◦F ∈ C∞(p) di rappresentante
(
F−1(V ), g◦F

)
. Si verifica subito che F ∗p è un omomorfismo

di algebre.

Esercizio 2.4.2. Dimostra che (idM )∗p = id per ogni punto p di una varietà M , e che se F :M → N e
G:N → S sono applicazioni differenziabili fra varietà allora (G ◦ F )∗p = F ∗p ◦ G∗F (p) per ogni p ∈ M . In
particolare deduci che se (U, ϕ) è una carta in p ∈ M allora ϕ∗p:C

∞(
ϕ(p)

)
→ C∞(p) è un isomorfismo di

algebre.

Siamo giunti alla definizione di vettore tangente:

Definizione 2.4.4: Sia M una varietà. Una derivazione in un punto p ∈ M è un’applicazione R-lineare
X: C∞(p)→ R che soddisfa la regola di Leibniz

∀f ,g ∈ C∞(p) X(fg) = f(p)X(g) + g(p)X(f).

Lo spazio tangente TpM a M in p è, per definizione, l’insieme di tutte le derivazioni in p. Un ele-
mento X ∈ TpM è detto vettore tangente a M in p. Chiaramente, TpM è uno spazio vettoriale.

Osservazione 2.4.1. Se U ⊆ M è aperto, abbiamo TpU = TpM per ogni p ∈ U , in quanto C∞U (p) si
identifica (perché?) in modo naturale con C∞M (p).

Esempio 2.4.1. A qualsiasi vettore v = (v1, . . . , vn) ∈ Rn possiamo associare la derivata parziale nella
direzione di v definita da

∂

∂v
= v1 ∂

∂x1
+ · · ·+ vn ∂

∂xn
.

Chiaramente, ∂/∂v definisce una derivazione di C∞(p) per ogni p ∈ Rn. In questo modo otteniamo un’im-
mersione naturale di Rn in TpU = TpRn, immersione che dimostreremo essere un isomorfismo.
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Esempio 2.4.2. Sia ϕ = (x1, . . . , xn) una carta in p; vogliamo definire un vettore tangente
∂

∂xj

∣∣∣∣
p

∈ TpM ,

che generalizza alle varietà la nozione di derivata parziale in una direzione coordinata. Dato f ∈ C∞(p), sia
(U, f) un suo rappresentante: definiamo allora

∂

∂xj

∣∣∣∣
p

(f) =
∂(f ◦ ϕ−1)

∂xj

(
ϕ(p)

)
. (2.4.1)

È facile verificare (esercizio) che questa definizione non dipende dal rappresentante, e che
∂

∂xj

∣∣∣∣
p

è effettiva-

mente una derivazione. A volte scriveremo
∂f
∂xj

(p) invece di
∂

∂xj

∣∣∣∣
p

(f). Inoltre, se non ci sarà pericolo di

confusione, scriveremo anche ∂j |p o ∂j(p) per
∂

∂xj

∣∣∣∣
p

.

Esempio 2.4.3. Sia σ: (−ε, ε)→M una curva C∞ con σ(0) = p. Il vettore tangente σ′(0) alla curva in p
è definito ponendo

σ′(0)(f) =
d(f ◦ σ)

dt
(0),

dove (U, f) è un qualsiasi rappresentante di f . Chiaramente (esercizio) questa definizione non dipende dal
rappresentante scelto, e σ′(0) è una derivazione. Se ϕ = (x1, . . . , xn) è una qualunque carta centrata in p,
scrivendo ϕ ◦ σ = (σ1, . . . , σn) troviamo

d(f ◦ σ)
dt

(0) =
d
(
(f ◦ ϕ−1) ◦ (ϕ ◦ σ)

)
dt

(0) =
n∑

j=1

(σj)′(0)
∂

∂xj

∣∣∣∣
p

(f),

per cui

σ′(0) =
n∑

j=1

(σj)′(0)
∂

∂xj

∣∣∣∣
p

,

e abbiamo ottenuto un’effettiva generalizzazione del concetto di vettore tangente a una curva in Rn. In
particolare, ∂/∂xj |p è il vettore tangente alla curva σ(t) = ϕ−1(tej), dove ej è il j-esimo vettore della base
canonica di Rn.

Questi due esempi sono casi particolari di una costruzione molto più generale:

Definizione 2.4.5: Sia F : M → N un’applicazione differenziabile fra varietà. Dato p ∈ M , il differen-
ziale dFp:TpM → TF (p)N di F in p è l’applicazione lineare definita da

∀X ∈ TpM dFp(X) = X ◦ F ∗p ,

dove F ∗p :C∞
(
F (p)

)
→ C∞(p) è l’omomorfismo introdotto nella Definizione 2.4.3. In altre parole,

dFp(X)(g) = X(g ◦ F )

per ogni g ∈ C∞
(
F (p)

)
. A volte si scrive (F∗)p per dFp.

Osservazione 2.4.2. È facile verificare che

σ′(0) = dσ0

(
d

dt

∣∣∣∣
0

)
per ogni curva σ: (−ε, ε)→M , e che

∂

∂xj

∣∣∣∣
p

= d(ϕ−1)ϕ(p)

(
∂

∂xj

∣∣∣∣
ϕ(p)

)
per ogni carta locale ϕ = (x1, . . . , xn) in p ∈M .

Il differenziale gode delle proprietà che uno si aspetta:
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Proposizione 2.4.2: (i) Se M è una varietà e p ∈M allora d(idM )p = idTpM .
(ii) Se F :M → N e G:N → S sono due applicazioni differenziabili fra varietà e p ∈M allora

d(G ◦ F )p = dGF (p) ◦ dFp.

In particolare, se F :M → N è un diffeomorfismo allora dFp è invertibile e (dFp)−1 = d(F−1)F (p).

Dimostrazione: (i) Infatti f ◦ idM = f per ogni germe f ∈ C∞(p).
(ii) Prendiamo X ∈ TpM e f ∈ C∞

(
(G ◦ F )(p)

)
. Allora

d(G ◦ F )p(X)(f) = X
(
(G ◦ F )∗p(f)

)
= X

(
f ◦ (G ◦ F )

)
= X

(
F ∗p (f ◦G)

)
= dFp(X)

(
G∗F (p)(f)

)
=

(
dGF (p) ◦ dFp

)
(X)(f).

Il nostro prossimo obiettivo è dimostrare che lo spazio tangente in un punto a una varietà n-dimensionale
è uno spazio vettoriale di dimensione finita esattamente n. Per far ciò ci serve il seguente

Lemma 2.4.3: Sia xo = (x1
o, . . . , x

n
o ) ∈ Rn e f ∈ C∞(xo). Allora esistono germi g1, . . . ,gn ∈ C∞(xo) tali

che gj(xo) = ∂f
∂xj (xo) e

f = f(xo) +
n∑

j=1

(xj − xj
o)gj ,

dove xj ∈ C∞(xo) è il germe rappresentato dalla j-esima funzione coordinata.

Dimostrazione: Scelto un rappresentante (U, f) di f tale che U sia stellato rispetto a xo, scriviamo

f(x)− f(xo) =
∫ 1

0

∂

∂t
f
(
xo + t(x− xo)

)
dt =

n∑
j=1

(xj − xj
o)

∫ 1

0

∂f

∂xj

(
xo + t(x− xo)

)
dt.

Allora basta prendere come gj il germe rappresentato dalla coppia (U, gj) con

gj(x) =
∫ 1

0

∂f

∂xj

(
xo + t(x− xo)

)
dt.

Proposizione 2.4.4: (i) Sia xo = (x1
o, . . . , x

n
o ) ∈ Rn. Allora l’applicazione ι: Rn → TxoRn definita da

ι(v) =
∂

∂v

∣∣∣∣
xo

=
n∑

j=1

vj ∂

∂xj

∣∣∣∣
xo

è un isomorfismo.

(ii) Sia M una varietà di dimensione n, e p ∈ M . Allora TpM è uno spazio vettoriale di dimensione n. In

particolare, se ϕ = (x1, . . . , xn) è una carta in p, allora

{
∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

}
è una base di TpM .

Dimostrazione: (i) Dobbiamo dimostrare che ι è bigettiva. È iniettiva: se v 6= O dobbiamo avere vh 6= 0 per
qualche h; ma allora

ι(v)(xh) =
n∑

j=1

vj ∂xh

∂xj
(xo) = vh 6= 0,

e quindi ι(v) 6= O. È surgettiva: dato X ∈ TxoRn poniamo vj = X(xj) e v = (v1, . . . , vn). Vogliamo
dimostrare che X = ι(v). Prima di tutto notiamo che

X(1) = X(1 · 1) = 2 ·X(1)⇒ X(1) = 0,
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e quindi X(c) = 0 per ogni c ∈ R. Sia allora f ∈ C∞(xo); se applichiamo il Lemma 2.4.3 otteniamo

X(f) = X
(
f(xo)

)
+

n∑
j=1

X
(
(xj − xo

j)gj

)
=

n∑
j=1

X(xj − xj
o)gj(xo) =

n∑
j=1

vj ∂f
∂xj

(xo) = ι(v)(f),

cioè X = ι(v), come voluto.
(ii) Sia ϕ:U → V ⊂ Rn una carta locale in p. L’Osservazione 2.4.1, l’Esempio 2.2.1 e la Proposizione 2.4.2

ci dicono che dϕp:TpM = TpU → Tϕ(p)V = Tϕ(p)Rn è un isomorfismo, per cui dimTpM = dimTϕ(p)Rn = n.
Infine, l’ultima affermazione segue subito dall’Osservazione 2.4.2.

Osservazione 2.4.3. L’inverso dell’isomorfismo ι: Rn → Txo
Rn definito nella Proposizione 2.4.4.(i) si

esprime facilmente:
ι−1(X) =

(
X(x1), . . . , X(xn)

)
per ogni X ∈ TxoRn.

I prossimi esercizi descrivono altre due caratterizzazioni dello spazio tangente, e due definizioni alterna-
tive di differenziale.

Esercizio 2.4.3. Sia M una varietà, e p ∈ M . Posto mp = {f ∈ C∞(p) | f(p) = 0}, dimostra che mp è
l’unico ideale massimale di C∞(p), e che TpM è canonicamente isomorfo al duale di mp/m2

p.

Esercizio 2.4.4. Sia F :M → N un’applicazione differenziabile fra varietà, e p ∈ M . Dimostra che
F ∗p (mF (p)) ⊆ mp, e che se identifichiamo TpM e TF (p)N con i duali di mp/m2

p e mF (p)/m2
F (p) rispettiva-

mente, allora il differenziale dFp viene identificato all’applicazione duale dell’applicazione da mF (p)/m2
F (p)

a mp/m2
p indotta da F ∗p .

Esercizio 2.4.5. Sia M una varietà, e p ∈ M . Dimostra che ogni elemento di TpM è della forma σ′(0) per
un’opportuna curva σ: (−ε, ε)→M con σ(0) = p.

Esercizio 2.4.6. Sia F :M → N un’applicazione C∞ fra varietà e p ∈ M . Dimostra che se σ: (−ε, ε) → M
è una curva C∞ con σ(0) = p e σ′(0) = v ∈ TpM allora

dFp(v) = (F ◦ σ)′(0).

Esercizio 2.4.7. Dimostra che il differenziale d(det)X :Mn,n(R)→ R del determinante det: GL(n, R)→ R è
dato da

d(det)X(B) = (detX)tr(X−1B)

per ogni X ∈ GL(n, R) e B ∈Mn,n(R), dove tr(A) è la traccia della matrice A.

Esempio 2.4.4. Sia V uno spazio vettoriale di dimensione n su R, e vo ∈ V . Allora è possibile identifi-
care in modo canonico V e TvoV , generalizzando l’isomorfismo ι: Rn → TxoRn della Proposizione 2.4.4.(i).
Dato v ∈ V , sia σv: R → V la curva σv(t) = vo + tv, e definiamo l’applicazione ιvo

:V → Tvo
V po-

nendo ιvo
(v) = σ′v(0). Quest’applicazione è definita in modo canonico, indipendente da qualsiasi scelta;

per dimostrare che è un isomorfismo di spazi vettoriali possiamo usare una base. Sia B = {v1, . . . , vn}
una base di V , e ϕB = (x1, . . . , xn) la corrispondente carta locale introdotta nell’Esempio 2.1.7. Allora
ϕB ◦ σv = ϕB(vo) + tϕB(v), per cui l’Esempio 2.4.3 ci dice che

ιvo
(v) =

n∑
j=1

xj(v)
∂

∂xj

∣∣∣∣
vo

,

cioè ιvo
= d(ϕ−1

B )ϕB(vo) ◦ ι ◦ ϕB, per cui ιvo
è un isomorfismo, come affermato.

Osservazione 2.4.4. L’approccio da noi seguito non è adatto per definire lo spazio tangente a varietà di
classe Ck quando k <∞. Infatti si può dimostrare che lo spazio delle derivazioni di C0(p) si riduce alla sola
derivazione nulla, mentre lo spazio delle derivazioni di Ck(p) ha dimensione infinita per 1 ≤ k < +∞.
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Esercizio 2.4.8. Sia M una varietà di classe C0, e p ∈ M . Dimostra che l’unica derivazione di C0(p) è la
derivazione nulla. (Suggerimento: per ogni f ∈ C0(p) si ha f = f(p) +

(
f − f(p)

)1/3(
f − f(p)

)2/3.)

Esercizio 2.4.9. Sia M una varietà di classe Ck, con 0 < k < +∞, e p ∈ M . Dimostra che lo spazio
delle derivazioni di Ck(p) ha dimensione infinita. (Suggerimento: fissata una carta locale ϕ = (x1, . . . , xn)
centrata in p, per ogni 0 < ε < 1 sia fε ∈ Ck(p) il germe rappresentato dalla funzione (x1)k+ε. Dimostra
che per ogni 0 < ε1 < · · · < εr < 1 i germi fε1 , . . . , fεr

appartengono a mp e sono linearmente indipendenti
modulo m2

p, usando il fatto (da dimostrare) che il prodotto di due funzioni di classe Ck che si annullano in
un punto è di classe Ck+1 nell’intorno di quel punto. Concludi usando l’Esercizio 2.4.3.)

Osservazione 2.4.5. Due carte ϕ = (x1, . . . , xn) e ϕ̃ = (x̃1, . . . , x̃n) in uno stesso punto p di una varietà M
ci forniscono due basi di TpM , che devono essere legate da una relazione lineare. Per trovarla, prendiamo
f ∈ C∞(p) e calcoliamo:

∂

∂x̃h

∣∣∣∣
p

(f) =
∂(f ◦ ϕ̃−1)

∂x̃h

(
ϕ̃(p)

)
=

∂(f ◦ ϕ−1 ◦ ϕ ◦ ϕ̃−1)
∂x̃h

(
ϕ̃(p)

)
=

n∑
k=1

∂(f ◦ ϕ−1)
∂xk

(
ϕ(p)

)∂(xk ◦ ϕ̃−1)
∂x̃h

(
ϕ̃(p)

)
=

n∑
k=1

∂xk

∂x̃h
(p)

∂

∂xk

∣∣∣∣
p

(f),

dove abbiamo posto
∂xk

∂x̃h
(p) =

∂(xk ◦ ϕ̃−1)
∂x̃h

(
ϕ̃(p)

)
=

∂

∂x̃h

∣∣∣∣
p

(xk).

Siccome questo vale per ogni germe in p, otteniamo l’importante formula

∂

∂x̃h

∣∣∣∣
p

=
n∑

k=1

∂xk

∂x̃h
(p)

∂

∂xk

∣∣∣∣
p

, (2.4.2)

In maniera analoga possiamo vedere come cambiano le coordinate di un vettore tangente cambiando base.
Infatti se prendiamo X ∈ TpM e scriviamo

X =
n∑

k=1

Xk ∂

∂xk

∣∣∣∣
p

=
n∑

h=1

X̃h ∂

∂x̃h

∣∣∣∣
p

,

allora (esercizio)

Xk =
n∑

h=1

∂xk

∂x̃h
(p) X̃h. (2.4.3)

Nota come sia in (2.4.2) che in (2.4.3) la somma sia sull’indice ripetuto una volta in basso e una in alto.

Vediamo infine come si esprime il differenziale in coordinate locali. Data un’applicazione differenzia-
bile F :M → N fra varietà, sia (U, ϕ) una carta centrata in p ∈M , e (Û , ϕ̂) una carta centrata in F (p) ∈ N ;
vogliamo la matrice che rappresenta dFp rispetto alle basi {∂/∂xh|p} di TpM e {∂/∂x̂k|F (p)} di TF (p)N ,
matrice che contiene per colonne le coordinate rispetto alla base in arrivo dei trasformati dei vettori della
base di partenza. In altre parole, dobbiamo trovare (ak

h) ∈Mm,n(R) tali che

dFp(∂h|p) =
n∑

k=1

ak
h ∂̂k|F (p),

dove ∂h|p = ∂/∂xh|p e ∂̂k|F (p) = ∂/∂x̂k|F (p). Seguendo le definizioni abbiamo

ak
h =

n∑
j=1

aj
h ∂̂j |F (p)(x̂k) = dFp(∂h|p)(x̂k) = ∂h|p(x̂k ◦ F ) =

∂F k

∂xh

(
ϕ(p)

)
=

∂

∂xh

∣∣∣∣
p

(F k),
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dove abbiamo posto ϕ̂ ◦ F ◦ ϕ−1 = (F 1, . . . , Fm). In altre parole, la matrice che rappresenta il differenziale
di F rispetto alle basi indotte dalle coordinate locali è la matrice jacobiana(

∂F k

∂xh

)
,

come nel caso classico delle applicazioni differenziabili in Rn. In particolare, il differenziale come da noi
definito per applicazioni differenziabili fra aperti di spazi euclidei coincide con la definizione classica di
differenziale. Come prima conseguenza, abbiamo una versione del teorema della funzione inversa per varietà:

Corollario 2.4.5: Sia F :M → N un’applicazione differenziabile fra varietà. Sia p ∈ M un punto tale che
dFp:TpM → TF (p)N sia un isomorfismo. Allora esistono un intorno U ⊆M di p e un intorno V ⊆ N di F (p)
tali che F |U : U → V sia un diffeomorfismo.

Dimostrazione: Sia (U1, ϕ1) una qualsiasi carta in p, e (V1, ψ1) una qualsiasi carta in F (p) con F (U1) ⊆ V1.
Allora la tesi segue dal classico teorema della funzione inversa applicato a ψ1 ◦ F ◦ ϕ−1

1 .

Osservazione 2.4.6. Se f ∈ C∞(M) e p ∈M , il differenziale di f in p è un’applicazione lineare da TpM
in Tf(p)R. Quest’ultimo spazio è isomorfo a R tramite l’isomorfismo canonico X 7→ X(idR), come mostrato
nell’Osservazione 2.4.3. Ma allora se X ∈ TpM possiamo identificare dfp(X) con

dfp(X)(idR) = X(idR ◦ f) = X(f),

e quindi abbiamo ottenuto l’uguaglianza
dfp(X) = X(f)

valida per ogni f ∈ C∞(p), quale che sia il suo rappresentante (U, f), e ogni X ∈ TpM .

2.5 Sottovarietà

In questo paragrafo studieremo quando dei sottoinsiemi di una varietà possono essere considerati varietà a
loro volta.

Definizione 2.5.1: Un’applicazione differenziabile F : M → N fra due varietà è un’immersione se il differen-
ziale dFp:TpM → TF (p)N è iniettivo per ogni p ∈ M . Se inoltre F è un omeomorfismo con l’immagine
(e quindi è in particolare globalmente iniettiva) diremo che è un embedding. Infine, diremo che è una
sommersione (submersion in inglese) se il differenziale è surgettivo in ogni punto.

Esempio 2.5.1. La curva α: R→ R2 data da α(t) = (t2, t3), pur essendo un omeomorfismo con l’immagine,
non è un’immersione, in quanto α′(0) = O. La curva β: R→ R2 data da β(t) = (t3−4t, t2−4) è un’immersione
ma non un embedding, perché β(2) = β(−2).

Esempio 2.5.2. La curva σ: (−3, 0)→ R2 data da

σ(t) =


(
0,−(t + 2)

)
per t ∈ (−3,−1],

curva regolare per t ∈ [−1,− 1
π ],

(−t,− sin 1
t ) per t ∈ [− 1

π , 0),

dove la “curva regolare” collega in modo liscio e iniettivo gli altri due pezzi, è un’immersione globalmente
iniettiva ma non un embedding. Infatti, la topologia indotta da R2 sull’immagine non è quella del seg-
mento (−3, 0), come si vede facilmente considerando gli intorni del punto σ(−2) = (0, 0).

Ogni immersione è localmente un embedding:

Proposizione 2.5.1: Sia F :M1 →M2 un’immersione. Allora ogni p ∈M1 ha un intorno U ⊆M1 tale che
F |U :U →M2 sia un embedding.

Dimostrazione: Siano ϕ1:U1 → V1 ⊆ Rn e ϕ2:U2 → V2 ⊆ Rm carte in p e F (p) rispettivamente, e scriviamo

F̃ = ϕ2 ◦ F ◦ ϕ−1
1 (x1, . . . , xn) =

(
F̃ 1(x1, . . . , xn), . . . , F̃m(x1, . . . , xn)

)
.
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Siccome F è un’immersione, il differenziale di F̃ in x0 = ϕ1(p) è iniettivo; quindi a meno di riordinare le
coordinate possiamo supporre che

∂(F̃ 1, . . . , F̃n)
∂(x1, . . . , xn)

(x0) = det

(
∂F̃h

∂xk
(x0)

)
h,k=1,...,n

6= 0.

Sia G:V1 × Rm−n → Rm data da

G(x1, . . . , xn, tn+1, . . . , tm) = F̃ (x1, . . . , xn) + (0, . . . , 0, tn+1, . . . , tm).

Chiaramente, G(x, O) = F̃ (x) per ogni x ∈ V1, e

det(dG(x0,O)) =
∂(F̃ 1, . . . , F̃n)
∂(x1, . . . , xn)

(x0) 6= 0;

il teorema della funzione inversa ci fornisce quindi un intorno W1 ⊂ V1 × Rm−n di (x0, O) e un in-
torno W2 ⊂ Rm di F̃ (x0) tale che G|W1 sia un diffeomorfismo fra W1 e W2. Poniamo V = W1 ∩ (V1 × {O})
e U = ϕ−1

1 (V ). Allora F |U = ϕ−1
2 ◦G ◦ (ϕ1|U , O) è un omeomomorfismo con l’immagine, come richiesto.

Osservazione 2.5.1. Se F :M → N è un’immersione iniettiva allora F (M) ⊆ N ha una naturale struttura
di varietà indotta da quella di M . Infatti, sia A = {(Uα, ϕα)} un atlante di M tale che F |Uα sia un
omeomorfismo con l’immagine per ogni α (un tale atlante esiste grazie alla proposizione precedente). Allora
è facile verificare (esercizio) che {

(
F (Uα), ϕα ◦ F |−1

Uα

)
} è un atlante per F (M). Non è detto però che questa

struttura di varietà sia compatibile con quella dell’ambiente N ; per esempio, la topologia indotta dalla
struttura di varietà potrebbe non coincidere con la topologia indotta da quella di N (vedi l’Esempio 2.5.2).

Esercizio 2.5.1. Sia F :M → N un’immersione non iniettiva, e {(Uα, ϕα)} un atlante di M tale che F |Uα

sia un omeomorfismo con l’immagine per ogni α. È ancora vero che {
(
F (Uα), ϕα ◦ F |−1

Uα

)
} è un atlante

per F (M)?

Definizione 2.5.2: Una sottovarietà di una varietà N è un sottoinsieme M ⊂ N provvisto di una struttura di
varietà differenziabile tale che l’inclusione ι:M ↪→ N risulti un embedding. La differenza dimN − dimM è
detta codimensione di M in N .

Esercizio 2.5.2. Sia U ⊂ Rn aperto, e F :U → Rm un’applicazione qualsiasi. Dimostra che il grafico ΓF

di F , con la struttura di varietà differenziabile descritta nell’Esempio 2.1.2, è una sottovarietà di Rm+n se e
solo se F è di classe C∞.

Osservazione 2.5.2. La definizione di sottovarietà contiene tre richieste distinte. La prima è che l’inclu-
sione sia un omeomorfismo con l’immagine: questo equivale a dire che la topologia indotta dalla struttura di
varietà differenziale coincide con la topologia indotta dalla varietà ambiente, per cui la sottovarietà risulta
essere un sottospazio topologico dell’ambiente. La seconda richiesta è che l’inclusione sia di classe C∞:
questo equivale a dire che per ogni carta (U, ϕ) dell’ambiente con U ∩M 6= ∅ la restrizione ϕ|M = ϕ ◦ ι sia
di classe C∞ anche rispetto alla struttura di varietà di M . Come discuteremo meglio più avanti (Corolla-
rio 2.5.4) questo implicherà che potremo trovare un atlante di M costituito da restrizioni a M di opportune
carte dell’ambiente N . Inoltre, questa seconda richiesta implica anche che la restrizione a M di qualsiasi
(germe di) funzione C∞ di N è di classe C∞ anche rispetto alla struttura differenziabile di M . Infine, la terza
richiesta è che il differenziale dιp:TpM → TpN sia iniettivo per ogni p ∈ M . Come vedremo (Esercizi 2.5.5
e 2.5.6), questo è equivalente a richiedere che ogni (germe di) funzione C∞ in M si ottiene come restrizione
di una funzione C∞ definita in un opportuno aperto di M . Quindi questa definizione cattura bene l’idea che
la struttura differenziabile di una sottovarietà debba essere indotta da quella della varietà ambiente.

Osservazione 2.5.3. Se F :M → N è un embedding di M in N , allora F (M), considerata con la struttura
di varietà indotta da M introdotta nell’Osservazione 2.5.1, è una sottovarietà di N (esercizio).

Osservazione 2.5.4. Se M è una sottovarietà di N e (U, ϕ) è una carta di N con U ∩M 6= ∅, allora
ϕ(U ∩M) è (perché?) una sottovarietà di ϕ(U) ⊂ Rn, e ϕ|U∩M è un diffeomorfismo con l’immagine, in
quanto ϕ|U∩M = ϕ ◦ ι|U∩M .
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Se M è una sottovarietà k-dimensionale di N , e (U, ϕ) è una carta di N con U ∩M 6= ∅, di primo
acchito non possiamo dire che (U ∩M, ϕ|U∩M ) sia una carta di M , in quanto ϕ|U∩M non è in generale un
aperto di Rk. Quello che però è vero che per ogni p ∈ M possiamo trovare una carta (U, ϕ) di N in p tale
che ϕ|U∩M sia un aperto di Rk × {O}, per cui (U ∩M, ϕU∩M ) può essere naturalmente considerata come
una carta di M in p. Per dimostrarlo ricordiamo il classico Teorema del rango:

Teorema 2.5.2: (del rango) Siano U ⊆ Rm e V ⊆ Rn aperti, e F : U → V un’applicazione differenziabile
di rango costante k ≥ 0. Allora per ogni p ∈ U esistono una carta (U0, ϕ) per Rm centrata in p e una
carta (V0, ψ) per Rn centrata in F (p), con U0 ⊆ U e F (U0) ⊆ V0 ⊆ V , tali che

ψ ◦ F ◦ ϕ−1(x1, . . . , xk, xk+1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0)

e ψ
(
F (U0)

)
= ψ(V0) ∩ (Rk × {O}).

Definizione 2.5.3: Sia F :M → N un’applicazione differenziabile fra varietà. Il rango di F in p ∈M è il rango
del differenziale dFp. Chiaramente, se (U, ϕ) è una carta in p e (V, ψ) è una carta in F (p), allora il rango
di F in p è uguale al rango di ψ ◦ F ◦ ϕ−1 in ϕ(p).

Corollario 2.5.3: Sia M una varietà m-dimensionale, N una varietà n-dimensionale, e F : M → N un’ap-
plicazione differenziabile di rango costante k ≥ 0. Allora per ogni p ∈M esistono una carta (U, ϕ) centrata
in p e una carta (V, ψ) centrata in F (p), con F (U) ⊆ V , tali che

ψ ◦ F ◦ ϕ−1(x1, . . . , xk, xk+1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0)

e ψ
(
F (U)

)
= ψ(V ) ∩ (Rk × {O}).

Dimostrazione: Sia (U1, ϕ1) una qualsiasi carta centrata in p, e (V1, ψ1) una qualsiasi carta centrata in F (p)
con F (U1) ⊆ V1. Allora basta applicare il Teorema del rango a ψ1 ◦ F ◦ ϕ−1

1 .

Corollario 2.5.4: Sia M ⊆ N un sottoinsieme di una varietà n-dimensionale N . Allora M può essere
provvisto di una struttura di varietà k-dimensionale che lo renda una sottovarietà di N se e solo se per
ogni p ∈M esiste una carta (V, ψ) di N centrata in p tale che ψ(V ∩M) = ψ(V ) ∩ (Rk × {O}).

Dimostrazione: Supponiamo che M sia una sottovarietà di N . Per definizione, l’inclusione ι:M ↪→ N è di
rango costante k. La tesi segue allora dal corollario precedente.

Viceversa, supponiamo di avere per ogni p ∈ M una carta (Vp, ψp) di N centrata in p tale che
ψp(Vp ∩ M) = ψp(Vp) ∩ (Rk × {O}). Indichiamo con πk: Rn → Rk la proiezione sulle prime k coordi-
nate, e poniamo Up = πk

(
ψp(Vp ∩M)

)
. Allora Up è un aperto di Rk, ed è facile verificare (esercizio) che

{(Vp ∩M, πk ◦ ψp|Vp∩M )} è un k-atlante su M rispetto a cui M risulta essere una sottovarietà di N .

Esercizio 2.5.3. Sia F :M → N un’applicazione differenziabile di rango costante. Dimostra che se F è
iniettiva allora è un’immersione.

Esercizio 2.5.4. Sia M una sottovarietà k-dimensionale di una varietà N . Sia V un aperto di Rk, e ψ:V → N
un’applicazione differenziabile iniettiva di rango costante k tale che ψ(V ) ⊂ M . Dimostra che

(
ψ(V ), ψ−1

)
è una carta di M .

Esercizio 2.5.5. Sia F :M → N un’applicazione differenziabile, e p ∈M . Dimostra che dFp:TpM → TF (p)N

è iniettivo se e solo se F ∗p :C∞N
(
F (p)

)
→ C∞M (p) è surgettiva. Deduci che se ι:M ↪→ N è una sottovarietà di

una varietà N , e p ∈M , per ogni germe g ∈ C∞M (p) esiste g̃ ∈ C∞N (p) tale che g̃|M = g, dove g̃|M è un’altra
notazione per ι∗pg̃ = g̃ ◦ ι.

Esercizio 2.5.6. Sia ι: M ↪→ N una sottovarietà. Dimostra che per ogni f ∈ C∞(M) e ogni intorno aperto U
di M in N esiste una f̃ ∈ C∞(U) tale che f̃ |M ≡ f .

Esercizio 2.5.7. Sia M ⊆ N un sottoinsieme di una varietà N . Dimostra che su M esiste al più una
struttura di varietà differenziabile che lo renda una sottovarietà di N .
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Se ι:M ↪→ N è una sottovarietà di una varietà N , e p ∈M , il differenziale dιp:TpM → TpN realizza TpM
come sottospazio di TpN . Il modo in cui un v ∈ TpM agisce su un germe f ∈ C∞N (p) è il seguente:

dιp(v)(f) = v(f |M ). (2.5.1)

D’ora in poi, a meno di avviso contrario, se M è una sottovarietà di N e p ∈M , identificheremo sempre TpM
con il sottospazio dιp(TpM) di TpN , facendo agire gli elementi di TpM sui germi in C∞N (p) come in (2.5.1).

Esercizio 2.5.8. Sia ι:M ↪→ N una sottovarietà di una varietà N , e p ∈ M . Dimostra che v ∈ TpN
appartiene all’immagine di TpM tramite dιp se e solo se v(f) = 0 per ogni f ∈ C∞N (p) tale che f |M ≡ 0.

L’immagine inversa di un valore regolare definisce una sottovarietà, come nella Proposizione 2.1.2.

Definizione 2.5.4: Sia F :M → N un’applicazione differenziabile fra varietà. Un punto p ∈ M è detto punto
critico di F se dFp:TpM → TF (p)N non è surgettivo. Un valore critico è l’immagine di un punto critico. Un
valore regolare è un punto di F (M) che non è un valore critico. Indicheremo con Crit(F ) ⊆M l’insieme dei
punti critici di F .

Proposizione 2.5.5: Sia F :M → N un’applicazione differenziabile fra varietà, con dimM = n + k e
dimN = n. Allora:

(i) per ogni a ∈ F (M) l’insieme Na = F−1(a) \ Crit(F ) è una sottovarietà k-dimensionale di M . In
particolare, se a ∈ N è un valore regolare allora F−1(a) è una sottovarietà k-dimensionale di M .

(ii) Se p ∈ Na lo spazio tangente di Na in p coincide con il nucleo di dFp. In particolare, se N = R
e F = f ∈ C∞(M), allora lo spazio tangente di Na in p è dato dai vettori v ∈ TpM tali che v(f) = 0.

Dimostrazione: La prima parte si dimostra esattamente come nella Proposizione 2.1.2, usando carte locali
(esercizio). Per la seconda parte, e indichiamo con ι:Na ↪→ M l’inclusione. Allora per ogni p ∈ Na

possiamo identificare TpNa con la sua immagine tramite dιp in TpM , e quindi dobbiamo dimostrare che
dιp(TpNa) = Ker dFp. Siccome p non è un punto critico, entrambi questi spazi hanno dimensione k; quindi
ci basta dimostrare che sono uno contenuto nell’altro. Prendiamo v ∈ TpNa e f ∈ C∞

(
F (p)

)
. Allora

dFp

(
dιp(v)

)
(f) = d(F ◦ ι)p(v)(f) = v(f ◦ F ◦ ι) = v(f ◦ F |Na

) = 0,

in quanto F |Na
è costante. Quindi dFp

(
dιp(v)

)
= O, e dιp(v) ∈ Ker dFp, come voluto.

Esercizio 2.5.9. Sia M ⊆ N un sottoinsieme di una varietà N tale che per ogni p ∈M esista un intorno U
di p in N per cui M ∩U sia una sottovarietà k-dimensionale di N . Dimostra che allora M è una sottovarietà
k-dimensionale di N .

Esercizio 2.5.10. Sia F :M → N un embedding di una m-varietà M in una n-varietà N . Dimostra che per
ogni p ∈ M esistono un intorno aperto U ⊆ M di p, un intorno aperto V ⊆ N di F (p), e due sommersioni
G:V →M e H:V → Rn−m tali che G ◦ F |U = idU e F (U) = V ∩ F (M) = H−1(O).

Esercizio 2.5.11. Sia F : M → N un’applicazione differenziabile fra varietà, e S ⊂ N una sottovarietà.
Diremo che F è trasversa a S se per ogni p ∈ F−1(S) si ha TF (p)N = dFp(TpM) + TF (p)S, dove la somma
non è necessariamente diretta. Dimostra che se F è trasversa a S allora F−1(S) è una sottovarietà di M di
codimensione uguale alla codimensione di S in N .

Concludiamo questa sezione citando due importanti risultati che non abbiamo il tempo di dimostrare.
Il primo teorema, dimostrato da Whitney nel 1944, ci dice che ogni varietà può essere realizzata come
sottovarietà di uno spazio euclideo di dimensione abbastanza grande:

Teorema 2.5.6: Ogni varietà M n-dimensionale può essere realizzata come sottovarietà chiusa di R2n+1, e
come sottovarietà (non necessariamente chiusa) di R2n. In altre parole, esistono un embedding proprio di M
in R2n+1, e un embedding di M in R2n.⌈

Il secondo teorema è una caratterizzazione di quali sottogruppi di un gruppo di Lie sono sottovarietà:

Teorema 2.5.7: Sia G un gruppo di Lie, e H un suo sottogruppo. Allora H è una sottovarietà di G (e

quindi un gruppo di Lie) se e solo se è un sottoinsieme chiuso di G.

⌋



Capitolo 3

Fibrati vettoriali

3.1 Definizioni ed esempi

Uno dei motivi per cui la struttura di varietà è cos̀ı utile è che l’unione disgiunta degli spazi tangenti a una
varietà ha a sua volta una struttura naturale di varietà. Si tratta del primo esempio di una categoria di
oggetti estremamente importanti, i fibrati vettoriali.

Definizione 3.1.1: Un fibrato vettoriale di rango r su una varietà M è un’applicazione differenziabile surget-
tiva π:E →M fra una varietà E (detta spazio totale del fibrato) e la varietà M (detta base del fibrato) che
soddisfa le seguenti proprietà:
(i) per ogni p ∈ M l’insieme Ep = π−1(p), detto fibra di E sopra p, è dotato di una struttura di spazio

vettoriale su R di dimensione r, e indicheremo con Op il vettore nullo di Ep;
(ii) per ogni p ∈ M esiste un intorno U di p in M e un diffeomorfismo χ: π−1(U) → U × Rr, detto

banalizzazione locale di E, tale che π1 ◦χ = π (dove abbiamo indicato con π1:U ×Rr → U la proiezione
sulla prima coordinata), e tale che la restrizione di χ a ciascuna fibra sia un isomorfismo fra gli spazi
vettoriali Ep e {p} × Rr.

I fibrati vettoriali di rango 1 sono chiamati fibrati in rette. Quando non c’è rischio di confondersi useremo lo
spazio totale E per indicare un fibrato vettoriale π:E →M , sottintendendo la proiezione π. Infine, partendo
da spazi vettoriali su C invece che da spazi vettoriali su R si ottiene la nozione di fibrato vettoriale complesso.

In altre parole, un fibrato vettoriale è un modo differenziabile di associare uno spazio vettoriale a ciascun
punto di una varietà.

Esempio 3.1.1. Se M è una varietà, allora E = M × Rr considerato con la proiezione π:M × Rr → M
sulla prima coordinata è un fibrato vettoriale di rango r, detto fibrato banale.

Esempio 3.1.2. Se π:E → M è un fibrato vettoriale su M di rango r, e U ⊂ M è aperto, allora
πU :EU → U , dove EU = π−1(U) e πU = π|π−1(U), è un fibrato vettoriale di rango r su U , detto restri-
zione di E a U .

Esercizio 3.1.1. Sia π:E →M un fibrato vettoriale di rango r sulla varietà M , e S ⊂M una sottovarietà.
Dimostra che πS : E|S → S, dove E|S = π−1(S) e πS = π|π−1(S), è un fibrato vettoriale di rango r su S,
detto restrizione di E a S. (Suggerimento: può essere utile l’Esercizio 2.5.11).

C’è un modo tipico per verificare se una collezione di spazi vettoriali è un fibrato vettoriale:

Proposizione 3.1.1: Siano M una varietà, E un insieme e π:E → M un’applicazione surgettiva. Sup-
poniamo di avere un atlante A = {(Uα, ϕα)} di M e applicazioni bigettive χα: π−1(Uα) → Uα × Rr tali
che

(a) π1 ◦ χα = π, dove π1:U → Rr → U è la proiezione sulla prima coordinata;
(b) per ogni coppia (α, β) di indici tale che Uα ∩ Uβ 6= ∅ esiste un’applicazione differenziabile

gαβ :Uα ∩ Uβ → GL(r, R)

tale che la composizione χα ◦ χ−1
β : (Uα ∩ Uβ)× Rr → (Uα ∩ Uβ)× Rr sia della forma

χα ◦ χ−1
β (p, v) =

(
p, gαβ(p)v

)
. (3.1.1)
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Allora l’insieme E ammette un’unica struttura di fibrato vettoriale di rango r su M per cui le χα siano
banalizzazioni locali.

Dimostrazione: Poniamo Ep = π−1(p) per ogni p ∈M . Se p ∈ Uα, la restrizione di χα a Ep è una bigezione
con {p} ×Rr, e quindi possiamo usarla per definire una struttura di spazio vettoriale su Ep: se u1, u2 ∈ Ep

sono tali che χα(uj) = (p, vj) per opportuni v1, v2 ∈ Rr, poniamo

u1 + u2 = χ−1
α (p, v1 + v2) e λu1 = χ−1

α (p, λv1) (3.1.2)

per ogni λ ∈ R. A priori, la struttura di spazio vettoriale cos̀ı definita potrebbe dipendere dalla banaliz-
zazione χα usata, nel qual caso saremmo nei guai, in quanto in un fibrato vettoriale la struttura di spazio
vettoriale delle fibre dev’essere definita indipendentemente dalle banalizzazioni. Ma per fortuna la (3.1.1)
ci evita questo problema. Infatti, se p appartiene anche a un altro Uβ , e scriviamo χβ(uj) = (p, wj) per
opportuni w1, w2 ∈ Rr, abbiamo

(p, vj) = χα ◦ χ−1
β (p, wj) =

(
p, gαβ(p)wj

)
,

cioè vj = gαβ(p)wj , e quindi

χ−1
α (p, v1 + v2) = χ−1

α

(
p, gαβ(p)w1 + gαβ(p)w2

)
= χ−1

α

(
p, gαβ(p)(w1 + w2)

)
= χ−1

α ◦ (χα ◦ χ−1
β )(p, w1 + w2) = χ−1

β (p, w1 + w2),

per cui l’operazione di somma non dipende dalla banalizzazione usata per definirla. Analogamente si dimostra
che l’operazione di prodotto per uno scalare è ben definita.

Poniamo ora Ũα = π−1(Uα) e χ̃α = (ϕα, id)◦χα. Allora χ̃α ◦ χ̃−1
β = (ϕα ◦ϕ−1

β , gαβ ◦ϕ−1
β ) è di classe C∞,

per cui Ã = {(Ũα, χ̃α)} è un atlante su E di dimensione n + r, che soddisfa (esercizio) tutte le proprietà
necessarie perché π:E →M sia un fibrato vettoriale.

Viceversa, supponiamo di avere su E una struttura di fibrato vettoriale per cui le χα siano banalizzazioni
locali. In tal caso, le χα devono indurre isomorfismi fra le fibre ed Rr, per cui la (3.1.2) dev’essere valida,
e la struttura di spazio vettoriale su ciascuna fibra è unica. Inoltre, le χ̃α = (ϕα, id) ◦ χα sono chiaramente
diffeomorfismi con aperti di Rn+r, dove n = dimM , e quindi la struttura differenziabile di E coincide con
quella indotta dall’atlante Ã definito tramite le χ̃α.

Definizione 3.1.2: Sia π:E →M un fibrato vettoriale. Diremo che una carta locale (U, ϕ) di M banalizza E
se esiste una banalizzazione locale del fibrato definita su π−1(U). Un atlante A di M banalizza il fibrato E
se ogni carta di A lo fa.

Sia A = {(Uα, ϕα)} un atlante che banalizza un fibrato vettoriale π:E → M , e indichiamo con χα

la banalizzazione sopra Uα. Allora le composizioni χα ◦ χ−1
β devono indurre per ogni p ∈ Uα ∩ Uβ un

isomorfismo di Rr che dipende in modo C∞ da p, per cui devono necessariamente esistere applicazioni
differenziabili gαβ :Uα ∩ Uβ → GL(r, R) che soddisfano (3.1.1).

Definizione 3.1.3: Sia A = {(Uα, ϕα)} un atlante che banalizza un fibrato vettoriale π:E → M . Le appli-
cazioni gαβ :Uα ∩ Uβ → GL(r, R) che soddisfano (3.1.1) sono dette funzioni di transizione per il fibrato E
rispetto all’atlante A.

I prossimi due esercizi mostrano come per definire un fibrato vettoriale su una varietà M sia sufficiente
avere le funzioni di transizione.

Esercizio 3.1.2. Siano {gαβ} le funzioni di transizione di un fibrato vettoriale π:E → M rispetto a un
atlante A = {(Uα, ϕα)} di M . Dimostra che gβα = g−1

αβ (inversa di matrici) su Uα ∩ Uβ 6= ∅, e che
gαβgβγ = gαγ (prodotto di matrici) su Uα ∩ Uβ ∩ Uγ 6= ∅.

Esercizio 3.1.3. Supponiamo di avere un atlante A = {(Uα, ϕα)} su M , e funzioni gαβ :Uα∩Uβ → GL(r, R)
che soddisfano le proprietà dell’esercizio precedente. Dimostra che esiste un unico (a meno di isomorfismi:
vedi oltre per l’ovvia definizione di isomorfismo fra fibrati vettoriali) fibrato vettoriale E su M che abbia
le gαβ come funzioni di transizione rispetto all’atlante A. (Suggerimento: leggi l’Esempio 3.1.4 più sotto.)
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Proviamo ad applicare la Proposizione 3.1.1 agli spazi tangenti. Data una varietà M , indichiamo con TM
l’unione disgiunta degli spazi tangenti TpM al variare di p ∈M , e sia π:TM →M la proiezione che manda
ciascun TpM in p. Dato un atlante {(Uα, ϕα)}, possiamo definire bigezioni χα:π−1(Uα)→ Uα×Rn ponendo

χα

 n∑
j=1

vj ∂

∂xj
α

∣∣∣∣
p

 = (p, v),

dove ϕα = (x1
α, . . . , xn

α) e v = (v1, . . . , vn). La (2.4.2) ci dice allora che

χα ◦ χ−1
β (p, v) = χα

 n∑
j=1

vj ∂

∂xj
β

∣∣∣∣∣
p

 = χα

 n∑
h=1

 n∑
j=1

∂xh
α

∂xj
β

(p)vj

 ∂

∂xh
α

∣∣∣∣
p

 =
(

p,
∂xα

∂xβ
(p)v

)
,

dove ∂xα/∂xβ è la matrice jacobiana del cambiamento di coordinate ϕα ◦ ϕ−1
β . Quindi (3.1.1) è soddisfatta

con
gαβ =

∂xα

∂xβ
,

per cui otteniamo una struttura di fibrato vettoriale su TM .

Definizione 3.1.4: Sia M una varietà di dimensione n. Il fibrato vettoriale π:TM → M di rango n con la
struttura appena definita si dice fibrato tangente alla varietà.

Un altro esempio è il fibrato cotangente. Indichiamo con T ∗p M lo spazio duale di TpM , e con T ∗M
l’unione disgiunta dei T ∗p M al variare di p ∈ M , con l’ovvia proiezione π:T ∗M → M . Data una carta
locale ϕα = (x1

α, . . . , xn
α) in p ∈ M , indichiamo con {dx1

α|p, . . . , dxn
α|p} la base di T ∗p M duale della base

{∂/∂x1
α|p, . . . , ∂/∂xn

α|p} di TpM . È facile verificare che (2.4.2) implica

dxk
β |p =

n∑
h=1

∂xk
β

∂xh
α

(p) dxh
α|p, (3.1.3)

per cui possiamo nuovamente applicare la Proposizione 3.1.1. Infatti, se definiamo χα:π−1(Uα)→ Uα × Rn

anche stavolta ponendo

χα

 n∑
j=1

wj dxj
α|p

 = (p, wT ),

dove wT ∈ Rn è il vettore colonna trasposto del vettore riga (w1, . . . , wn) ∈ (Rn)∗, otteniamo

χα ◦ χ−1
β (p, wT ) = χα

 n∑
j=1

wj dxj
β |p

 = χα

 n∑
h=1

 n∑
j=1

∂xj
β

∂xh
α

(p)wj

 dxh
α|p

 =

(
p,

[
∂xβ

∂xα
(p)

]T

wT

)
,

per cui recuperiamo (3.1.1) con

gαβ =
[
∂xβ

∂xα

]T

,

dove AT indica la trasposta della matrice A.

Definizione 3.1.5: Sia M una varietà di dimensione n. Il fibrato vettoriale π:T ∗M → M di rango n con la
struttura appena definita si dice fibrato cotangente alla varietà.

Osservazione 3.1.1. Data una carta locale ϕ = (x1, . . . , xn) in un punto p di una varietà M , abbiamo
introdotto due notazioni pericolosamente simili: dxj

p, che indica il differenziale in p della funzione coordi-
nata xj , e dxj |p, l’elemento della base duale di T ∗p M . Per fortuna, ricordando l’Osservazione 2.4.6 di fatto
possiamo identificare questi due oggetti. Infatti, dxj

p è un’applicazione lineare da TpM a valori in R, per cui
è un elemento di T ∗p M ; inoltre,

dxj
p

(
∂

∂xh

∣∣∣∣
p

)
=

∂xj

∂xh
(p) = δj

h,

per cui dxj
p = dxj |p.
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Osservazione 3.1.2. Come diventerà ancora più chiaro a partire dal prossimo capitolo, in geometria
differenziale è importante mantenere distinti vettori colonna e vettori riga, ovvero non identificare Rn con
il suo duale (Rn)∗. La scelta di una base fornisce un isomorfismo fra TpM e Rn; la scelta della base duale
corrisponde a considerare l’inversa del duale di questo isomorfismo, e quindi identifica T ∗p M con (Rn)∗. In
altre parole, le coordinate rispetto alla base duale degli elementi di T ∗p M vivono in maniera naturale in (Rn)∗,
per cui sono vettori riga, e non vettori colonna. Siccome come modello per i fibrati vettoriali usiamo Rn e
non il suo duale, nelle formule riguardanti il fibrato cotangente siamo costretti a introdurre la trasposizione.
In particolare, le funzioni di transizione del fibrato cotangente sono le inverse trasposte delle funzioni di
transizione del fibrato tangente, e non semplicemente le inverse.

Nel Capitolo 1 abbiamo visto altre operazioni che possiamo effettuare sugli spazi vettoriali TpM ; pos-
siamo per esempio costruire l’algebra tensoriale, o l’algebra esterna. Abbiamo anche visto come ottenere
delle basi di questi spazi, facendo prodotti tensoriali o prodotti esterni di elementi delle basi di TpM e T ∗p M .
La multilinearità del prodotto tensoriale e del prodotto esterno ci dice anche come cambiano queste basi
cambiando carte locali: otteniamo formule del tipo

∂

∂xj1
β

⊗ · · · ⊗ ∂

∂xjr

β

⊗ dxh1
β ⊗ · · · ⊗ dxhs

β

=
n∑

a1,...,ar=1

n∑
b1,...,bs=1

∂xa1
α

∂xj1
β

· · · ∂xar
α

∂xjr

β

∂xh1
β

∂xb1
α

· · ·
∂xhs

β

∂xbs
α

∂

∂xa1
α
⊗ · · · ⊗ ∂

∂xar
α
⊗ dxb1

α ⊗ · · · ⊗ dxbs
α ,

per cui possiamo procedere (esercizio) come fatto nel caso dei fibrati tangente e cotangente, ottenendo i
fibrati tensoriali.

Definizione 3.1.6: Sia M una varietà. Indichiamo con T k
l M l’unione disgiunta degli spazi T k

l (TpM) al variare
di p ∈M , e sia π:T k

l M →M la proiezione associata. Allora T k
l M , con la struttura naturale sopra descritta,

è detto fibrato dei
(
k
l

)
-tensori su M . Indicheremo invece con

∧r
M il fibrato delle r-forme ottenuto prendendo

l’unione disgiunta degli spazi
∧r(T ∗p M). In particolare,

∧1
M = T ∗M .

Osservazione 3.1.3. Attenzione:
∧r

p M è uguale a
∧r(T ∗p M) e non a

∧r(TpM) come ci si sarebbe potuti
aspettare, per cui

∧r
M è contenuto in T 0

r M invece di T r
0 M . Il motivo di questa scelta è che mentre il

fibrato delle r-forme come definito qui è infinitamente utile in geometria differenziale, il fibrato ottenuto
considerando gli spazi

∧r(TpM) viene usato cos̀ı di rado da non meritare un simbolo speciale.

I fibrati tensoriali naturalmente non esauriscono la categoria dei fibrati vettoriali interessanti.

Esempio 3.1.3. Sia S una sottovarietà di dimensione k di una varietà n-dimensionale M . Abbiamo già
osservato come per ogni p ∈ S possiamo identificare ciascun TpS con un sottospazio vettoriale di TpM .
Allora il fibrato normale di S in M è il fibrato vettoriale NS su S di rango n−k ottenuto prendendo l’unione
disgiunta degli spazi vettoriali quozienti TpM/TpS, con la proiezione naturale π:NS → S. Per costruire le
banalizzazioni locali, scegliamo un atlante {(Uα, ϕα)} di S in modo che ciascuna carta (Uα, ϕα) provenga
da una carta (Ũα, ϕ̃α) di M come indicato nel Corollario 2.5.4. In particolare, posto ϕ̃α = (x1

α, . . . , xn
α), per

ogni p ∈ Uα i vettori {∂/∂x1
α|p, . . . , ∂/∂xk

α|p} formano una base di TpS, per cui una base di TpM/TpS
è data da {∂/∂xk+1

α |p + TpS, . . . , ∂/∂xn
α|p + TpS}. Quindi possiamo definire una banalizzazione locale

χα:π−1(Uα)→ Uα × Rn−k ponendo

χα

n−k∑
j=1

vj

(
∂

∂xn+j
α

∣∣∣∣
p

+ TpS

) = (p, v),

e non è difficile (esercizio) verificare che le ipotesi della Proposizione 3.1.1 sono soddisfatte.

Esercizio 3.1.4. Definisci i concetti di sottofibrato di un fibrato vettoriale, di quoziente di un fibrato per
un suo sottofibrato, di somma diretta e di prodotto tensoriale di due fibrati sulla stessa varietà, e ve-
rifica che il fibrato normale NS introdotto nel precedente esempio può essere identificato con il fibrato
quoziente TM |S/TS, dove TM |S è la restrizione di TM a S (vedi l’Esercizio 3.1.1).
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Esempio 3.1.4. Vogliamo introdurre una famiglia di fibrati in rette sullo spazio proiettivo Pn(R). Sia
A = {(U0, ϕ0), . . . , (Un, ϕn)} l’atlante introdotto nell’Esempio 2.1.12, e prendiamo d ∈ Z. Indichiamo con Ed

l’unione disgiunta degli insiemi U0 × R, . . . , Un × R quozientato rispetto alla relazione d’equivalenza ∼ cos̀ı
definita: (x, λ) ∈ Uh × R è equivalente a (x̃, λ̃) ∈ Uk × R se e solo se

x = x̃ e λ =
(

xk

xh

)d

λ̃,

dove abbiamo scritto x = [x0 : · · · : xn] come al solito. In particolare, (x, λ) ∼ (x̃, λ̃) implica che
x = x̃ ∈ Uh ∩ Uk, per cui la relazione d’equivalenza è ben definita e abbiamo una proiezione natu-
rale π:Ed → Pn(R). È ora facile usare la Proposizione 3.1.1 per dimostrare che abbiamo definito dei
fibrati in rette: infatti per ogni j = 0, . . . , n la proiezione sul quoziente è una bigezione fra Uj ×R e π−1(Uj),
per cui possiamo usarne l’inversa χj :π−1(Uj)→ Uj ×R per definire le banalizzazioni locali. Per costruzione
le funzioni di transizione ghk:Uh ∩ Uk → GL(1, R) = R∗ sono date da

ghk(x) =
(

xk

xh

)d

.

Chiaramente, E0 = Pn(R) × R è il fibrato in rette banale. Si può inoltre dimostrare che gli Ed, a meno di
isomorfismi (vedi sotto per la definizione — ovvia — di isomorfismo fra fibrati), sono tutti e soli i fibrati in
rette su Pn.

