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Capitolo 1

Algebra multilineare

1.1 Prodotto tensoriale

Se V e W sono due spazi vettoriali sul campo K, indicheremo con Hom(V, W) lo spazio vettoriale delle
applicazioni K-lineari da V' in W. In particolare, lo spazio duale di V' & lo spazio vettoriale V* = Hom(V, K).
Inoltre, useremo spesso il delta di Kronecker, che & il simbolo

_n_ |1 seh=k,
5"’“5’“_{0 se h # k.

Ricordiamo alcune proprieta fondamentali degli spazi Hom(V, W) e V*:

Proposizione 1.1.1: SianoV e W due spazi vettoriali di dimensione finita sul campo K, e B = {v1,...,v,}

una base di V. Allora:

(i) L’applicazione che a ogni L € Hom(V, W) associa la n-upla (L(v1),...,L(v,)) € W™ & un isomorfismo
fra Hom(V, W) e W™. In particolare, dim Hom(V, W) = (dim V)(dim W), e dim V* = dim V.

(ii) Se indichiamo con v" € V* I'elemento definito da v"(vy) = 8%, allora B* = {v',...,v"} & una base
di V*, detta base duale di V*.

(iii) L’applicazione ®:V — (V*)* data da ®(v)(¢) = ¢(v) € un isomorfismo canonico fra V e il biduale (V*)*.

(iv) Se (+,-):V x V. — K & un prodotto scalare non-degenere, allora I'applicazione U:V — V* data
da ¥(v) = (-,v) & un isomorfismo.

Esercizio 1.1.1. Dimostra la Proposizione 1.1.1.

In particolare, ogni elemento di Hom(V, W) & univocamente determinato dai valori che assume su una
base. Data una n-pla (wn,...,wy) € W, I'elemento L di Hom(V, W) che soddisfa la condizione L(v;) = w;
per j =1,...,n e definito da

L()\lvl + -+ /\nvn) = Mwy + -+ A\ w,
per ogni A1, ..., A\, € K.
Vogliamo introdurre costruzioni analoghe e ottenere risultati simili per applicazioni multilineari.

Definizione 1.1.1: Siano V1,...,V,, W spazi vettoriali sul campo K. Un’applicazione ®:V; x ---xV,, — W si
dice multilineare (o n-lineare) se & lineare separatamente in ciascuna variabile. L’insieme M (Vi,...,V,; W)
delle applicazioni multilineari da V3 x --- x V,, in W & chiaramente uno spazio vettoriale su K.

Per capire meglio il contenuto della prossima proposizione, premettiamo un’osservazione.

Osservazione 1.1.1. Supponiamo dati n numeri interi di,...,d, € N* e uno spazio vettoriale W di
dimensione d. Allora lo spazio vettoriale W7 4n puo essere descritto come lo spazio delle “matrici” a n
indici, i cui elementi sono vettori di W, e in cui il j-esimo indice varia fra 1 e d; (per j =1,...,n). In altre
parole, ogni vettore w € Wddn puo essere scritto come

W = (Way o) (a1t L X (T}
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con wy, .., € W per ogni n-upla (ui,...,un) € {1,...,d1} x--- x {1,...,d,}. In particolare, data una
base {wi,...,wq} di W otteniamo una base di Wi dn congiderando i vettori Wyy,...v,0 al variare di

v € {l,...d1},...,vn € {1,...,d,},v € {1,...,d}, dove l'elemento di posto (p1,...,p,) di Wy, .0 €
dato da

(Wor,oom ) i = Opvn " Opryy, W (1.1.1)
In particolare, il vettore e,, .. ,, della base canonica di K% che ha un 1 al posto (v1,...,vy,) € 0 altrove,
ha come (1, ..., py)-esimo elemento il numero

(€vr.vm)paegin = Opavn = Opp -

Proposizione 1.1.2: Siano Vi,...,V,, e W spazi vettoriali di dimensione finita sul campo K, di dimen-
sione rispettivamente di,...,d,,d. Per j = 1,...,n scegliamo una base B; = {vj;1,... 7vj’dj} di V;, e sia
{wy,...,wq} una base di W. Allora I'applicazione A: M(Vy, ..., V,; W) — Wdidn data da

A((I)) = ((I)('Ulam’ s ’U"’”n))(m,H.,un)e{l,...,dl}x~~-><{1,...A,dn}

€ un isomorfismo. In particolare,
dimM(Vy,...,Vy; W) = (dimVy) - - - (dim V,) - (dim W),

e una base di M(Vi,...,Vis W) e {®u, v s, vni)e{lsdiyxox{1pesdn } x{1,....d}> dOVe @uy o & de-
finita da
Pusvm (Vs o Vnpan) = Oprn O puyw, Wore

Dimostrazione: L’applicazione A & chiaramente lineare. Ora, per ogni applicazione ® € M (Vy,...,V,; W) e
ogni v; = szzl ajuv; . €Vj, si ha

dq dn
D(vr,e ) = D D A A, P01 U )i
p1=1 pn=1

in particolare, A(®) = O implica ® = O, e quindi A ¢ iniettiva. Viceversa, se scegliamo arbitrariamente
Wy .., € W possiamo definire una ® € M(Vy,...,V,; W) tale che ®(v1,y,. .., Vn,pu,) = Wy, ...u, Ponendo

dy dn
D(vy,...,0n) = Z e Z gy O, Wy o s (1.1.2)

p1=1 pn=1

per cui A & surgettiva. Infine, una base di M (V4, ..., V,; W) si ottiene applicando A~! a una base di W dn;
l'ultima affermazione segue quindi da (1.1.1). O

In altre parole, anche le applicazioni multilineari sono completamente determinate dai valori che assu-

mono su n-uple di elementi delle basi. Quando in seguito costruiremo un’applicazione multilineare prescri-
vendo il suo valore sulle basi e poi invocando questo risultato, diremo che stiamo estendendo per multilinea-
rita.
Esercizio 1.1.2. Siano Vi,...,V,, W spazi vettoriali sul campo K. Dimostra che gli spazi M (Vi,...,V,; W),
Hom(V17 M Vay ..., Vs W)) e M(Vl, ooy Vo—1; Hom(V,, W)) sono canonicamente isomorfi. [Suggerimento:
se & € M(Vi,...,Vn; W), considera & € Hom(Vy, M(Va, ..., Vs W)) e @ € M(V4,...,Vy_1; Hom(V,, W))
definite da

D(v1)(va,...,0,) = &)(vl, cesUn—1)(vp) = ®(v1, ..., 0,) EW
per ogni vy € Vi,...,v, € V]

Vogliamo descrivere ora una procedura che ci permette di trasformare un’applicazione multilineare in
una lineare cambiando opportunamente il dominio.
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Teorema 1.1.3: Dati Vi, ..., V, spazi vettoriali di dimensione finita su K, poniamo T = M (V... , V¥ K).
Sia inoltre F € M(Vy,...,V,;T) data da

F(vy,.o o y00)(@1, -y 0n) = @1(v1) - - 0 (vn),

perognivy € Vi,... v, € Vi,o1 € Vi*, .. o, € V5. Allora:
(i) Per ogni spazio vettoriale W su K e ogni applicazione multilineare ®: V; x - -- x V,, — W esiste un’unica
applicazione lineare ®:T — W tale che ®=do F (proprieta universale del prodotto tensoriale).
(ii) Se (T',F') & un’altra coppia soddisfacente (i) allora esiste un unico isomorfismo ¥:T — T tale che
F' =W o F (unicita del prodotto tensoriale).

Dimostrazione: (i) Per j = 1,...,n scegliamo una base B; = {vj1,...,v;4,} di V}, dove d;j = dimV}, e sia
* _ ol d; : : — C g
Bj = {vj,...,v;’} la corrispondente base duale. Poniamo ¢, ., = F (1,4, Vnp,) € T} siccome
Vi 1Z __ SV 12
@M1<--Mn(vl ,...,vnn)—ému-éuz,

la Proposizione 1.1.2 e I'Osservazione 1.1.1 ci dicono che {¢,,, ., } € una base di T. Ora, se d esiste si deve
avere

(i)(‘/’m---un) = (i)(F(Ul,uu ces Un,un)) =Q(v1 -, Un,un%

quindi la Proposizione 1.1.1.(i) ci assicura che esiste un’unica applicazione lineare ® con le proprieta richieste.

(ii) Se applichiamo (i) alla F’:V} x --- x V,, — T’ otteniamo una ¥:T — T’ tale che ¥ o F = F’.
Rovesciando i ruoli di T e T otteniamo una ¥': 7" — T tale che ¥/ o F/ = F. Quindi (V' o ¥)o F = F; ma
anche idr oF = F| e l'unicita in (i) implica ¥’ o ¥ = idy. Analogamente si dimostra che ¥ o ¥’ =idy, e ci
siamo. ]

Definizione 1.1.2: Diremo che due coppie (T4, F1) e (T», F»), con T} spazi vettoriali ¢ Fj: Vi x --- x V;, — T
applicazioni n-lineari, sono isomorfe se esiste un isomorfismo ¥:7T; — T5 tale che Fo = Vo F}.

Definizione 1.1.3: Una coppia (T, F) soddisfacente le proprietd del Teorema 1.1.3.(i) verra detta prodotto
tensoriale di V1,...,V,, e indicata con V1 ®- - -®V,,; il Teorema 1.1.3.(ii) ci assicura che il prodotto tensoriale
¢ ben definito a meno di isomorfismi. Gli elementi della forma F'(v1,...,v,), detti indecomponibili, verranno
indicati con la scrittura v1 ® - - - ® v,,.

Osservazione 1.1.2. La dimostrazione del Teorema 1.1.3.(ii) mostra chiaramente come 'unicita del pro-
dotto tensoriale sia conseguenza della proprieta universale.

Osservazione 1.1.3. Il Teorema 1.1.3 e la Proposizione 1.1.2 chiaramente implicano che
dim(Vy ® --- @ V,) = (dimVp) - - - (dim V).

Esercizio 1.1.3. Dimostra che V®K e K® V sono canonicamente isomorfi a V' per ogni spazio vettoriale V'
di dimensione finita sul campo K.

Ci possono essere altre realizzazioni concrete del prodotto tensoriale di spazi vettoriali (vedi per esempio
PEsercizio 1.1.5); ma noi lo penseremo sempre come spazio di applicazioni multilineari. In particolare, presi
v1 €Vi,...,v, €V, allora v; ® - - - ® v, agisce su V{* x --- x V¥ con la seguente regola:

(%1 ®®vn(<p1,,<,0n) = wl(vl)..'wn(vn)
per ogni 1 € Vi*, ..., pn € V5.

Osservazione 1.1.4. Se B; = {vj1,...,vj4;} ¢ una base di Vj, per j = 1,...,n, allora una base
di Vi ® ---® V, ¢ composta dagli elementi indecomponibili della forma v ,, ® -+ ® vp,,. In partico-
lare, gli elementi indecomponibili formano un sistema di generatori di V; ® --- ® V,,, ma attenzione: non
tutti gli elementi di Vi ® --- ® V,, sono indecomponibili. Per esempio, tutti gli elementi indecomponibili di
V ® V sono applicazioni bilineari degeneri (dato v ® v2 € V ® V, se prendiamo ¢; € V* non nullo tale che
v1(v1) = O, allora v1 ® va(p1,-) = O, per cui v; ® ve & degenere), e quindi nessuna applicazione bilineare
non degenere di V* x V* in K puo essere rappresentata da un singolo elemento indecomponibile.
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Osservazione 1.1.5. Se A€ Kewv, € Vq,...,v, € V,, la multilinearita di F' implica che
A1 @ ®@vp) = A1) ® - @y = =01 @ @ (Avy).
Analogamente, se v, v/ € V; si ha
O QW +U)® QU= @ BU® BU+ U @ DV @ @

Queste regole determinano completamente la manipolazione algebrica degli elementi del prodotto tensoriale,
come vedremo nell’Esercizio 1.1.5.

FEsercizio 1.1.4. Dato un insieme S, indichiamo con K(S) I'insieme
K(S) ={f: S — K| f(s) # 0 solo per un numero finito di elementi s € S}.

(i) Dimostra che K(S) & uno spazio vettoriale su K, detto spazio vettoriale libero generato da S.

(ii) Identificando ogni s € S con la funzione in K(S) che vale 1 in s e 0 altrove, dimostra che S & una base
di K(S), e quindi che ogni elemento v € K(S) si scrive in modo unico come combinazione lineare formale
finita di elementi di S a coefficienti in K, cioe nella forma

k
v = E )\ij
j=1

per opportuni kK € N, A\q,..., A\, € Kesy,...,s5 €8S.

(iii) Dimostra che per ogni funzione o: S — V a valori in uno spazio vettoriale V' qualsiasi esiste un’unica
applicazione lineare A € Hom(K(S), V) tale che A|s = « (proprieta universale dello spazio vettoriale
libero).

(iv) Dimostra che se (W,¢) & una coppia composta da uno spazio vettoriale W e un’applicazione iniet-
tiva ¢:.S — W tale che per ogni funzione a:S — V a valori in uno spazio vettoriale V qualsiasi
esiste un’unica applicazione lineare A € Hom(W, V) tale che Ao = « allora esiste un isomorfismo
T:K(S) — W tale che T|g = ¢.

FEsercizio 1.1.5. Siano Vi,...,V, spazi vettoriali sul campo K, e indichiamo con K(V; x --- x V,,) lo spazio
vettoriale libero generato da V; x - - - x V,, (vedi I'esercizio precedente). Sia R il sottospazio di K(Vj x---x V)
generato dagli elementi della forma

AW,y Un) = (V1,2 AU, L Up),

(V1,0 Vo) A (V1,0 o) = (01, ),

esiaT =R(V] x---xV,)/R lo spazio quoziente. Infine, sia 7: V; x - - - x V,, — T l'applicazione che associa a
ciascun elemento di V3 x - -+ x V,, la sua classe d’equivalenza in T'. Dimostra che (T, 7) soddisfa la proprieta
universale del prodotto tensoriale, e deduci quindi che se Vi, ..., V,, hanno dimensione finita allora (T, 7) &
isomorfo al prodotto tensoriale (V; ® --- ® V,,, F).

La seguente proposizione contiene degli utili isomorfismi canonici fra prodotti tensoriali (e spazi di
applicazioni lineari):
Proposizione 1.1.4: Siano V, W, Vi,...,V,, Vj’ spazi vettoriali di dimensione finita sul campo K. Allora
(i) Sia o una permutazione di {1,...,n}, e F:V}; x --- x V,, — Vo) ® - @ Vy(n) data da

F(vi,...,00) = 0501) ® -+ @ Ug(n)-
Allora (V1) ®~-~®Vg(n),ﬁ) ¢ isomorfo a (V1 @ --- Q@ V,, F).
(i) Sceltoj € {1,...,n—1},sia F:Vi x - xVp, = (Vi @---@V;)® (Vj41 ®---®V,) data da

Fvr,...,00) = (1 ® - Q) ® (Vj31 @+ D vy).



1.1 Prodotto tensoriale 5

Allora ((V1®---®Vj)®(Vj+1®--~®Vn),15) é isomorfo a (Vi ® --- @ Vy,, F).

(iii) Sia F:Vix -+ x (V;@V))x - xV, = (V@ Ve aV,)eie oV aV,) dta da

F(“hnw(”ﬁ”é‘)wna'”n):('Ul®"'®Uj®"'®vnavl®"'®vé®"'®Un)-

Allora (V1 ®---@V;®---@V,) (Vi ®- - ®Vi®- - '®Vn),ﬁ') & isomorfo a (V1®- - BV;eV))®: -0V, F).
(iv) Sia F:V* x W* — (V @ W)* data da

F(p, ) (0 ® w) = p(v)(w).

Allora ((V @ W)*, F) ¢ isomorfo a (V* @ W* F).
(v) Sia F:V* x W — Hom(V, W) data da

Fp,w)(v) = ¢(v)w.

Allora (Hom(V, W), F) & isomorfo a (V* @ W, F).
(vi) L’applicazione A: M(V1,Va; W) — Hom(V; ® Vo, W) data da

A(®)(v1 ® vg) = D(v1,v2)

ed estesa per linearita, & un isomorfismo fra M (Vy,Va; W) e Hom(V; ® Vo, W).

Dimostrazione: (i) Essendo F un’applicazione n-lineare, la proprieta universale del prodotto tensoriale ci
fornisce una A: V1 @ -+ @V, — V51) ® - @ V() lineare e tale che F = AoF. Ora, I'immagine di A e
un sottospazio vettoriale di V(1) ® - -+ ® V(5 che include F (Vi x -+ x V,,); siccome quest’ultimo insieme,
contenendo tutti i vettori indecomponibili, genera V(1) ® - -+ ® V), Papplicazione A ¢ necessariamente
surgettiva. Ma Vi @ --- @V, e V(1) ® - -+ ® V() hanno la stessa dimensione, e quindi A ¢ I'isomorfismo
cercato.

(ii), (iii) e (iv) si dimostrano in modo assolutamente analogo (esercizio).

Anche la (v) si puo dimostrare nello stesso modo, ma possiamo anche scrivere in maniera esplicita
I’isomorfismo A: V* @ W — Hom(V, W). Infatti, si verifica subito (esercizio) che estendendo per linearita la

Alp @w)(v) = p(v)w

otteniamo un isomorfismo che soddisfa F = A o F. Nota che, a meno di identificare gli spazi vettoriali con i

loro biduali, questo ¢ esattamente 'isomorfismo dell’Esercizio 1.1.2 applicato a V* @ W = M (V, W*; K).
(vi) L’applicazione A ¢ lineare e iniettiva fra spazi vettoriali della stessa dimensione, per cui & un

isomorfismo, che realizza esplicitamente la proprieta universale del prodotto tensoriale. Il

Osservazione 1.1.6. In particolare, combinando gli ultimi tre isomorfismi vediamo che M (Vy, Vo; W) & ca-
nonicamente isomorfo a Vi*®@ V5" @ W. Piu in generale, con la stessa tecnica si verifica che M (Vi,...,V,; W) e
canonicamente isomorfo a Vi*®- - -@V,*®@W, che a sua volta & canonicamente isomorfo a M (Vy, ..., V,; K)@W.

Esempio 1.1.1.  Uno dei misteri dell’algebra lineare elementare € come mai due nozioni piuttosto diverse,
quali le applicazioni lineari fra due spazi vettoriali e le forme bilineari a valori nel campo base, vengono
rappresentate dallo stesso tipo di oggetti (le matrici). La soluzione del mistero & la Proposizione 1.1.4.(v).
Infatti, dati due spazi vettoriali V e W di dimensione n ed m rispettivamente, la scelta di due basi fornisce
un isomorfismo fra lo spazio delle matrici My, ,,(K) e lo spazio delle applicazioni lineari Hom(V, W). Grazie
alla Proposizione 1.1.4, quest’ultimo & canonicamente isomorfo a V* ® W, cioe allo spazio delle applica-
zioni bilineari M (V, W*;K). Ma la scelta delle basi fornisce anche un isomorfismo di W* con W, e quindi
di M(V,W*;K) con M,, ,(K), per cui siamo passati dalle matrici come applicazioni lineari alle matrici come
forme bilineari.

Vi & un’altra interpretazione del prodotto tensoriale in termini matriciali. Dati u € K™ e v € K",

*

Pelemento indecomponibile 4 ® v & un’applicazione bilineare di (K™)* x (K™)* in K, che & rappresentata da
T

una matrice m x n a coefficienti in K. E facile vedere (esercizio) che questa matrice ¢ esattamente w - v* .
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Definizione 1.1.4: Dati v € K™ e v € K", diremo prodotto di Kronecker di u e v la matrice u®v € My, »(K)
data da u®v = u-v’, il cui elemento di posto (i, j) ¢ u'v?. Pilt in generale, se A € M,, »,(K) e B € M, (K)
sono due matrici, diremo prodotto di Kronecker di A e B la matrice
anBT s alnBT
am1BT -+ aumBT
FEsercizio 1.1.6. (i) Dimostra che ogni matrice in M, ,(K) di rango 1 & della forma v ® v per oppor-
tuni u € K™ e v € K",
(i) Dimostra che ogni matrice in M, ,(K) di rango d > 1 & somma di d matrici di rango 1.
(iii) Interpreta il prodotto di Kronecker di matrici in termini di prodotti tensoriali.

EseEmpio 1.1.2. Se V ¢ uno spazio vettoriale sul campo K, si vede subito che V ® K ¢ isomorfo a V
(esercizio). Se K = R possiamo invece considerare V @ C. Come spazio vettoriale reale, V ® C ha dimensione
doppia rispetto a V'; ma la cosa interessante & che V' ® C ha una naturale struttura di spazio vettoriale su C,
con dimensione (complessa) uguale alla dimensione (reale) di V. Infatti, ogni elemento di V@ C & somma di
un numero finito di elementi della forma v; ® A, con v; € V e A; € C; quindi possiamo definire il prodotto
di un numero complesso A per un elemento di V ® C ponendo

A ZU]‘ XN = ZU]' & ()\/\j),
j=1 j=1

ed & facile verificare che in questo modo si ottiene uno spazio vettoriale su C. In particolare, se {v1,...,v,}
¢ una base di V, una base su R di V@ C & data da {v; ® 1,v1 ®4,...,v, ® 1,v, ® i}, mentre una base su C
¢ semplicemente data da {v; ® 1,...,v, ® 1}.

Definizione 1.1.5: Sia V uno spazio vettoriale su R di dimensione finita. Lo spazio vettoriale complesso V @ C

viene detto complessificazione di V, e indicato con V.

1.2 L’algebra tensoriale

In geometria differenziale sono particolarmente utili alcuni spazi ottenuti tramite prodotti tensoriali.

Definizione 1.2.1: Sia V uno spazio vettoriale sul campo K di dimensione finita. Allora possiamo costruire i
seguenti spazi vettoriali:

TV)=To(V)=T(V) =K, T'(V)=T,(V)=V, T(V)=T(V)=V",
V) =T)(V)=V® -V, T,V)=T)(V)=V"®---@V*, TP(V) =TP(V) @ T,(V),

. , q
p volte q volte
V) =PT1(V), T(V)= P TIV), TV)=PT,V).
p=20 p,q>0 ¢>0

Chiaramente, dim T? (V') = (dim V)", mentre T'(V') ha dimensione infinita. Un elemento di T?(V') & detto
tensore p-controvariante e g-covariante, o tensore di tipo (Z ), mentre, per motivi che vedremo fra un attimo,
lo spazio T'(V) & detto algebra tensoriale di V.

Osservazione 1.2.1. Ricordo che T2 (V') ¢ lo spazio delle applicazioni multilineari da (V*)? x VI a K, e
in particolare I’azione degli elementi indecomponibili ¢ data da

ul®...®U,p®wl®-~-®wq(’(]17...7’f]p,1}1,...,vq) :nl(ul)"'np(up)'wl(vl)”'wq(vq)a

dove u1,...,up,v1,...,v04 € Ve wl ... ,wlnt ...,n? € V*. Inoltre, I'Esercizio 1.1.2 implica anche che
TP (V') & isomorfo allo spazio delle applicazioni multilineari da (V*)P x Va=1 3 V* e a quello delle applicazioni
multilineari da (V*)P~! x V4 a V. In particolare, T} (V') ¢ isomorfo a Hom(V, V).
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Ora vogliamo definire su 7'(V') un prodotto. Se o € TP* (V') e 8 € TP2(V') definiamo a ® 8 € T(fllf;;z (V)
ponendo

P1+p2

1 1 1
0&®ﬁ(77 a'-'777p1+p27’U17"'?UQ1+qz) :04(77 7"-anp17vl7"'avm)6(npl+ yeees 1] aUQ1+1""7ULI1+qz)'

Siccome ogni elemento di T(V') ¢ somma di un numero finito di elementi di questo tipo, per distributivita
possiamo allora definire un prodotto ®:T(V) x T(V) — T(V), e (T(V),+, ®) risulta (esercizio) essere un
anello con unita 1 € T(V). Inoltre, per ogni A € K e v, w € T(V) abbiamo

Ao w) = () @w=1® (Aw),

e quindi (T(V), +, ®, ) ¢ un’algebra, giustificandone il nome.

Osservazione 1.2.2. Attenzione: il prodotto in T(V) non & commutativo. Per esempio, prendiamo
V = R? con base canonica {e,es} e base duale {e',e?}. Allora e; ® e ed ey ® e; appartengono a T (R?),
e quindi sono applicazioni bilineari su (R?)* x (R?)*. Ma

e1 @ eg(el,e?) = el(er)e?(e2) =1 # 0 = el(ea)e(er) = ex @ eg(eh, €?),

per cui e1 ® e # ea ® €.

Osservazione 1.2.3. Spazi vettoriali isomorfi hanno algebre tensoriali isomorfe. Infatti, sia L:V — W
un isomorfismo fra spazi vettoriali di dimensione finita su K, e indichiamo con L*: W* — V* Iisomorfismo
duale. Allora (L*)~':V* — W* & ancora un isomorfismo, e possiamo definire T'(L): T(V) — T(W) ponendo

T(L)(01 @ @upRw' @ @w!) = L) ® @ L(v,) ® (L) M w) @+ @ (L) w?)

ed estendendo per linearita. Si vede subito che T'(L) ¢ un isomorfismo di algebre che conserva il tipo.

FEsercizio 1.2.1.  Dimostra che per ogni applicazione lineare L € Hom(V, W) esistono un unico omomorfismo
di algebre T*(L): T*(V) — T*(W) e un unico omomorfismo di algebre Ty (L): To (W) — T4(V') che conservano
il tipo e tali che T*(L)|y = L e To(L)|w~ = L*.

Capita spesso che strutture definite sullo spazio vettoriale V' possano essere estese all’intera algebra
tensoriale. Un esempio tipico ¢ quello del prodotto scalare:

Proposizione 1.2.1: Sia {-,-): V x V — R un prodotto scalare definito positivo su uno spazio vettoriale V
di dimensione finita su R. Allora esiste un unico prodotto scalare definito positivo {(-,-): T (V) x T(V) - R
che soddisfa le seguenti condizioni:

(i) TP(V) & ortogonale a T}!(V) se p # h 0 q # k;

(i) (A ) = Aw per ogni A, p e R=T(V);

(iii) (v, w) = (v,w) per ogni v, w € T*(V) =V;

(iv) (v*,w*) = (v,w) per ogni v, w € T*(V), dove v*, w* € Ty(V) sono dati da v* = {-,v) e w* = (-, w);
(v) a1 ® a2, 81 ® Ba)) = (o, B1)) - (@2, B2)) per ogni an, f1 € TLH(V) e au, B2 € TE2(V).

Dimostrazione: Sia {v1,...,v,} una base di V ortonormale rispetto a (-, -); in particolare, {v},...,v3} ¢ la
base duale di V*. Una base di 77 (V) ¢ allora composta da tutti i possibili tensori della forma

V=0, ® QU QU Q- ®u; (1.2.1)
al variare di I = (i1,...,%p+q) € {1,...,n}PT2
Ora, supponiamo che un prodotto scalare ((-,-)) che soddisfi (i)—(v) esista. Allora si vede subito che
{v1,...,vn} e {v},..., vk} sono ortonormali rispetto a {(-,-)), e quindi

(S rron Smws ) = 3 Shmsfors e = 555 Ao v+ (5,
I J I J I J
= Z )\I/Lb
I
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per cui (-, -)) se esiste & unico.

Per Vesistenza, indichiamo con ((-,-)) I'unico prodotto scalare definito positivo su T'(V') rispetto a cui
gli elementi della forma (1.2.1) formano una base ortonormale. Chiaramente, (i)—(iv) sono soddisfatte;
dobbiamo verificare (v). Ma infatti abbiamo

() o (o) (mnea) o (o)

= Z )‘}1/\1/’61”‘2]2 <<UI1 R V1,00, ®UJ2>>

Iy,I2,J1,J2
— 14,2 1 2
= E AL AL 1T, HT,
I,1>
_ 1 1 2 2
= << E )\111]]17 § .U’leJl >> : << E >‘I2U127 E ,uJQIUJ2>>7
I J1 Iz J2
e ci siamo. ]

Concludiamo questo paragrafo introducendo una famiglia di applicazioni lineari tipiche dell’algebra
tensoriale:

;) conl <i<pel<j<qell’applicazione lineare

Ci:TP(V) — T;:ll(V) definita sugli elementi indecomponibili da

Definizione 1.2.2: La contrazione su T?(V) di tipo (

Cin® - Bu,0w' @ 8w =w (1) 058 01w @ Qw B Qw
(dove l'accento circonflesso indica elementi omessi nel prodotto tensoriale), ed esteso per linearita.
Per esempio, C}: T} (V) — K ¢ data sugli elementi indecomponibili da
Cl(v®w) = w(v),
mentre C2: T3 (V) — T}(V) ¢ data sugli elementi indecomponibili da

Ca(v1 ® v @ W ® w?) = w?(v1) V2 ® W'

1.3 Algebra esterna

L’Osservazione 1.2.3 ci dice che ogni automorfismo L di uno spazio vettoriale T induce un automorfismo
T(L) dell’algebra tensoriale T'(V'). I sottospazi di T'(V') che sono mandati in se stessi da ogni automorfismo
del tipo T'(L) sono chiaramente intrinsecamente associati allo spazio vettoriale V' (e non a una sua particolare
realizzazione), e quindi ci aspettiamo che siano particolarmente interessanti.

Definizione 1.3.1: Un sottospazio vettoriale S di T(V) che sia invariante sotto I'azione di T(L) per ogni
automorfismo L di V, cioe tale che T'(L)(S) = S per ogni automorfismo L di V, & detto spazio tensoriale.

I principali esempi di spazi tensoriali sono dati dall’insieme dei tensori simmetrici e dall’insieme dei
tensori alternanti. Attenzione: da qui in poi assumeremo sempre che il campo K abbia caratteristica zero (e
gli esempi principali da tenere in mente sono K =R e K = C).

Osservazione 1.3.1. Indicheremo con &, il gruppo simmetrico su p elementi, cio¢ il gruppo delle permu-
tazioni di {1,...,p}. E noto che ogni permutazione o € &, si pud scrivere come prodotto di trasposizioni;
questa scrittura non € unica, ma la parita del numero delle trasposizioni necessarie per scrivere o lo ¢. In
altre parole, se ¢ = 7y - - - 7, € una decomposizione di ¢ € &,, come prodotto di trasposizioni, il segno sgn(o)
di o dato da
sgn(o) = (-1)" € {+1,-1}

¢ ben definito indipendentemente dalla particolare decomposizione di o come prodotto di trasposizioni scelta
per calcolarlo. In particolare si ha sgn(o7) = sgn(o)sgn(7) e sgn(o™!) = sgn(o) per ogni o, 7 € &,,.
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Definizione 1.3.2: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare p:V x --- xV — W
& simmetrica se

@(UU(I)a tee 7U0'(p)) = @(Ula ey Up)
per ogni p-upla (v1,...,v,) € VP e ogni permutazione o di {1,...,p}. Lo spazio tensoriale S,(V') (rispettiva-
mente, SP(V)) dei tensori simmetrici p-covarianti (rispettivamente, p-controvarianti) € allora il sottospazio
di T,,(V) (rispettivamente, T?(V')) costituito dalle applicazioni multilineari simmetriche a valori in K.

Definizione 1.3.3: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare p:V x --- x V. — W
¢ alternante (o antisimmetrica) se

O(Vo(1), -+ Vo(p)) = 880(0) @(v1,...,p)

per ogni p-upla (v1,...,v,) € VP e ogni permutazione o di {1,...,p}. Lo spazio tensoriale \ (V) (rispetti-
vamente, A\”(V')) dei tensori alternanti p-covarianti (rispettivamente, p-controvarianti) ¢ allora il sottospazio
di T,,(V) (rispettivamente, T?(V)) costituito dalle applicazioni multilineari alternanti a valori in K.

Esercizio 1.8.1. Dimostra che per ogni applicazione p-lineare ¢: V x --- x V — W le seguenti affermazioni
sono equivalenti:

(i) ¢ & simmetrica;

(ii) il valore di ¢ non cambia scambiando due argomenti, cioe

(U1, e Vi ey Vs, Up) = (U1, ey Uy e ey Ve vn, Up)

per ogni vy,...,vp, € Vel <i<j<p;
(iii) se ¢, ...;, sono le coordinate di ¢ rispetto alla base {v"* ® --- ®@v'»} di T,(V'), dove {vl,...,v"} & una
base di V*, allora Dig1y- = i,...i, Per ogni o € S,.

o (p)
Esercizio 1.8.2. Dimostra che per ogni applicazione p-lineare ¢: V x --- x V. — W le seguenti affermazioni
sono equivalenti:

(i) ¢ ¢ alternante;

(ii) il valore di ¢ cambia di segno scambiando due argomenti, cioe

(U1, Vi Uy Up) = — (U1, Ve, Uy, Up)

per ogni vy,...,vp, € Vel <i<j<p;
(iii) ¢ si annulla ogni volta che due argomenti sono uguali, cioe

V1, 0,0, 0p) =0
per ogni vi,...,v,...,v, € V;
(iv) ¢(v1,...,vp) = 0 non appena i vettori vi,...,v, € V sono linearmente dipendenti;
(v) se ¢j,...i, sono le coordinate di ¢ rispetto alla base {v"* @ --- @ v’} di T,(V), dove {v',...,v"} & una

base di V*, allora ¢;_, . = sgn(o)e;,...i, per ogni o € &,

o (p)

Esercizio 1.3.3. Dimostra che gli spazi SP(V), S,(V), A’(V) e A, (V) sono effettivamente spazi tensoriali.

Ora, il prodotto tensoriale di due tensori simmetrici o alternanti non & necessariamente simmetrico o
alternante.

EsEMPIO 1.3.1. Sia V = R?, e indichiamo con {e1,es} la base canonica, e con {e',e?} la corrispondente
base duale. Chiaramente, e1, e; € V.= A\'V = S1(V) =V, mentre e; @ e5 ¢ AV U S2(V). Infatti,

e1® 62(61,62) = 61(61)62(€2> =1#0= :|:€1(62)62(61) = e ®@ea(e?el).
Esercizio 1.53.4. Dimostra che v1 ® v — v3 ® v1 € /\2 Veche v vy + 12 ® v € S2(V) per ogni coppia
v1, v3 € V di elementi di uno spazio vettoriale V.

Quest’ultimo esercizio fa sospettare che sia possibile definire un prodotto sui tensori alternanti (o simme-
trici) in modo da ottenere un tensore alternante (o simmetrico). Per introdurlo, cominciamo con lo studiare
meglio i tensori alternanti e simmetrici.
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Proposizione 1.3.1: Sia B = {v1,...,v,} una base dello spazio vettoriale V sul campo K, e ¢: B> — W una
qualsiasi applicazione a valori in un altro spazio vettoriale W. Allora ¢ si puo estendere a una applicazione
p-lineare alternante (rispettivamente, simmetrica) ®:V x --- x V. — W se e solo se

D(Vpayrys v s Vi) = SEN(T)P(Vpiys - -5 Vp,) (1.3.1)

(rispettivamente, ¢(vVu, ys -« s Vpyepy) = (Vg - - -5 Uy, )) Der ogni permutazione o di {1,...,p}, e ogni p-upla
(Vpys -+ p,) di elementi di B.

Dimostrazione: Per la Proposizione 1.1.2; ogni ¢: BP — W si estende in modo unico a un’applicazione
p-lineare a valori in W tramite la (1.1.2), dove wy,. ., = &(Vuy,-..,Vy,), ed & chiaro che l'estensione ¢
alternante se e solo se vale la (1.3.1). Il ragionamento nel caso simmetrico € identico. O

Osservazione 1.3.2. In questo paragrafo d’ora in poi tratteremo solo i tensori alternanti e simmetrici
controvarianti; risultati del tutto analoghi valgono anche per i tensori alternanti e simmetrici covarianti, in
quanto Sp,(V) = SP(V*) e A\, (V) = AP(V*). Inoltre, saremo principalmente interessati al caso alternante.

La Proposizione 1.3.1 implica che una ¢ € AP’V & completamente determinata dai valori che assume
sulle p-uple della forma (v™,...,v") con 1 < iy < --- < i, < n, dove B* = {v!,... 0"} & una base di V*.
Analogamente, una ¢ € SP(V) & completamente determinata dai valori che assume sulle p-uple della forma
(v, . ,v')conl<ip <--- < ip < n. Quindi

Corollario 1.3.2: Sia V' uno spazio vettoriale di dimensione n > 1 sul campo K, e p € N. Allora

dim SP(V) = (”“’ - 1),

p
(Z) se0<p<n,
0 sep>n.

dim/\pV:{

In particolare,

dim @ APV =2"

0<p<n

Dimostrazione: Per quanto visto, la dimensione di A’V & uguale alla cardinalita dell’insieme delle p-uple

(t1,...,1p) con 1 <4y < --- < i, < n, cardinalita che & ben nota essere (;) per 0 < p < n e 0 altrimenti. In
particolare,
n
n
aim (P /\”VZ( ) _on
0<p<n p=0 \P
Analogamente, la dimensione di SP(V) ¢ uguale alla cardinalitd dell'insieme delle p-uple (i1, ...,7,) con

1< <+ <ip<n. Ora,sihal <4 <--- <4y, <nseesolose

1§7j1<i2+1<i3—|—2<~-~<ip—|-p—1§n—|—p—1.

Quindi I'insieme delle p-uple (i1,...,4,) con 1 <43 <--- <4, <n ha la stessa cardinalita dell’insieme delle
p-uple (ji,...,5p) con 1 < j; <--- < j, <n+p—1, e la tesi segue dal fatto che quest’ultimo insieme ha
cardinalita ("+5_1). ]

Osservazione 1.3.3. In particolare, se V ha dimensione n allora dim A"V = 1. Non ¢ difficile trovare un
generatore di A" V: fissata una base {v1,...,v,}, definiamo w € A"V ponendo

w(ph, ... ") = det(gpi(vj))

per ogni !, ..., ¢" € V*. Siccome w valutato sulla base duale di V* & uguale al determinante della matrice
identica, cio¢ 1, ne deduciamo che w # O; e quindi ogni altro elemento di A"V & un multiplo di w.
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FEsercizio 1.3.5. Sia {v1,...,v,} una base di uno spazio vettoriale V', e 1 < p < n. Preso un multi-indice
I=(i1,...,ip) con 1 <iy <--- < i, <n, definiamo vy € A’V ponendo
h
vr(pt, .. @) = det (" (v3,))
per ogni ¢!, ... P € V*. Dimostra che la famiglia delle applicazioni p-alternanti v; al variare di I & una
base di AP V.

Definizione 1.3.4: Sia V uno spazio vettoriale di dimensione finita sul campo K. L’algebra esterna di V ¢ lo
spazio tensoriale
AV= & NV,
0<p<n
mentre 1’algebra simmetrica di V' & lo spazio tensoriale

S(V) = s (v).

p=>0
Abbiamo gia osservato che AV e S(V) non sono sottoalgebre di T(V'). Vogliamo allora introdurre un
nuovo prodotto su A V' e un nuovo prodotto su S(V) in modo da renderli delle algebre. Cominciamo con la

Definizione 1.3.5: Sia V uno spazio vettoriale di dimensione finita su un campo K. L’operatore di antisim-
metrizzazione ¢ Papplicazione lineare A:T*(V) — AV definita da

1
A@)(@" 8" = o D sen(@) (@7, ¢7)
. 0661,
per ogni a € TP(V), e ¢',...,¢P € V*. Analogamente, I'operatore di simmetrizzazione S:T*(V) — S(V) &
dato da 1
S@@ - ) = 5 3 al@" o)

€6,
per ogni a« € TP(V), e ¢pt,... o7 € V*.
Per ogni 7 € &, si ha
Al@)(¢™,...,¢™") = % 3 sen(o) a(em" W), g @)
e,
= % Y sen(r o) a(¢!M, ., ¢ P)) = sen(7) A(e) (6., ¢7),
eSS,

per cui Pimmagine di A & effettivamente contenuta in A V. E inoltre evidente che A & lineare, e che &
lidentita ristretta a A V.