Concludiamo questo paragrafo introducendo anche le applicazioni fra fibrati:

Definizione 3.1.7: Siano π1:E1 → M1 e π2:E2 → M2 due fibrati vettoriali. Un morfismo fra i due fibrati
è una coppia di applicazioni differenziabili L:E1 → E2 e F :M1 → M2 tali che π2 ◦ L = F ◦ π1 (per cui
L

(
(E1)p

)
⊆ (E2)F (p) per ogni p ∈M1, cioè L manda fibre in fibre), e che L|(E1)p

: (E1)p → (E2)F (p) sia lineare
per ogni p ∈ M . Un morfismo invertibile (cioè tale che sia L che F siano diffeomorfismi) è detto isomorfi-
smo di fibrati vettoriali. A volte indicheremo un morfismo di fibrati scrivendo semplicemente L:E1 → E2

sottintendendo l’applicazione F . Quando M1 = M2, cioè se E1 ed E2 sono fibrati sulla stessa base, a meno
di avviso di contrario supporremo sempre che l’applicazione F sia l’identità, per cui L soddisfa π2 ◦ L = π1.
Spesso viene detto banale un qualsiasi fibrato vettoriale isomorfo al fibrato banale.

In altre parole, un morfismo di fibrati è un’applicazione che rispetta sia la struttura differenziabile che
la struttura di fibrato vettoriale.

Esercizio 3.1.5. Se F :M → N è un’applicazione differenziabile, dimostra che dF :TM → TN è un morfismo
di fibrati.

Esercizio 3.1.6. Sia F :M → N un’applicazione differenziabile, e π: E → N un fibrato vettoriale di rango r
su N . Per ogni p ∈ M poniamo (F ∗E)p = EF (p), e sia F ∗E l’unione disgiunta degli (F ∗E)p al variare
di p ∈M , con la proiezione canonica π̃:F ∗E →M . Dimostra che F ∗E ha una struttura naturale di fibrato
vettoriale di rango r su M , detto fibrato pull-back (o fibrato indotto) di E rispetto a F . Dimostra inoltre
che se ι:S →M è una sottovarietà e E è un fibrato su M , allora ι∗E = E|S .

Esercizio 3.1.7. Sia (L, F ) un morfismo fra i fibrati vettoriali π1:E1 → M1 e π2:E2 → M2. Dimostra che
Ker(L, F ) = {v ∈ E1 | L(v) = OF (p)} ⊆ E1 è un sottofibrato di E1, e che Im(L, F ) = L(E1) ⊆ E2 è un
sottofibrato di E2.

Esercizio 3.1.8. Sia A = {(Uα, ϕα)} un atlante che banalizza due fibrati vettoriali π:E → M e π̃: Ẽ → M
di rango r su M , e indichiamo con {gαβ} e {g̃αβ} le relative funzioni di transizione. Dimostra che E e Ẽ
sono isomorfi se e solo se esistono applicazioni differenziabili σα:Uα → GL(r, R) tali che g̃αβ = σ−1

α gαβσβ .
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3.2 Sezioni di fibrati

Quando si ha un fibrato vettoriale, una cosa che risulta molto utile è studiare le applicazioni dalla base allo
spazio totale del fibrato che associano a ogni punto della base un elemento della fibra su quel punto.

Definizione 3.2.1: Sia π:E →M un fibrato vettoriale su una varietà M . Una sezione di E è un’applicazione
differenziabile s:M → E tale che π ◦ s = idM , cioè tale che s(p) ∈ Ep per ogni p ∈ M . Lo spazio vettoriale
delle sezioni di E verrà indicato con E(M). La sezione OE ∈ E(M) che a ogni punto p ∈M associa il vettore
nullo Op ∈ Ep è detta sezione nulla di E.

Osservazione 3.2.1. Se E = M × Rr è il fibrato banale di rango r, allora lo spazio delle sezioni E(M)
è canonicamente isomorfo allo spazio C∞(M, Rr) delle applicazioni differenziabili a valori in Rn. Infatti, se
s ∈ E(M) è una sezione allora π2 ◦ s ∈ C∞(M, Rr), dove π2:M × Rr → Rr è la proiezione sulla seconda
coordinata; viceversa, se F ∈ C∞(M, Rr) allora p 7→

(
p, F (p)

)
è una sezione di M ×Rr. Quindi in un certo

senso le sezioni di un fibrato sono una generalizzazione delle applicazioni differenziabili a valori in Rr.

Osservazione 3.2.2. Ogni fibrato vettoriale ammette sezioni. Sia π:E → M un fibrato vettoriale di
rango r, e χ:π−1(U)→ U × Rr una banalizzazione locale. Scegliamo una qualsiasi applicazione differenzia-
bile F : U → Rr e sia ρ ∈ C∞(M) tale che supp(ρ) ⊂ U . Allora l’applicazione s:M → E data da

s(p) =
{

χ−1
(
p, ρ(p)F (p)

)
if p ∈ U ,

Op if p ∈M \ supp(ρ),

è chiaramente una sezione di E.

Le sezioni del fibrato tangente, e più in generale dei fibrati tensoriali, hanno nomi particolari.

Definizione 3.2.2: Un campo vettoriale su una varietà M è una sezione del fibrato tangente TM . Lo spazio
vettoriale dei campi vettoriali su M verrà indicato con T (M). Una k-forma differenziale su M è una sezione
del fibrato

∧k
M . Lo spazio vettoriale delle k-forme differenziali su M verrà indicato con Ak(M). Un campo

tensoriale di tipo
(
k
l

)
(o

(
k
l

)
-tensore) su M è una sezione del fibrato T k

l M . Lo spazio vettoriale dei
(
k
l

)
-tensori

verrà indicato con T k
l (M).

Osservazione 3.2.3. Se X ∈ T (M) è un campo vettoriale e p ∈M , a volte scriveremo Xp invece di X(p).
Analogamente, se ω ∈ Ak(M) è una k-forma, a volte scriveremo ωp invece di ω(p).

Sia (U, ϕ) una carta in p ∈M , e scriviamo ϕ = (x1, . . . , xn) come al solito. Abbiamo quindi delle sezioni
locali ∂1, . . . , ∂n di TM definite su U ponendo

∂j(p) =
∂

∂xj

∣∣∣∣
p

∈ TpM.

Se X ∈ T (M) è un campo vettoriale qualsiasi e p ∈ U , allora X(p) dev’essere una combinazione lineare di
∂1(p), . . . , ∂n(p), per cui possiamo trovare funzioni a1, . . . , an:U → R tali che

X(p) =
n∑

j=1

aj(p)∂j(p).

Siccome
(
a1(p), . . . , an(p)

)
= dϕp

(
X(p)

)
, si vede subito che le funzioni aj sono di classe C∞.

Osservazione 3.2.4. A volte scriveremo anche

X =
n∑

j=1

âj∂j ,

dove le âj sono funzioni C∞ definite su un aperto di Rn (l’immagine della carta locale), e non su un aperto
di M (il dominio della carta locale). In altre parole, âj(x) = aj ◦ ϕ−1(x) per ogni x ∈ ϕ(U).
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Se (Ũ , ϕ̃) è un’altra carta con U ∩ Ũ 6= ∅, sappiamo che

∂̃h =
n∑

k=1

∂xk

∂x̃h
∂k,

su U ∩ Ũ . Quindi se scriviamo X =
∑

j aj∂j =
∑

h ãh∂̃h troviamo

aj =
n∑

h=1

∂xj

∂x̃h
ãh, (3.2.1)

che è la formula che ci dice come cambiano i coefficienti di un campo vettoriale al cambiare della carta.

Esercizio 3.2.1. Sia A = {(Uα, ϕα)} un atlante su una n-varietà M . Supponiamo di avere per ogni α
una n-upla di funzioni aα = (a1

α, . . . , an
α) ∈ C∞(Uα)n in modo che su Uα ∩ Uβ le aα e le aβ siano legate

da (3.2.1). Dimostra che la formula X =
∑

j aj
α∂j,α, dove ∂j,α = ∂/∂xj

α, definisce un campo vettoriale
globale X ∈ T (M).

Dunque la scelta di coordinate locali fornisce una base dello spazio tangente che varia in modo differen-
ziabile sul corrispondente aperto coordinato, il primo esempio di riferimento locale per un fibrato vettoriale.

Definizione 3.2.3: Sia π:E →M un fibrato vettoriale di rango r sulla varietà M , e U ⊆M un aperto di M . Un
riferimento locale per E su U è una r-upla σ1, . . . , σr ∈ E(U) di sezioni di E su U tali che {σ1(p), . . . , σr(p)}
sia una base di Ep per ogni p ∈ U .

Osservazione 3.2.5. Dare un riferimento locale è equivalente a dare una banalizzazione locale. In-
fatti, sia χ:π−1(U) → U × Rr una banalizzazione locale di un fibrato vettoriale E di rango r. Ponendo
σj(p) = χ−1(p, ej), dove ej è il j-esimo vettore della base canonica di Rr, otteniamo chiaramente un ri-
ferimento locale per E su U . Viceversa, se {σ1, . . . , σr} è un riferimento locale per E su U , definiamo
ξ:U × Rr → π−1(U) ponendo

ξ(p, w) = w1σ1(p) + · · ·+ wrσr(p) ∈ Ep.

Chiaramente ξ è bigettiva, di classe C∞, e χ = ξ−1 è una banalizzazione locale. L’unica cosa non del
tutto ovvia è verificare che χ sia di classe C∞. Per dimostrarlo scegliamo una qualsiasi banalizzazione χ̃
nell’intorno di p ∈ U , e sia {σ̃1, . . . , σ̃r} il corrispondente riferimento locale. Inoltre, poniamo χ̃o = π2 ◦ χ̃,
dove π2:U × Rr → Rr è la proiezione sulla seconda coordinata, in modo che si abbia χ̃(v) =

(
p, χ̃o(v)

)
.

Scriviamo χ̃o(σj) = (a1
j , . . . , a

r
j); allora (ah

j ) è una matrice invertibile con elementi di classe C∞, per cui
anche la sua inversa B = (bj

h) ha tutti gli elementi di classe C∞, e si ha σ̃h =
∑

j bj
hσj . Ma allora se v ∈ Ep

abbiamo

v =
r∑

h=1

ṽhσ̃h =
r∑

h,j=1

ṽhbj
hσj ,

dove (ṽ1, . . . , ṽr) = χ̃o(v), per cui v = ξ(p, w) con w = Bχ̃o(v), e quindi

χ(v) =
(
p, Bχ̃o(v)

)
è di classe C∞, come voluto.

Osservazione 3.2.6. Una conseguenza della precedente osservazione è che un fibrato vettoriale è (isomorfo
al fibrato) banale se e solo se ammette un riferimento globale.

Siano χα e χβ due banalizzazioni locali, e {σ1,α, . . . , σr,α}, {σ1,β , . . . , σr,β} i corrispondenti riferimenti
locali. Se scriviamo σj,β =

∑
k(gαβ)k

j σk,α abbiamo(
p,

∑
k

(gαβ)k
j ek

)
= χα

(∑
k

(gαβ)k
j σk,α

)
= χα(σj,β) = χα ◦ χ−1

β (p, ej) =
(
p, gαβ(p)ej

)
,
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dove gαβ è la funzione di transizione da χα a χβ , per cui le (gαβ)k
j sono le componenti della funzione di

transizione gαβ .
Sia ora σ una sezione qualunque di E, e scriviamo σ =

∑
j aj

ασj,α =
∑

h ah
βσh,β . Allora il conto

precedente ci dice che

aj
α =

r∑
h=1

(gαβ)j
h ah

β , (3.2.2)

è la formula che esprime come cambiano i coefficienti di una sezione al cambiare della banalizzazione locale.

Esercizio 3.2.2. Sia A = {(Uα, ϕα)} un atlante su M , e gαβ :Uα ∩ Uβ → GL(r, R) una famiglia di fun-
zioni di transizione per un fibrato E. Supponi di avere per ogni α una r-upla di funzioni differenziabili
aα = (a1

α, . . . , ar
α) ∈ C∞(Uα)r in modo che su Uα ∩ Uβ le aα e le aβ siano legate da (3.2.2). Dimostra che

esiste un’unica sezione σ di E tale che le aj
α siano i coefficienti di σ relativi a un appropriato riferimento

locale su Uα.

Esercizio 3.2.3. Sia σ:M → E una sezione (non necessariamente C∞) di un fibrato vettoriale su M .
Dimostra che σ è C∞ se e solo se per ogni riferimento locale {σ1, . . . , σr} di E su U ⊆ M si può scrivere
σ = a1σ1 + · · · + arσr con a1, . . . , ar ∈ C∞(U) se e solo se questo avviene per una famiglia di riferimenti
locali i cui domini di definizione formano un ricoprimento aperto di M .

Esempio 3.2.1. Una funzione f : Rn+1 → R è detta d-omogenea (con d ∈ Z) se f(λx) = λdf(x) per
ogni λ ∈ R∗ e x ∈ Rn+1. È evidente che ogni funzione 0-omogenee f : Rn+1 → R definisce una fun-
zione f̃ ∈ C∞

(
Pn(R)

)
tale che f̃ ◦ π = f , dove π: Rn+1 \ {O} → Pn(R) è la proiezione naturale. Viceversa,

ogni funzione 0-omogenea è della forma f̃ ◦π per un’opportuna funzione C∞ definita sullo spazio proiettivo.
Ricordando l’Osservazione 3.2.1, abbiamo quindi un isomorfismo fra lo spazio delle funzioni 0-omogenee
su Rn+1 e lo spazio delle sezioni del fibrato banale E0 = Pn(R) × R. Vogliamo ora far vedere che, più in
generale, c’è un naturale isomorfismo fra lo spazio delle funzioni d-omogenee su Rn+1 e lo spazio Ed

(
Pn(R)

)
delle sezioni del fibrato in rette πd:Ed → Pn(R) introdotto nell’Esempio 3.1.4. Infatti, sia f : Rn+1 → R una
funzione d-omogenea, e definiamo f̃ : Pn(R)→ Ed nel seguente modo:

∀x ∈ Uj f̃(x) = χ−1
j

(
x, f([x]j)

)
,

dove [x]j ∈ Rn+1 è l’unico elemento y ∈ Rn+1 tale che π(y) = x e yj = 1. Per verificare che f̃ è una sezione
di Ed è sufficiente controllare che sia ben definita, visto che localmente è chiaramente C∞. Sia x ∈ Uh ∩Uk;
allora [x]h = (xk/xh)[x]k, per cui ricordando la definizione di Ed troviamo

χh ◦ χ−1
k

(
x, f([x]k)

)
=

(
x,

(
xk

xh

)d

f([x]k)

)
=

(
x, f

(
xk

xh
· [x]k

))
=

(
x, f([x]h)

)
,

e f̃ è ben definita. Viceversa, data f̃ ∈ Ed
(
Pn(R)

)
possiamo definire f̃j :Uj → R con χj

(
f̃(x)

)
=

(
x, f̃j(x)

)
per ogni x ∈ Uj e ogni j = 0, . . . , n. Se x ∈ Uh ∩ Uk si verifica subito che

f̃k(x) =
(

xh

xk

)d

f̃h(x). (3.2.3)

Possiamo allora definire f : Rn+1 → R ponendo f(O) = 0 e f(y) = (yj)df̃j

(
π(y)

)
per un qualsiasi j = 0, . . . , n

tale che yj 6= 0. Grazie alla (3.2.3) si vede subito che f è ben definita, ed è chiaramente d-omogenea.

Esempio 3.2.2. Se M è una varietà di dimensione n, allora TM è una varietà di dimensione 2n, per cui
possiamo considerare il fibrato tangente del tangente π̃:T (TM) → TM di rango 2n su TM . Vogliamo ora
descrivere dei riferimenti locali naturali per T (TM). Sia (U, ϕ) una carta locale per M ; abbiamo visto che ϕ
induce una banalizzazione locale χ:π−1(U)→ U × Rn e un riferimento locale {∂1, . . . , ∂n} per TM tali che

χ(v) =
(
p, (v1, . . . , vn)

)
se e solo se v = v1∂1|p + · · ·+ vn∂n|p ∈ TpM,
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dove π:TM → M è la proiezione naturale. Inoltre, se poniamo χ̃ = (ϕ, id) ◦ χ otteniamo una carta
locale

(
π−1(U), χ̃

)
di TM . Scrivendo ϕ = (x1, . . . , xn) è chiaro che χ̃(v) =

(
x1(p), . . . , xn(p), v1, . . . , vn

)
per ogni v ∈ TpM e p ∈ U . Dunque alla carta locale χ̃ di TM possiamo associare il riferimento locale
{∂/∂x1, . . . , ∂/∂xn, ∂/∂v1, . . . , ∂/∂vn} di T (TM) sopra π−1(U) = TU . Per capire meglio chi sono ∂/∂xh

e ∂/∂vk vediamo come si comportano rispetto al differenziale della proiezione π. Ora, se f ∈ C∞(U) è chiaro
(perché?) che

∂

∂xh

∣∣∣∣
v

(f ◦ π) = ∂h|p(f) e
∂

∂vk

∣∣∣∣
v

(f ◦ π) = 0

quale che sia v ∈ TpM ; in altre parole, i ∂/∂xh riproducono la derivate nelle coordinate di M , mentre i
∂/∂vk danno le derivate delle funzioni ristrette ai singoli spazi tangenti. In termini più formali, questo vuol
dire che dπv(∂/∂xh) = ∂h|π(v) e dπv(∂/∂vk) = Oπ(v). In particolare, {∂/∂v1, . . . , ∂/∂vn} è un riferimento
locale per il fibrato verticale V = Ker(dπ) ⊂ T (TM). Nota che mentre il fibrato verticale è ben definito
indipendentemente dalla carta locale scelta, non esiste una definizione canonica per un “fibrato orizzontale”
H ⊂ T (TM) tale che T (TM) = H ⊕ V; per esempio, è facile dimostrare (esercizio) che, in generale, se
ϕ̃ = (x̃1, . . . , x̃n) è un’altra carta locale allora Span(∂/∂x1, . . . , ∂/∂xn) 6= Span(∂/∂x̃1, . . . , ∂/∂x̃n). Ne
riparleremo nel prossimo capitolo quando introdurremo il concetto di connessione.

Esempio 3.2.3. Se ϕ = (x1, . . . , xn) è una carta locale su M , allora le 1-forme {dx1, . . . , dxn} definite come
base duale di {∂1, . . . , ∂n} (o come differenziale delle coordinate locali; vedi l’Osservazione 3.1.1) formano un
riferimento locale del fibrato cotangente. La Proposizione 1.3.4 allora implica che un riferimento locale per
il fibrato

∧k
M delle k-forme è dato dalle forme

dxi1 ∧ · · · ∧ dxik

con 1 ≤ i1 < · · · < ik ≤ n, per cui ogni k-forma si può scrivere localmente come

ω =
∑

1≤i1<···<ik≤n

ai1...ik
dxi1 ∧ · · · ∧ dxik

per opportune funzioni ai1...ik
. In particolare, quando k = n un riferimento locale per il fibrato in rette

∧n
M

è dato dalla n-forma dx1∧· · ·∧dxn. Se ϕ̃ = (x̃1, . . . , x̃n) è un’altra carta locale, usando la (3.1.3) e ricordando
l’Osservazione 1.3.7 troviamo subito che

dx̃1 ∧ · · · ∧ dx̃n = det
(

∂x̃h

∂xk

)
dx1 ∧ · · · ∧ dxn.

Abbiamo visto che i campi vettoriali si possono interpretare come derivazioni su C∞(M). Esiste un’in-
terpretazione nello stesso ordine d’idee per i campi tensoriali, interpretazione spesso utile:

Proposizione 3.2.1: Sia M una varietà. Allora

(i) Un’applicazione τ̃ :A1(M)h × T (M)k → C∞(M) è C∞(M)-multilineare se e solo se esiste un campo
tensoriale τ ∈ T h

k (M) tale che

τ̃(ω1, . . . , ωh, X1, . . . , Xk)(p) = τp

(
ω1(p), . . . , ωh(p), X1(p), . . . , Xk(p)

)
(3.2.4)

per tutti gli ω1, . . . , ωh ∈ A1(M), X1, . . . , Xk ∈ T (M) e p ∈M .
(ii) Un’applicazione τ̂ : T (M)k → T h(M) è C∞(M)-multilineare se e solo se esiste un campo tensoriale

τ ∈ T h
k (M) tale che

τ̂(X1, . . . , Xk)(p)(ω1
p, . . . , ωh

p ) = τp

(
ω1

p, . . . , ωh
p , X1(p), . . . , Xk(p)

)
(3.2.5)

per tutti gli ω1
p, . . . , ωh

p ∈ T ∗p M , X1, . . . , Xk ∈ T (M) e p ∈M .

Dimostrazione: (i) Dato τ ∈ T h
k (M), cominciamo col dimostrare che l’applicazione

p 7→ τp

(
ω1(p), . . . , ωh(p), X1(p), . . . , Xk(p)

)
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è di classe C∞(M) per ogni ω1, . . . , ωh ∈ A1(M) e X1, . . . , Xk ∈ T (M). Infatti, se (U, ϕ) è una carta locale
in p, possiamo scrivere localmente ωi =

∑
r ωi

r dxr, ∂j =
∑

s Xs
j ∂s e

τ =
∑

u1,...,uh,v1,...,vk

τu1...uh
v1...vk

∂u1 ⊗ · · · ⊗ ∂uh
⊗ dxv1 ⊗ · · · ⊗ dxvk , (3.2.6)

con ωi
r, Xs

j , τu1...uh
v1...vk

∈ C∞(U), per cui localmente abbiamo

τ(ω1, . . . , ωh, X1, . . . , Xk

)
=

∑
u1,...,uh,v1,...,vk

τu1...uh
v1...vk

ω1
u1
· · ·ωh

uh
Xv1

1 · · ·Xvk

k ,

che è chiaramente di classe C∞. La stessa formula ci dice anche che l’applicazione τ̃ definita da (3.2.4) è
C∞(M)-multilineare.

Viceversa, supponiamo di avere una τ̃ :A1(M)h × T (M)k → C∞(M) che sia C∞(M)-multilineare;
vogliamo far vedere che proviene da un campo tensoriale. Prima di tutto, dimostriamo che se ω1 ≡ O in
un intorno U di un punto p ∈ M allora τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = 0 per ogni ω2, . . . , ωh ∈ A1(M)
e ogni X1 . . . , Xk ∈ T (M). Il Corollario 2.3.2 ci fornisce una funzione g ∈ C∞(M) tale che g(p) = 1
e g|M\U ≡ 0. Allora gω1 ≡ O e quindi

τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = g(p)τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = τ̂(gω1, . . . , ωh, X1, . . . , Xk)(p)

= τ̂(O, . . . , ωh, X1, . . . , Xk)(p) = τ̂(0 ·O, . . . , ωh, X1, . . . , Xk)(p)

= 0 · τ̂(O, . . . , ωh, X1, . . . , Xk)(p) = 0.

In particolare, se ω̃1 e ω̄1 sono tali che ω̃1 ≡ ω̄1 in un intorno U di un punto p, applicando questo argomento
a ω1 = ω̃1 − ω̄1 troviamo τ̂(ω̃1, . . . , ωh, X1, . . . , Xk)(p) = τ̂(ω̄1, . . . , ωh, X1, . . . , Xk)(p).

Lo stesso ragionamento si applica chiaramente a ω2, . . . , ωh e a X1, . . . , Xk, per cui per calcolare
τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) ci basta conoscere il comportamento di ω1, . . . , ωh, X1, . . . , Xk in un intorno
di p. In altre parole, per ogni aperto U ⊆ M la τ̂ definisce un’applicazione τ̂U :A1(U)h × T (U)k → C∞(U)
che è C∞(U)-multilineare.

Supponiamo adesso di prendere p ∈M e ω1 ∈ A1(M) tale che ω1
p = O, e scegliamo una carta locale (U, ϕ)

centrata in p. Allora possiamo scrivere ω1|U =
∑

r ω1
r dxr per opportune ω1

r ∈ C∞(U) con ω1
r(p) = 0. Dunque

τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = τ̂U (ω1|U , . . . , ωh|U , X1|U , . . . , Xk|U )(p)

= τ̂U

(
n∑

r=1

ω1
r dxr, ω2|U , . . . , ωh|U , X1|U , . . . , Xk|U

)

=
n∑

r=1

ω1
r(p)τ̂U (dxr, ω2|U , . . . , ωh|U , X1|U , . . . , Xk|U )(p) = 0.

Argomentando come sopra, e ripetendo il ragionamento per ω2, . . . , ωh e per X1, . . . , Xk, vediamo quindi che
τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) dipende esclusivamente dal valore di ω1, . . . , ωh, X1, . . . , Xk in p. Quindi per
ogni p ∈M la τ̂ induce un’applicazione R-multilineare (T ∗p M)h×(TpM)k → R, cioè un elemento di Th

k (TpM).
In altre parole, abbiamo dimostrato che τ̂ definisce un’unica sezione τ di Th

k M che soddisfa (3.2.4); per
concludere dobbiamo solo dimostrare che τ è di classe C∞. Scriviamo τ in coordinate locali come in (3.2.6);
allora

τu1...uh
v1...vk

= τ̂U (dxu1 , . . . , dxuh , ∂v1 , . . . , ∂vk
) ∈ C∞(U),

e τ è di classe C∞ grazie all’Esercizio 3.2.3.
(ii) Un’applicazione τ̂ : T (M)k → T h(M) è C∞(M)-multilineare se e solo se ponendo

τ̃(ω1, . . . , ωh, X1, . . . , Xk) = τ̂(X1, . . . , Xk)(ω1, . . . , ωh)

otteniamo un’applicazione C∞(M)-multilineare τ̃ :A1(M)h × T (M)k → C∞(M). La tesi segue allora dalla
parte (i).
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Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 3.2.4. Sia π:E →M un fibrato vettoriale su una varietà M , K ⊆M un compatto, e U ⊆M un
intorno aperto di K. Dimostra che per ogni sezione σ ∈ E(U) esiste una sezione σ̃ ∈ E(M) tale che σ̃|K ≡ σ|K .

Esercizio 3.2.5. Sia F :M → N un’applicazione differenziabile, e π: E → N un fibrato vettoriale di rango r
su N . Dimostra che lo spazio delle sezioni su M del fibrato pull-back F ∗E (vedi l’Esercizio 3.1.5) è isomorfo
allo spazio delle applicazioni σ:M → E di classe C∞ tali che σ(p) ∈ EF (p) per ogni p ∈M .

Esercizio 3.2.6. Siano π:E → M e π′:E′ → M due fibrati vettoriali su una varietà M . Dimostra che
un’applicazione F : E(M) → E ′(M) è C∞(M)-lineare se e solo se esiste un morfismo F :E → E′ di fibrati
tale che F(s) = F ◦ s per ogni s ∈ E(M).

Esercizio 3.2.7. Sia σ: M → Th
k M una sezione (non necessariamente C∞). Dimostra che σ è C∞ se e solo

se per ogni aperto U ⊆ M , ogni k-upla di campi vettoriali X1, . . . , Xk ∈ T (U) e ogni h-upla di 1-forme
ω1, . . . , ωh ∈ A1(U) la funzione p 7→ σp

(
ω1

p, . . . , ωh
p , X1(p), . . . , Xk(p)

)
è di classe C∞.

Esercizio 3.2.8. Dimostra che un’applicazione τ̄ :
(
A1(M)

)h ×
(
T (M)

)k → T l(M) è C∞(M)-multilineare
se e solo se esiste un campo tensoriale τ ∈ T h+l

k (M) tale che

τ̄(ω1, . . . , ωh, X1, . . . , Xk)(p)(η1
p, . . . , ηl

p) = τp

(
η1

p, . . . , ηl
p, ω

1(p), . . . , ωh(p), X1(p), . . . , Xk(p)
)

per ogni η1
p, . . . , ηl

p ∈ T ∗p M , ω1, . . . , ωh ∈ A1(M), X1, . . . , Xk ∈ T (M) e p ∈M .

Esercizio 3.2.9. Sia τ ∈ T h
k (M) un campo tensoriale di tipo

(
h
k

)
. Scelti 1 ≤ i ≤ h e 1 ≤ j ≤ k, siano

ω1, . . . , ωi ∈ A1(M) delle 1-forme, e X1, . . . , Xj ∈ T (M) dei campi vettoriali. Dimostra che l’applicazione
p 7→ τp

(
ω1(p), . . . , ωi(p), ·, X1(p), . . . , Xj(p), ·

)
può essere interpretata in modo naturale come un campo

tensoriale di tipo
(

h−i
k−j

)
.

Esercizio 3.2.10. Sia π:E →M un fibrato vettoriale di rango k su una varietà M , e siano σ1, . . . , σl ∈ E(U)
sezioni di E su un aperto U ⊆M tali che {σ1(q), . . . , σl(q)} siano linearmente indipendenti per ogni q ∈ U .
Dimostra che per ogni p ∈ U possiamo trovare un intorno V ⊆ U di p e sezioni σl+1, . . . , σk ∈ E(V ) tali
che {σ1, . . . , σk} sia un riferimento locale di E su V .

3.3 Flusso di un campo vettoriale

Torniamo adesso ai campi vettoriali, dandone una caratterizzazione equivalente.

Definizione 3.3.1: Sia A un’algebra sul campo K. Una derivazione di A è un’applicazione D:A → A che sia
K-lineare e che soddisfi la regola di Leibniz: D(ab) = aD(b) + bD(a) per ogni a, b ∈ A.

Proposizione 3.3.1: Lo spazio vettoriale T (M) dei campi vettoriali su una varietà M è isomorfo allo spazio
vettoriale delle derivazioni X:C∞(M)→ C∞(M).

Dimostrazione: Sia X ∈ T (M) un campo vettoriale. Per ogni f ∈ C∞(M) otteniamo un’altra fun-
zione Xf :M → R ponendo

(Xf)(p) = Xp(f),

dove f ∈ C∞(p) è il germe rappresentato da f . Nelle coordinate locali date una carta locale ϕ = (x1, . . . , xn),
scrivendo X =

∑
j Xj∂j troviamo

Xf =
∑

j

Xj ∂(f ◦ ϕ−1)
∂xj

per cui Xf ∈ C∞(M), ed è assolutamente chiaro che f 7→ Xf è una derivazione.
Viceversa, sia X:C∞(M)→ C∞(M) una derivazione. Prima di tutto dimostriamo che se f ∈ C∞(M)

è zero in un intorno U di p allora (Xf)(p) = 0. Infatti, sia h ∈ C∞(M) tale che h(p) = 0 e h|M\U ≡ 1
(Corollario 2.3.2). Allora hf ≡ f per cui

(Xf)(p) = X(hf)(p) = h(p)(Xf)(p) + f(p)(Xh)(p) = 0.
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Questo vuol dire che se f e g coincidono in un intorno di p abbiamo (Xf)(p) = (Xg)(p). Siccome ogni funzione
definita in un intorno di un punto può essere estesa a una funzione definita su tutto M (Corollario 2.3.3), per
ogni aperto U ⊆M la X definisce una derivazione X:C∞(U)→ C∞(U), e per ogni p ∈M una derivazione
Xp:C∞(p)→ R, e quindi una sezione di TM . Siccome in coordinate locali Xp =

∑
j X(xj)(p)∂j(p), si vede

subito (esercizio) che questa sezione è di classe C∞. Quindi abbiamo ottenuto un campo vettoriale, ed è
chiaro che questa costruzione è l’inversa di quella descritta sopra.

Quindi se X e Y sono due campi vettoriali e f ∈ C∞(M) possiamo considerare anche la funzione X(Y f).
Sfortunatamente, f 7→ X(Y f) non è una derivazione: infatti

X
(
Y (fg)

)
= X

(
fY (g) + gY (f)

)
= fX(Y g) +

(
X(f)Y (g) + X(g)Y (f)

)
+ gX(Y f).

Ma questa stessa formula mostra che XY − Y X è una derivazione: infatti

(XY − Y X)(fg) = fX(Y g) + gX(Y f)− fY (Xg)− gY (Xf) = f(XY − Y X)(g) + g(XY − Y X)(f).

Dunque XY − Y X è un campo vettoriale:

Definizione 3.3.2: La parentesi di Lie di due campi X, Y ∈ T (M) è il campo vettoriale [X, Y ] = XY − Y X
definito da

∀f ∈ C∞(M) [X, Y ](f) = X(Y f)− Y (Xf).

Diremo che due campi vettoriali X, Y ∈ T (M) commutano se [X, Y ] ≡ O.

Proposizione 3.3.2: Se X, Y e Z sono campi vettoriali su una varietà M , a, b ∈ R e f , g ∈ C∞(M), si ha:

(i) [X, Y ] = −[Y, X] (anticommutatività);
(ii) [aX + bY, Z] = a[X, Z] + b[Y, Z] (linearità);
(iii)

[
X, [Y, Z]

]
+

[
Y, [Z, X]

]
+

[
Z, [X, Y ]

]
= 0 (identità di Jacobi);

(iv) [fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X;
(v) se in coordinate locali abbiamo X =

∑
h Xh∂h e Y =

∑
k Y k∂k allora

[X, Y ] =
n∑

h,k=1

(
Xh ∂Y k

∂xh
− Y h ∂Xk

∂xh

)
∂k.

In particolare, [∂h, ∂k] = 0.

Dimostrazione: (i) e (ii) sono ovvie. Poi si ha[
X, [Y, Z]

]
= XY Z −XZY − Y ZX + ZY X,[

Y, [Z, X]
]

= Y ZX − Y XZ − ZXY + XZY,[
Z, [X, Y ]

]
= ZXY − ZY X −XY Z + Y XZ,

e sommando si ottiene la (iii). Inoltre,

[fX, gY ] = fX(gY )− gY (fX) = fg(XY )+ f(Xg)Y − fg(Y X)− g(Y f)X = fg[X, Y ]+ f(Xg)Y − g(Y f)X,

e anche (iv) è dimostrata. Il Teorema di Schwartz sulle derivate seconde dice che

[∂h, ∂k](f) =
∂2(f ◦ ϕ−1)

∂xh∂xk
− ∂2(f ◦ ϕ−1)

∂xk∂xh
≡ 0,

dove ϕ = (x1, . . . , xn) è la carta locale che stiamo usando, per cui [∂h, ∂k] = 0, e (v) segue dalle precedenti.

In un certo senso, [X, Y ] rappresenta la derivata di Y nella direzione di X. Per dare senso a questa
affermazione cominciamo richiamando il fondamentale teorema di esistenza e unicità locale delle soluzioni di
un sistema di equazioni differenziali ordinarie:
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Teorema 3.3.3: Dati un aperto U ⊆ Rn e funzioni X1, . . . , Xn ∈ C∞(U), si consideri il seguente problema
di Cauchy per una curva σ: I → U :

dσj

dt
(t) = Xj

(
σ(t)

)
, j = 1, . . . , n,

σ(t0) = x ∈ U.

(3.3.1)

Allora si ha:

(i) Per ogni t0 ∈ R e x0 ∈ U esistono δ > 0 e un intorno aperto U0 ⊆ U di x0 tali che per ogni x ∈ U0 esiste
una curva σx: (t0− δ, t0 + δ)→ U soluzione di (3.3.1). Inoltre, l’applicazione Θ: (t0− δ, t0 + δ)×U0 → U
data da Θ(t, x) = σx(t) è di classe C∞.

(ii) Due soluzioni di (3.3.1) coincidono sempre nell’intersezione dei loro domini di definizione.

Vediamo come tradurre questo risultato sulle varietà.

Definizione 3.3.3: Sia X ∈ T (M) un campo vettoriale su una varietà M , e p ∈ M . Una curva σ: I → M ,
dove I ⊆ R è un intervallo contenente l’origine, tale che{

σ′(t) = X
(
σ(t)

)
,

σ(0) = p,

è detta curva integrale (o traiettoria) di X uscente da p.

Sia (U, ϕ) una carta locale centrata in p ∈ M , e X ∈ T (M) un campo vettoriale. In coordinate locali,
possiamo scrivere X =

∑
j Xj∂j . Se σ: (−ε, ε) → M è una curva uscente da p, cioè tale che σ(0) = p,

possiamo scegliere ε abbastanza piccolo in modo che tutto il sostegno di σ sia contenuto in U , e quindi
possiamo scrivere ϕ ◦ σ = (σ1, . . . , σn). Usando l’Esempio 2.4.3 otteniamo

σ′(t) =
n∑

j=1

(σj)′(t)
∂

∂xj

∣∣∣∣
σ(t)

.

Quindi σ è una curva integrale di X se e solo se la curva ϕ ◦ σ in ϕ(U) soddisfa il sistema di equazioni
differenziali ordinarie

dσj

dt
= Xj

(
ϕ ◦ σ(t)

)
, j = 1, . . . , n.

Allora il Teorema 3.3.3 diventa il seguente teorema fondamentale:

Teorema 3.3.4: Sia X ∈ T (M) un campo vettoriale su una varietà M . Allora esistono un unico intorno
aperto massimale U di {0} ×M in R ×M e un’unica applicazione Θ:U → M di classe C∞ che soddisfano
le seguenti proprietà:

(i) Per ogni p ∈M l’insieme Up = {t ∈ R | (t, p) ∈ U} è un intervallo aperto contenente 0.
(ii) Per ogni p ∈ M la curva θp:Up → M definita da θp(t) = Θ(t, p) è l’unica curva integrale massimale

di X uscente da p.
(iii) Per ogni t ∈ R l’insieme Ut = {p ∈M | (t, p) ∈ U} è un aperto di M .
(iv) Se p ∈ Ut, allora p ∈ Us+t se e solo se Θ(t, p) ∈ Us, e in questo caso

θs

(
θt(p)

)
= θs+t(p), (3.3.2)

dove θt:Ut →M è definita da θt(p) = Θ(t, p). In particolare, θ0 = id e θt:Ut → U−t è un diffeomorfismo
con inversa θ−t.

(v) Per ogni (t, p) ∈ U , si ha d(θt)p(X) = Xθt(p).
(vi) Per ogni f ∈ C∞(M) e p ∈M si ha

d

dt
(f ◦ θp)

∣∣∣∣
t=0

= (Xf)(p).
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Dimostrazione: Cominciamo col notare che il Teorema 3.3.3 implica, grazie a quanto visto sopra, che per
ogni p ∈ X una curva integrale di X uscente da p esiste sempre.

Siano σ, σ̃: I → M due curve integrali di X tali che σ(t0) = σ̃(t0) per qualche t0 ∈ I, e sia J ⊆ I
l’insieme degli t ∈ I tali che σ(t) = σ̃(t). Allora l’insieme J è non vuoto, chiuso, ed è anche aperto, grazie
al Teorema 3.3.3.(ii); quindi J = I, e dunque due curve integrali che coincidono in un punto coincidono
nell’intersezione dei loro domini di definizione.

Per ogni p ∈M indichiamo allora con Up l’unione di tutti gli intervalli aperti I ⊆ R contenenti 0 su cui
sia definita una curva integrale uscente da p. Chiaramente, Up è un intervallo aperto contenente l’origine,
e l’argomento precedente ci dice (perché?) che esiste una curva integrale θp:Up → M di X uscente da p
definita su tutto Up, e che questa è la curva integrale massimale uscente da p.

Poniamo allora U = {(t, p) ∈ R×M | t ∈ Up}, e definiamo Θ:U →M ponendo Θ(t, p) = θp(t). Inoltre,
poniamo Ut = {p ∈ M | (t, p) ∈ U}, e definiamo θt:Ut → M con θt(p) = Θ(t, p). In questo modo abbiamo
ottenuto (i) e (ii); vediamo di dimostrare (iv).

Per definizione, U0 = M e θ0 = idM . Prendiamo ora p ∈ M e t ∈ Up, e poniamo q = θp(t). Allora la
curva σ:Up − t→M definita da

σ(s) = θp(s + t),

dove Up − t = {s ∈ R | s + t ∈ Up}, è ancora una curva integrale di X: infatti

σ′(s) = dσs

(
d

ds

)
= d(θp)s+t

(
d

ds

)
= X

(
θp(t + s)

)
= X

(
σ(s)

)
.

Quindi necessariamente σ(s) = θq(s), cioè

θs+t(p) = θs

(
θt(p)

)
,

e Up − t ⊆ Uq. Siccome 0 ∈ Up, otteniamo −t ∈ Uq, e θq(−t) = p. Applicando questo ragionamento
a (−t, q) invece di (t, p), otteniamo che Uq + t ⊆ Up, e quindi Up − t = UΘ(t,p), che vuol dire esattamente
che Θ(t, p) ∈ Us se e solo se p ∈ Us+t. Quindi (iv) è dimostrata.

Ora facciamo vedere che U è aperto in R ×M , da cui segue (iii), e che Θ è di classe C∞. Sia W ⊆ U
l’insieme dei (t, p) ∈ U tale che esista un intorno di (t, p) della forma I×U , con I intervallo aperto contenente 0
e t, e U intorno aperto di p in M , su cui Θ sia definita e di classe C∞. Chiaramente ci basta dimostrare
che W = U .

Prima di tutto, il Teorema 3.3.3 ci dice che (0, p) ∈ W per ogni p ∈ M . Supponiamo per assurdo
che esista (t0, p0) ∈ U \ W. Siccome t0 6= 0, possiamo assumere per semplicità t0 > 0; il caso t0 < 0 sarà
analogo. Sia τ = sup{t ∈ R | (t, p0) ∈ W}; per costruzione, 0 < τ ≤ t0. Siccome t0 ∈ Up0 , abbiamo
τ ∈ Up0 ; poniamo q0 = θp0(τ). Il Teorema 3.3.3 ci fornisce un δ > 0 e un intorno U0 di q0 tale che Θ sia
definita e di classe C∞ su (−δ, δ)×U0. Scegliamo t1 < τ tale che t1 + δ > τ e θp0(t1) ∈ U0. Siccome t1 < τ ,
abbiamo (t1, p0) ∈ W, e quindi esiste un intorno (−ε, t1+ε)×U1 di (t1, p0) su cui Θ è definita e di classe C∞.
Inoltre, possiamo anche scegliere U1 in modo che Θ({t1} × U1) ⊆ U0.

Dunque, se p ∈ U1 abbiamo che θt1(p) è definito e dipende C∞ da p. Inoltre, essendo θt1(p) ∈ U0,
abbiamo che θt−t1 ◦ θt1(p) è definito e dipende C∞ da p ∈ U1 e t ∈ (t1 − δ, t1 + δ). Ma (iii) ci dice che
θt−t1 ◦ θt1(p) = θt(p); quindi abbiamo esteso Θ in modo C∞ a un aperto della forma (−ε, t1 + δ)× U1, per
cui (t1 + δ, p0) ∈ W, contro la definizione di τ . Questa contraddizione mostra che W = U , come voluto.

La (vi) è ora immediata: infatti,

(Xf)(p) = dfp(X) =
d

dt
(f ◦ θp)

∣∣∣∣
t=0

,

in quanto θp è una curva con θp(0) = p e (θp)′(0) = X(p).
Infine, dimostriamo (v). Preso (t0, p0) ∈ U e posto q = θt0(p0), per ogni germe f ∈ C∞(q) si ha

d(θt0)p0(X)(f) = Xp0(f ◦ θt0) =
d

dt
(f ◦ θt0 ◦ θp0)

∣∣∣∣
t=0

=
d

dt
f
(
θt0+t(p0)

)∣∣∣∣
t=0

=
d

dt
f
(
θp0(t0 + t)

)∣∣∣∣
t=0

= Xθp0 (t0)(f),

e ci siamo.
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Definizione 3.3.4: L’applicazione Θ:U →M introdotta nel precedente Teorema è detta flusso locale del campo
vettoriale X. Il campo X ∈ T (M) è detto completo se U = R×M , cioè se tutte le curve integrali di X sono
definite per tutti i tempi. Un campo vettoriale Y ∈ T (M) è detto X-invariante se d(θt)p(Y ) = Yθt(p) per
ogni (t, p) nel dominio di Θ. In particolare, ogni campo vettoriale è invariante rispetto a se stesso.

Esercizio 3.3.1. Una curva σ: R→M in una varietà M è periodica se esiste T > 0 tale che σ(t) = σ(t + T )
per ogni t ∈ R. Sia X ∈ T (M) un campo vettoriale, e σ una curva integrale massimale di X.
(i) Dimostra che se σ non è costante allora o è iniettiva o è periodica.
(ii) Dimostra che se σ è periodica non costante allora esiste un unico numero positivo T0 (il periodo di σ)

tale che σ(t) = σ(t′) se e solo se t− t′ = kT0 per qualche k ∈ Z.
(iii) Dimostra che se σ non è costante allora è un’immersione, e l’immagine di σ ha una struttura naturale

di varietà 1-dimensionale diffeomorfa a R o a S1.

Ora, se Θ è il flusso locale di un campo vettoriale X ∈ T (M), e Y ∈ T (M) è un altro campo vettoriale,
l’applicazione Y ◦ Θ è di classe C∞. Ma allora t 7→ d(θ−t)θt(p)(Y ) è una funzione C∞ a valori in TpM che
dipende in modo C∞ dal punto p, e abbiamo trovato un modo di misurare la derivata di Y nella direzione
di X:

Definizione 3.3.5: Siano X, Y ∈ T (M) due campi vettoriali su una varietà M . La derivata di Lie di Y
lungo X è il campo vettoriale LXY ∈ T (M) definito da

LXY (p) =
d

dt
d(θ−t)θt(p)(Y )

∣∣∣∣
t=0

= lim
t→0

d(θ−t)θt(p)(Y )− Yp

t

per ogni p ∈M .

Il risultato tutt’altro che evidente che vogliamo dimostrare ora è che la derivata di Lie di Y lungo X è
esattamente uguale a [X, Y ]. Ci serve ancora un lemma:

Lemma 3.3.5: Sia U ⊆ M un aperto di una varietà M , δ > 0, e h: (−δ, δ) × U → R una funzione di
classe C∞ con h(0, q) = 0 per ogni q ∈ U . Allora esiste una g: (−δ, δ)× U → R di classe C∞ tale che

h(t, q) = tg(t, q)

e g(0, q) = ∂h
∂t (0, q) per ogni q ∈ U .

Dimostrazione: Basta porre

g(t, q) =
∫ 1

0

∂h

∂t
(ts, q) ds;

infatti

tg(t, q) =
∫ 1

0

∂h

∂t
(ts, q) d(ts) = h(t, q).

Allora

Proposizione 3.3.6: Siano X, Y ∈ T (M) due campi vettoriali su una varietà M . Allora LXY = [X, Y ].

Dimostrazione: Indichiamo con Θ:U →M il flusso locale di X. Dato p ∈M , scegliamo δ > 0 e un intorno U0

di p tali che (−δ, δ) × U0 ⊆ U . Sia (U, f) un rappresentante di un germe in p, dove abbiamo scelto U in
modo che Θ

(
(−δ, δ) × U

)
⊆ U0. Definiamo h: (−δ, δ) × U → R ponendo h(t, q) = f(q) − f

(
θ−t(q)

)
, e

sia g: (−δ, δ) × U → R la funzione data dal lemma precedente. Allora ricordando il Teorema 3.3.4.(vi)
otteniamo

f ◦ θ−t(q) = f(q)− tg(t, q) e g(0, q) = Xf(q),

per cui
d(θ−t)θt(p)(Y )(f) = Yθt(p)(f ◦ θ−t) = (Y f)

(
θt(p)

)
− t(Y gt)

(
θt(p)

)
,
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dove abbiamo posto gt(q) = g(t, q). Quindi

lim
t→0

1
t
[d(θ−t)θt(p)(Y )− Yp](f) = lim

t→0

(Y f)
(
θt(p)

)
− (Y f)(p)

t
− (Y g0)(p)

=
d

dt
((Y f) ◦ θp)

∣∣∣∣
t=0

− Yp(Xf) = X(Y f)(p)− Y (Xf)(p) = [X, Y ](f)(p),

grazie nuovamente al Teorema 3.3.4.(vi), e ci siamo.

Se F :M → N è un diffeomorfismo, e X ∈ T (M), allora possiamo definire un campo vettoriale su N ,
che indicheremo con dF (X), ponendo

∀q ∈ N dF (X)q = dFF−1(q)(XF−1(q)).
Se F :M → N non è un diffeomorfismo, questa formula non si può applicare: se F non è surgettiva esi-
stono dei q ∈ N per cui F−1(q) è vuoto, e se F non è iniettiva potrebbero esistere p1, p2 ∈ M per cui
q = F (p1) = F (p2) ma dFp1(Xp1) 6= dFp2(Xp2), per cui questa formula non dà un modo univoco per definire
un vettore tangente in q. Introduciamo allora la seguente

Definizione 3.3.6: Sia F :M → N un’applicazione di classe C∞ fra due varietà. Diremo che un campo
vettoriale V ∈ T (N) è F -correlato a un campo vettoriale X ∈ T (M) se VF (p) = dFp(Xp) per ogni p ∈M .

Chiaramente, se F è un diffeomorfismo allora dF (X) è l’unico campo vettoriale su N che è F -correlato
a X, ma se F non è un diffeomorfismo potrebbero esistere più campi vettoriali F -correlati a X, o potrebbe
non esisterne nessuno.

Esercizio 3.3.2. Sia F :M → N un’applicazione di classe C∞ fra varietà, X ∈ T (M) e Y ∈ T (N). Dimostra
che Y è F -correlato a X se e solo se X(f ◦ F ) = Y (f) ◦ F per ogni f ∈ C∞(N).

Esercizio 3.3.3. Dimostra che se F :M → N è un diffeomorfismo allora
[dF (X), dF (Y )] = dF ([X, Y ])

per ogni X, Y ∈ T (M). Più in generale, senza assumere che F sia un diffeomorfismo, dimostra che
se V ∈ T (N) è F -correlato a X ∈ T (M) e W ∈ T (N) è F -correlato a Y ∈ T (M), allora [V, W ] è F -
correlato a [X, Y ].

Esercizio 3.3.4. Sia F :M → N un’applicazione di classe C∞ fra varietà, X ∈ T (M) e Y ∈ T (N). In-
dichiamo con Θ:U → M il flusso locale di X, e con Ψ:V → N il flusso locale di Y . Dimostra che Y è
F -correlato a X se e solo se per ogni t ∈ R si ha ψt ◦ F = F ◦ θt su Ut.⌈

Concludiamo questo paragrafo parlando dei campi vettoriali sui gruppi di Lie.

Definizione 3.3.7: Un campo vettoriale X ∈ T (G) su un gruppo di Lie G è invariante a sinistra se si ha
dLh(X) = X per ogni h ∈ G, cioè se

∀h, x ∈ G d(Lh)x(Xx) = Xhx,

dove Lh:G→ G è la traslazione sinistra.

Lemma 3.3.7: Sia G un gruppo di Lie di elemento neutro e ∈ G. Allora:

(i) L’applicazione X 7→ X(e) è un isomorfismo fra il sottospazio di T (M) costituito dai campi vettoriali
invarianti a sinistra e lo spazio tangente TeG.

(ii) Se X, Y ∈ T (G) sono invarianti a sinistra, allora anche [X, Y ] lo è.

Dimostrazione: (i) Se X ∈ T (G) è invariante a sinistra, chiaramente abbiamo
Xh = d(Lh)e(Xe)

per ogni h ∈ G, per cui X è completamente determinato dal suo valore in e. Viceversa, se scegliamo v ∈ TeG
e definiamo X ∈ T (G) ponendo Xh = d(Lh)e(v) ∈ ThG per ogni h ∈ G otteniamo (esercizio) un campo
vettoriale invariante a sinistra che vale v nell’elemento neutro.

(ii) Se X e Y sono campi vettoriali invarianti a sinistra l’Esercizio 3.3.3 dice che
dLh[X, Y ] = [dLhX, dLhY ] = [X, Y ]

per ogni h ∈ G, per cui anche [X, Y ] è invariante a sinistra.
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Esercizio 3.3.5. Diremo che una varietà M è parallelizzabile se TM è un fibrato banale. Dimostra che ogni
gruppo di Lie è parallelizzabile.

Dunque lo spazio tangente all’identità di un gruppo di Lie eredita dai campi vettoriali invarianti a
sinistra un’ulteriore struttura algebrica data dalla parentesi di Lie.

Definizione 3.3.8: Uno spazio vettoriale V dotato di un’ulteriore operazione [· , ·]:V × V → V che soddisfa le
proprietà (i)-(iii) della Proposizione 3.3.2 è detto algebra di Lie. Se V e W sono algebre di Lie, un morfismo
di algebre di Lie è un’applicazione L:V →W lineare tale che [L(v1), L(v2)] = L[v1, v2] per ogni v1, v2 ∈ V .

Esempio 3.3.1. Sia A un’algebra non commutativa sul campo K. Allora possiamo fornire A di una
struttura di algebra di Lie tramite il commutatore [· , ·]:A×A→ A definito da

∀X, Y ∈ A [X, Y ] = XY − Y X;

si verifica subito che il commutatore soddisfa le proprietà (i)-(iii) della Proposizione 3.3.2. In particolare, lo
spazio vettoriale delle matrici Mn,n(K) con questa struttura di algebra di Lie verrà indicato con gl(n, K).

Esercizio 3.3.6. Sia sl(n, K) = {X ∈ gl(n, K) | trX = 0} il sottospazio delle matrici quadrate a traccia
nulla, e so(n, K) = {X ∈ gl(n, K) | XT + X = O} il sottospazio delle matrici antisimmetriche. Dimostra che
X, Y ∈ sl(n, K) implica [X, Y ] ∈ sl(n, K), e che X, Y ∈ so(n, K) implica [X, Y ] ∈ so(n, K), per cui sl(n, K)
e so(n, K) sono delle algebre di Lie.

Definizione 3.3.9: Sia G un gruppo di Lie di elemento neutro e ∈ G. Per ogni v ∈ TeG, indichiamo
con Xv ∈ T (G) il campo vettoriale invariante a sinistra tale che Xv(e) = v. Allora lo spazio tangente all’ele-
mento neutro, considerato con la sua struttura di spazio vettoriale e con l’operazione [·, ·]:TeG×TeG→ TeG
definita da [v, w] = [Xv, Xw](e), è detto algebra di Lie g del gruppo G.

Non avremo il tempo di vederlo nei dettagli, ma si può ragionevolmente affermare che praticamente
tutte le proprietà di un gruppo di Lie semplicemente connesso si possono ricavare dalle proprietà algebriche
della sua algebra di Lie.

Definizione 3.3.10: Sia G un gruppo di Lie di dimensione n, g la sua algebra di Lie, e B = {v1, . . . , vn} una
base di g come spazio vettoriale. Allora per ogni i, j = 1, . . . , n devono esistere c1

ij , . . . , c
n
ij ∈ R tali che

[vi, vj ] =
n∑

k=1

ck
ijvk.

Le costanti ck
ij ∈ R sono dette costanti di struttura di g rispetto alla base B.

Esempio 3.3.2. Sia G = GL(n, R) il gruppo delle matrici invertibili a coefficienti reali; vogliamo dimostrare
che la sua algebra di Lie è l’algebra gl(n, R) introdotta nell’Esempio 3.3.1. Siccome G è un aperto di Rn2

,
lo spazio tangente nell’identità a G è canonicamente isomorfo come spazio vettoriale a gl(n, R); dobbiamo
dimostrare che anche le strutture di algebra di Lie coincidono. Per ogni a = (aij) ∈ gl(n, R) indichiamo
con ã ∈ T (G) la sua estensione come campo vettoriale invariante a sinistra. Se x = (xhk) ∈ G e f ∈ C∞(x),
abbiamo

ãx(f) = d(Lx)I(a)(f) = a(f ◦ Lx) =
n∑

i,j=1

aij
∂(f ◦ Lx)

∂yij
(I)

=
n∑

i,j=1

aij

n∑
h,k=1

∂f

∂xhk
(x)

n∑
r=1

∂(xhryrk)
∂yij

=
n∑

i,j,h,k,r=1

aijxhrδriδkj
∂f

∂xhk
(x)

=
n∑

h,j,r=1

xhrarj
∂f

∂xhj
(x),

per cui
ãx = Ra(x) = xa.
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Da questo segue facilmente che [ã, b̃]x = x(ab − ba), per cui effettivamente la struttura di algebra di Lie è
data dal commutatore:

∀a, b ∈ gl(n, R) [a, b] = ab− ba.

In particolare, se indichiamo con B = {Eij}i,j=1,...,n la base canonica di gl(n, R), dove Eij è la matrice con 1
al posto (i, j) e 0 altrove, cioè

(Eij)rs = δirδjs,

le costanti di struttura di gl(n, R) rispetto a B sono date da

c
(rs)
(ij)(hk) = δirδksδjh − δrhδsjδik.

Esempio 3.3.3. Se V è uno spazio vettoriale di dimensione n su R, il gruppo di Lie G = GL(V ) è
chiaramente isomorfo a GL(n, R), e la sua algebra di Lie gl(V ) è isomorfa a gl(n, R). In particolare,
gl(V ) = Hom(V, V ) come spazio vettoriale, e la struttura di algebra di Lie è di nuovo data dal commu-
tatore.

Esercizio 3.3.7. Siano G e H due gruppi di Lie, con algebre di Lie g e h rispettivamente, e sia F :G → H
un morfismo di gruppi di Lie. Dimostra che per ogni X ∈ T (G) invariante a sinitra esiste un unico
Y = F∗(X) ∈ T (H) che è F -correlato a X, e che l’applicazione F∗: g→ h definita da F∗(Xe) = (F∗X)e è un
morfismo di algebre di Lie.

Esercizio 3.3.8. Sia H un sottogruppo di Lie di un gruppo di Lie di algebra di Lie g. Dimostra che se
v, w ∈ TeH ⊆ TeG = g allora [v, w] ∈ TeH, per cui TeH è un’algebra di Lie, e dimostra che TeH è
canonicamente isomorfa all’algebra di Lie di H.

Esercizio 3.3.9. Dimostra che l’algebra di Lie di SL(n, R) è canonicamente isomorfa a sl(n, R), e che

l’algebra di Lie di SO(n) è canonicamente isomorfa a so(n, R).

⌋

3.4 Il teorema di Frobenius⌈
Questo paragrafo è dedicato alla dimostrazione di un risultato fondamentale per lo studio dei campi vetto-

riali su una varietà: il teorema di Frobenius.
Cominciamo ponendoci un problema preliminare: supponiamo di avere su una varietà M di dimen-

sione n un riferimento locale {X1, . . . , Xn} del fibrato tangente TM . Quando esiste una carta locale ϕ di M
tale che X1 = ∂1, . . . , Xn = ∂n? Una condizione necessaria è data dalla Proposizione 3.3.2.(v): si deve
avere [Xi, Xj ] ≡ O per ogni i, j = 1, . . . , n. Vogliamo dimostrare che questa condizione è (essenzialmente)
anche sufficiente; per farlo procederemo per gradi.

Definizione 3.4.1: Sia X ∈ T (M) un campo vettoriale su una varietà M . Diremo che p ∈ M è un punto
singolare di X se Xp = Op; diremo che p è un punto regolare altrimenti.

Proposizione 3.4.1: Sia p ∈ M un punto regolare di un campo vettoriale X ∈ T (M). Allora esiste una
carta locale (U, ϕ) centrata in p tale che X|U ≡ ∂/∂x1.

Dimostrazione: Trattandosi di un problema locale, possiamo supporre M = Rn e p = O. Inoltre, es-
sendo Xp 6= Op, a meno di permutare le coordinate possiamo anche supporre che la prima coordinata di X
non si annulli in p. Il nostro obiettivo è trovare una carta locale (U, ϕ) in O tale che si abbia

Xq = d(ϕ−1)ϕ(q)

(
∂

∂x1

∣∣∣∣
ϕ(q)

)

per ogni q ∈ U .
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Sia Θ:U → Rn il flusso locale di X, e scegliamo ε > 0 e un intorno aperto U0 dell’origine tali
che (−ε, ε) × U0 ⊆ U . Poniamo S0 = U0 ∩ {x1 = 0}, e S = {x′ ∈ Rn−1 | (0, x′) ∈ S0} ⊆ Rn−1. Defi-
niamo allora ψ: (−ε, ε)× S → Rn con

ψ(t, x′) = θt(0, x′).

L’idea è che dψ(∂/∂t) ≡ X ◦ ψ e che dψ0,O′ è invertibile; allora ψ è localmente invertibile, e l’inversa locale
ϕ di ψ ci fornirà la carta locale cercata.

Dato (t0, x′0) ∈ (−ε, ε)× S e f ∈ C∞
(
(−ε, ε)× U0

)
abbiamo

dψ(t0,x′0)

(
∂

∂t

∣∣∣∣
(t0,x′0)

)
(f) =

∂

∂t
(f ◦ ψ)

∣∣∣∣
(t0,x′0)

=
∂

∂t
f
(
θt(0, x′0)

)∣∣∣∣
t=t0

= (Xf)
(
ψ(t0, x′0)

)
,

per cui dψ(∂/∂t) ≡ X ◦ ψ, come voluto.
Infine, siccome ψ(0, x′) = (0, x′) per ogni x′ ∈ S, abbiamo

dψ(0,O′)

(
∂

∂xi

)
=

∂

∂xi

∣∣∣∣
O

per ogni i = 2, . . . , n. Quindi dψ(0,O′) manda una base di T(0,O′)Rn in una base di TORn (ricorda che la
prima coordinata di XO è non nulla!), per cui dψ(0,O′) è invertibile come richiesto, e ci siamo.

Per trattare il caso generale ci serve la seguente

Proposizione 3.4.2: Siano X, Y ∈ T (M) due campi vettoriali su una varietà M , e indichiamo con
Θ:U → M il flusso locale di X, e con Ψ:V → M il flusso locale di Y . Allora le seguenti affermazioni
sono equivalenti:

(i) [X, Y ] = O;
(ii) Y è X-invariante;
(iii) X è Y -invariante;
(iv) ψs ◦ θt = ψs ◦ θt non appena uno dei due membri è definito.

Dimostrazione: Se Y è X-invariante, chiaramente LXY = O, e quindi [X, Y ] = O. Viceversa, supponiamo
che [X, Y ] = O; dobbiamo dimostrare che Y è X-invariante. Sia p ∈ M qualsiasi, e sia V :Up → TpM data
da

V (t) = d(θ−t)θt(p)(Y );

per far vedere che Y è X-invariante ci basta dimostrare che V è costante. Ma infatti per ogni t0 ∈ Up si ha

dV

dt
(t0) =

d

dt
d(θ−t)θt(p)(Y )

∣∣∣∣
t=t0

=
d

ds
d(θ−t0−s)θt0+s(p)(Y )

∣∣∣∣
s=0

=
d

ds
d(θ−t0)θt0 (p) ◦ d(θ−s)θs(θt0 (p))(Y )

∣∣∣∣
s=0

= d(θ−t0)θt0 (p)

(
d

ds
d(θ−s)θs(θt0 (p))(Y )

∣∣∣∣
s=0

)
= d(θ−t0)θt0 (p)(LXY ) = O,

per cui V (t) ≡ V (0) = Yp e ci siamo.
Abbiamo quindi dimostrato che (i) è equivalente a (ii); essendo [Y, X] = −[X, Y ], in modo analogo si

dimostra che (i) è equivalente a (iii).
Dimostriamo ora che (iii) implica (iv). Scegliamo s ∈ R e p ∈ Vs, e consideriamo la curva σ: I → M

ottenuta ponendo σ = ψs ◦θp, dove I ⊆ R è un intervallo contenente l’origine. Allora per ogni t ∈ I abbiamo

σ′(t) = (ψs ◦ θp)′(t) = d(ψs)θp(t)

(
(θp)′(t)

)
= d(ψs)θp(t)(Xθp(t)) = Xσ(t),

dove l’ultima eguaglianza segue dal fatto che X è Y -invariante. Ma allora questo vuol dire che σ è la curva
integrale di X uscente da ψs(p), per cui ψs ◦ θt(p) è definito se e solo se θt ◦ ψs(p) lo è, e i due sono uguali.

Infine, supponiamo che valga (iv). Allora

d(ψs)p(X) =
d

dt
(ψs ◦ θp)

∣∣∣∣
t=0

=
d

dt

(
ψs ◦ θt(p)

)∣∣∣∣
t=0

=
d

dt

(
θt(ψs(p))

)∣∣∣∣
t=0

= (θψs(p))′(0) = Xψs(p),

per cui X è Y -invariante, come voluto.
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Possiamo allora dimostrare il

Teorema 3.4.3: Siano X1, . . . , Xk ∈ T (M) campi vettoriali linearmente indipendenti in ogni punto di una
varietà M di dimensione n. Allora le seguenti affermazioni sono equivalenti:

(i) Per ciascun p ∈M esiste una carta locale (U, ϕ) centrata in p tale che Xj |U = ∂/∂xj per j = 1, . . . , k;
(ii) [Xi, Xj ] ≡ O per i, j = 1, . . . , k.

Dimostrazione: Abbiamo già notato che (i) implica (ii); supponiamo allora che (ii) valga. Essendo un
problema locale, possiamo supporre M = Rn e p = O. A meno di permutare le coordinate, possiamo
anche supporre che {X1|p, . . . , Xk|p, ∂/∂x̃k+1|p, . . . , ∂/∂x̃n|p} sia una base di TpM . Indichiamo con Θj

il flusso locale di Xj , per j = 1, . . . , k. Ragionando per induzione su k si dimostra facilmente che esi-
stono ε > 0 e un intorno W ⊆ Ũ di p tale che la composizione (θk)tk

◦ · · · ◦ (θ1)t1 sia ben definita su W per
ogni t1, . . . , tk ∈ (−ε, ε).

Poniamo S = {(xk+1, . . . , xn) ∈ Rn−k | (0, . . . , 0, xk+1, . . . , xn) ∈W}, e definiamo ψ: (−ε, ε)k × S → Rn

con
ψ(t1, . . . , tk, xk+1, . . . , xn) = (θk)tk ◦ · · · ◦ (θ1)t1(0, . . . , 0, xk+1, . . . , xn).

Dimostriamo prima di tutto che

dψ

(
∂

∂ti

)
= Xi (3.4.1)

per i = 1, . . . , k. Infatti, se f ∈ C∞(Rn) e x ∈ (−ε, ε)k × S la proposizione precedente ci dà

dψx

(
∂

∂ti

)
(f) =

∂

∂ti
(f ◦ ψ)

∣∣∣∣
x

=
∂

∂ti
f
(
(θk)tk ◦ · · · ◦ (θ1)t1(0, . . . , 0, xk+1, . . . , xn)
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x

=
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∂ti
f
(
(θi)ti ◦ (θk)tk ◦ · · · ◦ (θi+1)ti+1 ◦ (θi−1)ti−1 ◦ (θ1)t1(0, . . . , 0, xk+1, . . . , xn)

)∣∣∣∣
x

= (Xif)
(
ψ(x)

)
,

ed (3.4.1) è dimostrata. Per concludere la dimostrazione ci basta far vedere che dψO è invertibile, perché
in tal caso ψ è invertibile in un intorno dell’origine, e l’inversa ϕ di ψ è la carta locale cercata. Ma infatti
siccome ψ(0, . . . , 0, xk+1, . . . , xn) = (0, . . . , 0, xk+1, . . . , xn), vediamo subito che

dψO

(
∂

∂xj

)
=

∂

∂xj

∣∣∣∣
O

per j = k + 1, . . . , n, e la (3.4.1) insieme all’ipotesi che {X1|p, . . . , Xk|p, ∂/∂x̃k+1|p, . . . , ∂/∂x̃n|p} fosse una
base di TpM ci dà la tesi.

Questo era solo l’antipasto. Una conseguenza del Teorema 3.3.4 è che dato un campo vettoriale mai
nullo X ∈ T (M) possiamo decomporre la varietà M nell’unione delle curve integrali di X: ogni punto di M
appartiene a una e una sola curva integrale, e ciascuna curva integrale è un’immersione (in quanto abbiamo
supposto che X non abbia punti singolari).

Se ci dimentichiamo della parametrizzazione delle curve integrali, possiamo riformulare il risultato in que-
sto modo: da una parte abbiamo selezionato in modo C∞ un sottospazio uni-dimensionale in ciascun spazio
tangente TpM (il sottospazio generato da Xp); dall’altra abbiamo che ogni punto è contenuto nell’immagine
dell’immersione di una varietà 1-dimensionale tangente in ogni punto a questi sottospazi unidimensionali. Il
teorema di Frobenius è la generalizzazione di questo enunciato al caso di sottospazi k-dimensionali.

Introduciamo una serie di definizioni per giungere a un enunciato preciso del teorema di Frobenius.

Definizione 3.4.2: Una distribuzione k-dimensionale su una varietà M è un sottoinsieme D ⊂ TM del fibrato
tangente tale che Dp = D ∩ TpM è un sottospazio k-dimensionale di TpM per ogni p ∈ M . Diremo che
la distribuzione k-dimensionale D è liscia se per ogni p ∈ M esiste un intorno aperto U ⊆ M di p e k
campi vettoriali locali Y1, . . . , Yk ∈ T (U) tali che Dp = Span

(
Y1(p), . . . , Yk(p)

)
per ogni p ∈ U . La k-

upla (Y1, . . . , Yk) è detta riferimento locale per D su U .

Esercizio 3.4.1. Dimostra che una distribuzione D ⊆ TM k-dimensionale è una distribuzione liscia se e solo
se è un sottofibrato vettoriale di TM di rango k.
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Definizione 3.4.3: Una sezione locale di una distribuzione liscia D su un aperto U ⊆ M di una varietà M è
un campo vettoriale X ∈ T (U) tale che Xp ∈ Dp per ogni p ∈ U . Indicheremo con TD(U) lo spazio delle
sezioni locali di D sull’aperto U . Diremo che la distribuzione liscia D è involutiva se [X, Y ] ∈ TD(U) per
ogni X, Y ∈ TD(U) e ogni aperto U ⊆M .

Esercizio 3.4.2. Dimostra che una distribuzione liscia D è involutiva se e solo se per ogni p ∈ M esi-
ste un riferimento locale (Y1, . . . , Yk) per D su un intorno aperto U di p tale che [Yi, Yj ] ∈ TD(U) per
ogni i, j = 1, . . . , k.

Definizione 3.4.4: Una sottovarietà immersa di dimensione k in una varietà M è un sottoinsieme S ⊆ M
dotato di una struttura di varietà k-dimensionale (non necessariamente con la topologia indotta da M) tale
che l’inclusione ι:S ↪→M sia un’immersione di classe C∞.

Osservazione 3.4.1. Se F :N → M è un’immersione iniettiva, allora F (N), con la struttura di varietà
indotta da N come descritto nell’Osservazione 2.5.1, è una sottovarietà immersa di M . Inoltre, se S è una
sottovarietà immersa in M , il differenziale dell’inclusione permette di identificare TpS con un sottospazio
di TpM per ogni p ∈ S.

Esercizio 3.4.3. Sia ι:S ↪→M una sottovarietà immersa in una varietà M . Dimostra che per ogni X ∈ T (M)
tale che Xp ∈ TpS per ogni p ∈ S esiste un unico campo vettoriale X|S ∈ T (S) che è ι-correlato a X. Deduci
che se X, Y ∈ T (M) sono tali che Xp, Yp ∈ TpS per ogni p ∈ S allora [X, Y ]p ∈ TpS per ogni p ∈ S.

Esercizio 3.4.4. Sia S ⊆ M un sottoinsieme di una varietà M . Dimostra che per ogni topologia su S
esiste al più una struttura di varietà differenziabile su S che induce la topologia data su S e la rende una
sottovarietà immersa di M .

Definizione 3.4.5: Sia D ⊆ TM una distribuzione liscia. Una sottovarietà integrale di D è una sottovarietà
immersa S ↪→ M tale che TpS = Dp per ogni p ∈ S. Diremo che D è integrabile se ogni punto di M è
contenuto in una sottovarietà integrale di D.

Proposizione 3.4.4: Ogni distribuzione liscia integrabile è involutiva.

Dimostrazione: Sia D ⊆ TM una distribuzione integrabile, e X, Y ∈ TD(U) due sezioni di D su un aperto U .
Preso p ∈ U , sia N ⊆ U una sottovarietà integrale di D contenente p. Siccome X e Y sono sezioni di D,
abbiamo Xq, Yq ∈ TqN per ogni q ∈ N ; l’Esercizio 3.4.3 ci dice allora che [X, Y ]p ∈ TpN = Dp. Siccome
questo vale per qualsiasi p ∈ U , otteniamo [X, Y ] ∈ TD(U), come voluto.

Come già succedeva per le curve integrali, le sottovarietà integrali sono (almeno localmente) a due a due
disgiunte e, in un certo senso, parallele. Per precisare questo concetto ci servono un altro paio di definizioni.

Definizione 3.4.6: SiaD ⊆ TM una distribuzione liscia k-dimensionale in una varietà di dimensione n. Diremo
che una carta locale (U, ϕ) è piatta per D se ϕ(U) = V ′ × V ′′ con V ′ aperto in Rk e V ′′ aperto in Rn−k, e
se (∂/∂x1, . . . , ∂/∂xk) è un riferimento locale per D su U . Diremo che D è completamente integrabile se per
ogni p ∈ M esiste una carta locale (U, ϕ) in p piatta per D. Se (U, ϕ) è una carta piatta per D, gli insiemi
della forma {xk+1 = ck+1, . . . , xn = cn} con ck+1, . . . , cn ∈ R sono detti foglie di U .

Lemma 3.4.5: Ogni distribuzione liscia completamente integrabile è integrabile.

Dimostrazione: Infatti se (U, ϕ) è una carta piatta per una distribuzione k-dimensionale liscia D allora le
foglie di U sono chiaramente delle sottovarietà integrali di D.

Dunque completamente integrabile implica integrabile che implica involutiva. Il Teorema di Frobenius
locale ci assicura che queste implicazioni sono in realtà delle equivalenze:

Teorema 3.4.6: (Frobenius) Ogni distribuzione liscia involutiva è completamente integrabile.

Dimostrazione: Sia D ⊆ TM una distribuzione k-dimensionale liscia involutiva. Grazie al Teorema 3.4.3, per
dimostrare che D è completamente integrabile ci basta trovare nell’intorno di ogni punto di M un riferimento
locale di D composto da campi vettoriali che commutano.
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Dato p ∈ M , scegliamo una carta locale (U, ϕ) centrata in p tale che esista un riferimento locale
(X1, . . . , Xk) per D su U . Inoltre, a meno di permutare le coordinate di ϕ, possiamo anche supporre che{

X1(p), . . . , Xk(p),
∂

∂xk+1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

}

sia una base di TpM . Per comodità di notazione, poniamo Xj = ∂/∂xj per j = k + 1, . . . , n, e sce-
gliamo aj

i ∈ C∞(U) tali che

Xi =
n∑

j=1

aj
i

∂

∂xj

su U , per i = 1, . . . , n. La matrice (aj
i ) è invertibile in p; a meno di restringere ulteriormente U possiamo

supporre che sia invertibile su tutto U , e sia (bi
j) la sua inversa. Allora

∂

∂xj
=

n∑
i=1

bi
jXi =

k∑
i=1

bi
jXi +

n∑
i=k+1

bi
j

∂

∂xi

per j = 1, . . . , n. Definiamo allora Yj =
∑k

i=1 bi
jXi ∈ TD(U) per j = 1, . . . , k; per concludere ci basta

dimostrare che (Y1, . . . , Yk) è un riferimento locale per D composto da campi vettoriali che commutano.
Sia F :U → Rk data da F = π ◦ϕ, dove π: Rn → Rk è la proiezione sulle prime k coordinate. Allora per

ogni q ∈ U e ogni j = 1, . . . , k abbiamo

dFq(Yj) = dFq(Yj) +
n∑

i=k+1

bi
j(q) dFq

(
∂

∂xi

)
= dFq

(
∂

∂xj

)
=

∂

∂xj

∣∣∣∣
F (q)

.

Quindi gli Yj sono linearmente indipendenti su tutto U , per cui formano un riferimento locale per D, e
dFq|Dq è iniettivo per ogni q ∈ U . Inoltre, l’Esercizio 3.3.3 implica che

dFq([Yi, Yj ]) =
[

∂

∂xi
,

∂

∂xj

] (
F (q)

)
= O

per ogni q ∈ U e i, j = 1, . . . , k. Ma allora, essendo D involutiva abbiamo [Yi, Yj ](q) ∈ Dq, ed essendo dFq|Dq

iniettivo troviamo [Yi, Yj ](q) = Oq, come voluto.

Vogliamo ora dare una descrizione di come sono disposte le sottovarietà integrali, descrizione che ci
servirà poi per dare la versione globale del Teorema di Frobenius.

Proposizione 3.4.7: Sia D ⊆ TM una distribuzione liscia involutiva k-dimensionale in una varietà M ,
(U, ϕ) una carta piatta per D, e N una sottovarietà integrale di D. Allora N ∩ U è unione disgiunta al più
numerabile di aperti connessi di foglie di U , ciascuno dei quali è aperto in N ed embedded in M .

Dimostrazione: Siccome l’inclusione ι:N ↪→ M è continua, l’intersezione N ∩ U = ι−1(U) è aperta in N ,
e quindi è unione di una quantità al più numerabile di componenti connesse, ciascuna delle quali è aperta
in N .

Sia V una di queste componenti connesse; cominciamo col dimostrare che è contenuta in un’unica foglia
di U . Essendo (U, ϕ) una carta piatta per D, per ogni p ∈ U abbiamo Dp = Ker(dxk+1) ∩ · · · ∩ Ker(dxn).
Quindi la restrizione di dxk+1, . . . , dxn a TV è identicamente nulla; essendo V connesso, questo vuol dire
che le funzioni xk+1, . . . , xn sono costanti su V , e quindi V è contenuto in un’unica foglia S di U .

Siccome S è una sottovarietà (embedded) di M , l’inclusione V ↪→ S è di classe C∞, essendolo a valori
in M . Ma allora è un’immersione iniettiva fra varietà della stessa dimensione, per cui è un diffeomorfismo
locale e un omeomorfismo con l’immagine, che è aperta in S; in altre parole, è un embedding. Essendo S
embedded in M , ne segue che V è embedded in M .
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Definizione 3.4.7: Una foliazione di dimensione k di una n-varietà è una partizione F di M in sottovarietà
immerse connesse, disgiunte e di dimensione k (dette foglie della foliazione) tali che per ogni punto p ∈ M
esiste una carta locale (U, ϕ) in p per cui ϕ(U) = V ′×V ′′, con V ′ aperto in Rk e V ′′ aperrto in Rn−k, e tale
che ogni foglia della foliazione intersechi U o nell’insieme vuoto o in una unione disgiunta al più numerabile di
foglie k-dimensionali di U della forma {xk+1 = ck+1, . . . , xn = cn} per opportune costanti ck+1, . . . , cn ∈ R.
Una tale carta locale sarà detta piatta per la foliazione F .

Esercizio 3.4.5. Dimostra che l’unione degli spazi tangenti alle foglie di una foliazione k-dimensionale forma
una distribuzione liscia k-dimensionale involutiva.

La versione globale del Teorema di Frobenius ci dice che è vero anche l’inverso di questo esercizio, per
cui foliazioni o distribuzioni involutive sono di fatto la stessa cosa.

Per dimostrarlo, ci serve un ultimo

Lemma 3.4.8: Sia D ⊆ TM una distribuzione liscia involutiva in una varietà M , e sia {Nα} una collezione
di sottovarietà integrali connesse di D con un punto in comune. Allora N =

⋃
α Nα ha un’unica struttura di

varietà per cui sia una sottovarietà integrale connessa di D tale che ciascun Nα sia aperto in N .

Dimostrazione: Su ciascun Nα fissiamo un atlante composto da carte locali della forma (S ∩Nα, π ◦ϕ), dove
S è un’unica foglia di una carta (U, ϕ) piatta per D, e π: Rn → Rk è la proiezione sulle prime k-coordinate.
Se N ha una struttura di varietà che soddisfa le richieste queste carte devono farvi parte; quindi ci basta
dimostrare che mettendole insieme otteniamo un atlante di N .

Per avere la compatibilità topologica delle carte, dobbiamo prima di tutto dimostrare che Nα ∩ Nβ

è aperto in Nβ quali che siano α e β. Prendiamo q ∈ Nα ∩ Nβ , sia (U, ϕ) una carta in q piatta per D,
e indichiamo con Vα (rispettivamente, Vβ) la componente connessa di Nα ∩ U (rispettivamente, Nβ ∩ U)
contenente q. La Proposizione 3.4.7 ci dice che Vα e Vβ sono aperti di una foglia S di U , necessariamente la
stessa per entrambi in quanto deve contenere q. Quindi Vα ∩ Vβ è aperto in S, e quindi in Nβ , come voluto.

Siccome due foglie distinte di una carta piatta sono disgiunte, se (Sα∩Nα)∩(Sβ∩Nβ) 6= ∅ allora Sα = Sβ .
Quindi i cambiamenti di coordinate nel nostro atlante saranno della forma π ◦ (ψ ◦ϕ−1) ◦ (π|ϕ(S))−1, definiti
su aperti di Rk per quanto detto finora, e chiaramente di classe C∞.

Siccome essere un’immersione è una proprietà locale, l’inclusione N ↪→M è un’immersione, ed è evidente
che N è una sottovarietà integrale connessa di D.

Rimane quindi da dimostrare che la strutturà di varietà cos̀ı definita su N è di Hausdorff e ha una
base numerabile. Se q, q′ ∈ N sono punti distinti, prendiamo intorni disgiunti U e U ′ in M ; allora, essendo
l’inclusione N ↪→M continua, U ∩N e U ′∩N sono intorni disgiunti di q e q′ in N , per cui N è di Hausdorff.

Ora, sia U = {Ui} un ricoprimento aperto numerabile di M composto da domini di carte piatte per D.
Per far vedere che N ha una base numerabile è sufficiente far vedere che N ∩ Ui è contenuto in un’unione
numerabile di foglie di Ui per ciascun i, in quanto qualsiasi aperto di una foglia ha una base numerabile.

Fissiamo un punto p ∈ M contenuto in tutti gli Nα, scegliamo Ui ∈ U, e sia S ⊂ Ui una foglia di Ui

contenente un punto q ∈ N . Per definizione, deve esistere un α tale che Nα contiene sia p che q. Essendo
Nα connesso per archi, esiste una curva continua σ: [0, 1] → Nα che collega p con q. Siccome l’immagine
di σ è compatta, esiste una partizione 0 = t0 < t1 < · · · < tm = 1 di [0, 1] tale che σ([tj−1, tj ]) è contenuto
in un Uij

∈ U per ogni j = 1, . . . , m. Essendo σ([tj−1, tj ]) connesso, è contenuto in un’unica componente
connessa di Nα ∩ Uij

, e quindi in un’unica foglia Sij
di Uij

.
Diremo che una foglia S di un qualche Uk è accessibile da p se esiste una successione finita di in-

dici i0, . . . , im e di foglie Sij ⊂ Uij tali che p ∈ Si0 , Sim = S e Sij−1 ∩ Sij 6= ∅ per j = 1, . . . , m. Siccome
ogni foglia Sij−1 è a sua volta una sottovarietà integrale di D, per la Proposizione 3.4.7 può intersecare al
più una quantità numerabile di foglie di Uij

. Questo vuol dire che esistono al più una quantità numerabile
di foglie accessibili da p; ma la discussione precedente mostra che ogni foglia che interseca N è accessibile
da p, e abbiamo finito.

E infine, ecco il Teorema di Frobenius globale:

Teorema 3.4.9: Sia D ⊆ TM una distribuzione liscia involutiva in una varietà M . Allora la collezione di
tutte le sottovarietà integrali massimali di D forma una foliazione di M .

Dimostrazione: Per ogni p ∈ M indichiamo con Lp l’unione di tutte le sottovarietà integrali connesse di D
che contengono p; grazie al lemma precedente, Lp è una sottovarietà integrale connessa di D, chiaramente
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massimale. Se Lp ∩ Lp′ 6= ∅, allora Lp ∪ Lp′ è ancora una sottovarietà integrale connessa di D, e quindi
per massimalità Lp = Lp′ . Quindi le sottovarietà integrali connesse massimali di D formano una partizione
di M .

Se (U, ϕ) è una carta locale piatta per D, allora Lp ∩ U è unione al più numerabile di aperti di foglie
di U , per la Proposizione 3.4.7. Se per una di tali foglie S si avesse Lp ∩ S 6= S, allora Lp ∪ S sarebbe una
sottovarietà integrale connessa di D contenente propriamente Lp, contro la massimalità. Quindi Lp ∩ U è

sempre unione di una quantità al più numerabile di foglie di U , per cui {Lp | p ∈M} è una foliazione.

⌋

3.5 Forme differenziali e differenziale esterno

In questo paragrafo raccoglieremo alcune proprietà fondamentali delle forme differenziali.
Prima di tutto, se η ∈ Ar(M) e ω ∈ As(M) sono rispettivamente una r-forma e una s-forma su una

varietà M , è chiaro che possiamo definire la (r + s)-forma η ∧ ω ∈ Ar+s(M) ponendo

∀p ∈M η ∧ ω(p) = η(p) ∧ ω(p);

in questo modo otteniamo su

A•(M) =
dim M⊕
r=0

Ar(M)

una naturale struttura di algebra associativa e anticommutativa.
Abbiamo notato nel Paragrafo 3.3 che, in generale, è difficile trasportare campi vettoriali da una varietà

a un’altra usando applicazioni differenziabili. Uno dei vantaggi delle forme differenziali è che sono invece
molto semplici da trasportare:

Definizione 3.5.1: Sia ω ∈ Ar(N) una r-forma sulla varietà N , e F :M → N un’applicazione di classe C∞. Il
pull-back di ω lungo F è la r-forma F ∗ω ∈ Ar(M) definita da

F ∗ωp(v1, . . . , vr) = ωF (p)

(
dFp(v1), . . . , dFp(vr)

)
per ogni v1, . . . , vr ∈ TpM . Si verifica subito (esercizio) che F ∗ω è r-lineare, alternante e di classe C∞, per
cui è effettivamente una r-forma su M . Se ι: M ↪→ N è una sottovarietà, scriveremo anche ω|M per ι∗ω.

Esercizio 3.5.1. Sia F :M → N un’applicazione di classe C∞ fra varietà. Dimostra che

(i) F ∗:Ar(N)→ Ar(M) è lineare per ogni r ≥ 0;
(ii) F ∗(η ∧ ω) = F ∗η ∧ F ∗ω per ogni η, ω ∈ A•(N);
(iii) se

ω =
∑

i1<···<ir

ωi1...irdyi1 ∧ · · · ∧ dyir

è l’espressione in coordinate locali (y1, . . . , yn) di una r-forma ω ∈ Ar(N), allora

F ∗ω =
∑

i1<···<ir

(ωi1...ir ◦ F ) d(yi1 ◦ F ) ∧ · · · ∧ d(yir ◦ F ).

In particolare, se M ed N hanno entrambi dimensione n, (x1, . . . , xn) sono coordinate locali su un
aperto U di M , (y1, . . . , yn) sono coordinate locali su un aperto V di N con F (U) ⊆ V , e f ∈ C∞(V ),
allora dimostra che

F ∗(f dy1 ∧ · · · ∧ dyn) = (f ◦ F ) det(dF ) dx1 ∧ · · · ∧ dxn.
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Se f ∈ C∞(M) è una funzione differenziabile su M (ovvero una 0-forma), il differenziale df induce

un’applicazione C∞(M)-lineare df : T (M) → C∞(M), cioè, grazie alla Proposizione 3.2.1.(i), una 1-forma
differenziale. Quindi abbiamo un’applicazione lineare d:A0(M)→ A1(M) data in coordinate locali da

df =
n∑

j=1

∂f

∂xj
dxj .

Una delle principali proprietà delle forme differenziali è che possiamo estendere quest’applicazione d a
tutto A•(M), cioè possiamo definire in maniera coerente il differenziale di qualsiasi forma differenziale:

Teorema 3.5.1: Sia M una n-varietà. Allora esiste un’unica applicazione lineare d: A•(M) → A•(M)
soddisfacente le quattro condizioni seguenti:

(a) d
(
Ar(M)

)
⊆ Ar+1(M) per ogni r ∈ N;

(b) se f ∈ C∞(M) = A0(M) allora df ∈ A1(M) è il differenziale di f ;
(c) se ω ∈ Ar(M) e η ∈ As(M) allora

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη;

(d) d ◦ d = O.

Questa applicazione soddisfa anche le seguenti proprietà:

(i) d è locale: se ω ≡ ω′ su un aperto U di M , allora (dω)|U ≡ (dω′)|U ;
(ii) d commuta con la restrizione: se U ⊆M è aperto, allora d(ω|U ) = (dω)|U ;
(iii) più in generale, d commuta con i pull-back: se F :M → N è di classe C∞ e ω ∈ Ar(N), allora

d(F ∗ω) = F ∗(dω);
(iv) se ω ∈ A1(M) è una 1-forma e X, Y ∈ T (M), allora

dω(X, Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X, Y ]);

(v) se (x1, . . . , xn) sono coordinate locali in un aperto di M , allora

d

 ∑
1≤i1<···<ir≤n

ωi1...ir
dxi1 ∧ · · · ∧ dxir

 =
∑

1≤i1<···<ir≤n

dωi1...ir
∧ dxi1 ∧ · · · ∧ dxir

=
∑

1≤i1<···<ir≤n

n∑
j=1

∂ωi1...ir

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxir .

(3.5.1)

Dimostrazione: Iniziamo con il caso particolare in cui esista una carta globale (M, ϕ), con ϕ = (x1, . . . , xn),
e definiamo d:Ar(M)→ Ar+1(M) per ogni r ∈ N con la (3.5.1); in particolare, d|Ar(M) ≡ O per ogni r ≥ n.
Chiaramente d è lineare e soddisfa (a) e (b); dobbiamo dimostrare che soddisfa (c) e (d). Per far ciò
introduciamo la seguente notazione: se I = (i1, . . . , ir) è un multiindice, scriveremo dxI per dxi1 ∧ · · ·∧dxir .
Inoltre, useremo il simbolo

∑′
I per indicare la somma su tutti multiindici I = (i1, . . . , ir) crescenti, cioè tali

che 1 ≤ i1 < · · · < ir ≤ n. Quindi con queste notazioni la (3.5.1) diventa

d

(∑
I

′
ωI dxI

)
=

∑
I

′
dωI ∧ dxI .

In particolare, abbiamo d(f dxI) = df ∧ dxI per ogni multiindice crescente I, e quindi (perché?) per ogni
multiindice I, anche non crescente.

Per dimostrare (c), grazie alla linearità possiamo supporre ω = f dxI e η = g dxJ . Allora

d(ω ∧ η) = d(fg dxI ∧ dxJ) = d(fg) ∧ dxI ∧ dxJ

= df ∧ dxI ∧ g dxJ + dg ∧ f dxI ∧ dxJ = (df ∧ dxI) ∧ η + (−1)rω ∧ (dg ∧ dxJ)
= dω ∧ η + (−1)rω ∧ dη,



64 Elementi di Geometria Differenziale, A.A. 2004/05

dove il fattore (−1)r compare perché dg è una 1-forma mentre dxI è una r-forma.
Per dimostrare (d), supponiamo prima r = 0. Allora

d(df) = d

 n∑
j=1

∂f

∂xj
dxj

 =
n∑

i,j=1

∂2f

∂xi∂xj
dxi ∧ dxj =

∑
1≤i<j≤n

[
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

]
dxi ∧ dxj = O.

Sia ora r > 0 qualsiasi. Allora usando il caso r = 0 e la proprietà (c) otteniamo

d(dω) = d

(∑
J

′
dωJ ∧ dxj1 ∧ · · · ∧ dxjr

)

=
∑

J

′
d(dωJ) ∧ dxj1 ∧ · · · ∧ dxjr +

∑
J

′ r∑
i=1

(−1)i dωJ ∧ dxj1 ∧ · · · ∧ d(dxji) ∧ · · · ∧ dxjr = O.

Quindi abbiamo ottenuto un’applicazione lineare soddisfacente (a)–(d), e chiaramente valgono anche (i), (ii)
e (v); si possono anche dimostrare le proprietà (iii) e (iv), ma lo rimandiamo al caso generale.

Vediamo ora l’unicità della d, sempre in questo caso particolare. Supponiamo che d̃:A•(M) → A•(M)
sia un’altra applicazione lineare che soddisfa (a)–(d). Presa ω =

∑
J
′
ωJ dxJ ∈ Ar(M), usando (b), (c) e (d)

troviamo

d̃ω =
∑

J

′
d̃ωJ ∧ dxj1 ∧ · · · ∧ dxjr + (−1)0

∑
J

′
ωJ d̃(dxj1 ∧ · · · ∧ dxjr )

=
∑

J

′
dωJ ∧ dxj1 ∧ · · · ∧ dxjr +

∑
J

′
ωJ

r∑
i=1

(−1)i−1 dxj1 ∧ · · · ∧ d̃(dxji) ∧ · · · ∧ dxjr

= dω +
∑

J

′
ωJ

r∑
i=1

(−1)i−1 dxj1 ∧ · · · ∧ d̃(d̃xji) ∧ · · · ∧ dxjr = dω,

come voluto. In particolare, dω non dipende dalla carta globale usata in (3.5.1).
Ora sia M una varietà qualsiasi. Se U ⊆ M è il dominio di una carta locale, la discussione precedente

ci fornisce un’applicazione lineare dU :A•(U) → A•(U) che soddisfa (a)–(d), (i), (ii) e (v). Sull’interse-
zione U ∩ U ′ dei domini di due carte locali abbiamo

(dUω)|U∩U ′ = dU∩U ′ω = (dU ′ω)|U∩U ′ ,

grazie a (ii) e all’unicità di dU e dU ′ . Quindi possiamo definire un’applicazione lineare d:A•(M) → A•(M)
ponendo

(dω)p = dU (ω|U )p

per ogni ω ∈ Ar(M), p ∈M e carta (U, ϕ) in p, e d soddisfa (a)–(d), (i), (ii) e (v).
Dimostriamo ora l’unicità nel caso generale. Sia d̃:A•(M) → A•(M) un’altra applicazione lineare che

soddisfa (a)–(d). Cominciamo col dimostrare che d̃ soddisfa anche (i). Chiaramente basta far vedere che
se η ∈ Ar(M) è tale che η|U ≡ O per un qualche aperto U ⊆M , allora (dη)|U ≡ O. Sia p ∈ U qualunque, e
sia g ∈ C∞(M) una funzione con g ≡ 1 in un intorno di p e g|M\U ≡ 0 (vedi la Proposizione 2.3.1). Allora
gη ≡ O su tutto M , per cui

O = d̃(gη)p = dgp ∧ ηp + g(p)d̃ηp = d̃ηp.

Essendo p generico, otteniamo d̃η|U ≡ O.
Sia ora (U, ϕ) una carta locale qualsiasi, e definiamo un’applicazione lineare d̃U :A•(U) → A•(U) po-

nendo (d̃Uω)p = (d̃ω̃)p per ogni p ∈ U e ω ∈ Ar(U), dove ω̃ ∈ Ar(M) è una r-forma globale che coincide
con ω in un intorno di p. L’estensione ω̃ esiste grazie all’Esercizio 3.2.4, e d̃Uω non dipende dall’estensione
scelta grazie alla proprietà (i) di d̃. Chiaramente, d̃U soddisfa (a)–(d); ma allora, per quanto già visto,
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d̃U = dU . In particolare, se ω ∈ Ar(M), p ∈ M e (U, ϕ) è una carta in p, possiamo usare ω stessa come
estensione di ω|U e quindi

(dω)p = (dUω|U )p = (d̃Uω|U )p = (d̃ω)p.

Essendo p e ω generici, otteniamo d̃ ≡ d, e l’unicità è dimostrata.
Passiamo ora a verificare (iii). Grazie a (i), ci basta dimostrare (iii) nell’intorno di ciascun punto, per

cui possiamo supporre di avere coordinate globali (x1, . . . , xn). Per linearità, possiamo anche supporre che ω
sia della forma ω = f dxi1 ∧ · · · ∧ dxir . Allora l’Esercizio 3.5.1 dà

F ∗(dω) = F ∗(df ∧ dxi1 ∧ · · · ∧ dxir ) = d(f ◦ F ) ∧ d(xi1 ◦ F ) ∧ · · · ∧ d(xir ◦ F )

= d
(
(f ◦ F ) d(xi1 ◦ F ) ∧ · · · ∧ d(xir ◦ F )

)
= d(F ∗ω),

come voluto.
Infine, dobbiamo verificare (iv). Grazie alla linearità e alla proprietà (i), ci basta (perché?) considerare

il caso ω = u dv. Allora

dω(X, Y ) = du ∧ dv(X, Y ) = du(X)dv(Y )− du(Y )dv(X) = X(u)Y (v)−X(v)Y (u)

= X(u)Y (v) + uX
(
Y (v)

)
− Y (u)X(v)− uY

(
X(v)

)
− u

(
X

(
Y (v)

)
− Y

(
X(v)

))
= X

(
uY (v)

)
− Y

(
uX(v)

)
− u[X, Y ](v)

= X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X, Y ]),

e abbiamo finito.

Definizione 3.5.2: L’applicazione lineare d:A•(M)→ A•(M) la cui esistenza è dimostrata nel Teorema 3.5.1
è detta differenziale esterno di M .

Esercizio 3.5.2. Sia M una varietà, e ω ∈ Ar(M). Dimostra che

dω(X1, . . . , Xr+1) =
r+1∑
j=1

(−1)j−1Xj

(
ω(X1, . . . , X̂j , . . . , Xr+1)

)
+

∑
1≤i<j≤r+1

(−1)i+jω
(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xr+1

)
,

per ogni X1, . . . , Xr+1 ∈ T (M), dove l’accento circonflesso indica elementi omessi dalla lista.

Esercizio 3.5.3. Sia {E1, . . . , En} un riferimento locale per il fibrato tangente TM di una n-varietà M
sopra un aperto U , e indichiamo con {ε1, . . . , εn} il riferimento locale duale di T ∗M sopra U . Siano inol-
tre ck

ij ∈ C∞(U) tali che

[Ei, Ej ] =
n∑

k=1

ck
ijEk

per i, j, k = 1, . . . , n. Dimostra che

dεk = −
n∑

i,j=1

ck
ij εi ∧ εj

per k = 1, . . . , n.

Definizione 3.5.3: Diremo che una k-forma ω ∈ Ak(M) è chiusa se dω = O; diremo che è esatta se esiste
una (k − 1)-forma η ∈ Ak−1(M) tale che dη = ω. Indicheremo con Zk(M) il sottospazio delle k-forme
chiuse, e con Bk(M) il sottospazio delle k-forme esatte. Siccome d ◦ d ≡ O, ogni forma esatta è chiusa,
cioè Bk(M) ⊆ Zk(M). Il k-esimo gruppo di coomologia di de Rham della varietà M è allora definito come
il quoziente Hk

dR(M) = Zk(M)/Bk(M).

Un risultato fondamentale che non dimostreremo è il Teorema di de Rham, che dice che i gruppi di
coomologia di de Rham sono degli invarianti topologici della varietà:
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Teorema 3.5.2: (de Rham) Per ogni varietà M e ogni k ∈ N il gruppo di coomologia di de Rham Hk
dR(M)

è canonicamente isomorfo al k-esimo gruppo di coomologia singolare Hk(M ; R) di M a coefficienti in R.

Concludiamo questo paragrafo con una serie di esercizi che mostrano come introdurre il concetto di
distribuzione liscia involutiva usando le forme differenziali invece dei campi vettoriali.

Esercizio 3.5.4. Sia D ⊆ TM una distribuzione k-dimensionale su una n-varietà M . Dimostra che D è
liscia se e solo se per ogni punto p ∈M esistono un intorno U di p e ω1, . . . , ωn−k ∈ A1(U) tali che

Dq = Kerω1
q ∩ · · · ∩Kerωn−k

q (3.5.2)

per ogni q ∈ U .

Definizione 3.5.4: Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M , e U ⊆M aperto.
Ogni (n − k)-upla di 1-forme ω1, . . . , ωn−k ∈ A1(M) che soddisfano (3.5.2) saranno dette forme di defi-
nizione locali per D. Diremo inoltre che una p-forma η ∈ Ap(M) annichila D se η(X1, . . . , Xp) ≡ O per
ogni X1, . . . , Xp ∈ caTD(M). Indicheremo con Ip

M (D) ⊆ Ap(M) il sottospazio delle p-forme che annichi-
lano D, e porremo IM (D) = I0

M (D)⊕ · · · ⊕ In
M (D).

Esercizio 3.5.5. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra che
una p-forma η ∈ Ap(M) annichila D se e solo se ogni volta che esistono delle forme di definizione locali
ω1, . . . , ωn−k ∈ A1(U) per D su un aperto U ⊆M allora

η|U =
n−k∑
i=1

ωi ∧ βi

per opportune (p− 1)-forme β1, . . . , βn−k ∈ Ap−1(U).

Esercizio 3.5.6. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra che D
è involutiva se e solo se per ogni aperto U ⊆M si ha d

(
I1

U (D)
)
⊆ I2

U (D).

Esercizio 3.5.7. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra
che D è involutivo se e solo se per ogni aperto U ⊆ M e ogni (n − k)-upla di forme di definizione lo-
cali ω1, . . . , ωn−k ∈ A1(U) per D sopra U esistono delle 1-forme αi

j ∈ A1(U) tali che

dωi =
n−k∑
j=1

ωj ∧ αi
j

per i = 1, . . . , n− k.

Definizione 3.5.5: Un ideale di A•(M) è un sottospazio vettoriale I ⊆ A•(M) tale che ω ∧ η ∈ I per ogni
ω ∈ A•(M) e ogni η ∈ I.
Esercizio 3.5.8. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra

che IM (D) è un ideale di A•(M), e che D è involutiva se e solo se d
(
IM (D)

)
⊆ IM (D).

⌋

3.6 Orientabilità

Scopo di questo paragrafo è dare una definizione di orientabilità adatta a varietà di dimensione qualunque.

Definizione 3.6.1: Diremo che una varietà connessa M è orientabile se esiste una n-forma ν ∈ An(M) che
non si annulla mai. Diremo che due n-forme mai nulle ν1, ν2 ∈ An(M) determinano la stessa orientazione
se esiste una funzione f ∈ C∞(M) sempre positiva tale che ν2 = fν1. Una n-forma mai nulla su M è detta
forma (o elemento) di volume di M . Una varietà su cui sia stata fissata una forma di volume è detta varietà
orientata.
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Definizione 3.6.2: Sia M una varietà orientata da una forma di volume ν ∈ An(M). Diremo che una base
{v1, . . . , vn} di TpM è positiva se νp(v1, . . . , vn) > 0; negativa altrimenti (nota che νp(v1, . . . , vn) è necessa-
riamente diverso da zero; perché?). Una carta (U, ϕ) sarà detta orientata se esiste una funzione f ∈ C∞(U)
sempre positiva tale che dx1 ∧ · · · ∧ dxn = f ν|U , dove ϕ = (x1, . . . , xn) come al solito. In altre parole, (U, ϕ)
è orientata se e solo se {∂1, . . . , ∂n} è una base positiva di TpM per ogni p ∈ U (perché?).

Definizione 3.6.3: Diremo che due carte (Uα, ϕα) e (Uβ , ϕβ) di una varietà M sono equiorientate se il deter-
minante del differenziale del cambiamento di coordinate ϕα ◦ϕ−1

β è positivo in tutti i punti di ϕβ(Uα ∩Uβ).
Un atlante A = {(Uα, ϕα)} è orientato se ogni coppia di carte in A è equiorientata.

Proposizione 3.6.1: Sia M una varietà connessa n-dimensionale. Allora M è orientabile se e solo se
ammette un atlante orientato.

Dimostrazione: Supponiamo che M sia orientabile, e sia ν ∈ An(M) una n-forma mai nulla. Prendiamo
un atlante A = {(Uα, ϕα)} con ciascun Uα connesso. Allora dx1

α ∧ · · · ∧ dxn
α ∈ An(Uα) è una n-forma

locale mai nulla; siccome
∧n

M ha rango 1, deve esistere una funzione fα ∈ C∞(Uα) mai nulla tale
che dx1

α ∧ · · · ∧ dxn
α = fα ν|Uα . Essendo Uα connesso, la funzione fα ha segno costante; quindi a meno

di modificare ϕα scambiando le ultime due coordinate possiamo supporre che tutte le fα siano positive.
Vogliamo dimostrare che l’atlante A cos̀ı ottenuto è orientato. Infatti l’Esempio 3.2.3 ci dà

fα ν|Uα∩Uβ
= dx1

α ∧ · · · ∧ dxn
α = det

(
∂xh

α

∂xk
β

)
dx1

β ∧ · · · ∧ dxn
β = det

(
∂xh

α

∂xk
β

)
fβ ν|Uα∩Uβ

,

per cui fα|Uα∩Uβ
= det

(
∂xh

α

∂xk
β

)
fβ |Uα∩Uβ

e dunque det
(

∂xh
α

∂xk
β

)
> 0 come voluto.

Viceversa, sia A = {(Uα, ϕα)} un atlante orientato, e sia {ρα} una partizione dell’unità subordinata a
questo atlante. Poniamo

ν =
∑
α

ρα dx1
α ∧ · · · ∧ dxn

α.

Le proprietà delle partizioni dell’unità ci assicurano (perché) che ν ∈ An(M) è globalmente definita; dob-
biamo dimostrare che non è mai nulla. Ora, ciascuna dx1

α ∧ · · · ∧ dxn
α non si annulla mai; inoltre

dx1
α ∧ · · · ∧ dxn

α = det

(
∂xh

α

∂xk
β

)
dx1

β ∧ · · · ∧ dxn
β

su Uα ∩ Uβ , per cui dx1
α ∧ · · · ∧ dxn

α e dx1
β ∧ · · · ∧ dxn

β differiscono per un fattore moltiplicativo strettamente
positivo in quanto l’atlante è orientato. Quindi nell’intorno di ogni punto ν è somma di un numero finito di
termini che sono tutti un multiplo positivo l’uno dell’altro, per cui ν non si può mai annullare.

Dunque una varietà è orientabile se e solo se possiamo orientare coerentemente tutti gli spazi tangenti.

Esempio 3.6.1. Una varietà con un atlante costituito da una sola carta (esempio: un grafico) o da due
carte che abbiano intersezione connessa (esempio: la sfera) è chiaramente orientabile.

Esercizio 3.6.1. Sia F :M → N un diffeomorfismo locale fra due varietà di dimensione n. Dimostra che
se ν ∈ An(N) è una forma di volume su N allora F ∗ν è una forma di volume su M .

Definizione 3.6.4: Sia F :M → N un diffeomorfismo locale fra due varietà orientate. Diremo che F conserva
l’orientazione se F ∗ν determina l’orientazione data su M per ogni forma di volume ν ∈ An(N) che determina
l’orientazione data su N ; altrimenti diremo che F inverte l’orientazione.

Esercizio 3.6.2. Sia F :M → N un diffeomorfismo locale fra due varietà orientate. Dimostra che F conserva
l’orientazione se e solo se det Jac(ψ ◦ F ◦ ϕ−1) > 0 per ogni carta orientata (U, ϕ) di M e ogni carta
orientata (V, ψ) di N tali che F (U) ⊆ V .

Esercizio 3.6.3. Sia F :M → N un diffeomorfismo locale fra due varietà orientate di dimensione n. Dimostra
che F conserva l’orientazione se e solo se per ogni p ∈M l’immagine tramite dFp di una base positiva di TpM
è una base positiva di TF (p)N .



68 Elementi di Geometria Differenziale, A.A. 2004/05

Esercizio 3.6.4. Dimostra che Pn(R) è orientabile se e solo se n è dispari.

Esercizio 3.6.5. Dimostra che il prodotto di due varietà orientabili è orientabile.

Esercizio 3.6.6. Sia M una varietà tale che TM sia il fibrato banale. Dimostra che M è orientabile.

Esercizio 3.6.7. Posto I = [0, 1], sia p: I → S1 data da p(t) = e2πit. Indichiamo inoltre con π1: I×R→ I la
proiezione sul primo fattore. Sia ∼ la relazione d’equivalenza su I ×R che identifica i punti (0, y) ∈ {0}×R
con i punti (1,−y) ∈ {1} × R. Poniamo E = (I × R)/ ∼. Siccome p ◦ π1: I × R→ S1 è costante sulle classi
d’equivalenza di ∼, otteniamo un’applicazione continua surgettiva π:E → S1. Dimostra che questo è un
fibrato vettoriale di rango 1 su S1 (detto fibrato di Möbius), che E è una varietà non orientabile, e deduci
che E non è un fibrato banale.

Non tutte le varietà connesse sono orientabili (vedi gli Esercizi 3.6.4 e 3.6.7). Esiste però una procedura
standard per ottenere una varietà orientabile a partire da una non orientabile:

Proposizione 3.6.2: Sia M una varietà connessa non orientabile. Allora esiste un rivestimento liscio a
due fogli π: M̃ → M tale che M̃ sia una varietà connessa orientabile. Inoltre il gruppo di automorfismi
del rivestimento è isomorfo a Z2, e se F : M̃ → M̃ è l’automorfismo diverso dall’identità allora F inverte
l’orientazione di M̃ .

Dimostrazione: Per ogni p ∈ M indichiamo con +p e −p le due possibili orientazioni su TpM ; inoltre,
se {e1, . . . , en} è una base di TpM indichiamo con [e1 . . . en] l’orientazione indotta da questa base. Infine,
indichiamo con M̃ l’unione disgiunta delle coppie (p, +p) e (p,−p), cioè

M̃ =
⋃

p∈M

{(p, +p), (p,−p)},

e sia π: M̃ → M data da π(p,±p) = p. Vogliamo definire su M̃ una struttura di varietà soddisfacente le
richieste.