FEsercizio 1.3.6. Dimostra che S:T*(V) — S(V) & lineare, ha immagine contenuta in S(V'), ed & l'identita
ristretta a S(V).

Esercizio 1.3.7. Dato a € TP(V) dimostra che S(a) € 'unico tensore p-controvariante simmetrico tale che

S(a)(d,...,0) =ap,...,¢) per tuttii ¢ € V*.

Definizione 1.3.6: Sia V uno spazio vettoriale di dimensione finita sul campo K, a € A"V e 3 € A?V. Allora
il prodotto esterno di o e § & il (p + ¢)-tensore alternante dato da

(+9)!
0[/\5: WA(O&@ﬂ) 6/\p+qV.

Estendendo per bilinearita otteniamo il prodotto esterno A: AV x AV — AV. La quadrupla (A V,+, A, )
¢ detta algebra esterna di V.
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Definizione 1.3.7: Sia V uno spazio vettoriale di dimensione finita sul campo K, a € SP(V) e g € S1(V).
Allora il prodotto simmetrico di o e 8 & il (p + ¢)-tensore simmetrico dato da

(p+q)!
plg!

aof = S(a® ) € SPH(V).

Estendendo per bilinearitd otteniamo il prodotto simmetrico @:S(V) x S(V) — S(V). La quadrupla
(S(V),+,®,-) ¢ detta algebra simmetrica di V.

Osservazione 1.3.4. Attenzione: in alcuni testi il prodotto esterno € definito dalla formula
aAf=Ala®p)e NPTV
per ogni « € A’V e 8 € A\7V. Analogamente, in alcuni testi (non necessariamente gli stessi) il prodotto

simmetrico & definito dalla formula a ©® 8 = S(a ® ).

Proposizione 1.3.3: Sia V uno spazio vettoriale di dimensione finita sul campo K. Allora la quadru-
pla (AV,+,A,-) é un’algebra con unita e anticommutativa, nel senso che é un’algebra con unita tale che

aNfB=(-DPIg A« (1.3.2)

perognia e N'Vepe \V.

Dimostrazione: La distributivita di A rispetto alla somma e al prodotto per scalari seguono subito dalla
definizione e dalla linearita di A, ed & chiaro che 1 € /\0 V e un’unita. Rimangono da dimostrare I'associativita
e lanticommutativita (1.3.2).

Cominciamo con D'associativita. Prendiamo a € APV, B € AV, v € A"V e ¢t, ... ¢PT0HT € V™,
Allora

(@A B) A, g7 TarT)

!

- (]sz_—l—q—q_‘)_":?A((a A ﬁ) ® ')/) (¢17 R ¢P+q+r)

_ ; (1) r(p+q+r)

~ oo Tegwsgn(ﬂ(aw) ©y(@7 D, .., gl

B m S sen(n)(aAB)(¢TV, . gTwHD)y(grrat | gr(rtatn)
TEGP+4+7~

_ v 1

~ () plgir!

XZ Z Sgn(T) Sgn(g)a(d)af(l)? et ¢GT (p))/B(¢UT(p+1)7 ttt ¢07(p+q))7(¢7—(p+q+1)7 R ¢T(p+q+r))’

€6, 1410 0€6,1,

dove (07(1), oo (p+ q)) ¢ la (p + ¢)-upla ottenuta applicando la permutazione o € 6,4, alla p + ¢g-upla
(r(1),...,7(p+q)). Ora, & chiaro che (o-(1),...,0-(p+q),7(p+q+1),...,7(p+ g+ 7)) & ancora una
permutazione di (1,...,p + ¢ + r), il cui segno & esattamente sgn(7)sgn(c). Inoltre, ogni permutazione
in &p 444+ puod essere ottenuta tramite questo procedimento in esattamente (p + ¢)! modi diversi; quindi
abbiamo

(@A B) Ay(gh, ... ¢PHaFT)

1
B P'qlrl Z Sgn(p)a((bp(l)a R ¢p(p))6(¢p(p+l), s 7¢p(p+q)),y(¢p(p+q+1), s ,¢p(p+q+r)). (133)

P€6p+q+7'

In maniera analoga si dimostra che quest™ultima espressione ¢ uguale a a A (B A7) (¢!, ..., ¢pPT9HT) e lasso-
ciativita e verificata.
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Rimane da dimostrare la anticommutativita. Se « € A’V e 8 € A’V abbiamo

a ﬁ(d)l, c, @PTY) = p'iq' Z sgn(T)a((bT(l), s (bT(P))ﬁ((ﬁT(p-‘rl)) . ,¢T(p+q))’

T€6p+q

= (-1

p!_q! Z Sgn(p)a(qu(q-ﬁ-l)’ e ¢P(Q+P))ﬂ(¢p(l)7 o ¢p(q))

P€6p+q

= (71)pqﬂ A a(éla ceey ¢p+q),

per ogni ¢',...,¢P+T9 € V*, e ci siamo. O

Esercizio 1.3.8. Sia V uno spazio vettoriale di dimensione finita sul campo K. Dimostra che la quadru-
pla (S(V), +,©, ) ¢ un’algebra con unita commutativa.

Osservazione 1.3.5. Ripetendo il ragionamento che ha portato alla (1.3.3) si dimostra che per ogni r-
upla ar € A V..., € A" V e per ogni ¢!,... ¢k TF c V* g ha

ar A A Oér(gbl, . ¢k1+~~-+kr)

_ ﬁ Z sgn(T) 011(¢T(1),...,(ﬁ‘r(kl))"~Ozr((j)‘r(k1+"'+k7'*1+1),...,¢T(k1+"'+kf)).
ek

T€6k1+...+k7.

In particolare,

v A Avp(@h, @) = D sen(r) "M (v1) -+ 7P (vy)
TEGP (134)

= det(qﬁh(vk))
per ogni vi,...,v, € Ve oL, .., P eV,

FEsercizio 1.3.9. Dimostra che

VIA- - Av, = Z SEN(T) Vr(1) ® - @ Vr(p)
TEGP

per ogni vi,...,v, € V.

FEsercizio 1.3.10. Dimostra che il prodotto esterno ¢ 'unica applicazione da AV x AV in AV che sia
associativa, bilineare, anticommutativa e soddisfi (1.3.4).

Osservazione 1.3.6. L’anticommutativita implica chiaramente che se o € A’V con p dispari allora
a A a = 0. Questo non e piu vero se p & pari: per esempio, se « =e3 Aeg +e3Aeg € /\2 R* si ha

aNa=2e; Neg Neg Aeg # O.

Avendo a disposizione il prodotto esterno non ¢ difficile trovare una base dell’algebra esterna:

Proposizione 1.3.4: Sia B = {vy,...,v,} una base di uno spazio vettoriale V. Allora una base di \"V &
data da

Bp:{vil/\~~/\vip|1§i1<~-~<ip§n}.

Dimostrazione: Siccome B, contiene dim A” V' elementi, ci basta dimostrare che sono linearmente indipen-
denti. Sia {v!,...,v"} la base duale di V*; la Proposizione 1.1.2 ci dice che per vedere se gli elementi
di B, sono linearmente indipendenti basta calcolare il loro valore sulle p-uple di elementi della base duale e
verificare che si ottengono vettori linearmente indipendenti di K™, Siccome i Vi, A+ - Awg, sono alternanti,
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¢ sufficiente calcolarne il valore su p-uple (v71,...,v%) con 1 < j; < --- < j, < n. Usando (1.3.4) otteniamo
quindi
v A Ay (VL 07P) = Z sgn(7)v/ ™ (v;,) -+ 09 @) (v;)
TEGP
= > sgu(r)d @ a
TGGP

{O se (J1,- -+, Jp) 7 (i1, -+, 1p),
1 se (Ji,. -y 0p) = (41, .., 0p),
in quanto ¢; < --- < i, e I'unica permutazione che conserva 'ordine e l'identita, e ci siamo. O

FEsercizio 1.3.11. Sia {v1,...,v,} una base dello spazio vettoriale V. Per ogni multi-indice I = (i1,...,1%p)
con 1 <iy <--- <ip <n dimostra che vy = v, A---Av;,, dove vy € AP(V) & definito nell’Esercizio 1.3.5.

Osservazione 1.3.7. Sia (v1,...,v,) una p-upla di elementi di uno spazio vettoriale V. Se due di questi
elementi coincidono, ’anticommutativita implica che v1 A---Av, = O. Pil in generale, si vede subito (eserci-
zio) che vy A- - -Av, = O se vy, . . ., Up sono linearmente dipendenti. Viceversa, se {v1,. .., vp} sono linearmente
indipendenti, possiamo completarli a una base di V' e la Proposizione 1.3.4 ci assicura che vy A--- Av, # O.
In effetti, I’elemento vy A --- A v, risulta essere univocamente determinato (a meno di una costante molti-
plicativa non nulla) dal p-piano generato da {v1,...,v,}. Pill precisamente, sia {w1,...,w,} un’altra base
dello stesso p-piano, e sia A = (a’,ﬁ) € GL(p,K) la matrice tale che wy, = a,llvl +--+ajv,perh=1,...,p
Allora
wi A Awp = (det A) vy A=+ Ay,

Infatti se ¢',...,¢P € V* si ha

wlA"'Awp(¢1a"'7¢p)

Z sgn(r T(l)(wl) coe (@) (wp)

TEGP
p .
= Z Z al teeeagy Z sgn(q-)(b"(l)(vjl)...¢T(p)(vjp)
=1 Jp=1 TEGP

Z Za . ajvjl/\---/\vjp(gzﬁl,...,qbp)
Ji=1 Jp=1
= Z sgn(o)af(l) . -ag(”)vl A Nog(dt, ... éP)
cc6,
=det(A)vy A+ Avp(oh,..., ¢),
grazie all’anticommutativita.

Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 1.8.12. Dimostra che per ogni w € A"V, T € Hom(V*,V*) e ¢',...,¢" € V*, dove n = dim V,
siha w(T(¢Y),...,T(¢")) = (det Tw(dt, ..., ¢").

Esercizio 1.3.13. Dimostra che T2(V) = S2(V)@& A\’ V, e che e1 @es@es ¢ S3(R3) @ A\* R?, dove {e1, eq, €3}
¢ la base canonica di R

Esercizio 1.3.14. Se V e W sono spazi vettoriali di dimensione finita sul campo K, dimostra che ogni

applicazione lineare L € Hom(V, W) si estende a un’applicazione lineare L € Hom(A V, A W) tale che
L(1)=1e L(vy A---Awvy) = L(v1) A--- A L(v,) per ogni vy,...,v, € V.

Esercizio 1.3.15. Sia V uno spazio vettoriale di dimensione finita, e F: VP — APV DPapplicazione p-lineare
alternante data da F(vq,...,v,) =v1 A -+ Av,. Dimostra che la coppia (A’ V, F') & 'unica coppia (a meno
di isomorfismi) che soddisfa la seguente proprieta universale: per ogni applicazione p-lineare alternante
A:VP — W a valori in uno spazio vettoriale W esiste un’unica applicazione lineare A: NV — W tale
che A= AoF.
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Esercizio 1.8.16. Sia V uno spazio vettoriale di dimensione finita. Dimostra che (A” V)* ¢ isomorfo
a A\"(V*). (Suggerimento: Usa l'esercizio precedente e I'applicazione ®: (V*)P — (AP V)* definita da

(B, ..., ") (v1 A Avp) = det(d(v;))
per vy,...,vp, €V edl,... ¢ € V*)

FEsercizio 1.3.17. Se (-,-) & un prodotto scalare sullo spazio vettoriale V', sia ((-,-)) il prodotto scalare
su T(V) costruito nella Proposizione 1.2.1. Dimostra che

(vi A Nvp,wy A=+ Awp)) = pldet((v;, wy))
per ogni vi,...,Vp, Wi,...,wy € V.

FEsercizio 1.8.18. Enuncia e dimostra per l’algebra simmetrica S(V') risultati analoghi a quelli contenuti nei
quattro esercizi precedenti.

Esercizio 1.3.19. Sia {e1,es,e3} la base canonica di R®. Dimostra che per ogni u, w € R® = /\1 R? le
coordinate di u A v € /\2 R? rispetto alla base {ea Nesg,e3 Aer,e; Aes} sono esattamente le coordinate del
classico prodotto vettore di u e v rispetto alla base canonica.

1.4 Tensori simplettici

Dedichiamo quest’ultimo paragrafo a un tipo particolare di 2-tensori covarianti alternanti, utili in di-

verse questioni di geometria differenziale e di fisica matematica. Di nuovo, lavoriamo su un campo K di
caratteristica zero.

Definizione 1.4.1: Un 2-tensore covariante w € T5(V) ¢ detto non-degenere se w(v,w) = 0 per ogni w € V
implica v = O. Un tensore simplettico ¢ un 2-tensore covariante alternante non-degenere. Una coppia (V,w)
dove V' & uno spazio vettoriale e w € A\, V' & un tensore simplettico, & detta spazio vettoriale simplettico.

Esercizio 1.4.1. Sia w € T»(V) un 2-tensore covariante su uno spazio vettoriale V' di dimensione finita.
Dimostra che le seguenti affermazioni sono equivalenti:
(i) w & non-degenere.
(ii) L’applicazione @:V — V* data da &(v)(w) = w(v, w) per ogni v, w € V & un isomorfismo.
(iii) Scelta una base {v!,...,v"} di V*, la matrice (wp) delle coordinate di w rispetto alla base {v" @ v*}
di T»(V) & invertibile.
EseMPIO 1.4.1. Sia V uno spazio vettoriale di dimensione 2n. Scegliamo una base {vy, w1, ..., v, Wy}, €
indichiamo con {v!,w!,... ,v™, w"} la corrispondente base duale. Sia allora w € A, V dato da
n
w= Zvj/\wj. (1.4.1)
j=1
Vogliamo dimostrare che w & un tensore simplettico. Prima di tutto, la sua azione sugli elementi della base
e data da
w(vi, wy) = —w(wj, v;) = dy5, w(vi,v5) = w(w;,w;) =0 (1.4.2)
per ogni 1 < i,j < n. Supponiamo allora che v = Y, (a’v; + b'w;) € V sia tale che w(v,w) = 0 per
ogni w € V. In particolare 0 = w(v,v;) = =V e 0 = w(v,w;) =a? per 1 < j < n;quindiv=0ew &
non-degenere.

Definizione 1.4.2: Sia (V,w) uno spazio vettoriale simplettico. Il complemento simplettico di un sottospa-
zio W C V ¢ il sottospazio

Wt ={veV|ww) =0 per ogniw € W}.

Contrariamente al caso dei complementi ortogonali, non & detto che W N W+ = {O}. Per esempio, se
dim W = 1 allora I'antisimmetria di w implica che W C W+. Questa osservazione suggerisce di classificare
i sottospazi di uno spazio vettoriale simplettico come segue:
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Definizione 1.4.3: Sia (V,w) uno spazio vettoriale simplettico. Un sottospazio W C V di V sara detto
simplettico se W N W+ = {O}; isotropo se W C W coisotropo se W O W, Lagrangiano se W = W+,

FEsercizio 1.4.2. Sia (V,w) uno spazio vettoriale simplettico, e W C V un sottospazio di V. Dimostra che:
(i) dim W + dim W+ = dim V.
(i) (W =w.
(iii) W e simplettico se e solo se w|wxw € non-degenere.
(iv) W e isotropo se e solo se w|wxw = O.
(v) W ¢ Lagrangiano se e solo se w|wxw = O e dimV = 2dim W.

L’unico risultato che dimostriamo sui tensori simplettici € che possono sempre essere espressi nella forma
indicata dall’Esempio 1.4.2.

Proposizione 1.4.1: Sia (V,w) uno spazio vettoriale simplettico. Allora dim'V = 2n é pari, ed esiste una
base di V rispetto a cui w é data da (1.4.1).

Dimostrazione: Si verifica facilmente che w & della forma (1.4.1) rispetto a una base {v1, w1, ..., vp, w, } di V
se e solo se lazione di w sui vettori della base ¢ data da (1.4.2). Dimostreremo allora che esiste una base per
cui (1.4.2) vale procedendo per induzione su m = dim V.

Per m = 0 non c¢’¢ nulla da dimostrare. Supponiamo allora che (V, w) sia uno spazio vettoriale simplettico
di dimensione m > 1, e che la proposizione sia vera per tutti gli spazi vettoriali simplettici di dimensione
minore di m. Sia v; € V un vettore non nullo. Essendo w non-degenere, esiste un vettore w; € V tale
che w(v1,w1) # 0; a meno di moltiplicare w; per una costante, possiamo anche supporre che w(vy,w;) = 1.
Siccome w ¢ alternante, v; e wy sono linearmente indipendenti.

Sia W il sottospazio generato da v; e w;. L’Esercizio 1.4.2.(i) ci assicura che dim W+ = m — 2.
Siccome w|wxw € chiaramente non-degenere, 'Esercizio 1.4.2.(iii) implica che W & simplettico; ma al-
lora W N W+ = {O} e quindi, grazie all'Esercizio 1.4.2.(ii), anche W+ & simplettico. Per ipotesi in-

duttiva, dim W+ & pari, ed esiste una base {ve,ws,...,v,, w,} di W+ che soddisfa (1.4.2). Ma allora
{v1, w1, v2, W3, ..., Vs, w,} & una base di V' che soddisfa (1.4.2), e ci siamo. O
Definizione 1.4.4: Sia (V,w) uno spazio vettoriale simplettico. Una base {vy,w1,...,v,,w,} di V rispetto a

cui w e data da (1.4.1) & detta base simplettica di V.

Esercizio 1.4.3. Sia (V,w) uno spazio vettoriale simplettico di dimensione 2n. Dimostra che per ogni
sottospazio simplettico (rispettivamente, isotropo, coisotropo, Lagrangiano) W di V esiste una base simplet-
tica {vy, w1, ..., v, w,} di V tale che:
(i) se W & simplettico allora W = Span(vy, ws, ..., v, wy) per qualche 1 < k < n;
) se W & isotropo allora W = Span(vy,...,v;) per qualche 1 < k <mn;
(iii) se W & coisotropo allora W = Span(vy, ..., vy, w1, ..., wy) per qualche 1 < k < n;
)

se W & Lagrangiano allora W = Span(vy,...,v,).



Capitolo 2

Varieta

2.1 Varieta differenziabili

Una varietd topologica ¢ un insieme localmente fatto come un aperto di R"; se inoltre due realizzazioni
diverse di un pezzo dell’insieme come aperto di R determinano le stesse funzioni C'*°, abbiamo una varieta
differenziabile.

Vediamo come concretizzare la frase precedente (che detta cosi non ha molto senso).

Definizione 2.1.1: Sia M un insieme. Una n-carta (U, ) di M & un’applicazione bigettiva p:U — V C R",
dove U & un sottoinsieme di M e V' & un aperto di R". Se p € U diremo che (U, ) & una carta in p; se inoltre
©(p) = O € R" diremo che la carta & centrata in p. Se scriviamo in coordinate ¢(q) = (Jcl(q), e 7Jt:"(q))7
diremo che (z!,...,2™) sono le coordinate locali nella carta data. L’inversa ¢~1:V — U & detta parametriz-
zazione locale (in p).

Definizione 2.1.2: Due n-carte (U, ¢) e (V,¥) su M sono compatibili se UNV = &, oppure U NV # &, gli
insiemi (U NV, ¥(U N'V) sono aperti in R", e o p~L:ip(UNV) — (U NV) & un diffeomorfismo di
classe C*°. 11 diffeomorfismo 1 o =1 viene detto cambiamento di carta (o cambiamento di coordinate).

Vale la pena di sottolineare esplicitamente che il punto cruciale di questa definizione ¢ il fatto che il
cambiamento di carta (che a priori & soltanto una bigezione) & un diffeomorfismo C°°. In altre parole, due
carte compatibili ricreano su M la stessa struttura differenziabile, lo stesso modo di calcolare le derivate
(oltre che, in particolare, la stessa topologia). E proprio questa compatibilita C'°° la chiave che permettera
di usare ricoprimenti aperti formati da carte compatibili per definire in maniera efficiente e significativa il
concetto di varieta differenziabile come qualcosa localmente fatto come un aperto di R”.

Osservazione 2.1.1. Se (U, ) & una n-carta in p € M, e x: o(U) — R" & un diffeomorfismo con I'imma-
gine, allora (U, x o ) & ancora una n-carta in p, compatibile con qualsiasi carta compatibile con (U, ¢). In
particolare, se x ¢ la traslazione x(z) = x — ¢(p), ponendo @ = x 0 p = ¢ — (p) otteniamo una carta (U, @)
centrata in p e compatibile con qualsiasi carta compatibile con (U, ¢).

Osservazione 2.1.2. Se (U,¢) & una n-cartainp € M e W C ¢(U) & un aperto di R" contenente ¢(p),
allora anche (gp‘l(W), <p|@71(W)) ¢ una n-carta in p, compatibile con qualsiasi carta compatibile con (U, ¢).
In particolare, possiamo trovare carte piccole quanto ci pare.

Definizione 2.1.3: Un atlante di dimensione n su un insieme M ¢ una famiglia A = {(U,, )} di n-carte a due
a due compatibili e tali che M =, Uy. Una varieta (differenziabile) di dimensione n ¢ una coppia (M, A),
dove M & un insieme e A ¢ un atlante di dimensione n su M.

Osservazione 2.1.3. In queste note parleremo solo di varieta di classe C°°, ma ¢ chiaro che lo stesso
approccio pud essere usato per definire varieta di classe C* con k € N (o varietd analitiche reali, o varieta
olomorfe), semplicemente richiedendo che i cambiamenti di carta siano diffeomorfismi di classe C* (o analitici
reali, od olomorfi) invece che C'°.

A volte nella definizione di varietd differenziabile si richiede che l'atlante A sia massimale (rispetto
all’inclusione) nella famiglia di tutti gli atlanti sull’insieme M. I prossimi esercizi mostrano che questa
richiesta non & necessaria, in quanto ogni atlante € contenuto in un unico atlante massimale:
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Esercizio 2.1.1. Diremo che due atlanti A e B su uno stesso insieme M sono compatibili se AU B & ancora
un atlante su M. Dimostra che quella di compatibilita & una relazione d’equivalenza fra gli atlanti su M, e
che due atlanti A e B sono compatibili se e solo se ogni carta di A ¢ compatibile con tutte le carte di B, e
ogni carta di B ¢ compatibile con tutte le carte di A.

FEsercizio 2.1.2. Sia A un atlante di dimensione n su un insieme M, e (U, ), (V,4) due n-carte di M,
entrambe compatibili con tutte le carte di .A. Dimostra che allora (U, ¢) e (V, ) sono compatibili fra loro.

Esercizio 2.1.3. Sia A un atlante di dimensione n su M. Dimostra che esiste un unico atlante A massimale
(rispetto all’inclusione) che contiene A, ottenuto considerando tutte le carte locali compatibili con quelle
di A. A volte, l'atlante A viene detto struttura differenziabile indotta da A.

Spesso e volentieri la definizione di varieta differenziabile prevede che I'insieme M sia uno spazio topolo-
gico, nel qual caso i domini delle carte locali devono essere degli aperti e le carte locali degli omeomorfismi con
I'immagine. In realta, il prossimo esercizio mostra come la struttura di varieta cosi come ’abbiamo definita
noi induce necessariamente una topologia su M anche quando M nasce semplicemente come insieme:

FEsercizio 2.1.4. Sia A = {(Uq, ¢a)} un atlante di dimensione n su un insieme M. Dimostra che nel seguente
modo si definisce una topologia su M: diremo che A C M & aperto se e solo se p,(ANU,) & aperto in R"”
per ogni carta (U,,p.) € A. Dimostra inoltre che questa ¢ I'unica topologia su M per cui tutti gli U,
sono aperti e tutte le ¢, sono degli omeomorfismi con I'immagine. Questa topologia ¢ detta indotta dalla
struttura di varieta differenziabile.

Definizione 2.1.4: Sia M uno spazio topologico. Diremo che una n-carta (U, ¢) su M & compatibile con la
topologia data se U ¢ aperto in M e ¢ ¢ un omeomorfismo con 'immagine. Diremo che un atlante A su M
¢ compatibile con la topologia data se tutte le sue carte lo sono, per cui induce su M la topologia data.

Se nel seguito ci troveremo a definire una struttura di varieta differenziabile su uno spazio topologico,
a meno di avviso contrario supporremo sempre che la struttura di varieta differenziabile induca la topologia
data, e non un’altra; gli atlanti saranno sempre compatibili con la topologia.

Osservazione 2.1.4. Si puo dimostrare che se uno spazio topologico M ammette una struttura di varieta
differenziabile di dimensione n non puo ammettere anche una struttura di varieta differenziabile di dimen-
sione m # n. Questo segue dal fatto che due aperti di spazi euclidei di diversa dimensione non possono mai
essere omeomorfi, che ¢ un risultato noto come Teorema dell’invarianza della dimensione.

Osservazione 2.1.5. Per motivi che discuteremo nel prossimo paragrafo, supporremo sempre che la to-
pologia indotta sulle nostre varieta sia di Hausdorff e a base numerabile. E facile (vedi I’Esempio 2.1.5 piu
oltre) costruire esempi di varieta non Hausdorff; costruire esempi di varietd Hausdorff non a base numerabile
€ molto piu delicato, ma sfortunatamente esistono.

Osservazione 2.1.6. Chiaramente, la topologia di una varieta ha le stesse proprieta locali della topologia
di R™. In particolare, ¢ localmente compatta, localmente connessa e localmente connessa per archi (per cui
le componenti connesse sono aperte e coincidono con le componenti connesse per archi).

EsEmPIO 2.1.1.  Unaperto U di R” & banalmente una varietd n-dimensionale, con un atlante A = {(U,idy)}
costituito da un’unica carta.

EseMPIO 2.1.2. Sia U C R" aperto, e F: U — R™ un’applicazione qualsiasi. Allora il grafico I'r di F', che
¢ l'insieme
I'p={(z,F(z)) eR"™™ |z U} cR"™™

¢ una varieta n-dimensionale, con un atlante costituito dall’unica carta ¢:I'r — U data da gp(az, F(ac)) = z.
Attenzione: la topologia indotta da questa struttura di varieta differenziabile coincide con la topologia di I' g
come sottospazio di R se e solo se F' & continua (esercizio). Vedremo inoltre nell’Esericizio 2.5.2 che T'x
¢ (in un senso naturale che definiremo nel paragrafo 2.5) una sottovarieta di R"*" se e solo se F' & C™.

ESEMPIO 2.1.3.  Se M & una varietd e U C M & aperto (rispetto alla topologia indotta, ovviamente), allora
anche U ha una naturale struttura di varieta, della stessa dimensione. Infatti, se {(Uy, @)} € un atlante
di M, allora {(U, NU, val|u.nv)} € un atlante per U.
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EsemMPIO 2.1.4. Se M ¢ una varietd m-dimensionale, e N ¢ una varieta n-dimensionale, allora M x N
ha una struttura naturale di varieta (m + n)-dimensionale. Infatti, se A = {(Uq, ¢o)} ¢ un atlante di M,
e B ={(V3,93)} ¢ un atlante di N, allora A x B = {(Uy X V3,90 X ¥3)} ¢ un atlante di M x N, dove
'applicazione (o X ¥5: Uy x Vg — R™™™ & definita da ¢, x ¥g(z,y) = (gaa(z),wg(y)).

EsEmPIO 2.1.5. Sia M = R U {0}, dove 0’ ¢ un punto non appartenente a R. Possiamo definire su M
una struttura di varietd differenziabile di dimensione 1 con le seguenti due carte: (R,idg) e (R* U {0}, ¢),
dove ¢: R* U {0’} — R & data da

o(z) = {x se x € R*,

0 sex=0.

Si verifica subito che {(R,idr), (R*U{0'}, ¢)} & un atlante per M, ma la topologia indotta non ¢ di Hausdorff:
i punti 0 ¢ 0/ non hanno intorni disgiunti. Se ripetiamo 1’operazione aggiungendo, invece di un punto solo,
una quantita pit che numerabile di punti otteniamo una varieta non a base numerabile, ma neanche di
Hausdorff.

EsEMPIO 2.1.6. Chiaramente, A = {(R,idg)} ¢ un atlante sulla retta reale. Anche A = {(R,¢)},
dove ¢(t) = t3, & un atlante su R, che induce la stessa topologia, ma le due carte (R,idr) e (R, ) non
sono compatibili. Quindi persino sulla retta possiamo definire due diverse strutture di varieta differenziabili.
In realta, vedremo che queste due strutture sono diverse ma diffeomorfe, per cui possono sostanzialmente
essere identificate (vedi I’Esempio 2.2.2).

EseEmpIio 2.1.7.  Sia V uno spazio vettoriale di dimensione n su R; vogliamo definire una naturale struttura
di varietd n-dimensionale su V. Fissata una base B di V, indichiamo con ¢z:V — R™ D'applicazione che
associa a ogni vettore v € V' le sue coordinate rispetto a B. Allora A = {(V, pp)} € un atlante di V' costituito
da una sola carta. Due basi diverse inducono atlanti compatibili: infatti, se C & un’altra base di V, il
cambiamento di coordinate ¢ o npglz R™ — R" non ¢ altro che 'applicazione lineare definita dalla matrice
di cambiamento di base.

EsEmPIO 2.1.8. 1l gruppo generale lineare GL(n,R) delle matrici n x n invertibili a coefficienti reali &
una varietd di dimensione n?, in quanto ¢ un aperto dello spazio M, ,(R) di tutte le matrici n x n a

2
coefficienti reali, spazio che possiamo ovviamente identificare con R™ . Piu in generale, lo spazio GL(V)
degli automorfismi di uno spazio vettoriale V' di dimensione n su R & una varieta di dimensione n2. Infatti,

fissata una base B di V, indichiamo con ¢p: GL(V) — GL(n,R) C R™ lapplicazione che associa a ogni
automorfismo L € GL(V) la matrice che lo rappresenta rispetto alla base B. Allora A = {(GL(V),¢5)}
& un atlante di GL(V') costituito da una sola carta. Due basi diverse inducono atlanti compatibili: infatti,
se C & un’altra base di V, il cambiamento di coordinate ¢¢ o ¢z': GL(n,R) — GL(n,R) non & altro che
I'applicazione X — B~1X B, dove B € GL(n,R) & la matrice di cambiamento di base.

Definizione 2.1.5: La sfera n-dimensionale di raggio R > 0 (e centro lorigine) ¢ definita da
S ={x=(z ..., 2" e R" | ||z|| = R} c R™.
La palla n-dimensionale di raggio R > 0 (e centro lorigine) & invece definita da
Br={y=(y",....y") eR" | [ly] < R} CR".

Quando R =1, scriveremo S™ al posto di ST e B™ al posto di BY.

EsEmMPIO 2.1.9. La sfera S§ ammette una naturale struttura di varieta n-dimensionale, compatibile con
la topologia indotta da R™ ™. Per dimostrarlo, dobbiamo costruire un atlante; in effetti ne costruiremo tre,
uno in questo esempio e due negli esempi successivi, tutti compatibili. Per il primo atlante poniamo

Uji ={r e Sp|+2? >0},
per j =1,...,n+1, in modo che S} = U?;l(U;' UU; ), e definiamo QD;E: UjjE — B} C R" ponendo

goji(x) = (b, 2f It ).
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Chiaramente ' ,
() ) = (yl,-n,y]‘l,i R? — ||y||27yja---,y"),

per cui ciascuna cp;t ¢ una bigezione fra U ji e B}, e le coppie (U ji, cp;t) sono delle n-carte. Inoltre ciascun U ji
e aperto in S, e ciascuna <p;t ¢ un omeomorfismo con I'immagine; quindi per concludere ci basta verificare

che queste carte sono a due a due compatibili. Per semplicita, verificheremo la compatibilita fra (U1Jr , @f)
e (Ug ,¥5 ); la compatibilita fra le altre carte si verifica in modo del tutto analogo. Prima di tutto,

Utrnuy ={zxeS%|a!>0,2* <0},

per cui
ei (U NU; ) ={yeBi|y' <0} e @ (U NUy)={yeBxly" >0}

sono aperti di R”. Inoltre,
wa o (el) ) = (VR = Iyl 2. ")
¢ un diffeomorfismo di classe C> fra o (U7 NU; ) e o5 (U NUS ), e la compatibilita ¢ verificata.

EsEMPIO 2.1.10. L’atlante su S} costruito nell’esempio precedente conteneva 2(n + 1) carte; vogliamo
ora costruire un atlante di S7 compatibile col precedente e che contenga solo due carte. L’idea ¢ che le
carte locali sono date dalle proiezioni stereografiche. Sia N = (0,...,0, R) € S} il polo nord, e indichiamo
con pn:SE\ {N} — R" la proiezione stereografica, cio¢ I'applicazione che a ciascun p € Sp \ { N} associa
Iintersezione della retta passante per N e p con I'iperpiano {z"*1 =0} C R™ ! (iperpiano che identifichiamo
con R" nel modo ovvio).

La retta per N e p = (p*,...,p", p""') € S\ {N} ¢ parametrizzata da t — N + t(p — N). Quindi
interseca I'iperpiano {#"*! = 0} quando t soddisfa I'equazione R + t(p"™' — R) = 0, per cui la proiezione
stereografica & data da

R 77
on(p) = — ®',....p").
Per mostrare che ¢ & un omeomorfismo fra S% \ { N} ed R™ calcoliamo I'inversa. Se ¢n(p) = « dobbiamo
avere v9 = Rp/ /(R — p"*!) per j = 1,...,n. Elevando al quadrato, sommando e ricordando che p € Sk
otteniamo
2 R? 2 n+1
||JJ|| = (R—anrl)Q(R _|p | )

Questa equazione in p™t! ha solo due soluzioni: p™*! = R, che dev’essere esclusa in quanto corrisponde
ap=2N,e

N T
)2 + R?
Quindi
71( ) 2R% ! 2Rz |lz|* — R?
) = e, ,
N |2 + R? []I>+ R*" ||z]|*> + R?

e linversa di ¢y, per cui (SE \ {N}, ¢n) € una n-carta compatibile con la topologia di S%.
Ci serve un’altra carta per coprire il polo nord; useremo la proiezione stereografica ¢g: S%\ {S} — R"
dal polo sud S = (0,...,0,—R) € S%. Ragionando come prima troviamo

(p) = L( 1 ™) e sl(z) = 2R?x! 2R%g" R? — ||z|?
ps) = g ®op s O R E e R el )

Le due carte (SE\{N},¢on) e (S \ {S}, ¢s) sono compatibili. Infatti SE\ {N}NSE\{S}=SE\{N,S},

en(SE\ AN, 5}) =R"\ {0} = ¢s(Sk \ {N, 5}),

_ R? _
Ps O@Nl(x) = WCC =pNo cpsl(x).
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Infine, vogliamo verificare la compatibilita di questo atlante con quello introdotto nell’esempio precedente.
Cominciamo con le carte (S \ {N}, pon) € (Uji7 @f) per j =1,...,n. Abbiamo
SE\ANINU; ={p e Si | p"*" # R, £p’ >0},

Pn(SEA\ANINUF) ={z €R" | £2/ >0}, o5 (Sp\{N}NU}) = Bj.

Quindi
_ R i ; n—
ox o (1) (@) = (a0l R P ad, e

¢ di classe C*°. Anche cpj[ o <p7\,1 e di classe C*°, in quanto e ottenuta togliendo una coordinata a <p;vl, che
Rn-‘rl

e di classe C*° quando e considerata come applicazione a valori in . Per verificare la compatibilita fra

(SE\{N}, on) e (U++1, QD;FH) basta notare che

n

SE\ANYNU, , ={peSE|0<p "t <R},
on(SE\ANINU ) ={z eR" | ||z]| > R},  ¢f,,(SE\{N}nU) = BE\{0},
e che

2R?
+ R
SanJrl o PN (:L') R2 + ||$||2 €.

on o (pry) (2) = z,

R—/R? — [|z|?
La compatibilita fra (Sj \ {N},on) e (U, 1, ¥, 1), come pure la compatibilita fra (S \ {S}, ¢s) e le altre
carte, si verifica in modo analogo.

FEsercizio 2.1.5. Dimostra che non esiste un atlante su S% compatibile con la topologia naturale di S3 e
composto da una sola carta.

Esemp1o 2.1.11. Il terzo atlante che consideriamo su S% ha piu carte del precedente ma, come vedremo
in seguito, € molto pitt comodo per fare i conti. Per j = 1,...,n poniamo U; = S \ {p’ = 0,p7 Tt > 0},
mentre per j =n + 1 poniamo U1 = Sp \ {p"* = 0,p' > 0}. Sia poi V C R" Paperto

V={0",...,0")cR"|0< 0 <21,0< ¢ <mperj=2,...,n}
Definiamo 9;: V' — U; per j =1,...,n+1 con
%(01,...,9") :RTj(Sin91~~~sin0",cost91 sin92~o~sin9",cos,92$in93~~osinf)",...,cosf)”*lsinﬁn,cosﬁn),

dove 7;: R™ ™! — R"*! ¢ la permutazione ciclica delle coordinate data da

n+1) n+3—j3 ,n+4—j n+l 1 n+2—j)
s yee e .

it p"T) = (p p Mt

Si verifica senza troppa difficolta che ciascuna #; & di rango costante n (come applicazione a valori in R™ 1)
e una bigezione continua fra V e U;. Con un po’ piu di difficolta (oppure usando 'Esercizio 2.5.3) si verifica
che & un omeomorfismo con I'immagine, per cui (U}, ¢;1) ¢ una n-carta di S%, e che w;l oy, e di clagse C'*°
per ogni 1 < h, k < n+ 1. Siccome U; U---UU,41 = S}, abbiamo trovato un nuovo atlante {(Uj, 1/1371)},
le cui carte forniscono le coordinate sferiche sulla sfera. Non e difficile anche controllare che questo atlante
& compatibile con quelli introdotti negli esempi precedenti.

Esercizio 2.1.6. Verifica in dettaglio che le coordinate sferiche forniscono un atlante compatibile con quelli
degli Esempi 2.1.9 e 2.1.10.

. . . N L . N
Vediamo ora un esempio di varieta che non nasce come sottoinsieme di un qualche R™.

EseEmPIO 2.1.12. Lo spazio proiettivo P"(R) ammette una naturale struttura di varietd n-dimensionale.
Infatti, per j = 0,...,n poniamo U; = {[z° : --- : 2"] € P"(R) | 27 # 0}, dove [z° : --- : 2"] indicano le
coordinate omogenee, e definiamo ¢;: U; — R™ ponendo

([ s am) = (200 a9 fad @I L o),
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in modo che 4 .
ity =Tyt ey Ty ey

Le carte (Up, o) e (U1, 1) sono compatibili: infatti,

o(UoNU) ={y eR" [y #0} =1 (UoNU1) e wooe (y) = 1/y"9*/y's ... v" /') = pro9 (1)

In modo analogo si verifica la compatibilita delle altre carte, per cui {(Uj, ¢;)} € un atlante.
Esercizio 2.1.7. Indichiamo con 7:S" — P"(R) la restrizione della proiezione naturale di R™™' \ {O}

su P"(R) data da m(z%,...,2") = [2° : --- : 2"]. Dimostra che 7 & un omeomorfismo se n = 1, ed ¢ il
rivestimento universale di P"(R) se n > 1.