Sia A = {(Uα, ϕα)} un atlante di M tale che ogni Uα sia connesso, e tale che per ogni p ∈ M esistano
due carte locali (Uα, ∂α), (Uα′ , ∂α′) ∈ A in p tali che [∂1,α|p . . . ∂n,α|p] = +p e [∂1,α′ |p . . . ∂n,α′ |p] = −p. Per
ogni (Uα, ϕα) ∈ A definiamo ψα:ϕα(Uα)→ M̃ ponendo

ψα(x) =
(
ϕ−1

α (x), [∂1,α|ϕ−1
α (x) . . . ∂n,α|ϕ−1

α (x)]
)
,

dove p = ϕ−1
α (x). Ogni ψα è chiaramente iniettiva; la sua inversa è data da ϕ̃α = ϕα ◦ π, definita

su Ũα = ψα

(
ϕα(Uα)

)
. Allora Ã = {(Ũα, ϕ̃α)} è un atlante su M̃ . Infatti, copre M̃ per l’ipotesi su A,

e le carte sono compatibili in quanto

ϕ̃α ◦ ϕ̃−1
β = ϕα ◦ π ◦ ψβ = ϕα ◦ ϕ−1

β .

Siccome ϕα ◦ π ◦ ϕ̃−1
α = id, la proiezione π è differenziabile e chiaramente surgettiva. Inoltre se −Ũα ⊂ M̃ è

definito da (p,±p) ∈ −Ũα se e solo se (p,∓p) ∈ Ũα, allora π−1(Uα) = Ũα ∪ (−Ũα), e π ristretto sia a Ũα che
a −Ũα è un diffeomorfismo con Uα; quindi π è un rivestimento a due fogli.

Ora, se Ũα ∩ Ũβ 6= ∅ allora Uα ∩Uβ 6= ∅ e in ogni punto di Uα ∩Uβ si ha [∂1,α . . . ∂n,α] = [∂1,β . . . ∂n,β ],
per cui

det Jac(ϕ̃α ◦ ϕ̃−1
β ) = det Jac(ϕα ◦ ϕ−1

β ) > 0,

e quindi Ã è orientato.
Se M̃ non fosse connessa, la restrizione di π a ciascuna componente connessa sarebbe un rivestimento a

un foglio, cioè un diffeomorfismo, e M sarebbe orientabile, contraddizione.
Essendo π un rivestimento a due fogli, il gruppo di automorfismi di π è necessariamente Z2. L’automor-

fismo F è dato da F (p,±p) = (p,∓p), e si verifica subito che F inverte l’orientazione. Infatti, preso p ∈M ,
sia (U, ϕ) una carta in p tale che [∂1 . . . ∂n] = +p, e indichiamo con (U, ϕ−) la carta ottenuta invertendo le
ultime due coordinate di ϕ. Allora

ϕ̃− ◦ F ◦ ϕ̃−1(x) = ϕ̃− ◦ F
(
ϕ−1(x),+ϕ−1(x)

)
= ϕ̃−

(
ϕ−1(x),−ϕ−1(x)

)
= ϕ− ◦ ϕ−1(x) = (x1, . . . , xn, xn−1),

e la tesi segue dall’Esercizio 3.6.2.



3.6 Orientabilità 69

Corollario 3.6.3: Ogni varietà connessa semplicemente connessa è orientabile.

Dimostrazione: Se non fosse orientabile, per la proposizione precedente dovrebbe avere un rivestimento a
due fogli e quindi non potrebbe essere semplicemente connessa.

Esercizio 3.6.8. Sia M una varietà connessa di dimensione 1. Dimostra che M è necessariamente diffeomorfa
a R oppure a S1 nel seguente modo:
(i) Dimostra la tesi quando M è orientabile costruendo un campo vettoriale su M mai nullo e applicando

l’Esercizio 3.3.1.
(ii) Dimostra che M è sempre orientabile, facendo vedere che il suo rivestimento universale è diffeomorfo

a R e che ogni diffeomorfismo di R che inverte l’orientazione ha necessariamente un punto fisso.⌈
Il motivo per cui una n-forma mai nulla si chiama forma di volume è che permette di integrare delle

funzioni a supporto compatto su una varietà. Questo perché, come discuteremo fra un attimo, su una varietà
orientata di dimensione n è sempre possibile integrare n-forme a supporto compatto; e allora se ν è una forma
di volume e g è una funzione a supporto compatto, possiamo definire l’integrale di g come l’integrale di gν.

Ma andiamo per gradi.

Lemma 3.6.4: Sia M una varietà n-dimensionale orientata, e ω ∈ An(M) una n-forma a supporto compatto.
Supponiamo di avere due carte orientate (U, ϕ) e (Ũ , ϕ̃) tali che il supporto di ω sia contenuto in U ∩ Ũ .
Allora ∫

ϕ(U)

(ϕ−1)∗ω =
∫

ϕ̃(Ũ)

(ϕ̃−1)∗ω.

Dimostrazione: Ricordo che se η = f dx1 ∧ · · · ∧ dxn è una n-forma con supporto compatto in un aperto V
di Rn abbiamo per definizione ∫

V

η =
∫

V

f dx1 · · · dxn,

dove a secondo membro abbiamo l’usuale integrale di Lebesgue.
Scriviamo allora (ϕ−1)∗ω = f dx1 ∧ · · · ∧ dxn e (ϕ̃−1)∗ω = f̃ dx̃1 ∧ · · · ∧ dx̃n, per opportune funzioni

f ∈ C∞
(
ϕ(U)

)
e f̃ ∈ C∞

(
ϕ̃(U)

)
. Siccome

(ϕ̃−1)∗ω = (ϕ ◦ ϕ̃−1)∗(ϕ−1)∗ω,

troviamo
f̃ = f ◦ (ϕ ◦ ϕ̃−1) det Jac(ϕ ◦ ϕ̃−1).

Siccome le carte sono orientate, abbiamo det Jac(ϕ◦ ϕ̃−1) > 0, per cui la formula di cambiamento di variabile
negli integrali multipli ci dà∫

ϕ̃(Ũ)

(ϕ̃−1)∗ω =
∫

ϕ̃(U∩Ũ)

(ϕ̃−1)∗ω =
∫

ϕ̃(U∩Ũ)

f̃ dx̃1 · · · dx̃n

=
∫

ϕ̃(U∩Ũ)

f ◦ (ϕ ◦ ϕ̃−1) det Jac(ϕ ◦ ϕ̃−1) dx̃1 · · · dx̃n

=
∫

ϕ̃(U∩Ũ)

f ◦ (ϕ ◦ ϕ̃−1)
∣∣det Jac(ϕ ◦ ϕ̃−1)

∣∣ dx̃1 · · · dx̃n

=
∫

ϕ(U∩Ũ)

f dx1 · · · dxn =
∫

ϕ(U)

(ϕ−1)∗ω.

Quindi se ω ∈ An(M) è una n-forma con supporto compatto contenuto nel dominio di una carta
orientata (U, ϕ) qualsiasi, possiamo definire

∫
M

ω ponendo∫
M

ω =
∫

ϕ(U)

(ϕ−1)∗ω.

La definizione dell’integrale per forme a supporto compatto qualunque si ottiene allora usando le partizioni
dell’unità:
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Lemma 3.6.5: Sia M una varietà n-dimensionale orientata, e scegliamo un atlante orientatoA = {(Uα, ϕα)}
e una partizione dell’unità {ρα} subordinata a questo atlante. Allora per ogni n-forma ω ∈ An(M) a supporto
compatto il numero ∫

M

ω =
∑
α

∫
M

ραω (3.6.1)

non dipende né dall’atlante orientato scelto né dalla partizione dell’unità scelta.

Dimostrazione: Prima di tutto notiamo che siccome il supporto di ω è compatto, e i supporti delle funzioni
della partizione dell’unità formano un ricoprimento localmente finito, la somma in (3.6.1) contiene solo un
numero finito di termini non nulli, per cui è ben definita.

Sia Ã = {(Ũβ , ϕ̃β)} un altro atlante orientato di M , e {ρ̃β} una partizione dell’unità a lui subordinata.
Per ogni α abbiamo ∫

M

ραω =
∫

M

∑
β

ρ̃β

 ραω =
∑

β

∫
M

ρ̃βραω,

e sommando su α otteniamo ∑
α

∫
M

ραω =
∑
α,β

∫
M

ρ̃βραω.

L’integrando di ciascun addendo a secondo membro ha supporto compatto contenuto nel dominio di una
singola carta (Uα oppure Ũβ , per esempio), per cui il valore di ciascun addendo non dipende dalla carta
usata per calcolarlo.

In maniera analoga otteniamo ∑
β

∫
M

ρ̃βω =
∑
α,β

∫
M

ραρ̃βω,

e la tesi segue.

Definizione 3.6.5: Sia M una varietà orientata n-dimensionale. L’integrale
∫

M
ω di una n-forma ω ∈ An(M)

a supporto compatto su M è definito dalla formula (3.6.1). In particolare, se ν ∈ An(M) è una forma di
volume per M e f ∈ C∞(M) è a supporto compatto, poniamo∫

M

f =
∫

M

f ν.

Se M è compatta, diremo ν-volume di M il numero volν(M) =
∫

M
ν.

Non posso concludere questo capitolo senza citare un caso particolare (ma particolarmente importante)
del fondamentale Teorema di Stokes:

Teorema 3.6.6: (Stokes) Sia M una varietà compatta orientata n-dimensionale, e η ∈ An−1(M). Allora∫
M

dη = 0.

In generale, si può definire il concetto di varietà con bordo in modo che il bordo ∂M di una varietà M
con bordo n-dimensionale orientata sia una varietà (senza bordo) orientata (n − 1)-dimensionale. Allora il
Teorema di Stokes generale dice che ∫

M

dη =
∫

∂M

η

per ogni (n− 1)-forma η a supporto compatto in M .

⌋



Capitolo 4

Metriche Riemanniane

4.1 Definizioni

Introduciamo ora la vera protagonista di questo corso.

Definizione 4.1.1: Una metrica Riemanniana su una varietà M è un campo tensoriale g ∈ T2(M) simmetrico
(cioè tale che gp(w, v) = gp(v, w) per ogni v, w ∈ TpM e p ∈ M) e definito positivo (cioè g(v, v) > 0 per
ogni v 6= O). La coppia (M, g) è detta varietà Riemanniana. Spesso useremo anche la notazione 〈v, w〉p al
posto di gp(v, w), e indicheremo con ‖ · ‖p la norma su TpM indotta dal prodotto scalare gp.

In altre parole, una metrica Riemanniana associa a ogni punto p ∈ M un prodotto scalare definito
positivo gp:TpM × TpM → R che dipende in modo C∞ dal punto p.

Osservazione 4.1.1. Ci sono alcune situazioni (per esempio in relatività) in cui è utile studiare varietà
equipaggiate con un campo tensoriale g ∈ T2(M) simmetrico non-degenere (cioè tale che gp(v, w) = 0 per
ogni w ∈ TpM se e solo se v = Op). Diversi dei risultati di questo capitolo (per esempio la costruzione della
connessione di Levi-Civita nel paragrafo 4) sono validi anche in questa situazione più generale; indicheremo
esplicitamente i casi più significativi.

Esercizio 4.1.1. Sia M una varietà, e supponiamo di avere per ogni p ∈ M un prodotto scalare definito
positivo gp:TpM × TpM → R. Dimostra che g è una metrica Riemanniana se e solo se p 7→ gp

(
X(p), Y (p)

)
è di classe C∞ per ogni X, Y ∈ T (M).

Vediamo come si esprime una metrica Riemanniana (o, più in generale, un campo tensoriale g ∈ T2(M)
simmetrico) in coordinate locali. Fissata una carta locale (U, ϕ), indichiamo con (x1, . . . , xn) le corrispondenti
coordinate locali, e con {∂1, . . . , ∂n} il corrispondente riferimento locale di TM . Allora possiamo definire
delle funzioni ghk ∈ C∞(U) ponendo ghk = g(∂h, ∂k); e chiaramente abbiamo

g =
n∑

h,k=1

ghk dxh ⊗ dxk. (4.1.1)

Inoltre, la matrice simmetrica (ghk) è non-degenere se e solo se g è non-degenere, ed è definita positiva se e
solo se g è definita positiva.

Osservazione 4.1.2. D’ora in poi useremo la convenzione di Einstein sugli indici ripetuti: se lo stesso
indice appare due volte in una formula, una volta in basso e una volta in alto, supporremo sottintesa una
sommatoria su tutti i possibili valori di quell’indice. Per esempio, la (4.1.1) verrà scritta

g = ghk dxh ⊗ dxk,

sottintendendo la sommatoria su h e k che variano da 1 a n. Vale la pena avvertire che in alcuni testi si trova
scritto dxh dxk invece di dxh ⊗ dxk, e in particolare (dxj)2 invece di dxj ⊗ dxj . Infine, la matrice inversa
della matrice (ghk) sarà indicata con (ghk), in modo da avere

ghjg
jk = gkjgjh = δk

h,

dove δk
h è, come sempre, il delta di Kronecker.
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Esempio 4.1.1. Rn con la metrica euclidea. Identificando come al solito TpRn con Rn per ogni p ∈ Rn,
possiamo mettere su ciascuno spazio tangente il prodotto scalare canonico. In questo modo otteniamo una
metrica Riemanniana su Rn, detta metrica euclidea o metrica piatta su Rn, data da

g0 = δhk dxh ⊗ dxk = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn.

Usando le partizioni dell’unità e la metrica piatta è facile dimostrare l’esistenza di metriche Riemanniane
su qualsiasi varietà:

Proposizione 4.1.1: Ogni varietà M (di Hausdorff a base numerabile) ammette una metrica Riemanniana.

Dimostrazione: Sia {ρα} una partizione dell’unità subordinata a un atlanteA = {(Uα, ϕα)} di M . Su ciascun
aperto Uα introduciamo la metrica piatta gα indotta dal sistema di coordinate: se p ∈ Uα, e v = vj∂j,α

e w = wj∂j,α è la scrittura in coordinate locali di due vettori v, w ∈ TpM , allora poniamo gα
p (v, w) =

∑
j vjwj

(in altre parole, la matrice (gα
hk) è la matrice identica). Definiamo allora un campo tensoriale g ∈ T2(M) con

∀p ∈M gp =
∑
α

ρα(p)gα
p ,

dove in ciascun punto p ∈ M solo un numero finito di addendi sono diversi da zero. È facile verificare
(esercizio) che questa formula definisce una metrica Riemanniana su M , in quanto la somma di tensori
simmetrici definiti positivi è ancora un campo tensoriale simmetrico definito positivo.

Osservazione 4.1.3. Sia (ghk) la matrice che rappresenta una metrica Riemanniana g rispetto alla carta
locale (U, ϕ), e (g̃ij) la matrice che rappresenta g rispetto a un’altra carta locale (Ũ , ϕ̃). Ricordando la
(2.4.2) e la formula che mostra come cambia la matrice che rappresenta un prodotto scalare cambiando base
otteniamo

(g̃ij) =
(

∂x

∂x̃

)T

· (ghk) ·
(

∂x

∂x̃

)
in U ∩ Ũ , dove il · indica il prodotto di matrici. In altre parole abbiamo

g̃ij =
∂xh

∂x̃i

∂xk

∂x̃j
ghk.

In particolare,

det(g̃ij) =
[
det

(
∂x

∂x̃

)]2

det(ghk). (4.1.2)

Osservazione 4.1.4. Sia (U, ϕ) una carta locale in una varietà Riemanniana (M, g). Se applichiamo il
procedimento di Gram-Schmidt al riferimento locale {∂1, . . . , ∂n} otteniamo un riferimento locale ortonor-
male {E1, . . . , En}. Attenzione: di solito però non è possibile trovare una carta locale (U, ϕ) tale che il
riferimento {∂1, . . . , ∂n} sia ortonormale in U . Infatti, come vedremo nel paragrafo 6.1, questo è equivalente
a richiedere che la varietà Riemanniana sia piatta in U .

Descriviamo ora alcune costruzioni standard che si possono effettuare usando una metrica Riemanniana.
Cominciamo con la

Proposizione 4.1.2: Sia (M, g) una varietà Riemanniana orientabile, e fissiamo un’orientazione. Allora
esiste un’unica n-forma νg ∈ An(M) mai nulla tale che νg(E1, . . . , En) = 1 per ogni p ∈ M e ogni base
ortonormale positiva {E1, . . . , En} di TpM .

Dimostrazione: Sia A = {(Uα, ϕα)} un atlante orientato, e indichiamo con (gα
ij) la matrice che rappresenta g

nelle coordinate di ϕα. Sia poi B = {E1, . . . , En} una riferimento locale ortonormale positivo di TM
sopra U ; se poniamo dxh

α(Ek) = eh
k allora abbiamo Ek = eh

k∂h, e quindi det(eh
k) > 0 (perché B è positiva),

e gα
ije

i
hej

k = δhk (perché B è ortonormale), per cui√
det(gα

ij) det(eh
k) = 1. (4.1.3)



4.1 Definizioni 73

Supponiamo che esista una ν ∈ An(M) che soddisfa le ipotesi. Per ogni indice α esiste una fα ∈ C∞(Uα)
tale che ν|Uα = fα dx1

α ∧ · · · ∧ dxn
α. Ma allora

1 = ν(E1, . . . , En) = fα det(eh
k) =

fα√
det(gα

ij)
,

per cui necessariamente fα =
√

det(gα
ij), e ν è unica.

Viceversa, poniamo

νg|Uα =
√

det(gα
ij) dx1

α ∧ · · · ∧ dxn
α.

Questa formula definisce una n-forma globale: infatti su Uα ∩ Uβ (4.1.2) dà

√
det(gβ

ij) dx1
β ∧ · · · ∧ dxn

β = det

(
∂xh

α

∂xk
β

)√
det(gα

ij) det

(
∂xk

β

∂xh
α

)
dx1

α ∧ · · · ∧ dxn
α

=
√

det(gα
ij) dx1

α ∧ · · · ∧ dxn
α.

Chiaramente, νg non si annulla mai. Infine, νg è come richiesto: infatti, se B = {E1, . . . , En} è una base
ortonormale positiva di TpM con p ∈ Uα, (4.1.3) implica

νg(E1, . . . , En) =
√

det(gα
ij) det

(
dxh(Ek)

)
=

√
det(gα

ij) det(eh
k) = 1.

Definizione 4.1.2: Sia (M, g) una varietà Riemanniana orientabile. La n-forma νg ∈ An(M) è detta elemento
di volume Riemanniano di M .

Prtoseguiamo con altre costruzioni. Un prodotto scalare non degenere su uno spazio vettoriale V
permette di identificare V col suo duale V ∗. Analogamente, su una varietà Riemanniana abbiamo un
isomorfismo naturale [:TM → T ∗M definito in questo modo

∀v ∈ TpM v[ = gp(·, v) ∈ T ∗p M.

In coordinate locali, se v = vi∂i e g = (gij) allora

v[ = gijv
i dxj ,

cioè v[ = ωj dxj con ωj = gijv
i.

La mappa inversa sarà denotata da #: T ∗M → TM ; se ω = ωi dxi allora

ω# = gijωi ∂j ,

cioè ω# = vj∂j con vj = gijωi.

Osservazione 4.1.5. Il motivo della notazione musicale è che [ abbassa gli indici mentre # li alza.

Definizione 4.1.3: Sia (M, g) una varietà Riemanniana, e f ∈ C∞(M). Allora il gradiente di f è il campo
vettoriale gradf = (df)# ∈ T (M).

In coordinate locali,

gradf = gij ∂f

∂xj
∂i,

per cui su Rn con la metrica piatta recuperiamo il gradiente usuale.



74 Elementi di Geometria Differenziale, A.A. 2004/05⌈
Definizione 4.1.4: Sia X ∈ T (M) un campo vettoriale su una varietà Riemanniana (M, g). Allora il rotore

di X è la 2-forma differenziale rot X = dX[.

In particolare abbiamo
rot(gradf) = d

(
(df)#)[ = d(df) = O.

In coordinate locali, se X = Xk∂k allora

rotX =
∂(gikXi)

∂xj
dxj ∧ dxk =

∑
1≤j<k≤n

[
∂(gikXi)

∂xj
− ∂(gijX

j)
∂xk

]
dxj ∧ dxk.

Osservazione 4.1.6. Su R3, il fibrato
∧2 R3 è un fibrato banale di rango 3, per cui è isomorfo a TR3, che

è anch’esso un fibrato banale di rango 3. Per questo motivo nell’Analisi Matematica usuale il rotore di un
campo vettoriale (calcolato rispetto alla metrica piatta di R3) viene presentato come un campo vettoriale e
non come una 2-forma, per lo stesso motivo per cui il prodotto estero di due vettori in R3 viene presentato

come un vettore di R3 (il prodotto vettore: confronta l’Esercizio 1.3.19).
⌋

Come prevedibile, le applicazioni che conservano una metrica Riemanniana hanno un nome particolare.

Definizione 4.1.5: Sia H: (M, g) → (M̃, g̃) un’applicazione C∞ fra due varietà Riemanniane della stessa
dimensione. Diremo che H è un’isometria in p ∈M1 se per ogni v, w ∈ TpM1 si ha

g̃H(p)(dHp(v), dHp(w)
)

= gp(v, w).

Se H è un’isometria in p, il differenziale di H in p è invertibile, e quindi H è un diffeomorfismo di un intorno
di p con un intorno di H(p). Diremo che H è un’isometria locale in p ∈M se p ha un intorno U tale che H|U
sia un’isometria in ogni punto di U ; e che è un’isometria locale se lo è in ogni punto di M . Infine, diremo
che H è un’isometria se è un diffeomorfismo globale e un’isometria in ogni punto di M . Data una varietà
Riemanniana (M, g), indicheremo con Iso(M) il gruppo di tutte le isometrie di M con se stessa.

Definizione 4.1.6: Diremo che la varietà Riemanniana (M, g) è localmente isometrica alla varietà Rieman-
niana (M̃, g̃) se per ogni p ∈ M esiste un’isometria di un intorno di p in M con un aperto di M̃ . Infine,
diremo che (M, g) e (M̃, g̃) sono isometriche se esiste un’isometria globale fra (M, g) e (M̃, g̃).

Esercizio 4.1.2. Dimostra che un’applicazione H: (M, g)→ (M̃, g̃) di classe C∞ fra varietà Riemanniane è
un’isometria locale se e solo se è un’isometria in ogni punto di M .

Esercizio 4.1.3. Costruisci un esempio di un’isometria locale che non sia un’isometria.

Più in generale, un’immersione in una varietà Riemanniana induce una metrica Riemanniana anche
nella varietà di partenza.

Definizione 4.1.7: Sia F :M → N un’immersione, e g una metrica Riemanniana su N . Definiamo per ogni
p ∈M un prodotto scalare (F ∗g)p su TpM ponendo

∀v, w ∈ TpM (F ∗g)p(v, w) = gF (p)

(
dFp(v), dFp(w)

)
.

È facile verificare (esercizio) che F ∗g è una metrica Riemanniana su M , detta metrica indotta da g tramite F ,
o metrica pullback.

Esempio 4.1.2. Se ι:M → N è una sottovarietà di una varietà Riemanniana (N, g), la metrica indotta ι∗g
verrà a volte indicata con g|S . Dunque ogni sottovarietà di una varietà Riemanniana è a sua volta una
varietà Riemanniana con la metrica indotta; per esempio, questo vale per le sottovarietà di Rn considerato
con la metrica piatta.

Abbiamo visto (Teorema 2.5.6) che ogni varietà può essere realizzata come sottovarietà chiusa di un
qualche RN , per N abbastanza grande, e quindi eredita una metrica Riemanniana indotta dalla metrica piatta
di RN . Viene allora naturale chiedersi se in questo modo è possibile ottenere tutte le varietà Riemanniane.
La risposta, positiva, è il famoso Teorema di Nash:
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Teorema 4.1.3: (Nash, 1956) Ogni varietà Riemanniana ammette un embedding isometrico in RN , consi-
derato con la metrica piatta, per N abbastanza grande.

Esempio 4.1.3. Sia π: M̃ →M un rivestimento liscio, e supponiamo di avere una metrica Riemanniana g
su M . Un rivestimento liscio è, in particolare, un diffeomorfismo locale, e quindi un tipo molto speciale di
immersione; possiamo quindi equipaggiare M̃ con la metrica indotta π∗g. È facile (esercizio) verificare che
π∗g è l’unica metrica Riemanniana su M̃ che rende π un’isometria locale.

Esempio 4.1.4. Sia π: M̃ → M di nuovo un rivestimento liscio, ma supponiamo stavolta di avere una
metrica Riemanniana g̃ su M̃ . Non è detto che esista una metrica Riemanniana g su M che rende π
un’isometria locale. Infatti, supponiamo che g esista, e sia F : M̃ → M̃ un automorfismo del rivestimento,
cioè un’applicazione continua tale che π ◦ F = π; nota che F è automaticamente C∞ (perché?). Allora per
ogni p̃ ∈ M̃ e ogni v, w ∈ Tp̃M̃ si deve avere

g̃p̃(v, w) = gπ(p̃)

(
dπp̃(v), dπp̃(w)

)
= gπ(F (p̃))

(
dπF (p̃)(dFp̃(v)), dπF (p̃)(dFp̃(w))

)
= g̃F (p̃)

(
dFp̃(v), dFp̃(w)

)
,

cioè F dev’essere un’isometria per g̃. Viceversa, supponiamo che ogni automorfismo del rivestimento sia
un’isometria, e che il gruppo degli automorfismi del rivestimento agisca in maniera transitiva sulle fibre
(ipotesi quest’ultima equivalente a richiedere che il rivestimento sia normale, cioè tale che π∗

(
π1(M̃, p̃)

)
sia

un sottogruppo normale di π1

(
M, π(p̃)

)
per un qualsiasi p̃ ∈ M̃); allora non è difficile dimostrare (esercizio)

che esiste un’unica metrica Riemanniana g su M per cui π risulta essere un’isometria locale: è sufficiente
per ogni p ∈M e v, w ∈ TpM porre

gp(v, w) = g̃p̃(ṽ, w̃),

dove p̃ ∈ M̃ e ṽ, w̃ ∈ Tp̃M̃ sono tali che π(p̃) = p, dπp̃(ṽ) = v e dπp̃(w̃) = w.

Usando la nozione di metrica indotta possiamo esprimere in maniera concisa quando un’immersione
conserva la metrica Riemanniana:

Definizione 4.1.8: Un’immersione (embedding) F : (M, gM ) → (N, gN ) fra varietà Riemanniane è un’immer-
sione (embedding) isometrica se F ∗gN = gM , dove F ∗gN è la metrica indotta su M appena definita.

Esercizio 4.1.4. Costruisci due varietà Riemanniane (M, g) e (M̃, g̃) tali che (M, g) è localmente isometrica
a (M̃, g̃) ma (M̃, g̃) non è localmente isometrica a (M, g).

Concludiamo questo paragrafo definendo, più in generale, la nozione di metrica Riemanniana su un
fibrato vettoriale.

Definizione 4.1.9: Una metrica lungo le fibre su un fibrato vettoriale π:E →M è l’assegnazione per ogni punto
p ∈M di un prodotto scalare definito positivo 〈· , ·〉p:Ep×Ep → R tale che la funzione p 7→ 〈σ(p), τ(p)〉p sia
di classe C∞ per ogni coppia di sezioni σ, τ ∈ E(M).

Una volta data una metrica Riemanniana su M otteniamo automaticamente metriche lungo le fibre su
tutti i fibrati tensoriali Th

k M :

Proposizione 4.1.4: Sia (M, g) una varietà Riemanniana, e h, k ∈ N. Allora esiste un’unica metrica lungo
le fibre di Th

k M tale che se {E1, . . . , En} è un riferimento locale ortonormale per TM e {ω1, . . . , ωn} è il suo
riferimento duale, allora {Ei1⊗· · ·⊗Eih

⊗ωj1⊗· · ·⊗ωjk} forma un riferimento locale ortonormale per Th
k M .

Dimostrazione: Sia (gij) la matrice che rappresenta g in una qualche carta locale (U, ϕ), e prendiamo due
elementi F = F i1...ih

j1...jk
∂i1 ⊗ · · ·⊗∂ih

⊗ dxj1 ⊗ · · ·⊗ dxjk , G = Gi1...ih
j1...jk

∂i1 ⊗ · · ·⊗∂ih
⊗ dxj1 ⊗ · · ·⊗ dxjk ∈ Th

k U .
Allora ponendo

〈F, G〉 = gj1s1 · · · gjkskgi1r1 · · · gihrh
F i1...ih

j1...jk
Gr1...rh

s1...sk

è facile verificare (esercizio) che otteniamo una metrica lungo le fibre che soddisfa le condizioni richieste.
Siccome data una base esiste un unico prodotto scalare rispetto a cui detta base è ortonormale, la metrica
cos̀ı ottenuta è l’unica possibile.
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Esercizio 4.1.5. Dimostra che la metrica lungo le fibre cos̀ı ottenuta coincide con quella che si otterrebbe
applicando la Proposizione 1.2.1 alla metrica Riemanniana data su ciascun spazio tangente.

In particolare, data una metrica Riemanniana su M otteniamo una metrica lungo le fibre di T ∗M , e la
Proposizione 1.2.1.(iv) ci dice che le applicazioni bemolle e diesis sono allora delle isometrie rispetto a queste
metriche. Possiamo verificarlo anche in coordinate locali: infatti,

〈ω#, η#〉 = ghkgihωig
kjηj = gijωiηj = 〈ω, η〉,

e analogamente si vede che
〈v[, w[〉 = 〈v, w〉.

4.2 Esempi

In questo paragrafo descriveremo alcuni esempi importanti di varietà Riemanniane.

Esempio 4.2.1. La sfera. Sia Sn
R la sfera di raggio R > 0 e centro l’origine in Rn+1. La metrica indotta

dalla metrica euclidea di Rn è detta metrica sferica. Vogliamo calcolare i coefficienti gij della metrica sferica
rispetto alle coordinate sferiche introdotte nell’Esempio 2.1.11. Il riferimento locale di TpS

n
R indotto dalle

coordinate sferiche è composto dai campi vettoriali locali

∂

∂θj
= R sin θj+1 · · · sin θn

[
cos θj

j−1∑
l=0

cos θl sin θl+1 · · · sin θj−1 ∂

∂xl+1
− sin θj ∂

∂xj+1

]
,

per j = 1, . . . , n, dove (x1, . . . , xn+1) sono le coordinate di Rn+1, e dove abbiamo posto per conven-
zione θ0 ≡ 0. Quindi otteniamo

gij =
{

R2(sin θi+1 · · · sin θn)2 se i = j,
0 se i 6= j;

in particolare, la matrice (gij) è diagonale.

Esempio 4.2.2. Sia π:Sn → Pn(R) il rivestimento universale dello spazio proiettivo. Allora combinando
gli Esempi 4.1.4 e 4.2.1 otteniamo una metrica Riemanniana sullo spazio proiettivo.

Una caratteristica interessante della sfera è che è localmente conformemente piatta (anche se, come
vedremo, non è affatto piatta).

Definizione 4.2.1: Due metriche Riemanniane g1 e g2 su una varietà M sono dette conformi se esiste una
funzione f ∈ C∞(M) sempre positiva tale che g2 = fg1. Due varietà Riemanniane (M1, g1) e (M2, g2) sono
dette conformemente equivalenti se esiste un diffeomorfismo F :M1 →M2, detto equivalenza conforme, tale
che F ∗g2 sia conforme a g1. Diremo che (M1, g1) è localmente conforme a (M2, g2) se per ogni p ∈ M1

esistono un intorno U ⊆ M1 di p e un diffeomorfismo con l’immagine F :U → M2 tale che F ∗g2|F (U) sia
conforme a g1|U . Infine, diremo che (M, g) è localmente conformemente piatta se è localmente conforme
a Rn con la metrica piatta, dove n = dimM .

Proposizione 4.2.1: Sn
R è localmente conformemente piatta.

Dimostrazione: Sia N = (0, . . . , 0, R) ∈ Sn
R il polo nord, e indichiamo con ϕN :Sn

R \ {N} → Rn ⊂ Rn+1 la
proiezione stereografica dal polo nord descritta nell’Esempio 2.1.10; vogliamo dimostrare che ϕN è un’equi-
valenza conforme.

Indichiamo con gR la metrica Riemanniana su Sn
R, e con g0 la metrica euclidea su Rn; basta far vedere

che (ϕ−1
N )∗gR e g0 sono conformi. Preso x ∈ Rn e v = vj∂j ∈ TxRn dobbiamo calcolare

(ϕ−1
N )∗gR(v, v) = gR

(
d(ϕ−1

N )x(v), d(ϕ−1
N )x(v)

)
=

∥∥d(ϕ−1
N )x(v)

∥∥2
.
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Ora,

d(ϕ−1
N )x(v) = vj ∂(ϕ−1

N )h

∂xj
∂h =

2R2

‖x‖2 + R2
v − 4R2〈v, x〉

(‖x‖2 + R2)2
(xh∂h −R∂n+1);

quindi

(ϕ−1
N )∗gR(v, v) =

4R4

(‖x‖2 + R2)2
‖v‖2,

cioè

(ϕ−1
N )∗gR =

4R4

(‖x‖2 + R2)2
g0,

per cui (ϕ−1
N )∗gR è conforme alla metrica euclidea, come voluto. Infine, usando la proiezione stereografica

rispetto al polo sud S = −N si conclude la dimostrazione che Sn
R è localmente conformemente piatta.

Esempio 4.2.3. Lo spazio iperbolico. Introduciamo ora un altro esempio importante di varietà Rieman-
niana, in tre incarnazioni diverse.

(a) L’iperboloide. Sia Un
R = {x ∈ Rn+1 | (xn+1)2−‖x′‖2 = R2, xn+1 > 0} la falda superiore dell’iperboloide

ellittico, dove x′ = (x1, . . . , xn) ∈ Rn. Su Un
R introduciamo il campo tensoriale simmetrico non-degenere

g1
R = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn − dxn+1 ⊗ dxn+1;

dimostreremo fra un attimo che g1
R è effettivamente definita positiva su TUn

R, per cui è effettivamente
una metrica Riemanniana.

(b) La palla di Poincaré. Sia Bn
R = {x ∈ Rn | ‖x‖ < R} la palla aperta di raggio R in Rn. Su Bn

R poniamo
la metrica

g2
R =

4R4

(R2 − ‖x‖2)2 (dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn).

(c) Il semispazio superiore di Poincaré. Sia Hn
R = {x ∈ Rn | xn > 0} il semispazio superiore in Rn. Su Hn

R

poniamo la metrica

g3
R =

R2

(xn)2
(dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn).

Le ultime due metriche sono chiaramente conformi alla metrica euclidea, per cui Bn
R e Hn

R sono localmente
conformemente piatte. In realtà questo vale anche per Un

R, in quanto

Proposizione 4.2.2: Le varietà Riemanniane (Un
R, g1

R), (Bn
R, g2

R) e (Hn
R, g3

R) sono isometriche.

Dimostrazione: Cominciamo costruendo un’isometria F :Un
R → Bn

R. Dato S = (0, . . . , 0,−R) ∈ Rn+1

e x ∈ Un
R, sia F (x) ∈ Rn ⊂ Rn+1 il punto d’intersezione fra Bn

R e la retta da S a x. Si verifica subito
che

F (x) =
R

R + xn+1
x′ ∈ Bn

R,

e che

F−1(p) =
(

2R2p

R2 − ‖p‖2 , R
R2 + ‖p‖2
R2 − ‖p‖2

)
.

Vogliamo dimostrare che F ∗g2
R = g1

R. Per far ciò ricordiamo (Proposizione 2.5.5) che v ∈ TxUn
R se e solo

se xn+1vn+1 = 〈x′, v′〉; inoltre,

dFx(v) =
R

R + xn+1

(
v′ − vn+1

R + xn+1
x′

)
.
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Quindi

F ∗g2
R(v, v) = g2

R

(
dFx(v), dFx(v)

)
=

4R4(
R2 − ‖F (x)‖2

)2 ‖dFx(v)‖2

=
4(

1− ‖x′‖2
(R+xn+1)2

)2

R2

(R + xn+1)2

∥∥∥∥v′ − vn+1

R + xn+1
x′

∥∥∥∥2

= ‖v′‖2 − 2vn+1

R + xn+1
〈x′, v′〉+ |vn+1|2

(R + xn+1)2
‖x′‖2

= ‖v′‖2 − |vn+1|2 = g1
R(v, v),

come voluto.
Costruiamo ora un diffeomorfismo G: Bn

R → Hn
R imitando la trasformata di Cayley di una variabile

complessa:

G(p) =
(

2R2p′

‖p′‖2 + (pn −R)2
, R

R2 − ‖p′‖2 − |pn|2
‖p′‖2 + (pn −R)2

)
,

dove stavolta p′ = (p1, . . . , pn−1) ∈ Rn−1. L’inversa è data da

G−1(q) =
(

2R2q′

‖q′‖2 + (qn + R)2
, R
‖q′‖2 + |qn|2 −R2

‖q′‖2 + (qn + R)2

)
,

e un conto analogo al precedente mostra che G∗g3
R = g2

R.

Definizione 4.2.2: Una qualunque varietà Riemanniana isometrica a una delle tre varietà Riemanniane della
proposizione precedente è detta spazio iperbolico di dimensione n.

Vedremo in seguito (nel paragrafo 6.4) che Rn con la metrica piatta, le sfere e gli spazi iperbolici sono le
uniche (a meno di isometrie) varietà Riemanniane semplicemente connesse di curvatura sezionale costante.
Per farlo, ci servirà il seguente

Esempio 4.2.4. Gli elementi del gruppo ortogonale O(n + 1) sono ovviamente delle isometrie di Sn
R.

Inoltre,O(n + 1) agisce transitivamente sulle basi ortonomali in TSn
R. In altre parole, per ogni p, p̃ ∈ Sn

R

e basi ortonormali {Ej} di TpS
n
R e {Ẽj} di Tp̃S

n
R esiste A ∈ O(n + 1) tale che A(p) = p̃ e dAp(Ej) = Ẽj

per j = 1, . . . , n. Infatti, è sufficiente far vedere che per ogni p ∈ Sn
R e ogni base ortonormale {Ej} di TpS

n
R

esiste A ∈ O(n + 1) che manda il polo nord N = (0, . . . , 0, R) in p e la base canonica {e1, . . . , en} di TNSn
R

in {Ej}. Ma infatti sia {e1, . . . , en, N/R} che {E1, . . . , En, p/‖p‖} sono basi ortonormali di Rn+1, per cui
esiste un’unica A ∈ O(n + 1) che manda la prima nella seconda (e dAN = A, in quanto A è lineare). Nel
paragrafo 6.4 faremo vedere che, come conseguenza di questo fatto, Iso(Sn

R) = O(n + 1).

Esercizio 4.2.1. Sia O(n, 1) il gruppo delle trasformazioni lineari di Rn+1 che conserva g1
R considerata come

forma quadratica su Rn+1, e indichiamo con O+(n, 1) il sottogruppo che manda Un
R in sé. Dimostra che

gli elementi di O+(n, 1) sono isometrie di Un
R, e che O+(n, 1) agisce transitivamente sulle basi ortonormali

di TUn
R.⌈
Concludiamo questo paragrafo parlando di metriche Riemanniane su gruppi di Lie.

Definizione 4.2.3: Una metrica Riemanniana g su un gruppo di Lie G è invariante a sinistra (rispettivamente,
invariante a destra) se L∗hg = g (rispettivamente, R∗hg = g) per ogni h ∈ G, cioè se tutte le traslazioni
sinistre (destre) sono delle isometrie. Una metrica Riemanniana invariante sia a sinistra che a destra è detta
bi-invariante.

Sia G un gruppo di Lie. Se scegliamo arbitrariamente un prodotto scalare definito positivo 〈· , ·〉e
sull’algebra di Lie g, otteniamo (perché?) una metrica Riemanniana invariante a sinistra ponendo

∀h ∈ G, ∀v, w ∈ ThG 〈v, w〉h =
〈
(dLh−1)h(v), (dLh−1)h(w)

〉
e
.
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In maniera analoga si ottengono metriche Riemanniane invarianti a destra, ed è chiaro che tutte le metriche
Riemanniane invarianti a sinistra o a destra si ricavano in questo modo.

Esercizio 4.2.2. Dimostra che su un gruppo di Lie compatto G esiste sempre una metrica Riemanniana
bi-invariante seguendo la traccia seguente:
(a) Dimostra che l’unico omomorfismo continuo f :G→ R∗ è la costante 1.
(b) Sia ν ∈ An(G) una n-forma invariante a sinistra, cioè tale che L∗hν = ν per ogni h ∈ G. Dimostra che ν

è anche invariante a destra. (Suggerimento: per ogni h ∈ G, la n-forma R∗hν è invariante a sinistra, per
cui R∗hν = f(h)ν; verifica che f :G→ R∗ è un omomorfismo di gruppi.)

(c) Dimostra che esiste una n-forma di volume invariante a sinistra su G.
(d) Sia 〈· , ·〉 una metrica Riemanniana invariante a sinistra su G, e sia ν una n-forma di volume invariante

a sinistra su G. Dimostra che ponendo

〈〈v, w〉〉g =
∫

G

〈(dRx)gv, (dRx)gw〉gx dν

dove g ∈ G e v, w ∈ TgG, si ottiene una metrica Riemanniana bi-invariante su G.

Definizione 4.2.4: Se θ:G×M →M è un’azione di un gruppo di Lie G su una varietà Riemanniana M tale
che θg è un’isometria per ogni g ∈ G, diremo che G agisce per isometrie su M .

Dunque se G agisce fedelmente per isometrie su una varietà Riemanniana M allora G può essere pensato
come un sottogruppo del gruppo Iso(M) di tutte le isometrie di M . A dire il vero, lo stesso gruppo Iso(M)
è un gruppo di Lie e l’applicazione g 7→ θg è sempre di classe C∞, grazie ai seguenti due teoremi:

Teorema 4.2.3: Siano G e H due gruppi di Lie, e F :G → H un omomorfismo continuo di gruppi. Allora
F è automaticamente di classe C∞.

Teorema 4.2.4: (Myers, Steenrod) Sia M una varietà Riemanniana. Allora il gruppo Iso(M) ammette una
struttura di gruppo di Lie tale che l’applicazione naturale (F, p) 7→ F (p) sia un’azione di Iso(M) su M .

Definizione 4.2.5: Diremo che una varietà Riemanniana M è omogenea se Iso(M) agisce in modo transitivo.
Diremo che M è isotropa in un punto p ∈M se il sottogruppo di isotropia Iso(M)p agisce in modo transitivo
sui vettori unitari in TpM , dove Iso(M)p agisce su TpM tramite l’applicazione (F, v) 7→ dFp(v).

Osservazione 4.2.1. Se M è omogenea, e isotropa in un punto, allora è isotropa in ogni punto.

⌋

4.3 Connessioni

L’obiettivo di questo paragrafo è trovare un modo per derivare campi vettoriali definiti lungo una curva. Il
problema è che i valori del campo vettoriale appartengono a spazi vettoriali diversi, per cui non è possibile
scrivere un rapporto incrementale. Storicamente, questo problema venne risolto introducendo una tecnica
(il trasporto parallelo) per confrontare spazi tangenti in punti diversi; noi invece faremo il percorso inverso,
definendo prima cosa vuol dire derivare campi vettoriali e deducendo poi il concetto di trasporto parallelo.

La formalizzazione moderna del concetto di derivazione di campi vettoriali è data dalla definizione di
connessione.

Definizione 4.3.1: Sia π:E →M un fibrato vettoriale su una varietà M . Una connessione su E è un’applica-
zione ∇: T (M)× E(M)→ E(M), scritta (X, V ) 7→ ∇XV , tale che
(a) ∇XV è C∞(M)-lineare in X: per ogni X1, X2 ∈ T (M), V ∈ E(M), e f , g ∈ C∞(M) si ha

∇fX1+gX2V = f∇X1V + g∇X2V ;

(b) ∇XV è R-lineare in V : per ogni X ∈ T (M), V1, V2 ∈ E(M), e a, b ∈ R si ha

∇X(aV1 + bV2) = a∇XV1 + b∇XV2;
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(c) ∇ soddisfa un’identità di Leibniz: per ogni X ∈ T (M), V ∈ E(M), e f ∈ C∞(M) si ha

∇X(fV ) = f∇XV + (Xf)V.

La sezione ∇XV è detta derivata covariante di V lungo X. Infine, una connessione su TM verrà chiamata
connessione lineare, o semplicemente connessione su M .

Esempio 4.3.1. Sia E = M × Rr un fibrato banale sulla varietà M . Ogni sezione V ∈ E(M) è della
forma V = V jEj per opportune V j ∈ C∞(M), dove {E1, . . . , Er} è il riferimento globale di E ottenuto
ponendo Ej(p) = (p, ej) per ogni p ∈ M , dove {e1, . . . , er} è la base canonica di Rr. In altre parole, una
sezione del fibrato banale di rango r è essenzialmente una r-upla di funzioni differenziabili. Possiamo allora
definire la connessione piatta su E ponendo

∇XV = X(V j)Ej .

Si verifica subito che è effettivamente una connessione.

Usando la connessione piatta e le partizioni dell’unità è facile definire connessioni su qualsiasi fibrato:

Proposizione 4.3.1: Su qualsiasi fibrato vettoriale π: E →M esiste sempre una connessione.

Dimostrazione: Scegliamo un atlante {(Uα, ϕα)} di M che banalizza E, con banalizzazioni locali date da
χα:π−1(Uα)→ Uα×Rr, e sia {ρα} una partizione dell’unità subordinata al ricoprimento {Uα}. Su ciascun Uα

definiamo una connessione ∇α ponendo

∀X ∈ T (Uα) ∀V ∈ E(Uα) ∇α
XV = χ−1

α

(
∇0

Xχα(V )
)
,

dove ∇0 è la connessione piatta su Uα × Rr. Incolliamo ora le ∇α definendo

∀X ∈ T (M) ∀V ∈ E(M) ∇XV =
∑
α

ρα

(
∇α

X|Uα
V |Uα

)
.

Le proprietà (a) e (b) della Definizione 4.3.1 sono chiaramente soddisfatte. Per la proprietà (c) abbiamo

∇X(fV ) =
∑
α

ρα∇α
X|Uα

(fV |Uα) =
∑
α

ρα

(
f∇α

X|Uα
V |Uα + X(f)V |Uα

)
= f∇XV +

(∑
α

ρα

)
X(f)V = f∇XV + X(f)V,

e quindi ∇ è una connessione.

Osservazione 4.3.1. In generale, la somma di connessioni (o il prodotto di uno scalare per una connes-
sione) non è una connessione, in quanto la proprietà (c) non viene conservata. Invece, la combinazione affine
di connessioni è una connessione: se ∇1, . . . ,∇k sono connessioni su un fibrato E e µ1, . . . .µk ∈ R sono tali
che µ1 + · · ·+ µk = 1, allora si verifica facilmente che µ1∇1 + · · ·+ µk∇k è ancora una connessione.

Facciamo ora vedere che in realtà ∇XV (p) dipende solo dal valore di X in p ∈M e dal comportamento
di V in un intorno di p (o, più precisamente, solo da X(p) e dal comportamento di V ristretto a una curva
tangente a X(p) in p):

Lemma 4.3.2: Sia π: E →M un fibrato vettoriale, e ∇: T (M)× E(M)→ E(M) una connessione.

(i) Se X, X̃ ∈ T (M) e V , Ṽ ∈ E(M) sono tali che X(p) = X̃(p) e V ≡ Ṽ in un intorno di p ∈M allora si
ha ∇XV (p) = ∇X̃ Ṽ (p).

(ii) Per ogni aperto U ⊆ M esiste un’unica connessione ∇U : T (U) × E(U) → E(U) su E|U tale che per
ogni X ∈ T (M), V ∈ E(M) e p ∈ U si abbia

∇U
X|U V |U (p) = ∇XV (p).
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(iii) Se X ∈ T (M) e V , Ṽ ∈ E(M) sono tali che esiste una curva σ: (−ε, ε)→M con σ(0) = p, σ′(0) = X(p)
e V ◦ σ = Ṽ ◦ σ allora ∇XV (p) = ∇X Ṽ (p).

Dimostrazione: Prima di tutto dimostriamo che se V ≡ O in un intorno U di p allora ∇XV (p) = O per
ogni X ∈ T (M). Sia g ∈ C∞(M) tale che g(p) = 1 e g|M\U ≡ 0 (vedi il Corollario 2.3.2). Allora gV ≡ O,
per cui ∇X(gV ) = ∇X(0 · gV ) = 0∇X(gV ) ≡ O e quindi

O = ∇X(gV )(p) = g(p)∇XV (p) + (Xg)(p)V (p) = ∇XV (p).

Dunque se V , Ṽ ∈ E(M) sono tali che V ≡ Ṽ in un intorno di p, abbiamo V − Ṽ ≡ O in un intorno di p, e
quindi ∇XV (p) = ∇X Ṽ (p) quale che sia X ∈ T (M).

Dimostriamo analogamente che se X ≡ O in un intorno U di p allora ∇XV (p) = O per ogni V ∈ E(M).
Infatti, se g ∈ C∞(M) è la stessa funzione di prima si ha gX ≡ O, per cui ∇gXV = ∇0gXV = 0∇gXV ≡ O
e quindi

O = ∇gXV (p) = g(p)∇XV (p) = ∇XV (p).

Da questo segue, come prima, che se X ≡ X̃ in un intorno di p allora ∇XV (p) = ∇X̃V (p) quale che
sia V ∈ E(M).

In particolare, quindi, il valore di ∇XV in p dipende solo dal comportamento di X e V in un intorno
di p, per cui se una connessione ∇U come in (ii) esiste allora è unica. Ma possiamo usare questa proprietà
anche per definire ∇U . Infatti, per ogni p ∈ U scegliamo, usando la Proposizione 2.3.1, una χp ∈ C∞(M)
tale che χp ≡ 1 in un intorno di p e supp(χp) ⊂ U . Allora per ogni X ∈ T (U) il campo vettoriale χpX,
esteso a zero fuori da U , è un campo vettoriale globale che coincide con X in un intorno di p. In modo
analogo, per ogni V ∈ E(U) possiamo considerare χpV come una sezione globale di E che coincide con V in
un intorno di p. Quindi se definiamo ∇U : T (U)× E(U)→ E(U) ponendo

∇U
XV (p) = ∇χpX(χpV )(p)

per quanto visto otteniamo una connessione ben definita (cioè indipendente dalla scelta delle χp), e abbiamo
dimostrato (ii).

Possiamo ora completare la dimostrazione di (i), facendo vedere che in realtà ∇XV (p) dipende solo dal
valore di X in p (e dal comportamento di V in un intorno di p). Al solito, basta far vedere che X(p) = O
implica ∇XV (p) = O per ogni V ∈ E(M). Sia (U, ϕ) una carta locale centrata in p, e scriviamo X|U = Xj∂j ,
con Xj(p) = 0 per j = 1, . . . , n in quanto X(p) = O. Per quanto detto, ha senso calcolare ∇∂j

V (p), e si ha

∇XV (p) = ∇Xj∂j
V (p) = Xj(p)∇∂j V (p) = O.

Per dimostrare (iii), basta far vedere che se V ◦ σ ≡ O allora ∇XV (p) = O. Sia {E1, . . . , Er} un
riferimento locale per E su un intorno U di p, e scriviamo V = V jEj . Da V (p) = V

(
σ(0)

)
= O otteniamo

V 1(p) = · · · = V r(p) = 0. Per quanto detto ha senso calcolare ∇XEj(p), e si ha

∇XV (p) = ∇X(V jEj)(p) = V j(p)∇XEj(p) + X(p)(V j)Ej(p) =
d(V j ◦ σ)

dt
(0)Ej(p) = O.

Per non appesantire le notazioni, nel seguito indicheremo con ∇ e non con ∇U la connessione indotta
sull’aperto U ⊆M .

Sia (U, ϕ) una carta locale che banalizza E, e {E1, . . . , Er} un riferimento locale su U . Allora si deve
poter scrivere

∇∂j Eh = Γk
jhEk,

per opportune funzioni Γk
jh ∈ C∞(U).
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Definizione 4.3.2: Le funzioni Γk
ij sono dette simboli di Christoffel della connessione rispetto al dato riferi-

mento locale.

I simboli di Christoffel determinano completamente la connessione: infatti se X ∈ T (U) e V ∈ E(U),
localmente possiamo scrivere X = Xj∂j e V = V hEh, e abbiamo

∇XV = Xj∇∂j
V = [Xj∂j(V k) + Γk

jhXjV h]Ek. (4.3.1)

In particolare, i simboli di Christoffel della connessione piatta su un fibrato banale sono identicamente nulli.
Il Lemma 4.3.2.(iii) ci dice che per calcolare la derivata covariante di una sezione basta conoscerne il

comportamento lungo una curva. Questo ci suggerisce la seguente:

Definizione 4.3.3: Sia π:E → M un fibrato vettoriale e σ: I → M una curva in M , dove I ⊆ R è un
intervallo. Una sezione di E lungo σ è un’applicazione V : I → E di classe C∞ tale che V (t) ∈ Eσ(t) per
ogni t ∈ I. Lo spazio vettoriale delle sezioni di E lungo σ verrà indicato con E(σ), o con T (σ) se E = TM .
Una sezione V ∈ E(σ) è estendibile se esiste un intorno U del sostegno di σ e una sezione Ṽ ∈ E(U) tale
che V (t) = Ṽ

(
σ(t)

)
per ogni t ∈ I.

Esempio 4.3.2. Il vettore tangente a una curva σ′(t) = dσ(d/dt) è un tipico esempio di sezione di TM
lungo una curva. Inoltre, se σ(t1) = σ(t2) ma σ′(t1) 6= σ′(t2) allora σ′ non è estendibile.

Esercizio 4.3.1. Sia π: E → M un fibrato vettoriale, e σ: I → M una curva di classe C∞. Sia t0 ∈ I tale
che σ′(t0) 6= O. Dimostra che esiste un intervallo aperto U ⊆ I contenente t0 tale che ogni X ∈ E(σ|U ) è
estendibile.

Il vero significato del Lemma 4.3.2.(iii) è contenuto nella

Proposizione 4.3.3: Sia ∇ una connessione su un fibrato vettoriale π:E → M . Allora per ogni curva
σ: I →M esiste un unico operatore D: E(σ)→ E(σ) soddisfacente le seguenti proprietà:

(i) è R-lineare:

∀a, b ∈ R D(aV1 + bV2) = aDV1 + bDV2;

(ii) soddisfa una regola di Leibniz:

∀f ∈ C∞(I) D(fV ) = f ′V + fDV ;

(iii) se V ∈ E(σ) è estendibile, e Ṽ è un’estensione di V , si ha

DV (t) = ∇σ′(t)Ṽ .

Dimostrazione: Cominciamo con l’unicità. Dato t0 ∈ I, un ragionamento analogo a quello usato per dimo-
strare il Lemma 4.3.2.(i) mostra che DV (t0) dipende solo dai valori di V in un intorno di t0. Possiamo allora
usare un riferimento locale e coordinate locali, scrivere V (t) = V h(t)Eh

(
σ(t)

)
, σ′(t0) = (σj)′(t0)∂j

(
σ(t0)

)
e

usare le proprietà di D per ottenere

DV (t0) = (V h)′(t0)Eh

(
σ(t0)

)
+ V h(t0)D(Eh ◦ σ)(t0)

= (V h)′(t0)Eh

(
σ(t0)

)
+ V h(t0)∇σ′(t0)Eh

(
σ(t0)

)
=

[
(V k)′(t0) + Γk

jh

(
σ(t0)

)
(σj)′(t0)V h(t0)

]
Ek

(
σ(t0)

)
,

(4.3.2)

dove abbiamo usato il fatto che Eh◦σ è estendibile in un intorno di t0; quindi D è univocamente determinato.
Per l’esistenza, se il sostegno di σ è contenuto in una sola carta locale banalizzante E, possiamo

usare (4.3.2) per definire D, ed è facile verificare che soddisfa le condizioni richieste. In generale, co-
priamo σ(I) con carte locali banalizzanti E, e usiamo (4.3.2) per definire un operatore D su ciascuna di
queste carte. Nelle intersezioni, abbiamo due operatori che soddisfano (i)–(iii); per l’unicità, questi due
operatori devono coincidere, e quindi abbiamo definito D globalmente.
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Definizione 4.3.4: L’operatore D definito sopra è detto derivata covariante lungo la curva σ: I →M . Se t ∈ I
e V ∈ E(σ), scriveremo spesso DtV invece di DV (t).