Per introdurre un’altra classe di esempi ci serve una definizione.

Definizione 2.1.6: Sia F:Q — R™ un’applicazione C'*° definita su un aperto Q C R™. Un punto p € Q & detto
punto critico di F' se dFy,:R™ — R™ non & surgettivo. Un valore critico & I'immagine di un punto critico. Un
valore regolare & un punto di F(£2) C R™ che non & un valore critico. Indicheremo con Crit(F') C € I'insieme
dei punti critici di F'.

FEsercizio 2.1.8. Sia F: Q) — R™ un’applicazione C*° definita su un aperto Q C R". Dimostra che Crit(F)
& un chiuso di .

Osservazione 2.1.7. Il famoso teorema di Sard asserisce che I'insieme dei valori critici di un’applicazione
differenziabile ha sempre misura nulla in R™.

Richiamiamo inoltre il seguente teorema di Analisi:

Teorema 2.1.1: (della funzione inversa) Sia F:Q — R" una funzione di classe C*, con k € N* U {co}, dove
Q ¢ un aperto di R". Sia py € Q tale che
det Jac F'(po) # 0.
Allora esistono un intorno U C §Q di pg e un intorno V. C R"™ di F(py) tale che F|y:U — V sia un
diffeomorfismo con inversa di classe C*.
Allora:

Proposizione 2.1.2: Sia) C aperto, e F: Q — R™ un’applicazione di classe C*°. Se a € F(f), allora
M, = F~*(a) \ Crit(F) ha una naturale struttura di varieta n-dimensionale, compatibile con la topologia
indotta da R™*". In particolare, se a & un valore regolare allora questo vale per F~'(a) = {p € Q| F(p) = a}.

Rm+n

Dimostrazione: Sia py € M,. Siccome py non ¢ un punto critico di F, lo Jacobiano di F' ha rango massimo m

in pg per cui, a meno di permutare le coordinate, possiamo supporre che
1 1

%(Fo) 6&%@0)
det : : #0.
%(po) ﬁ—:’l(p@)

Sia allora G:Q — R™"" data da G(z) = (2',...,2", F(z)); chiaramente, detJac(G)(py) # 0. Possiamo

quindi applicare il teorema della funzione inversa e trovare intorni U CQ\Crit(F) di pg e W € R™"
di G(po) tali che G|;5:U — W sia un diffeomorfismo. Posto H = (h',..., h™*") = G~! abbiamo

W'y = GoH(y) = (h'(y),....h"(y), F(H(y)))
per cui h'(y) =y*, peri=1,...,ne
Vye W F(yl,...,y",h”+1(y),...,h”+m(y)) = (y" Ty, (2.1.1)
in particolare (y*,...,y™, h" " (y),..., A" " (y)) € U per ogni y € W. Poniamo U = M,NU; allora l'insieme
V={zeR"|(z,a) e W}

& chiaramente un aperto di R"™, e possiamo definire 1: V — R™ ™ con t(x) = (z,h" Y (z,q),. .., K" (z,q)).
La (2.1.1) ci dice che ¢)(V) = F~(a)NU = U, e quindi ¢ = 1! & una carta locale di F~*(a) in p. Notiamo
esplicitamente che ¢(z) = (x!,...,2") & la proiezione sulle prime n coordinate.

Rimane da dimostrare che due carte ¢, ¢ ottenute in questo modo sono compatibili. Ma per quanto

1

visto ¢ 0 ¢~ = ¢ o 1) ha come coordinate alcune delle coordinate di 1, e quindi & di classe C'*. Il



2.2 Applicazioni differenziabili 23

ESEMPIO 2.1.13.  Sia F:R""' — R la funzione data da F(x) = ||z||?. Allora I'unico valore critico di F & lo
zero, e quindi S% = F~!(R?) & (di nuovo!) una varietd n-dimensionale. Ovviamente, I’atlante fornito dalla
proposizione precedente ¢ compatibile con quelli gia incontrati (esercizio).

EsEMPIO 2.1.14. 1l determinante & una funzione di classe C* sullo spazio M, ,,(R) delle matrici n x n a
coefficienti reali. Se X = () € M, ,(R) non & difficile verificare (esercizio) che

Ode
oz’

K2

(X) = (=1)" det(X]),

dove X7 € M,,_1,,_1(R) & il minore (i,5) di X, ottenuto cancellando la riga i-esima e la colonna j-esima
di X. Quindi i punti critici della funzione determinante det sono le matrici i cui minori di ordine n — 1
abbiano tutti determinante nullo, cioe

Crit(det) = {A € M,, o(R) |tk A <n —2}.

Il determinante di una matrice di rango n — 2 & zero, per cui 0 € 'unico valore critico di det. Dunque il

gruppo speciale lineare
SL(n,R)={A e M, ,(R)|det A =1}

¢ una varietd di dimensione n? — 1.

FEsercizio 2.1.9. Indichiamo con S(n,R) C M, ,(R) lo spazio delle matrici simmetriche a coefficienti reali;
chiaramente, possiamo identificare S(n, R) con R"" /2 Sia F: M, ,,(R) — S(n,R) Papplicazione data da
F(X) = XTX. Dimostra che

dFx(A) = XTA+ ATX

per ogni A, X € M, ,(R). Sia O(n) = {X € M,,(R) | XTX = I,} il gruppo ortogonale; dimostra
che per ogni X € O(n) il differenziale dFx: M, ,(R) — S(n,R) & surgettivo, e deduci che O(n) ha una
struttura di varieta differenziabile di dimensione n(n—1)/2. Dimostra infine che il gruppo speciale ortogonale
SO(n,R) = O(n) N SL(n,R) ha una struttura di varieta differenziabile di dimensione n(n —1)/2 — 1.

2.2 Applicazioni differenziabili

Nella matematica contemporanea, ogni volta che si introduce una nuova classe di oggetti (per esempio, le
varietd), si cerca non appena possibile di definire anche le applicazioni ammissibili fra questi oggetti. Nel
caso delle varieta, si tratta delle applicazioni differenziabili.

Definizione 2.2.1: Siano M, N due varieta. Un’applicazione F: M — N & differenziabile (o di classe C'*°)
in p € M se esistono una carta (U, ¢) in p e una carta (V,4) in F(p) tali che F(U) C V e la composizione
o FoptipU) — (V) ¢ di classe C*° in un intorno di ¢(p). Se F ¢ differenziabile in ogni punto
di M diremo che ¢ differenziabile (o di classe C*°). Un’applicazione differenziabile bigettiva con inversa
differenziabile e detta diffeomorfismo. L’insieme delle funzioni differenziabili da M in R verra indicato
con C*°(M).

Osservazione 2.2.1. Un’applicazione F: M — N differenziabile in p € M ¢é automaticamente conti-
nua in p. Infatti, sia A un intorno aperto di F(p) in N; dobbiamo dimostrare che F~1(A) ¢ un intorno
di p. Scegliamo una carta (U, ¢) in p e una carta (V,4) in F(p) tali che F(U) C V e la composizione
o Fop lipU) — (V) sia di classe C*. Per definizione di topologia indotta dalla struttura di varieta,
ANV &aperto in V, e quindi ¥ (AN V) & aperto in (V). Ma allora

e(FTHANV)) = (o Fop ) H(y(ANV))

¢ aperto in o(U), e quindi F~1(ANV) & aperto in U, e quindi in M.

Il motivo per cui la Definizione 2.2.1 ¢ una buona definizione ¢ che per decidere se un’applicazione ¢
differenziabile una carta vale ’altra:
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Proposizione 2.2.1: Sia F: M — N differenziabile in p. Allora per ogni carta (U, @) in p e ogni carta (f/, )
in F(p) la composizione 1o F o 31 & di classe C* in $(p).

1

Dimostrazione: Siano (U, ) e (V, 1)) carte in p e F(p) tali che ¢ o F o ™! sia di classe C* in ¢(p). Allora

YoFop ' = (o o(oFopt)o(pop™)

¢ di classe C* in ¢(p) in quanto composizione di applicazioni di classe C'*°. Il
La composizione di applicazioni differenziabili ¢ differenziabile:

Proposizione 2.2.2: Siano F: M — N e G: N — S due applicazioni differenziabili fra varieta. Allora anche
la composizione G o F: M — S é differenziabile.

Dimostrazione: Preso p € M, sappiamo che per ogni carta (U, ¢) in p, (V,v) in F(p) e (W, x) in G(F(p)) le
applicazioni 1) o F oo~ e y 0 G o1 ~! sono di classe C*°. Ma allora anche

Xo(GoF)op ™ =(xoGoy™)o(poFop™

¢ di classe C°, e ci siamo. O

ESEMPIO 2.2.1. Sia ¢p:U — V C R" una carta locale di una varieta M. Allora ¢ & un diffeomorfismo fra U
e V. Infatti & chiaramente un omeomorfismo, e le ovvie identita idop o ™! =id e ¢ 0 p~! 0id = id dicono
esattamente che o e p~! sono di classe C°°.

Esiste anche una versione locale del concetto di diffeomorfismo:

Definizione 2.2.2: Un’applicazione F: M — N fra varieta ¢ un diffeomorfismo locale se ogni p € M ha un
intorno aperto U C M tale che F(U) sia aperto in N e F|y:U — F(U) sia un diffeomorfismo.

Possiamo ora dare un esempio promesso prima:

ESEMPIO 2.2.2. Siano A e A i due atlanti su R introdotti nell’Esempio 2.1.6. Allora F: (R, A) — (R,.A)
data da F(t) = t*/3 ¢ un diffeomorfismo. Infatti & invertibile, e siccome

poFo(idg) ' (t) =t =idroF ' o ()

sia F' che F~1 sono di classe C° rispetto a queste strutture differenziabili. Nota che F: (R, A) — (R,.A)
non & differenziabile (mentre 'inversa lo ¢&).

Osservazione 2.2.2. Per anni un grosso problema della geometria differenziale e stato se esistessero su
un qualche R™ due strutture differenziabili non diffeomorfe. La risposta finale ¢ piuttosto sorprendente:
per n # 4, lo spazio R ha un’unica (a meno di diffeomorfismi) struttura differenziabile, mentre Donaldson
e Freedman nel 1984 hanno dimostrato che R* ha un’infinitd pitt che numerabile di strutture differenziabili
distinte, a due a due non diffeomorfe! Un altro risultato soprendente, dovuto a Kervaire e Milnor, & che S7 ha
esattamente 28 strutture differenziabili non diffeomorfe. Infine, & noto per ogni n > 4 esistono varieta topo-
logiche compatte di dimensione n che non ammettono alcuna struttura di varieta differenziabile compatibile
con la topologia data, mentre Munkres e Moise hanno dimostrato che ogni varieta topologica di dimen-
sione al pitt 3 ammette esattamente una sola (a meno di diffeomorfismi) struttura di varieta differenziabile
compatibile con la topologia data.

La prossima definizione identifica una classe particolarmente importante di varieta.

Definizione 2.2.3: Un gruppo di Lie & un gruppo G fornito anche di una struttura di varieta differenziabile
tale che il prodotto G x G — G e l'inverso G — G siano applicazioni di classe C°.

Esercizio 2.2.1.  Sia G un gruppo fornito di una struttura di varieta differenziabile tale che I'applicazione
w:G x G — G data da pu(g, h) = gh~! sia di classe C*°. Dimostra che G' & un gruppo di Lie.
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EsempIO 2.2.3. Lo spazio euclideo R" con la somma usuale ¢ un gruppo di Lie. Piu in generale, un qualsiasi
spazio vettoriale di dimensione finita considerato con la struttura di varieta introdotta nell’Esempio 2.1.7 &
un gruppo di Lie rispetto alla somma.

EsemMPIO 2.2.4. 1l gruppo generale lineare GL(n,R) con il prodotto usuale ¢ un gruppo di Lie.
EsSEMPIO 2.2.5. I gruppi R* e C* C R? col prodotto sono gruppi di Lie.

Esercizio 2.2.2. Dimostra che S, inteso come l'insieme dei numeri complessi di modulo unitario, e col
prodotto di numeri complessi, & un gruppo di Lie.

Esercizio 2.2.3. Dimostra che se G, ..., G, sono gruppi di Lie, allora il prodotto cartesiano G1 X --- x G,
considerato col prodotto componente per componente ¢ un gruppo di Lie. In particolare, il toro n-dimensio-
nale 7" = S x --- x S™ & un gruppo di Lie abeliano.

FEsercizio 2.2.4. Dimostra che SL(n,R) e O(n) sono gruppi di Lie.

Definizione 2.2.4: Un omomorfismo di gruppi di Lie ¢ un’applicazione F: G — H fra gruppi di Lie che sia
differenziabile e un omomorfismo di gruppi. Un isomorfismo di gruppi di Lie ¢ un diffeomorfismo che ¢ anche
un isomorfismo di gruppi.

ESEMPIO 2.2.6. L’esponenziale exp: R — R* ¢ un omomorfismo di gruppi di Lie, in quanto ¢ differenziabile
e siha efts = et - e5,

EsemPIO 2.2.7. 1l rivestimento universale m:R — S* dato da 7(t) = e & un omomorfismo di gruppi di
Lie. Pit in generale, I'applicazione 7: R™ — T™ data da m(t!,...,t") = (¢, ... e'")
gruppi di Lie.

¢ un omomorfismo di

EseEmpio 2.2.8. 1l determinante det: GL(n,R) — R* & un omomorfismo di gruppi di Lie.
Esercizio 2.2.5. Verifica le affermazioni contenute negli esempi precedenti.

FEsercizio 2.2.6. Sia exp: M, ,(R) — GL(n,R) l'applicazione esponenziale definita da

| —

k
IA’

o

exp(4) =
k=0

dove AF ¢ il prodotto di A per se stessa k volte. Dimostra che exp & un omomorfismo di gruppi di Lie.

Definizione 2.2.5: Se G & un gruppo di Lie e h € G, la traslazione sinistra Ly: G — G e la traslazione destra
Rp: G — G sono rispettivamente definite da Ly(x) = hz e Rp(x) = xh. Sono chiaramente diffeomorfismi
di G con se stesso, ma non degli isomorfismi di gruppo di Lie. Invece, il coniugio Cj: G — G definito da
Ch(z) = haeh~! & un isomorfismo di gruppi di Lie.

I gruppi di Lie appaiono spesso come gruppi di simmetria di una varieta:

Definizione 2.2.6: Sia G un gruppo di Lie, e M una varieta. Un’azione (differenziabile) di G su M & un’ap-
plicazione 0: G x M — M di classe C*° tale che

0(91,0(g2,p)) = 0(g192,p) e  O(e,p)=p

per tuttii g1, g2 € G e p € M, dove e € G ¢ I'elemento neutro di G. Per ogni g € G sia 0,: M — M
data da 0,(p) = 6(g,p); allora si ha 6,4, 0 8,, = 04,4, € 0. = idps. Diremo che l'azione ¢ fedele se 8, = 0,,
implica g1 = go.

EsempIo 2.2.9. 1l gruppo GL(n,R) agisce su R"™ per moltiplicazione.

EseMPIO 2.2.10. Un gruppo di Lie agisce su se stesso in (almeno) due modi: per traslazione sinistra, e
per coniugio.
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Definizione 2.2.7: Sia 0: G x M — M un’azione di un gruppo di Lie G su una varieta M. L’orbita di un
punto p € M & l'insieme G - p = {0,(p) | g € G}. Si vede facilmente (esercizio) che le orbite costituiscono
una partizione di M, cioe che “essere in una stessa orbita” ¢ una relazione d’equivalenza. Indicheremo
con M/G lo spazio quoziente delle orbite, e diremo che 1’azione ¢ transitiva se esiste un’unica orbita, cio¢ se
per ogni p, ¢ € M esiste g € G tale che 8,(p) = g¢.

Lo spazio delle orbite M/G, in quanto quoziente di uno spazio topologico, ha una struttura naturale
di spazio topologico. Una domanda naturale & se ha una struttura di varieta differenziabile. La risposta in
generale & no: M /G potrebbe non essere neppure una varieta topologica.

EsEmPIO 2.2.11. Il gruppo ortogonale O(n) agisce per moltiplicazione su R", e si vede facilmente (esercizio)
che R"/O(n) & omeomorfo alla semiretta [0, +00).

Ci sono pero delle condizioni che assicurano che lo spazio delle orbite & ancora una varieta. Non avremo
occasione di dimostrare questo teorema, ma almeno possiamo enunciarlo.

Definizione 2.2.8: Sia 0:G x M — M un’azione di un gruppo di Lie G su una varieta M. Il gruppo di
isotropia G, di un punto p € M ¢ il sottogruppo di G costituito dagli elementi di G che fissano p, cioe

Gp={9 € G |b4(p) =p}.

Diremo che G agisce liberamente su M se il gruppo d’isotropia di ogni punto si riduce al solo elemento
identico, cioe se O4(p) # p per ogni p € M e g € G\ {e}.

Definizione 2.2.9: Una funzione continua f: X — Y fra spazi topologici & propria se I'immagine inversa di
ogni compatto in Y & compatta in X, cio¢ se f~1(K) ¢ compatto in X per ogni compatto K C Y.

Definizione 2.2.10: Diremo che un’azione 6: G x M — M di un gruppo di Lie G su una varieta M & propria
se 'applicazione ©:G x M — M x M data da ©(g,p) = (Gg(p),p) ¢ propria (che ¢ una cosa diversa dal
richiedere che 6 sia propria).

Allora si pud dimostrare il seguente

Teorema 2.2.3: Sia 0: G x M — M un’azione di un gruppo di Lie G su una varieta M, e indichiamo con
m: M — M/G la proiezione naturale sullo spazio delle orbite. Supponiamo che ’azione sia libera e propria.
Allora esiste un’unica struttura di varieta differenziabile su M /G, compatibile con la topologia quoziente, e

tale che m sia differenziabile. Rispetto a questa struttura, M /G ha dimensione dim M — dim G.

Concludiamo questa sezione parlando di rivestimenti.

Definizione 2.2.11: Un’applicazione differenziabile 7: M — M fra varietd & un rivestimento liscio se & surget-
tiva e ogni p € M possiede un intorno aperto U connesso tale che 7 ristretta a una qualsiasi componente
connessa U di 7#~(U) sia un diffeomorfismo fra U e U.

Un rivestimento liscio &, in particolare, un rivestimento nel senso topologico del termine, ma il viceversa
non e detto che sia vero.

Esercizio 2.2.7. Sia m: M — M un rivestimento topologico fra varieta. Dimostra che 7 & un rivestimento
liscio se e solo se (¢ differenziabile ed) & un diffeomorfismo locale. Trova un esempio di rivestimento topologico
fra varieta che sia differenziabile ma non sia un rivestimento liscio.

Il risultato che ci interessa in questo momento ¢ il seguente:

Proposizione 2.2.4: Sia m: M — M un rivestimento topologico di una varieta n-dimensionale M. Allora
esiste un’unica struttura di varieta differenziabile di dimensione n su M tale che 7 sia un rivestimento liscio.

Dimostrazione: Supponiamo che esista una struttura di varieta differenziabile su M tale che 7 sia un rivesti-
mento liscio. Preso p € M , sia U C M un intorno ben rivestito di p = 7(p); possiamo chiaramente supporre
che U sia il dominio di una carta ¢ centrata in p. Sia U la componente connessa di 7~ Y(U) contenente p;
essendo 7 un rivestimento liscio, (U, ¢ o T|;) € una n-carta di M appartenente alla struttura differenziabile



2.3 Partizioni dell’unita 27

data. L’unione delle carte ottenute in questo modo al variare di p € M & un atlante di M, e quindi la
struttura di varieta differenziabile su M, se esiste, & unica.

Viceversa, anche senza supporre che M abbia una struttura di varietd differenziabile, & chiaro che le
coppie (U, o 7|;) cosl costruite sono delle n-carte su M; per dimostrare che formano un atlante di M
dobbiamo dimostrare che sono compatibili. Ma infatti, sia (V) o 7|;;) un’altra carta costruita in questo
modo e tale che U NV # @. Allora UNV # @, dove V = n(V), e quindi

b om|gay o (pomlgay) ™t = v o (pluav) ™!

¢ di classe C'*° dove definita, come voluto. Il
Esercizio 2.2.8. Sia m: M — M un rivestimento di spazi topologici. Dimostra che se M e di Hausdorff a

base numerabile allora anche M & di Hausdorff a base numerabile.

Concludiamo questo paragrafo con un ultimo esercizio:

Esercizio 2.2.9. Sia G un gruppo di Lie connesso. Dimostra che esiste un gruppo di Lie semplicemente

connesso G e un rivestimento liscio m: G — G che & anche un omomorfismo di gruppi di Lie.

2.3 Partizioni dell’unita

Nel seguito ci serviranno funzioni differenziabili con proprieta particolari. Cominciamo col far vedere che
per ogni compatto di una varieta differenziabile possiamo trovare una funzione differenziabile che sia iden-
ticamente uguale a 1 sul compatto, e identicamente nulla fuori da un intorno arbitrario del compatto. Ci
serve una piccola definizione:

Definizione 2.3.1: Sia M uno spazio topologico. Il supporto di una funzione f: M — R & I'insieme chiuso

supp(f) = {p € M | f(p) # 0},

Proposizione 2.3.1: Sia K C M un sottoinsieme compatto di una varieta n-dimensionale M, e sia V2 K
un intorno aperto di K. Allora esiste una funzione g € C°°(M) tale che gk = 1 e supp(g) C V. In
particolare, g|ynv = 0.

Dimostrazione: Sia h:R — R data da

0 set <0,
h(t) = { Yt set >0,
e :R" — R data da
h(1—[l]?)
n(z) = . (2.3.1)
h(1 = [[z]|?) + h(]lz]|* —1/4)
Si vede subito che n € C*°(R"), n(R™) C [0,1], 0|z, ,, = 1, n(x) > 0 per ogni z € By e n|gm\p, = 0.
Ora, per ogni p € K scegliamo una carta locale (U, ¢,) centrata in p tale che U, C V e con inoltre
vp(Up) = Ba C R™. Essendo K compatto, possiamo trovare pi,...,pr € K tali che

E k
Kc|Je, Bip)c U, =wcv
j=1 j=1
Definiamo g;: M — R ponendo

oy [ nlen; (@) seq €Uy,
QJ(Q)_{O Seq¢Upj;
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essendo gj\¢;j1(BZ\Bl) = 0, abbiamo g; € C°°(M). Allora poniamo

k

9@ =1-T](1-g;(a))-

Jj=1

Chiaramente g € C*°(M). Se q € K allora esiste un j fra 1 e k tale che <p;j1(Bl/2), per cui g;(q) =1e
quindi g(¢g) = 1. Se invece g ¢ W necessariamente g1(q) = --- = gx(q) = 0, per cui g(q) = 0. In altre parole,
abbiamo g|x =1 e g|apw = 0, come voluto, Il

Corollario 2.3.2: Sia M una varieta, p € M e V C M un intorno di p. Allora esiste una h € C*° (M) tale
che h(p) =0 e hlpnyv = 1.

Dimostrazione: Applicando la proposizione precedente a K = {p} otteniamo una funzione g € C°°(M) tale
che g(p) =1 e glpr\v =0. Allora h =1 — g & come voluto. ]

Grazie a questo risultato siamo anche in grado di estendere funzioni C*° definite solo su un compatto a
funzioni C'*° definite su tutta la varieta. Per far cio, ci basta definire in maniera opportuna le funzioni C'*°
su un compatto:

Definizione 2.3.2: Sia K C M un compatto di una varietd M. Indicheremo con C*°(K) l'insieme delle
funzioni f: K — R continue che ammettono un’estensione di classe € a un intorno aperto di K, cio¢ tali
che esistano un intorno aperto U di K e una f € C*(U) con f|x = f.

Corollario 2.3.3: Sia M una varieta, K C M compatto, f € C*°(K), e W D K un intorno aperto di K.
Allora esiste una f € C°°(M) tale che f|x = f e supp(f) C W. In particolare, f|ypw = 0.

Dimostrazione: Sia f: U — R un’estensione di f a un intorno aperto U del compatto K, e sia g € C*°(M)
la funzione data dalla Proposizione 2.3.1 prendendo V = U N W. Poniamo

ﬂ@:{?@ﬂ@ igg%\ﬁ

siccome supp(g) C U N W, la funzione f & come voluto. Il

Nel seguito, ci capitera di dover incollare oggetti definiti solo localmente. Avremo un ricoprimento
aperto di una varieta, un oggetto locale definito su ciascun aperto del ricoprimento, e vorremmo incollare
questi oggetti in modo da ottenere un singolo oggetto globale definito su tutta la varieta. Lo strumento
principe per effettuare questo incollamento € dato dalle partizioni dell’unita, che esistono solo su varieta di
Hausdorff a base numerabile, e che adesso definiamo.

Definizione 2.3.3: Diremo che un ricoprimento (non necessariamente aperto) 4 = {U,} di uno spazio topolo-
gico X ¢ localmente finito se ogni p € X ha un intorno U C X tale che UNU, # @ solo per un numero finito
di indici . Un ricoprimento U = {V3} & un raffinamento di {4 se per ogni 3 esiste un « tale che Vg C U,,.

Definizione 2.3.4: Una partizione dell’unita su una varietd M & una famiglia {p,} C C°°(M) tale che

(a) pa > 0su M per ogni indice o

(b) {supp(ps)} € un ricoprimento localmente finito di M;

() XapPa =1

Diremo poi che la partizione dell’unita {p, } ¢ subordinata al ricoprimento aperto 4 = {U, } se supp(pa) C U,
per ogni indice a.

Osservazione 2.3.1. La proprieta (b) della definizione di partizione dell’unitd implica che nell’intorno
di ciascun punto di M solo un numero finito di elementi della partizione dell’'unita sono diversi da zero;
quindi la somma nella proprieta (c¢) € ben definita, in quanto in ciascun punto di M solo un numero finito di
addendi sono non nulli. Inoltre, siccome M ¢ a base numerabile, sempre la proprieta (b) implica (perché?)
che supp(p,) # @ solo per una quantitd al pit numerabile di indici . In particolare, se la partizione
dell'unita & subordinata a un ricoprimento composto da una quantita piti che numerabile di aperti, allora
pPo = 0 per tutti gli indici tranne al pitt una quantita numerabile. Questo non deve stupire, in quanto in uno
spazio topologico a base numerabile da ogni ricoprimento aperto si puo sempre estrarre un sottoricoprimento
numerabile (proprieta di Lindelof).
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Il nostro obiettivo ¢ dimostrare I’esistenza di partizioni dell’unita subordinate a qualsiasi ricoprimento
aperto di una varieta. Questo risultato sara conseguenza del seguente

Lemma 2.3.4: Sia M una varieta di Hausdorfl a base numerabile, e 4 = {U,} un ricoprimento aperto
di M. Allora esiste un atlante numerabile localmente finito A = {(V3, )} tale che:

(i) {Vp} é un raffinamento di 4;

(ii) s(Vs) = B2 per ogni 3;
(iii) posto Wg = @El(Bl/Q), anche {Wpg} é un ricoprimento di M.
Dimostrazione: La varieta M ¢ localmente compatta e a base numerabile; quindi possiamo trovare una base
numerabile {P; },en tale che ogni F] sia compatto. Definiamo ora una famiglia crescente di compatti K; per
induzione. Poniamo K; = P;. Se K ; € definito, sia 7 € N il minimo intero maggiore o uguale a j per cui si
abbia K; C |J._, P;, e poniamo

KjJrl ZﬁU"'UE.

In questo modo abbiamo K C int(Kj11) e M =, Kj.

Ora, per ogni p € (int(K;12) \ K;_1) N Uy scegliamo una carta (V jp, a,jp) centrata in p e tale
che Vo jp C (int(Kj42) \ Kj—1) NUqs € 9a,jp(Va,jp) = B2. Poniamo W, ;, = 50;71]4713(31/2)‘ Ora, al
variare di « e p gli aperti W, ;, formano un ricoprimento aperto di Kj41 \ int(Kj), che e compatto; quindi
possiamo estrarne un sottoricoprimento finito {W; ,}. Unendo questi ricoprimenti al variare di j otteniamo
un ricoprimento aperto numerabile {Wg} di M; se indichiamo con (Vg, ¢g) la carta corrispondente a W,
dobbiamo solo dimostrare che 'atlante A = {(Vj3, ¢3)} € localmente finito per concludere. Ma infatti per
ogni p € M possiamo trovare un indice j tale che p € int(K), e per costruzione solo un numero finito dei V3
intersecano int(kKj;). 0

Teorema 2.3.5: Sia M una varieta di Hausdorff a base numerabile. Allora ogni ricoprimento aperto
U ={Uy}taca di M ammette una partizione dell’unita subordinata a esso.

Dimostrazione: Sia A = {(V3,¢3)}scp l'atlante dato dal Lemma 2.3.4, e n € C*°(R") data da (2.3.1).
Poniamo ( ( ))
[ nleslq)) seqe Vg,
gﬁ(Q) {0 se q % @EI(BI);
si vede subito che gz € C°(M) e che {supp(gg)}sep ¢ un ricoprimento localmente finito di M che raffina 4.

Quindi ponendo
9s

po = =
Zﬂ'eB gp’
otteniamo una partizione dell’unitd {pg}gep tale che per ogni 8 € B esiste un a(f8) € A per cui si
ha supp(ps) C Uq(s). Ma allora ponendo
pa= D
BeEB
a(@)=a

si verifica subito (esercizio) che {pa}aca ¢ una partizione dell’unita subordinata a 4, come voluto. O

2.4 Spazio tangente

Avendo definito il concetto di funzioni (e applicazioni) differenziabili, il meno che possiamo fare & cercare di
derivarle. Come vedremo, questo equivale pitt 0 meno all’introdurre il concetto di vettore tangente.

Definizione 2.4.1: Sia M una varieta, e p € M. Sulla famiglia
F ={(U, f) | U intorno aperto di p, f € C>(U)}

poniamo la relazione d’equivalenza ~ cosi definita: (U, f) ~ (V, g) se esiste un aperto W C UNV contenente p
tale che flw = glw. L’insieme C*°(p) = F/ ~ & detto spiga dei germi di funzioni differenziabili in p,
e un elemento f € C*(p) & detto germe in p. Un elemento (U, f) della classe di equivalenza f & detto

rappresentante di f. Se sara necessario ricordare su quale varieta stiamo lavorando, scriveremo C37(p) invece
di C*(p).
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FEsercizio 2.4.1. Dimostra che per ogni f € C*°(p) e ogni intorno V' C M di p esiste un rappresentante di f
definito su tutto M e nullo al di fuori di V.

L’insieme C*°(p) ha una naturale struttura di algebra:

Lemma 2.4.1: Siap € M un punto di una varieta M, e f, g € C°°(p) due germi in p. Siano inoltre (Uy, f1),
(Ua, f2) due rappresentanti di £, e (V1,g1), (Va,g2) due rappresentanti di g. Allora:

(i) (U1 N Vi, fi + g1) ¢ equivalente a (U2 N'Vz, fa + g2);
(i) (U1 NV1, figr) € equivalente a (Uz N Va, f2g2);
(i) (U1, Af1) & equivalente a (Ua, Afa2) per ogni A € R;
(iv) fi(p) = f2(p)-

Dimostrazione: Cominciamo con (i). Siccome (Uy, f1) ~ (Us, f2), esiste un intorno aperto W C U; NUs di p
tale che fi|w = fo|w. Analogamente, siccome (V1,g1) ~ (Va, g2), esiste un intorno aperto W C V4 N'Va di p
tale che g1y, = galyy,- Maallora (fi+f2)lwew = (91+92)lwas € quindi (UNVA, fi+g1) ~ (U2NVa, fa+g2)
in quanto WNW CU NV NU; N V.

La dimostrazione di (ii) & analoga, e la (iii) e la (iv) sono ovvie. O

Definizione 2.4.2: Siano f, g € C*°(p) due germi in un punto p € M. Indicheremo con f 4+ g € C(p) il
germe rappresentato da (U NV, f 4 g), dove (U, f) & un qualsiasi rappresentante di f e (V,g) ¢ un qualsiasi
rappresentante di g. Analogamente indicheremo con fg € C°(p) il germe rappresentato da (U NV, fg),
e, dato A € R, con M € C*(p) il germe rappresentato da (U, \f). Il Lemma 2.4.1 ci assicura che queste
definizioni sono ben poste, ed & evidente che C°°(p) con queste operazioni & un’algebra. Infine, per ogni
f € C*°(p) definiamo il suo valore f(p) € R in p ponendo f(p) = f(p) per un qualsiasi rappresentante (U, f)
di f.

Infine, sia F': M — N un’applicazione di classe C°, e siano (V7, g1) e (V2, g2) sono due rappresentanti di
un germe g € C*°(F(p)). Allora & evidente (esercizio) che (F~1(V1), g10F) e (F~!(V2), g20F) rappresentano
lo stesso germe in p, che quindi dipende solo da g (e da F'). Dunque possiamo introdurre la seguente

Definizione 2.4.3: Dati un’applicazione differenziabile fra varieta F: M — N e un punto p € M, indicheremo
con Fy: C™ (F(p)) — (O (p) applicazione che associa a un germe g € C' (F(p)) di rappresentante (V, g) il
germe F}(g) = goF € C°°(p) di rappresentante (F~*(V),goF). Si verifica subito che F;; & un omomorfismo
di algebre.

Esercizio 2.4.2. Dimostra che (idM)I*j = id per ogni punto p di una varieta M, e che se F:M — N e
G:N — S sono applicazioni differenziabili fra varieta allora (G o F)% = Fj o Gy perognip € M. In
particolare deduci che se (U, ) ¢ una carta in p € M allora ¢5: C> ((p(p)) — C°°(p) & un isomorfismo di
algebre.

Siamo giunti alla definizione di vettore tangente:

Definizione 2.4.4: Sia M una varieta. Una derivazione in un punto p € M & un’applicazione R-lineare
X:C*(p) — R che soddisfa la regola di Leibniz

v, g € C*(p) X(fg) = f(p)X(g) + g(p) X(f).
Lo spazio tangente T,M a M in p &, per definizione, 'insieme di tutte le derivazioni in p. Un ele-
mento X € T, M ¢ detto vettore tangente a M in p. Chiaramente, T, M & uno spazio vettoriale.

Osservazione 2.4.1. Se U C M ¢ aperto, abbiamo T,U = T, M per ogni p € U, in quanto Cgf(p) si
identifica (perché?) in modo naturale con C§9(p).

EsemPIO 2.4.1. A qualsiasi vettore v = (v!,...,v") € R" possiamo associare la derivata parziale nella
direzione di v definita da

0 1 0 PR 0

—_— =y — P v —.

v Oxt oxm

Chiaramente, 0/9v definisce una derivazione di C*°(p) per ogni p € R". In questo modo otteniamo un’im-
mersione naturale di R” in T,U = T,R", immersione che dimostreremo essere un isomorfismo.
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. . . . 0
ESEMPIO 2.4.2. Sia ¢ = (z!,...,2") una carta in p; vogliamo definire un vettore tangente —‘ e T,M,
P

oxI
che generalizza alle varieta la nozione di derivata parziale in una direzione coordinata. Dato f € C*°(p), sia
(U, f) un suo rappresentante: definiamo allora

0 d(fop™)
— ) = ———F—-+F . 24.1
50 p( ) 5 () (24.1)
E facile verificare (esercizio) che questa definizione non dipende dal rappresentante, e che 907 ¢ effettiva-
0 o
mente una derivazione. A volte scriveremo ﬁ(p) invece di Ee (f). Inoltre, se non ci sara pericolo di
x x
p

confusione, scriveremo anche 0|, o 9;(p) per pyel
x

p

EsEMPIO 2.4.3. Sia 0:(—¢,e) — M una curva C* con o¢(0) = p. Il vettore tangente ¢’(0) alla curva in p
¢ definito ponendo
d(foo)
!
g (0)(f) = —=(0

o)) = 27 )
dove (U, f) & un qualsiasi rappresentante di f. Chiaramente (esercizio) questa definizione non dipende dal
rappresentante scelto, e ¢’(0) & una derivazione. Se ¢ = (x!,...,2") & una qualunque carta centrata in p,

scrivendo p oo = (ol,...,0™) troviamo

d(f o 0)
dt

0) = W e o)) ) - Sy 2

dt ozJ (),

n
= p

Jj=1

per cui
7'(0) = Y (Y (0) 5

j=1

i
p

e abbiamo ottenuto un’effettiva generalizzazione del concetto di vettore tangente a una curva in R". In
particolare, 9/0x7|, & il vettore tangente alla curva o(t) = ¢~ (te;), dove e; & il j-esimo vettore della base
canonica di R".

Questi due esempi sono casi particolari di una costruzione molto piu generale:

Definizione 2.4.5: Sia F: M — N un’applicazione differenziabile fra varieta. Dato p € M, il differen-
ziale dFy: TyM — Tp)N di F in p ¢ applicazione lineare definita da

VX e T,M dFy(X) = X o F,
dove Fj:C* (F(p)) — C>°(p) & l'omomorfismo introdotto nella Definizione 2.4.3. In altre parole,
dF,(X)(g) = X(go F)
per ogni g € C*° (F(p)) A volte si scrive (Fl), per dF,.

Osservazione 2.4.2. B facile verificare che

per ogni curva o: (—¢,e) — M, e che

0 3]
v d(‘P_l)w(p) <— )
Oz’ P Oz ©(p)
per ogni carta locale ¢ = (x!,...,2") in p € M.

1l differenziale gode delle proprieta che uno si aspetta:
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Proposizione 2.4.2: (i) Se M ¢ una varieta e p € M allora d(idys), = idz, -
(ii) Se F: M — N e G: N — S sono due applicazioni differenziabili fra varieta e p € M allora

d(GO F)p - dGF(p) o de

In particolare, se F: M — N ¢ un diffeomorfismo allora dF,, & invertibile e (dF,)' = d(F~1)p(,).

Dimostrazione: (i) Infatti f o idy; = £ per ogni germe f € C*(p).
(ii) Prendiamo X € T,M e f € C*°((G o F)(p)). Allora

d(G o F),(X)(F) = X((Go F);()) = X (Fo (G o F))
= X(F}(£ 0 G)) = dFy(X) (G (£) = (dC () 0 dE,) (X)(£).
O

Il nostro prossimo obiettivo ¢ dimostrare che lo spazio tangente in un punto a una varieta n-dimensionale
& uno spazio vettoriale di dimensione finita esattamente n. Per far cio ci serve il seguente

Lemma 2.4.3: Sia z, = (x},...,2") € R" e f € C*(z,). Allora esistono germi g1, ...,8, € C*(x,) tali
che g;(z,) = aafj (z,) e
n
=f(z,) + Y _(x) —a))g;,
j=1

dove x7 € C*(xz,) ¢ il germe rappresentato dalla j-esima funzione coordinata.

Dimostrazione: Scelto un rappresentante (U, f) di f tale che U sia stellato rispetto a x,, scriviamo
1 8 n ; ; 1 8f
fx) = fx,) = . o (2o + t(z — x,)) dt = ;(x —a)) i (2o + t(x — x,)) dt.

Allora basta prendere come g; il germe rappresentato dalla coppia (U, g;) con

gj(z) = /0 aafj (2o + t(z — x,)) dt.

Proposizione 2.4.4: (i) Sia z, = (x},...,

z) € R". Allora I’applicazione v: R™ — T, R™ definita da

0 0
L(’U) = % = Z’U] %
=1 @

€ un isomorfismo.
(ii) Sia M una varieta di dimensione n, e p € M. Allora T,M ¢é uno spazio vettoriale di dimensione n. In
0

yeeey oo
p Oz p

0
. o 1 by . . .
particolare, se ¢ = (x*,...,x™) & una carta in p, allora { pey } & una base di TyM.

Dimostrazione: (i) Dobbiamo dimostrare che ¢ & bigettiva. E iniettiva: se v # O dobbiamo avere v" # 0 per
qualche h; ma allora

3x

h

— ) = 0,

) (") j} 0 Gy t) = o £

e quindi ¢(v) # O. E surgettiva: dato X € T, R"™ poniamo v/ = X(x7) e v = (v',...,v"). Vogliamo

dimostrare che X = ¢(v). Prima di tutto notiamo che

X1)=X1-1)=2-X(1)= X(1) =0,
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e quindi X (c¢) = 0 per ogni ¢ € R. Sia allora f € C*°(z,); se applichiamo il Lemma 2.4.3 otteniamo
n ) ) n ) ) n )
X(8) = X (£(z0)) + 3 X (0 —wo”)gg) = Y X — ad)egy(wo) = D07 5 (o) = u(v) (),
j=1 j=1

cioe X = 1(v), come voluto.

(ii) Sia p: U — V C R™ una carta locale in p. L’Osservazione 2.4.1, 'Esempio 2.2.1 e la Proposizione 2.4.2
ci dicono che dip,: TyM = T,U — T,V = Ty R™ € un isomorfismo, per cui dim 7, M = dim Ty, (,)R™ = n.
Infine, I'ultima affermazione segue subito dall’Osservazione 2.4.2. Il

Osservazione 2.4.3. L’inverso dell’isomorfismo ¢:R" — T, R" definito nella Proposizione 2.4.4.(i) si
esprime facilmente:

per ogni X € T, R".

I prossimi esercizi descrivono altre due caratterizzazioni dello spazio tangente, e due definizioni alterna-
tive di differenziale.

Esercizio 2.4.8. Sia M una varieta, e p € M. Posto m, = {f € C*(p) | f(p) = 0}, dimostra che m,, &
I'unico ideale massimale di C*°(p), e che T, M & canonicamente isomorfo al duale di m,/ mf,.

Esercizio 2.4.4. Sia F:M — N un’applicazione differenziabile fra varieta, e p € M. Dimostra che
Fr(mp@)) € my, e che se identifichiamo T,M e Tr(,) N con i duali di m,/m? e mp(p)/m%(p) rispettiva-
mente, allora il differenziale dF}, viene identificato all’applicazione duale dell’applicazione da mp(,) /m%(p)
a m,/m? indotta da F.

FEsercizio 2.4.5. Sia M una varieta, e p € M. Dimostra che ogni elemento di T,M & della forma o’(0) per
un’opportuna curva o: (—e,¢) — M con o(0) = p.

Esercizio 2.4.6. Sia F: M — N un’applicazione C*° fra varietd e p € M. Dimostra che se o: (—¢,e) > M
¢ una curva C* con 0(0) =p e o’(0) =v € T,M allora

dF,(v) = (F 0 0)'(0).

FEsercizio 2.4.7. Dimostra che il differenziale d(det) x: My, »(R) — R del determinante det: GL(n,R) — R &
dato da
d(det) x (B) = (det X)tr(X ' B)

per ogni X € GL(n,R) e B € M, ,(R), dove tr(A) ¢ la traccia della matrice A.

ESEMPIO 2.4.4. Sia V uno spazio vettoriale di dimensione n su R, e v, € V. Allora ¢ possibile identifi-
care in modo canonico V e T,V generalizzando 'isomorfismo ¢: R" — T, R"™ della Proposizione 2.4.4.(i).
Dato v € V, sia 0,;R — V la curva 0,(t) = v, + tv, e definiamo 'applicazione ¢,,:V — T, V po-
nendo ¢, (v) = o0,(0). Quest’applicazione ¢ definita in modo canonico, indipendente da qualsiasi scelta;
per dimostrare che & un isomorfismo di spazi vettoriali possiamo usare una base. Sia B = {v1,...,v,}
una base di V, e g = (x!,...,2™) la corrispondente carta locale introdotta nell’Esempio 2.1.7. Allora
v oo, = @g(v,) + teg(v), per cui I'Esempio 2.4.3 ci dice che

n
, 0
Ly (V) = E 7 (v) —
’Uo( ) ( ) 813] )
j=1 Vo
RN . 1 . N .
cioe Ly, = d(Pg" )pp(v,) O L O PB, PEr cli Ly, & un isomorfismo, come affermato.

Osservazione 2.4.4. L’approccio da noi seguito non ¢ adatto per definire lo spazio tangente a varieta di
classe C* quando k < oo. Infatti si pud dimostrare che lo spazio delle derivazioni di C°(p) si riduce alla sola
derivazione nulla, mentre lo spazio delle derivazioni di C*(p) ha dimensione infinita per 1 < k < +oo0.
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Esercizio 2.4.8. Sia M una varieta di classe C°, e p € M. Dimostra che I'unica derivazione di C°(p) ¢ la
derivazione nulla. (Suggerimento: per ogni f € C°(p) si ha f = f(p) + (f — f(p))l/s (f - f(p))2/3.)

Esercizio 2.4.9. Sia M una varieta di classe C*¥, con 0 < k < 400, e p € M. Dimostra che lo spazio
delle derivazioni di C*(p) ha dimensione infinita. (Suggerimento: fissata una carta locale ¢ = (z*,...,z")
centrata in p, per ogni 0 < ¢ < 1 sia f. € C¥(p) il germe rappresentato dalla funzione (z!)¥+¢. Dimostra
che per ogni 0 < &1 <--- <e&. <1ligemmif, ,...,f, appartengono a m, e sono linearmente indipendenti
modulo mf), usando il fatto (da dimostrare) che il prodotto di due funzioni di classe C* che si annullano in
un punto & di classe C**1 nell’intorno di quel punto. Concludi usando I’Esercizio 2.4.3.)

Osservazione 2.4.5. Duecarte p = (z!,... 2") e $ = (Z!,...,2") in uno stesso punto p di una varieta, M
ci forniscono due basi di T}, M, che devono essere legate da una relazione lineare. Per trovarla, prendiamo
f € C*(p) e calcoliamo:

a a © -1 ~ 8 [¢] 1o le) 1 _
5], = o0 () = Wop™ opo ™) )
0 o 1 axko~71 R n 8l‘k 9
-y V20 o) 2027 )(¢(p)):;@(p)mp(f),

dove abbiamo posto
Ox* ok op™t) _ 0 &
W(P) = T(W(P)) = 9k (x").

p

Siccome questo vale per ogni germe in p, otteniamo 'importante formula

L 0

0
97 ) 5%
k=1

oih

, (2.4.2)

P

In maniera analoga possiamo vedere come cambiano le coordinate di un vettore tangente cambiando base.
Infatti se prendiamo X € T),M e scriviamo

X = ix’f LN Zn: i 2
- = 9, - el
allora (esercizio)
Xk = n g%:(p) X" (2.4.3)

h=1
Nota come sia in (2.4.2) che in (2.4.3) la somma sia sull’indice ripetuto una volta in basso e una in alto.

Vediamo infine come si esprime il differenziale in coordinate locali. Data un’applicazione differenzia-
bile F: M — N fra varieta, sia (U, ¢) una carta centrata in p € M, e (ﬁ, ) una carta centrata in F(p) € N;
vogliamo la matrice che rappresenta dF, rispetto alle basi {0/0z"|,} di T,M e {0/0"|p )} di TreN,
matrice che contiene per colonne le coordinate rispetto alla base in arrivo dei trasformati dei vettori della
base di partenza. In altre parole, dobbiamo trovare (af) € My, (R) tali che

dFy(0nly) = af; Okl p(p).»

k=1

n

dove |, = 0/02"|, e 5k|p(p) = 0/0&*| (). Seguendo le definizioni abbiamo

. R R ~ OFk 0
ay, aj‘F(p)(Xk) = de(8h|p)(Xk> = ‘9h|19(xlc oF)= w(@(l’)) = o (Fk)a
1 P

S
>
I
INgE

J
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dove abbiamo posto ¢ o F o™t = (F! ..., F™). In altre parole, la matrice che rappresenta il differenziale
di F rispetto alle basi indotte dalle coordinate locali & la matrice jacobiana

oFk
oxh )’
come nel caso classico delle applicazioni differenziabili in R™. In particolare, il differenziale come da noi

definito per applicazioni differenziabili fra aperti di spazi euclidei coincide con la definizione classica di
differenziale. Come prima conseguenza, abbiamo una versione del teorema della funzione inversa per varieta:

Corollario 2.4.5: Sia F: M — N un’applicazione differenziabile fra varieta. Sia p € M un punto tale che
dF,:TyM — Ty, N sia un isomorfismo. Allora esistono un intorno U C M di p e un intorno V-C N di F(p)
tali che F|y:U — V sia un diffeomorfismo.

Dimostrazione: Sia (Uy, 1) una qualsiasi carta in p, e (V1,11) una qualsiasi carta in F(p) con F(U;) C V;.
Allora la tesi segue dal classico teorema della funzione inversa applicato a 1, o F'o 801—1_ O]

Osservazione 2.4.6. Se f € C>®°(M) e p € M, il differenziale di f in p & un’applicazione lineare da T, M
in Tt R. Quest’ultimo spazio ¢ isomorfo a R tramite I'isomorfismo canonico X +— X(idg), come mostrato
nell’Osservazione 2.4.3. Ma allora se X € T, M possiamo identificare df,(X) con

dfp(X)(idg) = X (idr o f) = X(£),
e quindi abbiamo ottenuto 'uguaglianza
dfp(X) = X(f)
valida per ogni f € C*°(p), quale che sia il suo rappresentante (U, f), e ogni X € T,M.

2.5 Sottovarieta

In questo paragrafo studieremo quando dei sottoinsiemi di una varieta possono essere considerati varieta a
loro volta.

Definizione 2.5.1: Un’applicazione differenziabile F: M — N fra due varieta & un’immersione se il differen-
ziale dFy,: TyM — Tp)N ¢ iniettivo per ogni p € M. Se inoltre F' ¢ un omeomorfismo con I'immagine
(e quindi ¢ in particolare globalmente iniettiva) diremo che ¢ un embedding. Infine, diremo che ¢ una
sommersione (submersion in inglese) se il differenziale & surgettivo in ogni punto.

ESEMPIO 2.5.1. La curva a: R — R? data da a(t) = (2, ®), pur essendo un omeomorfismo con I'immagine,
non & un’immersione, in quanto o/(0) = O. La curva 3: R — R? data da §(t) = (t>—4t, t?>—4) & un’immersione
ma non un embedding, perché 3(2) = 5(—2).

ESEMPIO 2.5.2. La curva o: (—3,0) — R? data da

(0,—(t+2)) perte (-3 —1],
o(t) = { curva regolare per t € [-1,—1],
(—=t,—sin{)  perte[-1,0),

dove la “curva regolare” collega in modo liscio e iniettivo gli altri due pezzi, ¢ un’immersione globalmente
iniettiva ma non un embedding. Infatti, la topologia indotta da R? sull’immagine non ¢ quella del seg-
mento (—3,0), come si vede facilmente considerando gli intorni del punto o(—2) = (0,0).

Ogni immersione e localmente un embedding:

Proposizione 2.5.1: Sia F: My, — M, un’immersione. Allora ogni p € My ha un intorno U C M tale che
F|y:U — M sia un embedding.

Dimostrazione: Siano ¢1:U; — Vi CR"™ e @o: Uy — Vo C R™ carte in p e F(p) rispettivamente, e scriviamo

ﬁ':(pgoFoapl_l(:z:l,...,x”) = (ﬁ’l(:cl,...,x"),...,Fm(zl,...,x”)).
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Siccome F' & un’immersione, il differenziale di F' in £y = ¢1(p) € iniettivo; quindi a meno di riordinare le
coordinate possiamo supporre che

O(F',...,Fm) B OF"
a(zl,... am) (wo) = dlet <W(x0)> ey 70

Sia G: Vi x R™™" — R™ data da
Gzb, ...,z " ™) = F(at, . 2") 4 (0,..., 0,4 ).
Chiaramente, G(z,0) = F(l’) per ogni x € Vq, e

o(F, . )

det(dG(zy,0)) = Oz, )

(zo) # 0;

il teorema della funzione inversa ci fornisce quindi un intorno Wy C Vi x R™™™ di (20,0) e un in-
torno Wy C R™ di F(zo) tale che G|w, sia un diffeomorfismo fra W7 e Wa. Poniamo V = W3 N (V3 x {O})
e U= (V). Allora F|y = 05" 0 G o (¢1|r, O) & un omeomomorfismo con l'immagine, come richiesto. [J

Osservazione 2.5.1. Se F: M — N & un’immersione iniettiva allora F(M) C N ha una naturale struttura
di varieta indotta da quella di M. Infatti, sia A = {(Us,¢a)} un atlante di M tale che F|y, sia un
omeomorfismo con l'immagine per ogni « (un tale atlante esiste grazie alla proposizione precedente). Allora
¢ facile verificare (esercizio) che {(F(Ua), pa © F|l_]i)} ¢ un atlante per F'(M). Non & detto perd che questa
struttura di varieta sia compatibile con quella dell’ambiente IN; per esempio, la topologia indotta dalla
struttura di varietd potrebbe non coincidere con la topologia indotta da quella di N (vedi 'Esempio 2.5.2).

FEsercizio 2.5.1. Sia F: M — N un’immersione non iniettiva, e {(Us,, pq)} un atlante di M tale che F|y,
sia un omeomorfismo con I'immagine per ogni . E ancora vero che {(F(Ua),¢q © F|[}i)} ¢ un atlante
per F(M)?

Definizione 2.5.2: Una sottovarieta di una varieta IN ¢ un sottoinsieme M C N provvisto di una struttura di
varieta differenziabile tale che I'inclusione ¢: M < N risulti un embedding. La differenza dim N — dim M &
detta codimensione di M in N.

Esercizio 2.5.2. Sia U C R"™ aperto, e F:U — R™ un’applicazione qualsiasi. Dimostra che il grafico I'r
di F, con la struttura di varieta differenziabile descritta nell’Esempio 2.1.2, & una sottovarieta di R™1™ se e
solo se F' e di classe C*°.

Osservazione 2.5.2. La definizione di sottovarieta contiene tre richieste distinte. La prima & che l'inclu-
sione sia un omeomorfismo con I'immagine: questo equivale a dire che la topologia indotta dalla struttura di
varieta differenziale coincide con la topologia indotta dalla varieta ambiente, per cui la sottovarieta risulta
essere un sottospazio topologico dell’ambiente. La seconda richiesta e che l'inclusione sia di classe C*:
questo equivale a dire che per ogni carta (U, @) dell’ambiente con U N M # & la restrizione |y = ¢ o ¢ sia
di classe C*° anche rispetto alla struttura di varieta di M. Come discuteremo meglio pit avanti (Corolla-
rio 2.5.4) questo implichera che potremo trovare un atlante di M costituito da restrizioni a M di opportune
carte dell’ambiente N. Inoltre, questa seconda richiesta implica anche che la restrizione a M di qualsiasi
(germe di) funzione C*° di N ¢ di classe C*° anche rispetto alla struttura differenziabile di M. Infine, la terza
richiesta & che il differenziale di,: T,M — T, N sia iniettivo per ogni p € M. Come vedremo (Esercizi 2.5.5
e 2.5.6), questo & equivalente a richiedere che ogni (germe di) funzione C™ in M si ottiene come restrizione
di una funzione C*° definita in un opportuno aperto di M. Quindi questa definizione cattura bene ’idea che
la struttura differenziabile di una sottovarieta debba essere indotta da quella della varieta ambiente.

Osservazione 2.5.3. Se F: M — N & un embedding di M in N, allora F (M), considerata con la struttura
di varieta indotta da M introdotta nell’Osservazione 2.5.1, & una sottovarieta di N (esercizio).

Osservazione 2.5.4. Se M & una sottovarietd di N e (U, ) & una carta di N con U N M # &, allora
(U N M) & (perché?) una sottovarietd di o(U) C R", e ¢|ynay ¢ un diffeomorfismo con I'immagine, in
quanto p|lynm = @ o tlunm-
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Se M & una sottovarietd k-dimensionale di N, e (U, ) & una carta di N con U N M # @, di primo
acchito non possiamo dire che (U N M, ¢|ynar) sia una carta di M, in quanto ¢|ynas non & in generale un
aperto di R*. Quello che perd & vero che per ogni p € M possiamo trovare una carta (U, ) di N in p tale
che |y sia un aperto di R* x {O}, per cui (U N M, pyn) pud essere naturalmente considerata come
una carta di M in p. Per dimostrarlo ricordiamo il classico Teorema del rango:

Teorema 2.5.2: (del rango) Siano U C R™ e V C R" aperti, e F:U — V un’applicazione differenziabile
di rango costante k > 0. Allora per ogni p € U esistono una carta (Up,p) per R™ centrata in p e una
carta (Vp,v) per R" centrata in F(p), con Uy CU e F(Uy) C Vo C V, tali che

z/;oFocp_l(xl,...,xk,xk"’l,...,xm) = (xl,...,xk,O,...,O)

e ¥(F(Uo)) = ¥ (Vo) N (R" x {O}).

Definizione 2.5.3: Sia F': M — N un’applicazione differenziabile fra varieta. Il rango di F'in p € M ¢ il rango
del differenziale dF),,. Chiaramente, se (U, ) € una carta in p e (V,9) & una carta in F(p), allora il rango
di F in p & uguale al rango di ¢ o F o o~ ! in ¢(p).

Corollario 2.5.3: Sia M una varieta m-dimensionale, N una varieta n-dimensionale, e F: M — N un’ap-
plicazione differenziabile di rango costante k > 0. Allora per ogni p € M esistono una carta (U, @) centrata
in p e una carta (V, 1) centrata in F(p), con F(U) C V, tali che

z/;oFogo_l(xl,...,xk,xk"’l,...,xm) = (ml,...,xk,07...,0)

e (F(U)) = (V)N (R" x {0}).

Dimostrazione: Sia (Uy, 1) una qualsiasi carta centrata in p, e (V1,11) una qualsiasi carta centrata in F'(p)
con F(U;) C Vy. Allora basta applicare il Teorema del rango a ¢y o F o <pf1. ]

Corollario 2.5.4: Sia M C N un sottoinsieme di una varieta n-dimensionale N. Allora M puo essere
provvisto di una struttura di varieta k-dimensionale che lo renda una sottovarieta di N se e solo se per
ogni p € M esiste una carta (V,4) di N centrata in p tale che »(V N M) = ¢(V) N (RF x {0}).

Dimostrazione: Supponiamo che M sia una sottovarieta di N. Per definizione, 'inclusione ¢v: M — N & di
rango costante k. La tesi segue allora dal corollario precedente.

Viceversa, supponiamo di avere per ogni p € M una carta (V,,1,) di N centrata in p tale che
Vp(V, N M) = ,(V,) N (R x {O}). Indichiamo con m3:R™ — R* la proiezione sulle prime k coordi-
nate, e poniamo U, = mz(¢,(V, N M)). Allora U, ¢ un aperto di R”, ed ¢ facile verificare (esercizio) che
{(Vp N M, 7t 0y|y,nn)} € un k-atlante su M rispetto a cui M risulta essere una sottovarieta di N. O

Esercizio 2.5.3. Sia F: M — N un’applicazione differenziabile di rango costante. Dimostra che se F' e
iniettiva allora € un’immersione.

Esercizio 2.5.4. Sia M una sottovarieta k-dimensionale di una varieta N. Sia V un aperto di Rk7 eyp:V—-N
un’applicazione differenziabile iniettiva di rango costante k tale che (V) C M. Dimostra che (w(V)7 1/)_1)
¢ una carta di M.

Esercizio 2.5.5.  Sia F': M — N un’applicazione differenziabile, e p € M. Dimostra che dFy,: T,M — Tp )N
¢ iniettivo se e solo se F: CF (F(p)) — C3%(p) & surgettiva. Deduci che se t: M < N & una sottovarieta di
una varietd N, e p € M, per ogni germe g € C57(p) esiste g§ € CF (p) tale che g|y = g, dove g|p & un’altra
notazione per ¢,g = g o ¢.

Esercizio 2.5.6.  Sia t: M — N una sottovarieta. Dimostra che per ogni f € C*°(M) e ogni intorno aperto U
di M in N esiste una f € C*(U) tale che f|y = f.

Esercizio 2.5.7. Sia M C N un sottoinsieme di una varietd N. Dimostra che su M esiste al piu una
struttura di varieta differenziabile che lo renda una sottovarieta di V.
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Se t: M — N ¢ una sottovarieta di una varieta N, e p € M, il differenziale dv,: T, M — T, N realizza T, M
come sottospazio di T, N. Il modo in cui un v € T, M agisce su un germe f € C¥(p) ¢ il seguente:

dup(v)(£) = v(f|ar). (2.5.1)
D’ora in poi, a meno di avviso contrario, se M & una sottovarieta di N e p € M, identificheremo sempre T, M
con il sottospazio di, (T, M) di T, N, facendo agire gli elementi di T, M sui germi in CJ(p) come in (2.5.1).

FEsercizio 2.5.8. Sia «: M — N una sottovarieta di una varieta IV, e p € M. Dimostra che v € T,N
appartiene all'immagine di T, M tramite di,, se e solo se v(f) = 0 per ogni f € CF(p) tale che f|y; = 0.

L’immagine inversa di un valore regolare definisce una sottovarieta, come nella Proposizione 2.1.2.

Definizione 2.5.4: Sia F: M — N un’applicazione differenziabile fra varieta. Un punto p € M & detto punto

critico di F' se dFy,: TyM — Tp,) N non ¢ surgettivo. Un valore critico ¢ I'immagine di un punto critico. Un

valore regolare ¢ un punto di F(M) che non € un valore critico. Indicheremo con Crit(F) C M 'insieme dei

punti critici di F'.

Proposizione 2.5.5: Sia F: M — N un’applicazione differenziabile fra varieta, con dimM = n + k e

dim N = n. Allora:

(i) per ogni a € F(M) linsieme N, = F~(a)\ Crit(F) ¢ una sottovarieta k-dimensionale di M. In
particolare, se a € N & un valore regolare allora F~1(a) ¢ una sottovarieta k-dimensionale di M.

(ii) Se p € N, lo spazio tangente di N, in p coincide con il nucleo di dF,. In particolare, se N = R
e FF=f e C>®(M), allora lo spazio tangente di N, in p é dato dai vettori v € T,M tali che v(f) = 0.

Dimostrazione: La prima parte si dimostra esattamente come nella Proposizione 2.1.2, usando carte locali
(esercizio). Per la seconda parte, e indichiamo con t: N, — M linclusione. Allora per ogni p € N,
possiamo identificare T, N, con la sua immagine tramite di, in T, M, e quindi dobbiamo dimostrare che
dip(T,N,) = Ker dF),. Siccome p non € un punto critico, entrambi questi spazi hanno dimensione k; quindi
ci basta dimostrare che sono uno contenuto nell’altro. Prendiamo v € T,N, e f € C* (F (p)) Allora

dF,(diy(v))(£) = d(F o ¢),(v)(f) =v(fo Foi) =v(fo Fly,) =0,
in quanto F|y, & costante. Quindi dF),(de,(v)) = O, e duy(v) € Ker dF,, come voluto. O

Esercizio 2.5.9. Sia M C N un sottoinsieme di una varieta N tale che per ogni p € M esista un intorno U
di pin N per cui M NU sia una sottovarieta k-dimensionale di N. Dimostra che allora M & una sottovarieta
k-dimensionale di N.

Esercizio 2.5.10. Sia F: M — N un embedding di una m-varietd M in una n-varieta N. Dimostra che per
ogni p € M esistono un intorno aperto U C M di p, un intorno aperto V.C N di F(p), e due sommersioni
G:V—->MeH:V —-R"™taliche GoFly =idy e F(U) =V NF(M)=H"0).

Esercizio 2.5.11. Sia F: M — N un’applicazione differenziabile fra varieta, e S C N una sottovarieta.
Diremo che F' ¢ trasversa a S se per ogni p € F~1(S) si ha Tp N = dF,(T,M) + Tr(,)S, dove la somma
non & necessariamente diretta. Dimostra che se F' & trasversa a S allora F'~1(S) ¢ una sottovarieta di M di
codimensione uguale alla codimensione di S in V.

Concludiamo questa sezione citando due importanti risultati che non abbiamo il tempo di dimostrare.
Il primo teorema, dimostrato da Whitney nel 1944, ci dice che ogni varieta puo essere realizzata come
sottovarieta di uno spazio euclideo di dimensione abbastanza grande:

. N . . \ . N . oy 2n4-1
Teorema 2.5.6: Ogni varieta M n-dimensionale puo essere realizzata come sottovarieta chiusa di R*"*! e

come sottovarieta (non necessariamente chiusa) di R?". In altre parole, esistono un embedding proprio di M
in R**! e un embedding di M in R*".

Il secondo teorema & una caratterizzazione di quali sottogruppi di un gruppo di Lie sono sottovarieta:

Teorema 2.5.7: Sia G un gruppo di Lie, e H un suo sottogruppo. Allora H & una sottovarieta di G (e

quindi un gruppo di Lie) se e solo se é un sottoinsieme chiuso di G.



Capitolo 3

Fibrati vettoriali

3.1 Definizioni ed esempi

Uno dei motivi per cui la struttura di varieta e cosi utile e che 'unione disgiunta degli spazi tangenti a una
varieta ha a sua volta una struttura naturale di varieta. Si tratta del primo esempio di una categoria di
oggetti estremamente importanti, i fibrati vettoriali.

Definizione 3.1.1: Un fibrato vettoriale di rango r su una varieta M e un’applicazione differenziabile surget-
tiva m: E — M fra una varieta E (detta spazio totale del fibrato) e la varieta M (detta base del fibrato) che
soddisfa le seguenti proprieta:

(i) per ogni p € M linsieme E, = 7~ '(p), detto fibra di E sopra p, ¢ dotato di una struttura di spazio
vettoriale su R di dimensione r, e indicheremo con O, il vettore nullo di Ej;

(ii) per ogni p € M esiste un intorno U di p in M e un diffeomorfismo x:7~}(U) — U x R", detto
banalizzazione locale di E, tale che m oy = 7 (dove abbiamo indicato con 71: U x R” — U la proiezione
sulla prima coordinata), e tale che la restrizione di x a ciascuna fibra sia un isomorfismo fra gli spazi
vettoriali E, e {p} x R".

I fibrati vettoriali di rango 1 sono chiamati fibrati in rette. Quando non c’e rischio di confondersi useremo lo

spazio totale E per indicare un fibrato vettoriale 7: E — M, sottintendendo la proiezione 7. Infine, partendo

da spazi vettoriali su C invece che da spazi vettoriali su R si ottiene la nozione di fibrato vettoriale complesso.

In altre parole, un fibrato vettoriale & un modo differenziabile di associare uno spazio vettoriale a ciascun
punto di una varieta.

Esempio 3.1.1. Se M & una varieta, allora E = M x R" considerato con la proiezione m: M x R" — M
sulla prima coordinata e un fibrato vettoriale di rango r, detto fibrato banale.

Esempio 3.1.2. Se m:E — M & un fibrato vettoriale su M di rango r, e U C M & aperto, allora
my: By — U, dove By = 7 1(U) e my = Tlr—1(v), ¢ un fibrato vettoriale di rango r su U, detto restri-
zionedi F a U.

Esercizio 3.1.1. Sia m: E — M un fibrato vettoriale di rango r sulla varieta M, e S C M una sottovarieta.
Dimostra che 7g: E|g — S, dove E|ls = 77(S) e mg = 7|,-1(g), ¢ un fibrato vettoriale di rango r su S,
detto restrizione di E a S. (Suggerimento: pud essere utile I'Esercizio 2.5.11).

C’¢ un modo tipico per verificare se una collezione di spazi vettoriali ¢ un fibrato vettoriale:

Proposizione 3.1.1: Siano M una varieta, E un insieme e m: E — M un’applicazione surgettiva. Sup-
poniamo di avere un atlante A = {(U,,¢a)} di M e applicazioni bigettive xo: 7 1(Uy) — U, x R tali
che

(a) m 0 xa =, dove m1: U — R" — U é la proiezione sulla prima coordinata;
(b) per ogni coppia («, 8) di indici tale che U, N Ug # @ esiste un’applicazione differenziabile

9ap:Ua NUg — GL(1,R)

tale che la composizione X, © XEIZ (UaNUg) xR" — (U, NUg) x R" sia della forma

Xa © X5 (p:0) = (P, 9ap(p)v). (3.1.1)
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Allora l'insieme E ammette un’unica struttura di fibrato vettoriale di rango r su M per cui le x, siano
banalizzazioni locali.

Dimostrazione: Poniamo E, = 7~1(p) per ogni p € M. Se p € U,, la restrizione di y, a E, & una bigezione
con {p} x R", e quindi possiamo usarla per definire una struttura di spazio vettoriale su E,: se u1, us € E,
sono tali che xq(u;) = (p,v;) per opportuni vy, v € R", poniamo

uy +uz = x5 (p,v1 + v2) e Ay = x5 (p, Avr) (3.1.2)

per ogni A € R. A priori, la struttura di spazio vettoriale cosi definita potrebbe dipendere dalla banaliz-
zazione Y, usata, nel qual caso saremmo nei guai, in quanto in un fibrato vettoriale la struttura di spazio
vettoriale delle fibre dev’essere definita indipendentemente dalle banalizzazioni. Ma per fortuna la (3.1.1)
ci evita questo problema. Infatti, se p appartiene anche a un altro Ug, e scriviamo xg(u;) = (p,w;) per
opportuni wi, wy € R", abbiamo

(p7 Uj) = Xa © Xgl(pv wj) = (p7 gaﬂ(p)wj)v

cioe v; = gag(p)w;, € quindi

Xa' (0,1 +02) = X5 (9, Gap(P)w1 + gap(P)w2) = x5 ' (P, gas(p) (w1 + w2))

=Xa' 0o (Xa 0 X5 ") (P w1 + w2) = x5 (p, w1 +w2),

per cui 'operazione di somma non dipende dalla banalizzazione usata per definirla. Analogamente si dimostra
che I'operazione di prodotto per uno scalare & ben definita.

Poniamo ora U, = 77 1(Uy) € Xa = (@a,id) 0 Xo. Allora f(aof(gl = (@aogpgl,gaﬁowgl) ¢ di classe C*°,
per cui A = {(Us, Xa)} ¢ un atlante su £ di dimensione n + r, che soddisfa (esercizio) tutte le proprieta
necessarie perché m: E — M sia un fibrato vettoriale.

Viceversa, supponiamo di avere su F una struttura di fibrato vettoriale per cui le x,, siano banalizzazioni
locali. In tal caso, le x, devono indurre isomorfismi fra le fibre ed R", per cui la (3.1.2) dev’essere valida,
e la struttura di spazio vettoriale su ciascuna fibra ¢ unica. Inoltre, le Xo = (¢q,1d) 0 X4 sono chiaramente
diffeomorfismi con aperti di R™"", dove n = dim M, e quindi la struttura differenziabile di E coincide con
quella indotta dall’atlante A definito tramite le Yq. Il

Definizione 3.1.2: Sia m: E — M un fibrato vettoriale. Diremo che una carta locale (U, p) di M banalizza E
se esiste una banalizzazione locale del fibrato definita su 7= 1(U). Un atlante A di M banalizza il fibrato E
se ogni carta di A lo fa.

Sia A = {(U,,pa)} un atlante che banalizza un fibrato vettoriale m: E — M, e indichiamo con x4
la banalizzazione sopra U,. Allora le composizioni x, o Xgl devono indurre per ogni p € U, N Ug un
isomorfismo di R" che dipende in modo C* da p, per cui devono necessariamente esistere applicazioni
differenziabili gog: Uy N Uz — GL(r,R) che soddisfano (3.1.1).

Definizione 3.1.3: Sia A = {(Uq, ¢o)} un atlante che banalizza un fibrato vettoriale =: E — M. Le appli-
cazioni go3: Uy NUg — GL(r,R) che soddisfano (3.1.1) sono dette funzioni di transizione per il fibrato E
rispetto all’atlante A.

I prossimi due esercizi mostrano come per definire un fibrato vettoriale su una varieta M sia sufficiente
avere le funzioni di transizione.

Esercizio 3.1.2. Siano {gas} le funzioni di transizione di un fibrato vettoriale m: E — M rispetto a un
atlante A = {(Uqn,pa)} di M. Dimostra che gg, = g;& (inversa di matrici) su U, NUg # &, e che
9aB98y = Yo~ (prodotto di matrici) su Uy NUg N U, # @.

FEsercizio 8.1.8. Supponiamo di avere un atlante A = {(Uy, pa)} su M, e funzioni g,g: Uy NUg — GL(r,R)
che soddisfano le proprieta dell’esercizio precedente. Dimostra che esiste un unico (a meno di isomorfismi:
vedi oltre per I'ovvia definizione di isomorfismo fra fibrati vettoriali) fibrato vettoriale E su M che abbia
le gop come funzioni di transizione rispetto all’atlante A. (Suggerimento: leggi 'Esempio 3.1.4 piu sotto.)
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Proviamo ad applicare la Proposizione 3.1.1 agli spazi tangenti. Data una varieta M, indichiamo con T'M
I'unione disgiunta degli spazi tangenti T}, M al variare di p € M, e sia m: T'M — M la proiezione che manda
ciascun T, M in p. Dato un atlante {(Uy, @)}, possiamo definire bigezioni xo: 7! (Uys) — U, x R™ ponendo

0
Xa ZU] N = (p7v)7
i Ozaly
dove o = (zL,...,2%) e v = (v},...,v"). La (2.4.2) ci dice allora che
"L | & Ozt |0 Oz
a0 Xz (pv) = v]— = Xa S| =<p,—apv),
Xa 0 X Z ol ) 21250 | g, 5y )

dove 0z, /0x3 ¢ la matrice jacobiana del cambiamento di coordinate ¢, o @El. Quindi (3.1.1) & soddisfatta
con

Oz,
Jap = a.’I/'@’
per cui otteniamo una struttura di fibrato vettoriale su T'M.

Definizione 3.1.4: Sia M una varieta di dimensione n. Il fibrato vettoriale m: TM — M di rango n con la
struttura appena definita si dice fibrato tangente alla varieta.

Un altro esempio ¢ il fibrato cotangente. Indichiamo con Ty M lo spazio duale di T),M, e con T"M
I'unione disgiunta dei Ty M al variare di p € M, con l'ovvia proiezione m:T*M — M. Data una carta
locale @o = (x},...,x%) in p € M, indichiamo con {dz}|p,...,dz%[,} la base di T;yM duale della base

[e 2 [

{8/0z}|,,...,0/027|,} di T, M. E facile verificare che (2.4.2) implica

" Ok
dafil, = aTf(p) dzl|,, (3.1.3)
h=1 @

per cui possiamo nuovamente applicare la Proposizione 3.1.1. Infatti, se definiamo xo: 7 }(U,) — U, x R”
anche stavolta ponendo

n
Zwﬂ dx31|17 = (pa wT)7
Jj=1

dove wT € R™ ¢ il vettore colonna trasposto del vettore riga (wy, ..., w,) € (R™)*, otteniamo
Xa 0 X' (pyw ij drfly | = Xa Zn: ) g%%@)wj dall, | = <p, [%(?)}TU/T) ;
h=1 |j=1 """«
per cui recuperiamo (3.1.1) con
3}
Jap = [ . ] :

dove AT indica la trasposta della matrice A.

Definizione 3.1.5: Sia M una varieta di dimensione n. Il fibrato vettoriale m: T*M — M di rango n con la
struttura appena definita si dice fibrato cotangente alla varieta.

Osservazione 3.1.1. Data una carta locale ¢ = ( L ...,2") in un punto p di una varietdh M, abbiamo

introdotto due notazioni pericolosamente simili: d:vJ , che indica il differenziale in p della funzione coordi-
nata z7, e dz’|,, 'elemento della base duale di T;M . Per fortuna, ricordando 1’Osservazione 2.4.6 di fatto
possiamo identificare questi due oggetti. Infatti, dxg, e un’applicazione lineare da 7, M a valori in R, per cui

¢ un elemento di 77 M; inoltre,
0 0z’ ;
o (W ) = 5 ) =0

per cui dv), = da’|,.
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Osservazione 3.1.2. Come diventera ancora piu chiaro a partire dal prossimo capitolo, in geometria
differenziale ¢ importante mantenere distinti vettori colonna e vettori riga, ovvero non identificare R™ con
il suo duale (R™)*. La scelta di una base fornisce un isomorfismo fra T, M e R"; la scelta della base duale
corrisponde a considerare I'inversa del duale di questo isomorfismo, e quindi identifica 7,y M con (R")*. In
altre parole, le coordinate rispetto alla base duale degli elementi di 7)) M vivono in maniera naturale in (R™)*,
per cui sono vettori riga, e non vettori colonna. Siccome come modello per i fibrati vettoriali usiamo R" e
non il suo duale, nelle formule riguardanti il fibrato cotangente siamo costretti a introdurre la trasposizione.
In particolare, le funzioni di transizione del fibrato cotangente sono le inverse trasposte delle funzioni di
transizione del fibrato tangente, e non semplicemente le inverse.

Nel Capitolo 1 abbiamo visto altre operazioni che possiamo effettuare sugli spazi vettoriali 1), M; pos-
siamo per esempio costruire l'algebra tensoriale, o 1’algebra esterna. Abbiamo anche visto come ottenere
delle basi di questi spazi, facendo prodotti tensoriali o prodotti esterni di elementi delle basi di T, M e T,y M.
La multilinearita del prodotto tensoriale e del prodotto esterno ci dice anche come cambiano queste basi
cambiando carte locali: otteniamo formule del tipo

0 0
— R ® . ®dzh1®...®dmhs
At oxir B B
B B
n n a ar h1 hs
_ E § 8xa1 axa axﬁ axﬁ 9 dxb drxbs
= ajl.”ajrabl.”absax‘“@”.@W@ Ty Q- Qaxy,
aryemar=1by,...b,=1 913 Tg Ola Lo Tha =

per cui possiamo procedere (esercizio) come fatto nel caso dei fibrati tangente e cotangente, ottenendo i
fibrati tensoriali.

Definizione 3.1.6: Sia M una varieta. Indichiamo con T} M I'unione disgiunta degli spazi T} (T, M) al variare
dip € M, esia m: TFM — M la proiezione associata. Allora T}* M, con la struttura naturale sopra descritta,
¢ detto fibrato dei (];) -tensori su M. Indicheremo invece con \" M il fibrato delle r-forme ottenuto prendendo

I'unione disgiunta degli spazi A" (T, M). In particolare, A' M =T*M.

Osservazione 3.1.3. Attenzione: /\:j M & uguale a \" (T M) e non a \"(T,M) come ci si sarebbe potuti
aspettare, per cui A" M & contenuto in TOM invece di Ty M. Il motivo di questa scelta ¢ che mentre il
fibrato delle r-forme come definito qui € infinitamente utile in geometria differenziale, il fibrato ottenuto
considerando gli spazi A" (T, M) viene usato cosi di rado da non meritare un simbolo speciale.