Esercizio 4.3.2. Sia ∇ una connessione su un fibrato vettoriale π:E → M , e σ: I → M una curva di
classe C∞; indichiamo con D: E(σ) → E(σ) la derivata covariante lungo σ. Sia poi h:J → I di classe C∞,
dove J ⊆ R è un intervallo, e indichiamo con D̃ la derivata covariante lungo la curva σ̃ = σ ◦ h. Dimostra
che per ogni X ∈ E(σ) si ha X ◦ h ∈ E(σ ◦ h) e

D̃(X ◦ h) = h′(DX ◦ h).

Se E = M × Rr è il fibrato banale, ∇ è la connessione piatta, e σ: I → M è una curva, si vede subito
che V ∈ E(σ) soddisfa DV ≡ O se e solo se V è costante, cioè se V (t) è sempre lo stesso vettore di Rr che si
sposta parallelamente lungo la curva σ. Questo fatto suggerisce la seguente definizione:

Definizione 4.3.5: Sia ∇ una connessione su un fibrato vettoriale π:E → M , e σ: I → M una curva. Una
sezione V ∈ E(σ) è detta parallela se DV ≡ O.

La condizione di parallelismo è localmente un sistema lineare di equazioni differenziali ordinarie: infatti
(4.3.2) implica che DV ≡ O in una carta banalizzante E se e solo se

dV k

dt
+ (Γk

jh ◦ σ)(σj)′V h = 0. (4.3.3)

Citiamo a questo punto il Teorema di esistenza e unicità delle soluzioni di un sistema di equazioni differenziali
ordinarie lineari:

Teorema 4.3.4: Dati un intervallo I ⊆ R, un punto t0 ∈ I, un punto x0 ∈ Rn, e un’applicazione
A: I →Mn,n(R) di classe C∞, il problema di Cauchy

dV

dt
(t) = A(t)V (t)

V (t0) = x0

(4.3.4)

ammette una e una sola soluzione V : I → Rn di classe C∞.

Questo teorema implica che, posto I = [a, b] e p = σ(a), per ogni v ∈ Ep esiste un unico V ∈ E(σ)
parallelo tale che V (a) = v. Infatti, essendo σ(I) compatto, possiamo trovare un numero finito di carte
(U1, ϕ1), . . . , (Ur, ϕr) banalizzanti E che coprono il sostegno di σ; possiamo anche supporre che si ab-
bia Uj∩σ(I) = σ([sj , tj ]) per j = 1, . . . , r, con a = s1 < s2 < t1 < s3 < t2 < · · · < sr < tr−1 < tr = b. Allora
il Teorema 4.3.4 applicato a (4.3.3) ci fornisce un’unica sezione parallela V1 lungo σ|[s1,t1] tale che V1(a) = v.
Analogamente, il Teorema 4.3.4 ci fornisce un’unica sezione parallela V2 lungo σ|[s2,t2] tale che V2(t1) = V1(t1);
in particolare, l’unicità implica che V1 e V2 coincidono in [s2, t1], definendo quindi un’unica sezione parallela
lungo σ|[s1,t2]. Procedendo in questo modo troviamo un’unica sezione V parallela lungo σ tale che V (a) = v.
Questo ci permette di introdurre la seguente

Definizione 4.3.6: Sia ∇ una connessione su un fibrato vettoriale π:E → M , e σ: [0, 1] → M una curva.
Poniamo p0 = σ(0) e p1 = σ(1). Dato v ∈ Ep0 , l’unica sezione V ∈ E(σ) parallela lungo σ tale che
V (0) = v ∈ Ep0 è detta estensione parallela di v lungo σ. Il trasporto parallelo lungo σ (relativo a ∇) è
l’applicazione σ̃: Ep0 → Ep1 definita da σ̃(v) = V (1), dove V ∈ E(σ) è l’estensione parallela di v ∈ Ep0 .

Lemma 4.3.5: Sia ∇ una connessione su un fibrato vettoriale π: E → M , e σ: [0, 1] → M una curva.
Poniamo p0 = σ(0) e p1 = σ(1). Allora il trasporto parallelo lungo σ è un isomorfismo fra Ep0 e Ep1 .

Dimostrazione: Siccome (4.3.3) è un sistema lineare di equazioni differenziali ordinarie, la soluzione dipende
linearmente dalle condizioni iniziali, e quindi σ̃ è un’applicazione lineare.

Poniamo ora σ−(t) = σ(1 − t), e sia D− la derivata covariante lungo σ−; inoltre per ogni V ∈ E(σ)
poniamo V −(t) = V (1− t), in modo da avere V − ∈ E(σ−). La formula (4.3.2) mostra subito che

D−t V − = −D1−tV ;

in particolare, V − è parallelo lungo σ− se e solo se V è parallelo lungo σ. Questo vuol dire in particolare
che se V è l’estensione parallela di v ∈ Ep0 , allora V − è l’estensione parallela di V (1) = σ̃(v) ∈ Ep1 , per
cui σ̃− = σ̃−1, e σ̃ è un isomorfismo.
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Osservazione 4.3.2. Il trasporto parallelo è definito anche lungo curve C∞ a tratti; basta fare la compo-
sizione dei trasporti paralleli lungo i singoli pezzi lisci.

Osservazione 4.3.3. Un fatto utile è che dati una curva σ: I → M , un fibrato vettoriale π:E → M di
rango r e una connessione su E esiste sempre un riferimento locale parallelo lungo σ, cioè una r-upla di
sezioni E1, . . . , Er ∈ E(σ) parallele lungo σ tali che {E1(t), . . . , Er(t)} sia una base di Eσ(t) per ogni t ∈ I.
Infatti, basta prendere un qualsiasi t0 ∈ I, una qualsiasi base {e1, . . . , er} di Eσ(t0), ed estendere parallela-
mente e1, . . . , er lungo σ.

Partendo da una connessione abbiamo costruito il trasporto parallelo. Possiamo fare anche il viceversa:

Proposizione 4.3.6: Sia ∇ una connessione su un fibrato vettoriale π:E →M , σ: I →M una curva in M ,
e t0 ∈ I. Allora

∀V ∈ E(σ) Dt0V =
d

dt
σ̃−1

t

(
V (t)

)∣∣∣∣
t=t0

,

dove σ̃t:Eσ(t0) → Eσ(t) è il trasporto parallelo lungo σ, e D è la derivata covariante lungo σ. In particolare,
se σ(t0) = p e σ′(t0) = v ∈ TpM allora

∀V ∈ E(M) ∇vV =
d

dt
σ̃−1

t

(
V

(
σ(t)

))∣∣∣∣
t=t0

.

Dimostrazione: Sia {E1, . . . , Er} un riferimento locale parallelo lungo σ (ottenuto prendendo una base qual-
siasi di Ep e trasportandola parallelamente lungo σ), e scriviamo V (t) = V j(t)Ej(t). Allora

σ̃−1
t

(
V (σ(t))

)
= V j(t)Ej(t0) =⇒ d

dt
σ̃−1

t

(
V

(
σ(t)

))∣∣∣∣
t=t0

=
dV j

dt
(t0)Ej(t0).

D’altra parte, abbiamo

Dt0(V
jEj) =

dV j

dt
(t0)Ej(t0) + V j(t0)Dt0Ej =

dV j

dt
(t0)Ej(t0),

perché gli Ej sono paralleli lungo σ.

Nel seguito lavoreremo principalmente con connessioni lineari, cioè con connessioni definite sul fibrato
tangente TM . Una delle caratteristiche delle connessioni lineari è che inducono una connessione su ciascun
fibrato tensoriale:

Proposizione 4.3.7: Sia ∇ una connessione lineare su una varietà M . Allora esiste un unico modo di
definire per ogni h, k ∈ N una connessione su Th

k M , ancora indicata con ∇, in modo da soddisfare le
seguenti condizioni:

(i) su TM la connessione ∇ coincide con la connessione lineare data;
(ii) su T 0M = C∞(M) si ha ∇X(f) = X(f);
(iii) se Kj ∈ T hj

kj
(M), per j = 1, 2 e X ∈ T (M) si ha

∇X(K1 ⊗K2) = (∇XK1)⊗K2 + K1 ⊗ (∇XK2);

(iv) ∇ commuta con le contrazioni.

Inoltre, se η ∈ A1(M) e X, Y ∈ T (M) si ha

(∇Xη)(Y ) = X
(
η(Y )

)
− η(∇XY ). (4.3.5)

Infine, se p ∈M , v ∈ TpM , e K ∈ T h
k (M) si ha

∇vK =
d

dt

[
T (σ̃t)−1

(
K

(
σ(t)

))]∣∣∣∣
t=0

∈ Th
k (M)p, (4.3.6)
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dove σ: (−ε, ε) → M è una curva in M con σ(0) = p e σ′(0) = v, e T (σ̃t) è l’isomorfismo fra (Th
k M)p

e (Th
k M)σ(t) indotto dal trasporto parallelo lungo σ come descritto nell’Osservazione 1.2.3.

Dimostrazione: Cominciamo a verificare l’unicità. Se ∇ soddisfa (i)–(iv) allora abbiamo

X
(
η(Y )

)
= ∇X

(
η(Y )

)
= ∇XC11(Y ⊗ η)

= C11∇X(Y ⊗ η) = C11(∇XY ⊗ η + Y ⊗∇Xη)
= ∇Xη(Y ) + η(∇XY ),

per cui (4.3.5) è una conseguenza. Questo vuol dire che la connessione ∇ su T ∗M è univocamente deter-
minata da (i)–(iv); conoscendola su TM e su C∞(M) la (iii) implica che ∇ è univocamente determinata su
qualsiasi Th

k M . Per l’esattezza, otteniamo la seguente formula:

(∇XK)(ω1, . . . , ωh, Y1, . . . , Yk)

= X
(
K(ω1, . . . , ωh, Y1, . . . , Yk)

)
−

h∑
r=1

K(ω1, . . . ,∇Xωr, . . . , ωh, Y1, . . . , Yk)−
k∑

s=1

K(ω1, . . . , ωh, Y1, . . . ,∇XYs, . . . , Yk).

(4.3.7)

Infatti, ci basta dimostrarla per campi tensoriali della forma K = X1 ⊗ · · · ⊗Xh ⊗ η1 ⊗ · · · ⊗ ηk. Allora la
proprietà (iii) e la formula (4.3.5) implicano

∇XK(ω1, . . . , ωh, Y1, . . . , Yk)

=
h∑

r=1

(X1 ⊗ · · · ⊗ ∇XXr ⊗ · · · ⊗Xh ⊗ η1 ⊗ · · · ⊗ ηk)(ω1, . . . , ωh, Y1, . . . , Yk)

+
k∑

s=1

(X1 ⊗ · · · ⊗Xh ⊗ η1 ⊗ · · · ⊗ ∇Xηs ⊗ · · · ⊗ · · · ⊗ ηk)(ω1, . . . , ωh, Y1, . . . , Yk)

=
h∑

r=1

ω1(X1) · · ·ωr(∇XXr) · · ·ωh(Xh)η1(Y1) · · · ηk(Yk)

+
k∑

s=1

ω1(X1) · · ·ωh(Xh)η1(Y1) · · · ∇Xηs(Ys) · · · ηk(Yk)

=
h∑

r=1

ω1(X1) · · ·
[
X

(
ωr(Xr)

)
− (∇Xωr)(Xr)

]
· · ·ωh(Xh)η1(Y1) · · · ηk(Yk)

+
k∑

s=1

ω1(X1) · · ·ωh(Xh)η1(Y1) · · ·
[
X

(
ηs(Ys)

)
− ηs(∇XYs)

]
· · · ηk(Yk)

= X
(
K(ω1, . . . , ωh, Y1, . . . , Yk)

)
−

h∑
r=1

K(ω1, . . . ,∇Xωr, . . . , ωh, Y1, . . . , Yk)−
k∑

s=1

K(ω1, . . . , ωh, Y1, . . . ,∇XYs, . . . , Yk),

e ci siamo.
Viceversa, usiamo la (4.3.5) per definire ∇ su T ∗M . Prima di tutto,

∇Xη(fY ) = X(f)η(Y ) + fX
(
η(Y )

)
− η

(
f∇XY + X(f)Y

)
= f∇Xη(Y ),

per cui la Proposizione 3.2.1 ci assicura che ∇Xη è effettivamente una 1-forma. Siccome ∇Xη è chiaramente
C∞(M)-lineare in X, e per ogni Y ∈ T (M) si ha

∇X(fη)(Y ) = X
(
fη(Y )

)
− fη(∇XY ) = [X(f)η + f∇Xη](Y ),
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otteniamo effettivamente una connessione su T ∗M . Analogamente, definiamo ∇ su ciascun Th
k M tramite

la (4.3.7); si verifica facilmente (esercizio) che si ottiene una connessione che possiede le proprietà volute.
Rimane da dimostrare che ∇ è data anche da (4.3.6). Ricordando la Proposizione 4.3.6, basta verificare

che il trasporto parallelo indotto da∇ su ciascun T h
k M (che indichiamo provvisoriamente con σ̂t) coincide con

l’isomorfismo T (σ̃t). Scegliamo un riferimento locale {v1, . . . , vn} di TM parallelo lungo σ, e sia {v1, . . . , vn}
il riferimento duale di T ∗M . Nota che anche i vj sono paralleli rispetto a ∇: infatti la (4.3.5) implica

(Dvj)
(
vi

)
= σ′

(
vj(vi)

)
− vj(Dvi) = O

per ogni i e j, per cui Dvj = O. Questo implica che

σ̂t

(
vi(0)

)
= vi(t) = T (σ̃t)

(
vi(0)

)
e σ̂t

(
vj(0)

)
= vj(t) = T (σ̃t)

(
vj(0)

)
per ogni 1 ≤ i, j ≤ n. Ma allora la proprietà (iii) e la definizione di T (σ̃t) implicano che

σ̂t

(
vi1(0)⊗ · · · ⊗ vih

(0)⊗ vj1(0)⊗ · · · ⊗ vjk(0)
)

= vi1(t)⊗ · · · ⊗ vih
(t)⊗ vj1(t)⊗ · · · ⊗ vjk(t)

= T (σ̃t)
(
vi1(0)⊗ · · · ⊗ vih

(0)⊗ vj1(0)⊗ · · · ⊗ vjk(0)
)
,

per ogni 1 ≤ i1, . . . , jk ≤ n, e quindi σ̂t ≡ T (σ̃t), come volevamo.

Ora, prendiamo K ∈ T h
k (M). Siccome ∇ è C∞(M)-lineare in X, l’applicazione

(ω1, . . . , ωh, Y1, . . . , Yk, X) 7→ ∇XK(ω1, . . . , ωh, Y1, . . . , Yk) (4.3.8)

è C∞(M)-multilineare in tutte le variabili, e quindi (Proposizione 3.2.1) definisce un campo tensoriale.

Definizione 4.3.7: Se K ∈ T h
k (M) allora il campo tensoriale ∇K ∈ T h

k+1(M) definito da (4.3.8) si chiama
derivata covariante totale di K.

Esempio 4.3.3. Se f ∈ C∞(M) allora ∇f = df . Infatti per ogni X ∈ T (M) si ha

df(X) = X(f) = ∇Xf = (∇f)(X).

Nel paragrafo 4.1 usando una metrica Riemanniana abbiamo definito il gradiente di una funzione.
Usando la derivata covariante totale possiamo generalizzare altri due concetti dell’Analisi classica:

Definizione 4.3.8: Se f ∈ C∞(M) il campo tensoriale ∇2f = ∇(∇f) ∈ T2(M) è detto Hessiano di f .

Definizione 4.3.9: La derivata covariante totale di un campo vettoriale X ∈ T (M) è un campo tensoriale di
tipo

(
1
1

)
. Quindi possiamo definire la funzione div(X) = C11(∇X), che è detta divergenza di X.

Calcoliamo l’espressione in coordinate locali di Hessiano e divergenza. Se X, Y ∈ T (M) abbiamo

∇2f(X, Y ) = ∇(∇f)(X, Y ) =
(
∇Y (df)

)
(X) = Y

(
df(X)

)
− df(∇Y X) = Y

(
X(f)

)
−∇Y X(f). (4.3.9)

Quindi in coordinate locali

∇2f(∂i, ∂j) =
∂2f

∂xj∂xi
− Γk

ji

∂f

∂xk
.

In particolare, su Rn con la connessione piatta ritroviamo l’Hessiano usuale. Nota però che per connessioni
generali questo Hessiano non è simmetrico, in quanto non è detto che si abbia Γk

ji = Γk
ij .

Poi, (4.3.1) permette di stabilire che se X = Xh∂h allora

∇X = ∂k ⊗ (dXk + Γk
jhXh dxj),

per cui

div(X) =
∂Xk

∂xk
+ Γk

khXh,

(con sommatoria sottintesa sull’indice k), e di nuovo su Rn con la connessione piatta recuperiamo la solita
divergenza.

Esercizio 4.3.3. Sia ∇ una connessione sulla varietà M . Dato X ∈ T (M) e p ∈M , sia AX,p:TpM → TpM
l’applicazione lineare data da AX,p(v) = ∇vX. Dimostra che div(X)(p) = trAX,p.
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Esercizio 4.3.4. Indichiamo con L: T (M) × T (M) → T (M) la derivata di Lie LX(Y ) = [X, Y ]. Dimostra
che L non è una connessione, e che esistono due campi vettoriali X, Y ∈ T (R2) tali che X(O) = O
ma LXY (O) 6= O.⌈

Concludiamo questo paragrafo discutendo due altri modi di definire le connessioni.

Sia ∇: T (M)×E(M)→ E(M) una connessione su un fibrato vettoriale π:E →M . Sia {E1, . . . , Er} un
riferimento locale per E sopra un aperto U ⊆M . Allora possiamo definire una matrice ω = (ωk

j ) di 1-forme
su U ponendo

∀X ∈ T (U) ∇XEj = ωk
j (X)Ek;

sono 1-forme in quanto C∞(M)-lineari in X. Se U è il dominio di una carta locale, in coordinate locali
chiaramente abbiamo

ωk
j = Γk

ij dxi.

Definizione 4.3.10: Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π: E → M , e
{E1, . . . , Er} un riferimento locale per E su un aperto U . La matrice ω = (ωk

j ) di 1-forme su U appena
definita è detta matrice delle forme di connessione rispetto al dato riferimento locale.

Sia {Ẽ1, . . . , Ẽr} un altro riferimento locale per E sopra U . Allora deve esistere una matrice inverti-
bile A = (Ak

h) di funzioni C∞ su U tali che Ẽh = Ak
hEk. Se indichiamo con ω̃ = (ω̃h

i ) la matrice delle forme
di connessione rispetto a questo riferimento locale abbiamo

ω̃h
i (X)Ak

hEk = ω̃h
i (X)Ẽh = ∇XẼi = ∇X(Aj

iEj) = Aj
i∇XEj + X(Aj

i )Ej

= [Aj
iω

k
j (X) + dAk

i (X)]Ek.

In termini matriciali questo vuol dire ω̃ ·A = A · ω + dA, cioè

ω = A−1 · ω̃ ·A−A−1 · dA. (4.3.10)

Esercizio 4.3.5. Sia π: E → M un fibrato vettoriale. Supponiamo di avere una famiglia di riferimenti
locali {Eα} per E definiti su aperti {Uα} che ricoprono M , e di avere una famiglia di matrici di 1-forme {ωα},
con ωα definita su Uα, che soddisfano (4.3.10) sull’intersezione dei domini di definizione. Dimostra che esiste
un’unica connessione ∇ su E per cui le ωα siano le matrici delle forme di connesione rispetto ai riferimenti
locali Eα.

L’ultima interpretazione delle connessioni è in termini di sottofibrati orizzontali, e la presenteremo con
una serie di definizioni ed esercizi.

Definizione 4.3.11: Sia π: E → M un fibrato vettoriale di rango r. Il sottofibrato verticale V ⊂ TE è il
nucleo del differenziale di π, cioè V = ker(dπ). Siccome dπ:TE → TM , il fibrato verticale (che è un fibrato
vettoriale su E) ha rango r.

Dato p ∈ M e v ∈ Ep, indichiamo con jp:Ep → E l’inclusione, e con kv:Ep → Tv(Ep) la solita
identificazione canonica. Siccome π ◦ jp ≡ p, si ha dπ ◦ djp ≡ O, per cui

ιv = d(jp)v ◦ kv:Ep → Vv

è un isomorfismo fra Ep e lo spazio verticale Vv.

Definizione 4.3.12: Sia π:E → M un fibrato vettoriale. Se λ ∈ R, indichiamo con µλ:E → E la moltiplica-
zione per λ, cioè µλ(v) = λv. Inoltre, indichiamo con σ: E ⊕ E → E la somma σ(v1, v2) = v1 + v2.

Esercizio 4.3.6. Dimostra che Vµλ(v) = d(µλ)v(Vv) e che ιµλ(v) ◦ d(µλ)v = d(µλ)v ◦ ιv per ogni v ∈ E e
ogni λ ∈ R.

Esercizio 4.3.7. Dimostra che Vσ(v1,v2) = dσ(v1,v2)(Vv1⊕Vv2) e che ισ(v1,v2) ◦dσ(v1,v2) = dσ(v1,v2) ◦(ιv1⊕ιv2)
per ogni (v1, v2) ∈ E ⊕ E.
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Definizione 4.3.13: Sia π:E →M un fibrato vettoriale. Un sottofibrato orizzontale è un sottofibrato H ⊂ TE
tale che TE = H⊕V. Dato un sottofibrato orizzontaleH, indicheremo con κ:TE → V la proiezione associata.
Diremo che un sottofibrato orizzontale è lineare se κµλ(v) ◦d(µλ)v = d(µλ)v ◦κv per ogni v ∈ E e ogni λ ∈ R,
e κσ(v1,v2) ◦ dσ(v1,v2) = dσ(v1,v2) ◦ (κv1 ⊕ κv2) per ogni (v1, v2) ∈ E ⊕ E.

Esercizio 4.3.8. Dimostra che un sottofibrato orizzontale H è lineare se e solo se si ha Hµλ(v) = d(µλ)v(Hv)
per ogni v ∈ E e ogni λ ∈ R, e Hσ(v1,v2) = dσ(v1,v2)(Hv1 ⊕Hv2) per ogni (v1, v2) ∈ E ⊕ E.

Definizione 4.3.14: Sia π: E → M un fibrato vettoriale. Una k-forma a valori in E è una sezione del fi-
brato

∧k
M ⊗ E. Indicheremo con Ak(M ;E) lo spazio delle k-forme a valori in E.

Esercizio 4.3.9. Sia∇: T (M)×E(M)→ E(M) una connessione su un fibrato vettoriale π:E →M . Dimostra
che ∇ induce un’applicazione R-lineare D: E(M)→ A1(M ;E) tale che

D(fV ) = df ⊗ V + fDV (4.3.11)

per ogni f ∈ C∞(M) e ogni V ∈ E(M) ponendo DV (X) = ∇XV . Viceversa, dimostra che ogni applicazione
R-lineare D: E(M)→ A1(M ;E) che soddisfa (4.3.11) è indotta da un’unica connessione su E.

Esercizio 4.3.10. Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π:E → M .
Dati p ∈M e v ∈ Ep, siano V , Ṽ ∈ E(M) tali che V (p) = Ṽ (p) = v. Dimostra che

dṼp − ιv ◦DṼp = dVp − ιv ◦DVp:TpM → TvE.

Definizione 4.3.15: Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π:E → M . Per
ogni v ∈ E definiamo l’applicazione Θv: Tπ(v)M → TvE data da

Θp(X) = dVπ(v)(X)− ιv(∇XV )

per ogni X ∈ Tπ(v)M , dove V ∈ E(M) è una qualsiasi sezione tale che V
(
π(v)

)
= v. Il sottofibrato

orizzontale H∇ associato a ∇ è allora definito ponendo H∇v = Θv(Tπ(v)M) per ogni v ∈ E.

Esercizio 4.3.11. Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π:E → M .
Dimostra che H∇ è effettivamente un sottofibrato orizzontale, e che è lineare.

Definizione 4.3.16: Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale π:E → M , e sia
κ:TE → V la proiezione relativa. La connessione DH associata a H è l’applicazione DH: E(M)→ A1(M ;E)
definita da DHV = ι−1

V ◦ κV ◦ dV .

Esercizio 4.3.12. Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale π:E → M . Dimostra
che la connessione DH è un’applicazione R-lineare che soddisfa (4.3.11), per cui proviene da una connessione
su E, che indicheremo con ∇H.

Esercizio 4.3.13. Sia π:E →M un fibrato vettoriale. Dimostra che le corrispondenze ∇ 7→ H∇ e H 7→ ∇H
sono una inversa dell’altra, per cui abbiamo una corrispondenza biunivoca fra connessioni su E e sottofibrati

orizzontali lineari di TE.

⌋

4.4 La connessione di Levi-Civita

Connessioni su una varietà qualunque ne esistono a bizzeffe; ma lo scopo di questa sezione è mostrare come
sia possibile definire in modo canonico una connessione particolarmente utile su ogni varietà Riemanniana.

Definizione 4.4.1: Una connessione ∇ su una varietà Riemanniana (M, g) è compatibile con la metrica se

∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

per tutti gli X, Y , Z ∈ T (M).



4.4 La connessione di Levi-Civita 89

Proposizione 4.4.1: Sia ∇ una connessione su una varietà Riemanniana (M, g). Le seguenti proprietà sono
equivalenti:

(i) ∇ è compatibile con g;
(ii) ∇g ≡ O;
(iii) in un qualunque sistema di coordinate si ha

∂kgij = Γl
kiglj + Γl

kjgil;

(iv) per ogni coppia di campi vettoriali V e W lungo una curva σ abbiamo

d

dt
〈V, W 〉 = 〈DV, W 〉+ 〈V, DW 〉;

(v) per ogni coppia di campi vettoriali V e W paralleli lungo una curva σ il prodotto 〈V, W 〉 è costante;
(vi) il trasporto parallelo lungo una qualsiasi curva è un’isometria.

Dimostrazione: (i)⇐⇒(ii): per definizione,

∇g(Y, Z, X) = (∇Xg)(Y, Z) = X
(
〈Y, Z〉

)
− 〈∇XY, Z〉 − 〈Y,∇XZ〉,

e ci siamo.
(ii)⇐⇒(iii): fissato un sistema di coordinate si ha

∇g(∂i, ∂j , ∂k) = ∂k(〈∂i, ∂j〉)− 〈∇∂k
∂i, ∂j〉 − 〈∂i,∇∂k

∂j〉 = ∂k(gij)− Γl
kiglj − Γl

kjgil,

e ci siamo.
(i)=⇒(iv): Basta scrivere localmente V = V h∂h ◦ σ, W = W k∂k ◦ σ, e usare il fatto che

d

dt
〈∂h, ∂k〉σ = σ′(〈∂h, ∂k〉σ).

(iv)=⇒(v): se DV = DW ≡ O la (iv) implica che 〈V, W 〉 è costante.
(v)=⇒(vi): infatti la (v) dice esattamente che il trasporto parallelo conserva la metrica.
(vi)=⇒(i): scelto p ∈ M , sia σ una curva con σ(0) = p e σ′(0) = Xp. Fissiamo una base ortonormale

{v1, . . . , vn} di TpM ; per (vi) possiamo estendere ciascun vj a un campo vettoriale vj(t) parallelo lungo σ e
tale che {v1(t), . . . , vn(t)} sia una base ortonormale di Tσ(t)M per ogni t. Scriviamo Y

(
σ(t)

)
= Y h(t)vh(t)

e Z
(
σ(t)

)
= Zk(t)vk(t); allora

∇Xp
〈Y, Z〉 =

d

dt

〈
Y

(
σ(t)

)
, Z

(
σ(t)

)〉∣∣∣∣
t=0

=
d

dt

(
n∑

h=1

Y hZh

)∣∣∣∣∣
t=0

=
n∑

h=1

(
dY h

dt
(0)Zh(0) + Y h(0)

dZh

dt
(0)

)

=
〈

dY h

dt
(0)vh, Z(0)

〉
+

〈
Y (0),

dZh

dt
(0)vh

〉
= 〈D0Y, Z〉+ 〈Y, D0Z〉

= 〈∇Xp
Y, Z〉+ 〈Y,∇Xp

Z〉,

e ci siamo.⌈
Esercizio 4.4.1. Sia ∇ una connessione lineare su una varietà Riemanniana (M, g). Dimostra che ∇ è

compatibile con g se e solo se le 1-forme di connessione (ωi
j) rispetto a qualsiasi riferimento locale {E1, . . . , En}

di TM sono tali che
gjkωk

i + gikωk
j = dgij ,

dove gij = g(Ei, Ej), come al solito. In particolare, se ∇ è compatibile con la metrica allora la matrice (ωi
j)

rispetto a un riferimento locale ortonormale è necessariamente antisimmetrica.

⌋
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La compatibilità con la metrica non identifica univocamente una connessione, sfortunatamente:

Esercizio 4.4.2. Dimostra che se ∇ è una connessione compatibile con la metrica su una varietà Rieman-
niana (M, g), e A ∈ T 1

2 (M) è tale che

〈A(X, Y ), Z〉+ 〈Y, A(X, Z)〉 = 0 (4.4.1)

per ogni X, Y , Z ∈ T (M) allora ∇ + A è ancora una connessione compatibile con la metrica. Dimostra
inoltre che se ∇1 e ∇2 sono due connessioni compatibili con la metrica allora ∇1−∇2 è un campo tensoriale
di tipo

(
1
2

)
che soddisfa (4.4.1).

In un certo senso, un campo tensoriale che soddisfa (4.4.1) è antisimmetrico, il che fa sospettare che
una connessione compatibile con la metrica e che sia simmetrica in qualche senso dovrebbe essere unica. Il
concetto giusto di simmetria è rivelato dal

Lemma 4.4.2: Data una connessione lineare ∇ su una varietà M , definiamo τ : T (M) × T (M) → T (M)
ponendo

τ(X, Y ) = ∇XY −∇Y X − [X, Y ].

Allora τ è un campo tensoriale di tipo
(
1
2

)
.

Dimostrazione: Siccome τ(Y, X) = −τ(X, Y ), per far vedere che τ è un campo tensoriale di tipo
(
1
2

)
grazie

alla Proposizione 3.2.1.(ii) è sufficiente dimostrare che τ è C∞(M)-lineare nella prima variabile. Ma infatti

τ(fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ] = f∇XY − f∇Y X − Y (f)X − f [X, Y ] + Y (f)X = fτ(X, Y ).

Definizione 4.4.2: La torsione di una connessione ∇ su una varietà M è il campo tensoriale τ ∈ T 1
2 (M)

definito da
τ(X, Y ) = ∇XY −∇Y X − [X, Y ].

La connessione ∇ è detta simmetrica se τ ≡ O.

Esercizio 4.4.3. Dimostra che se ∇ è una connessione lineare di torsione τ allora ∇̃ = ∇ − 1
2τ è una

connessione lineare simmetrica.

Lemma 4.4.3: Sia ∇ una connessione su una varietà M . Allora le seguenti affermazioni sono equivalenti:

(i) ∇ è simmetrica;

(ii) i simboli di Christoffel rispetto a un qualsiasi sistema di coordinate sono simmetrici, cioè Γh
ij = Γh

ji;

(iii) l’Hessiano ∇2f è simmetrico per ogni f ∈ C∞(M).

Dimostrazione: (i)⇐⇒(ii): Fissiamo una carta locale, e scriviamo X = Xh∂h e Y = Y k∂k. Allora (4.3.1) ci
dà

τ(X, Y ) = XhY k[Γj
hk − Γj

kh]∂j ,

per cui τ(X, Y ) ≡ O per ogni X, Y ∈ T (M) se e solo se i simboli di Christoffel sono simmetrici.
(i)⇐⇒(iii): Grazie a (4.3.9) abbiamo

∇2f(X, Y )−∇2f(Y, X) = −[X, Y ](f)−∇Y X(f) +∇XY (f) = τ(X, Y )(f),

e ci siamo.

Esercizio 4.4.4. Trova una connessione lineare ∇ compatibile con una metrica Riemanniana g tale che
∇̃ = ∇− 1

2τ non sia compatibile con g, dove τ è la torsione di ∇.
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Esercizio 4.4.5. Sia ∇ una connessione lineare su una varietà M , {E1, . . . , En} un riferimento locale

di TM , {ϕ1, . . . , ϕn} il riferimento duale di T ∗M , e (ωi
j) la matrice delle 1-forme di connessione. Sia infine τ

la torsione di ∇, e definiamo τ j : T (M)× T (M)→ C∞(M) per j = 1, . . . , n tramite la formula

τ(X, Y ) = τ j(X, Y )Ej .

Dimostra che τ1, . . . , τn sono delle 2-forme locali (dette forme di torsione), e dimostra la prima equazione di
struttura di Cartan:

dϕj = ϕi ∧ ωj
i + τ j

per j = 1, . . . , n.

⌋
Il risultato che permette alla geometria Riemanniana di prendere davvero vita è il seguente:

Teorema 4.4.4: Su ogni varietà Riemanniana (M, g) esiste un’unica connessione∇ simmetrica e compatibile
con la metrica. Inoltre, ∇ soddisfa

〈∇XY, Z〉 =
1
2
{X〈Y, Z〉+ Y 〈Z, X〉 − Z〈X, Y 〉+ 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z, X], Y 〉} (4.4.2)

per ogni X, Y , Z ∈ T (M). In particolare, se {E1, . . . , En} è un riferimento locale ortonormale abbiamo

〈∇EiEj , Ek〉 =
1
2

{
〈[Ei, Ej ], Ek〉 − 〈[Ej , Ek], Ei〉+ 〈[Ek, Ei], Ej〉

}
, (4.4.3)

mentre i simboli di Christoffel di ∇ sono dati da

Γk
ij =

1
2
gkl

(
∂glj

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

)
. (4.4.4)

Dimostrazione: Cominciamo con l’unicità. Se ∇ è una connessione compatibile con g si deve avere

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,
Y 〈Z, X〉 = 〈∇Y Z, X〉+ 〈Z,∇Y X〉,
Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉.

Quindi se ∇ è anche simmetrica otteniamo

X〈Y, Z〉+ Y 〈Z, X〉 − Z〈X, Y 〉 = 〈∇XZ −∇ZX, Y 〉+ 〈∇Y Z −∇ZY, X〉+ 〈∇XY +∇Y X, Z〉
= −〈[Z, X], Y 〉+ 〈[Y, Z], X〉 − 〈[X, Y ], Z〉+ 2〈∇XY, Z〉,

e quindi ∇ è data da (4.4.2).
Viceversa, definiamo ∇: T (M)×T (M)→ T (M) tramite (4.4.2); dobbiamo verificare che otteniamo una

connessione simmetrica compatibile con la metrica. Iniziamo mostrando che il secondo membro di (4.4.2) è
C∞(M)-lineare in Z; infatti

〈∇XY, fZ〉 =
1
2
{X〈Y, fZ〉+ Y 〈fZ, X〉 − fZ〈X, Y 〉+ 〈[X, Y ], fZ〉 − 〈[Y, fZ], X〉+ 〈[fZ, X], Y 〉}

= f〈∇XY, Z〉+ 1
2
{X(f)〈Y, Z〉+ Y (f)〈Z, X〉 − Y (f)〈Z, X〉 −X(f)〈Z, Y 〉}

= f〈∇XY, Z〉.

Quindi 〈∇XY, ·〉 è una 1-forma, per cui ∇XY = 〈∇XY, ·〉# è effettivamente un campo vettoriale.
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Poi, ∇ è C∞(M)-lineare nel primo argomento:

〈∇fXY, Z〉 =
1
2

{
fX〈Y, Z〉+ Y 〈Z, fX〉 − Z〈fX, Y 〉+ 〈[fX, Y ], Z〉 − 〈[Y, Z], fX〉+ 〈[Z, fX], Y 〉

}
= f〈∇XY, Z〉+ 1

2

{
Y (f)〈Z, X〉 − Z(f)〈X, Y 〉 − Y (f)〈X, Z〉+ Z(f)〈X, Y 〉

}
= 〈f∇XY, Z〉,

come voluto. In modo analogo (esercizio) si verifica la formula di Leibniz. Controlliamo ora la compatibilità
con la metrica:

〈∇XY, Z〉+ 〈Y,∇XZ〉 =
1
2

{
X〈Y, Z〉+ Y 〈Z, X〉 − Z〈X, Y 〉+ 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z, X], Y 〉

}
+

1
2

{
X〈Z, Y 〉+ Z〈Y, X〉 − Y 〈X, Z〉+ 〈[X, Z], Y 〉 − 〈[Z, Y ], X〉+ 〈[Y, X], Z〉

}
= X〈Y, Z〉,

come desiderato. Infine è facile vedere (esercizio) che ∇ è anche simmetrica.
La (4.4.2) chiaramente implica la (4.4.3). Infine, siccome [∂h, ∂k] = O per ogni h, k = 1, . . . , n, abbiamo

gklΓk
ij = 〈∇∂i∂j , ∂l〉 =

1
2
(
∂i(gjl) + ∂j(gli)− ∂l(gij)

)
,

e la (4.4.4) segue.

Definizione 4.4.3: Sia M una varietà Riemanniana. L’unica connessione ∇ simmetrica e compatibile con la
metrica si dice connessione di Levi-Civita della varietà Riemanniana M .

Osservazione 4.4.1. Nella dimostrazione precedente abbiamo usato solo il fatto che 〈· , ·〉p fosse un pro-
dotto scalare non-degenere, e non che fosse definito positivo. Quindi è possibile definire una connessione di
Levi-Civita in varietà equipaggiate con un campo tensoriale g ∈ T2(M) simmetrico e non-degenere (cioè tale
che gp(v, w) = 0 per ogni w ∈ TpM implica v = O). Questo è utile, per esempio, in relatività generale.

Esempio 4.4.1. La connessione piatta è la connessione di Levi-Civita per la metrica euclidea di Rn.

Esempio 4.4.2. Sia M una varietà Riemanniana con connessione di Levi-Civita ∇M , e N una sottovarietà
di M . Se indichiamo con π:TM → TN la proiezione ortogonale (dove: per ogni p ∈ N consideriamo TpN
come sottospazio di TpM , e π|TpM :TpM → TpN è la proiezione ortogonale rispetto al prodotto scalare dato
dalla metrica su M), allora si verifica facilmente (esercizio) che ∇N : T (N)× T (N)→ T (N) data da

∀X, Y ∈ T (N) ∇N
XY = π(∇M

X Y )

è una connessione simmetrica, in quanto ∇M lo è. Inoltre, se mettiamo su N la metrica gN indotta da
quella di M , si vede subito (esercizio) che ∇N è compatibile con gN , e quindi ∇N è proprio la connessione
di Levi-Civita di N considerata con la metrica indotta.

Esercizio 4.4.6. Dimostra che se M è una superficie regolare di R3 equipaggiata con la metrica indotta
dalla metrica euclidea, allora i simboli di Christoffel introdotti nella teoria classica delle superfici coincidono
con quelli introdotti qui.

Una conseguenza immediata dell’unicità della connessione di Levi-Civita è la seguente

Proposizione 4.4.5: Sia F : (M, g)→ (M̃, g̃) un’isometria fra due varietà Riemanniane. Allora:

(i) F porta la connessione di Levi-Civita ∇ di M nella connessione di Levi-Civita ∇̃ di M̃ nel senso che

∀X, Y ∈ T (M) dF (∇XY ) = ∇̃dF (X)dF (Y );

(ii) se σ è una curva in M si ha

∀V ∈ T (σ) dF (DV ) = D̃
(
dF (V )

)
,
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dove D (rispettivamente, D̃) è la derivata covariante lungo la curva σ (rispettivamente, σ̃ = F ◦ σ) indotta
da ∇ (rispettivamente, ∇̃).

Dimostrazione: (i) Definiamo un’applicazione F ∗∇̃: T (M)× T (M)→ T (M) ponendo

∀X, Y ∈ T (M) (F ∗∇̃)XY = (dF )−1
(
∇̃dF (X)dF (Y )

)
.

Si vede subito che F ∗∇̃ è una connessione su M . Inoltre

〈(F ∗∇̃)XY, Z〉M + 〈Y, (F ∗∇̃)XZ〉M =
〈
(dF )−1

(
∇̃dF (X)dF (Y )

)
, Z

〉
M

+
〈
Y, (dF )−1

(
∇̃dF (X)dF (Z)

)〉
M

= 〈∇̃dF (X)dF (Y ), dF (Z)〉M̃ + 〈dF (Y ), ∇̃dF (X)dF (Z)〉M̃
= dF (X)

(
〈dF (Y ), dF (Z)〉M̃

)
= dF (X)

(
〈Y, Z〉M ◦ F−1

)
= X〈Y, Z〉M ,

per cui F ∗∇̃ è compatibile con la metrica. Infine

(F ∗∇̃)XY − (F ∗∇̃)Y X − [X, Y ] = (dF )−1
(
∇̃dF (X)dF (Y )− ∇̃dF (Y )dF (X)

)
− [X, Y ]

= (dF )−1
(
[dF (X), dF (Y )]

)
− [X, Y ]

= O,

(dove abbiamo usato l’Esercizio 3.3.3), per cui F ∗∇̃ è simmetrica. Il Teorema 4.4.4 implica allora F ∗∇̃ = ∇,
come voluto.

(ii) Se si definisce F ∗D̃: T (σ)→ T (σ) con

(F ∗D̃)V = (dF )−1
(
D̃dF (V )

)
,

l’unicità di D enunciata nella Proposizione 4.3.3 (assieme a F ∗∇̃ = ∇) implicano che F ∗D̃ = D, e ci siamo.

Esercizio 4.4.7. Sia F :M → N un’immersione globalmente iniettiva, e g una metrica Riemanniana su N .
Indichiamo con ∇ la connessione di Levi-Civita su N , e per ogni p ∈ M sia πp:TF (p)N → dFp(TpM) la
proiezione ortogonale. Definiamo F ∗∇: T (M)× T (M)→ T (M) ponendo

F ∗∇XY (p) = (dFp)−1
(
πp

(
∇dFp(X)dF (Y )

))
.

Dimostra che F ∗∇ è la connessione di Levi-Civita della metrica F ∗g su M .

Avendo a disposizione una connessione e una metrica possiamo introdurre la generalizzazione di un altro
concetto dell’Analisi classica. Per farlo ci serve un risultato di algebra lineare che lasciamo per esercizio.

Definizione 4.4.4: La traccia di una forma bilineare simmetrica S:V × V → R su uno spazio vettoriale V
dotato di un prodotto scalare definito positivo è definita da

tr(S) =
n∑

j=1

S(vj , vj), (4.4.5)

dove {v1, . . . , vn} è una qualunque base ortonormale di V .

Esercizio 4.4.8. Verifica che il secondo membro di (4.4.5) non dipende dalla base ortonormale scelta, per
cui la traccia di una forma bilineare simmetrica è ben definita.

Definizione 4.4.5: Sia M una varietà Riemanniana, e f ∈ C∞(M). Diremo Laplaciano di f la funzione

∆f = tr(∇2f),

dove ∇ è la connessione di Levi-Civita di f .
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Esercizio 4.4.9. Dimostra che
∆f = div grad(f),

e che in coordinate locali si ha

∆f =
1√
G

∂

∂xk

(√
G gjk ∂f

∂xj

)
,

dove G = det(gij).

Concludiamo questo capitolo determinando la connessione di Levi-Civita in alcuni casi particolarmente
significativi. Nell’Esempio 4.4.1 abbiamo trovato la connessione di Levi-Civita per Rn; vediamo adesso
l’aspetto delle connessioni di Levi-Civita sulla sfera e sullo spazio iperbolico.

Esempio 4.4.3. Sia gR la metrica sferica su Sn
R ⊂ Rn+1 (Esempio 4.2.1); vogliamo calcolare i simboli di

Christoffel della connessione di Levi-Civita di gR rispetto alle coordinate sferiche. Conservando le notazioni
introdotte nell’Esempio 4.2.1 abbiamo

∂gij

∂θl
=

{
2R2(sin θl+1 · · · sin θn)2

cos θl

sin θl
se i = j < l,

0 altrimenti.

Quindi (4.4.4) ci dà

Γk
ij =


cos θmax{i,j}

sin θmax{i,j} se k = i < j o k = j < i,

−1
2
(sin θi+1 · · · sin θk−1)2 sin(2θk) se i = j < k,

0 altrimenti.

In particolare, per la sfera unitaria in R3 otteniamo

Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = Γ2
22 = 0, Γ1

12 = Γ1
21 = ctgθ2, Γ2

11 = −1
2

sin(2θ2).

Esempio 4.4.4. Calcoliamo i simboli di Christoffel per la connessione di Levi-Civita sullo spazio iperbolico
(Esempio 4.2.3). Cominciamo con Bn

R; una base dello spazio tangente è data da {∂/∂x1, . . . , ∂/∂xn}, per
cui

gij =
4R4

(R2 − ‖x‖2)2 δij ,
∂gij

∂xk
=

16R4xk

(R2 − ‖x‖2)3 δij ,

e quindi

Γk
ij =



2xj

R2 − ‖x‖2 se i = k,

2xi

R2 − ‖x‖2 se j = k 6= i,

− 2xk

R2 − ‖x‖2 se i = j 6= k,

0 altrimenti.
Nel caso di Hn

R, la base dello spazio tangente è la stessa, ma

gij =
R2

(xn)2
δij ,

∂gij

∂xk
= − 2R2

(xn)3
δijδkn,

per cui

Γk
ij =


1
xn

se i = j < k = n,

− 1
xn

se i = k < j = n o j = k < i = n o i = j = k = n,

0 altrimenti.
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Esercizio 4.4.10. Calcola i simboli di Christoffel della metrica g1
R di Un

R rispetto alle coordinate locali

ϕ(u1, . . . , un) =
(
u1, . . . , un,

√
R2 + ‖u‖2

)
.

⌈
Esempio 4.4.5. Sia G un gruppo di Lie su cui abbiamo messo una metrica invariante a sinistra g, e

indichiamo con g l’algebra di Lie, e con ∇ la connessione di Levi-Civita. Prima di tutto, è facile verificare
che ∇ è invariante a sinistra, cioè che

∇XY (h) = dLh

(
∇dLh−1 (X)dLh−1(Y )(e)

)
(4.4.6)

per ogni X, Y ∈ T (G) e h ∈ G. Infatti, se usiamo il lato destro di (4.4.6) per definire una nuova connes-
sione ∇̃, si vede subito che ∇̃ è (effettivamente una connessione ed è) simmetrica e compatibile con la metrica,
per cui coincide con ∇. Se {X1, . . . , Xn} è una base di g, estendiamo gli Xj a campi vettoriali invarianti a
sinistra. Chiaramente otteniamo un riferimento globale per TG, e ogni campo vettoriale su G (non neces-
sariamente invariante a sinistra) si scrive come combinazione lineare a coefficienti in C∞(G) di X1, . . . , Xn.
Quindi per determinare ∇ ci basta vedere quanto fa applicata agli Xj ; e per l’invarianza a sinistra ci basta
effettuare questo calcolo nell’identità. Ora, l’invarianza a sinistra di g implica che gij = 〈Xi, Xj〉 è costante
su G; quindi la (4.4.2) ci dice che

〈∇Xi
Xj , Xk〉e =

1
2
(
glkcl

ij − glic
l
jk + gljc

l
ki

)
, (4.4.7)

dove le cl
ij sono le costanti di struttura di g rispetto alla base {X1, . . . , Xn} (vedi la Definizione 3.3.10), e

abbiamo determinato ∇.

Esempio 4.4.6. Sia G = GL(n, R) il gruppo delle matrici invertibili a coefficienti reali. Prendiamo come
base di gl(n, R) la base canonica {Eij}, dove Eij è la matrice con 1 al posto (i, j) e 0 altrove, cioè

(Eij)rs = δirδjs.

Abbiamo visto (Esempio 3.3.2) che le costanti di struttura sono

c
(rs)
(ij)(hk) = δirδksδjh − δrhδsjδik.

Mettiamo su gl(n, R) il prodotto scalare rispetto a cui la base canonica {Eij} è ortonormale, ed estendiamolo
in modo da avere una metrica Riemanniana invariante a sinistra (che non è la metrica euclidea). Allora
la (4.4.7) ci fornisce la connessione di Levi-Civita rispetto a questa metrica:

〈∇Eij
Ehk, Ers〉 =

1
2
[c(rs)

(ij)(hk) − c
(ij)
(hk)(rs) + c

(hk)
(rs)(ij)]

=
1
2
[δirδkjδjh − δhrδjsδik − δhiδsjδkr + δirδjkδhs + δhrδjkδis − δihδksδjr].

⌋
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Capitolo 5

Geodetiche

5.1 La mappa esponenziale

Il concetto chiave che ci permetterà di penetrare nella struttura geometrica delle varietà Riemanniane è
quello di geodetica.

Definizione 5.1.1: Sia∇ una connessione lineare su una varietà M . Una geodetica per∇ è una curva σ: I →M
tale che Dσ̇ ≡ 0. In altre parole σ è una geodetica se e solo se il vettore tangente σ̇ è parallelo lungo σ.

Osservazione 5.1.1. Il simbolo σ̇ verrà usato per indicare il vettore tangente a σ anche quando σ non è
parametrizzata rispetto alla lunghezza d’arco. In altre parole, σ′ e σ̇ sono la stessa cosa.

Se (U, ϕ) è una carta locale e scriviamo σj = ϕj ◦ σ, da (4.3.3) vediamo che la curva σ è una geodetica
se e solo se soddisfa il sistema di equazioni differenziali ordinarie

σ̈k + (Γk
ij ◦ σ) σ̇iσ̇j = 0. (5.1.1)

Si tratta di un sistema di equazioni differenziali ordinarie del secondo ordine. Possiamo trasformarlo in un
sistema di equazioni differenziali ordinarie del primo ordine introducendo delle variabili ausiliarie v1, . . . , vn

per rappresentare le componenti di σ̇ (vedi più oltre la dimostrazione della Proposizione 5.1.2 per il significato
geometrico di questa operazione), in modo da ridurci al sistema equivalente del primo ordine{

v̇k + (Γk
ij ◦ σ) vivj = 0,

σ̇k = vk.
(5.1.2)

In particolare:

Proposizione 5.1.1: Sia ∇ una connessione lineare su una varietà M . Allora per ogni p ∈ M e v ∈ TpM
esistono un intervallo I ⊆ R con 0 ∈ I e una geodetica σ: I → M tale che σ(0) = p e σ̇(0) = v. Inoltre,
se σ̃: Ĩ →M è un’altra geodetica soddisfacente le stesse condizioni allora σ e σ̃ coincidono in I ∩ Ĩ.

Dimostrazione: Il Teorema 3.3.3 applicato a (5.1.2) ci dice che esistono ε > 0 e una curva σ: (−ε, ε)→ U ⊂M
che sia soluzione di (5.1.1) con condizioni iniziali σ(0) = p e σ̇(0) = v. Inoltre, se σ̃ è un’altra geodetica che
soddisfa le stesse condizioni iniziali allora σ e σ̃ coincidono in un qualche intorno di 0. Sia I0 il massimo
intervallo contenuto in I ∩ Ĩ su cui σ e σ̃ coincidono. Se I0 è strettamente contenuto in I ∩ Ĩ, esiste un
estremo t0 di I0 contenuto in I ∩ Ĩ, e possiamo applicare il solito Teorema 3.3.3 con condizioni iniziali σ(t0)
e σ̇(t0). Ma allora σ e σ̃ coincidono anche in un intorno di t0, contro la definizione di I0. Quindi I0 = I ∩ Ĩ.

Definizione 5.1.2: Sia ∇ una connessione lineare su una varietà M , p ∈ M e v ∈ TpM . Indicheremo
con σv: I → M l’unica geodetica massimale (che esiste per la proposizione precedente) tale che σv(0) = p
e σ̇v(0) = v.

Vogliamo ora studiare come dipendono le geodetiche dalle condizioni iniziali. Per far ciò, mostriamo come
associare alle geodetiche delle traiettorie di un opportuno campo vettoriale definito sul fibrato tangente TM .

Ogni curva liscia σ: I → M definisce la curva dei vettori tangenti σ̇: I → TM . L’equazione (5.1.1) è in
realtà un’affermazione su quest’ultima curva:
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Proposizione 5.1.2: Sia ∇ una connessione lineare su una varietà M . Allora esiste un unico campo
vettoriale G ∈ T (TM) le cui traiettorie siano tutte e sole le curve σ̇: I → TM con σ: I →M geodetica in M .

Dimostrazione: Cominciamo col riscrivere (5.1.1) in una forma più utile ai nostri scopi. Come visto nell’E-
sempio 3.2.2, una carta locale (U, ϕ) per M determina una carta locale (TU, ϕ̃) di TM ponendo

ϕ̃(v) = (x1, . . . , xn; v1, . . . , vn) ∈ ϕ(U)× Rn

per ogni p ∈ U e v ∈ TpM , dove (x1, . . . , xn) = ϕ(p) e v = vj∂j |p. Sia σ: I → M una curva con sostegno
contenuto in U , in modo da poter scrivere ϕ ◦ σ = (σ1, . . . , σn). Allora la curva σ̇ è rappresentata in queste
coordinate locali da ϕ̃ ◦ σ̇ = (σ1, . . . , σn; σ̇1, . . . , σ̇n), in quanto σ̇ = σ̇j∂j .

Sia ora γ: I → TM una qualsiasi curva con sostegno contenuto in TU , per cui possiamo scrivere

ϕ̃ ◦ γ(t) =
(
x1(t), . . . , xn(t); v1(t), . . . , vn(t)

)
per opportune funzioni x1, . . . , xn, v1, . . . , vn ∈ C∞(I). Allora γ è una curva della forma σ̇ per una qualche
curva σ: I → U se e solo se vj ≡ ẋj per j = 1, . . . , n; quindi γ è una curva della forma σ̇ con σ geodetica se
e solo se ϕ̃ ◦ γ soddisfa il sistema di equazioni differenziali ordinarie del primo ordine

dxk

dt
= vk,

dvk

dt
= −Γk

ij(x)vivj .

(5.1.3)

Nell’Esempio 3.2.2 abbiamo visto che un riferimento locale per T (TM) sopra TU è ovviamente dato da
{∂/∂x1, . . . , ∂/∂xn; ∂/∂v1, . . . , ∂/∂vn}; la (5.1.3) suggerisce allora di introdurre il campo vettoriale (per il
momento definito solo sopra TU e dipendente dalle coordinate locali scelte)

G = vk ∂

∂xk
− Γk

ijv
ivj ∂

∂vk
. (5.1.4)

La (5.1.3) dice esattamente che γ: I → TU è una traiettoria di G in TU se e solo se σ = π ◦γ è una geodetica
per ∇ in U e γ = σ̇ (dove π:TM →M è la proiezione canonica).