I fibrati tensoriali naturalmente non esauriscono la categoria dei fibrati vettoriali interessanti.

EseEmMPIO 3.1.3. Sia S una sottovarieta di dimensione k di una varieta n-dimensionale M. Abbiamo gia
osservato come per ogni p € S possiamo identificare ciascun 7,5 con un sottospazio vettoriale di T,,M.
Allora il fibrato normale di S in M ¢ il fibrato vettoriale Ng su .S di rango n — k ottenuto prendendo 1'unione
disgiunta degli spazi vettoriali quozienti T, M /T,S, con la proiezione naturale m: Ng — S. Per costruire le
banalizzazioni locali, scegliamo un atlante {(Ua, pq)} di S in modo che ciascuna carta (U,, ¢q) provenga

da una carta (Uy, $o) di M come indicato nel Corollario 2.5.4. In particolare, posto @, = (zk,...,27), per
ogni p € U, i vettori {9/9zL],,...,0/0x%|,} formano una base di 7,5, per cui una base di T,M/T,S
¢ data da {0/0zF*Y, + T,S,...,0/02"|, + T,S}. Quindi possiamo definire una banalizzazione locale

Xa: T 1 (Uy) — Uy X R™ ¥ ponendo

+TPS> = (pvv)v
p

n—k ' 9
Xa Z(a—

Jj=1

e non ¢ difficile (esercizio) verificare che le ipotesi della Proposizione 3.1.1 sono soddisfatte.

Esercizio 3.1.4. Definisci i concetti di sottofibrato di un fibrato vettoriale, di quoziente di un fibrato per
un suo sottofibrato, di somma diretta e di prodotto tensoriale di due fibrati sulla stessa varieta, e ve-
rifica che il fibrato normale Ng introdotto nel precedente esempio puo essere identificato con il fibrato
quoziente TM|g/TS, dove TM|s ¢ la restrizione di TM a S (vedi I'Esercizio 3.1.1).
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EsEmPIO 3.1.4. Vogliamo introdurre una famiglia di fibrati in rette sullo spazio proiettivo P"(R). Sia
A={(Uy,¢0),--.,(Un,pn)} latlante introdotto nell’Esempio 2.1.12, e prendiamo d € Z. Indichiamo con Ey4
I'unione disgiunta degli insiemi Uy X R, ..., U, x R quozientato rispetto alla relazione d’equivalenza ~ cosi
definita: (z,\) € Up, x R & equivalente a (#, A) € Uy X R se e solo se

d
- o\ <
rT=71 e ={=] M
x

dove abbiamo scritto © = [z : z"] come al solito. In particolare, (z,\) ~ (&) implica che
x = 2 € Up N U, per cui la relazione d’equivalenza ¢ ben definita e abbiamo una proiezione natu-
rale m: Ey — P"(R). E ora facile usare la Proposizione 3.1.1 per dimostrare che abbiamo definito dei
fibrati in rette: infatti per ogni j = 0, ..., n la proiezione sul quoziente ¢ una bigezione fra U; xR e 71'_1(Uj)7
per cui possiamo usarne linversa x;: 71 (U;) — U; x R per definire le banalizzazioni locali. Per costruzione
le funzioni di transizione gpx: Up N Uy — GL(1,R) = R* sono date da

gnk(z) = (%)d .

Chiaramente, Ey = P"(R) x R & il fibrato in rette banale. Si puo inoltre dimostrare che gli Ey4, a meno di
isomorfismi (vedi sotto per la definizione — ovvia — di isomorfismo fra fibrati), sono tutti e soli i fibrati in
rette su P”.

0 . ...

Concludiamo questo paragrafo introducendo anche le applicazioni fra fibrati:

Definizione 3.1.7: Siano m1: By — M e my: B3 — My due fibrati vettoriali. Un morfismo fra i due fibrati
¢ una coppia di applicazioni differenziabili L: By — Eo e F: My — M tali che mp 0 L = F oy (per cui
L((E1)p) € (B2)p(p) per ognip € My, cioé L manda fibre in fibre), e che L|(g,),: (E1)p, — (E2) p(p) sia lineare
per ogni p € M. Un morfismo invertibile (cioé tale che sia L che F' siano diffeomorfismi) ¢ detto isomorfi-
smo di fibrati vettoriali. A volte indicheremo un morfismo di fibrati scrivendo semplicemente L: £; — FEy
sottintendendo ’applicazione F'. Quando M; = My, cioe se E1 ed E5 sono fibrati sulla stessa base, a meno
di avviso di contrario supporremo sempre che I’applicazione F' sia l'identita, per cui L soddisfa w5 o L = 7.
Spesso viene detto banale un qualsiasi fibrato vettoriale isomorfo al fibrato banale.

In altre parole, un morfismo di fibrati &€ un’applicazione che rispetta sia la struttura differenziabile che
la struttura di fibrato vettoriale.

Esercizio 3.1.5. Se F: M — N & un’applicazione differenziabile, dimostra che dF: TM — TN & un morfismo
di fibrati.

Esercizio 3.1.6. Sia F: M — N un’applicazione differenziabile, e m: E'— N un fibrato vettoriale di rango r
su N. Per ogni p € M poniamo (F*E), = Ep(, e sia ["*E 'unione disgiunta degli (F*E), al variare
di p € M, con la proiezione canonica 7: F*E — M. Dimostra che F*E ha una struttura naturale di fibrato
vettoriale di rango r su M, detto fibrato pull-back (o fibrato indotto) di E rispetto a F. Dimostra inoltre
che se 1: S — M & una sottovarieta e E ¢ un fibrato su M, allora .*F = E|g.

FEsercizio 3.1.7. Sia (L, F') un morfismo fra i fibrati vettoriali m1: F1 — M; e mo: F3 — Ms. Dimostra che
Ker(L,F) = {v € By | L(v) = Op@)} € E1 ¢ un sottofibrato di E1, e che Im(L, F) = L(E;) € Es ¢ un
sottofibrato di Es.

Esercizio 3.1.8. Sia A = {(Uy, pa)} un atlante che banalizza due fibrati vettoriali m: E — M e 7: E — M
di rango 7 su M, e indichiamo con {gag} € {Jag} le relative funzioni di transizione. Dimostra che E e E
sono isomorfi se e solo se esistono applicazioni differenziabili o,: U, — GL(r,R) tali che jog = 0, gapsos.
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3.2 Sezioni di fibrati

Quando si ha un fibrato vettoriale, una cosa che risulta molto utile ¢ studiare le applicazioni dalla base allo
spazio totale del fibrato che associano a ogni punto della base un elemento della fibra su quel punto.

Definizione 3.2.1: Sia m: E — M un fibrato vettoriale su una varieta M. Una sezione di E ¢ un’applicazione
differenziabile s: M — E tale che m o s = idy, cioé tale che s(p) € E, per ogni p € M. Lo spazio vettoriale
delle sezioni di E verra indicato con £(M). La sezione O € (M) che a ogni punto p € M associa il vettore
nullo O, € E, ¢ detta sezione nulla di E.

N

Osservazione 3.2.1. Se E = M x R" ¢ il fibrato banale di rango r, allora lo spazio delle sezioni £(M)
¢ canonicamente isomorfo allo spazio C*°(M,R") delle applicazioni differenziabili a valori in R". Infatti, se
s € E(M) & una sezione allora mp 0 s € C°(M,R"), dove m: M x R” — R" & la proiezione sulla seconda
coordinata; viceversa, se F' € C*°(M,R") allora p — (p, F(p)) ¢ una sezione di M x R". Quindi in un certo
senso le sezioni di un fibrato sono una generalizzazione delle applicazioni differenziabili a valori in R".

Osservazione 3.2.2. Ogni fibrato vettoriale ammette sezioni. Sia 7m: E — M un fibrato vettoriale di
rango r, e x: 7 1(U) — U x R" una banalizzazione locale. Scegliamo una qualsiasi applicazione differenzia-
bile F:U — R" e sia p € C*°(M) tale che supp(p) C U. Allora applicazione s: M — FE data da

s(p) = { X PP F(p)) ifpel,
w15, it p € M\ supp(p),

¢ chiaramente una sezione di E.
Le sezioni del fibrato tangente, e piu in generale dei fibrati tensoriali, hanno nomi particolari.

Definizione 3.2.2: Un campo vettoriale su una varieta M & una sezione del fibrato tangente TM. Lo spazio
vettoriale dei campi vettoriali su M verra indicato con 7 (M). Una k-forma differenziale su M & una sezione
del fibrato A" M. Lo spazio vettoriale delle k-forme differenziali su M verra indicato con A*(M). Un campo
tensoriale di tipo (’f) (o (’;)—tensore) su M & una sezione del fibrato T* M. Lo spazio vettoriale dei (’;)—tensori
verrd indicato con T,F(M).

Osservazione 3.2.3. Se X € T (M) ¢ un campo vettoriale e p € M, a volte scriveremo X, invece di X (p).
Analogamente, se w € A¥(M) & una k-forma, a volte scriveremo w,, invece di w(p).

Sia (U, ¢) una carta in p € M, e scriviamo ¢ = (z!,...,2™) come al solito. Abbiamo quindi delle sezioni

locali 01,...,0, di TM definite su U ponendo

9i(p) = 5

e T,M.
p

Se X € T(M) & un campo vettoriale qualsiasi e p € U, allora X (p) dev’essere una combinazione lineare di
01(p), . ..,0n(p), per cui possiamo trovare funzioni a',...,a": U — R tali che

X(p) =Y _ a’(p)d;(p).
j=1

Siccome (al(p), .oat (p)) = dp, (X(p)), si vede subito che le funzioni a7 sono di classe C.
Osservazione 3.2.4. A volte scriveremo anche

n

X =Y o,

Jj=1

dove le @’ sono funzioni C*° definite su un aperto di R” (I'immagine della carta locale), e non su un aperto
di M (il dominio della carta locale). In altre parole, a’(z) = a’ o p~1(x) per ogni z € ¢(U).
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Se (U, @) & un’altra carta con U N U + @, sappiamo che

oxk

ah = :1Waka

su UNU. Quindi se scriviamo X =3, a?d; =Y, a" 9y troviamo

Z 8xh h (3.2.1)
h=1

che ¢ la formula che ci dice come cambiano i coefficienti di un campo vettoriale al cambiare della carta.

FEsercizio 3.2.1. Sia A = {(Ua, ¢o)} un atlante su una n-varietd M. Supponiamo di avere per ogni «
una n-upla di funzioni a, = (al,...,a?) € C*(U,)™ in modo che su U, N Up le a, e le ag siano legate
da (3.2.1). Dimostra che la formula X = 3, al,0j o, dove ;. = 0/0x),, definisce un campo vettoriale
globale X € T(M).

Dunque la scelta di coordinate locali fornisce una base dello spazio tangente che varia in modo differen-
ziabile sul corrispondente aperto coordinato, il primo esempio di riferimento locale per un fibrato vettoriale.

Definizione 3.2.3: Sia m: E — M un fibrato vettoriale di rango r sulla varieta M, e U C M un apertodi M. Un
riferimento locale per E su U & una r-upla o1, ...,0, € £(U) di sezioni di E su U tali che {o1(p),...,0-(p)}
sia una base di E, per ogni p € U.

Osservazione 3.2.5. Dare un riferimento locale € equivalente a dare una banalizzazione locale. In-
fatti, sia x: 7 1(U) — U x R" una banalizzazione locale di un fibrato vettoriale E di rango r. Ponendo
o;(p) = x Y(p,e;), dove e; & il j-esimo vettore della base canonica di R", otteniamo chiaramente un ri-
ferimento locale per E su U. Viceversa, se {o1,...,0,} & un riferimento locale per F su U, definiamo
&U xR" — 7= 1(U) ponendo

Ep,w) =w'o1(p) + -+ +w'on(p) € Ep.

Chiaramente £ & bigettiva, di classe C®, e x = £~ & una banalizzazione locale. L’unica cosa non del
tutto ovvia e verificare che y sia di classe C*°. Per dimostrarlo scegliamo una qualsiasi banalizzazione y
nell’intorno di p € U, e sia {51, ...,5,} il corrispondente riferimento locale. Inoltre, poniamo Y, = m3 o ¥,
dove mo:U x R" — R" & la proiezione sulla seconda coordinata, in modo che si abbia x(v) = (p, )Zo(v)).

Scriviamo Xo(0;) = (aj,...,a}); allora (a") & una matrice invertibile con elementi di classe C°, per cui

J
anche la sua inversa B = (b’) ha tutti gli elementi di classe C>, e si ha &), =3 _; v ,0j. Ma allora se v € E,

abbiamo
’U*Z’U Gp = Z vhbjaj,

h,j=1

dove (01,...,97) = X, (v), per cui v = £(p,w) con w = BY,(v), e quindi

x(v) = (p, BXo(v))
e di classe C'°°, come voluto.

Osservazione 3.2.6. Una conseguenza della precedente osservazione ¢ che un fibrato vettoriale & (isomorfo
al fibrato) banale se e solo se ammette un riferimento globale.

Siano x. e xp due banalizzazioni locali, e {o1,4,...,0ra}, {01,8,...,0,3} 1 corrispondenti riferimenti
locali. Se scriviamo 0,5 = Y-, (gap)s Ok,o abbiamo

( 72(9@6)?@6) = Xa (Z(gaﬁ) Ok a) = Xa(aj,ﬁ) = Xa © Xgl(p7 ej) = (p7 gaﬁ(p)ej)u

k k
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dove gop € la funzione di transizione da x, a xg, per cui le (gag)g? sono le componenti della funzione di
transizione gng.
Sia ora ¢ una sezione qualunque di E, e scriviamo o = >, al0ja = >, agahﬁ. Allora il conto

precedente ci dice che
T

al, = (gap)] afy, (3.2.2)
h=1

¢ la formula che esprime come cambiano i coefficienti di una sezione al cambiare della banalizzazione locale.

Esercizio 3.2.2. Sia A = {(Uy, o)} un atlante su M, e gop: Uy, N Ug — GL(r,R) una famiglia di fun-
zioni di transizione per un fibrato E. Supponi di avere per ogni « una r-upla di funzioni differenziabili
ao = (al,...,a%) € C*(U,)" in modo che su U, NUg le a, e le ag siano legate da (3.2.2). Dimostra che

esiste un’unica sezione o di E tale che le a/, siano i coefficienti di o relativi a un appropriato riferimento
locale su U,.

FEsercizio 3.2.3. Sia 0: M — E una sezione (non necessariamente C*) di un fibrato vettoriale su M.
Dimostra che o & C* se e solo se per ogni riferimento locale {o1,...,0,} di E su U C M si puo scrivere
o=altoy + - +a"o, conal,...;a"” € C®(U) se e solo se questo avviene per una famiglia di riferimenti
locali i cui domini di definizione formano un ricoprimento aperto di M.

EsEMPIO 3.2.1. Una funzione f:R™' — R & detta d-omogenea (con d € Z) se f(Ax) = Mf(z) per
ogni A € R* e z € R". E evidente che ogni funzione 0-omogenee f:R"™! — R definisce una fun-
zione f € C*® (P"(R)) tale che fom=f, dove m: R"™\ {O} — P"(R) ¢ la proiezione naturale. Viceversa,
ogni funzione 0-omogenea e della forma f o per un’opportuna funzione C'°° definita sullo spazio proiettivo.
Ricordando 1’Osservazione 3.2.1, abbiamo quindi un isomorfismo fra lo spazio delle funzioni 0-omogenee
su R™"! e lo spazio delle sezioni del fibrato banale Ey = P"(R) x R. Vogliamo ora far vedere che, piti in
generale, ¢’& un naturale isomorfismo fra lo spazio delle funzioni d-omogenee su R" ™ e lo spazio &y (IP’"(]R))
delle sezioni del fibrato in rette mq: Eq — P™(R) introdotto nell’Esempio 3.1.4. Infatti, sia f:R"*" — R una
funzione d-omogenea, e definiamo f:P"(R) — E4 nel seguente modo:

Vo € Uj f($)=X}1<$,f([$]j>)7
dove [z]; € R™™ & l'unico elemento y € R™™ tale che 7(y) = z e y? = 1. Per verificare che f & una sezione
di Ey ¢ sufficiente controllare che sia ben definita, visto che localmente ¢ chiaramente C'°°. Sia x € Uy N Uyg;
allora [z], = (z¥/2")[x]x, per cui ricordando la definizione di F4 troviamo

i o i (. (1) = (m (j—i)dmxm) = (o (55 12k) ) = (o 1),

e f & ben definita. Viceversa, data f € & (P"(R)) possiamo definire fi:U; — R con x; (f(m)) = (z, fi(z))
per ogni x € U;j e ogni j =0,...,n. Se x € Uy N Uy si verifica subito che

fe(@) = (mh>dfh(x). (3.2.3)

xk

Possiamo allora definire f: R™*' — R ponendo f(O) =0e f(y) = (yj)dfj (7(y)) per un qualsiasi j =0,...,n
tale che y/ # 0. Grazie alla (3.2.3) si vede subito che f & ben definita, ed & chiaramente d-omogenea.

EsEMPIO 3.2.2. Se M & una varieta di dimensione n, allora TM ¢ una varieta di dimensione 2n, per cui
possiamo considerare il fibrato tangente del tangente 7: T(TM) — T'M di rango 2n su TM. Vogliamo ora
descrivere dei riferimenti locali naturali per T'(TM). Sia (U, ¢) una carta locale per M; abbiamo visto che ¢
induce una banalizzazione locale x: 7~ 1(U) — U x R™ e un riferimento locale {0y, ...,8,} per TM tali che

x(v) = (p,(v',...,v")) seesolose v=10v'O,+  +0"dy|, € T,M,



3.2 Sezioni di fibrati 47

dove m:TM — M & la proiezione naturale. Inoltre, se poniamo ¥ = (ip,id) o x otteniamo una carta
locale (771(U),x) di TM. Scrivendo ¢ = (z',...,2") & chiaro che x(v) = (z'(p),...,z"(p),v',...,v")
per ogni v € T,M e p € U. Dunque alla carta locale x di T'M possiamo associare il riferimento locale
{0/0z,...,0/0x™,0/0v,... 0/0v"} di T(TM) sopra 7—1(U) = TU. Per capire meglio chi sono 9/9xz"
e 0/0v* vediamo come si comportano rispetto al differenziale della proiezione 7. Ora, se f € C°°(U) ¢ chiaro

(perché?) che

0 0
gor| Uem =) e 5| (rom=0

2
ok |,

quale che sia v € T,M; in altre parole, i d/0z" riproducono la derivate nelle coordinate di M, mentre i
0/0v* danno le derivate delle funzioni ristrette ai singoli spazi tangenti. In termini piti formali, questo vuol
dire che dm,(9/0z") = Oh|x(v) € dmy(9/0V") = Or(y). In particolare, {9/0v',...,8/0v"} & un riferimento
locale per il fibrato verticale V = Ker(dr) C T(T'M). Nota che mentre il fibrato verticale ¢ ben definito
indipendentemente dalla carta locale scelta, non esiste una definizione canonica per un “fibrato orizzontale”
H C T(TM) tale che T(TM) = H @ V; per esempio, ¢ facile dimostrare (esercizio) che, in generale, se
¢ = (2',...,2") & un’altra carta locale allora Span(d/dx!,...,8/0z™) # Span(d/0z!,...,0/07"). Ne
riparleremo nel prossimo capitolo quando introdurremo il concetto di connessione.

EseEMPIO 3.2.3. Sep = (z!,...,2") & una carta locale su M, allora le 1-forme {dz!, ..., dz"} definite come
base duale di {61, ...,0,} (o come differenziale delle coordinate locali; vedi 1'Osservazione 3.1.1) formano un
riferimento locale del fibrato cotangente. La Proposizione 1.3.4 allora implica che un riferimento locale per
il fibrato /\k M delle k-forme & dato dalle forme

dz"™ A - N dz'*
con 1 <i; <--- < i <n, per cui ogni k-forma si puo scrivere localmente come
w= E @iy . AT N N da
1<y < <ip<n

per opportune funzioni a;, _;,. In particolare, quando k = n un riferimento locale per il fibrato in rette A" M
¢ dato dalla n-forma dzt A---Adz™. Se ¢ = (#1,...,3") & un’altra carta locale, usando la (3.1.3) e ricordando
I’Osservazione 1.3.7 troviamo subito che

~1 ~n 81‘}] 1 n
dZ" N+ ANdZ" =det | =— | do” A -+ Adx".
ozk

Abbiamo visto che i campi vettoriali si possono interpretare come derivazioni su C*°(M). Esiste un’in-
terpretazione nello stesso ordine d’idee per i campi tensoriali, interpretazione spesso utile:

Proposizione 3.2.1: Sia M una varieta. Allora
(i) Un’applicazione 7: AY(M)" x T(M)* — C°(M) & C°°(M)-multilineare se e solo se esiste un campo
tensoriale 7 € T,"(M) tale che

Flwh W X, X (p) = (W' (p), . .. ,WM(p), X1(p), . .. . Xk(p)) (3.2.4)
per tutti gli wt, ..., w" € AY(M), X1,...,Xp €T(M)epe M.
(ii) Un’applicazione #: T (M)* — T"(M) & C>(M)-multilineare se e solo se esiste un campo tensoriale
7 € T"(M) tale che
F( X1, X)) (W, .. wh) = Tp(wph, ... ,wg, Xi(p),-... Xx(p)) (3.2.5)
per tutti gliw},... . wh e TrM, Xy,..., X, € T(M) epe M.

Dimostrazione: (i) Dato 7 € 7,*'(M), cominciamo col dimostrare che 1’applicazione

p— 7'10(0.)1(17)7 ... 7wh(p),Xl(p)7 .. ,Xk(p))
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¢ di classe C*°(M) per ogni w',...,wh € AY(M) e X1,..., X} € T(M). Infatti, se (U, ) & una carta locale
in p, possiamo scrivere localmente w? = Yo wi dz”, 0; =, X305 e

r= Y 0, ®®0, 9d" e ®da, (3.2.6)
ULyee ey UR V505V

con wy, X7, Tyl € C°(U), per cui localmente abbiamo

T(w17...,wh7X1,...,Xk) = E ULl ~-~w3th1-~-X,g’“,

che & chiaramente di classe C*°. La stessa formula ci dice anche che I'applicazione 7 definita da (3.2.4) &
C*°(M)-multilineare.

Viceversa, supponiamo di avere una 7: AY(M)" x T(M)* — C°(M) che sia C°°(M)-multilineare;
vogliamo far vedere che proviene da un campo tensoriale. Prima di tutto, dimostriamo che se w! = O in
un intorno U di un punto p € M allora 7(w!,...,w" X1,..., X3)(p) = 0 per ogni w?,...,w" € A} (M)
eogni Xq...,X, € T(M). Il Corollario 2.3.2 ci fornisce una funzione g € C*°(M) tale che g(p) = 1
e glanw = 0. Allora gw' = O e quindi

'f(wl, e ,wh,Xl,...,Xk)(p) = g(p)i'(wl, e ,wh,Xl,...,Xk)(p) = %(gwl,...,wh,Xl, o XE)(p)
O,...,0" X1,...,X1)(p) =7(0-0,...,0" X1,..., X3)(p)
)

1 1 1

In particolare, se @' e @' sono tali che @' = @' in un intorno U di un punto p, applicando questo argomento

1 1

_ -1 ; A~ h — () h
aw! =o' — ! troviamo 7(@', ..., w" X1,..., Xg)(p) = (@, ..., 0", X1, ..., Xi)(p).

Lo stesso ragionamento si applica chiaramente a w?,...,w" e a X;,..., X}, per cui per calcolare
A~ 1 h . b .1 d. 1 h . .
F(wh, ..., w" X1,..., Xk)(p) ci basta conoscere il comportamento di w',...,w" X;,..., X in un intorno

di p. In altre parole, per ogni aperto U C M la 7 definisce un’applicazione 7r: AN (U)" x T(U)* — C>(U)
che & C*°(U)-multilineare.

Supponiamo adesso di prendere p € M e w! € A'(M) tale che w; = O, e scegliamo una carta locale (U, ¢)
centrata in p. Allora possiamo scrivere w!|y = > w} da” per opportune w; € C°°(U) con w} (p) = 0. Dunque

Fwl Lo XL X)) (p) = fu (o, w0 o, Xalos - Xklo) (p)

n
= 7A'U (Zwi CZJ,‘T,C¢)2|U7 e 7(,uh|U,)(1|U, e anU>
r=1

=Y wp)iv(da”, Wy, ..., W, Xilu, -, Xklv)(p) = 0,
r=1

Argomentando come sopra, e ripetendo il ragionamento per w?,...,w" e per X1,..., X}, vediamo quindi che

Fwh,...,wh Xq,..., Xg)(p) dipende esclusivamente dal valore di w?,...,w" Xi,..., X in p. Quindi per
ogni p € M la 7 induce un’applicazione R-multilineare (Tj; M)" x (T, M )* — R, ciod un elemento di T} (T, M ).
In altre parole, abbiamo dimostrato che 7 definisce un’unica sezione 7 di TM che soddisfa (3.2.4); per
concludere dobbiamo solo dimostrare che 7 & di classe C*°. Scriviamo 7 in coordinate locali come in (3.2.6);

allora
Tt = 7y (dx™ L dxt Oy, ., Oy, ) € C(U),

1...Vk

e 7 e di classe C'*° grazie all’Esercizio 3.2.3.
(ii) Un’applicazione 7: T (M)¥ — T"(M) & C°°(M)-multilineare se e solo se ponendo

Flwh LW Xy X)) = A(X LX) (W W)

otteniamo un’applicazione C°° (M )-multilineare 7: AL (M)" x T(M)* — C°(M). La tesi segue allora dalla
parte (i). O
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Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 3.2.4. Sia m: E — M un fibrato vettoriale su una varieta M, K C M un compatto, e U C M un
intorno aperto di K. Dimostra che per ogni sezione o € £(U) esiste una sezione & € £(M) tale che |k = 0| k.

Esercizio 3.2.5. Sia F: M — N un’applicazione differenziabile, e m: E'— N un fibrato vettoriale di rango r
su N. Dimostra che lo spazio delle sezioni su M del fibrato pull-back F*E (vedi 'Esercizio 3.1.5) & isomorfo
allo spazio delle applicazioni o: M — E di classe C*° tali che o(p) € Ep(,) per ogni p € M.

FEsercizio 3.2.6. Siano mE — M e n': E' — M due fibrati vettoriali su una varietd M. Dimostra che
un’applicazione F:E(M) — &£'(M) & C°°(M)-lineare se e solo se esiste un morfismo F: E — E’ di fibrati
tale che F(s) = F o s per ogni s € E(M).

Esercizio 8.2.7. Sia o: M — T M una sezione (non necessariamente C*). Dimostra che o & C*° se e solo

se per ogni aperto U C M, ogni k-upla di campi vettoriali Xi,...,X; € T(U) e ogni h-upla di 1-forme
wl, ..., wh e AY(U) la funzione p — O'p(w;, .. ,wg, Xi1(p), ... 7Xk(p)) ¢ di classe C*°.

FEsercizio 3.2.8. Dimostra che un’applicazione 7: (Al(M))h X (’T(M))k — TYM) & C>(M)-multilineare
se e solo se esiste un campo tensoriale 7 € T,"*' (M) tale che

Fwh W XL X @) s anh) = (w0t (D), W (0), Xa (), - Xik(p))
per ogui ny,...,nh € TrM, w',... ,w" e A(M), X1,..., X, € T(M) epe M.

Esercizio 3.2.9. Sia T € th(M) un campo tensoriale di tipo (2) Scelti 1 < i < hel < j <k, siano
wh ... wt € AY(M) delle 1-forme, e Xi,...,X; € T(M) dei campi vettoriali. Dimostra che I’applicazione
p = Tp (wl(p)7 conwi(p), s Xa(p), ..., X;(p), ) puo essere interpretata in modo naturale come un campo

tensoriale di tipo (27;)

Esercizio 3.2.10. Sia m: E — M un fibrato vettoriale di rango k su una varietd M, e siano o1, ...,0; € E(U)
sezioni di E su un aperto U C M tali che {o1(q),...,01(q)} siano linearmente indipendenti per ogni ¢ € U.
Dimostra che per ogni p € U possiamo trovare un intorno V. C U di p e sezioni 0j41,...,0, € E(V) tali
che {o1,...,0%} sia un riferimento locale di FE su V.

3.3 Flusso di un campo vettoriale

Torniamo adesso ai campi vettoriali, dandone una caratterizzazione equivalente.
Definizione 3.3.1: Sia A un’algebra sul campo K. Una derivazione di A € un’applicazione D: A — A che sia
K-lineare e che soddisfi la regola di Leibniz: D(ab) = aD(b) + bD(a) per ogni a, b € A.
Proposizione 3.3.1: Lo spazio vettoriale T (M) dei campi vettoriali su una varieta M é isomorfo allo spazio
vettoriale delle derivazioni X: C*°(M) — C*(M).
Dimostrazione: Sia X € T (M) un campo vettoriale. Per ogni f € C°°(M) otteniamo un’altra fun-
zione X f: M — R ponendo

(Xf)(p) = Xp(f),
dove f € C*°(p) ¢ il germe rappresentato da f. Nelle coordinate locali date una carta locale ¢ = (xt, ... "),
scrivendo X =}, X70; troviamo

0wl
Xf= ZXj 73%;; )
J

per cui X f € C*°(M), ed ¢ assolutamente chiaro che f — X f & una derivazione.

Viceversa, sia X: C*®(M) — C*°(M) una derivazione. Prima di tutto dimostriamo che se f € C*>°(M)
¢ zero in un intorno U di p allora (X f)(p) = 0. Infatti, sia h € C°°(M) tale che h(p) = 0 e hjpny =1
(Corollario 2.3.2). Allora hf = f per cui

(X[)(p) = X(nf)(p) = h(p)(X f)(p) + f(p)(Xh)(p) = 0.
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Questo vuol dire che se f e g coincidono in un intorno di p abbiamo (X f)(p) = (Xg)(p). Siccome ogni funzione
definita in un intorno di un punto puo essere estesa a una funzione definita su tutto M (Corollario 2.3.3), per
ogni aperto U C M la X definisce una derivazione X: C>®(U) — C*(U), e per ogni p € M una derivazione
Xp:C*(p) — R, e quindi una sezione di TM. Siccome in coordinate locali X, =}, X (27)(p)9;(p), si vede
subito (esercizio) che questa sezione & di classe C*°. Quindi abbiamo ottenuto un campo vettoriale, ed &
chiaro che questa costruzione ¢ 'inversa di quella descritta sopra. ]

Quindi se X e Y sono due campi vettoriali e f € C*° (M) possiamo considerare anche la funzione X (Y f).
Sfortunatamente, f — X (Y f) non & una derivazione: infatti

X(Y(fg9) = X(fY(9) +9Y(f) = FX(Yg) + (X(N)Y (9) + X(9)Y(f)) + X (Y [).
Ma questa stessa formula mostra che XY — Y X ¢ una derivazione: infatti
(XY =Y X)(fg) = [X(Yg)+gX(Y[) - [Y(Xg) —gY(X[) = [(XY =Y X)(9) + g(XY = YX)(f).

Dunque XY — Y X & un campo vettoriale:

Definizione 3.3.2: La parentesi di Lie di due campi X, Y € T(M) ¢ il campo vettoriale [X,Y] = XY - Y X
definito da

Vfe=(M) (X, Y](f) = X(Yf) = Y (X[).

Diremo che due campi vettoriali X, Y € 7(M) commutano se [X,Y] = O.

Proposizione 3.3.2: Se X, Y e Z sono campi vettoriali su una varieta M, a, b€ R e f, g € C°°(M), si ha:

(i) [X,Y] = -]V, X] (anticommutativita);
[aX +bY,Z] = a[X, Z] + b]Y, Z] (linearita);
(iii) [X,[Y, H Y, [Z, X]] + [Z,[X,Y]] =0 (1dentité di Jacobi);

(i)

iii)

(v) [/X.g¥] = fglX.Y] + f(X)Y — (Y )X

(v) se in coordinate locali abbiamo X =", Xh(?h eY =Y, Yk9, allora

- oYk oxk
X. Y] = Xh——Yh
)= S (X0 Y ) o

In particolare, [0, 0x] = 0.

Dimostrazione: (i) e (ii) sono ovvie. Poi si ha

[X,[Y,Z]] = XYZ - XZY - YZX + ZY X,
[Y,[2,X]] =YZX - YXZ - ZXY + X ZY,
[Z,[X,Y]] = ZXY - ZYX - XYZ +YXZ,

e sommando si ottiene la (iii). Inoltre,
[fX,9Y] = fX(gY) —gY (fX) = fg(XY) + f(X9)Y — fg(YX) —g(Y /)X = fg[X, Y]+ f(Xg)Y —g(Y )X
e anche (iv) ¢ dimostrata. Il Teorema di Schwartz sulle derivate seconde dice che

P(fop™) P(fop™)
Oxhoxk Oxkozxh

[On, Ok)(f) = =0,

dove ¢ = (z!,...,2™) ¢ la carta locale che stiamo usando, per cui [0y, %] = 0, e (v) segue dalle precedenti.[]

In un certo senso, [X,Y] rappresenta la derivata di Y nella direzione di X. Per dare senso a questa
affermazione cominciamo richiamando il fondamentale teorema di esistenza e unicita locale delle soluzioni di
un sistema di equazioni differenziali ordinarie:
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Teorema 3.3.3: Dati un aperto U C R" e funzioni X',..., X" € C>(U), si consideri il seguente problema
di Cauchy per una curva o:1 — U:

do? i .
=X (), j=1....n (3.3.1)
O'(t()) =xeU.

Allora si ha:

(i) Per ognitg € R exy € U esistono § > 0 e un intorno aperto Uy C U di x tali che per ogni x € Uy esiste
una curva oy: (tg — 9,to +6) — U soluzione di (3.3.1). Inoltre, I'applicazione O: (to — d,to+ ) x Uy — U
data da O(t,z) = o,(t) & di classe C*°.

(ii) Due soluzioni di (3.3.1) coincidono sempre nell’intersezione dei loro domini di definizione.

Vediamo come tradurre questo risultato sulle varieta.

Definizione 3.3.3: Sia X € T(M) un campo vettoriale su una varietd M, e p € M. Una curva o: 1 — M,
dove I C R e un intervallo contenente 1’origine, tale che

{ o'(t) = X(J(t)),
a(0) =p,

¢ detta curva integrale (o traiettoria) di X uscente da p.

Sia (U, ¢) una carta locale centrata in p € M, e X € 7(M) un campo vettoriale. In coordinate locali,
possiamo scrivere X = Zj X79;. Se 0:(—e,e) — M & una curva uscente da p, cio¢ tale che o(0) = p,
possiamo scegliere ¢ abbastanza piccolo in modo che tutto il sostegno di o sia contenuto in U, e quindi
possiamo scrivere p o o = (o1,...,0™). Usando 'Esempio 2.4.3 otteniamo

=30 5|

Jj=1

Quindi o ¢ una curva integrale di X se e solo se la curva ¢ o o in ¢(U) soddisfa il sistema di equazioni

differenziali ordinarie )
do?

E:Xj(@og(t)), jil,,n

Allora il Teorema 3.3.3 diventa il seguente teorema fondamentale:

Teorema 3.3.4: Sia X € T(M) un campo vettoriale su una varieta M. Allora esistono un unico intorno
aperto massimale U di {0} x M in R x M e un’unica applicazione ©:U — M di classe C* che soddisfano
le seguenti proprieta:

(i) Per ognip € M l'insieme UP = {t € R| (¢t,p) € U} ¢ un intervallo aperto contenente 0.

(ii) Per ogni p € M la curva 6P:UP? — M definita da 07(t) = ©O(t,p) é I'unica curva integrale massimale

di X uscente da p.

(iii) Per ognit € R I'insieme Uy = {p € M | (t,p) € U} & un aperto di M.
(iv) Se p € Uy, allora p € U1 se e solo se O(t,p) € Us, e in questo caso

05 (0:(p)) = Os14(p), (3.3.2)

dove 0;:U; — M é definita da 6;(p) = ©(t, p). In particolare, 8y = id e 0;: Uy — U_; & un diffeomorfismo
con inversa 0_;.

(v) Per ogni (t,p) € U, si ha d(0;),(X) = Xy, p)-

(vi) Per ogni f € C*°(M) ep € M si ha

d P —
G| =Nw),
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Dimostrazione: Cominciamo col notare che il Teorema 3.3.3 implica, grazie a quanto visto sopra, che per
ogni p € X una curva integrale di X uscente da p esiste sempre.

Siano o, 6: I — M due curve integrali di X tali che o(tg) = &(tg) per qualche ty € I, e sia J C T
I'insieme degli ¢ € I tali che o(t) = 6(¢t). Allora I'insieme J & non vuoto, chiuso, ed & anche aperto, grazie
al Teorema 3.3.3.(ii); quindi J = I, e dunque due curve integrali che coincidono in un punto coincidono
nell’intersezione dei loro domini di definizione.

Per ogni p € M indichiamo allora con P 'unione di tutti gli intervalli aperti I C R contenenti 0 su cui
sia definita una curva integrale uscente da p. Chiaramente, UP € un intervallo aperto contenente 1’origine,
e largomento precedente ci dice (perché?) che esiste una curva integrale 6P:UP — M di X uscente da p
definita su tutto UP, e che questa ¢ la curva integrale massimale uscente da p.

Poniamo allora U = {(t,p) € R x M |t € UP}, e definiamo ©:U — M ponendo O(¢,p) = 0P(t). Inoltre,
poniamo Uy = {p € M | (¢,p) € U}, e definiamo 0,:U; — M con 0;(p) = O(t,p). In questo modo abbiamo
ottenuto (i) e (ii); vediamo di dimostrare (iv).

Per definizione, Uy = M e 0y = idy;. Prendiamo ora p € M e t € UP, e poniamo g = 6P(t). Allora la
curva o:UP —t — M definita da

o(s) = 07(s + 1),

dove U? —t = {s € R| s+t € UP}, & ancora una curva integrale di X: infatti

o/(5) = do, (%)  d(6")ee (dii) X(0°(t + 5)) = X(0(s)-
Quindi necessariamente o(s) = 69(s), ciod

Os+¢(p) = 05(0:(p)),

eUP —t C U?. Siccome 0 € UP, otteniamo —t € U9, e §%(—t) = p. Applicando questo ragionamento
a (—t,q) invece di (t,p), otteniamo che U7 +t C UP, e quindi U? —t = UP®P), che vuol dire esattamente
che ©(t,p) € Us se e solo se p € Usy¢. Quindi (iv) & dimostrata.

Ora facciamo vedere che U & aperto in R x M, da cui segue (iii), e che © ¢ di classe C*°. Sia W C U
Pinsieme dei (¢, p) € U tale che esista un intorno di (¢, p) della forma I xU, con I intervallo aperto contenente 0
e t, e U intorno aperto di p in M, su cui © sia definita e di classe C*°. Chiaramente ci basta dimostrare
che W=U.

Prima di tutto, il Teorema 3.3.3 ci dice che (0,p) € W per ogni p € M. Supponiamo per assurdo
che esista (to,pp) € U \ W. Siccome ty # 0, possiamo assumere per semplicitd tg > 0; il caso to < 0 sard
analogo. Sia 7 = sup{t € R | (¢,po) € W}; per costruzione, 0 < 7 < t3. Siccome ty € UP°, abbiamo
T € UPY; poniamo gy = 0P9(7). Il Teorema 3.3.3 ci fornisce un 6 > 0 e un intorno Uy di go tale che O sia
definita e di classe C* su (—0, ) x Uy. Scegliamo ¢; < 7 tale che t1 +J > 7 e 6P°(t1) € Uy. Siccome t1 < T,
abbiamo (t1,pg) € W, e quindi esiste un intorno (—e, t; +¢) x Uy di (1, pg) su cui © & definita e di classe C*°.
Inoltre, possiamo anche scegliere Uy in modo che ©({t1} x Uy) C U.

Dunque, se p € U; abbiamo che 0y, (p) ¢ definito e dipende C*° da p. Inoltre, essendo 6y, (p) € Uy,
abbiamo che 0;_, o 0, (p) ¢ definito e dipende C* da p € Uy et € (t; — d,t1 +J). Ma (iii) ci dice che
O1—¢, © 0, (p) = 0:(p); quindi abbiamo esteso © in modo C* a un aperto della forma (—¢,t; 4+ §) x Uy, per
cui (t1 + 0,pg) € W, contro la definizione di 7. Questa contraddizione mostra che YW = U, come voluto.

La (vi) & ora immediata: infatti,

b

t=0

(X)) = dfy(X) = 5(F 0 07)

in quanto 67 & una curva con 67(0) = p e (07)'(0) = X (p).
Infine, dimostriamo (v). Preso (tg,po) € U e posto ¢ = 0:,(po), per ogni germe f € C*(q) si ha

d

= — [ (6t,+¢(po))

A0 ) (X)(E) = Xy (F00,) = S (fob, 00m) =&

dt

t=0 t=0

= if(apo(to +1))

dt = X9p0(to)(f)a

t=0

e ci siamo. O
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Definizione 3.3.4: L’applicazione ©:U — M introdotta nel precedente Teorema ¢ detta flusso locale del campo
vettoriale X. Il campo X € T (M) & detto completo se Y = R x M, cio¢ se tutte le curve integrali di X sono
definite per tutti i tempi. Un campo vettoriale Y € 7 (M) ¢ detto X-invariante se d(6;),(Y") = Yy, () per
ogni (¢, p) nel dominio di ©. In particolare, ogni campo vettoriale ¢ invariante rispetto a se stesso.

FEsercizio 8.3.1. Una curva 0: R — M in una varietd M ¢ periodica se esiste T > 0 tale che o(t) = o(t +T)
per ogni t € R. Sia X € T(M) un campo vettoriale, e o una curva integrale massimale di X.

(i) Dimostra che se o non ¢ costante allora o ¢ iniettiva o & periodica.
(ii) Dimostra che se o & periodica non costante allora esiste un unico numero positivo Ty (il periodo di o)
tale che o(t) = o(t’) se e solo se t — t' = kTp per qualche k € Z.
(iii) Dimostra che se o non & costante allora ¢ un’immersione, e 'immagine di ¢ ha una struttura naturale
di varietd 1-dimensionale diffeomorfa a R o a S!.

Ora, se © ¢ il flusso locale di un campo vettoriale X € 7(M), e Y € T(M) ¢ un altro campo vettoriale,
I'applicazione Y o © ¢ di classe C°°. Ma allora t +— d(0_¢)g, ) (Y) € una funzione C*° a valori in T,,M che
dipende in modo C*° dal punto p, e abbiamo trovato un modo di misurare la derivata di Y nella direzione
di X:

Definizione 3.3.5: Siano X, Y € T(M) due campi vettoriali su una varietd M. La derivata di Lie di YV
lungo X ¢ il campo vettoriale LxY € T (M) definito da

d d(oft)et(P) (Y) B Yp

LxY(p) = %d(gft)gt(p)(y) = }E)% t
=0

per ogni p € M.

Il risultato tutt’altro che evidente che vogliamo dimostrare ora & che la derivata di Lie di Y lungo X &
esattamente uguale a [X,Y]. Ci serve ancora un lemma:

Lemma 3.3.5: Sia U C M un aperto di una varieta M, § > 0, e h:(=9,0) x U — R una funzione di
classe C* con h(0,q) = 0 per ogni q € U. Allora esiste una g: (—0,9) x U — R di classe C™ tale che

h(t,q) = tg(t, q)

e 9(0,q) = 22(0,q) per ogniq € U.

Dimostrazione: Basta porre
0= [ P
b = S? S;
g(t, q . ot q

infatti

1
to(t.a) = [ G s 0)d(t9) = hit.o),

Allora
Proposizione 3.3.6: Siano X, Y € T (M) due campi vettoriali su una varieta M. Allora LxY = [X,Y].

Dimostrazione: Indichiamo con ©:U4 — M il flusso locale di X. Dato p € M, scegliamo § > 0 e un intorno Uy
di p tali che (=6,0) x Uy C U. Sia (U, f) un rappresentante di un germe in p, dove abbiamo scelto U in
modo che O((—6,8) x U) C Up. Definiamo h:(—4,8) x U — R ponendo h(t,q) = f(q) — f(0-:(q)), e
sia g: (—=6,0) x U — R la funzione data dal lemma precedente. Allora ricordando il Teorema 3.3.4.(vi)
otteniamo

fob-(q) = flg) —tg(t,q) e g(0,9) = Xf(q),

per cui

d(a—t)et(p) (Y)(f) = Yet(p)(f o a—t) = (Yf) (Gt(p)) - t(Ygt)(Gt(p))v
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dove abbiamo posto ¢:(¢) = g(t, ¢). Quindi

tim 21d0_1)0, 0 (V) = 1) = timg CDEDD ZCDO) _ 3
= GNP VXN = X)) - Y (X)) = X YIN)
grazie nuovamente al Teorema 3.3.4.(vi), e ci siamo. O

Se F: M — N ¢ un diffeomorfismo, e X € T (M), allora possiamo definire un campo vettoriale su N,

che indicheremo con dF(X), ponendo
Vge N dF(X)q :dFF*I(q)(XFfl(q))-

Se F: M — N non ¢ un diffeomorfismo, questa formula non si puo applicare: se F' non e surgettiva esi-
stono dei ¢ € N per cui F~!(g) & vuoto, e se I non & iniettiva potrebbero esistere p;, po € M per cui
q = F(p1) = F(p2) ma dF,,(X,,) # dF,,(X,,), per cui questa formula non da un modo univoco per definire
un vettore tangente in ¢. Introduciamo allora la seguente
Definizione 3.3.6: Sia F: M — N un’applicazione di classe C*° fra due varieta. Diremo che un campo
vettoriale V' € T(N) ¢ F-correlato a un campo vettoriale X € T (M) se Vp(,) = dF,(X,) per ognip € M.

Chiaramente, se F' ¢ un diffeomorfismo allora dF'(X) ¢ 'unico campo vettoriale su N che & F-correlato

a X, ma se F' non e un diffeomorfismo potrebbero esistere piu campi vettoriali F-correlati a X, o potrebbe
non esisterne nessuno.

Esercizio 3.3.2. Sia F: M — N un’applicazione di classe C™ fra varieta, X € T(M)eY € T(N). Dimostra
che Y & F-correlato a X se e solo se X(f o F') =Y (f) o F per ogni f € C®(N).
Esercizio 3.3.3. Dimostra che se F: M — N é un diffeomorfismo allora
[dF(X),dF(Y)] = dF([X,Y])
per ogni X, Y € 7(M). Piu in generale, senza assumere che F' sia un diffeomorfismo, dimostra che

se V.€ T(N) & F-correlato a X € T(M) e W € T(N) & F-correlato a Y € T (M), allora [V,W] & F-
correlato a [X,Y].

FEsercizio 3.3.4. Sia F: M — N un’applicazione di classe C*° fra varieta, X € T(M) e Y € T(N). In-
dichiamo con ©:U4/ — M il flusso locale di X, e con ¥:V — N il flusso locale di Y. Dimostra che Y &
F-correlato a X se e solo se per ogni t € R si ha ¢, o F = F o 6; sul;.

Concludiamo questo paragrafo parlando dei campi vettoriali sui gruppi di Lie.

Definizione 3.3.7: Un campo vettoriale X € T(G) su un gruppo di Lie G & invariante a sinistra se si ha
dLp(X) = X per ogni h € G, cioe se

Vh,l’ eqG d(Lh)m(Xm) = thv
dove Lj: G — G ¢ la traslazione sinistra.
Lemma 3.3.7: Sia G un gruppo di Lie di elemento neutro e € G. Allora:

(i) L’applicazione X — X(e) é un isomorfismo fra il sottospazio di T (M) costituito dai campi vettoriali
invarianti a sinistra e lo spazio tangente T.G.
(ii) Se X, Y € T(G) sono invarianti a sinistra, allora anche [X,Y] lo é.

Dimostrazione: (i) Se X € T(G) ¢ invariante a sinistra, chiaramente abbiamo
Xp = d(Lh)e(XE)

per ogni h € G, per cui X & completamente determinato dal suo valore in e. Viceversa, se scegliamo v € T,G
e definiamo X € 7(G) ponendo X;, = d(Lp)e(v) € TG per ogni h € G otteniamo (esercizio) un campo
vettoriale invariante a sinistra che vale v nell’elemento neutro.

(ii) Se X e Y sono campi vettoriali invarianti a sinistra I’Esercizio 3.3.3 dice che

dLy[X,Y] = [dL, X, dL,Y] = [X,Y]

per ogni h € G, per cui anche [X,Y] & invariante a sinistra. Il
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Esercizio 3.3.5. Diremo che una varieta M & parallelizzabile se TM & un fibrato banale. Dimostra che ogni
gruppo di Lie & parallelizzabile.

Dunque lo spazio tangente all’identita di un gruppo di Lie eredita dai campi vettoriali invarianti a
sinistra un’ulteriore struttura algebrica data dalla parentesi di Lie.

Definizione 3.3.8: Uno spazio vettoriale V' dotato di un’ulteriore operazione [-,-]: V x V' — V che soddisfa le
proprieta (i)-(iii) della Proposizione 3.3.2 ¢ detto algebra di Lie. Se V' e W sono algebre di Lie, un morfismo
di algebre di Lie ¢ un’applicazione L: V' — W lineare tale che [L(v1), L(v2)] = L[vy, v2] per ogni vy, vy € V.

EsempPio 3.3.1. Sia A un’algebra non commutativa sul campo K. Allora possiamo fornire A di una
struttura di algebra di Lie tramite il commutatore [-,-]: A x A — A definito da

VX,V € A [X,Y] = XY - YX;

si verifica subito che il commutatore soddisfa le proprieta (i)-(iii) della Proposizione 3.3.2. In particolare, lo
spazio vettoriale delle matrici M, ,,(K) con questa struttura di algebra di Lie verra indicato con gl(n, K).

FEsercizio 8.3.6. Sia sl(n,K) = {X € gl(n,K) | trX = 0} il sottospazio delle matrici quadrate a traccia
nulla, e s0(n,K) = {X € gl(n,K) | XT + X = O} il sottospazio delle matrici antisimmetriche. Dimostra che
X, Y € sl(n,K) implica [X,Y] € sl(n,K), e che X, Y € so(n,K) implica [X,Y] € so(n,K), per cui sl(n,K)
e s0(n,K) sono delle algebre di Lie.

Definizione 3.3.9: Sia G un gruppo di Lie di elemento neutro e € G. Per ogni v € T.G, indichiamo
con XV € 7(G) il campo vettoriale invariante a sinistra tale che X?(e) = v. Allora lo spazio tangente all’ele-
mento neutro, considerato con la sua struttura di spazio vettoriale e con 'operazione [, |: T.G x T,.G — T.G
definita da [v,w] = [X"¥, X*](e), & detto algebra di Lie g del gruppo G.

Non avremo il tempo di vederlo nei dettagli, ma si puo ragionevolmente affermare che praticamente
tutte le proprieta di un gruppo di Lie semplicemente connesso si possono ricavare dalle proprieta algebriche
della sua algebra di Lie.

Definizione 3.3.10: Sia G un gruppo di Lie di dimensione n, g la sua algebra di Lie, e B = {v1,...,v,} una
base di g come spazio vettoriale. Allora per ogni i, j = 1,...,n devono esistere cgj, ..., ¢ € R tali che

n
[vi,v,] = Z cfjvk.
k=1

Le costanti cfj € R sono dette costanti di struttura di g rispetto alla base B.

EsempIO 3.3.2.  Sia G = GL(n,R) il gruppo delle matrici invertibili a coefficienti reali; vogliamo dimostrare

che la sua algebra di Lie & lalgebra gl(n,R) introdotta nell’Esempio 3.3.1. Siccome G & un aperto di R"z,
lo spazio tangente nell’identitd a G & canonicamente isomorfo come spazio vettoriale a gl(n,R); dobbiamo
dimostrare che anche le strutture di algebra di Lie coincidono. Per ogni a = (a;;) € gl(n,R) indichiamo
con @ € T(G) la sua estensione come campo vettoriale invariante a sinistra. Se x = (zpx) € G e f € C®(x),
abbiamo

~ - O(folL,
au(6) = (L)1 @)(0) = afo L) = 3 ay ML 1
i,j=1 v
= = af - 8(Ihryrk) = af
= Z A;j (I)Z —_— = Z aijxhrfgriékj_(x)
ig=1  hk=1 Ovpe "= Oyij i, k,r=1 O
= Y L),
, Oxp
h,j,r=1

per cui
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Da questo segue facilmente che [@,b], = x(ab — ba), per cui effettivamente la struttura di algebra di Lie &
data dal commutatore:

Va,b € gl(n,R) [a,b] = ab — ba.

In particolare, se indichiamo con B = {E;;}; j=1
al posto (4, 7) e 0 altrove, cioe

» la base canonica di gl(n,R), dove E;; € la matrice con 1

.....

(Eij)rs = 6ir6jsa
le costanti di struttura di gl(n,R) rispetto a B sono date da

ngs))(hk) = 5ir6k55jh - 6rh53j5ik'-

EseMPIO 3.3.3. Se V & uno spazio vettoriale di dimensione n su R, il gruppo di Lie G = GL(V) &
chiaramente isomorfo a GL(n,R), e la sua algebra di Lie gi(V) ¢ isomorfa a gl(n,R). In particolare,
gl(V) = Hom(V,V) come spazio vettoriale, e la struttura di algebra di Lie ¢ di nuovo data dal commu-
tatore.

Esercizio 3.3.7. Siano G e H due gruppi di Lie, con algebre di Lie g e b rispettivamente, e sia F: G — H
un morfismo di gruppi di Lie. Dimostra che per ogni X € 7(G) invariante a sinitra esiste un unico
Y = F.(X) € T(H) che & F-correlato a X, e che 'applicazione Fi:g — h definita da Fi.(X.) = (FiX). ¢ un
morfismo di algebre di Lie.

Esercizio 3.3.8. Sia H un sottogruppo di Lie di un gruppo di Lie di algebra di Lie g. Dimostra che se
v, w € T.H C T.G = g allora [v,w] € T.H, per cui T,H & un’algebra di Lie, e dimostra che T,H &
canonicamente isomorfa all’algebra di Lie di H.

FEsercizio 3.8.9. Dimostra che 1'algebra di Lie di SL(n,R) & canonicamente isomorfa a sl(n,R), e che

lalgebra di Lie di SO(n) ¢ canonicamente isomorfa a so(n, R).

3.4 Il teorema di Frobenius

Questo paragrafo ¢ dedicato alla dimostrazione di un risultato fondamentale per lo studio dei campi vetto-

riali su una varieta: il teorema di Frobenius.
Cominciamo ponendoci un problema preliminare: supponiamo di avere su una varietda M di dimen-

sione n un riferimento locale { X1, ..., X, } del fibrato tangente TM. Quando esiste una carta locale ¢ di M
tale che X1 = 01,..., X, = 8,7 Una condizione necessaria ¢ data dalla Proposizione 3.3.2.(v): si deve
avere [X;, X;] = O per ogni i, j = 1,...,n. Vogliamo dimostrare che questa condizione ¢ (essenzialmente)

anche sufficiente; per farlo procederemo per gradi.

Definizione 3.4.1: Sia X € T (M) un campo vettoriale su una varietd M. Diremo che p € M & un punto
singolare di X se X, = Op; diremo che p & un punto regolare altrimenti.

Proposizione 3.4.1: Sia p € M un punto regolare di un campo vettoriale X € T(M). Allora esiste una
carta locale (U, ) centrata in p tale che X |y = 0/0x".

Dimostrazione: Trattandosi di un problema locale, possiamo supporre M = R™ e p = O. Inoltre, es-
sendo X, # O,, a meno di permutare le coordinate possiamo anche supporre che la prima coordinata di X
non si annulli in p. Il nostro obiettivo & trovare una carta locale (U, ¢) in O tale che si abbia

w(q)>

_ 0
Xg=d(p 1)w(q) (@

per ogni g € U.
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Sia ©:U4 — R™ il flusso locale di X, e scegliamo ¢ > 0 e un intorno aperto Uy dell’origine tali
che (—¢,6) x Uy € U. Poniamo Sy = Uy N{z' =0}, e S = {a’ € R" | (0,2') € Sp} € R"'. Defi-
niamo allora v: (—e,e) x S — R" con

W(t, 2") = 0:(0,2").
L’idea ¢ che di(0/0t) = X o4 e che dig o/ € invertibile; allora 9 & localmente invertibile, e I'inversa locale

o di 9 ci fornira la carta locale cercata.
Dato (to,z() € (—¢,¢) x S e f € C((—¢,¢) x Up) abbiamo

0 0 0
dt,1) (a ) (f) = a(f 01)) = af(et(oa%)) = (X£)(¥(to, x0)),
(to,z() (to,z() t=to
per cui dy(9/0t) = X o 1), come voluto.
Infine, siccome (0, 2’) = (0, ') per ogni 2’ € S, abbiamo
0 0
d ’ e — -
V.01 ((“)xl) oz,

per ogni ¢ = 2,...,n. Quindi d¢(y o) manda una base di T(y,o/R" in una base di ToR" (ricorda che la
prima coordinata di X ¢ non nullal), per cui di(g o) ¢ invertibile come richiesto, e ci siamo. O

Per trattare il caso generale ci serve la seguente

Proposizione 3.4.2: Siano X, Y € T (M) due campi vettoriali su una varieta M, e indichiamo con
O:U — M il flusso locale di X, e con ¥:V — M il flusso locale di Y. Allora le seguenti affermazioni
sono equivalenti:

(i) [X,Y]=0;

(ii) Y & X-invariante;
(iii) X é Y-invariante;
(iv) s 00y = s 0 6, non appena uno dei due membri é definito.
Dimostrazione: Se Y & X-invariante, chiaramente LxY = O, e quindi [X,Y] = O. Viceversa, supponiamo
che [X,Y] = O; dobbiamo dimostrare che Y & X-invariante. Sia p € M qualsiasi, e sia V:UP — T,M data
da

V(t) = d(0-t)o, ) (Y);

per far vedere che Y & X-invariante ci basta dimostrare che V' & costante. Ma infatti per ogni ¢y € UP si ha

dav d d
—(to) = —d(6- Y = —d(0_¢,—s Y
dt ( O) dt ( t)at(p)( ) —to dS ( to—¢ )9t0+s(p)( )
s-())

per cui V(t) = V(0) =Y, e ci siamo.

Abbiamo quindi dimostrato che (i) & equivalente a (ii); essendo [V, X] = —[X,Y], in modo analogo si
dimostra che (i) & equivalente a (iii).

Dimostriamo ora che (iii) implica (iv). Scegliamo s € R e p € Vs, e consideriamo la curva o:I — M
ottenuta ponendo o = ¥ 06P, dove I C R & un intervallo contenente 1'origine. Allora per ogni ¢t € I abbiamo

a'(t) = (s 0 07)' (t) = d(vs)or (1) ((07) (1)) = d(¥s)ow (1) (Xew (1)) = Xo(o),

dove l'ultima eguaglianza segue dal fatto che X e Y-invariante. Ma allora questo vuol dire che ¢ ¢ la curva
integrale di X uscente da 14(p), per cui ¥, o 0;(p) & definito se e solo se 6, o Ps(p) lo ¢, e i due sono uguali.
Infine, supponiamo che valga (iv). Allora

_ 4
Cdt

s=0

d
= 25 40—t0)0,, () © d(0-5)0, 6., () (V)

= d(efto)f)to (p) (L:XY) = Oa

d
= d(0—+t,),, (n) (Ed(es)es(eto(p))<y)

s=0

d(1hy),p(X) = %(ﬁt(ws(p))) = (60¥°)(0) = Xy (1)

t=0

(0 ”)| = S (bs00))

t=0 t=0

per cui X ¢ Y-invariante, come voluto. Il
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Possiamo allora dimostrare il

Teorema 3.4.3: Siano Xi,..., Xy € T(M) campi vettoriali linearmente indipendenti in ogni punto di una
varieta M di dimensione n. Allora le seguenti affermazioni sono equivalenti:

(i) Per ciascun p € M esiste una carta locale (U, ¢) centrata in p tale che X;|y = 0/0x7 per j =1,...,k;
(i) [X;, X;]) =0 perd,j=1,... k.

Dimostrazione: Abbiamo gid notato che (i) implica (ii); supponiamo allora che (ii) valga. Essendo un
problema locale, possiamo supporre M = R"™ e p = O. A meno di permutare le coordinate, possiamo
anche supporre che {Xi|p,..., Xk|p, 0/07*F1|,,...,8/07"|,} sia una base di T,M. Indichiamo con ©;

il flusso locale di X, per j = 1,...,k. Ragionando per induzione su k si dimostra facilmente che esi-
stono € > 0 e un intorno W C U di p tale che la composizione (6i)¢, o --- o (01), sia ben definita su W per
ogni t1,...,t; € (—¢,¢).

Poniamo S = {(z*1,...,2") e R" % | (0,...,0,2*1 ... 2") € W}, e definiamo 1: (—¢,e)¥ x § — R"
con
Yttt R a™) = (O o0 (01)u(0,...,0, 2K L am).

Dimostriamo prima di tutto che

dip (%) = X; (3.4.1)

per i =1,...,k. Infatti, se f € C®°(R™) e x € (—¢,¢)¥ x S la proposizione precedente ci da

0 0 0
diby (a_t) () = g (fov) = ﬁf((ek)tk o0 (01)n(0,...,0,2 L a™)) )
= %f((oz)ﬁ 0 (Og)er 00 (0i41)pi+1 0 (0;—1)pi-1 0 (01)u(0,...,0, :CkJrl, e ,xn))
= (Xif) (¥ (x)),

ed (3.4.1) & dimostrata. Per concludere la dimostrazione ci basta far vedere che dio € invertibile, perché
in tal caso ¥ & invertibile in un intorno dell’origine, e 'inversa ¢ di ¥ & la carta locale cercata. Ma infatti
siccome (0, ...,0, 28 .. 2") = (0,...,0,2FF ... 2"), vediamo subito che

0 0
d e = —
Vo (8:173) OxJ
per j =k+1,...,n, e la (3.4.1) insieme all’ipotesi che {Xi|p, ..., Xk|p, 0/0T**1|,,...,0/07"|,} fosse una
base di T,,M ci da la tesi. O

o

Questo era solo 'antipasto. Una conseguenza del Teorema 3.3.4 € che dato un campo vettoriale mai
nullo X € 7 (M) possiamo decomporre la varieta M nell’'unione delle curve integrali di X: ogni punto di M
appartiene a una e una sola curva integrale, e ciascuna curva integrale ¢ un’immersione (in quanto abbiamo
supposto che X non abbia punti singolari).

Se ci dimentichiamo della parametrizzazione delle curve integrali, possiamo riformulare il risultato in que-
sto modo: da una parte abbiamo selezionato in modo C'*° un sottospazio uni-dimensionale in ciascun spazio
tangente T, M (il sottospazio generato da X, ); dall’altra abbiamo che ogni punto & contenuto nell’immagine
dell’immersione di una varieta 1-dimensionale tangente in ogni punto a questi sottospazi unidimensionali. Il
teorema di Frobenius ¢ la generalizzazione di questo enunciato al caso di sottospazi k-dimensionali.

Introduciamo una serie di definizioni per giungere a un enunciato preciso del teorema di Frobenius.

Definizione 3.4.2: Una distribuzione k-dimensionale su una varieta M ¢ un sottoinsieme D C T'M del fibrato
tangente tale che D, = D NT,M ¢ un sottospazio k-dimensionale di T, M per ogni p € M. Diremo che
la distribuzione k-dimensionale D e liscia se per ogni p € M esiste un intorno aperto U C M di p e k
campi vettoriali locali Yi,...,Y, € T(U) tali che D, = Span(Yi(p),...,Yx(p)) per ogni p € U. La k-
upla (Y7,...,Y:) & detta riferimento locale per D su U.

Esercizio 8.4.1. Dimostra che una distribuzione D C T'M k-dimensionale ¢ una distribuzione liscia se e solo
se € un sottofibrato vettoriale di TM di rango k.
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Definizione 3.4.3: Una sezione locale di una distribuzione liscia D su un aperto U C M di una varieta M &
un campo vettoriale X € 7(U) tale che X,, € D, per ogni p € U. Indicheremo con 7p(U) lo spazio delle
sezioni locali di D sull’aperto U. Diremo che la distribuzione liscia D ¢ involutiva se [X,Y] € Tp(U) per
ogni X,Y € Tp(U) e ogni aperto U C M.

Esercizio 3.4.2. Dimostra che una distribuzione liscia D & involutiva se e solo se per ogni p € M esi-
ste un riferimento locale (Y3,...,Y)) per D su un intorno aperto U di p tale che [Y;,Y;] € Tp(U) per
ognii, j=1,...,k.

Definizione 3.4.4: Una sottovarieta immersa di dimensione k£ in una varieta M e un sottoinsieme S C M
dotato di una struttura di varieta k-dimensionale (non necessariamente con la topologia indotta da M) tale
che l'inclusione ¢: § — M sia un’immersione di classe C*°.

Osservazione 3.4.1. Se F: N — M ¢ un’immersione iniettiva, allora F(N), con la struttura di varieta
indotta da N come descritto nell’Osservazione 2.5.1, € una sottovarieta immersa di M. Inoltre, se S € una
sottovarieta immersa in M, il differenziale dell’inclusione permette di identificare 7,5 con un sottospazio
di T, M per ognip € S.

Esercizio 3.4.3. Siat: S — M una sottovarieta immersa in una varieta M. Dimostra che per ogni X € 7 (M)
tale che X, € T),S per ogni p € S esiste un unico campo vettoriale X |g € 7(S) che & t-correlato a X. Deduci
che se X, Y € T(M) sono tali che X, Y, € T,,S per ogni p € S allora [X,Y], € T,,S per ogni p € S.

Esercizio 3.4.4. Sia S C M un sottoinsieme di una varieta M. Dimostra che per ogni topologia su S
esiste al pit una struttura di varieta differenziabile su S che induce la topologia data su S e la rende una
sottovarieta immersa di M.

Definizione 3.4.5: Sia D C T'M una distribuzione liscia. Una sottovarieta integrale di D & una sottovarieta
immersa S — M tale che T,S = D, per ogni p € S. Diremo che D e integrabile se ogni punto di M e
contenuto in una sottovarieta integrale di D.

Proposizione 3.4.4: Ogni distribuzione liscia integrabile é involutiva.

Dimostrazione: Sia D C T'M una distribuzione integrabile, e X, Y € Tp(U) due sezioni di D su un aperto U.
Preso p € U, sia N C U una sottovarieta integrale di D contenente p. Siccome X e Y sono sezioni di D,
abbiamo X, Y, € T,N per ogni ¢ € N; I’Esercizio 3.4.3 ci dice allora che [X,Y], € T,N = D,. Siccome
questo vale per qualsiasi p € U, otteniamo [X,Y] € Tp(U), come voluto. ]

Come gia succedeva per le curve integrali, le sottovarieta integrali sono (almeno localmente) a due a due
disgiunte e, in un certo senso, parallele. Per precisare questo concetto ci servono un altro paio di definizioni.

Definizione 3.4.6: Sia D C T M una distribuzione liscia k-dimensionale in una varieta di dimensione n. Diremo
che una carta locale (U, @) & piatta per D se o(U) =V’ x V" con V' aperto in R* e V" aperto in R" 7, e
se (0/0x',...,0/02%) & un riferimento locale per D su U. Diremo che D & completamente integrabile se per
ogni p € M esiste una carta locale (U, ¢) in p piatta per D. Se (U, ) ¢ una carta piatta per D, gli insiemi
della forma {zF+1 = cF+1 ... 2" ="} con FTL ... ¢ € R sono detti foglie di U.

Lemma 3.4.5: Ogni distribuzione liscia completamente integrabile é integrabile.

Dimostrazione: Infatti se (U, ) ¢ una carta piatta per una distribuzione k-dimensionale liscia D allora le
foglie di U sono chiaramente delle sottovarieta integrali di D. ]

Dunque completamente integrabile implica integrabile che implica involutiva. Il Teorema di Frobenius
locale ci assicura che queste implicazioni sono in realta delle equivalenze:

Teorema 3.4.6: (Frobenius) Ogni distribuzione liscia involutiva é completamente integrabile.

Dimostrazione: Sia D C T'M una distribuzione k-dimensionale liscia involutiva. Grazie al Teorema 3.4.3, per
dimostrare che D e completamente integrabile ci basta trovare nell’intorno di ogni punto di M un riferimento
locale di D composto da campi vettoriali che commutano.
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Dato p € M, scegliamo una carta locale (U, ) centrata in p tale che esista un riferimento locale
(X1,...,Xg) per D suU. Inoltre, a meno di permutare le coordinate di ¢, possiamo anche supporre che

)

sia una base di T, M. Per comodita di notazione, poniamo X; = 0/0x7 per j = k+1,...,n, e sce-
gliamo a] € C*°(U) tali che

0

".'7_’[1/
» ox

0
{Xl(p)7 s 7Xk(p)a W

n
;0

X; = al —

oxJ

=1

suU, per i =1,...,n. La matrice (a]) ¢ invertibile in p; a meno di restringere ulteriormente U possiamo

supporre che sia invertibile su tutto U, e sia (b%) la sua inversa. Allora

9 <~y - 0
@:;bjxl—:;bj)(ﬁ > i

i=k+1

per j = 1,...,n. Definiamo allora Y; = Zle b;X,- € Tp(U) per j = 1,...,k; per concludere ci basta
dimostrare che (Y1,...,Y%) & un riferimento locale per D composto da campi vettoriali che commutano.
Sia F:U — R* datada F = 7o @, dove m: R" — R* & 1a proiezione sulle prime k coordinate. Allora per

ogni g € U eogni j =1,...,k abbiamo

o, 0 0 9]
dF,(Y;) = dFy(Y;) + Z bj(q) dFy (@) = dF, (@) =5l
i=k+1 F(q)
Quindi gli Y; sono linearmente indipendenti su tutto U, per cui formano un riferimento locale per D, e
qu\Dq e iniettivo per ogni g € U. Inoltre, I’Esercizio 3.3.3 implica che

AF( V) = [ | (Fl@) = 0

perogniq € Uei, j=1,...,k. Ma allora, essendo D involutiva abbiamo [Y;, Y}](¢) € Dy, ed essendo dFy|p,
iniettivo troviamo [Y;,Y;](q) = Oy, come voluto. O

Vogliamo ora dare una descrizione di come sono disposte le sottovarieta integrali, descrizione che ci
servira poi per dare la versione globale del Teorema di Frobenius.

Proposizione 3.4.7: Sia D C T'M una distribuzione liscia involutiva k-dimensionale in una varieta M,
(U, ) una carta piatta per D, e N una sottovarieta integrale di D. Allora N NU ¢é unione disgiunta al piu
numerabile di aperti connessi di foglie di U, ciascuno dei quali é aperto in N ed embedded in M.

Dimostrazione: Siccome l'inclusione 1: N < M & continua, l'intersezione N N U = ~*(U) ¢ aperta in N,
e quindi € unione di una quantita al pitt numerabile di componenti connesse, ciascuna delle quali ¢ aperta
in N.

Sia V una di queste componenti connesse; cominciamo col dimostrare che & contenuta in un’unica foglia
di U. Essendo (U, ) una carta piatta per D, per ogni p € U abbiamo D, = Ker(dz**1) n .. N Ker(dz™).
Quindi la restrizione di dz**! ... dax" a TV & identicamente nulla; essendo V connesso, questo vuol dire
che le funzioni 2**1, ... 2™ sono costanti su V, e quindi V & contenuto in un’unica foglia S di U.

Siccome S € una sottovarieta (embedded) di M, l'inclusione V' — S ¢ di classe C°, essendolo a valori
in M. Ma allora ¢ un’immersione iniettiva fra varieta della stessa dimensione, per cui ¢ un diffeomorfismo
locale e un omeomorfismo con 'immagine, che & aperta in S; in altre parole, € un embedding. Essendo S
embedded in M, ne segue che V' & embedded in M. Il
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Definizione 3.4.7: Una foliazione di dimensione k di una n-varieta € una partizione F di M in sottovarieta
immerse connesse, disgiunte e di dimensione k (dette foglie della foliazione) tali che per ogni punto p € M
esiste una carta locale (U, ) in p per cui p(U) = V' x V", con V' aperto in RF e V" aperrto in R"™*, e tale
che ogni foglia della foliazione intersechi U o nell’insieme vuoto o in una unione disgiunta al pitt numerabile di
foglie k-dimensionali di U della forma {2*+! = k1 .. 2™ = ¢"} per opportune costanti c**1, ... ¢* € R.
Una tale carta locale sara detta piatta per la foliazione F.

Esercizio 3.4.5. Dimostra che I'unione degli spazi tangenti alle foglie di una foliazione k-dimensionale forma
una distribuzione liscia k-dimensionale involutiva.

La versione globale del Teorema di Frobenius ci dice che & vero anche 'inverso di questo esercizio, per
cui foliazioni o distribuzioni involutive sono di fatto la stessa cosa.
Per dimostrarlo, ci serve un ultimo

Lemma 3.4.8: Sia D C TM una distribuzione liscia involutiva in una varieta M, e sia { N, } una collezione
di sottovarieta integrali connesse di D con un punto in comune. Allora N = |, N, ha un’unica struttura di
varieta per cui sia una sottovarieta integrale connessa di D tale che ciascun N, sia aperto in N.

Dimostrazione: Su ciascun N, fissiamo un atlante composto da carte locali della forma (SN N,, o p), dove
S & un’unica foglia di una carta (U, ) piatta per D, e m: R" — R* ¢ la proiezione sulle prime k-coordinate.
Se N ha una struttura di varieta che soddisfa le richieste queste carte devono farvi parte; quindi ci basta
dimostrare che mettendole insieme otteniamo un atlante di V.

Per avere la compatibilita topologica delle carte, dobbiamo prima di tutto dimostrare che N, N Ng
¢ aperto in Ng quali che siano « e 5. Prendiamo ¢ € N, N Ng, sia (U, ¢) una carta in ¢ piatta per D,
e indichiamo con V,, (rispettivamente, V) la componente connessa di N, N U (rispettivamente, Ng N U)
contenente g. La Proposizione 3.4.7 ci dice che V,, e V3 sono aperti di una foglia S di U, necessariamente la
stessa per entrambi in quanto deve contenere ¢. Quindi V,, N V3 € aperto in S, e quindi in Ng, come voluto.

Siccome due foglie distinte di una carta piatta sono disgiunte, se (SoNN,)N(SzNNg) # & allora S, = Sg.
Quindi i cambiamenti di coordinate nel nostro atlante saranno della forma 7o ()0 @™ 1) o (|,(5)) !, definiti
su aperti di R* per quanto detto finora, e chiaramente di classe C'*°.

Siccome essere un’immersione € una proprieta locale, I'inclusione N — M & un’immersione, ed & evidente
che IV & una sottovarieta integrale connessa di D.

Rimane quindi da dimostrare che la struttura di varieta cosi definita su N ¢ di Hausdorff e ha una
base numerabile. Se ¢, ¢" € N sono punti distinti, prendiamo intorni disgiunti U e U’ in M; allora, essendo
Pinclusione N < M continua, UNN e U’ NN sono intorni disgiunti di ¢ e ¢’ in N, per cui N & di Hausdorff.

Ora, sia 4 = {U;} un ricoprimento aperto numerabile di M composto da domini di carte piatte per D.
Per far vedere che N ha una base numerabile ¢ sufficiente far vedere che N N U; ¢ contenuto in un’unione
numerabile di foglie di U; per ciascun ¢, in quanto qualsiasi aperto di una foglia ha una base numerabile.

Fissiamo un punto p € M contenuto in tutti gli N,, scegliamo U; € U, e sia S C U; una foglia di U;
contenente un punto ¢ € N. Per definizione, deve esistere un « tale che N, contiene sia p che ¢. Essendo
N, connesso per archi, esiste una curva continua o:[0,1] — N, che collega p con ¢. Siccome I'immagine
di o & compatta, esiste una partizione 0 = tg < t; < --- < t,, = 1 di [0,1] tale che o([t;_1,t;]) & contenuto
in un U;; € U per ogni j = 1,...,m. Essendo o([t;_1,%;]) connesso, ¢ contenuto in un’unica componente
connessa di N, N Ui,, e quindi in un’unica foglia Sij di Ui, .

Diremo che una foglia S di un qualche Uy & accessibile da p se esiste una successione finita di in-
dici g, ..., i, e di foglie S;; C U;; tali che p € Sy, S;,, =S eS;,_, NS;, # I per j =1,...,m. Siccome
ogni foglia S;;_, ¢ a sua volta una sottovarieta integrale di D, per la Proposizione 3.4.7 puo intersecare al
pill una quantita numerabile di foglie di U;;. Questo vuol dire che esistono al pilt una quantita numerabile
di foglie accessibili da p; ma la discussione precedente mostra che ogni foglia che interseca N & accessibile
da p, e abbiamo finito. Il

E infine, ecco il Teorema di Frobenius globale:

Teorema 3.4.9: Sia D C T'M una distribuzione liscia involutiva in una varieta M. Allora la collezione di
tutte le sottovarieta integrali massimali di D forma una foliazione di M.

Dimostrazione: Per ogni p € M indichiamo con L, I'unione di tutte le sottovarieta integrali connesse di D
che contengono p; grazie al lemma precedente, L, ¢ una sottovarieta integrale connessa di D, chiaramente
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massimale. Se L, N L, # &, allora L, U L, & ancora una sottovarieta integrale connessa di D, e quindi
per massimalita L, = L. Quindi le sottovarieta integrali connesse massimali di D formano una partizione
di M.

Se (U, ) € una carta locale piatta per D, allora L, N U & unione al pitt numerabile di aperti di foglie
di U, per la Proposizione 3.4.7. Se per una di tali foglie .S si avesse L, NS # S, allora L, U S sarebbe una
sottovarieta integrale connessa di D contenente propriamente L, contro la massimalita. Quindi L, N U e

sempre unione di una quantita al pitt numerabile di foglie di U, per cui {L,, | p € M} & una foliazione. []

3.5 Forme differenziali e differenziale esterno

In questo paragrafo raccoglieremo alcune proprieta fondamentali delle forme differenziali.
Prima di tutto, se n € A"(M) e w € A%(M) sono rispettivamente una r-forma e una s-forma su una
varieta M, ¢ chiaro che possiamo definire la (r + s)-forma n A w € A™*(M) ponendo

Vpe M nAw(p) =n(p) Aw(p);

in questo modo otteniamo su
dim M

A(M) = P AT(Mm)
r=0

una naturale struttura di algebra associativa e anticommutativa.