Quindi per concludere la dimostrazione rimane solo da verificare che G non dipende dalle coordinate
scelte, per cui si estende a un campo vettoriale globale su TM . Per far ciò basta far vedere che per
ogni p ∈ M , v ∈ TpM e f ∈ C∞(v) il numero G(v)(f) è indipendente dalle coordinate. Basta quindi
dimostrare, per esempio, che

G(v)(f) =
d(f ◦ σ̇v)

dt
(0),

dove f è un qualsiasi rappresentante di f . Ma infatti

d(f ◦ σ̇v)
dt

(0) =
∂f

∂xk
(v)σ̇k

v (0) +
∂f

∂vk
(v)σ̈k

v (0)

=
∂f

∂xk
(v)vk − ∂f

∂vk
(v)Γk

ij(p)vivj = G(v)(f),

e ci siamo.

Definizione 5.1.3: Sia ∇ una connessione lineare su una varietà M . Il campo G ∈ T (TM) definito localmente
da (5.1.4) è detto campo geodetico, e il suo flusso flusso geodetico.

La conseguenza principale di questo risultato è che ci permette di applicare il Teorema 3.3.4 allo studio
delle geodetiche, e quindi di controllare simultaneamente il comportamento di tutte le geodetiche uscenti da
un unico punto. Per enunciare al meglio questo risultato, ci servono un lemma e una definizione.
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Lemma 5.1.3: Sia ∇ una connessione lineare su una varietà M , p ∈M , v ∈ TpM e c, t ∈ R. Allora si ha

σcv(t) = σv(ct) (5.1.5)

non appena uno dei due membri è definito.

Dimostrazione: Se c = 0 non c’è nulla da dimostrare. Se c 6= 0, cominciamo col dimostrare che (5.1.5) vale
non appena σv(ct) esiste. Poniamo σ̃(t) = σv(ct); chiaramente σ̃(0) = p e ˙̃σ(0) = cv, per cui basta dimostrare
che σ̃ è una geodetica. Ma infatti se indichiamo con D̃ la derivata covariante lungo σ̃ abbiamo

D̃t
˙̃σ =

[
d

dt
˙̃σk(t) + Γk

ij

(
σ̃(t)

) ˙̃σi(t) ˙̃σj(t)
]

∂k =
[
c2σ̈k

v (ct) + c2Γk
ij

(
σv(ct)

)
σ̇i

v(ct)σ̇j
v(ct)

]
∂k = c2Dctσ̇v = O,

e ci siamo.
Infine, supponiamo che σcv(t) esista, e poniamo v′ = cv e s = ct. Allora σcv(t) = σv′(c−1s) esiste, per

cui è uguale a σc−1v′(s) = σv(ct), e ci siamo.

Definizione 5.1.4: Sia ∇ una connessione lineare su una varietà M . Il dominio della mappa esponenziale è
l’insieme

E = {v ∈ TM | σv è definita in un intervallo contenente [0, 1]} ⊂ TM.

La mappa esponenziale exp: E → M di ∇ è allora definita da exp(v) = σv(1). Inoltre, se p ∈ M scrive-
remo Ep = E ∩ TpM e expp = exp |Ep

.

Il motivo per cui quest’applicazione si chiama “esponenziale” si può far risalire al seguente esercizio (ma
vedi anche il Teorema 5.4.7 più oltre):

Esercizio 5.1.1. Consideriamo R+ con la metrica ‖t‖h = h−1|t| per ogni h ∈ R+ e t ∈ ThR+, dove abbiamo
identificato ThR+ con R come al solito. Dimostra che exph:ThR+ → R+ è data dalla formula exp1(t) = het.

Il Teorema 3.3.4 ci fornisce allora le seguenti proprietà della mappa esponenziale:

Teorema 5.1.4: Sia ∇ una connessione lineare su una varietà M . Allora:

(i) L’insieme E è un intorno aperto della sezione nulla di TM , e ciascun Ep è stellato rispetto all’origine.

(ii) Per ogni v ∈ TM la geodetica massimale σv è data da

σv(t) = exp(tv)

per tutti i t ∈ R per cui uno dei due membri è definito.

(iii) La mappa esponenziale è di classe C∞.

Dimostrazione: Il Lemma 5.1.3 applicato con t = 1 dice esattamente che exp(cv) = σcv(1) = σv(c) non
appena uno dei due membri è definito, per cui (ii) è soddisfatta. In particolare, se 0 ≤ t ≤ 1 e v ∈ E abbiamo
che exp(tv) = σtv(1) = σv(t) è definito, per cui ciascun Ep è stellato rispetto all’origine.

Ora, per la Proposizione 5.1.2 le geodetiche di ∇ sono la proiezione delle traiettorie del campo geode-
tico G. Indichiamo con Γ:U → TM il flusso del campo geodetico che, grazie al Teorema 3.3.4, è definito
in un intorno aperto U di {0} × TM in R × TM . In particolare, v ∈ E se e solo se (1, v) ∈ U ; ma allora
E = π2

(
U ∩ ({1} × TM)

)
, dove π2: R × TM → TM è la proiezione sulla seconda coordinata, per cui E è

aperto. Infine, sempre per il Teorema 3.3.4 il flusso di G è di classe C∞, per cui la mappa esponenziale,
essendo data dalla formula exp(v) = π2

(
Γ(1, v)

)
, è anch’essa di classe C∞.

Essendo la mappa esponenziale differenziabile, possiamo calcolarne il differenziale. In particolare, è
interessante considerare d(expp)O:TO(TpM) → TpM ; infatti, essendo TpM uno spazio vettoriale, possiamo
identificare canonicamente TO(TpM) con TpM , per cui d(expp)O risulta essere un endomorfismo di TpM .
Ed è un endomorfismo molto particolare:
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Proposizione 5.1.5: Sia ∇ una connessione lineare su una varietà M , e p ∈ M . Allora d(expp)O = id. In
particolare, esistono un intorno U di O in TpM e un intorno V di p in M tali che expp |U :U → V sia un
diffeomorfismo.

Dimostrazione: Dato v ∈ TO(TpM) = TpM , una curva in TpM che parte da O tangente a v è γ(t) = tv.
Allora

d(expp)O(v) =
d

dt
expp

(
γ(t)

)∣∣∣∣
t=0

=
d

dt
expp(tv)

∣∣∣∣
t=0

= σ̇v(0) = v.

La seconda affermazione segue dal teorema della funzione inversa.

Definizione 5.1.5: Sia ∇ una connessione lineare su una varietà M , e p ∈M . Un intorno aperto V di p in M
diffeomorfo tramite expp a un intorno stellato U di O in TpM è detto intorno normale di p.

Tutto quanto visto finora chiaramente si applica anche alla connessione di Levi-Civita di una varietà
Riemanniana. Inoltre, in questo caso possiamo introdurre le definizioni seguenti:

Definizione 5.1.6: Sia ∇ la connessione di Levi-Civita di una varietà Riemanniana (M, g), e p ∈ M . Indi-
chiamo con Bε(Op) ⊂ TpM la palla aperta rispetto alla metrica g di centro l’origine e raggio ε > 0 in TpM .
Il raggio d’iniettività inj rad(p) ∈ R+ di M in p è definito da

inj rad(p) = sup{ε > 0 | expp ristretto a Bε(Op) è un diffeomorfismo con l’immagine}.

La palla geodetica Bε(p) di centro p e raggio 0 < ε ≤ inj rad(p) in M è l’intorno normale di p della forma
expp

(
Bε(Op)

)
. Il suo bordo ∂Bε(p) = expp

(
∂Bε(Op)

)
è detto sfera geodetica. Le geodetiche in Bε(p)

uscenti da p sono dette geodetiche radiali. Se {E1, . . . , En} è una base ortonormale di TpM , e χ:TpM → Rn

è l’isomorfismo dato dalle coordinate rispetto a questa base, allora le coordinate ϕ = χ ◦ exp−1
p :Bε(p)→ Rn

sono dette coordinate normali centrate in p.

Il raggio d’iniettività chiaramente dipende dal punto. Non è necessariamente continuo, ma ha estremo
inferiore strettamente positivo sui compatti. Per dimostrarlo, introduciamo la seguente

Definizione 5.1.7: Il raggio d’iniettività di un sottoinsieme C ⊆M è il numero

inj rad(C) = inf{inj rad(q) | q ∈ C}.

Diremo che un aperto W ⊆M è uniformemente normale se ha raggio d’iniettività positivo. In altre parole,
esiste δ > 0 tale che expq è un diffeomorfismo in Bδ(Oq) per ogni q ∈W .

Allora

Proposizione 5.1.6: Sia ∇ la connessione di Levi-Civita di una varietà Riemanniana (M, g). Allora
ogni p ∈M ha un intorno uniformemente normale W .

Dimostrazione: Dati un intorno V di p e δ > 0, gli insiemi

Vδ = {v ∈ TM | q = π(v) ∈ V, ‖v‖q < δ1},

dove, come al solito, π:TM →M è la proiezione canonica, formano un sistema fondamentale d’intorni di Op.
Siccome Op ∈ E , possiamo trovare V e δ1 > 0 tali che Vδ1 ⊂ E

Sia E:Vδ1 →M ×M data da E(v) =
(
π(v), expπ(v)(v)

)
; cominciamo col dimostrare che E è invertibile

in un intorno di Op.
A meno di restringere V , possiamo supporre che sia il dominio di una carta locale ϕ = (x1, . . . , xn)

centrata in p. Come già visto nel corso della dimostrazione della Proposizione 5.1.2, ϕ induce coordinate
locali ϕ̃ = (x1, . . . , xn; v1, . . . , vn) in Vδ1 . Una base di TOp

Vδ1 è quindi {∂/∂x1, . . . , ∂/∂xn, ∂/∂v1, . . . , ∂/∂vn}.
Una curva γ in Vδ1 con γ(0) = Op e γ̇(0) = ∂/∂vj |Op è γ(t) = t ∂/∂xj |p. Quindi

dEOp

(
∂

∂vj

)
=

d

dt
E

(
γ(t)

)∣∣∣∣
t=0

=
d

dt

(
p, expp(t ∂/∂xj |p)

)∣∣∣∣
t=0

=

(
Op,

∂

∂xj

∣∣∣∣
p

)
.
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D’altra parte, una curva τ in Vδ1 con τ(0) = Op e τ̇(0) = ∂/∂xj |Op è τ(t) = Oexpp(t ∂/∂xj |p); quindi

dEOp

(
∂

∂xj

)
=

d

dt

(
expp(t ∂/∂xj |p), expexpp(t ∂/∂xj |p)(O)

)∣∣∣∣
t=0

=
d

dt

(
expp(t ∂/∂xj |p), expp(t ∂/∂xj |p)

)∣∣∣∣
t=0

=

(
∂

∂xj

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
.

Quindi dEOp
, mandando una base di TOp

Vδ1 in una base di TpM×TpM , è non singolare, per cui esistono
un intorno W ⊂ V di p e un 0 < δ < δ1 tali che E|Wδ

sia un diffeomorfismo. Ma questo implica in particolare
che per ogni q ∈W la mappa esponenziale expq:Bδ(Oq)→ Bδ(q) è un diffeomorfismo, e ci siamo.

Corollario 5.1.7: Sia M una varietà Riemanniana. Allora ogni K ⊆ M compatto ha raggio d’iniettività
positivo.

Dimostrazione: La proposizione precedente ci fornisce per ogni p ∈ K un δp > 0 e un intorno Wp di p tali
che inj rad(q) ≥ δp per ogni q ∈Wp. Sia {Wp1 , . . . , Wpk

} un sottoricoprimento finito di K; allora

inj rad(K) ≥ min{δp1 , . . . , δpk
} > 0.

Esercizio 5.1.2. Dimostra che un’isometria locale fra varietà Riemanniana manda geodetiche in geodetiche,
nel senso che se H:M → N è un’isometria locale allora σ: I →M è una geodetica in M se e solo se H ◦ σ è
una geodetica in N .

Esercizio 5.1.3. Sia (M, g) una varietà Riemanniana, e sia E: E →M ×M data da E(v) =
(
π(v), exp(v)

)
,

dove π:TM →M è la proiezione canonica. Dimostra che dEv è invertibile se e solo se d(expp)v è invertibile,
dove p = π(v).

Esercizio 5.1.4. Date due connessioni lineari∇ e ∇̃ su una varietà M , siano B, S, A: T (M)×T (M)→ T (M)
definite da B(X, Y ) = ∇̃XY −∇XY ,

S(X, Y ) =
1
2
(
B(X, Y ) + B(Y, X)

)
e A(X, Y ) =

1
2
(
B(X, Y )−B(Y, X)

)
.

Indichiamo inoltre con τ la torsione di ∇, e con τ̃ la torsione di ∇̃.

(i) Dimostra che B, S, A ∈ T 1
2 (M).

(ii) Dimostra che 2A = τ̃ − τ .
(iii) Dimostra che le seguenti affermazioni sono equivalenti:

(a) ∇ e ∇̃ hanno le stesse geodetiche (cioè ogni geodetica di ∇ è anche geodetica di ∇̃, e viceversa);
(b) B(v, v) = O per ogni v ∈ TM ;
(c) S ≡ O;
(d) B ≡ A.

(iv) Dimostra che ∇ e ∇̃ hanno le stesse geodetiche e la stessa torsione se e solo se ∇ ≡ ∇̃.
(v) Dimostra che esiste un’unica connessione simmetrica ∇∗ che ha le stesse geodetiche di ∇.

Definizione 5.1.8: Diremo che due connessioni ∇ e ∇̃ su una varietà M sono riferite proiettivamente se per
ogni geodetica σ: I →M di ∇ esiste un diffeomorfismo h:J → I tale che σ ◦ h sia una geodetica di ∇̃.

Esercizio 5.1.5. Dimostra che due connessioni simmetriche ∇ e ∇̃ su una varietà M sono riferite proietti-
vamente se e solo se esiste una 1-forma ϕ ∈ A1(M) tale che ∇̃ − ∇ = ϕ⊗ id + id⊗ϕ.
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5.2 La distanza Riemanniana

In questo paragrafo dimostreremo che una varietà Riemanniana è in maniera canonica uno spazio metrico;
vedremo poi che le relazioni fra le proprietà topologiche della distanza canonica e le proprietà geometri-
che della varietà sono estremamente interessanti. Cominciamo con delle definizioni che ci serviranno per
introdurre la distanza.

Definizione 5.2.1: Una curva continua σ: [a, b] → M in una varietà M è detta regolare a tratti se esiste una
suddivisione a = t0 < t1 < · · · < tk = b di [a, b] tale che σ|[tj−1,tj ] sia di classe C∞ e regolare (cioè con
vettore tangente mai nullo) o costante per j = 1, . . . , k.

Definizione 5.2.2: Sia σ: [a, b] → M una curva regolare a tratti in una varietà Riemanniana (M, g). La
lunghezza d’arco di σ è la funzione

s(t) =
∫ t

a

‖σ̇(u)‖σ(u) du,

dove ‖ · ‖p è la norma di TpM indotta da g. La lunghezza di σ è

L(σ) =
∫ b

a

‖σ̇(u)‖σ(u) du.

Diremo che σ è parametrizzata rispetto alla lunghezza d’arco se ‖σ̇(u)‖σ(u) = 1 quando σ̇(u) è definito; in
particolare, σ non ha tratti costanti, e s(t) = t− a.

Esercizio 5.2.1. Se σ: [a, b] → M è una curva regolare a tratti con σ̇ 6= O dove definito, di lunghezza `,
dimostra che esiste un omeomorfismo C∞ a tratti h: [0, `]→ [a, b] tale che σ ◦ h sia parametrizzata rispetto
alla lunghezza d’arco. (Suggerimento: h−1 è la lunghezza d’arco di σ.)

Esercizio 5.2.2. Sia H:M → N una isometria locale fra varietà Riemanniane, e σ: [a, b] → M una curva
regolare a tratti. Dimostra che la lunghezza di σ in M è uguale alla lunghezza di H ◦ σ in N .

Definizione 5.2.3: Sia (M, g) una varietà Riemanniana (connessa). La funzione d:M ×M → R+ data da

d(p, q) = inf{L(σ) | σ: [a, b]→M è una curva regolare a tratti con σ(a) = p e σ(b) = q}

è detta distanza Riemanniana su M indotta da g.

Proposizione 5.2.1: Sia (M, g) una varietà Riemanniana connessa. Allora la funzione d: M ×M → R+

appena definita è una distanza che induce la topologia della varietà.

Dimostrazione: Dalla definizione è chiaro che d(p, q) = d(q, p) ≥ 0 e che d(p, p) = 0. La disuguaglianza
triangolare segue (esercizio) dal fatto che possiamo combinare una curva regolare a tratti da p1 a p2 con una
da p2 a p3 ottenendo una curva regolare a tratti la cui lunghezza è la somma delle lunghezze delle prime due
curve.

Rimane da dimostrare che se p 6= q allora d(p, q) 6= 0, e che la topologia indotta da d è quella della
varietà. Scegliamo p ∈ M , e sia ϕ:B2ε(p) → B2ε(O) ⊆ Rn un sistema di coordinate normali centrato in p,
dove B2ε(O) è la palla di centro l’origine e raggio 0 < 2ε ≤ inj rad(p) in Rn rispetto alla norma euclidea ‖·‖0.
Indichiamo con g0 la metrica Riemanniana su B2ε(p) indotta tramite ϕ dalla metrica euclidea di Rn: in altre
parole, se q ∈ B2ε(p) e v ∈ TqM la norma di v rispetto a g0 è data da

‖v‖0,q = ‖dϕq(v)‖0.

In particolare, se L0(σ) è la lunghezza rispetto a g0 di una curva regolare a tratti σ: [a, b]→ B2ε(p), abbiamo

L0(σ) = L′0(ϕ ◦ σ) ≥
∥∥ϕ

(
σ(b)

)
− ϕ

(
σ(a)

)∥∥, (5.2.1)

dove L′0(ϕ ◦ σ) è la lunghezza euclidea della curva ϕ ◦ σ.
Ora, l’insieme

K = {v ∈ TqM | q ∈ Bε(p), ‖v‖0,q = 1} ⊂ TM



5.2 La distanza Riemanniana 103

è chiaramente compatto; quindi se poniamo

cp = inf
v∈K
‖v‖π(v) ≤ sup

v∈K
‖v‖π(v) = Cp,

dove π:TM →M è la proiezione canonica, e ‖ · ‖p è la norma su TpM indotta dalla metrica Riemanniana g,
abbiamo 0 < cp ≤ Cp < +∞ e

cp‖v‖0,q ≤ ‖v‖q ≤ Cp‖v‖0,q

per ogni q ∈ Bε(p) e v ∈ TqM . Dunque se σ è una curva regolare a tratti la cui immagine è contenuta
in Bε(p) otteniamo

cpL0(σ) ≤ L(σ) ≤ CpL0(σ). (5.2.2)

Se q 6= p possiamo scegliere ε > 0 in modo che q /∈ Bε(p). Quindi ogni curva regolare a tratti
σ: [a, b] → M da p a q deve intersecare la sfera geodetica ∂Bε(p) in un primo punto σ(t0), per cui (5.2.1)
e (5.2.2) danno

L(σ) ≥ L(σ|[a,t0]) ≥ cp L0(σ|[a,t0]) ≥ cp

∥∥ϕ
(
σ(t0)

)∥∥ = cpε > 0. (5.2.3)

Siccome questo vale per ogni curva regolare a tratti σ otteniamo d(p, q) ≥ cpε > 0, come voluto.
Rimane da far vedere che la topologia di M e quella indotta dalla distanza d coincidono. Siccome le

palle geodetiche Bε(p) formano un sistema fondamentale di intorni di p per la topologia di M , e le palle
metriche B(p, δ) formano un sistema fondamentale di intorni per la topologia metrica, è sufficiente far vedere
che

B(p, cpε) ⊆ Bε(p) ⊆ B(p, Cpε)

per ogni ε > 0 abbastanza piccolo.
Prendiamo q ∈ Bε(p), e sia σ: [0, l] → Bε(p) la geodetica radiale da p a q parametrizzata rispetto alla

lunghezza d’arco misurata con g0. In altre parole, σ(t) = ϕ−1(tv) per un opportuno v ∈ Rn di lunghezza
unitaria, per cui l < ε e quindi

d(p, q) ≤ L(σ) ≤ CpL0(σ) = Cpl < Cpε,

da cui segue Bε(p) ⊆ B(p, Cpε).
Viceversa, sia q ∈ B(p, cpε), per cui esiste una curva regolare a tratti σ da p a q di lunghezza strettamente

minore di cpε. Se fosse q /∈ Bp(ε), questo contraddirebbe (5.2.3). Quindi B(p, cpε) ⊆ Bε(p), e abbiamo
finito.

Osservazione 5.2.1. Faremo vedere fra poco che in realtà Bε(p) = B(p, ε) per ogni 0 < ε < inj rad(p).

Le curve che realizzano la distanza meritano chiaramente un nome particolare.

Definizione 5.2.4: Una curva regolare a tratti σ: [a, b] → M è detta minimizzante se ha lunghezza mi-
nore o uguale a quella di qualsiasi altra curva regolare a tratti con gli stessi estremi, ovvero se e solo
se d

(
σ(a), σ(b)

)
= L(σ). La curva σ è localmente minimizzante se per ogni t ∈ [a, b] esiste ε > 0 tale

che σ|[t−ε,t+ε] è minimizzante (con le ovvie convenzioni se t = a o t = b).

Ovviamente, ogni curva minimizzante è anche localmente minimizzante (perché?); il viceversa è falso
(un esempio è dato dai cerchi massimi sulla sfera: vedi l’Esempio 5.4.2).

Il nostro obiettivo ora è dimostrare che una curva è localmente minimizzante se e solo se è una geodetica,
che è il risultato che fornirà il legame fra la distanza Riemanniana e la geometria della varietà.

Cominciamo con l’osservare che tutte le geodetiche non costanti sono parametrizzate rispetto a un
multiplo della lunghezza d’arco, e quindi sono in particolare curve regolari:

Lemma 5.2.2: Se σ: I → M è una geodetica di una varietà Riemanniana M allora ‖σ̇‖ è costante. In
particolare, σ è sempre (costante oppure) regolare.

Dimostrazione: Infatti, indicata con D la derivata covariante lungo σ, abbiamo

d

dt
〈σ̇, σ̇〉 = 2〈Dσ̇, σ̇〉 ≡ 0.
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Abbiamo introdotto in precedenza il concetto di campo vettoriale lungo una curva liscia. Nel seguito ci
servirà l’analogo concetto per curve regolari a tratti:

Definizione 5.2.5: Sia σ: [a, b]→M una curva regolare a tratti. Un campo vettoriale X lungo σ è dato da:
(a) una suddivisione a = t0 < t1 < · · · < th = b di [a, b] tale che σ|[tj−1,tj ] sia di classe C∞ per j = 1, . . . , h;
(b) campi vettoriali X|[tj−1,tj ] ∈ T (σ|[tj−1,tj ]) per j = 1, . . . , h.
Se i vari campi vettoriali si raccordano con continuità nei punti interni t1, . . . , tk−1 della suddivisione, diremo
che X è un campo continuo. Lo spazio dei campi vettoriali lungo σ è ancora indicato con T (σ). Infine, un
campo vettoriale X ∈ T (σ) lungo σ è detto proprio se X(a) = X(b) = O.

Osservazione 5.2.2. Notiamo esplicitamente che non tutti i campi vettoriali X ∈ T (σ) sono continui;
per esempio, il vettore tangente di una curva regolare a tratti non liscia è un campo vettoriale non continuo
lungo la curva.

Per stabilire se una curva è minimizzante o meno, dovremo confrontare la sua lunghezza con quella di
curve vicine. Il concetto di “curve vicine” è formalizzato nella seguente

Definizione 5.2.6: Sia σ: [a, b]→M una curva regolare a tratti. Una variazione di σ è un’applicazione continua
Σ: (−ε, ε)× [a, b]→M tale che, posto σs = Σ(s, ·), si ha
(i) σ0 = σ;
(ii) ciascuna curva principale σs è una curva regolare a tratti;
(iii) esiste una suddivisione a = t0 < t1 < · · · < tk = b di [a, b] (detta suddivisione associata a Σ) tale che

Σ(−ε,ε)×[tj−1,tj ] sia di classe C∞ per j = 1, . . . , k.
Le curve trasverse alla variazione sono le curve σt = Σ(·, t), che sono tutte curve di classe C∞. Infine, una
variazione Σ è detta propria se σs(a) = σ(a) e σs(b) = σ(b) per ogni s ∈ (−ε, ε).

I vettori tangenti ci forniscono due campi vettoriali lungo le curve principali e trasverse di una variazione:

Definizione 5.2.7: Sia Σ: (−ε, ε) × [a, b] → M una variazione di una curva regolare a tratti σ: [a, b] → M .
Allora poniamo

S(s, t) = σ̇t(s) = dΣ(s,t)

(
∂

∂s

)
=

∂Σ
∂s

(s, t)

per ogni (s, t) ∈ (−ε, ε)× [a, b], e

T (s, t) = σ̇s(t) = dΣ(s,t)

(
∂

∂t

)
=

∂Σ
∂t

(s, t)

per ogni (s, t) ∈ (−ε, ε)× [tj−1, tj ] e j = 1, . . . , k−1, dove a = t0 < t1 < · · · < tk = b è una suddivisione asso-
ciata a Σ. In particolare, i campi t 7→ S(s, t) e t 7→ T (s, t) sono campi vettoriali lungo σs, e i campi s 7→ S(s, t)
e s 7→ T (s, t) sono campi vettoriali lungo σt. Infine, il campo variazione di Σ è V = S(0, ·) ∈ T (σ).

Il campo variazione è un campo continuo lungo σ. Viceversa, dato un campo vettoriale continuo lungo
una curva regolare a tratti possiamo trovare una variazione che abbia quel campo come campo variazione:

Lemma 5.2.3: Sia σ: [a, b]→M una curva regolare a tratti, e V ∈ T (σ) un campo continuo. Allora esiste
una variazione Σ di σ con V come campo variazione. Inoltre, se V è proprio si può trovare Σ propria.

Dimostrazione: Essendo [a, b] compatto, il raggio d’iniettività δ del sostegno di σ è strettamente positivo, e
il massimo M di ‖V (t)‖σ(t) è finito. Se ε = δ/M > 0, allora l’applicazione Σ(s, t) = exp

(
sV (t)

)
è definita

su (−ε, ε)× [a, b], e quindi è una variazione di σ. Siccome

S(0, t) =
∂

∂s
exp

(
sV (t)

)∣∣∣∣
s=0

= d(exp)Oσ(t)

(
V (t)

)
= V (t),

il campo variazione coincide con V . Infine, se V (a) = V (b) = O è evidente che Σ è propria.

Nel seguito ci servirà il seguente lemma elementare ma fondamentale:
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Lemma 5.2.4: Sia Σ: (−ε, ε)× [a, b]→M una variazione di una curva regolare a tratti σ: [a, b]→M in una
varietà Riemanniana M . Allora su ogni rettangolo (−ε, ε)× [tj−1, tj ] su cui Σ è di classe C∞ si ha

DsT = DtS,

dove Ds è la derivata covariante lungo le curve trasverse, e Dt quella lungo le curve principali.

Dimostrazione: Basta fare il conto in coordinate locali. Scrivendo

S(s, t) =
∂Σi

∂s
(s, t) ∂i|Σ(s,t), T (s, t) =

∂Σj

∂t
(s, t) ∂j |Σ(s,t),

la formula (4.3.2) dà

DsT =
[
∂2Σk

∂s∂t
+ (Γk

ij ◦ Σ)
∂Σi

∂s

∂Σj

∂t

]
∂k|Σ

=
[
∂2Σk

∂t∂s
+ (Γk

ji ◦ Σ)
∂Σi

∂s

∂Σj

∂t

]
∂k|Σ = DtS,

grazie alla simmetria della connessione di Levi-Civita.

Definizione 5.2.8: Sia σ: [a, b] → M una curva regolare a tratti, e a = t0 < t1 < · · · < tk = b una sud-
divisione di [a, b] tale che σ sia di classe C∞ in ciascun intervallo [tj−1, tj ]. Allora per j = 0, . . . , k defi-
niamo ∆j σ̇ ∈ Tσ(tj)M ponendo ∆0σ̇ = σ̇(a), ∆kσ̇ = −σ̇(b) e

∆j σ̇ = σ̇(t+j )− σ̇(t−j )

per j = 1, . . . , k − 1, dove σ̇(t+j ) = limt→t+
j

σ̇(t), e σ̇(t−j ) = limt→t−
j

σ̇(t).

E ora siamo in grado di dimostrare una formula importante:

Teorema 5.2.5: (Prima variazione della lunghezza d’arco) Sia σ: [a, b] → M una curva regolare a tratti
parametrizzata rispetto alla lunghezza d’arco in una varietà Riemanniana M , e Σ: (−ε, ε)× [a, b]→M una
sua variazione con suddivisione associata a = t0 < t1 < · · · < tk = b. Indichiamo con V ∈ T (σ) il campo
variazione di Σ, e definiamo la funzione L: (−ε, ε)→ R ponendo L(s) = L(σs). Allora

dL

ds
(0) = −

∫ b

a

〈V (t), Dtσ̇〉 dt−
k∑

j=0

〈V (tj), ∆j σ̇〉. (5.2.4)

Dimostrazione: In un intervallo [tj−1, tj ] dove tutto è di classe C∞ abbiamo

d

ds
L(σs|[tj−1,tj ]) =

∫ tj

tj−1

∂

∂s
〈T, T 〉1/2 dt =

∫ tj

tj−1

1
‖T‖〈DsT, T 〉 dt =

∫ tj

tj−1

1
‖T‖〈DtS, T 〉 dt,

dove abbiamo usato il Lemma 5.2.4. Ponendo s = 0 e ricordando che S(0, t) = V (t), T (0, t) = σ̇(t) e ‖σ̇‖ ≡ 1,
otteniamo

d

ds
L(σs|[tj−1,tj ])

∣∣∣∣
s=0

=
∫ tj

tj−1

〈DtV, σ̇(t)〉 dt =
∫ tj

tj−1

[
d

dt
〈V, σ̇〉 − 〈V (t), Dtσ̇〉

]
dt

= 〈V (tj), σ̇(t−j )〉 − 〈V (tj−1), σ̇(t+j−1)〉 −
∫ tj

tj−1

〈V (t), Dtσ̇〉 dt.

Sommando su j otteniamo la tesi.

Siamo ora in grado di dimostrare che ogni curva localmente minimizzante è una geodetica:
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Teorema 5.2.6: Ogni curva localmente minimizzante parametrizzata rispetto alla lunghezza d’arco in una
varietà Riemanniana è una geodetica — e quindi in particolare è di classe C∞.

Dimostrazione: Siccome l’enunciato è locale, possiamo supporre che σ: [a, b] → M sia una curva regolare a
tratti minimizzante parametrizzata rispetto alla lunghezza d’arco; dobbiamo dimostrare che è una geodetica.
Essendo una curva minimizzante, dL(σs)/ds(0) = 0 per ogni variazione propria Σ di σ; quindi il Lemma 5.2.3
ci assicura che il secondo membro di (5.2.4) è nullo per ogni campo vettoriale V proprio lungo σ.

Sia a = t0 < t1 < · · · < tk = b una suddivisione di [a, b] tale che σ sia di classe C∞ in ciascun
intervallo [tj−1, tj ], e sia χj ∈ C∞(R) una funzione tale che χj > 0 in (tj−1, tj) e χj ≡ 0 altrove. Allora
(5.2.4) con V = χjDσ̇ diventa

0 = −
∫ tj

tj−1

χj(t)‖Dtσ̇‖2 dt,

per cui Dσ̇ ≡ 0 in ciascun intervallo [tj−1, tj ], e quindi σ è una geodetica all’interno di ciascuno di questi
intervalli.

Ora vogliamo dimostrare che ∆j σ̇ = O per j = 1, . . . , k − 1. Ma infatti basta prendere un campo
vettoriale V ∈ T (σ) tale che V (tj) = ∆j σ̇ e V (ti) = O per i 6= j; in tal caso (5.2.4) si riduce a 0 = −‖∆j σ̇‖2,
e ci siamo.

Dunque σ̇ è continuo; per l’unicità delle geodetiche tangenti a una data direzione otteniamo che σ|[tj ,tj+1]

è la continuazione di σ|[tj−1,tj ] per j − 1, . . . , k − 1, e quindi σ è liscia e una geodetica dappertutto.

In realtà abbiamo dimostrato qualcosina di più.

Definizione 5.2.9: Diremo che una curva regolare a tratti σ: [a, b]→ M in una varietà Riemanniana M è un
punto critico del funzionale lunghezza se

dL(σs)
ds

(0) = 0

per ogni variazione propria Σ di σ.

Allora la dimostrazione del teorema precedente implica chiaramente il

Corollario 5.2.7: Una curva regolare a tratti parametrizzata rispetto alla lunghezza d’arco in una varietà
Riemanniana è un punto critico del funzionale lunghezza se e solo se è una geodetica.

Il nostro prossimo obiettivo è dimostrare il viceversa del Teorema 5.2.6, cioè dimostrare che ogni geo-
detica è localmente minimizzante. Per far ciò ci serve il seguente

Lemma 5.2.8: (Gauss) Sia M una varietà Riemanniana, p ∈M e v ∈ Ep. Allora si ha

〈d(expp)v(v), d(expp)v(w)〉expp(v) = 〈v, w〉p (5.2.5)

per ogni w ∈ TpM , dove abbiamo identificato come al solito Tv(TpM) con TpM .

Dimostrazione: Cominciamo a dimostrare (5.2.5) per w = v. Una curva in TpM passante per v e tangente
a v è τ(t) = v + tv; quindi

d(expp)v(v) =
d

dt
expp

(
(1 + t)v

)∣∣∣∣
t=0

=
d

dt
σv(1 + t)

∣∣∣∣
t=0

= σ̇v(1), (5.2.6)

dove come sempre σv denota la geodetica massimale con σv(0) = p e σ̇v(0) = v. Quindi

〈d(expp)v(v), d(expp)v(v)〉expp(v) = ‖σ̇v(1)‖2 = 〈v, v〉p,

perché, grazie al Lemma 5.2.2, ‖σ̇v(1)‖ = ‖σ̇v(0)‖ = ‖v‖.
Per la linearità di d(expp)v ci basta allora dimostrare che se w è perpendicolare a v allora

〈d(expp)v(v), d(expp)v(w)〉expp(v) = 0.
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Siccome 〈w, v〉p = 0, il vettore w, considerato come vettore in Tv(TpM), è tangente in v alla sfera ∂B‖v‖p
(Op)

di centro l’origine e raggio ‖v‖p. Quindi possiamo trovare una curva τ : (−ε, ε) → TpM con τ(0) = v,
τ̇(0) = w e ‖τ(s)‖p ≡ ‖v‖p. Siccome v ∈ Ep, possiamo supporre che τ(s) ∈ Ep per ogni s, e definire una
variazione Σ: (−ε, ε)× [0, 1]→ TpM di σv ponendo

Σ(s, t) = expp

(
tτ(s)

)
.

Notiamo esplicitamente che le curve principali di Σ sono geodetiche, che Σ(0, 1) = expp(v), e che

T (0, 1) = d(expp)v(v) = σ̇v(1), S(0, 1) = d(expp)v(w),

per cui ci basta dimostrare che 〈T (0, 1), S(0, 1)〉expp(v) = 0. Ora,

∂

∂t
〈T, S〉Σ = 〈DtT, S〉Σ + 〈T, DtS〉Σ = 〈T, DsT 〉Σ =

1
2

∂

∂s
‖T‖2Σ = 0,

dove abbiamo usato: DtT ≡ O, in quanto ciascuna σs è una geodetica; il Lemma 5.2.4; e

‖T (s, t)‖Σ(s,t) = ‖σ̇s(t)‖σs(t) ≡ ‖σ̇s(0)‖p = ‖τ(s)‖p ≡ ‖v‖p.

Dunque 〈T, S〉Σ non dipende da t; e quindi

〈T (0, 1), S(0, 1)〉expp(v) = 〈T (0, 0), S(0, 0)〉p = 0,

in quanto σ0 ≡ p implica S(0, 0) = σ̇0(0) = Op.

Vogliamo dare un’interpretazione più geometrica di questo risultato.

Definizione 5.2.10: Sia Bε(p) ⊂ M una palla geodetica di centro p in una varietà Riemanniana M , dove
0 < ε ≤ inj rad(p), e poniamo B∗ε (p) = Bε(p) \ {p}. Indichiamo con r: Bε(p) → R+ la funzione data da
r(q) = ‖ exp−1

p (q)‖p per ogni q ∈ Bε(p). Chiaramente, r ∈ C∞
(
B∗ε (p)

)
. Il campo radiale ∂/∂r ∈ T

(
B∗ε (p)

)
è il gradiente di r:

∂

∂r

∣∣∣∣
q

= (grad r)(q)

per ogni q ∈ B∗ε (p).

Osservazione 5.2.3. Dimostreremo fra poco che r:Bε(p) → R+ è la distanza Riemanniana dal punto p;
nota nel frattempo che Bδ(p) = r−1([0, δ)) per ogni 0 ≤ δ ≤ ε.

Proposizione 5.2.9: Sia Bε(p) una palla geodetica in una varietà Riemanniana M . Allora:

(i) per ogni q = expp(v) ∈ B∗ε (p) si ha

∂

∂r

∣∣∣∣
q

= d(expp)v

(
v

‖v‖p

)
=

σ̇v(1)
‖v‖p

= σ̇v/‖v‖p
(‖v‖p),

e in particolare, ‖∂/∂r‖ ≡ 1;
(ii) le geodetiche radiali uscenti da p parametrizzate rispetto alla lunghezza d’arco sono le traiettorie di ∂/∂r;
(iii) il campo radiale è ortogonale alle sfere geodetiche ∂Bδ(p) contenute in Bε(p).

Dimostrazione: (i) Prima di tutto, derivando l’uguaglianza σv/‖v‖p
(t) = σv(t/‖v‖p) otteniamo

σ̇v/‖v‖p
(‖v‖p) =

σ̇v(1)
‖v‖p

;

quindi, ricordando la (5.2.6), rimane da dimostrare solo che

drexpp(v)(w̃) =
1
‖v‖p

〈d(expp)v(v), w̃〉expp(v) (5.2.7)
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per ogni v ∈ Bε(Op), v 6= Op, e ogni w̃ ∈ Texpp(v)M .
Ora, ogni w̃ ∈ Texpp(v)M è della forma w̃ = d(expp)v(w) per un unico w ∈ TpM , in quanto expp è un

diffeomorfismo fra Bε(Op) e Bε(p) — e stiamo identificando Tv(TpM) con TpM come al solito. Dunque

drexpp(v)(w̃) = drexpp(v)

(
d(expp)v(w)

)
= d(r ◦ expp)v(w) =

〈v, w〉p
‖v‖p

,

dove l’ultima eguaglianza segue da r◦expp = ‖·‖p, e quindi (5.2.7) è esattamente equivalente al Lemma 5.2.8.
(ii) Se q = expp(v) ∈ B∗ε (p), la geodetica radiale parametrizzata rispetto alla lunghezza d’arco uscente

da p passante per q è esattamente t 7→ σv/‖v‖p
(t), e raggiunge q per t = ‖v‖p. La tesi segue allora da (i).

(iii) Siccome ∂Bδ(p) = expp

(
∂Bδ(Op)

)
, i vettori tangenti a ∂Bδ(p) in q = expp(v) sono esattamente

l’immagine tramite d expp dei vettori tangenti a ∂Bδ(Op) in v, i quali sono proprio i vettori ortogonali a v.
La tesi segue allora dal Lemma 5.2.8.

E ora siamo arrivati al cruciale

Teorema 5.2.10: Sia (M, g) una varietà Riemanniana, p ∈M e 0 < ε ≤ inj rad(p). Allora:

(i) Se q appartiene a una palla geodetica Bε(p) di centro p, allora la geodetica radiale da p a q è l’unica (a
meno di riparametrizzazioni) curva minimizzante da p a q.

(ii) La funzione r introdotta nella Definizione 5.2.10 coincide con la distanza Riemanniana dal punto p, per
cui ogni palla geodetica Bε(p) è la palla di centro p e raggio ε per la distanza Riemanniana di M .

(iii) Ogni geodetica di M è localmente minimizzante.

Dimostrazione: (i) Sia σ: [0, `] → M la geodetica radiale da p a q parametrizzata rispetto alla lunghezza
d’arco, per cui σ(t) = expp(tv) per un opportuno vettore v ∈ TpM di lunghezza unitaria. Siccome
L(σ) = ` = r(q), dobbiamo dimostrare che ogni altra curva regolare a tratti da p a q ha lunghezza maggiore
o uguale a `, e uguale a ` se e solo se è una riparametrizzazione di σ.

Sia τ : [a, b] → M una curva regolare a tratti da p a q parametrizzata rispetto alla lunghezza d’arco, e
supponiamo per il momento che l’immagine di τ sia tutta contenuta in Bε(p). Chiaramente, possiamo anche
supporre che τ(t) 6= p per t > a. Per la proposizione precedente possiamo scrivere τ̇ in tutti i punti in cui
esiste come

τ̇(t) = α(t)
∂

∂r

∣∣∣∣
τ(t)

+ w(t),

per un’opportuna funzione α e un’opportuno campo w ∈ T (τ), con la proprietà che w(t) è tangente alla
sfera geodetica passante per τ(t). Siccome questa è una decomposizione ortogonale abbiamo

‖τ̇(t)‖2 = |α(t)|2 + ‖w(t)‖2 ≥ |α(t)|2.

Inoltre, siccome le sfere geodetiche sono le ipersuperfici di livello della funzione r, abbiamo dr(w) ≡ 0, e
quindi

α(t) = dr
(
τ̇(t)

)
.

Di conseguenza

L(τ) =
∫ b

a

‖τ̇(t)‖ dt ≥
∫ b

a

|α(t)| dt ≥
∫ b

a

dr
(
τ̇(t)

)
dt =

∫ b

a

d(r ◦ τ)
dt

dt = r(q)− r(p) = `,

come voluto. Inoltre, si ha uguaglianza se e solo se τ̇ è un multiplo positivo di ∂/∂r; essendo entrambi di
lunghezza unitaria, dobbiamo avere τ̇ ≡ (∂/∂r) ◦ τ . Quindi sia τ che σ sono traiettorie di ∂/∂r passanti
per q al tempo t = `, e quindi τ = σ.

Infine, se τ : [a, b]→M è una qualsiasi curva regolare a tratti da p a q, sia a0 ∈ [a, b] l’ultimo valore t per
cui τ(t) = p, e b0 ∈ [a, b] il primo valore t > a0 tale che τ(t) ∈ ∂Bε(p), se esiste; altrimenti poniamo b0 = b.
Chiaramente, la curva σ|[a0,b0] ha supporto contenuto in Bε(t) tranne eventualmente per il punto finale;
siccome

L(τ) ≥ L(τ |[a0,b0]),
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con eguaglianza se e solo se a0 = a e b0 = b, la tesi segue allora da quanto già visto.
(ii) Se q ∈ Bε(p), esiste un unico v ∈ Bε(Op) tale che q = expp(v), e la geodetica minimizzante da p a q

parametrizzata rispetto alla lunghezza d’arco è σv/‖v‖p
. Quindi r(q) = ‖v‖p = L(σv/‖v‖p

|[0,‖v‖p]) = d(p, q), e
r coincide con la distanza Riemanniana da p. In particolare, Bε(p) è contenuta nella palla B(p, ε) di centro p
e raggio ε per la distanza Riemanniana. Viceversa, se q ∈ B(p, ε) deve esistere una curva σ da p a q di
lunghezza minore di ε; ma abbiamo visto che ogni curva che esce da Bε(p) deve avere lunghezza almeno
uguale a ε, per cui q ∈ Bε(p), e ci siamo.

(iii) Sia σ: I → M una geodetica massimale parametrizzata rispetto alla lunghezza d’arco, t0 ∈ I
e p = σ(t0). Scegliamo ε > 0 in modo che Bε(p) sia una palla geodetica. Allora per ogni q ∈ Bε(p)∩ σ(I) la
geodetica σ è la geodetica radiale da p a q, e quindi è la curva minimizzante da p a q, per cui in particolare
σ è localmente minimizzante nell’intorno (t0 − ε, t0 + ε) di t0.

5.3 Il teorema di Hopf-Rinow

Possiamo finalmente affrontare il problema di quando l’esponenziale è definito su tutto lo spazio tangente.

Teorema 5.3.1: (Hopf-Rinow) Sia M una varietà Riemanniana. Allora le seguenti condizioni sono equiva-
lenti:

(i) la distanza Riemanniana è completa;
(ii) per ogni p ∈M la mappa esponenziale expp è definita su tutto TpM ;
(iii) esiste un punto p ∈M tale che la mappa esponenziale expp è definita su tutto TpM ;
(iv) ogni insieme chiuso limitato di M è compatto.

Inoltre, ciascuna di queste condizioni implica che

(v) ogni coppia di punti di M può essere collegata da una geodetica minimizzante.

Dimostrazione: (i) =⇒ (ii): Dobbiamo dimostrare che per ogni p ∈ M e ogni v ∈ TpM la geodetica σv è
definita anche in t = 1. Sia [0, t0) il più grande intervallo aperto su cui σv è definita, e supponiamo per
assurdo che t0 sia finito. Siccome

d
(
σv(s), σv(t)

)
≤ L(σv|[s,t]) = ‖v‖ |s− t|

per ogni 0 ≤ s ≤ t < t0, se {tk} ⊂ [0, t0) converge crescendo a t0 la successione {σv(tk)} è di Cauchy in M per
la distanza d, e quindi converge a un punto q ∈M , chiaramente indipendente dalla successione scelta. Dunque
ponendo σv(t0) = q otteniamo un’applicazione continua da [0, t0] in M . Sia U un intorno uniformemente
normale di q, con raggio d’iniettività δ > 0. Per ogni k abbastanza grande, abbiamo sia |tk − t0| < δ/‖v‖
che σv(tk) ∈ U . In particolare, le geodetiche radiali uscenti da σv(tk) si prolungano per una lunghezza almeno
uguale a δ; siccome L(σv|[tk,t0]) = |t0 − tk|‖v‖ < δ, la geodetica σv si prolunga oltre t0, contraddizione.
Quindi t0 = +∞, e in particolare v ∈ E .

(ii) =⇒ (iii): Ovvio.
Introduciamo ora la condizione

(v′) Esiste un punto p ∈M che può essere collegato a qualsiasi altro punto con una geodetica minimizzante.

(iii) =⇒ (v′): Dato q ∈ M , poniamo r = d(p, q), e sia B2ε(p) una palla geodetica di centro p tale
che q /∈ Bε(p). Sia x0 ∈ ∂Bε(p) un punto in cui la funzione continua d(q, x) ammette minimo. Possiamo
scrivere x0 = expp(εv) per un opportuno v ∈ TpM di norma uno; vogliamo dimostrare che σv(r) = q.

Poniamo
A = {s ∈ [0, r] | d

(
σv(s), q) = r − s}.

L’insieme A è non vuoto (0 ∈ A), ed è chiuso in [0, r]; se dimostriamo che sup A = r abbiamo finito. Sia
s0 ∈ A minore di r; ci basta far vedere che s0 + δ ∈ A per δ > 0 abbastanza piccolo (inoltre, se s0 = 0
l’argomento che stiamo per presentare dimostrerà che ε ∈ A). Prendiamo una palla geodetica Bδ

(
σv(s0)

)
;

possiamo supporre che q /∈ Bδ

(
σv(s0)

)
. Per costruzione,

d
(
p, σv(s0)

)
≤ s0 = d(p, q)− d

(
σv(s0), q

)
,
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che è possibile se e solo se d
(
p, σv(s0)

)
= s0. Sia x′0 ∈ ∂Bδ

(
σv(s0)

)
un punto in cui d(x, q) assume minimo.

Allora
r − s0 = d

(
σv(s0), q) ≤ δ + d(x′0, q);

d’altra parte, se τ è una curva regolare a tratti da σv(s0) a q, suddividendo τ nella parte fino all’ultima
intersezione con ∂Bδ

(
σv(s0)

)
e nel resto, si ha

L(τ) ≥ δ + min
x∈∂Bδ(σv(s0))

d(x, q) = δ + d(x′0, q),

per cui abbiamo
r − s0 = δ + d(x′0, q),

e quindi
d(p, x′0) ≥ d(p, q)− d(q, x′0) = r − (r − s0 − δ) = s0 + δ.

D’altra parte, la curva σ̃ ottenuta unendo σv|[0,s0] con la geodetica radiale da σv(s0) a x′0 ha lunghezza
esattamente s0 + δ; quindi d(p, x′0) = s0 + δ. In particolare, la curva σ̃ è minimizzante, per cui è una
geodetica e dunque coincide con σv. Ma allora σv(s0 + δ) = x′0 e quindi

d
(
σv(s0 + δ), q) = d(x′0, q) = r − (s0 + δ),

cioè s0 + δ ∈ A, come voluto.

(iii)+(v′) =⇒ (iv): basta far vedere che le palle chiuse di centro p per la distanza sono compatte. Ma
infatti, grazie a (v′) coincidono con le immagini tramite expp delle palle Br(Op), che sono compatte.

(iv) =⇒ (i): è un risultato classico di topologia.

(ii) =⇒ (v): si ragiona come in (iii) =⇒ (v′).

Definizione 5.3.1: Una varietà Riemanniana la cui distanza Riemanniana è completa sarà detta completa.

Come vedremo, le varietà Riemanniane complete sono l’ambiente giusto in cui studiare proprietà globali.
Uno dei motivi è che una varietà Riemanniana completa non può essere allargata, nel senso che non può
essere realizzata come aperto di una varietà Riemanniana più grande:

Proposizione 5.3.2: Sia M una varietà Riemanniana, e supponiamo che esista un embedding F :M → N
in un’altra varietà Riemanniana N connessa tale che F (M) sia un aperto proprio di N , e F sia un’isometria
fra M ed F (M). Allora M non è completa.

Dimostrazione: Scegliamo un punto q0 ∈ ∂F (M), e una geodetica radiale σ: [0, ε)→ N minimizzante uscente
da q0 contenuta in F (M) tranne per il punto iniziale. Scegliamo una successione {tk} ⊂ (0, ε) convergente a 0;
in particolare, la successione {qk = σ(tk)} converge a q0 ed è di Cauchy per la distanza Riemanniana di N .
Poniamo pk = F−1(qk). La distanza in M fra ph e pk è minore o uguale alla lunghezza in M di F−1 ◦σ|[th,tk];
essendo F un’isometria, questa lunghezza è uguale alla lunghezza di σ|[th,tk], e quindi alla distanza in N di qh

e qk. In particolare, quindi, la successione {pk} è di Cauchy per la distanza Riemanniana di M . Se M fosse
completa, allora {pk} dovrebbe convergere a un punto p0 ∈ M ; ma allora qk = F (pk) → F (p0) ∈ F (M),
contro l’ipotesi che {qk} convergesse a un punto del bordo di F (M).

Esercizio 5.3.1. Dimostra che ogni varietà Riemanniana omogenea è completa.

5.4 Esempi

Esempio 5.4.1. Lo spazio euclideo. Le geodetiche di Rn rispetto alla metrica euclidea sono chiaramente le
rette. In particolare, un aperto convesso limitato di Rn mostra che in generale non è vero che la condizione (v)
del Teorema di Hopf-Rinow implichi le altre.
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Esempio 5.4.2. La sfera. Un cerchio massimo su Sn
R è l’intersezione di Sn

R con un piano passante per
l’origine. Vogliamo far vedere che le geodetiche di Sn

R sono proprio i cerchi massimi, parametrizzati rispetto
a un multiplo della lunghezza d’arco. Sia σ una geodetica uscente dal polo nord N = (0, . . . , 0, 1) e tangente
al vettore ∂/∂x1. Se l’immagine di σ non fosse contenuta nel piano π di equazione x2 = · · · = xn = 0,
la simmetria ρ rispetto a questo piano (che è un’isometria della metrica sferica) manderebbe σ in una
geodetica ρ ◦ σ diversa ma sempre uscente da N e tangente a ∂/∂x1, impossibile. Quindi l’immagine di σ
dev’essere contenuta in π, per cui è necessariamente una parametrizzazione a velocità costante del cerchio
massimo Sn

R∩π. Siccome, grazie all’Esempio 4.2.4, possiamo mandare con una rotazione il vettore ∂/∂x1|N in
un qualunque vettore di TSn

R di lunghezza unitaria, e le rotazioni mandano geodetiche in geodetiche e cerchi
massimi in cerchi massimi, abbiamo finito. In particolare, abbiamo esempi di geodetiche non minimizzanti: i
cerchi massimi smettono di essere minimizzanti non appena si supera il punto diametralmente opposto. Più
precisamente, abbiamo inj rad(p) = πR ed expp

(
BπR(Op)

)
= Sn

R \ {−p} per ogni p ∈ Sn
R. Infine, la sfera è

per forza completa, in quanto compatta.

Esercizio 5.4.1. Dimostra che le geodetiche dello spazio iperbolico sono: in Un
R le “iperboli massime”,

cioè le intersezioni di Un
R con piani passanti per l’origine; in Bn

R i diametri e gli archi di circonferenza che
intersecano ∂Bn

R ortogonalmente; in Hn
R le semirette verticali e le semicirconferenze con centro in ∂Hn

R.
Deduci che lo spazio iperbolico è completo, che il raggio d’iniettività di ogni punto è infinito, e che per ogni
punto p dello spazio iperbolico la mappa esponenziale è un diffeomorfismo fra lo spazio tangente nel punto
e l’intero spazio iperbolico.

Esempio 5.4.3. Il cilindro piatto. Consideriamo M = {x ∈ Rn | (x1)2 + · · · + (xn−1)2 = 1}, con la
metrica indotta dalla metrica euclidea di Rn. Siccome M è omogeneo (esercizio), possiamo limitarci a
studiare le geodetiche uscenti dal punto p0 = (1, 0, . . . , 0). Lo spazio tangente a M in p0 è l’iperpiano
Tp0M = {v ∈ Rn | v1 = 0}, e un versore normale a M in Rn nel punto p ∈ M è N(p) = (p1, . . . , pn−1, 0).
Sia σ: I →M la geodetica con σ(0) = p0 e σ̇(0) = v ∈ Tp0M . Allora sappiamo che

|σ1|2 + · · ·+ |σn−1|2 ≡ 1, |σ̇1|2 + · · ·+ |σ̇n|2 ≡ ‖v‖2; (5.4.1)

inoltre, siccome la connessione di Levi-Civita di M è la proiezione della connessione piatta di Rn, l’equazione
delle geodetiche diventa

σ̈ = λN ◦ σ (5.4.2)

per un’opportuna funzione λ ∈ C∞(I). In particolare, abbiamo subito σn(t) = vnt, e se σo = (σ1, . . . , σn−1)
l’equazione (5.4.2) diventa

σ̈o = λσo.