Abbiamo notato nel Paragrafo 3.3 che, in generale, ¢ difficile trasportare campi vettoriali da una varieta
a un’altra usando applicazioni differenziabili. Uno dei vantaggi delle forme differenziali € che sono invece
molto semplici da trasportare:

Definizione 3.5.1: Sia w € A"(N) una r-forma sulla varietd N, e F: M — N un’applicazione di classe C>°. 1l
pull-back di w lungo F' ¢ la r-forma F*w € A™(M) definita da

Frwy(vi, ..., 00) = wpgp) (dFp(v1), ..., dF,(vy))

per ogni vq,...,v, € T, M. Si verifica subito (esercizio) che F*w & r-lineare, alternante e di classe C'*°, per
cui & effettivamente una r-forma su M. Se v: M — N & una sottovarieta, scriveremo anche w|y; per t*w.
FEsercizio 3.5.1. Sia F: M — N un’applicazione di classe C*° fra varieta. Dimostra che
(i) F*: A"(N) — A"(M) & lineare per ogni r > 0;
(ii) F*(n Aw) = F*n A F*w per ogni n, w € A*(N);
(iii) se
w= Y wi i dy™t A Ady”

i1 <<y

¢ Despressione in coordinate locali (y!,...,y") di una r-forma w € A"(N), allora

Fro= Z (wilu.ir-oF)d(yilOF)/\~-~/\d(yi7‘oF).

1< <y
In particolare, se M ed N hanno entrambi dimensione n, (z!,...,2") sono coordinate locali su un

aperto U di M, (y,...,y™) sono coordinate locali su un aperto V di N con F(U) CV, e f € C®(V),
allora dimostra che

F*(fdy' A---Ndy™) = (f o F)det(dF)dz* A--- A da™.
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Se f € C*°(M) ¢ una funzione differenziabile su M (ovvero una 0O-forma), il differenziale df induce

un’applicazione C*°(M)-lineare df: 7 (M) — C*°(M), cioe, grazie alla Proposizione 3.2.1.(i), una 1-forma
differenziale. Quindi abbiamo un’applicazione lineare d: A°(M) — A'(M) data in coordinate locali da

j=1

Una delle principali proprieta delle forme differenziali &€ che possiamo estendere quest’applicazione d a
tutto A®(M), cioé possiamo definire in maniera coerente il differenziale di qualsiasi forma differenziale:

Teorema 3.5.1: Sia M una n-varieta. Allora esiste un’unica applicazione lineare d: A*(M) — A*(M)
soddisfacente le quattro condizioni seguenti:

(a) d(A"(M)) C A™1(M) per ognir € N;

(b) se f € C°(M) = A°(M) allora df € AL(M) é il differenziale di f;

(¢) sewe A"(M) en € A°(M) allora

dlwAn)=dwAn+ (—=1)"w A dn;

(d) dod =O.
Questa applicazione soddisfa anche le seguenti proprieta:
(i) d é locale: se w = w' su un aperto U di M, allora (dw)|y = (dw')|v;
(ii) d commuta con la restrizione: se U C M é aperto, allora d(w|y) = (dw)|u;
(iii) pit in generale, d commuta con i pull-back: se F: M — N ¢é di classe C® e w € A"(N), allora
d(F*w) = F*(dw);
(iv) se w € AL(M) & una 1-forma e X,Y € T(M), allora

dw(X)Y) = X(w(Y)) — Y(w(X)) —w([X,Y]);

(v) se (x!,...,2™) sono coordinate locali in un aperto di M, allora
d Z Wiy . i, Az A Adat | = Z dwi, . i, N Az A -+ Adat
1<i1 < <ir<n 1<ii < <ir<n (351)

) i%dﬂAdm“A-nAdm“.

1<iy <--<ip<n j=1

Dimostrazione: Iniziamo con il caso particolare in cui esista una carta globale (M, ), con ¢ = (x!,... "),
e definiamo d: A”(M) — A™1(M) per ogni r € N con la (3.5.1); in particolare, d|a-(ar) = O per ogni r > n.
Chiaramente d & lineare e soddisfa (a) e (b); dobbiamo dimostrare che soddisfa (c) e (d). Per far cio
introduciamo la seguente notazione: se I = (iy,...,%,) ¢ un multiindice, scriveremo dz’ per dz®* A --- Adz'.
Inoltre, useremo il simbolo 37 per indicare la somma su tutti multiindici 7 = (iy, . . ., i,) crescenti, cioe tali
che 1 <4y < -+ <4, <n. Quindi con queste notazioni la (3.5.1) diventa

d (Z/w[ dacI) = Z/dw[ Adzl.
J; J;

In particolare, abbiamo d(f dz!) = df A dx' per ogni multiindice crescente I, e quindi (perché?) per ogni
multiindice I, anche non crescente.
Per dimostrare (c), grazie alla linearita possiamo supporre w = fdx! e n = gdx”’. Allora

dwAn) =d(fgde" Adx?) =d(fg) Adx" A dx’
=df Ndzx! ANgdx! +dg A fdx! ANdx? = (df Ada') A+ (=1)"w A (dg A da”)
=dwAn+(—1)"wAdny,
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dove il fattore (—1)" compare perché dg & una 1-forma mentre dz! & una r-forma.
Per dimostrare (d), supponiamo prima r = 0. Allora

n 2 2
d(df) =d Za—f a - da' Nda? = > {aaf, OJ | 4t pdai = 0.

L rt0xd  OxdOxt
ij=1 1<i<j<n

Sia ora r > 0 qualsiasi. Allora usando il caso r = 0 e la proprieta (c) otteniamo

d(dw) = d (Z/de Adaft Ao A dﬂ)
J

= Z'd(de) Adzt A - A dadT +Z > (=1 dwy Ada? A Ad(da?) A Adadm = 0.
J J i=1

Quindi abbiamo ottenuto un’applicazione lineare soddisfacente (a)—(d), e chiaramente valgono anche (i), (ii)
e (v); si possono anche dimostrare le proprieta (iii) e (iv), ma lo rimandiamo al caso generale.

Vediamo ora I'unicita della d, sempre in questo caso particolare. Supponiamo che d: A®(M) — A®(M)
sia un’altra applicazione lineare che soddisfa (a)-(d). Presa w =" 'w;dz’ € A"(M), usando (b), (c) e (d)
troviamo

dw = Z/(ZWJ Adzdt A - Adadn + (*1)Oz/wjd(dxj1 Aee A dxj")
=3 dwy Ada? A nde Y s Y (D) da? A A d(daT) A A da
=dw + Z’w‘] Z(—]_)i—l dxit A - A CZ(deL) Ao A dyir — dw,

come voluto. In particolare, dw non dipende dalla carta globale usata in (3.5.1).

Ora sia M una varieta qualsiasi. Se U C M ¢ il dominio di una carta locale, la discussione precedente
ci fornisce un’applicazione lineare dy: A*(U) — A®*(U) che soddisfa (a)-(d), (i), (ii) e (v). Sull’'interse-
zione U N U’ dei domini di due carte locali abbiamo

(dyw)|luvnur = duvavw = (duw)|vnu

grazie a (ii) e all'unicita di dy e dys. Quindi possiamo definire un’applicazione lineare d: A*(M) — A®*(M)
ponendo
(dw)p = du(w|v)p

per ogni w € A™(M), p € M e carta (U, ¢) in p, e d soddisfa (a)—(d), (i), (ii) e (v).

Dimostriamo ora I'unicita nel caso generale. Sia d: A*(M) — A®*(M) un’altra applicazione lineare che
soddisfa (a)—(d). Cominciamo col dimostrare che d soddisfa anche (i). Chiaramente basta far vedere che
sen € A"(M) & tale che n|y = O per un qualche aperto U C M, allora (dn)|y = O. Sia p € U qualunque, e
sia g € C°°(M) una funzione con g =1 in un intorno di p e g|ppy = 0 (vedi la Proposizione 2.3.1). Allora
gn = O su tutto M, per cui

O = d(gn), = dg, A1 + g(p)dn, = dnp.

Essendo p generico, otteniamo CZTI\U =0.

Sia ora (U, ¢) una carta locale qualsiasi, e definiamo un’applicazione lineare dyr: A*(U) — A*(U) po-
nendo (dyw), = (d@), per ogni p € U e w € A"(U), dove & € A"(M) & una r-forma globale che coincide
con w in un intorno di p. L’estensione w esiste grazie all’Esercizio 3.2.4, e dyw non dipende dall’estensione
scelta grazie alla proprieta (i) di d. Chiaramente, dy soddisfa (a)-(d); ma allora, per quanto gia visto,
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dy = dy. In particolare, se w € A"(M), p € M e (U, ) & una carta in p, possiamo usare w stessa come
estensione di w|y e quindi

(dw)p = (dywlv)p = (dywlv)p = (dw)p.

Essendo p e w generici, otteniamo d = d, e l'unicitd & dimostrata.

Passiamo ora a verificare (iii). Grazie a (i), ci basta dimostrare (iii) nell’intorno di ciascun punto, per
cui possiamo supporre di avere coordinate globali (z!,...,2"). Per linearita, possiamo anche supporre che w
sia della forma w = fdx™ A --- A dxir. Allora 'Esercizio 3.5.1 da

F*(dw) = F*(df Adz™ A---Adz™) =d(f o F)Ad(z" o F)A--- Ad(z' o F)
= d((fo F)d(z™ o F) A+~ Nd(a™ o F)) = d(F*w),
come voluto.

Infine, dobbiamo verificare (iv). Grazie alla linearita e alla proprieta (i), ci basta (perché?) considerare
il caso w = udv. Allora

dw(X,Y):du/\dv( ,Y) = du(X)do(Y
X ()Y (v) +uX (Y (v)) = Y(u

= X(uY(v)) Y (uX(v)) — uX Y](v)
X(w(Y)) =Y (w(X)) - w([X,Y]),

e abbiamo finito. O

) du(Y)dv(X) = X(w)Y (v) = X (v)Y (u)
X(v) —uY (X(v)) —u(X(Y(0)) = V(X(0)))

Definizione 3.5.2: L applicazione lineare d: A*(M) — A®*(M) la cui esistenza & dimostrata nel Teorema 3.5.1
¢ detta differenziale esterno di M.

FEsercizio 3.5.2.  Sia M una varieta, e w € A"(M). Dimostra che

r+1
dw(le cee 7XT+1) = Z(_l)]_lXj (W(Xla BRRE) va BERE) X’r‘Jrl))
j=1
+ Y (F)Mo(IX X)L X X X X)),
1<i<j<r+1
per ogni X1,...,X,11 € T(M), dove 'accento circonflesso indica elementi omessi dalla lista.
FEsercizio 3.5.3. Sia {Fi,...,FE,} un riferimento locale per il fibrato tangente TM di una n-varietd M
sopra un aperto U, e indichiamo con {e!,...,e"} il riferimento locale duale di 7*M sopra U. Siano inol-
tre c . € C*(U) tali che
[E;, Ej] Z ck By,

per i, j, k=1,...,n. Dimostra che

n
k in g
—g cij€ Ne

ij=1
perk=1,....n

Definizione 3.5.3: Diremo che una k-forma w € AF(M) ¢ chiusa se dw = O; diremo che & esatta se esiste
una (k — 1)-forma n € A*~1(M) tale che dn = w. Indicheremo con Z¥(M) il sottospazio delle k-forme
chiuse, e con B¥(M) il sottospazio delle k-forme esatte. Siccome d o d = O, ogni forma esatta & chiusa,
cioe B¥(M) C Z¥(M). 11 k-esimo gruppo di coomologia di de Rham della varietda M & allora definito come
il quoziente HL’;R(M) = ZF(M)/B*(M).

Un risultato fondamentale che non dimostreremo e il Teorema di de Rham, che dice che i gruppi di
coomologia di de Rham sono degli invarianti topologici della varieta:
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Teorema 3.5.2: (de Rham) Per ogni varieta M e ogni k € N il gruppo di coomologia di de Rham Hé“R(M)
& canonicamente isomorfo al k-esimo gruppo di coomologia singolare H*(M;R) di M a coefficienti in R.

Concludiamo questo paragrafo con una serie di esercizi che mostrano come introdurre il concetto di
distribuzione liscia involutiva usando le forme differenziali invece dei campi vettoriali.

FEsercizio 8.5.4. Sia D C TM una distribuzione k-dimensionale su una n-varieta M. Dimostra che D ¢
liscia se e solo se per ogni punto p € M esistono un intorno U di p e w?,...,w" % € AY(U) tali che

D, = Kerw; N---N Kerw(’;_k (3.5.2)

per ogni g € U.

Definizione 3.5.4: Sia D C T'M una distribuzione k-dimensionale liscia su una n-varieta M, e U C M aperto.
Ogni (n — k)-upla di 1-forme w?,...,w" % € AY(M) che soddisfano (3.5.2) saranno dette forme di defi-
nizione locali per D. Diremo inoltre che una p-forma n € AP(M) annichila D se n(Xy,...,X,) = O per
ogni Xi,...,X, € calp(M). Indicheremo con Z%,(D) C AP(M) il sottospazio delle p-forme che annichi-
lano D, e porremo Zy (D) =1% (D) @ --- ® I (D).

FEsercizio 3.5.5. Sia D C T'M una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra che
una p-forma n € AP(M) annichila D se e solo se ogni volta che esistono delle forme di definizione locali
wl.. ., wF € AY(U) per D su un aperto U C M allora

n—~k ) )
7]|U — sz /\61
=1

per opportune (p — 1)-forme 8%, ..., 3"~% € AP=L(U).

Esercizio 3.5.6. Sia D C T'M una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra che D
¢ involutiva se e solo se per ogni aperto U C M si ha d(Z}(D)) C ZZ (D).

Esercizio 8.5.7. Sia D C TM una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra
che D ¢ involutivo se e solo se per ogni aperto U C M e ogni (n — k)-upla di forme di definizione lo-
cali w!,...,w" % € AL(U) per D sopra U esistono delle 1-forme o € AY(U) tali che

n—k
dw' = g wl A oz;-
=1

peri=1,....n—k.

Definizione 3.5.5: Un ideale di A*(M) & un sottospazio vettoriale Z C A*(M) tale che w An € T per ogni
we A*(M) eognineX.

FEsercizio 3.5.8. Sia D C TM una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra

che Zp;(D) & un ideale di A*(M), e che D ¢ involutiva se e solo se d(Za (D)) € Za (D).

3.6 Orientabilita

Scopo di questo paragrafo e dare una definizione di orientabilita adatta a varieta di dimensione qualunque.

Definizione 3.6.1: Diremo che una varietd connessa M ¢ orientabile se esiste una n-forma v € A™(M) che
non si annulla mai. Diremo che due n-forme mai nulle vy, vy € A"(M) determinano la stessa orientazione
se esiste una funzione f € C°°(M) sempre positiva tale che vo = fr;. Una n-forma mai nulla su M & detta
forma (o elemento) di volume di M. Una varieta su cui sia stata fissata una forma di volume ¢ detta varieta
orientata.
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Definizione 3.6.2: Sia M una varieta orientata da una forma di volume v € A™(M). Diremo che una base
{v1,...,v,} di T, M & positiva se v,(v1,...,v,) > 0; negativa altrimenti (nota che v,(v1,...,v,) ¢ necessa-
riamente diverso da zero; perché?). Una carta (U, ) sard detta orientata se esiste una funzione f € C*°(U)
sempre positiva tale che dz! A--- Adx™ = fv|y, dove ¢ = (x!,...,2™) come al solito. In altre parole, (U, ©)
e orientata se e solo se {01,...,0,} € una base positiva di T, M per ogni p € U (perché?).

Definizione 3.6.3: Diremo che due carte (Uy, ¢o) € (Ug, pg) di una varietd M sono equiorientate se il deter-
minante del differenziale del cambiamento di coordinate ¢, o @51 & positivo in tutti i punti di ¢g(Us N Upg).
Un atlante A = {(U,, pa)} € orientato se ogni coppia di carte in 4 & equiorientata.

Proposizione 3.6.1: Sia M una varieta connessa n-dimensionale. Allora M é orientabile se e solo se
ammette un atlante orientato.

Dimostrazione: Supponiamo che M sia orientabile, e sia v € A™(M) una n-forma mai nulla. Prendiamo
un atlante A = {(U,,¢a)} con ciascun U, connesso. Allora dzl A --- A da? € A"(U,) ¢ una n-forma
locale mai nulla; siccome A" M ha rango 1, deve esistere una funzione f, € C°*°(U,) mai nulla tale
che dzl A--- ANda" = f,v|y,. Essendo U, connesso, la funzione f, ha segno costante; quindi a meno
di modificare ¢, scambiando le ultime due coordinate possiamo supporre che tutte le f, siano positive.
Vogliamo dimostrare che I'atlante A cosi ottenuto ¢ orientato. Infatti I’'Esempio 3.2.3 ci da

1 n oz 1 oxh
faVlv.nu, = dxg Ao+ Ndry, = det axg drg A+ Ndrj = det ﬁxﬁ Jev|vanus,

per cui fo|y,nu, = det < > Jslu.nu, e dunque det < xg) > 0 come voluto.

Viceversa, sia A = {(Uq, vo)} un atlante orientato, e sia {p,} una partizione dell’unita subordinata a
questo atlante. Poniamo

V:Zpadxi/\~-~/\dxz
[}

Le proprieta delle partizioni dell’unita ci assicurano (perché) che v € A™(M) & globalmente definita; dob-
biamo dimostrare che non ¢ mai nulla. Ora, ciascuna dzl A --- A dz” non si annulla mai; inoltre

dzl A

6h
-Ndzxl, = det 8% dzxl 5/ /\da:g

su U, NUg, per cui dzl A--- Ada” e d;vé A~ Ndag differiscono per un fattore moltiplicativo strettamente
positivo in quanto I'atlante & orientato. Quindi nell’intorno di ogni punto v &€ somma di un numero finito di
termini che sono tutti un multiplo positivo I’'uno dell’altro, per cui v non si puo¢ mai annullare. O

Dunque una varieta e orientabile se e solo se possiamo orientare coerentemente tutti gli spazi tangenti.

ESEMPIO 3.6.1. Una varieta con un atlante costituito da una sola carta (esempio: un grafico) o da due
carte che abbiano intersezione connessa (esempio: la sfera) & chiaramente orientabile.

Esercizio 3.6.1. Sia F: M — N un diffeomorfismo locale fra due varietd di dimensione n. Dimostra che
se v € A"(N) & una forma di volume su N allora F*v & una forma di volume su M.

Definizione 3.6.4: Sia F': M — N un diffeomorfismo locale fra due varieta orientate. Diremo che F' conserva
Dorientazione se F*v determina l’orientazione data su M per ogni forma di volume v € A™(N) che determina
l'orientazione data su IV; altrimenti diremo che F' inverte ’orientazione.

Esercizio 3.6.2. Sia F: M — N un diffeomorfismo locale fra due varieta orientate. Dimostra che F' conserva
l'orientazione se e solo se detJac(i) o F o ¢~1) > 0 per ogni carta orientata (U,¢) di M e ogni carta
orientata (V,4) di N tali che F(U) C V.

Esercizio 8.6.3. Sia F: M — N un diffeomorfismo locale fra due varieta orientate di dimensione n. Dimostra
che F' conserva 'orientazione se e solo se per ogni p € M I'immagine tramite dF, di una base positiva di T, M
¢ una base positiva di Tr,)N.
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FEsercizio 3.6.4. Dimostra che P"(R) & orientabile se e solo se n & dispari.
Esercizio 8.6.5. Dimostra che il prodotto di due varieta orientabili ¢ orientabile.
Esercizio 3.6.6. Sia M una varieta tale che T'M sia il fibrato banale. Dimostra che M ¢ orientabile.

Esercizio 3.6.7. Posto I = [0,1], sia p: I — S! data da p(t) = e****. Indichiamo inoltre con m: I x R — I la
proiezione sul primo fattore. Sia ~ la relazione d’equivalenza su I x R che identifica i punti (0,y) € {0} xR
con i punti (1, —y) € {1} x R. Poniamo E = (I x R)/ ~. Siccome pom:I x R — S & costante sulle classi
d’equivalenza di ~, otteniamo un’applicazione continua surgettiva m: E — S'. Dimostra che questo ¢ un
fibrato vettoriale di rango 1 su S! (detto fibrato di Mébius), che E & una varietd non orientabile, e deduci
che F non ¢ un fibrato banale.

Non tutte le varieta connesse sono orientabili (vedi gli Esercizi 3.6.4 e 3.6.7). Esiste perod una procedura
standard per ottenere una varieta orientabile a partire da una non orientabile:

Proposizione 3.6.2: Sia M una varieta connessa non orientabile. Allora esiste un rivestimento liscio a
due fogli m: M — M tale che M sia una varieta connessa orientabile. Inoltre il gruppo di automorfismi
del rivestimento & isomorfo a Zs, e se F: M — M ¢ Iautomorfismo diverso dall’identita allora F inverte
Porientazione di M.

Dimostrazione: Per ogni p € M indichiamo con 4, e —, le due possibili orientazioni su 7, M; inoltre,
se {e1,...,en} & una base di T, M indichiamo con [e; ...e,] l'orientazione indotta da questa base. Infine,
indichiamo con M l'unione disgiunta delle coppie (p, +p) € (p, —p), cioe

M = U {(p, +p)7<p? _P)}a

peEM

e sia m: M — M data da m(p,£p) = p. Vogliamo definire su M una struttura di varietd soddisfacente le
richieste.

Sia A = {(Ua, pa)} un atlante di M tale che ogni U,, sia connesso, e tale che per ogni p € M esistano
due carte locali (Uy,; 0u), (Uars o) € A in p tali che [01,4lp---On,alp] = e [O1alp-- Onarlp) = —p- Per

ogni (Uy, ¢a) € A definiamo 94: 0o (Us) — M ponendo
dla(.’li) = ((p;l(lf), [817a|%71(m) - 8n7a|@;1(m)]),

dove p = @ '(z). Ogni ¢, & chiaramente iniettiva; la sua inversa ¢ data da ¢, = @q o m, definita
su Uy = Ya(pa(Us)). Allora A = {(Us, o)} & un atlante su M. Infatti, copre M per llpote51 su A,
e le carte sono compatibili in quanto

@a‘”ﬁglzﬁaaoﬂ'owﬁ:@ao@gl-

Siccome ¢, oo @, ! = id, la proiezione 7 & differenziabile e chiaramente surgettiva. Inoltre se —U,CMe
definito da (p, +,) € —U, se e solo se (p, Fp) € Uy, allora 71 (U,) = U, U (—U,), e 7 ristretto sia a U, che
a —U,, ¢ un diffeomorfismo con Ug; quindi 7 € un rivestimento a due fogli.
Ora, se U, N Uﬁ # & allora U, NUg # @ e in ogni punto di Uy, NUg si ha [01,4...0n,a] = [01,5---0n gl,
per cui
det Jac(pq © @El) = det Jac(pq © <p51) > 0,

e quindi A ¢ orientato.

Se M non fosse connessa, la restrizione di 7 a ciascuna componente connessa sarebbe un rivestimento a
un foglio, cioe un diffeomorfismo, e M sarebbe orientabile, contraddizione.

Essendo 7 un rivestimento a due fogli, il gruppo di automorfismi di 7 & necessariamente Zs. L’automor-
fismo F ¢ dato da F'(p, £,) = (p, Fp), e si verifica subito che F inverte 'orientazione. Infatti, preso p € M,
sia (U, ¢) una carta in p tale che [0; ...0,] = +,, ¢ indichiamo con (U, ¢ ™) la carta ottenuta invertendo le
ultime due coordinate di ¢. Allora

g oFog T a) =T o F¢ ™M (@), +p1() = @ (¢ (@) —p1() =9~ 09 H(2) = (a2,
e la tesi segue dall’Esercizio 3.6.2. O
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Corollario 3.6.3: Ogni varieta connessa semplicemente connessa € orientabile.

Dimostrazione: Se non fosse orientabile, per la proposizione precedente dovrebbe avere un rivestimento a
due fogli e quindi non potrebbe essere semplicemente connessa. O
Esercizio 8.6.8. Sia M una varieta connessa di dimensione 1. Dimostra che M & necessariamente diffeomorfa
a R oppure a S' nel seguente modo:

(i) Dimostra la tesi quando M & orientabile costruendo un campo vettoriale su M mai nullo e applicando
I'Esercizio 3.3.1.

(ii) Dimostra che M & sempre orientabile, facendo vedere che il suo rivestimento universale ¢ diffeomorfo
a R e che ogni diffeomorfismo di R che inverte 1’orientazione ha necessariamente un punto fisso.

Il motivo per cui una n-forma mai nulla si chiama forma di volume e che permette di integrare delle

funzioni a supporto compatto su una varieta. Questo perché, come discuteremo fra un attimo, su una varieta

orientata di dimensione n ¢ sempre possibile integrare n-forme a supporto compatto; e allora se v ¢ una forma

di volume e g € una funzione a supporto compatto, possiamo definire I'integrale di g come 'integrale di gv.
Ma andiamo per gradi.

Lemma 3.6.4: Sia M una varieta n-dimensionale orientata, e w € A™(M) una n-forma a supporto compatto.
Supponiamo di avere due carte orientate (U, ) e (U, ) tali che il supporto di w sia contenuto in U N U.

Allora
/ (o) w= / (e
w(U) P(U)

Dimostrazione: Ricordo che se n = fdx! A --- Adz™ & una n-forma con supporto compatto in un aperto V'

di R™ abbiamo per definizione
/ n:/ fdzt---dx™,
v v

dove a secondo membro abbiamo 1'usuale integrale di Lebesgue.
-1

Scriviamo allora (¢~ ')*w = fdz' A--- Adax™ e (1) w = fdz' A -+ A dE™, per opportune funzioni
feC™®(pU)) e feC®(@U)). Siccome
(P w=(pod ) (¢ ) w,
troviamo 3
f=Ffol(po@!)detJac(pop™t).
Siccome le carte sono orientate, abbiamo det Jac(¢o@~1) > 0, per cui la formula di cambiamento di variabile
negli integrali multipli ci da

/~<¢—1>*w=/ ~<¢f1>*w=/ fditdin
o(U) p(UNU) o(UNU)

:/ fo(popt)detJac(pop™t)dit - di"
GUNU)

:/ fo(po@™)|det Jac(pog™)|di' - dz"
(UND)
= / i fdzt - da™ = / (o) *w.
e(UNU) »(U)
O

Quindi se w € A™(M) ¢ una n-forma con supporto compatto contenuto nel dominio di una carta
orientata (U, ¢) qualsiasi, possiamo definire f W ponendo

[ w- / o

La definizione dell’integrale per forme a supporto compatto qualunque si ottiene allora usando le partizioni
dell’unita:
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Lemma 3.6.5: Sia M una varieta n-dimensionale orientata, e scegliamo un atlante orientato A = {(Uq, ©a)}
e una partizione dell’'unita {p,, } subordinata a questo atlante. Allora per ognin-formaw € A™(M) a supporto

compatto il numero
w= Paw (3.6.1)
Le=2,

non dipende né dall’atlante orientato scelto né dalla partizione dell’unita scelta.

Dimostrazione: Prima di tutto notiamo che siccome il supporto di w & compatto, e i supporti delle funzioni
della partizione dell’unitd formano un ricoprimento localmente finito, la somma in (3.6.1) contiene solo un
numero finito di termini non nulli, per cui ¢ ben definita.

Sia A = {(Ugs, $s)} un altro atlante orientato di M, e {j3} una partizione dell’unita a lui subordinata.

Per ogni a abbiamo
/ PaW = / Zfaﬁ PaW = Z/ PBPaw,
M M\ 5 M

XQ:/M PaW = ;/M PBPaw-

L’integrando di ciascun addendo a secondo membro ha supporto compatto contenuto nel dominio di una
singola carta (U, oppure Ug, per esempio), per cui il valore di ciascun addendo non dipende dalla carta
usata per calcolarlo.

In maniera analoga otteniamo

e sommando su « otteniamo

zﬁ: /M ppw = OCZ[; /M PaPpw,

e la tesi segue. ]

Definizione 3.6.5: Sia M una varieta orientata n-dimensionale. L’integrale [, w di una n-forma w € A™(M)
a supporto compatto su M & definito dalla formula (3.6.1). In particolare, se v € A™(M) ¢ una forma di
volume per M e f € C*°(M) & a supporto compatto, poniamo

/Mf: Mfy.

Se M & compatta, diremo v-volume di M il numero vol, (M) = [, v.

Non posso concludere questo capitolo senza citare un caso particolare (ma particolarmente importante)
del fondamentale Teorema di Stokes:

Teorema 3.6.6: (Stokes) Sia M una varieta compatta orientata n-dimensionale, e n € A"~*(M). Allora

/ dn = 0.
M

In generale, si puo definire il concetto di varieta con bordo in modo che il bordo OM di una varieta M
con bordo n-dimensionale orientata sia una varietd (senza bordo) orientata (n — 1)-dimensionale. Allora il
Teorema di Stokes generale dice che
L= L
M oM

per ogni (n — 1)-forma 7 a supporto compatto in MJ



Capitolo 4

Metriche Riemanniane

4.1 Definizioni

Introduciamo ora la vera protagonista di questo corso.

Definizione 4.1.1: Una metrica Riemanniana su una varietd M & un campo tensoriale g € To(M) simmetrico
(cioe tale che g,(w,v) = g,(v,w) per ogni v, w € T,M e p € M) e definito positivo (cio¢ g(v,v) > 0 per
ogni v # O). La coppia (M, g) ¢ detta varieta Riemanniana. Spesso useremo anche la notazione (v, w), al
posto di g,(v,w), e indicheremo con || - ||, la norma su 7, M indotta dal prodotto scalare g,,.

In altre parole, una metrica Riemanniana associa a ogni punto p € M un prodotto scalare definito
positivo gp: T, M x T,M — R che dipende in modo C*® dal punto p.

Osservazione 4.1.1. Ci sono alcune situazioni (per esempio in relativita) in cui & utile studiare varieta
equipaggiate con un campo tensoriale g € 7o(M) simmetrico non-degenere (cioe tale che g,(v, w) = 0 per
ogni w € T,,M se e solo se v = Op). Diversi dei risultati di questo capitolo (per esempio la costruzione della
connessione di Levi-Civita nel paragrafo 4) sono validi anche in questa situazione piu generale; indicheremo
esplicitamente i casi piu significativi.

Esercizio 4.1.1. Sia M una varieta, e supponiamo di avere per ogni p € M un prodotto scalare definito
positivo g,: T, M x T, M — R. Dimostra che g ¢ una metrica Riemanniana se e solo se p — g, (X(p), Y(p))
e di classe C* per ogni X, Y € T(M).

Vediamo come si esprime una metrica Riemanniana (o, pill in generale, un campo tensoriale g € To(M)
simmetrico) in coordinate locali. Fissata una carta locale (U, ¢), indichiamo con (z!,...,z™) le corrispondenti
coordinate locali, e con {01,...,0,} il corrispondente riferimento locale di TM. Allora possiamo definire
delle funzioni g, € C*°(U) ponendo gpr. = g(0n, Ok ); e chiaramente abbiamo

9= Z gnk da" ® da. (4.1.1)
h,k=1

Inoltre, la matrice simmetrica (gnx) & non-degenere se e solo se g & non-degenere, ed & definita positiva se e
solo se g e definita positiva.

Osservazione 4.1.2. D’ora in poi useremo la convenzione di Einstein sugli indici ripetuti: se lo stesso
indice appare due volte in una formula, una volta in basso e una volta in alto, supporremo sottintesa una
sommatoria su tutti i possibili valori di quell’indice. Per esempio, la (4.1.1) verra scritta

g = gn dz" @ da*,

sottintendendo la sommatoria su h e k che variano da 1 a n. Vale la pena avvertire che in alcuni testi si trova
scritto dz” dz* invece di dz” ® dx*, e in particolare (dz?)? invece di do/ ® dz’. Infine, la matrice inversa
della matrice (gpy) sara indicata con (¢"*), in modo da avere

9 g"" = g" g1 = oF,

dove 5,@ ¢, come sempre, il delta di Kronecker.
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EseMPIO 4.1.1. R"™ con la metrica euclidea. Identificando come al solito T,R"™ con R™ per ogni p € R",
possiamo mettere su ciascuno spazio tangente il prodotto scalare canonico. In questo modo otteniamo una
metrica Riemanniana su R", detta metrica euclidea o metrica piatta su R", data da

go = Opp da" @ da* = da' @ dat + -+ + da™ @ da".

Usando le partizioni dell’unita e la metrica piatta ¢ facile dimostrare I’esistenza di metriche Riemanniane
su qualsiasi varieta:

Proposizione 4.1.1: Ogni varieta M (di Hausdorff a base numerabile) ammette una metrica Riemanniana.

Dimostrazione: Sia {p,} una partizione dell’unita subordinata a un atlante A = {(Uy, @)} di M. Su ciascun
aperto U, introduciamo la metrica piatta ¢® indotta dal sistema di coordinate: se p € Uy, e v = v79; 4
e w = w’d; 4 ¢ lascrittura in coordinate locali di due vettori v, w € T}, M, allora poniamo gz‘(v, w) = Zj viw?
(in altre parole, la matrice (gy;,) € la matrice identica). Definiamo allora un campo tensoriale g € 75(M) con

Vpe M 9 =Y _ pap)gy,

dove in ciascun punto p € M solo un numero finito di addendi sono diversi da zero. E facile verificare
(esercizio) che questa formula definisce una metrica Riemanniana su M, in quanto la somma di tensori
simmetrici definiti positivi ¢ ancora un campo tensoriale simmetrico definito positivo. O

Osservazione 4.1.3. Sia (gxx) la matrice che rappresenta una metrica Riemanniana g rispetto alla carta
locale (U, ¢), e (gi;) la matrice che rappresenta g rispetto a un’altra carta locale (U, @). Ricordando la
(2.4.2) e la formula che mostra come cambia la matrice che rappresenta un prodotto scalare cambiando base

otteniamo "
., [Ox or
(9ij) = <%> (gnk) - (@)

in UNU, dove il - indica il prodotto di matrici. In altre parole abbiamo

_ Ozl 0aF
9ij = 97 01 9hk-

In particolare,
- oz \ 1>
det(gis) = |det { == || det(gn)- (4.1.2)
Z

Osservazione 4.1.4. Sia (U, ) una carta locale in una varietd Riemanniana (M, g). Se applichiamo il
procedimento di Gram-Schmidt al riferimento locale {01, ...,0,} otteniamo un riferimento locale ortonor-
male {E,...,E,}. Attenzione: di solito perd non & possibile trovare una carta locale (U, ) tale che il
riferimento {04,...,0,} sia ortonormale in U. Infatti, come vedremo nel paragrafo 6.1, questo & equivalente
a richiedere che la varieta Riemanniana sia piatta in U.

Descriviamo ora alcune costruzioni standard che si possono effettuare usando una metrica Riemanniana.
Cominciamo con la

Proposizione 4.1.2: Sia (M, g) una varieta Riemanniana orientabile, e fissiamo un’orientazione. Allora
esiste un’unica n-forma v, € A"(M) mai nulla tale che vy(En,...,E,) = 1 per ogni p € M e ogni base
ortonormale positiva {En,. .., E,} di T,M.

Dimostrazione: Sia A = {(Ua, pa)} un atlante orientato, e indichiamo con (g¢}) la matrice che rappresenta g
nelle coordinate di ¢,. Sia poi B = {FEi,...,E,} una riferimento locale ortonormale positivo di TM
sopra U; se poniamo dz! (Ej) = el allora abbiamo Ej = e'dy, e quindi det(e}') > 0 (perché B & positiva),
e g?jeﬁlei = Sy (perché B & ortonormale), per cui

det(g2) det(e}) = 1. (4.1.3)
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Supponiamo che esista una v € A™(M) che soddisfa le ipotesi. Per ogni indice « esiste una f, € C*°(U,)
tale che v|y, = fadxl A--- Adz?. Ma allora

[
=v(Ei,...,Ey) = fodet(el) = —22—,
det(gf‘j)
per cui necessariamente f, = det(g?j)7 e v € unica.
Viceversa, poniamo
vglu, = \/det(gf) dzl Ao Adal.

Questa formula definisce una n-forma globale: infatti su U, N Uz (4.1.2) da

zh Ox
det(giﬁj)dx}; A+ ANdzg = det ( - det gm ) det (8 ) dzl Ao Ada?
L

= \/det(g%) dal A da”.

Chiaramente, v, non si annulla mai. Infine, v, ¢ come richiesto: infatti, se B = {E4,...,E,} ¢ una base
ortonormale positiva di T, M con p € Uy, (4.1.3) implica

vg(Er,..., En) = \/det(g) det(d;vh(Ek)) = det(g%)det(eﬁ) =1.

O

Definizione 4.1.2: Sia (M, g) una varieta Riemanniana orientabile. La n-forma v, € A™(M) & detta elemento
di volume Riemanniano di M.

Prtoseguiamo con altre costruzioni. Un prodotto scalare non degenere su uno spazio vettoriale V
permette di identificare V' col suo duale V*. Analogamente, su una varieta Riemanniana abbiamo un
isomorfismo naturale *: TM — T*M definito in questo modo

Yv e T,M v’ = gp(-,v) € T, M.
In coordinate locali, se v = v'0; e g = (g;;) allora
b — g0t dad
v’ = g;;vda?,
b

cioe v* = w; dz’ con w; = g;;v"
La mappa inversa sara denotata da #: T*M — TM; se w = w; dz* allora

w? = g¥w; 05,

cioé w# = v99; con vI = giw;
Osservazione 4.1.5. Il motivo della notazione musicale & che b abbassa gli indici mentre # li alza.

Definizione 4.1.3: Sia (M, g) una varieta Riemanniana, e f € C*°(M). Allora il gradiente di f & il campo
vettoriale grad f = (df)# € T (M).

In coordinate locali,
;Of
Od

per cui su R™ con la metrica piatta recuperiamo il gradiente usuale.

gradf = g" 0;,
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Definizione 4.1.4: Sia X € T (M) un campo vettoriale su una varieta Riemanniana (M, g). Allora il rotore

di X & la 2-forma differenziale rot X = dX°”.

In particolare abbiamo
rot(gradf) = d((df)*)" = d(df) = O.

In coordinate locali, se X = X%, allora

WX X X .
rot X = 29X 45\ gk = 3 OlgieX*) _ 09 X)| i p gk
oxJ 2 oxI oxk
1<j<k<n

Osservazione 4.1.6. Su R?, il fibrato /\2 R? & un fibrato banale di rango 3, per cui e isomorfo a TR?, che
¢ anch’esso un fibrato banale di rango 3. Per questo motivo nell’Analisi Matematica usuale il rotore di un
campo vettoriale (calcolato rispetto alla metrica piatta di ]R3) viene presentato come un campo vettoriale e
non come una 2-forma, per lo stesso motivo per cui il prodotto estero di due vettori in R?® viene presentato

come un vettore di R? (il prodotto vettore: confronta 1'Esercizio 1.3.19).J

Come prevedibile, le applicazioni che conservano una metrica Riemanniana hanno un nome particolare.

Definizione 4.1.5: Sia H:(M,g) — (M,§) un’applicazione C> fra due varieth Riemanniane della stessa
dimensione. Diremo che H ¢ un’isometria in p € M; se per ogni v, w € T, M; si ha

gH(p) (de(U), de(w)) = gp(U7 w)

Se H & un’isometria in p, il differenziale di H in p ¢ invertibile, e quindi H ¢ un diffeomorfismo di un intorno
di p con un intorno di H(p). Diremo che H & un’isometria locale in p € M se p ha un intorno U tale che H|y
sia un’isometria in ogni punto di U; e che & un’isometria locale se lo € in ogni punto di M. Infine, diremo
che H & un’isometria se ¢ un diffeomorfismo globale e un’isometria in ogni punto di M. Data una varieta
Riemanniana (M, g), indicheremo con Iso(M) il gruppo di tutte le isometrie di M con se stessa.