Derivando due volte ‖σo‖2 ≡ 1 troviamo (σ̈o, σo)+‖σ̇o‖2 ≡ 0, per cui λ = −‖vo‖2, dove vo = (0, v2, . . . , vn−1).
Mettendo tutto insieme ricaviamo

σ(t) =
(

cos(‖vo‖t),
v2

‖vo‖
sin(‖vo‖t), . . . ,

vn−1

‖vo‖
sin(‖vo‖t), vnt

)
.

⌈
Nel resto di questo paragrafo studieremo le geodetiche di un gruppo di Lie connesso G; fra l’altro,

daremo un’ulteriore motivazione per il nome della mappa esponenziale.
Cominciamo con una definizione cruciale:

Definizione 5.4.1: Sia G un gruppo di Lie connesso. Un sottogruppo a un parametro di G è una θ: R→ G di
classe C∞ che sia un omomorfismo di gruppi. In altre parole, richiediamo che θ(0) = e sia l’identità di G, e
che θ(t + s) = θ(t) · θ(s) per ogni s, t ∈ R.

Come vedremo, i sottogruppi a un parametro sono geodetiche per opportune connessioni lineari. Ini-
ziamo con il realizzarli come curve integrali:
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Lemma 5.4.1: Sia G un gruppo di Lie, X ∈ g e X̃ ∈ T (G) il campo vettoriale invariante a sinistra associato
a X. Allora:

(i) la curva integrale di X̃ uscente da e è un sottogruppo a un parametro di G;
(ii) viceversa, se θ: R → G è un semigruppo a un parametro con θ′(0) = X, allora θ è la curva integrale

di X̃ uscente da e.

Dimostrazione: (i) Sia σ: (−ε, ε)→ G la curva integrale massimale di X̃ uscente da e. Vogliamo dimostrare
che per ogni t0 ∈ (−ε, ε) la curva γ: (−ε, ε)→ G data da γ(t) = σ(t0)σ(t) è una curva integrale di X̃ uscente
da σ(t0). Infatti si ha

γ′(t) = d(Lσ(t0))σ(t)

(
σ′(t)

)
= d(Lσ(t0))σ(t)

(
X̃(σ(t))

)
= X̃

(
γ(t)

)
,

come voluto. Ma l’unicità delle curve integrali ci dice che allora γ(t) = σ(t0 + t), cioè

σ(t0 + t) = σ(t0)σ(t)

per ogni t0, t ∈ (−ε, ε). In particolare questo implica che ε dev’essere necessariamente infinito (perché?), e
che σ è un sottogruppo a un parametro.

(ii) Supponiamo che θ sia un sottogruppo a un parametro con θ′(0) = X. Allora

θ′(t0) =
d

dt
(Lθ(t0) ◦ θ)

∣∣∣∣
t=0

= d(Lθ(t0))e

(
θ′(0)

)
= d(Lθ(t0))e(X) = X̃

(
θ(t0)

)
,

per cui θ è la curva integrale di X̃ uscente da e.

In particolare, quindi, per ogni X ∈ g esiste un unico sottogruppo a un parametro θX : R → G tale
che θ′X(0) = X: è la curva integrale di X̃ uscente da e.

Definizione 5.4.2: Sia G un gruppo di Lie. L’applicazione esponenziale di G è l’applicazione exp: g→ G data
da exp(X) = θX(1).

Osservazione 5.4.1. Se s ∈ R, abbiamo che t 7→ θX(st) è un semigruppo a un parametro tangente
a sX in 0; quindi exp(sX) = θX(s). In altre parole, tutti i sottogruppi a un parametro di G sono della
forma t 7→ exp(tX) per qualche X ∈ g.

Esempio 5.4.4. Sia G = GL(n, R), per cui g = gl(n, R). Allora per ogni X ∈ gl(n, R) possiamo definire
θX : R→ GL(n, R) ponendo

θX(t) = etX ,

dove etX è il solito esponenziale di matrici. Si verifica subito che θX è un sottogruppo a un parametro
con θ′X(0) = X, per cui l’applicazione esponenziale di GL(n, R) è l’usuale esponenziale di matrici. Lo stesso
argomento lo si può applicare a GL(V ), dove V è un qualsiasi spazio vettoriale di dimensione finita, usando
come definizione di esponenziale di un endomorfismo L ∈ gl(V ) = End(V ) la

eL =
∞∑

k=0

1
k!

Lk,

dove Lk indica la composizione di L con se stesso k volte.

Ora, se sul gruppo di Lie G mettiamo una connessione lineare, ci troviamo con due applicazioni espo-
nenziali a disposizione: quella appena definita, e quella che viene dalle geodetiche. Vogliamo determinare
delle condizioni per cui queste due applicazioni coincidano.

La prima richiesta naturale è che la connessione sia invariante a sinistra:

Definizione 5.4.3: Sia G un gruppo di Lie. Diremo che una connessione lineare ∇ su G è invariante a sinistra
se

d(Lg)(∇XY ) = ∇d(Lg)(X)d(Lg)(Y )

per ogni X, Y ∈ T (G) e g ∈ G.
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Il seguente esercizio è elementare:

Esercizio 5.4.2. Dimostra che esiste una corrispondenza biunivoca fra le connessioni lineari invarianti a
sinistra su un gruppo di Lie G e l’insieme delle applicazioni bilineari α: g× g→ g, corrispondenza ottenuta
associando alla connessione ∇ l’applicazione α∇(X, Y ) = ∇X̃ Ỹ (e), dove per ogni X ∈ g il campo X̃ ∈ T (G)
è l’unico campo invariante a sinistra tale che X̃(e) = X.

Corollario 5.4.2: Sia ∇ una lineare connessione invariante a sinistra su un gruppo di Lie G, e X ∈ g.
Allora le seguenti affermazioni sono equivalenti:

(i) α∇(X, X) = O;
(ii) la geodetica σX uscente da e tangente a X è un sottogruppo a un parametro di G.

Dimostrazione: Essendo ∇ invariante a sinistra, da α∇(X, X) = O otteniamo ∇X̃X̃ ≡ O, dove X̃ ∈ T (G)
è il campo vettoriale invariante a sinistra associato a X. In particolare, quindi, la curva integrale di X̃
uscente da e è una geodetica per ∇, e questa geodetica risulta essere un sottogruppo a un parametro grazie
al Lemma 5.4.1.(i)

Viceversa, se σX(t) è un sottogruppo a un parametro, il Lemma 5.4.1.(ii) ci dice che è la curva integrale
di X̃ uscente da e; ma allora abbiamo ∇X̃X̃(e) = O, cioè α∇(X, X) = O.

Di connessioni lineari che soddisfano le condizioni di questo corollario ce ne sono a bizzeffe; per esempio
quelle ottenute prendendo α∇(X, Y ) = c[X, Y ] per qualche c ∈ R. Ma a noi interessa sapere quando la con-
nessione di Levi-Civita (ottenuta partendo da una metrica invariante a sinistra) soddisfa questa condizione.
Per enunciare in maniera pulita il risultato, introduciamo la seguente

Definizione 5.4.4: Sia g un’algebra di Lie. Allora l’applicazione aggiunta di g è l’omomorfismo di algebre di
Lie ad: g→ gl(g) dato da ad(X)(Y ) = [X, Y ].

Proposizione 5.4.3: Sia 〈· , ·〉 una metrica invariante a sinistra su un gruppo di Lie G, e ∇ la connessione
di Levi-Civita. Allora le seguenti condizioni sono equivalenti:

(i) α∇(X, Y ) = 1
2 [X, Y ];

(ii) ad(X) è antisimmetrico per ogni X ∈ g;
(iii) expe = exp, cioè i semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: Il Teorema 4.4.4 ci dice che

〈α∇(X, Y ), Z〉 =
1
2
[
〈[X, Y ], Z〉+ 〈ad(Z)X, Y 〉+ 〈X, ad(Z)(Y )〉

]
, (5.4.3)

per cui l’equivalenza fra (i) e (ii) è evidente.
Il Corollario 5.4.2 ci dice che (iii) vale se e solo se α∇(X, X) = O per ogni X ∈ g. Ora, (5.4.3) implica

〈α∇(X, X), Z〉 = 〈ad(Z)X, X〉.
Quindi α∇(X, X) = O per ogni X ∈ g se e solo se 〈ad(Z)X, X〉 = 0 per ogni Z, X ∈ g, e questo accade se e
solo se ad(Z) è antisimmetrico per ogni Z ∈ g.

La cosa interessante è che tutto ciò è legato a quando una metrica invariante a sinistra è anche inva-
riante a destra. Per dimostrarlo ci servono un paio di risultati generali sui gruppi di Lie, importanti anche
indipendentemente.

Proposizione 5.4.4: Sia ψ:G→ H un omomorfismo di gruppi di Lie. Allora dψe: g→ h è un omomorfismo
delle corrispondenti algebre di Lie, e si ha

∀X ∈ g ψ
(
exp(X)

)
= exp

(
dψe(X)

)
. (5.4.4)

Dimostrazione: Sia θX(t) = exp(tX) il sottogruppo a un parametro in G tangente a X ∈ g. Allora ψ ◦ θX è
un sottogruppo a un parametro in H tangente a dψe(X), per cui ψ

(
θX(t)

)
= exp

(
tdψe(X)

)
, e (5.4.4) vale.

Inoltre, abbiamo ψ ◦ Lg = Lψ(g) ◦ ψ per ogni g ∈ G; quindi per ogni X ∈ g abbiamo

dψg

(
d(Lg)e(X)

)
= d(Lψ(g))e

(
dψe(X)

)
.

Questo vuol dire che il campo X̃ invariante a sinistra che estende X è sempre ψ-correlato al campo invariante
a sinistra che estende dψe(X). L’Esercizio 3.3.3 ci assicura allora che dψe è un omomorfismo di algebre di
Lie.
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Proposizione 5.4.5: Sia U ⊂ G un intorno aperto dell’elemento neutro in un gruppo di Lie connesso G.
Allora U genera tutto G, nel senso che ogni elemento di G si ottiene come prodotto di un numero finito di
elementi di U .

Dimostrazione: Notiamo prima di tutto che un sottogruppo aperto è anche chiuso. Infatti, se H ⊆ G è un
sottogruppo aperto, allora

G \H =
⋃

g/∈H

gH

è aperto, per cui H è chiuso.
Ora, se U è un intorno aperto di e, allora il sottogruppo generato da U è

〈U〉 =
⋃
n∈N

Un,

dove Un è l’insieme di tutti i possibili prodotti di n elementi di U . Quindi 〈U〉 è un sottogruppo aperto, e
dunque chiuso, di G; essendo G connesso, dev’essere 〈U〉 = G, come affermato.

Definizione 5.4.5: Sia G un gruppo di Lie. Se g ∈ G, indichiamo con Cg:G→ G il coniugio Cg(x) = gxg−1,
in modo che Cg ◦ Ch = Cgh per ogni g, h ∈ G. La rappresentazione aggiunta di G è l’omomorfismo
Ad:G→ GL(g) definito da Ad(g) = d(Cg)e.

Notiamo che la (5.4.4) implica che

Cg(expX) = exp
(
Ad(g)(X)

)
. (5.4.5)

Ci servirà il seguente

Esercizio 5.4.3. Dimostra che se X ∈ caT (G) è un campo vettoriale invariante a sinistra su un gruppo di
Lie G si ha θt ◦ Lg = Lg ◦ θt per ogni g ∈ G, dove θt = Θ(t, ·) è il flusso di X. (Suggerimento: ricorda
l’Esercizio 3.3.4.)

Da questo otteniamo il

Lemma 5.4.6: Sia G un gruppo di Lie, e Ad:G→ GL(g) la rappresentazione aggiunta. Allora

d(Ad)e(X) = ad(X)

per ogni X ∈ g. In particolare, quindi,

∀X ∈ g Ad(expX) = ead(X). (5.4.6)

Dimostrazione: Siccome t 7→ exp(tX) è una curva in G tangente a X in e, abbiamo

d(Ad)e(X)(Y ) =
d

dt
Ad(exp tX)(Y )

∣∣∣∣
t=0

per ogni X, Y ∈ g. Indicando con Ỹ ∈ T (G) l’estensione invariante a sinistra di Y , abbiamo

Ad(exp tX)(Y ) = d(Cexp(tX))e(Y ) = d(Rexp(−tX))exp(tX) ◦ d(Lexp(tX))e(Y )

= d(Rexp(−tX))exp(tX)

(
Ỹ (exp(tX))

)
.

Ora, per ogni g ∈ G si ha

Rexp(tX)(g) = g exp(tX) = Lg

(
exp(tX)

)
= Lg

(
θt(e)

)
= θt

(
Lg(e)

)
= θt(g),

dove θt è il flusso di X̃, l’estensione invariante a sinistra di X, e abbiamo usato l’Esercizio 5.4.3. Ma allora
questo vuol dire che Rexp(−tX) = θ−t, per cui

Ad(exp tX)(Y ) = d(θ−t)θt(e)(Ỹ ),

e la Proposizione 3.3.6 ci permette di concludere che

d(Ad)e(X)(Y ) =
d

dt
d(θ−t)θt(e)(Ỹ )

∣∣∣∣
t=0

= LX̃ Ỹ (e) = [X, Y ] = ad(X)(Y ),

come voluto. Infine, (5.4.6) segue da (5.4.4) e dall’Esempio 5.4.4.



6.4 Esempi 115

Siamo ora in grado di dimostrare il

Teorema 5.4.7: Sia G un gruppo di Lie connesso, e 〈· , ·〉 una metrica Riemanniana invariante a sinistra
su G. Allora le seguenti affermazioni sono equivalenti:

(i) 〈· , ·〉 è anche invariante a destra;
(ii) Ad(g) è un’isometria di g per ogni g ∈ G;
(iii) ad(X) è antisimmetrica per ogni X ∈ g;
(iv) expe = exp, cioè i semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: La metrica 〈· , ·〉 è invariante a destra se e solo se 〈d(Rg)h(v), d(Rg)h(w)〉hg = 〈v, w〉h per
ogni g, h ∈ G e v, w ∈ TgG. Usando l’invarianza a sinistra della metrica, questo si riduce a dimostrare che

〈d(L−1
hg ◦Rg ◦ Lh)e(X), d(L−1

hg ◦Rg ◦ Lh)e(Y )〉e = 〈X, Y 〉e

per ogni h, g ∈ G e X, Y ∈ g. Ma L−1
hg ◦ Rg ◦ Lh = Cg−1 , e quindi 〈· , ·〉 è invariante a destra se e solo se

ogni Ad(g) è un’isometria di g.
Supponiamo ora che (ii) valga. Per il Lemma 5.4.6, allora, ead(tX) è un’isometria per ogni X ∈ g e t ∈ R.

Derivando
〈ead(tX)(Y ), ead(tX)(Z)〉e = 〈Y, Z〉e

rispetto a t e calcolando in t = 0 otteniamo

〈ad(X)(Y ), Z〉e + 〈Y, ad(X)(Z)〉e = 0

per ogni X, Y , Z ∈ g, e quindi (iii) vale.
Viceversa, supponiamo che (iii) valga. Siccome si verifica subito che

d

dt
ead(tX) = ad(X) ◦ ead(tX),

troviamo
d

dt
〈ead(tX)(Y ), ead(tX)(Z)〉e = 〈ad(X) ◦ ead(tX)(Y ), ead(tX)(Z)〉e + 〈ead(tX)(Y ), ad(X) ◦ ead(tX)(Z)〉e ≡ 0.

Dunque 〈ead(tX)(Y ), ead(tX)(Z)〉e è una funzione costante, e calcolando per t = 0 e per t = 1 vediamo
che ead(X) è un’isometria per ogni X ∈ g. Ma allora Ad(expX) è un’isometria per ogni X ∈ g. Ora,
dalla definizione si ricava subito che d expO = id; quindi l’immagine dell’esponenziale contiene un intorno U
dell’elemento neutro e, e Ad(g) è un’isometria per ogni g ∈ U . Siccome la composizione di isometrie è
un’isometria, la Proposizione 5.4.5 ci assicura allora che Ad(g) è un’isometria per ogni g ∈ G, e abbiamo
dimostrato (ii).

Infine, l’equivalenza fra (iii) e (iv) è già stata dimostrata nella Proposizione 5.4.3.

Esempio 5.4.5. Non è difficile verificare che la metrica euclidea su gl(n, R), cioè quella dell’Esempio 4.4.6,
si può esprimere scrivendo

∀A, B ∈ gl(n, R) 〈A, B〉 = tr(BT A).

Ora, se X ∈ gl(n, R) abbiamo

〈[X, A], B〉 = tr(BT XA)− tr(BT AX),

〈A, [X, B]〉 = tr(BT XT A)− tr(XT BT A) = tr(BT XT A)− tr(BT AXT ),
(5.4.7)

dove abbiamo usato il fatto che tr(CD) = tr(DC) per ogni C, D ∈ gl(n, R). Quindi in generale ad(X) non è
antisimmetrico rispetto alla metrica euclidea, per cui i sottogruppi a un parametro visti nell’Esempio 5.4.4
non sono geodetiche per la connessione di Levi-Civita su GL(n, R) calcolata nell’Esempio 4.4.6.

Esempio 5.4.6. Nell’Esercizio 3.3.9 abbiamo visto che l’algebra di Lie del gruppo SO(n) è l’algebra so(n)
delle matrici antisimmetriche. Ma allora (5.4.7) ci dice che ad(X) è antisimmetrica rispetto al prodotto
scalare dell’esempio precedente per ogni X ∈ so(n). Quindi la metrica dell’Esempio 4.4.6 ristretta a SO(n)
è bi-invariante, e i sottogruppi a un parametro sono geodetiche per la corrispondente connessione di Levi-
Civita.
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Capitolo 6

Curvatura

6.1 Gli operatori di curvatura

Obiettivo di questo capitolo è lo studio della curvatura di una varietà Riemanniana, e delle relazioni fra la
curvatura e la topologia della varietà.

Per vedere come potremmo definire la curvatura di una varietà Riemanniana, ricordiamo che la curvatura
Gaussiana K di una superficie S ⊂ R3 può essere calcolata con la seguente formula:

K = − 1
E

[
∂Γ2

12

∂x1
− ∂Γ2

11

∂x2
+

(
Γs

12Γ
2
s1 − Γs

11Γ
2
s2

)]
, (6.1.1)

dove i Γi
hk sono i simboli di Christoffel della connessione di Levi-Civita della metrica indotta su S dalla

metrica piatta di R3, calcolati rispetto a una carta locale ϕ(p) =
(
x1(p), x2(p)

)
, ed E = ‖∂1‖.

Siccome la formula (6.1.1) dipende solo dalla metrica su S, potremmo tentare di definire un concetto di
curvatura su una varietà Riemanniana qualsiasi nel modo seguente:

Definizione 6.1.1: Sia M una varietà Riemanniana, p ∈M e π ⊂ TpM un 2-piano. Diremo curvatura sezionale
di M in p lungo π la curvatura Gaussiana in p della superficie expp(π ∩ Ep) ⊂ M calcolata usando (6.1.1)
applicata a un sistema di coordinate normali centrate in p ottenute estendendo a TpM una base ortonormale
di π.

Questa definizione, benché geometricamente chiara, ha però due problemi evidenti. Il primo è che
bisogna verificare che sia una definizione ben posta, cioè che non dipenda dal sistema di coordinate normali
scelto. La seconda è che non è chiaro che struttura abbia (ammesso che ne abbia una) l’insieme delle
curvature sezionali in un punto.

Per ovviare a questi problemi procederemo per via analitica invece che geometrica. L’idea cruciale è che
siccome (6.1.1) contiene i simboli di Christoffel, la curvatura dev’essere legata alla connessione di Levi-Civita.
Allora cominciamo con la seguente

Definizione 6.1.2: Sia M una varietà Riemanniana con connessione di Levi-Civita ∇. Per ogni X, Y ∈ T (M)
l’endomorfismo di curvatura RXY : T h

k (M)→ T h
k (M) è dato da

RXY = ∇X∇Y −∇Y∇X −∇[X,Y ].

In realtà, RXY è molto di più di un semplice endomorfismo: è C∞(M)-lineare in tutte le variabili.
Infatti,

RXY (fK) = ∇X

(
f∇Y K + Y (f)K

)
−∇Y

(
f∇XK + X(f)K

)
− f∇[X,Y ]K − [X, Y ](f)K = fRXY K

per ogni K ∈ T h
k (M) e f ∈ C∞(M). Inoltre RY X = −RXY e

RX(fY ) = f∇X∇Y + X(f)∇Y − f∇Y∇X − f∇[X,Y ] −X(f)∇Y = fRXY .

Quindi R: T (M)× T (M)× T h
k (M) → T h

k (M) determina un campo tensoriale R ∈ T h+k
h+k+2(M). Il caso per

noi più interessante è il seguente:
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Definizione 6.1.3: Il tensore di curvatura R ∈ T 1
3 (M) è il campo tensoriale R: T (M)×T (M)×T (M)→ T (M)

dato da R(X, Y, Z) = RXY Z. A questo associamo anche un altro campo tensoriale R ∈ T 0
4 (M) definito da

R(X, Y, Z, W ) = 〈RXY Z, W 〉.

Esercizio 6.1.1. Dimostra che se H:M → N è un’isometria fra varietà Riemanniane allora H∗RN = RM ,
nel senso che

RN
(
dH(X), dH(Y ), dH(Z)

)
= RM (X, Y, Z)

per ogni X, Y , Z ∈ T (M), dove RM (rispettivamente, RN ) è il tensore di curvatura di M (rispettiva-
mente, N).

Come vedremo, le proprietà di simmetria del tensore di curvatura saranno utilissime:

Proposizione 6.1.1: Il tensore di curvatura R di una varietà Riemanniana ha le seguenti proprietà:

(i) RXY = −RY X ;
(ii) RXY Z + RY ZX + RZXY = O (prima identità di Bianchi);
(iii) 〈RXY Z, W 〉 = −〈Z, RXY W 〉;
(iv) 〈RXY Z, W 〉 = 〈RZW X, Y 〉.

Dimostrazione: (i) Ovvia.
(ii) Usando la simmetria della connessione e l’identità di Jacobi si ottiene

RXY Z + RY ZX + RZXY = (∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z)

+ (∇Y∇ZX −∇Z∇Y X −∇[Y,Z]X)

+ (∇Z∇XY −∇X∇ZY −∇[Z,X]Y )

= ∇X(∇Y Z −∇ZY ) +∇Y (∇ZX −∇XZ) +∇Z(∇XY −∇Y X)
−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]Y

= ∇X [Y, Z] +∇Y [Z, X] +∇Z [X, Y ]−∇[X,Y ]Z −∇[Y,Z]X −∇[Z,X]Y

= [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = O.

(iii) Basta dimostrare che 〈RXY Z, Z〉 = 0. La compatibilità con la metrica dà

XY ‖Z‖2 = 2X〈∇Y Z, Z〉 = 2〈∇X∇Y Z, Z〉+ 2〈∇Y Z,∇XZ〉,
Y X‖Z‖2 = 2Y 〈∇XZ, Z〉 = 2〈∇Y∇XZ, Z〉+ 2〈∇XZ,∇Y Z〉,

[X, Y ]‖Z‖2 = 2〈∇[X,Y ]Z, Z〉.

Sottraendo le ultime due dalla prima, il membro sinistro si annulla e otteniamo

0 = 2〈RXY Z, Z〉,

come voluto.
(iv) Scriviamo la prima identità di Bianchi quattro volte, permutando ciclicamente gli argomenti:

〈RXY Z, W 〉+ 〈RY ZX, W 〉+ 〈RZXY, W 〉 = 0,

〈RY ZW, X〉+ 〈RZW Y, X〉+ 〈RWY Z, X〉 = 0,

〈RZW X, Y 〉+ 〈RWXZ, Y 〉+ 〈RXZW, Y 〉 = 0,

〈RWXY, Z〉+ 〈RXY W, Z〉+ 〈RY W X, Z〉 = 0,

e sommiamo. Grazie a (iii) le prime due colonne si cancellano. Applicando (i) e (iii) all’ultima colonna
otteniamo 2〈RXZW, Y 〉 − 2〈RWY X, Z〉 = 0, che è equivalente alla tesi.
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Esercizio 6.1.2. Dimostra la seconda identità di Bianchi:

∇R(X, Y, Z, V, W ) +∇R(X, Y, V, W, Z) +∇R(X, Y, W, Z, V ) = O

per ogni X, Y , Z, V , W ∈ T (M).

Esercizio 6.1.3. Dimostra l’identità di Ricci: se K ∈ T 0
2 (M) allora

∇2K(Z, W, X, Y )−∇2K(Z, W, Y, X) = (RXY K)(Z, W )

per ogni X, Y , Z, W ∈ T (M).

In coordinate locali, se poniamo R∂i∂j ∂k = Rh
ijk∂h, si trova

Rh
ijk =

∂Γh
jk

∂xi
− ∂Γh

ik

∂xj
+ Γr

jkΓh
ir − Γr

ikΓh
jr, (6.1.2)

formula che ci fa sospettare di essere nella direzione giusta. In particolare, se poniamo Rijhk = 〈R∂i∂j
∂h, ∂k〉

otteniamo Rijhk = grkRr
ijh, e la Proposizione 6.1.1.(i)–(iv) è equivalente alle seguenti simmetrie dei coeffi-

cienti di R:

Rijhk + Rjhik + Rhijk = 0, Rijhk = −Rjihk, Rijhk = −Rijkh, Rijhk = Rhkij .

Osservazione 6.1.1. Se avessimo una carta locale tale che i vettori {∂1, . . . , ∂n} formino un riferimento
locale ortonormale di TM , i simboli di Christoffel sarebbero identicamente nulli, e quindi la curvatura sarebbe
identicamente nulla. Questo conferma quanto anticipato nell’Osservazione 4.1.4.

Le proprietà di simmetria fanno sospettare che per conoscere l’intero tensore di curvatura sia sufficiente
sapere come si comporta su alcune particolari quadruple di vettori. Le quadruple giuste sono quelle indicate
nella prossima

Definizione 6.1.4: Sia M una varietà Riemanniana con tensore di curvatura R. Definiamo per ogni p ∈M la
forma quadratica Qp:TpM × TpM → R data da

Qp(v, w) = Rp(v, w, w, v) = 〈Rvww, v〉p

per ogni v, w ∈ TpM .

La forma Qp(v1, v2) in realtà dipende più dal piano generato dai vettori v1 e v2 che dai vettori in sé.
Prima di tutto, se v1 e v2 sono linearmente dipendenti (cioè generano una retta in TpM) allora le proprietà
di simmetria di R implicano subito (verificare, prego) che Qp(v1, v2) = 0. Supponiamo invece che v1 e v2

siano linearmente indipendenti, e siano wj = ai
jvi (per j = 1, 2) altri due vettori generanti lo stesso piano,

dove (ai
j) ∈ GL(2, R) è la matrice di cambiamento di base. Allora la multilinearità e le proprietà di simmetria

di R danno
Qp(w1, w2) =

(
det(ai

j)
)2

Qp(v1, v2).

Ora, l’Esercizio 1.3.17 ci dice che la norma dell’elemento v1 ∧ v2 ∈
∧2

TpM rispetto al prodotto scalare
indotto dalla metrica Riemanniana è data da

1√
2
‖v1 ∧ v2‖p =

√
‖v1‖2p‖v2‖2p − |〈v1, v2〉p|2;

nota che il secondo membro è l’area del parallelogrammo generato da v1 e v2 in TpM . In particolare,
otteniamo anche

‖w1 ∧ w2‖2p =
(
det(ai

j)
)2‖v1 ∧ v2‖2p.

Quindi il numero
2Qp(v1, v2)
‖v1 ∧ v2‖2p

dipende solo dal piano generato dai vettori v1 e v2. Abbiamo recuperato la curvatura sezionale:
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Proposizione 6.1.2: Sia M una varietà Riemanniana con tensore di curvatura R. Allora per ogni p ∈ M
e 2-piano π ⊂ TpM si ha

K(π) =
2Qp(v1, v2)
‖v1 ∧ v2‖2p

,

dove {v1, v2} è una qualunque base di π.

Dimostrazione: Sia {v1, v2} una base ortonormale di π; completiamola a una base ortonormale di TpM , e
usiamo quest’ultima base per definire coordinate normali centrate in p. Allora le simmetrie del tensore di
curvatura danno

2Qp(v1, v2)
‖v1 ∧ v2‖2p

= Qp(v1, v2) = R1221 = R2112,

che è esattamente uguale a K(π), grazie a (6.1.1), (6.1.2), e alla simmetria dei simboli di Christoffel.

Dunque il tensore di curvatura definito tramite la connessione di Levi-Civita ci permette di recuperare
la curvatura sezionale definita geometricamente. Viceversa, la curvatura sezionale determina completamente
il tensore di curvatura:

Proposizione 6.1.3: Sia V uno spazio vettoriale di dimensione n ≥ 2 dotato di un prodotto scalare definito
positivo 〈· , ·〉, e R, R′:V × V × V → V due applicazioni multilineari soddisfacenti le proprietà (i)–(iv) della
Proposizione 6.1.1. Per ogni x, y, v, w ∈ V e ogni 2-piano π ⊂ V definiamo

Q(v, w) = 〈Rvww, v〉, e K(π) =
2Q(v1, v2)
‖v1 ∧ v2‖2

,

dove {v1, v2} è una base qualunque del 2-piano π. Definiamo analogamente Q′ e K ′. Allora R = R′ se e solo
se K = K ′.

Dimostrazione: Una direzione è ovvia. Supponiamo allora K = K ′, e quindi Q = Q′. Allora

R(x + v, y, y, x + v) = R′(x + v, y, y, x + v)

per ogni x, y, v ∈ V (dove per semplicità di scrittura abbiamo posto 〈Rxyv, w〉 = R(x, y, v, w), e analogamente
per R′), per cui

R(x, y, y, x) + 2R(x, y, y, v) + R(v, y, y, v) = R′(x, y, y, x) + 2R′(x, y, y, v) + R′(v, y, y, v),

e perciò
R(x, y, y, v) = R′(x, y, y, v).

Dunque
R(x, y + w, y + w, v) = R′(x, y + w, y + w, v),

per ogni x, y, v, w ∈ V , per cui

R(x, y, w, v) + R(x, w, y, v) = R′(x, y, w, v) + R′(x, w, y, v),

o meglio
R(x, y, v, w)−R′(x, y, v, w) = R(y, v, x, w)−R′(y, v, x, w).

Dunque la quantità R(x, y, v, w)−R′(x, y, v, w) è invariante per permutazioni cicliche dei primi tre elementi.
Usando la prima identità di Bianchi, cioè la Proposizione 6.1.1.(ii), otteniamo allora

3[R(x, y, v, w)−R′(x, y, v, w)] = 0,

e ci siamo.
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Esercizio 6.1.4. Dimostra che

R(X, Y, Z, W ) =
1
6
{
Q(Y + Z, X + W )−Q(X + Z, Y + W )

+ Q(X, Y + W ) + Q(Y, X + Z) + Q(Z, Y + W ) + Q(W, X + Z)
−Q(X, Y + Z)−Q(Y, X + W )−Q(Z, X + W )−Q(W, Y + Z)

+ Q(X, Z) + Q(X, W )−Q(Y, Z)−Q(Y, W )
}
.

Uno degli obiettivi tipici dei geometri è classificare tutti gli oggetti che hanno determinate proprietà. Nel
caso della geometria Riemanniana, viene naturale cercare di classificare le varietà in base alla loro curvatura.
Il caso più semplice, ma comunque molto importante (e che discuteremo nel paragrafo 6.4) è quello delle
varietà a curvatura sezionale costante:

Definizione 6.1.5: Una varietà Riemanniana M ha curvatura sezionale costante k ∈ R se K(π) = k per
ogni p ∈M e ogni 2-piano π ⊂ TpM .

Osservazione 6.1.2. Usando la seconda identità di Bianchi è possibile dimostrare che una varietà Rie-
manniana M connessa di dimensione n ≥ 3 per cui esista una funzione k:M → R tale che K(π) = k(p) per
ogni p ∈ M e ogni 2-piano π ⊂ TpM è necessariamente a curvatura sezionale costante (cioè la funzione k è
costante).

Il tensore di curvatura di una varietà Riemanniana a curvatura sezionale costante è completamente
determinato:

Corollario 6.1.4: Una varietà Riemanniana M ha curvatura sezionale costante k ∈ R se e solo se il suo
tensore di curvatura è dato da

RXY Z = k
[
〈Y, Z〉X − 〈X, Z〉Y

]
. (6.1.3)

Dimostrazione: Una direzione è immediata. Viceversa, supponiamo che M abbia curvatura sezionale co-
stante k ∈ R. Definiamo un campo tensoriale R′ ∈ T 1

3 (M) tramite il membro destro della (6.1.3). Si vede su-
bito che R′ soddisfa le proprietà (i)–(iv) della Proposizione 6.1.1, e che Q′(X, Y ) = k

[
‖X‖2‖Y ‖2−|〈X, Y 〉|2

]
;

quindi K ′ = K ≡ k, e la Proposizione 6.1.3 ci assicura che R = R′.

Ci sono altri tipi di curvature che meritano di essere ricordati.

Definizione 6.1.6: Sia M una varietà Riemanniana con tensore di curvatura R. Se indichiamo con Ric(X, Y )
la traccia dell’operatore lineare Z 7→ RZXY otteniamo il tensore di Ricci Ric ∈ T 0

2 (M).

Osservazione 6.1.3. Un veloce richiamo di algebra lineare: se L:V → V è un endomorfismo di uno spazio
vettoriale di dimensione finita, e B = {v1, . . . , vn} è una base di V , allora scrivendo L(vi) = aj

ivj (cioè se
(ai

j) è la matrice che rappresenta L rispetto alla base B) troviamo che tr(L) = ai
i. Se poi B è una base

ortonormale rispetto a un prodotto scalare 〈· , ·〉 su V , allora aj
i = 〈L(vi), vj〉, e quindi

tr(L) =
n∑

i=1

〈L(vi), vi〉.

Il tensore di Ricci è simmetrico: se {Z1, . . . , Zn} è una base ortonormale di TpM l’osservazione precedente
e le simmetrie del tensore di curvatura implicano

Ric(X, Y ) =
n∑

j=1

〈RZjXY, Zj〉 =
n∑

j=1

〈RZjY X, Zj〉 = Ric(Y, X).

Definizione 6.1.7: Sia M una varietà Riemanniana con tensore di curvatura R. La curvatura di Ricci del
vettore X ∈ TpM è la forma quadratica associata al tensore di Ricci: Ric(X) = Ric(X, X). L’operatore
di Ricci è l’unico operatore lineare simmetrico R ∈ T 1

1 (M) tale che Ric(X, Y ) = 〈R(X), Y 〉. La curvatura
scalare S ∈ C∞(M) è la traccia dell’operatore di Ricci.
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Se {Z1, . . . , Zn} è di nuovo una base ortonormale di TpM otteniamo

Ric(X) =
n∑

j=1

〈RZjXX, Zj〉 =
n∑

j=1

Q(Zj , X), R(X) =
n∑

j=1

RXZj
Zj ,

e quindi

S(p) =
n∑

j=1

〈R(Zj), Zj〉 =
n∑

j=1

Ric(Zj , Zj) =
n∑

i,j=1

〈RZiZj
Zj , Zi〉 =

n∑
i,j=1

Q(Zi, Zj).

In coordinate locali, se poniamo Ric(∂i, ∂j) = Rij e R(∂i) = Rj
i ∂j troviamo

Rij = Rk
kij , Rj

i = gjhRih = gjhRk
kih, S = Ri

i = gihRih = gihRk
kih.

Per completezza, concludiamo questo paragrafo richiamando una definizione che si trova spesso in let-
teratura.

Definizione 6.1.8: Una metrica Riemanniana g su una varietà M è detta di Einstein se esiste λ ∈ C∞(M)
tale che Ric = λg.

Se (M, g) è di Einstein, allora l’operatore di Ricci è λ id; calcolando la traccia troviamo λ = 1
nS, dove

n è la dimensione di M . Quindi g è di Einstein se e solo se

Ric =
1
n

Sg.

Osservazione 6.1.4. In realtà, usando la seconda identità di Bianchi si può dimostrare che la curvatura
scalare di una varietà di Einstein di dimensione n ≥ 3 è costante, per cui Ric risulta essere un multiplo
costante della metrica.

Osservazione 6.1.5. Molto di quanto fatto in questo paragrafo si può ripetere per varietà fornite di
un tensore simmetrico non degenere g ∈ T 0

2 (M), per le quali, come già notato nell’Osservazione 4.4.1, la
connessione di Levi-Civita è definita. L’unica differenza è che in questo caso si definisce la curvatura scalare
come la traccia (nel senso della Definizione 4.4.4) del tensore di Ricci, senza passare attraverso l’operatore
di Ricci (dove con “base ortonormale” di TpM s’intende una base {Z1, . . . , Zn} tale che g(Zi, Zj) = 0 se
i 6= j, e g(Zi, Zi) = ±1 per i = 1, . . . , n). In particolare, una metrica di Einstein in questo senso più generale
soddisfa l’equazione Ric = 1

tr(g)
Sg.

Concludiamo il paragrafo con alcune definizioni e alcuni esercizi.

Esercizio 6.1.5. Se (M, g) è una varietà Riemanniana e k > 0, è evidente che anche (M, kg) è una varietà
Riemanniana. Trova che relazione esiste fra la connessione di Levi-Civita e il tensore di curvatura di (M, g)
e i corrispondenti oggetti per (M, kg).

Definizione 6.1.9: Siano (M1, g1) e (M2, g2) due varietà Riemanniane. La metrica prodotto sul prodotto
cartesiano M1 ×M2 è la metrica Riemanniana definita da

〈(v1, v2), (w1, w2)〉(p1,p2) = 〈v1, w1〉p1 + 〈v2, w2〉p2

per ogni (p1, p2) ∈M1 ×M2 e ogni (v1, v2), (w1, w2) ∈ T(p1,p2)(M1 ×M2) = Tp1M1 ⊕ Tp2M2.

Esercizio 6.1.6. Trova come si esprimono la connessione di Levi-Civita e il tensore di curvatura della metrica
prodotto in funzione delle connessioni di Levi-Civita e dei tensori di curvatura dei due fattori.

Definizione 6.1.10: Una sottovarietà N ⊂ M di una varietà Riemanniana è totalmente geodetica se per
ogni p ∈ N e v ∈ TpN la geodetica di M uscente da p in direzione v è completamente contenuta in N .
Diremo invece che N è piatta se il tensore di curvatura in N della metrica indotta è identicamente nullo.

Esercizio 6.1.7. Sia S2 ⊂ R3 la sfera unitaria con la metrica indotta dalla metrica euclidea di R3, e sia
M = S2 × S2 considerata con la metrica prodotto.
(i) Dimostra che la curvatura sezionale di M è non-negativa.
(ii) Trova una sottovarietà N di M totalmente geodetica, piatta e diffeomorfa a un 2-toro T 2 = S1 × S1.
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Esercizio 6.1.8. Sia M una sottovarietà di una varietà Riemanniana M̃ , considerata con la metrica indotta.
In questo esercizio indicheremo con la tilde tutti gli oggetti (connessione di Levi-Civita ∇̃, curvatura R̃,
eccetera) relativi a M̃ , e senza tilde i corrispondenti oggetti relativi a M . Indicheremo poi con T :TM̃ → TM
e con ⊥:TM̃ → (TM)⊥ le proiezioni ortogonali. Infine, N (M) sarà lo spazio delle sezioni di TM̃ |M ovunque
ortogonali a TM . In altre parole, una sezione N :M → TM̃ |M appartiene aN (M) se e solo se N(p) ∈ (TpM)⊥

per ogni p ∈M .

(i) Dimostra che l’applicazione II:N (M)× T (M)× T (M)→ C∞(M), detta seconda forma fondamentale
di M in M̃ , data da

II(N, X, Y ) = 〈∇̃XN, Y 〉

è C∞(M)-trilineare, ed è inoltre simmetrica negli ultimi due argomenti.
(ii) Sia S: T (M)× T (M)→ N (M) l’operatore di forma definito da

S(X, Y ) = − ⊥ (∇̃XY )

per ogni X, Y ∈ T (M). Dimostra che 〈S(X, Y ), N〉 = II(N, X, Y ) per ogni N ∈ N (M) e X, Y ∈ T (M).
(iii) Dimostra l’equazione di Gauss

〈R̃XY Z, W 〉 = 〈RXY Z, W 〉+ 〈S(Y, Z), S(X, W )〉 − 〈S(X, Z), S(Y, W )〉

per ogni X, Y , Z, W ∈ T (M).
(iv) Dimostra l’equazione di Codazzi-Mainardi

⊥ R̃XY Z = S
(
Y, S(X, Z)

)
+ S(∇Y X, Z) + S(X,∇Y Z)− S

(
X, S(Y, Z)

)
− S(∇XY, Z)− S(Y,∇XZ)

per ogni X, Y , Z ∈ T (M).
(v) Trova che relazione c’è fra la seconda forma fondamentale, le equazioni di Gauss e le equazioni di

Codazzi-Mainardi viste per le superfici in R3 e quelle definite qui.
(vi) Dimostra il lemma di Synge: sia σ: (−ε, ε) → M una geodetica per M̃ il cui sostegno sia contenuto

in M , e π ⊂ Tσ(0)M un 2-piano contenente σ̇(0). Allora K(π) ≤ K̃(π).

6.2 Campi di Jacobi

Vogliamo ora introdurre quello che risulterà essere lo strumento essenziale per collegare il comportamento
delle geodetiche con la curvatura.

Per cominciare ci servono una definizione, un esempio e un lemma.

Definizione 6.2.1: Sia Σ: (−ε, ε) × [a, b] → M una variazione di una curva regolare a tratti σ: [a, b] → M .
Un campo vettoriale X lungo Σ è dato da una suddivisione a = t0 < t1 < · · · < tk = b di [a, b] associata
a Σ e da applicazioni X: (−ε, ε) × [tj−1, tj ] → TM di classe C∞ tali che X(s, t) ∈ TΣ(s,t)M per ogni
(s, t) ∈ (−ε, ε) × [tj−1, tj ] e j = 1, . . . , k. Se i vari campi vettoriali si raccordano con continuità nei punti
interni t1, . . . , tk−1 della suddivisione, diremo che X è un campo continuo.

Esempio 6.2.1. Sia Σ: (−ε, ε) × [a, b] → M una variazione di una curva regolare a tratti σ: [a, b] → M .
Allora i campi S e T introdotti nella Definizione 5.2.7 sono esempi di campi vettoriali lungo Σ. Inoltre, S è
un campo continuo, mentre T potrebbe non esserlo.

Il prossimo risultato è analogo al Lemma 5.2.4.

Lemma 6.2.1: Sia Σ: (−ε, ε)× [a, b]→M una variazione di una curva σ: [a, b]→M regolare a tratti in una
varietà Riemanniana M . Allora per ogni campo vettoriale V lungo Σ e su ogni rettangolo (−ε, ε)× [tj−1, tj ]
su cui Σ e V sono di classe C∞ abbiamo

DsDtV −DtDsV = RST V,
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dove Dt è la derivata covariante lungo le curve principali, e Ds quella lungo le curve trasverse.

Dimostrazione: Calcoliamo in coordinate locali. Posto V = V i∂i abbiamo

DtV =
∂V i

∂t
∂i + V iDt∂i

e

DsDtV =
∂2V i

∂s∂t
∂i +

∂V i

∂t
Ds∂i +

∂V i

∂s
Dt∂i + V iDsDt∂i.

Analogamente,

DtDsV =
∂2V i

∂t∂s
∂i +

∂V i

∂s
Dt∂i +

∂V i

∂t
Ds∂i + V iDtDs∂i,

per cui
DsDtV −DtDsV = V i(DsDt∂i −DtDs∂i).

Ora, se indichiamo con Σh le coordinate di Σ abbiamo

T =
∂Σh

∂t
∂h e S =

∂Σh

∂s
∂h.

Quindi

Dt∂i = ∇T ∂i =
∂Σh

∂t
∇∂h

∂i

e

DsDt∂i = Ds

(
∂Σh

∂t
∇∂h

∂i

)
=

∂2Σh

∂s∂t
∇∂h

∂i +
∂Σh

∂t
∇S∇∂h

∂i =
∂2Σh

∂s∂t
∇∂h

∂i +
∂Σh

∂t

∂Σk

∂s
∇∂k
∇∂h

∂i.

In maniera analoga si calcola DtDs∂i. Ricordando che [∂h, ∂k] = O otteniamo infine

DsDt∂i −DtDs∂i =
∂Σh

∂t

∂Σk

∂s
R∂k∂h

∂i = RST ∂i

e ci siamo.

Usando questo lemma possiamo caratterizzare i campi variazione di variazioni in cui tutte le curve
principali sono geodetiche.

Definizione 6.2.2: Una variazione geodetica di una geodetica σ: [a, b]→M in una varietà Riemanniana M è
una variazione liscia Σ: (−ε, ε)× [a, b]→M tale che ogni curva principale σs = Σ(s, ·) sia una geodetica.

L’esempio principale di variazione geodetica è descritto nel prossimo

Lemma 6.2.2: Sia σ: [a, b] → M una geodetica, e v, w ∈ Tσ(a)M . Allora esiste una variazione geodetica
Σ: (−ε, ε)× [a, b]→M di σ il cui campo variazione V soddisfa V (a) = v e DaV = w. La variazione Σ è data
da

Σ(s, t) = expτ(s)

(
(t− a)(u(s) + sw(s))

)
,

dove τ : (−ε, ε) → M è una curva uscente da σ(a) tangente a v, mentre u, w ∈ T (τ) sono le estensioni
parallele lungo τ di σ̇(a) e w rispettivamente.

Dimostrazione: Se τ : (−ε, ε)→M è una curva e ψ ∈ T (τ), allora la Σ: (−ε, ε)× [a, b]→M data da

Σ(s, t) = expτ(s)

(
(t− a)ψ(s)

)
è sempre una variazione geodetica della geodetica σ0(t) = expτ(0)

(
(t−a)ψ(0)

)
, non appena (b−a)ψ(0) ∈ Eτ(0)

ed ε è abbastanza piccolo. Quindi vogliamo trovare τ e ψ in modo che σ0 ≡ σ e il campo variazione V di Σ
soddisfi V (a) = v e DaV = w.
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Ora, σ(t) = expp

(
(t − a)σ̇(a)

)
; quindi per avere σ0 ≡ σ basta scegliere τ e ψ in modo che τ(0) = σ(a)

e ψ(0) = σ̇(a). Poi Σ(s, a) = τ(s), per cui V (a) = S(0, a) = τ̇(a) e quindi V (a) = v non appena τ è scelta
in modo che τ̇(a) = v.

Infine, T (s, t) = d(expτ(s))(t−a)ψ(s)

(
ψ(s)

)
, per cui il Lemma 5.2.4 dà

DtS|t=a = DsT (s, a) = Dsψ,

per cui DaV = DtS|t=a,s=0 = D0ψ, e quindi DaV = w non appena ψ è scelto in modo che D0ψ = w.
Ma il modo più semplice per scegliere un campo lungo τ fissando il suo valore iniziale e il valore iniziale
della sua derivata covariante lungo τ è prendendolo lineare rispetto alla derivata covariante, cioè della
forma ψ(s) = u(s) + sw(s), con u e w paralleli lungo τ e con u(0) = σ̇(a) e w(0) = w. In questo modo si
ha ψ(0) = σ̇(a) e Dsψ = w(s), come voluto, e ci siamo.

Siamo allora in grado di caratterizzare completamente i campi variazione di variazioni geodetiche:

Proposizione 6.2.3: Sia σ: [a, b]→M una geodetica. Allora un campo J ∈ T (σ) è il campo variazione di
una variazione geodetica di σ se e solo se

D2J + RJσ̇σ̇ = O. (6.2.1)

Inoltre, dati v, w ∈ Tσ(a)M esiste un unico campo J ∈ T (σ) soddisfacente (6.2.1) e tale che J(a) = v
e DaJ = w.

Dimostrazione: Sia Σ una variazione geodetica di σ, di campo variazione J , e indichiamo come al solito
con Dt la derivata covariante lungo le curve principali di Σ, e con Ds quella lungo le curve trasverse. Per
ipotesi abbiamo DtT ≡ O; quindi

O ≡ DsDtT = DtDsT + RST T = DtDtS + RST T,

dove abbiamo usato i Lemmi 6.2.1 e 5.2.4. Siccome per s = 0 si ha S = J e T = σ̇, abbiamo ricavato (6.2.1).
Ora, sia {E1, . . . , En} una base ortonormale di Tσ(a)M , con E1 = σ̇(a)/‖σ̇(a)‖σ(a), e indichiamo

con Ej(t) l’estensione parallela di Ej lungo σ, in modo che {E1(t), . . . , En(t)} sia una base ortonormale
di Tσ(t)M per ogni t ∈ [a, b]. Definiamo inoltre funzioni R̂i

jhk: [a, b]→ R ponendo

REj(t)Eh(t)Ek(t) = R̂i
jhk(t)Ei(t).

Ogni J ∈ T (σ) si può scrivere come J(t) = J i(t)Ei(t) per opportune funzioni J1, . . . , Jn: [a, b] → R;
in particolare, J(a) = J i(a)Ei. Inoltre, essendo gli Ej(t) paralleli otteniamo DtJ = J̇ i(t)Ei(t), per
cui DaJ = J̇ i(a)Ei. Quindi J soddisfa (6.2.1) se e solo se si ha

J̈ i + ‖σ̇(a)‖2σ(a)R̂
i
j11J

j ≡ 0

per i = 1, . . . , n. Dunque (6.2.1) è un sistema lineare di equazioni differenziali ordinarie del secondo ordine,
per cui (Teorema 4.3.4, adattato al caso dei sistemi del second’ordine come nella dimostrazione della Pro-
posizione 5.1.2) per ogni v, w ∈ Tσ(a)M esiste un’unica soluzione J ∈ T (σ) di (6.2.1) tale che J(a) = v
e DaJ = w.

Infine, supponiamo che J soddisfi (6.2.1), e sia Σ: (−ε, ε)× [a, b] → M una variazione geodetica di σ il
cui campo variazione V soddisfi V (a) = J(a) e DaV = DaJ , costruita per esempio come nel Lemma 6.2.2.
Allora anche V soddisfa (6.2.1), con le stesse condizioni iniziali di J ; quindi V ≡ J , e ci siamo.

Definizione 6.2.3: Sia σ: [a, b] → M una geodetica. Un campo di Jacobi lungo σ è una soluzione J ∈ T (σ)
di (6.2.1), che è detta equazione di Jacobi. Lo spazio vettoriale dei campi di Jacobi lungo σ verrà indicato
con J (σ). Un campo di Jacobi J ∈ J (σ) sarà detto proprio se J(t) ⊥ σ̇(t) per ogni t ∈ [a, b]. Il sottospazio
dei campi di Jacobi propri sarà indicato con J0(σ).

Alcune proprietà elementari dei campi di Jacobi sono contenute nella seguente
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Proposizione 6.2.4: Sia σ: [a, b]→M una geodetica. Allora:

(i) gli zeri di un campo di Jacobi J ∈ J (σ) non identicamente nullo sono isolati;

(ii) per ogni J ∈ J (σ) abbiamo

〈J(t), σ̇(t)〉σ(t) = 〈J(a), σ̇(a)〉σ(a) + 〈DaJ, σ̇(a)〉σ(a)(t− a); (6.2.2)

(iii) un campo di Jacobi J ∈ J (σ) è proprio se e solo se J(a) ⊥ σ̇(a) e DaJ ⊥ σ̇(a) se e solo se è ortogonale
a σ̇ in due punti;

(iv) ogni campo di Jacobi J lungo σ si può scrivere in modo unico nella forma J = J0 + [c0 + c1(t − a)]σ̇,
dove J0 ∈ J0(σ) e c0, c1 ∈ R;

(v) dimJ (σ) = 2 dimM e dimJ0(σ) = 2 dimM − 2.

Dimostrazione: (i) Se t0 ∈ [a, b] è uno zero non isolato di J , possiamo trovare una successione {tν} ⊂ [a, b]
convergente a t0 di zeri di J . Ma allora

Dt0J = lim
ν→+∞

σ̃−1
t0,tν

(
J(tν)

)
− J(t0)

tν − t0
= O,

grazie alla Proposizione 4.3.6, dove σ̃t0,tν
:Tσ(t0)M → Tσ(tν)M è il trasporto parallelo lungo σ. Ma allora

J ≡ O per la Proposizione 6.2.3, in quanto J ha derivata covariante nulla in un punto in cui si annulla.
(ii) Siccome Dσ̇ ≡ O abbiamo d

dt 〈J, σ̇〉σ = 〈DJ, σ̇〉σ e

d2

dt2
〈J, σ̇〉σ = 〈D2J, σ̇〉σ = −〈RJσ̇σ̇, σ̇〉σ = 0,

dove l’ultima eguaglianza segue dalle simmetrie del tensore di curvatura. In particolare, 〈J, σ̇〉σ dev’essere
lineare affine in t, e otteniamo (6.2.2).

(iii) Segue subito da (ii).
(iv) Prima di tutto, si verifica subito che [c0 + c1(t − a)]σ̇ è un campo di Jacobi lungo σ quali

che sianno c0, c1 ∈ R. Ora, dato J ∈ J (σ), vogliamo diomostrare che esistono unici c0, c1 ∈ R tali
che J0 = J − [c0 + c1(t − a)]σ̇ sia un campo di Jacobi proprio lungo σ. Per il punto (iii), J0 è proprio se e
solo se J0(a) e DaJ0 sono ortogonali a σ̇(a). Ma

〈J0(a), σ̇(a)〉σ(a) = 〈J(a), σ̇(a)〉σ(a) − c0‖σ̇(a)‖2σ(a) e 〈DaJ0, σ̇(a)〉σ(a) = 〈DaJ, σ̇(a)〉σ(a) − c1‖σ̇(a)‖2σ(a);

quindi J0 è proprio se e solo se

c0 =
〈J(a), σ̇(a)〉σ(a)

‖σ̇(a)‖2σ(a)

e c1 =
〈DaJ, σ̇(a)〉σ(a)

‖σ̇(a)‖2σ(a)

,

e ci siamo.
(v) Che la dimensione di J (σ) sia uguale a 2 dimM segue dall’esistenza e unicità della soluzione dell’e-

quazione di Jacobi date le condizioni iniziali. Infine, (iv) implica che dimJ0(σ) = 2 dimM − 2.

Uno dei motivi per cui i campi di Jacobi sono importanti è che ci permettono di stabilire quando expp

smette di essere un diffeomorfismo locale.

Definizione 6.2.4: Sia σ: [a, b] → M una geodetica con σ(a) = p e σ(b) = q. Diremo che q è coniugato a p
lungo σ se esiste un campo di Jacobi J ∈ J (σ) non identicamente nullo tale che J(a) = J(b) = O. L’ordine
di q come punto coniugato di p è la dimensione del sottospazio dei campi di Jacobi lungo σ (necessariamente
propri) che si annullano in a e b. Chiaramente, l’ordine è al massimo n− 1 = dim{J ∈ J0(σ) | J(a) = O}.

Allora abbiamo la
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Proposizione 6.2.5: Data una varietà Riemanniana M , scegliamo p ∈ M , un vettore v ∈ Ep ⊆ TpM , e
poniamo q = expp(v). Allora expp è un diffeomorfismo locale nell’intorno di v se e solo se q non è coniugato
a p lungo la geodetica σ: [0, 1] → M data da σ(t) = expp(tv). Inoltre, l’ordine di q come punto coniugato
di p lungo σ è esattamente la dimensione del nucleo di d(expp)v.

Dimostrazione: Grazie al teorema della funzione inversa (Corollario 2.4.5), expp è un diffeomorfismo locale
nell’intorno di v se e solo se v non è un punto critico di expp, cioè se e solo se d(expp)v è iniettivo; quindi
per avere la tesi ci basta costruire un isomorfismo χ fra il nucleo di d(expp)v e il sottospazio dei campi di
Jacobi lungo σ che si annullano in 0 e 1.

In realtà, faremo di più: costruiremo un isomorfismo χ fra TpM e {J ∈ J (σ) | J(0) = O} che man-
derà Ker d(expp)v esattamente in {J ∈ J (σ) | J(0) = J(1) = O} ⊆ J0(σ). Dato w ∈ Tv(TpM) ∼= TpM ,
definiamo una variazione geodetica Σw: (−ε, ε)× [0, 1]→M di σ ponendo

Σw(s, t) = expp

(
t(v + sw)

)
.

Il campo variazione Jw di questa variazione geodetica è dato da

Jw(t) = t d(expp)tv(w);

in particolare, Jw(0) = O e D0Jw = w. Dunque l’applicazione χ:TpM → J (σ) data da χ(w) = Jw è
lineare e iniettiva; siccome dim TpM = n = dim{J ∈ J (σ) | J(0) = O}, l’immagine di χ è esattamente il
sottospazio di tutti i campi di Jacobi che si annullano in 0. Ma Jw(1) = d(expp)v(w); quindi χ manda il
nucleo di d(expp)v sul sottospazio dei campi di Jacobi lungo σ che si annullano in 0 e 1, e ci siamo.

6.3 Il Teorema di Cartan-Hadamard

In questo paragrafo dimostreremo il primo risultato fondamentale sulle relazioni fra la curvatura e la topologia
di una varietà Riemanniana: il Teorema di Cartan-Hadamard sulle varietà con curvatura sezionale non
positiva. Ci servirà il

Lemma 6.3.1: Sia H:M → N un’isometria locale fra varietà Riemanniane connesse, e supponiamo che M
sia completa. Allora anche N è completa, e H è un rivestimento.

Dimostrazione: Cominciamo col dimostrare un fatto prelimare. Sia q ∈ H(M), e p ∈ H−1(q). Allora per
ogni geodetica σ uscente da q esiste un’unica geodetica σ̃ uscente da p tale che σ = H ◦ σ̃. Infatti, prima
di tutto ricordiamo che (Esercizio 5.1.2) σ̃ è una geodetica in M se e solo se σ è una geodetica in N . Poi,
se vale σ = H ◦ σ̃ si deve avere σ̇(0) = dHp

( ˙̃σ(0)
)
, per cui σ̃ è l’unica geodetica di M uscente da p e tale

che ˙̃σ(0) = (dHp)−1
(
σ̇(0)

)
. Viceversa, data σ indichiamo con σ̃ l’unica geodetica di M uscente da p e tale

che ˙̃σ(0) = (dHp)−1
(
σ̇(0)

)
; allora H ◦ σ̃ dev’essere una geodetica di N uscente da q tangente a σ̇(0), per cui

H ◦ σ̃ = σ, come voluto.
Dimostriamo che N è completa. Dato q ∈ H(M), sia σ una geodetica radiale uscente da q, e prendiamo

p ∈ H−1(q). Essendo M completa, la geodetica σ̃ uscente da p tale che σ = H ◦ σ̃ è definita su tutto R. Ma
allora anche σ lo è, e, per il Teorema di Hopf-Rinow, N è completa.

Ora dimostriamo che H è surgettiva. Siano q0 = H(p) ∈ ϕ(M) e q ∈ N qualsiasi. Essendo N completa,
esiste una geodetica minimizzante σ da q0 a q; poniamo w = σ̇(0). Ma allora σ = H ◦ σ̃ per un’opportuna
geodetica σ̃ in M uscente da p, per cui q risulta essere nell’immagine di H.

Rimane da far vedere che H è un rivestimento. Prendiamo q0 ∈ N , e sia U = Bε(q0) una palla geodetica
di centro q0; vogliamo dimostrare che U è un intorno ben rivestito di q0. Scriviamo H−1(q0) = {pα}, e
indichiamo con Uα la palla di centro pα e raggio ε per la distanza Riemanniana dM di M . Cominciamo
a far vedere che Uα ∩ Uβ = ∅ se α 6= β. Infatti, essendo M completa possiamo trovare una geodetica
minimizzante σ̃ da pα a pβ . La sua proiezione σ = H ◦ σ̃ è una geodetica in N da q0 a q0. Siccome le
geodetiche che partono da q0 in Bε(q0) sono solo quelle radiali, σ deve uscire da U e rientrarvi; quindi ha
lunghezza maggiore di 2ε. Dunque dM (pα, pβ) = L(σ̃) = L(σ) > 2ε (dove abbiamo usato l’Esercizio 5.2.2),
e per la disuguaglianza triangolare Uα ∩ Uβ = ∅.
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Adesso mostriamo che H−1(U) =
⋃

Uα. Siccome H è un’isometria locale, sempre l’Esercizio 5.2.2
implica che

dN
(
H(p1), H(p2)

)
≤ dM (p1, p2)

per ogni p1, p2 ∈M , dove dN è la distanza Riemanniana di N . In particolare, essendo U la palla per dN di
centro q0 e raggio ε (Teorema 5.2.10), otteniamo H(Uα) ⊆ U per ogni α. Viceversa, sia p ∈ H−1(U). Questo
significa che q = H(p) ∈ U , per cui esiste una geodetica minimizzante σ da q a q0, e r = dN (q0, q) < ε. Sia σ̃
la geodetica uscente da p tale che σ = H ◦ σ̃; allora H

(
σ̃(r)

)
= σ(r) = q0, per cui σ̃(r) = pα per qualche α,

e p ∈ Uα come voluto.
Infine, dobbiamo dimostrare che H|Uα

:Uα → U è un diffeomorfismo per ogni α. Sappiamo che H manda
la geodetica radiale in Uα uscente da pα tangente a w ∈ Tpα

M nella geodetica radiale in U uscente da q0

tangente a dHpα(w) ∈ Tq0N . Ma questo vuol dire esattamente che

H|Uα
= expq0

◦dHpα
◦ (exppα

|Bε(Opα ))−1,

e quindi è un diffeomorfismo.

Esercizio 6.3.1. Sia H:M → N un’isometria locale fra varietà Riemanniane connesse, e supponiamo che N
sia completa. Dimostra che se H è un rivestimento allora anche M è completa, e trova un esempio di
un’isometria locale fra una varietà M non completa e una varietà N completa.

E allora abbiamo il

Teorema 6.3.2: (Cartan-Hadamard) Sia (M, g) una varietà Riemanniana completa. Allora:

(i) se M ha curvatura sezionale K ≤ 0 allora ogni p ∈M non ha punti coniugati;
(ii) se esiste p ∈M senza punti coniugati allora expp:TpM →M è un rivestimento.

In particolare, ogni varietà Riemanniana completa semplicemente connessa di dimensione n con curvatura
sezionale non positiva è diffeomorfa a Rn.

Dimostrazione: (i) Dato p ∈ M , sia σ una geodetica uscente da p. Dobbiamo dimostrare che se J ∈ J (σ)
è un campo di Jacobi lungo σ non identicamente nullo che si annulla in 0 allora J(t) 6= O per ogni t 6= 0.
Sia f : R→ R data da f(t) = ‖J(t)‖2σ(t). Allora f ′ = 2〈DJ, J〉σ, per cui f(0) = f ′(0) = 0, e

d2f

dt2
= 2

[
‖DJ‖2σ + 〈D2J, J〉σ

]
= 2

[
‖DJ‖2σ − 〈RJσ̇σ̇, J〉σ

]
= 2

[
‖DJ‖2σ −Qσ(J, σ̇)

]
≥ 0,

grazie all’ipotesi sul segno della curvatura sezionale. Quindi f è una funzione convessa non negativa con zeri
isolati che si annulla in 0, per cui può annullarsi in un altro punto soltanto se è identicamente nulla, e ci
siamo.

(ii) Poniamo su TpM la metrica Riemanniana g0 = (expp)∗g; siccome p è privo di punti coniugati,
expp è un diffeomorfismo locale grazie alla Proposizione 6.2.5, e quindi g0 è ben definita. Per costruzione,
expp: (TpM, g0)→ (M, g) è un’isometria locale; quindi le rette uscenti dall’origine sono geodetiche (in quanto
le loro immagini sono geodetiche in M). Per il Teorema di Hopf-Rinow, (TpM, g0) è completa, e la tesi segue
allora dal Lemma 6.3.1.

Concludiamo questa sezione con alcune definizioni ed esercizi.

Definizione 6.3.1: Sia M una varietà Riemanniana. Diremo che una funzione f :M → R di classe C∞ è stret-
tamente convessa se l’Hessiano ∇2f è definito positivo in ogni punto di M (e scriveremo ∇2f > 0). Diremo
invece che un sottoinsieme S ⊆ M è strettamente convesso se il supporto di ogni geodetica minimizzante
collegante due punti di S è contenuto nell’interno di S (con la possibile eccezione dei punti estremi).

Esercizio 6.3.2. Sia M una varietà Riemanniana.
(i) Dimostra che una funzione f :M → R è strettamente convessa se e solo se per ogni geodetica σ di M la

funzione f ◦ σ è strettamente convessa nel senso usuale.
(ii) Dato p0 ∈ M definiamo r:M → R ponendo r(p) = d(p, p0). Dimostra che r2 è di classe C∞ in un

intorno di p0, e che ∇2r2(p0) > 0.
(iii) Dimostra che per ogni p0 ∈ M esiste δ > 0 tale che se 0 < ε < δ la palla geodetica Bε(p0) di centro p0

e raggio ε è strettamente convessa.
(iv) Dimostra che se M è completa, semplicemente connessa, e con curvatura sezionale K ≤ 0, allora per

ogni p0 ∈M la funzione r2 definita in (ii) è strettamente convessa su tutta M .
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Definizione 6.3.2: Sia M una varietà Riemanniana completa. Una funzione f : M → R è detta esaustione se
l’insieme {p ∈M | f(p) ≤ c} è compatto per ogni c ∈ R.

Esercizio 6.3.3. Sia M una varietà Riemanniana completa.
(i) Dimostra che un’esaustione strettamente convessa ha un unico punto di minimo e nessun altro punto

critico.⌈
(ii) Sia G un gruppo di Lie compatto di isometrie di M , µ una misura di Borel su G, e f :M → R di

classe C∞. Dimostra che la funzione f̃ :M → R data da

f̃(p) =
∫

G

f
(
g(p)

)
dµ(g)

è strettamente convessa.
(iii) La misura di Haar di un gruppo topologico compatto G è l’unica misura di Borel µ su G tale che µ(G) = 1

e ∫
G

f(gh) dµ(g) =
∫

G

f(g) dµ(g)

per ogni f ∈ C0(G) e h ∈ G. Usando l’esistenza della misura di Haar su qualsiasi gruppo topologico
compatto, dimostra che se M è semplicemente connessa con curvatura sezionale K ≤ 0, allora ogni
gruppo di Lie compatto di isometrie di M ammette un punto fisso, cioè un punto p0 ∈ M tale

che g(p0) = p0 per ogni g ∈ G.

⌋

6.4 Spazi di curvatura costante

Vogliamo ora trovare tutte le varietà semplicemente connesse a curvatura sezionale costante. Per arrivarci
ci serviranno due interessanti risultati dovuti a É. Cartan.

Il primo dice che localmente il tensore di curvatura determina la metrica, una specie di viceversa locale
dell’Esercizio 6.1.1.

Definizione 6.4.1: Siano M e M̃ due varietà Riemanniane di uguale dimensione, p ∈M , p̃ ∈ M̃ . Un’isometria
lineare I:TpM → Tp̃M̃ determina una corrispondenza biunivoca fra le geodetiche uscenti da p e quelle
uscenti da p̃: alla geodetica σv si associa la geodetica σI(v). Diremo che I preserva il trasporto parallelo della

curvatura sezionale se KM

(
σ̃v(π)

)
= KM̃

(
σ̃I(v)

(
I(π)

))
per ogni 2-piano π ⊂ TpM e ogni v ∈ TpM , dove σ̃v

(rispettivamente, σ̃I(v)) indica il trasporto parallelo lungo σv (rispettivamente, lungo σI(v)).

Proposizione 6.4.1: (É. Cartan) Siano M e M̃ due varietà Riemanniane, p ∈M , p̃ ∈ M̃ e I:TpM → Tp̃M̃
un’isometria lineare che preserva il trasporto parallelo della curvatura sezionale. Scegliamo un numero
0 < δ ≤ inj rad(p) tale che Bδ(Op̃) sia contenuto nel dominio Ẽ dell’esponenziale di M̃ . Allora

F = expp̃ ◦I ◦ exp−1
p :Bδ(p)→ Bδ(p̃)

è un’isometria locale. In particolare, se si ha anche δ ≤ inj rad(p̃) allora F è un’isometria.

Dimostrazione: Preso v ∈ TpM , poniamo ṽ = I(v) ∈ Tp̃M̃ ; allora ci basta dimostrare che per ogni
w ∈ Tv(TpM) ∼= TpM si ha ∥∥d(expp̃)ṽ

(
I(w)

)∥∥ = ‖d(expp)v(w)‖. (6.4.1)

Siccome I è un’isometria, il Lemma 5.2.8 ci dice che basta dimostrare (6.4.1) per w versore ortogonale a v (e in
tal caso I(w) è un versore ortogonale a ṽ). Sia {E1, . . . , En} una base ortonormale di TpM con E1 = v/‖v‖p
e En = w, e poniamo Ẽj = I(Ej). Sia σ la geodetica uscente da p tangente a v, e σ̃ la geodetica uscente da p̃

tangente a ṽ; indicheremo con Ej(t) e Ẽj(t) l’estensione parallela di Ej ed Ẽj lungo σ e σ̃ rispettivamente.
Definiamo ora le variazioni Σ e Σ̃ di σ e σ̃:

Σ(s, t) = expp

(
t(v + sw)

)
, Σ̃(s, t) = expp̃

(
t
(
ṽ + sI(w)

))
,
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e siano J e J̃ i corrispondenti campi di Jacobi. Allora J(0) = O = J̃(0), D0J = w e D0J̃ = I(w). Inoltre
J(1) = d(expp)v(w) e J̃(1) = d(expp̃)ṽ

(
I(w)

)
; quindi basta dimostrare che ‖J(1)‖ = ‖J̃(1)‖. Ora, scriviamo

J(t) = J i(t)Ei(t) e REi(t)Ej(t)Ek(t) = Rh
ijk(t)Eh(t), e analogamente per J̃ e R̃; quindi le funzioni J i e J̃ i

soddisfano le 
d2J i

dt2
+ ‖v‖2pRi

j11J
j = 0,

J i(0) = 0,
dJ i

dt
(0) = δi

n,


d2J̃ i

dt2
+ ‖I(v)‖2p̃R̃i

j11J̃
j = 0,

J̃ i(0) = 0,
dJ̃ i

dt
(0) = δi

n.

Ma
Ri

j11(t) = 〈REj(t)E1(t)E1(t), Ei(t)〉σ(t) = 〈R̃Ẽj(t)Ẽ1(t)
Ẽ1(t), Ẽi(t)〉σ̃(t) = R̃i

j11(t),

in quanto la curvatura sezionale determina il tensore di curvatura, e la curvatura sezionale è preservata per
trasporto parallelo. Siccome ‖v‖p = ‖I(v)‖p̃, ne segue che (J1, . . . , Jn) e (J̃1, . . . , J̃n) soddisfano lo stesso
sistema lineare di equazioni differenziali ordinarie con le stesse condizioni iniziali; quindi coincidono, e

‖J(1)‖ =

√√√√ n∑
i=1

|J i(1)|2 =

√√√√ n∑
i=1

|J̃ i(1)|2 = ‖J̃(1)‖,

come volevasi dimostrare.

Ci servirà anche un altro risultato di É. Cartan:

Teorema 6.4.2: (É. Cartan) Siano ϕ, ψ:M → M̃ due isometrie locali fra due varietà Riemanniane
connesse. Supponiamo che esista p0 ∈M tale che ϕ(p0) = ψ(p0) e dϕp0 = dψp0 . Allora ϕ ≡ ψ.

Dimostrazione: L’insieme C = {p ∈ M | ϕ(p) = ψ(p), dϕp = dψp} è un chiuso non vuoto di M ; ci basterà
dimostrare che è aperto. Prendiamo p ∈ C, e sia 0 < δ < min{inj rad(p), inj radϕ(p)}, per cui Bp(δ) ⊂M e
Bϕ(p)(δ) ⊂ M̃ sono palle geodetiche. Siccome ϕ e ψ sono isometrie locali, mandano geodetiche uscenti da p
in geodetiche uscenti da ϕ(p) = ψ(p). Ma allora

expϕ(p) ◦dϕp = ϕ ◦ expp e expψ(p) ◦dψp = ψ ◦ expp

su BOp
(δ), per cui

ϕ|Bp(δ) = expϕ(p) ◦dϕp ◦ (expp)
−1|Bp(δ) = expψ(p) ◦dψp ◦ (expp)

−1|Bp(δ) = ψ|Bp(δ),

per cui Bp(δ) ⊂ C, ed è fatta.

Corollario 6.4.3: Sia F :M → M un’isometria di una varietà Riemanniana in sé. Supponiamo che esi-
sta p ∈M tale che F (p) = p e dFp = id. Allora F ≡ idM .

Dimostrazione: Basta applicare il Teorema precedente con M̃ = M , ϕ = F e ψ = idM .

Possiamo ora dimostrare un’affermazione fatta nell’Esempio 4.2.4:

Corollario 6.4.4: Iso(Sn
R) = O(n + 1).

Dimostrazione: Sia F ∈ Iso(Sn
R) un’isometria qualunque di Sn

R, N ∈ Sn
R il polo nord, p = F (N) e poniamo

Ej = dFN (ej) per j = 1, . . . , n, dove {e1, . . . , en+1} è la base canonica di Rn+1. Essendo F un’isometria,
{E1, . . . , En} è una base ortonormale di TpS

n
R; scegliamo A ∈ O(n + 1) tale che A(N) = p e A(ej) = Ej per

j = 1, . . . , n. Allora G = A−1 ◦ F è un’isometria di Sn
R tale che G(N) = N e dGN (ej) = ej per j = 1, . . . , n;

quindi dGN = id, e il Corollario 6.4.3 implica G = id, cioè F = A ∈ O(n + 1).

Esercizio 6.4.1. Dimostra che il gruppo delle isometrie dello spazio iperbolico Un
R è il gruppo O+(1, n)

introdotto nell’Esercizio 4.2.1.
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Come già detto, il nostro obiettivo è classificare le varietà Riemanniane semplicemente connesse a
curvatura sezionale costante. Vediamo quali esempi conosciamo già.

Esempio 6.4.1. Lo spazio euclideo Rn con la metrica euclidea ha chiaramente curvatura sezionale costante
nulla.

Esempio 6.4.2. La sfera Sn
R ⊂ Rn+1 ha curvatura sezionale costante. Infatti, abbiamo visto nell’Esem-

pio 4.2.4 che il gruppo O(n + 1) agisce isometricamente su Sn
R, e transitivamente sulle basi ortonormali

in TSn
R. Quindi se p, p̃ ∈ Sn

R sono due punti qualsiasi, e π ⊂ TpS
n
R e π̃ ⊂ Tp̃S

n
R sono due 2-piani qualsiasi,

esiste (perché?) un’isometria A ∈ O(n + 1) tale che A(p) = p̃ e dAp(π) = A(π) = π̃; essendo la curvatura
sezionale invariante per isometrie, ne deduciamo che K(π) = K(π̃). Per conoscere la curvatura sezionale
di Sn

R ci basta allora calcolarla su un 2-piano qualsiasi. Indichiamo con ϕ = ψ−1
1 = (θ1, . . . , θn) le coordinate

sferiche introdotte nell’Esempio 2.1.11, e con cui abbiamo lavorato negli Esempi 4.2.1 e 4.4.3. Prendiamo
p = (1, 0, . . . , 0) = ϕ(π/2, . . . , π/2), per cui ∂/∂θj |p = −R∂/∂xj+1 per j = 1, . . . , n. Indichiamo con π il
piano generato da ∂/∂θ1|p e ∂/∂θ2|p. Allora∥∥∥∥ ∂

∂θ1
∧ ∂

∂θ2

∥∥∥∥2

p

= R4 e Qp

(
∂

∂θ1
,

∂

∂θ2

)
= Rp

(
∂

∂θ1
,

∂

∂θ2
,

∂

∂θ2
,

∂

∂θ1

)
= R1221(p) = gr1R

r
122(p).

L’Esempio 4.2.1 ci dice che g11(p) = R2 e gr1(p) = 0 se r 6= 1. Quindi usando i valori dei simboli di Christoffel
calcolati nell’Esempio 4.4.3 e la formula (6.1.2) troviamo

gr1R
r
122 = R2

[
∂Γ1

22

∂θ1
− ∂Γ1

12

∂θ2
+ Γ1

22Γ
1
11 + Γ2

22Γ
1
12 − Γ1

12Γ
1
12 − Γ2

12Γ
1
22

]
(p) = R2,

e quindi la sfera Sn
R ha curvatura sezionale costante 1/R2.

Esempio 6.4.3. Anche sullo spazio iperbolico esiste un gruppo di isometrie che agisce transitivamente sui
2-piani (Esercizio 4.2.1), per cui è a curvatura sezionale costante. Per calcolare il valore della curvatura
sezionale possiamo usare come modello Bn

R, prendere come punto p l’origine, e come piano quello generato
da ∂/∂x1 e ∂/∂x2, per cui di nuovo dobbiamo calcolare R1221(p). Usando i simboli di Christoffel determinati
nell’Esempio 4.4.4 otteniamo R1221(p) = −16/R2 e ‖∂/∂x1 ∧ ∂/∂x2‖2p = 16, per cui lo spazio iperbolico ha
curvatura sezionale costante −1/R2.

Dunque per ogni k ∈ R e n ≥ 2 abbiamo trovato una varietà Riemanniana semplicemente connessa di
dimensione n con curvatura sezionale costante uguale a k. Il fatto interessante è che non ce ne sono altre:

Teorema 6.4.5: Due varietà Riemanniane M̃ e M semplicemente connesse complete della stessa dimensione
e con uguale curvatura sezionale costante k ∈ R sono necessariamente isometriche.

Dimostrazione: Consideriamo prima il caso k ≤ 0. Scegliamo p ∈ M e p̃ ∈ M̃ , e sia I:Tp̃M̃ → TpM un’iso-
metria qualsiasi. Per il Teorema di Cartan-Hadamard la ϕ = expp ◦I ◦ exp−1

p̃ : M̃ →M è un diffeomorfismo.
Inoltre, siccome la curvatura sezionale è costante ed è uguale per entrambe le varietà, I preserva banalmente
il trasporto parallelo della curvatura sezionale. Quindi per la Proposizione 6.4.1 la ϕ è l’isometria cercata.

Supponiamo ora k = 1/R2 > 0; ci basta dimostrare che M è isometrica a M̃ = Sn
R, dove n = dimM .

Scegliamo p0 ∈ Sn
R, q0 ∈ M e un’isometria lineare qualsiasi I: Tp0S

n
R → Tq0M . Allora (Esempio 5.4.2)

inj rad(p0) = πR, e exp−1
p0

è definito su Sn
R \ {−p0}, per cui otteniamo un’applicazione ϕ = expq0

◦I ◦ exp−1
p0

da Sn
R \{−p0} in M . Siccome di nuovo I preserva banalmente il trasporto parallelo della curvatura sezionale,

la Proposizione 6.4.1 ci dice che ϕ è un’isometria locale.
Ora prendiamo p ∈ Sn

R \ {p0,−p0} e definiamo ψ:Sn
R \ {−p} → M ponendo ψ = expϕ(p) ◦dϕp ◦ exp−1

p .
Come prima, ψ è un’isometria locale; inoltre ϕ(p) = ψ(p) e dϕp = dψp per definizione. Quindi il Teo-
rema 6.4.2 ci assicura che ϕ ≡ ψ su Sn

R \ {−p0,−p}. In altre parole, possiamo estendere ϕ a una isometria
locale ϕ:Sn

R → M . Ma Sn
R è completa (in quanto compatta); il Lemma 6.3.1 ci assicura allora che ϕ è un

rivestimento. Ma M è semplicemente connessa, per cui ϕ è un’isometria, come voluto.

Concludiamo questo paragrafo calcolando i campi di Jacobi e la metrica in coordinate normali per spazi
a curvatura sezionale costante.
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Lemma 6.4.6: Sia M una varietà Riemanniana a curvatura sezionale costante k ∈ R, e σ: [0, r] → M
una geodetica parametrizzata rispetto alla lunghezza d’arco. Allora i campi di Jacobi propri lungo σ che si
annullano in 0 sono tutti e soli i campi della forma J(t) = u(t)E(t), dove E ∈ T (σ) è un campo parallelo
ortogonale a σ̇, e u: [0, r]→ R è la funzione

u(t) =


t se k = 0;

R sin
t

R
se k =

1
R2

> 0;

R sinh
t

R
se k = − 1

R2
< 0.

(6.4.2)

Dimostrazione: Siccome M ha curvatura sezionale costante, il tensore di curvatura è dato da (6.1.3). Quindi
un campo di Jacobi proprio J deve soddisfare

O = D2J + k
[
‖σ̇‖2σJ − 〈J, σ̇〉σσ̇

]
= D2J + kJ.

Sia allora w ∈ Tσ(0)M un vettore ortogonale a σ̇(0), ed E(t) l’estensione parallela di w lungo σ. Allora si
vede subito che il campo J(t) = u(t)E(t) con u data da (6.4.2) è effettivamente un campo di Jacobi proprio
con J(0) = O e D0J = w; siccome i campi di Jacobi propri che si annullano in 0 sono completamente
determinati dalla loro derivata covariante in 0, li abbiamo trovati tutti.

Proposizione 6.4.7: Sia (M, g) una varietà Riemanniana con curvatura sezionale costante k ∈ R. Dato
p ∈M , sia {E1, . . . , En} una base ortonormale di TpM , e indichiamo con ϕ:U → Rn le corrispondenti coordi-
nate normali centrate in p definite in una palla geodetica U . Infine, indichiamo con ‖·‖0 la norma euclidea in
queste coordinate (nel senso che se v = vi∂i allora ‖v‖0 =

√
(v1)2 + · · ·+ (vn)2). Se q = expp(v0) ∈ U \ {p}

e v ∈ TqM , scriviamo v = a ∂/∂r|q + v⊥, dove v⊥ ∈ TqM è perpendicolare a ∂/∂r|q. Allora

gq(v, v) =


|a|2 + ‖v⊥‖20 se k = 0;

|a|2 +
R2

r2

(
sin2 r

R

)
‖v⊥‖20 se k =

1
R2

> 0;

|a|2 +
R2

r2

(
sinh2 r

R

)
‖v⊥‖20 se k = − 1

R2
< 0,

dove r = ‖v0‖p = d(p, q).

Dimostrazione: Trattandosi di una decomposizione ortogonale, ed essendo il campo radiale ∂/∂r un campo
di versori, dobbiamo solo calcolare ‖v⊥‖2q.

Indichiamo con σ: [0, r]→M la geodetica radiale da p a q parametrizzata rispetto alla lunghezza d’arco,
in modo che si abbia q = σ(r). Scegliamo w ∈ TpM tale che v⊥ = d(expp)v0(rw), e consideriamo la solita
variazione geodetica di σ data da

Σ(s, t) = expp

(
t
(v0

r
+ sw

))
.

Il campo di Jacobi di Σ è dato da
J(t) = t d(expp)tv0/r(w),

per cui J(0) = O, D0J = w e J(r) = v⊥. D’altra parte, il Lemma precedente ci dice che possiamo scrivere J
nella forma J(t) = u(t)E(t), dove u è data da (6.4.2) ed E è parallelo lungo σ. In particolare, essendo
u̇(0) = 1, abbiamo w = D0J = E(0) e quindi

‖v⊥‖2q = ‖J(r)‖2q = |u(r)|2‖E(r)‖2q = |u(r)|2‖E(0)‖2p = |u(r)|2‖w‖2p.
Quindi ci rimane da calcolare la norma di w. Ora, per definizione le coordinate normali sono date da

ϕ−1(x) = expp(xiEi), e quindi

∂i|q = d(ϕ−1)ϕ(q)

(
∂

∂xi

)
= d(expp)v0(Ei).

In particolare, se scriviamo v⊥ = vi∂i|q otteniamo rw = viEi, per cui

‖w‖2p =
1
r2
‖v⊥‖20.

Mettendo tutto insieme otteniamo la tesi.
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Esercizio 6.4.2. Sia M una varietà Riemanniana di curvatura sezionale costante, e sia J ∈ J0(σ) un campo
di Jacobi proprio lungo una geodetica σ: [a, b]→M . Dimostra che se J(t0) = O per qualche t0 ∈ [a, b] allora
J è quasi parallelo, nel senso che esiste un campo di versori W ∈ T (σ) parallelo e una funzione f ∈ C∞([a, b])
tali che J = fW .

6.5 La seconda variazione della lunghezza d’arco

Abbiamo visto che le geodetiche di una varietà Riemanniana sono i punti critici del funzionale lunghezza.
Dall’Analisi arriva allora il suggerimento che per avere ulteriori informazioni sulle geodetiche potrebbe essere
utile studiare il comportamento della derivata seconda del funzionale lunghezza.

Teorema 6.5.1: (Seconda variazione della lunghezza d’arco) Sia σ: [a, b]→M una geodetica parametrizzata
rispetto alla lunghezza d’arco in una varietà Riemanniana M , e Σ: (−ε, ε)× [a, b]→ M una sua variazione,
con campo variazione V ∈ T (σ). Definiamo L: (−ε, ε)→ R ponendo L(s) = L(σs). Allora

d2L

ds2
(0) = 〈∇V S, σ̇〉σ

∣∣∣∣b
a

+
∫ b

a

[
‖DV ‖2σ − 〈RV σ̇σ̇, V 〉σ −

(
d

dt
〈V, σ̇〉σ

)2
]

dt. (6.5.1)

In particolare, ponendo V ⊥ = V − 〈V, σ̇〉σσ̇ otteniamo

d2L

ds2
(0) = 〈∇V S, σ̇〉σ

∣∣∣∣b
a

+
∫ b

a

[
‖DV ⊥‖2σ − 〈RV ⊥σ̇σ̇, V ⊥〉σ

]
dt. (6.5.2)

Dimostrazione: Nel corso della dimostrazione del Teorema 5.2.5 abbiamo visto che

dL

ds
(s) =

∫ b

a

1
‖T‖〈DsT, T 〉 dt,

dove Ds denote la derivata covariante lungo le curve trasverse (e Dt denoterà la derivata covariante lungo le
curve principali). Quindi

d2L

ds2
(s) =

∫ b

a

d

ds

(
1
‖T‖〈DsT, T 〉

)
dt =

∫ b

a

[
− 1
‖T‖3 〈DsT, T 〉2 +

1
‖T‖

(
‖DsT‖2 + 〈DsDsT, T 〉

)]
dt

=
∫ b

a

[
− 1
‖T‖3 〈DtS, T 〉2 +

1
‖T‖

(
‖DtS‖2 + 〈DsDtS, T 〉

)]
dt

=
∫ b

a

[
− 1
‖T‖3

(
d

dt
〈S, T 〉 − 〈S, DtT 〉

)2

+
1
‖T‖

(
‖DtS‖2 +

d

dt
〈DsS, T 〉 − 〈DsS, DtT 〉 − 〈RST T, S〉

)]
dt,

dove come al solito abbiamo usato i Lemmi 6.2.1 e 5.2.4 e le simmetrie del tensore di curvatura. Ma σ è una
geodetica parametrizzata rispetto alla lunghezza d’arco; quindi ponendo s = 0 otteniamo (6.5.1).

Infine, si verifica subito che 〈V ⊥, σ̇〉 ≡ 0. Quindi 〈DV ⊥, σ̇〉 ≡ 0,

DV = DV ⊥ −
(

d

dt
〈V, σ̇〉

)
σ̇,

e le simmetrie del tensore di curvatura ci permettono di dedurre (6.5.2) da (6.5.1).

La formula (6.5.2) suggerisce la seguente

Definizione 6.5.1: Sia σ: [a, b]→M una geodetica parametrizzata rispetto alla lunghezza d’arco in una varietà
Riemanniana M . Indichiamo con N0(σ) ⊂ T (σ) lo spazio dei campi vettoriali regolari a tratti continui propri
(cioè che si annullano in a e b) e normali (cioè ortogonali a σ̇) lungo σ. La forma di Morse lungo σ è la forma
bilineare simmetrica I:N0(σ)×N0(σ)→ R definita da

I(V, W ) =
∫ b

a

[
〈DV, DW 〉σ − 〈RV σ̇σ̇, W 〉σ

]
dt

per ogni V , W ∈ N0(σ).

Dunque mettendo insieme il Teorema 6.5.1 e il Lemma 5.2.3 otteniamo il
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Corollario 6.5.2: Sia σ: [a, b] → M una geodetica parametrizzata rispetto alla lunghezza d’arco in una
varietà Riemanniana M . Se Σ è una variazione propria di σ con campo di variazione proprio normale
V ∈ N0(σ), allora la derivata seconda di L(s) = L(σs) in 0 è esattamente I(V, V ). In particolare, se σ è
minimizzante allora I(V, V ) ≥ 0 per ogni V ∈ N0(σ).

La forma di Morse ha anche un’altra espressione che chiarisce il collegamento con i campi di Jacobi:

Lemma 6.5.3: Sia σ: [a, b]→M una geodetica parametrizzata rispetto alla lunghezza d’arco in una varietà
Riemanniana M . Allora per ogni V , W ∈ N0(σ) si ha

I(V, W ) = −
∫ b

a

〈D2V + RV σ̇σ̇, W 〉σ dt−
k−1∑
i=1

〈∆iDV, W (ti)〉σ(ti),

dove a = t0 < t1 < · · · < tk = b è una partizione di [a, b] tale che V |[ti−1,ti] sia di classe C∞ per i = 1, . . . , k,
e

∆iDV = lim
t→t+

i

DtV − lim
t→t−

i

DtV

è il salto di DtV in ti, per i = 1, . . . , k − 1.

Dimostrazione: Sia a = s0 < · · · < sr = b una partizione di [a, b] tale che sia V che W siano di classe C∞ su
ciascun intervallo [sj−1, sj ]. In questi intervalli si ha

d

dt
〈DV, W 〉σ = 〈D2V, W 〉σ + 〈DV, DW 〉σ,

per cui ∫ sj

sj−1

〈DV, DW 〉σ dt = −
∫ sj

sj−1

〈D2V, W 〉σ dt + 〈DV, W 〉σ
∣∣∣∣sj

sj−1

.

Siccome W è continuo e W (a) = W (b) = 0, sommando su tutti gli intervalli otteniamo la tesi.

Usando la forma di Morse possiamo descrivere un importante collegamento fra punti coniugati e proprietà
di minimizzazione delle geodetiche:

Proposizione 6.5.4: Sia σ: [a, b]→M una geodetica parametrizzata rispetto alla lunghezza d’arco in una
varietà Riemanniana M . Supponiamo che esista t0 ∈ (a, b) tale che σ(t0) sia coniugato a p = σ(a) lungo σ.
Allora esiste X ∈ N0(σ) tale che I(X, X) < 0. In particolare, una geodetica σ non è mai minimizzante oltre
il primo punto coniugato.

Dimostrazione: L’ipotesi è che esista un campo di Jacobi non banale J ∈ J0(σ|[a,t0]) che si annulla in a e
in t0. Sia allora V ∈ N0(σ) dato da

V (t) =
{

J(t) se t ∈ [a, t0],
O se t ∈ [t0, b].

L’unica discontinuità di DV è per t = t0, dove il salto è ∆DV = −Dt0J . Notiamo che Dt0J 6= O, perché
altrimenti J sarebbe un campo di Jacobi con J(t0) = Dt0J = O, e quindi sarebbe identicamente nullo.

Scegliamo W ∈ N0(σ) di classe C∞ tale che W (t0) = −Dt0J , e per ε > 0 poniamo Xε = V + εW .
Allora Xε ∈ N0(σ) e

I(Xε, Xε) = I(V, V ) + 2εI(V, W ) + ε2I(W, W ).

Siccome V è un campo di Jacobi sia su [a, t0] che su [t0, b] e V (t0) = O, il Lemma 6.5.3 ci dice che

I(V, V ) = −〈∆DV, V (t0)〉σ(t0) = 0, I(V, W ) = −〈∆DV, W (t0)〉σ(t0) = −‖W (t0)‖2σ(t0)
.

Quindi
I(Xε, Xε) = −2ε‖W (t0)‖2σ(t0)

+ ε2I(W, W ),

e per ε abbastanza piccolo otteniamo I(Xε, Xε) < 0.
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Definizione 6.5.2: Sia M una varietà Riemanniana completa, p ∈ M , v ∈ TpM di lunghezza unitaria, e
σv: [0,+∞)→M la geodetica parametrizzata rispetto alla lunghezza d’arco con σv(0) = p e σ̇v(0) = v. Sia

t0(v) = sup{t ∈ R+ | d
(
p, σv(t)

)
= t}.

Se t0(v) < +∞, diremo che σv(t0) è un punto di taglio di σv rispetto a p. Il luogo di taglio di M rispetto
a p è l’insieme

C(p) = {σv(t0) | v ∈ TpM, ‖v‖p = 1, σv(t0) punto di taglio di σv rispetto a p}.

Esercizio 6.5.1. Sia M una varietà Riemanniana completa, p ∈ M , v ∈ TpM di lunghezza unitaria,
e σv: [0, +∞)→M la geodetica parametrizzata rispetto alla lunghezza d’arco con σv(0) = p e σ̇v(0) = v.

(i) Dimostra che σv(t0) è un punto di taglio per p se e solo se una delle due condizioni seguenti si verifica
per t = t0 e nessuna delle due si verifica per valori di t minori di t0:
(a) σv(t) è coniugato a p lungo σv;
(b) esiste una geodetica τ 6= σv da p a σv(t) tale che L(τ) = L(σv).

(ii) Sia C = {v ∈ TM | ‖v‖ = 1, t0(v) < +∞}, e definiamo ρ: C → R+ ponendo ρ(v) = d
(
π(v), σv

(
t0(v)

))
,

dove π:TM →M è la proiezione canonica e d è la distanza Riemanniana. Dimostra che ρ è una funzione
continua, e deduci che C(p) è un insieme chiuso.

(iii) Dimostra che inj rad(p) = d
(
p, C(p)

)
.

(iv) Sia q ∈ C(p) tale che d(p, q) = d
(
p, C(p)

)
. Dimostra che o esiste una geodetica minimizzante σ da p

a q tale che q sia coniugato a p lungo σ, oppure esistono esattamente due geodetiche minimizzanti σ e τ
parametrizzate rispetto alla lunghezza d’arco da p a q tali che σ̇

(
d(p, q)

)
= −τ̇

(
d(p, q)

)
.

6.6 I teoremi di Bonnet-Myers e Synge-Weinstein

Vediamo che conseguenze possiamo trarre da quanto fatto finora per varietà con curvatura sezionale positiva.

Teorema 6.6.1: (Bonnet, Myers) Sia M una varietà Riemanniana completa di dimensione n ≥ 2. Suppo-
niamo che esista r > 0 tale che la curvatura di Ricci di M soddisfi

Ric(v) ≥ n− 1
r2

> 0

per ogni p ∈M e v ∈ TpM di lunghezza unitaria. Allora

(i) M è compatto e di diametro minore o uguale a πr;
(ii) il rivestimento universale di M è compatto, e il gruppo fondamentale di M è finito.

Dimostrazione: (i) Siano p e q due punti di M . Siccome M è completa, esiste una geodetica minimizzante
σ: [0, `] → M da p a q parametrizzata rispetto alla lunghezza d’arco; ci basta dimostrare che L(σ) ≤ πr.
Infatti in tal caso d(p, q) ≤ πr, per cui il diametro di M è minore o uguale a πr e dunque M , essendo limitata
e completa, è anche compatta, per il teorema di Hopf-Rinow.

Supponiamo allora, per assurdo, che L(σ) = ` > πr. Scegliamo una famiglia {E1, . . . , En−1} ⊂ T (σ)
di campi paralleli tali che {E1(t), . . . , En−1(t), σ̇(t)} sia una base ortonormale di Tσ(t)M per ogni t ∈ [0, `].
Poniamo poi

Vj(t) = sin
(π

`
t
)

Ej(t)

per j = 1, . . . , n − 1. Il Lemma 6.4.6 ci dice che se M fosse una varietà con curvatura sezionale co-
stante (π/`)2 < 1/r2 allora i Vj sarebbero campi di Jacobi; vediamo invece di che proprietà godono su M .

Chiaramente Vj(0) = Vj(`) = O, per cui Vj ∈ N0(σ) per j = 1, . . . , n− 1. Inoltre

I(Vj , Vj) = −
∫ `

0

〈D2Vj + RVj σ̇σ̇, Vj〉σ dt =
∫ `

0

sin2
(π

`
t
) [

π2

`2
−Qσ(Ej , σ̇)

]
dt.
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Sommando su j e ricordando che Qσ(σ̇, σ̇) ≡ 0 otteniamo

n−1∑
j=1

I(Vj , Vj) =
∫ `

0

sin2
(π

`
t
) [

(n− 1)
π2

`2
− Ric(σ̇)

]
dt.

Ma l’ipotesi ci dice che

(n− 1)
π2

`2
− Ric(σ̇) ≤ (n− 1)

[
π2

`2
− 1

r2

]
< 0;

quindi
n−1∑
j=1

I(Vj , Vj) < 0.

Dunque deve esistere almeno un j0 tale che I(Vj0 , Vj0) < 0, per cui il Corollario 6.5.2 implica che σ non è
minimizzante, contraddizione.

(ii) Sia π: M̃ → M il rivestimento universale di M . Se g è la metrica Riemanniana su M , possiamo
mettere su M̃ la metrica Riemanniana π∗g, in modo che il rivestimento π diventi un’isometria locale. In
particolare, per ogni p ∈ M̃ e v ∈ TpM il sollevamento σ̃ uscente da p della geodetica σ in M uscente da π(p)
tangente a dπp(v) è una geodetica in M̃ . Essendo M completa, σ è definita su tutto R; quindi anche σ̃ lo è,
e il teorema di Hopf-Rinow ci assicura che anche (M̃, π∗g) è completa.

Siccome la curvatura si calcola localmente, anche la curvatura di Ricci di M̃ è limitata inferiormente
da (n− 1)/r2. La parte (i) ci assicura allora che anche M̃ è compatta; in particolare, il numero dei fogli del
rivestimento è finito — e da questo segue subito che il gruppo fondamentale di M è finito.

Corollario 6.6.2: Sia M una varietà Riemanniana completa con curvatura sezionale K ≥ 1/r2 > 0. Allora
M è compatta, con diametro minore o uguale a πr, e π1(M) è finito.

Dimostrazione: Infatti K ≥ 1/r2 implica Ric ≥ (n− 1)/r2, dove n = dimM .

Osservazione 6.6.1. L’ipotesi K > 0 non basta: infatti il paraboloide {(x, y, z) ∈ R3 | z = x2 + y2} ha
curvatura sezionale positiva ma non è compatto.

Osservazione 6.6.2. La stima sul diametro è la migliore possibile: la sfera Sn ha diametro π e curvatura
sezionale costante uguale a 1 (e quindi curvatura di Ricci costante uguale a n− 1).

Il Teorema di Bonnet-Myers è solo il primo di una serie di teoremi profondi sulla topologia di varietà
con curvatura sezionale positiva, di cui il più famoso è probabilmente il

Teorema 6.6.3: (della sfera di Berger e Klingenberg) Sia M una varietà Riemanniana completa, semplice-
mente connessa di dimensione n. Supponiamo che esista R > 0 tale che

1
4R2

< K(π) ≤ 1
R2

per ogni 2-piano π ⊂ TM . Allora M è omeomorfa a Sn.

Concludiamo invece il capitolo con un risultato sulle varietà orientate, che ha come conseguenza il fatto
che in certe situazioni curvatura sezionale positiva implica la semplice connessione.

Per dimostrarlo ci serviranno un lemma di algebra lineare e un’osservazione.

Lemma 6.6.4: Sia A ∈ O(n − 1) tale che det A = (−1)n. Allora 1 è autovalore di A, cioè esiste v ∈ Rn−1

non nullo tale che Av = v.

Dimostrazione: Essendo A ortogonale, gli autovalori reali di A sono ±1, e quelli complessi sono in coppie
complesse coniugate di modulo 1. Quindi detA = 1 se −1 è autovalore di A con molteplicità pari, e
det A = −1 se −1 è autovalore di A con molteplicità dispari.

Se n è pari, detA = 1, per cui −1 ha molteplicità pari; gli autovalori complessi coniugati sono anch’essi
in numero pari, ma n − 1, che è il numero di autovalori di A, è dispari, per cui 1 deve essere autovalore
di A. Analogamente, se n è dispari −1 ha molteplicità dispari, ma n− 1 è pari, per cui di nuovo 1 dev’essere
autovalore.
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Osservazione 6.6.3. Sia M una varietà Riemanniana orientata da una forma di volume ν ∈ An(M). Al-
lora il trasporto parallelo lungo una qualsiasi curva conserva l’orientazione, nel senso che manda basi positive
in basi positive. Infatti, se {E1(t), . . . , En(t)} è il trasporto parallelo di una base positiva {E1, . . . , En} lungo
una curva σ: [a, b] → M , allora la funzione t 7→ νσ(t)

(
E1(t), . . . , En(t)

)
è una funzione di classe C∞, mai

nulla e positiva per t = a, e quindi positiva per ogni valore di t ∈ [a, b].

Teorema 6.6.5: (Weinstein) Sia F :M → M un’isometria di una varietà Riemanniana compatta orien-
tata M di dimensione n con curvatura sezionale positiva. Supponiamo inoltre che F conservi l’orientazione
se n è pari, e che la inverta se n è dispari. Allora F ha un punto fisso.

Dimostrazione: Supponiamo, per assurdo, che F (q) 6= q per ogni q ∈M . Essendo M compatta, la funzione
q 7→ d

(
q, F (q)

)
assume minimo in un punto p ∈ M , e il minimo è strettamente positivo. Inoltre, essendo

M completa, esiste una geodetica minimizzante σ: [0, `] → M da p a F (p), parametrizzata rispetto alla
lunghezza d’arco. Cominciamo col dimostrare che

dFp

(
σ̇(0)

)
= σ̇(`). (6.6.1)

Infatti, essendo F un’isometria e σ una geodetica minimizzante da p a F (p), la scelta di p implica che per
ogni t ∈ (0, `) si ha

d
(
p, F (p)

)
≤ d

(
σ(t), F

(
σ(t)

))
≤ d

(
σ(t), F (p)

)
+ d

(
F (p), F

(
σ(t)

))
= d

(
σ(t), F (p)

)
+ d

(
p, σ(t)

)
= d

(
p, F (p)

)
.

In particolare,
d
(
σ(t), F

(
σ(t)

))
= d

(
σ(t), F (p)

)
+ d

(
F (p), F

(
σ(t)

))
.

Siccome σ e F ◦ σ sono geodetiche minimizzanti, questo implica che la curva ottenuta unendo σ e F ◦ σ è
ancora minimizzante, e quindi una geodetica. In particolare è liscia, per cui σ̇(`) = (F ◦ σ)′(0) = dFp

(
σ̇(0)

)
,

come voluto.
Poniamo Ã = σ̃−1

` ◦dFp:TpM → TpM , dove σ̃` è il trasporto parallelo da p a F (p) lungo σ; chiaramente,
Ã è un’isometria. Inoltre, ricordando l’Osservazione 6.6.3 vediamo che Ã manda basi positive in basi positive
se n è pari, e basi positive in basi negative se n è dispari; in particolare,

det Ã = (−1)n. (6.6.2)

Da (6.6.1) segue subito che

Ã
(
σ̇(0)

)
= (σ̃−1

` ◦ dFp)
(
σ̇(0)

)
= σ̃−1

`

(
σ̇(`)

)
= σ̇(0).

Dunque Ã manda il sottospazio W = σ̇(0)⊥ ⊂ TpM ortogonale a σ̇(0) in se stesso; indichiamo con A:W →W

la restrizione di Ã a W . L’applicazione lineare A è un’isometria con determinante uguale a quello di Ã; quindi
per il Lemma 6.6.4 possiamo allora trovare un campo parallelo E1 ∈ T (σ) ortogonale a σ̇ di lunghezza unitaria
e tale che AE1(0) = E1(0).

Sia τ : (−ε, ε) → M una geodetica con τ(0) = p e τ̇(0) = E1(0). Siccome AE1(0) = E1(0) otteniamo
dFp

(
E1(0)

)
= E1(`), per cui la geodetica F ◦ τ è tale che F ◦ τ(0) = F (p) e (F ◦ τ)′(0) = E1(`).

Sia Σ: (−ε, ε)× [0, `]→M la variazione di σ data da

Σ(s, t) = expσ(t)

(
sE1(t)

)
.

Allora Σ(s, 0) = τ(s) e
Σ(s, `) = expF (p)

(
sE1(`)

)
= F ◦ τ(s).

In particolare, S(s, 0) = τ̇(s) e S(s, `) = (F ◦ τ)′(s).
Il campo variazione V di Σ è chiaramente E1, per cui DV ≡ O. Ma allora (6.5.2) ci dà

d2L

ds2
(0) = 〈∇E1S, σ̇〉σ

∣∣∣∣`
0

−
∫ `

0

Qσ(E1, σ̇) dt = −
∫ `

0

Qσ(E1, σ̇) dt,
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in quanto le curve trasverse σ0 e σ` sono geodetiche tangenti a E1(0) e E1(`) rispettivamente, per cui
∇E1(t)S = O per t = 0 e t = `. Ma la curvatura sezionale di M è strettamente positiva; quindi

d2L

ds2
(0) < 0. (6.6.3)

Se tutte le curve principali della variazione avessero lunghezza maggiore o uguale a σ, la funzione L(s)
assumerebbe minimo assoluto in s = 0, contro la (6.6.3); quindi deve esistere un s0 tale che L(σs0) < L(σ).
Ma σs0 è una curva da τ(s0) a F

(
τ(s0)

)
; quindi dovremmo avere

d
(
τ(s0), F

(
τ(s0)

))
≤ L(σs0) < L(σ) = d

(
p, F (p)

)
,

contro la scelta di p. Abbiamo trovato una contraddizione, e la dimostrazione è conclusa.

Questo risultato ha come consequenza relazioni inaspettate fra orientabilità e topologia delle varietà
compatte con curvatura sezionale positiva:

Corollario 6.6.6: (Synge) Sia M una varietà compatta di dimensione n con curvatura sezionale positiva.
Allora:

(i) Se n è pari e M è orientabile allora M è semplicemente connessa.
(ii) Se n è pari e M non è orientabile allora π1(M) = Z2.
(ii) Se n è dispari allora M è orientabile.

Dimostrazione: (i) Sia π: M̃ → M il rivestimento universale di M . Se g è la metrica Riemanniana di M ,
mettiamo su M̃ la metrica g̃ = π∗g, e orientiamo M̃ in modo che π conservi l’orientazione. Siccome M è
compatta con curvatura sezionale positiva, deve esistere δ > 0 tale che K ≥ δ. Quindi possiamo applicare il
Teorema 6.6.1, e anche M̃ è compatta, con curvatura sezionale positiva in quanto π è un’isometria locale.

Sia F : M̃ → M̃ un automorfismo del rivestimento, cioè π ◦ F = π. Allora F è un’isometria di M̃ che
conserva l’orientazione (in quanto π la conserva), per cui il Teorema 6.6.5 implica che F ha un punto fisso.
Ma l’unico automorfismo di un rivestimento che può avere punti fissi è l’identità, per cui F = idM̃ . Quindi
il gruppo di automorfismi di π si riduce all’identità, e questo equivale a dire che π è un diffeomorfismo, cioè
che M è semplicemente connessa.

(ii) Se M non è orientabile, sia π: M̃ → M il rivestimento a 2 fogli dato dalla Proposizione 3.6.2.
Mettendo su M̃ la metrica indotta dalla metrica di M possiamo applicare a M̃ il punto (i); quindi M̃ è
semplicemente connessa, per cui è il rivestimento universale di M e π1(M) = Z2.

(iii) Supponiamo per assurdo M non orientabile, e sia di nuovo π: M̃ →M il rivestimento a 2 fogli dato
dalla Proposizione 3.6.2. Mettiamo di nuovo su M̃ la metrica indotta, e sia F : M̃ → M un automorfismo
del rivestimento diverso dall’identità. Ma M̃ è compatta con curvatura sezionale positiva; siccome F inverte
l’orientazione di M̃ e n è dispari, possiamo applicare il Teorema 6.6.5 e ottenere un punto fisso per F ,
contraddizione. Quindi M è orientabile.

Concludiamo con un esempio che mostra come le differenze fra le dimensioni pari e le dimensioni dispari
siano inevitabili, e alcuni esercizi finali:

Esempio 6.6.1. Sia π:Sn → Pn(R) il rivestimento universale dello spazio proiettivo. Siccome la mappa
antipodale A(p) = −p è un’isometria di Sn, ed è l’unico automorfismo non banale del rivestimento π,
otteniamo una metrica Riemanniana su Pn(R) rispetto a cui π diventa un’isometria locale. In particolare,
quindi, Pn(R) è compatto con curvatura sezionale positiva e gruppo fondamentale π1

(
Pn(R)

)
= Z2. Inoltre,è

orientabile se e solo se n è dispari (Esercizio 3.5.3). Quindi P2(R) è un esempio di varietà compatta, non
orientabile, di dimensione pari con curvatura sezionale costante positiva, mentre P3(R) è un esempio di
varietà compatta, orientabile, non semplicemente connessa, con curvatura sezionale positiva e di dimensione
dispari.

Esercizio 6.6.1. Scegliamo un punto p0 in una varietà Riemanniana compatta M , e sia r:M → R+ data
da r(q) = d(p0, q) per ogni q ∈M , dove d è la distanza Riemanniana. Dimostra che r non è mai di classe C1

su M \ {p0}.
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Esercizio 6.6.2. Dimostra la seguente generalizzazione del Teorema di Bonnet-Myers: sia M una varietà
Riemanniana completa. Supponiamo che esistano a > 0 e c ≥ 0 tali che per ogni coppia di punti di M e ogni
geodetica minimizzante σ parametrizzata rispetto alla lunghezza d’arco che unisce questi due punti si abbia

Ric
(
σ̇(s)

)
≥ a +

df

ds

lungo σ, per una qualche funzione f tale che |f(s)| ≤ c lungo σ. Dimostra che M è compatto, e trova una
stima sul diametro.