Definizione 4.1.6: Diremo che la varietd Riemanniana (M, g) ¢ localmente isometrica alla varietd Rieman-
niana (M, g) se per ogni p € M esiste un’isometria di un intorno di p in M con un aperto di M. Infine,
diremo che (M, g) e (M, g) sono isometriche se esiste un’isometria globale fra (M, g) e (M, g).

FEsercizio 4.1.2. Dimostra che un’applicazione H: (M, g) — (M, g) di classe C* fra varieta Riemanniane &
un’isometria locale se e solo se € un’isometria in ogni punto di M.

Esercizio 4.1.3. Costruisci un esempio di un’isometria locale che non sia un’isometria.

Piti in generale, un’immersione in una varieta Riemanniana induce una metrica Riemanniana anche
nella varieta di partenza.

Definizione 4.1.7: Sia F: M — N un’immersione, e g una metrica Riemanniana su N. Definiamo per ogni
p € M un prodotto scalare (F*g), su T, M ponendo

Yo, w e T,M (F*9)p(v,w0) = gp(p) (dFp(v), dFy(w)).

E facile verificare (esercizio) che F™*g € una metrica Riemanniana su M, detta metrica indotta da g tramite F,
o metrica pullback.

ESEMPIO 4.1.2.  Se t: M — N & una sottovarieta di una varieta Riemanniana (N, g), la metrica indotta t*g
verra, a volte indicata con g|g. Dunque ogni sottovarietd di una varietd Riemanniana ¢ a sua volta una
varietd, Riemanniana con la metrica indotta; per esempio, questo vale per le sottovarieta di R™ considerato
con la metrica piatta.

Abbiamo visto (Teorema 2.5.6) che ogni varieta puo essere realizzata come sottovarieta chiusa di un
qualche RY , per N abbastanza grande, e quindi eredita una metrica Riemanniana indotta dalla metrica piatta
di RY. Viene allora naturale chiedersi se in questo modo & possibile ottenere tutte le varietd Riemanniane.
La risposta, positiva, € il famoso Teorema di Nash:
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Teorema 4.1.3: (Nash, 1956) Ogni varietd Riemanniana ammette un embedding isometrico in RY, consi-
derato con la metrica piatta, per N abbastanza grande.

ESEMPIO 4.1.3.  Sia m: M — M un rivestimento liscio, e supponiamo di avere una metrica Riemanniana g
su M. Un rivestimento liscio ¢, in particolare, un dlffeomorﬁsmo locale, e quindi un tipo molto speciale di
immersione; possiamo quindi equipaggiare M con la metrica indotta 7*¢. E facile (esercizio) verificare che
7*¢ & Punica metrica Riemanniana su M che rende 7 un’isometria locale.

EsempIO 4.1.4. Sia m: M — M di nuovo un rivestimento liscio, ma supponiamo stavolta di avere una
metrica Riemanniana § su M. Non & detto che esista una metrica Riemanniana g su M che rende 7
un’isometria locale. Infatti, supponiamo che g esista, e sia F: M — M un automorfismo del rivestimento,
cio¢ un’applicazione continua tale che 7 o F' = 7; nota che F' & automaticamente C>° (perché?). Allora per
ogni p € M e ogni v, w € Tj M si deve avere

gp(v,w) = Ir(p (dﬂp( )»dﬂﬁ(w)) = 9= (F(p)) (dWF(ﬁ)(dFﬁ(U))a dWF(ﬁ)(dFﬁ(w)))
= Jr@) (dFp(v), dFp(w)),

cioe F' dev’essere un’isometria per g. Viceversa, supponiamo che ogni automorfismo del rivestimento sia
un’isometria, e che il gruppo degli automorfismi del rivestimento agisca in maniera transitiva sulle fibre
(ipotesi quest’ultima equivalente a richiedere che il rivestimento sia normale, cio¢ tale che m, (771(M , ]5)) sia
un sottogruppo normale di m; (M , ﬂ(ﬁ)) per un qualsiasi p € M); allora non & difficile dimostrare (esercizio)
che esiste un’unica metrica Riemanniana g su M per cui 7 risulta essere un’isometria locale: e sufficiente
per ognip € M e v, w € T,M porre
gp(v’ ’U)) = gﬁ(ﬁ’ U~}),
dove p € M e ©, ® € T;M sono tali che 7(p) = p, drp(9) = v e dmp(d) = w.

Usando la nozione di metrica indotta possiamo esprimere in maniera concisa quando un’immersione
conserva la metrica Riemanniana:

Definizione 4.1.8: Un’immersione (embedding) F: (M, g™) — (N, g") fra varietd Riemanniane & un’immer-
sione (embedding) isometrica se F*g" = g™, dove F*g"V & la metrica indotta su M appena definita.

Esercizio 4.1.4. Costruisci due varietad Riemanniane (M, g) e (M, §) tali che (M, g) & localmente isometrica
a (M,g) ma (M, g) non & localmente isometrica a (M, g).

Concludiamo questo paragrafo definendo, piu in generale, la nozione di metrica Riemanniana su un
fibrato vettoriale.

Definizione 4.1.9: Una metrica lungo le fibre su un fibrato vettoriale m: ' — M & I’assegnazione per ogni punto
p € M di un prodotto scalare definito positivo (-, -),: E, x E, — R tale che la funzione p — (o(p), 7(p)), sia
di classe C*° per ogni coppia di sezioni o, 7 € E(M).

Una volta data una metrica Riemanniana su M otteniamo automaticamente metriche lungo le fibre su
tutti i fibrati tensoriali T}*M:

Proposizione 4.1.4: Sia (M, g) una varieta Riemanniana, e h, k € N. Allora esiste un’unica metrica lungo
le fibre di T} M tale che se {Ex, ..., Ey,} & un riferimento locale ortonormale per TM e {w',...,w"} & il suo
riferimento duale, allora {E;, ® - Q@ E;, @w* ®- - -Q@w’* } forma un riferimento locale ortonormale per T, ,f]\/[ .

Dimostrazione: Sia (g;;) la matrice che rappresenta g in una qualche carta locale (U, ¢), e prendiamo due
clementi F = F/'" " 0, @+ ©0;, @da’ @+ ®@da?*, G =G 0, @+ ®0;, @deh @ - @da’* € TRU.
Allora ponendo

(F,G) = g7 g™ iy - i By Gt

¢ facile verificare (esercizio) che otteniamo una metrica lungo le fibre che soddisfa le condizioni richieste.
Siccome data una base esiste un unico prodotto scalare rispetto a cui detta base ¢ ortonormale, la metrica
cosl ottenuta e l'unica possibile. O
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Esercizio 4.1.5. Dimostra che la metrica lungo le fibre cosi ottenuta coincide con quella che si otterrebbe
applicando la Proposizione 1.2.1 alla metrica Riemanniana data su ciascun spazio tangente.

In particolare, data una metrica Riemanniana su M otteniamo una metrica lungo le fibre di T*M, e la
Proposizione 1.2.1.(iv) ci dice che le applicazioni bemolle e diesis sono allora delle isometrie rispetto a queste
metriche. Possiamo verificarlo anche in coordinate locali: infatti,

(W, %) = grrg"wig"n; = glwm; = (w,n),

e analogamente si vede che

4.2 Esempi
In questo paragrafo descriveremo alcuni esempi importanti di varieta Riemanniane.

EseEmp1O 4.2.1.  La sfera. Sia S} la sfera di raggio R > 0 e centro l'origine in R™!. La metrica indotta
dalla metrica euclidea di R™ & detta metrica sferica. Vogliamo calcolare i coefficienti g;; della metrica sferica
rispetto alle coordinate sferiche introdotte nell’Esempio 2.1.11. II riferimento locale di 7}, 5% indotto dalle
coordinate sferiche & composto dai campi vettoriali locali

9 , ik, , 9 9
—  — Rsin®™*!...qino" J Lgin@' .. .qingi—t —sin®?
507 = Rsiné sin 6 [cos@ ;COSQ sin 6 sin 6 prREs sin 6 el |

per j = 1,...,n, dove (x',...,2""1) sono le coordinate di

zione #° = 0. Quindi otteniamo

R™™!, ¢ dove abbiamo posto per conven-

_ J R*(sin@t!-..sing")* sei=j,
9=\ 0 se i # J;

in particolare, la matrice (g;;) ¢ diagonale.

EsEMPIO 4.2.2. Sia 7: 8™ — P"(R) il rivestimento universale dello spazio proiettivo. Allora combinando
gli Esempi 4.1.4 e 4.2.1 otteniamo una metrica Riemanniana sullo spazio proiettivo.

Una caratteristica interessante della sfera ¢ che & localmente conformemente piatta (anche se, come
vedremo, non ¢ affatto piatta).

Definizione 4.2.1: Due metriche Riemanniane g; e go su una varieta M sono dette conformi se esiste una
funzione f € C'*°(M) sempre positiva tale che g2 = fg1. Due varieta Riemanniane (M, g1) e (M3, g2) sono
dette conformemente equivalenti se esiste un diffeomorfismo F': M; — M, detto equivalenza conforme, tale
che F*go sia conforme a g;. Diremo che (M, ¢1) € localmente conforme a (Ma, g2) se per ogni p € M;
esistono un intorno U C M; di p e un diffeomorfismo con I'immagine F:U — M, tale che F*go|p() sia
conforme a gi|y. Infine, diremo che (M, g) ¢ localmente conformemente piatta se ¢ localmente conforme
a R" con la metrica piatta, dove n = dim M.

Proposizione 4.2.1: S% é localmente conformemente piatta.

Dimostrazione: Sia N = (0,...,0,R) € S% il polo nord, e indichiamo con ¢y:Sp \ {N} — R" Cc R"™ la
proiezione stereografica dal polo nord descritta nell’Esempio 2.1.10; vogliamo dimostrare che oy € un’equi-
valenza conforme.

Indichiamo con gr la metrica Riemanniana su S%, e con go la metrica euclidea su R"; basta far vedere
che (¢5')*gr € go sono conformi. Preso x € R" e v = v/9; € T,R" dobbiamo calcolare

(") 9r(v,0) = gr(dPx")e(v), diexN)e(v)) = [ld(er")e )]
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Ora,
_ ()" 2R? 4R*(v, x)
d ! x =’ N, = - ’ h - n ;
(SDN) (’U) v 61‘-7 ah ||$H2—|—R2 v (H$||2 +R2)2 (x ah Ra +1)’
quindi
4R*
—1\x _ 2
(‘pN ) gR(v,v) - (||$H2+R2)2 ||’U|| )
cioe

(3D on =
SON Jdr = (”1:”2 +R2)2 90,

per cui (<p]_vl)*gR e conforme alla metrica euclidea, come voluto. Infine, usando la proiezione stereografica
rispetto al polo sud S = —N si conclude la dimostrazione che S% & localmente conformemente piatta. Il

Esempio 4.2.3. Lo spazio iperbolico. Introduciamo ora un altro esempio importante di varieta Rieman-
niana, in tre incarnazioni diverse.

(a) L’iperboloide. Sia U = {x € R"™ | (27+1)2 —||2’||2 = R?,2"*! > 0} la falda superiore dell’iperboloide

ellittico, dove 2’ = (x!,...,2™) € R". Su U% introduciamo il campo tensoriale simmetrico non-degenere

g}% =de' @dat + -+ dz" @ da"™ — da" T @ dx" T

dimostreremo fra un attimo che g, ¢ effettivamente definita positiva su TUR, per cui & effettivamente
una metrica Riemanniana.

(b) La palla di Poincaré. Sia B}, = {z € R" | ||z|| < R} la palla aperta di raggio R in R". Su B} poniamo
la metrica

= L (da' @ da' + - - + da"™ @ dz™)
IR~ (R 2] '

(c) 1l semispazio superiore di Poincaré. Sia Hj, = {x € R" | ™ > 0} il semispazio superiore in R". Su H}
poniamo la metrica
R2

g?é:W(dxl®dx1+~-~+dx"®dx").

Le ultime due metriche sono chiaramente conformi alla metrica euclidea, per cui B} e Hj sono localmente
conformemente piatte. In realtad questo vale anche per Uy, in quanto

Proposizione 4.2.2: Le varieta Riemanniane (UR, g%), (B%,g%) e (HS, g%) sono isometriche.

Dimostrazione: Cominciamo costruendo un’isometria F:Upj — Bj. Dato S = (0,...,0,—R) € R
e x € UR, sia F(z) € R ¢ R™! il punto d’intersezione fra BY e la retta da S a x. Si verifica subito
che

F(x) z' € B},

T Ry antt

e che

F—l(p) _ 2R2p R2 + ||p||2
R —|jpll*" B2 —pl* /)

Vogliamo dimostrare che F*g% = gk. Per far cio ricordiamo (Proposizione 2.5.5) che v € T,U% se e solo
se z" oyt = (27 0'); inoltre,

R Un+1
F, = f— ap
4F: (v) R+ ant! (U R+ ant! x)
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Quindi \
4R
F* g2 (0,0) = g% (dF, (v), dF, (v)) = |dF, (v)]?
" il ) (R — |F(2)[?)”
4 R?

(1 i) 77
T W2

2,Un+1
R+ antl

= [lV|I* = " = gr(v,0),

n+1 2
I v 1

Y _R—i—x"“x

|Un+1|2
= [|v'|® 51l

ro
<'T’U>+ (R+$n+1)

come voluto.
Costruiamo ora un diffeomorfismo G: B — Hp imitando la trasformata di Cayley di una variabile
complessa:

6t9) = (e WP
T+ G =R W+ (= R

dove stavolta p’ = (p',...,p" 1) € R"!. L'inversa ¢ data da

G (q) = ( 212 la'II” + lg"|* — R2>
g1+ (¢ +R)? ¢lI?+ (" +R)? )’

e un conto analogo al precedente mostra che G*g% = g%. ]

Definizione 4.2.2: Una qualunque varieta Riemanniana isometrica a una delle tre varieta Riemanniane della
proposizione precedente € detta spazio iperbolico di dimensione n.

Vedremo in seguito (nel paragrafo 6.4) che R™ con la metrica piatta, le sfere e gli spazi iperbolici sono le
uniche (a meno di isometrie) varietd Riemanniane semplicemente connesse di curvatura sezionale costante.
Per farlo, ci servira il seguente

EseEMPIO 4.2.4. Gli elementi del gruppo ortogonale O(n + 1) sono ovviamente delle isometrie di S%.
Inoltre,O(n + 1) agisce transitivamente sulle basi ortonomali in 7'S%. In altre parole, per ogni p, p € S%
e basi ortonormali {E;} di T,S% e {E;} di T;Sp esiste A € O(n + 1) tale che A(p) = p e dA,(E;) = E;
per j =1,...,n. Infatti, ¢ sufficiente far vedere che per ogni p € S% e ogni base ortonormale {E;} di T,S5%
esiste A € O(n + 1) che manda il polo nord N = (0,...,0, R) in p e la base canonica {e1,...,e,} di TnSE
in {E;}. Ma infatti sia {ey,...,en, N/R} che {Ei,..., E,,p/||p|} sono basi ortonormali di R™**, per cui
esiste un’unica A € O(n + 1) che manda la prima nella seconda (e dAy = A, in quanto A ¢ lineare). Nel
paragrafo 6.4 faremo vedere che, come conseguenza di questo fatto, Iso(S%) = O(n + 1).

FEsercizio 4.2.1.  Sia O(n, 1) il gruppo delle trasformazioni lineari di R"™*! che conserva gk considerata come
forma quadratica su R™™, e indichiamo con O, (n,1) il sottogruppo che manda U% in sé. Dimostra che
gli elementi di O4(n,1) sono isometrie di Ug, e che Oy (n,1) agisce transitivamente sulle basi ortonormali
di TUE.

Concludiamo questo paragrafo parlando di metriche Riemanniane su gruppi di Lie.

Definizione 4.2.3: Una metrica Riemanniana ¢ su un gruppo di Lie G ¢ invariante a sinistra (rispettivamente,
invariante a destra) se L}y g = ¢ (rispettivamente, R;g = g) per ogni h € G, cioé se tutte le traslazioni
sinistre (destre) sono delle isometrie. Una metrica Riemanniana invariante sia a sinistra che a destra ¢ detta
bi-invariante.

Sia G un gruppo di Lie. Se scegliamo arbitrariamente un prodotto scalare definito positivo (-, ).

sull’algebra di Lie g, otteniamo (perché?) una metrica Riemanniana invariante a sinistra ponendo

Vh € G, Yv,w € T,G <v,w>h = <(dLh71)h(U), (dLh—l)h(UJ)> .

€
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In maniera analoga si ottengono metriche Riemanniane invarianti a destra, ed e chiaro che tutte le metriche
Riemanniane invarianti a sinistra o a destra si ricavano in questo modo.

Esercizio 4.2.2. Dimostra che su un gruppo di Lie compatto G esiste sempre una metrica Riemanniana

bi-invariante seguendo la traccia seguente:

(a) Dimostra che I'unico omomorfismo continuo f: G — R* & la costante 1.

(b) Sia v € A™(G) una n-forma invariante a sinistra, cioe tale che L} v = v per ogni h € G. Dimostra che v
¢ anche invariante a destra. (Suggerimento: per ogni h € G, la n-forma R} v & invariante a sinistra, per
cui Rjv = f(h)v; verifica che f: G — R* ¢ un omomorfismo di gruppi.)

(c) Dimostra che esiste una n-forma di volume invariante a sinistra su G.

(d) Sia (-,-) una metrica Riemanniana invariante a sinistra su G, e sia v una n-forma di volume invariante
a sinistra su G. Dimostra che ponendo

(0, w)y = /G (AR) g0, (AR ) yt0) e dv

dove g € G e v, w € TyG, si ottiene una metrica Riemanniana bi-invariante su G.

Definizione 4.2.4: Se 0: G x M — M é un’azione di un gruppo di Lie G su una varieta Riemanniana M tale
che 6, ¢ un’isometria per ogni g € G, diremo che G agisce per isometrie su M.

Dunque se G agisce fedelmente per isometrie su una varieta Riemanniana M allora G puo essere pensato
come un sottogruppo del gruppo Iso(M) di tutte le isometrie di M. A dire il vero, lo stesso gruppo Iso(M)
¢ un gruppo di Lie e 'applicazione g — 0, ¢ sempre di classe C'*°, grazie ai seguenti due teoremi:

Teorema 4.2.3: Siano G e H due gruppi di Lie, e F: G — H un omomorfismo continuo di gruppi. Allora
F & automaticamente di classe C'°.

Teorema 4.2.4: (Myers, Steenrod) Sia M una varieta Riemanniana. Allora il gruppo Iso(M) ammette una
struttura di gruppo di Lie tale che I'applicazione naturale (F,p) — F(p) sia un’azione di Iso(M) su M.

Definizione 4.2.5: Diremo che una varieta Riemanniana M & omogenea se Iso(M) agisce in modo transitivo.
Diremo che M ¢ isotropa in un punto p € M se il sottogruppo di isotropia Iso(M), agisce in modo transitivo
sui vettori unitari in T, M, dove Iso(M), agisce su T, M tramite applicazione (F,v) — dF,(v).

Osservazione 4.2.1. Se M & omogenea, e isotropa in un punto, allora € isotropa in ogni punto.

4.3 Connessioni

L’obiettivo di questo paragrafo e trovare un modo per derivare campi vettoriali definiti lungo una curva. Il
problema & che i valori del campo vettoriale appartengono a spazi vettoriali diversi, per cui non ¢ possibile
scrivere un rapporto incrementale. Storicamente, questo problema venne risolto introducendo una tecnica
(il trasporto parallelo) per confrontare spazi tangenti in punti diversi; noi invece faremo il percorso inverso,
definendo prima cosa vuol dire derivare campi vettoriali e deducendo poi il concetto di trasporto parallelo.

La formalizzazione moderna del concetto di derivazione di campi vettoriali & data dalla definizione di
connessione.

Definizione 4.3.1: Sia m: E — M un fibrato vettoriale su una varieta M. Una connessione su F ¢ un’applica-
zione V: T (M) x E(M) — E(M), scritta (X, V) — VxV, tale che
(a) VxV & C°°(M)-lineare in X: per ogni X1, Xo € T(M), Ve (M), e f, g€ C®(M) si ha

Vixitgx,V = fVx,V +9Vx,V;
(b) VxV & R-lineare in V: per ogni X € T(M), Vi, Vo € E(M), e a, b € R si ha

Vx(aVi 4+ bVa) = aVx Vi + bV xVa;
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(c) V soddisfa un’identita di Leibniz: per ogni X € T(M), V € E(M), e f € C*°(M) si ha

Vx(fV) = fVxV + (Xf)V.

La sezione VxV & detta derivata covariante di V' lungo X. Infine, una connessione su T'M verra chiamata
connessione lineare, o semplicemente connessione su M.

Esempio 4.3.1. Sia F = M x R" un fibrato banale sulla varieta M. Ogni sezione V € E(M) & della
forma V = VIE; per opportune V7 € C*(M), dove {E,...,E,} & il riferimento globale di E ottenuto
ponendo E;(p) = (p,e;) per ogni p € M, dove {ey,...,e,} € la base canonica di R". In altre parole, una
sezione del fibrato banale di rango r e essenzialmente una r-upla di funzioni differenziabili. Possiamo allora
definire la connessione piatta su E ponendo

VxV =X(V)E;.

Si verifica subito che ¢ effettivamente una connessione.
Usando la connessione piatta e le partizioni dell’unita ¢ facile definire connessioni su qualsiasi fibrato:
Proposizione 4.3.1: Su qualsiasi fibrato vettoriale w: E — M esiste sempre una connessione.

Dimostrazione: Scegliamo un atlante {(U,, pq)} di M che banalizza E, con banalizzazioni locali date da
Xa: T H(Uy) — Uy XR", e sia {p, } una partizione dell’unita subordinata al ricoprimento {U, }. Su ciascun U,
definiamo una connessione V* ponendo

VX € T(Ua) YV € E(U.) VY = X2 (Ve (V).
dove V9 ¢ la connessione piatta su U, x R”. Incolliamo ora le V* definendo

VX € T(M)VV € (M) VxV => pa(Vi. Viv.)-

Le proprieta (a) e (b) della Definizione 4.3.1 sono chiaramente soddisfatte. Per la proprieta (c) abbiamo

Vx(V) =3 eV, (FV10.) = 3 pa (1Y%, Vi, + X (V0

= VXV + (Z pa) X(f)V = [VxV + X(H)V,

e quindi V & una connessione. ]

Osservazione 4.3.1. In generale, la somma di connessioni (o il prodotto di uno scalare per una connes-
sione) non € una connessione, in quanto la proprieta (c) non viene conservata. Invece, la combinazione affine
di connessioni & una connessione: se V!, ..., V¥ sono connessioni su un fibrato £ e p1,....ux € R sono tali
che py + -+ + g = 1, allora si verifica facilmente che ;11 V' + - - 4+ 11, V¥ & ancora una connessione.

Facciamo ora vedere che in realta VxV(p) dipende solo dal valore di X in p € M e dal comportamento
di V in un intorno di p (o, pitl precisamente, solo da X (p) e dal comportamento di V ristretto a una curva
tangente a X (p) in p):

Lemma 4.3.2: Sia m: E — M un fibrato vettoriale, e V: T (M) x E(M) — £(M) una connessione.
(i) Se X, X € T(M) eV, V € £(M) sono tali che X(p) = X(p) e V =V in un intorno di p € M allora si
ha VxV(p) =V V(p).
(ii) Per ogni aperto U C M esiste un’unica connessione VV: T (U) x E({U) — E(U) su E|y tale che per
ogni X e T(M),V € E(M) ep € U si abbia

vg](|UV|U(10) =VxV(p).



4.3 Connessioni 81

(iii) Se X € T(M) eV, V € E(M) sono tali che esiste una curva o: (—¢,e) — M con (0) = p, 0'(0) = X(p)
eVoo=Voo alloraVxV(p)=VxV(p).

Dimostrazione: Prima di tutto dimostriamo che se V' = O in un intorno U di p allora VxV(p) = O per
ogni X € T(M). Sia g € C>°(M) tale che g(p) = 1 e g|an\v = 0 (vedi il Corollario 2.3.2). Allora gV = O,
per cui Vx(gV) =Vx(0-¢gV) =0Vx(gV) = O e quindi

O =Vx(gV)p) =9@)VxV(p)+ (Xg)(»)V(p) = VxV(p).

Dunque se V, V € E(M) sono tali che V = V in un intorno di p, abbiamo V — V = O in un intorno di p, e
quindi VxV (p) = VxV(p) quale che sia X € T(M).

Dimostriamo analogamente che se X = O in un intorno U di p allora Vx V' (p) = O per ogni V € E(M).
Infatti, se g € C*°(M) ¢ la stessa funzione di prima si ha gX = O, per cui VyxV = VxV =0VyxV =0
e quindi

O =V,xV(p)=gp)VxV(p) = VxV(p).

Da questo segue, come prima, che se X = X in un intorno di p allora VxV(p) = V +V(p) quale che
sia V e E(M).

In particolare, quindi, il valore di VxV in p dipende solo dal comportamento di X e V in un intorno
di p, per cui se una connessione VY come in (ii) esiste allora ¢ unica. Ma possiamo usare questa proprieta
anche per definire VY. Infatti, per ogni p € U scegliamo, usando la Proposizione 2.3.1, una Xp € C(M)
tale che x, = 1 in un intorno di p e supp(x,) C U. Allora per ogni X € T(U) il campo vettoriale x,X,
esteso a zero fuori da U, & un campo vettoriale globale che coincide con X in un intorno di p. In modo
analogo, per ogni V' € £(U) possiamo considerare x,V come una sezione globale di E che coincide con V' in
un intorno di p. Quindi se definiamo VV: 7 (U) x £(U) — &£(U) ponendo

V)U(V(p) = vpr(XpV) (»)

per quanto visto otteniamo una connessione ben definita (cio¢ indipendente dalla scelta delle ), e abbiamo
dimostrato (ii).

Possiamo ora completare la dimostrazione di (i), facendo vedere che in realta VxV (p) dipende solo dal
valore di X in p (e dal comportamento di V' in un intorno di p). Al solito, basta far vedere che X (p) = O
implica VxV (p) = O per ogni V € £(M). Sia (U, ¢) una carta locale centrata in p, e scriviamo X|y = X79;,
con X7 (p) =0 per j=1,...,nin quanto X (p) = O. Per quanto detto, ha senso calcolare Vo,V (p), e si ha

VxV(p) = Vxio,V(p) = X/ (p)Va,V(p) = O.

Per dimostrare (iii), basta far vedere che se V oo = O allora VxV(p) = O. Sia {Ey,...,E.} un
riferimento locale per E su un intorno U di p, e scriviamo V = VJE;. Da V(p) = V(c(0)) = O otteniamo

V1i(p) =---=V"(p) = 0. Per quanto detto ha senso calcolare Vx E;(p), e si ha
y j y d(Vioo)
VxVip) = Vx (V' E;)(p) = VI () Vx Ej(p) + X (p)(V!) Ej(p) = ———(0)E;(p) = O-

O

Per non appesantire le notazioni, nel seguito indicheremo con V e non con VY la connessione indotta
sull’aperto U C M.

Sia (U, ¢) una carta locale che banalizza E, e {E1,..., E,} un riferimento locale su U. Allora si deve
poter scrivere

Vo,En =T%,E,

per opportune funzioni F?h e C>(U).
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Definizione 4.3.2: Le funzioni Ffj sono dette simboli di Christoffel della connessione rispetto al dato riferi-
mento locale.

I simboli di Christoffel determinano completamente la connessione: infatti se X € T(U) e V € E(U),
localmente possiamo scrivere X = X79; e V = V" E},, e abbiamo

VxV =XV, V = [X/9;(VF) + T}, X/ V" Ey. (4.3.1)

In particolare, i simboli di Christoffel della connessione piatta su un fibrato banale sono identicamente nulli.
Il Lemma 4.3.2.(iii) ci dice che per calcolare la derivata covariante di una sezione basta conoscerne il
comportamento lungo una curva. Questo ci suggerisce la seguente:

Definizione 4.3.3: Sia m: E — M un fibrato vettoriale e 0:1 — M una curva in M, dove I C R ¢ un
intervallo. Una sezione di E lungo ¢ ¢ un’applicazione V:I — E di classe C™ tale che V(&) € Ey) per
ogni ¢t € I. Lo spazio vettoriale delle sezioni di E lungo o verra indicato con £(o), o con 7 (o) se E =TM.
Una sezione V € &(0) & estendibile se esiste un intorno U del sostegno di ¢ e una sezione V € E(U) tale
che V(t) = V(a(t)) per ogni t € I.

EsempPIO 4.3.2. Il vettore tangente a una curva o’(t) = do(d/dt) & un tipico esempio di sezione di TM
lungo una curva. Inoltre, se o(t1) = o(t2) ma o’(t1) # o’(t2) allora ¢’ non & estendibile.

Esercizio 4.3.1. Sia m: E — M un fibrato vettoriale, e o: I — M una curva di classe C*°. Sia tg € [ tale
che o’ (tp) # O. Dimostra che esiste un intervallo aperto U C I contenente ty tale che ogni X € E(o|y) &
estendibile.

11 vero significato del Lemma 4.3.2.(iii) ¢ contenuto nella

Proposizione 4.3.3: Sia V una connessione su un fibrato vettoriale w: E — M. Allora per ogni curva
o:I — M esiste un unico operatore D: E(o) — E(o) soddisfacente le seguenti proprieta:

(i) é R-lineare:
Va,b e R D(aVy + bVa) = aDVy + bDVa;
(ii) soddisfa una regola di Leibniz:
Vfel>®() D(fV)=f'V+ fDV;
(iii) se V € £(o) & estendibile, e V & un’estensione di V, si ha
DV (t) = VynV.

Dimostrazione: Cominciamo con 'unicita. Dato tg € I, un ragionamento analogo a quello usato per dimo-
strare il Lemma 4.3.2.(i) mostra che DV (to) dipende solo dai valori di V' in un intorno di . Possiamo allora
usare un riferimento locale e coordinate locali, scrivere V (t) = V(t)Ej, (0(t)), o’(to) = (¢7) (t0)d;(c(to)) e
usare le proprieta di D per ottenere

DV (tg) = (VMY (¢ Ey(o(to)) + Vi(to)D(Ey 0 0)(to)
(Vh) Bn(o(to)) + V"(t0) V(1) En(a(to)) (4.3.2)
= vty <to> + Tl (0(t0)) (07 (t0) V" t0) | Ex (0 (t0)).

dove abbiamo usato il fatto che Ej oo ¢ estendibile in un intorno di ¢y; quindi D & univocamente determinato.

Per D'esistenza, se il sostegno di o e contenuto in una sola carta locale banalizzante FE, possiamo
usare (4.3.2) per definire D, ed ¢ facile verificare che soddisfa le condizioni richieste. In generale, co-
priamo o(I) con carte locali banalizzanti E, e usiamo (4.3.2) per definire un operatore D su ciascuna di
queste carte. Nelle intersezioni, abbiamo due operatori che soddisfano (i)—(iii); per l'unicita, questi due
operatori devono coincidere, e quindi abbiamo definito D globalmente. O
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Definizione 4.3.4: 1’operatore D definito sopra e detto derivata covariante lungo la curva o: I — M. Set € I
e V € &(o), scriveremo spesso D;V invece di DV (t).

Esercizio 4.3.2. Sia V una connessione su un fibrato vettoriale m: £ — M, e 0:1 — M una curva di
classe C*°; indichiamo con D:E(o) — &(o) la derivata covariante lungo o. Sia poi h:J — I di classe C*°,
dove J C R & un intervallo, e indichiamo con D la derivata covariante lungo la curva ¢ = o o h. Dimostra
che per ogni X € (o) siha Xohe&(ocoh)e

D(X oh) =K (DX oh).

Se E = M x R" ¢ il fibrato banale, V ¢ la connessione piatta, e 0: 1 — M ¢& una curva, si vede subito
che V € £(o) soddisfa DV = O se e solo se V' & costante, cioe se V (¢) & sempre lo stesso vettore di R" che si
sposta parallelamente lungo la curva o. Questo fatto suggerisce la seguente definizione:

Definizione 4.3.5: Sia V una connessione su un fibrato vettoriale m: £ — M, e 0:I — M una curva. Una
sezione V € &(o) ¢ detta parallela se DV = O.

La condizione di parallelismo & localmente un sistema lineare di equazioni differenziali ordinarie: infatti
(4.3.2) implica che DV = O in una carta banalizzante E se e solo se

—— 4+ (%, 00)(c?) V" =0. (4.3.3)
Citiamo a questo punto il Teorema di esistenza e unicita delle soluzioni di un sistema di equazioni differenziali
ordinarie lineari:

Teorema 4.3.4: Dati un intervallo I C R, un punto tg € I, un punto xg € R", e un’applicazione
A: I — M, »(R) di classe C*°, il problema di Cauchy

av
V(to) = X9

ammette una e una sola soluzione V:I — R" di classe C*°.

Questo teorema implica che, posto I = [a,b] e p = o(a), per ogni v € E, esiste un unico V € £(0)
parallelo tale che V(a) = v. Infatti, essendo o(I) compatto, possiamo trovare un numero finito di carte
(U1, ¢1),---,(Ur, ) banalizzanti E che coprono il sostegno di o; possiamo anche supporre che si ab-
bia U;No(I) =o([sj,t;]) perj=1,...,r,cona =51 <83 <t] <s3<ty<--- <58 <tp_1 <t =0b. Allora
il Teorema 4.3.4 applicato a (4.3.3) ci fornisce un’unica sezione parallela V; lungo o|js, ¢, tale che V1 (a) = v.
Analogamente, il Teorema 4.3.4 ci fornisce un’unica sezione parallela V5 lungo o/}, 1, tale che Va(t1) = Vi(t1);
in particolare, I'unicita implica che V4 e V4 coincidono in [s9, 1], definendo quindi un’unica sezione parallela
lungo o4, +,]- Procedendo in questo modo troviamo un’unica sezione V' parallela lungo o tale che V(a) = v.
Questo ci permette di introdurre la seguente

Definizione 4.3.6: Sia V una connessione su un fibrato vettoriale m: E — M, e 0:]0,1] — M una curva.
Poniamo py = 0(0) e p1 = o(1). Dato v € E,,, I'unica sezione V € &(o) parallela lungo o tale che
V(0) = v € E,, ¢ detta estensione parallela di v lungo o. Il trasporto parallelo lungo o (relativo a V) &
lapplicazione 6: E,, — E,, definita da 6(v) = V(1), dove V € £(0) ¢ l'estensione parallela di v € E,,.

Lemma 4.3.5: Sia V una connessione su un fibrato vettoriale m:E — M, e 0:[0,1] — M una curva.
Poniamo py = 0(0) e p1 = o(1). Allora il trasporto parallelo lungo ¢ & un isomorfismo fra E,, e E,, .

Dimostrazione: Siccome (4.3.3) & un sistema lineare di equazioni differenziali ordinarie, la soluzione dipende
linearmente dalle condizioni iniziali, e quindi & € un’applicazione lineare.

Poniamo ora o_(t) = o(1 —t), e sia D~ la derivata covariante lungo o_; inoltre per ogni V € £(o)
poniamo V'~ (¢) = V(1 — t), in modo da avere V— € £(o7). La formula (4.3.2) mostra subito che

Dt_V7 =-D1,V;

in particolare, V'~ & parallelo lungo o_ se e solo se V' & parallelo lungo . Questo vuol dire in particolare
che se V & l'estensione parallela di v € E,,, allora V'~ & lestensione parallela di V(1) = &(v) € E,,, per
cui 6_ = &1, e & & un isomorfismo.
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Osservazione 4.3.2. 1l trasporto parallelo & definito anche lungo curve C*° a tratti; basta fare la compo-
sizione dei trasporti paralleli lungo i singoli pezzi lisci.

Osservazione 4.3.3. Un fatto utile ¢ che dati una curva o:I — M, un fibrato vettoriale m: E — M di
rango r e una connessione su E esiste sempre un riferimento locale parallelo lungo o, cioe una r-upla di
sezioni Ey,..., E,. € £(o) parallele lungo o tali che {E1(t),..., E.(t)} sia una base di E,«) per ogni t € I.
Infatti, basta prendere un qualsiasi ¢y € I, una qualsiasi base {e1,...,e,} di Ey,), ed estendere parallela-
mente eq, ..., e, lungo o.

Partendo da una connessione abbiamo costruito il trasporto parallelo. Possiamo fare anche il viceversa:

Proposizione 4.3.6: Sia V una connessione su un fibrato vettoriale m: E — M, o: I — M una curva in M,
ety € l. Allora

d.

VV S S(O') DtOV = %Jt (V(t))

dove 64: Eg 1,y — Eg(1) € il trasporto parallelo lungo o, e D ¢ la derivata covariante lungo o. In particolare,
se o(tg) =p ed(ty) =v € T,M allora

d
YV € E(M) v,V = a&t—l({/(a(t)))
t=to
Dimostrazione: Sia {Ej, ..., E.} un riferimento locale parallelo lungo o (ottenuto prendendo una base qual-

siasi di E, e trasportandola parallelamente lungo o), e scriviamo V (t) = V7 (t)E;(t). Allora

L : d . _ dvi
VW) =VIOE ) = Lo (Vem)| =B,
t=to
D’altra parte, abbiamo
: PAYE) : dvi
Dy, (V7 Ej) = —=(t0) Ej(to) + V7 (t0) Dty Ej = —~(t0) E; (to),
perché gli F; sono paralleli lungo o. ]

Nel seguito lavoreremo principalmente con connessioni lineari, cioé con connessioni definite sul fibrato
tangente T'M. Una delle caratteristiche delle connessioni lineari & che inducono una connessione su ciascun
fibrato tensoriale:

Proposizione 4.3.7: Sia V una connessione lineare su una varieta M. Allora esiste un unico modo di
definire per ogni h, k € N una connessione su T}*! M, ancora indicata con V, in modo da soddisfare le
seguenti condizioni:
(i) suTM la connessione V coincide con la connessione lineare data;
(i) su T°M = C>(M) si ha Vx(f) = X(f);
(i) se K; € 7, (M), per j =1,2 e X € T(M) si ha
Vx (K1 ® Ks) = (Vx K1) @ Kz + K1 ® (Vx K3);

(iv) V commuta con le contrazioni.
Inoltre, sen € AY(M) e X, Y € T(M) si ha

(Vxm)(Y)=X(n(Y)) —n(VxY). (4.3.5)

Infine, sep € M, v € T,M, e K € T,"(M) si ha

€ THM),, (4.3.6)
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dove o:(—¢,e) — M ¢ una curva in M con o(0) = p e 0/(0) = v, e T(5;) ¢ I'isomorfismo fra (T}'M),
e (T,?M)U(t) indotto dal trasporto parallelo lungo o come descritto nell’Osservazione 1.2.3.

Dimostrazione: Cominciamo a verificare I'unicita. Se V soddisfa (i)—(iv) allora abbiamo

X(n(Y)) =Vx(nY)) =VxCi (Y ®n)
=CiVx(Y®n) =CH{VxY @n+Y ®@Vxn)
=Vxn(Y)+n(VxY),

per cui (4.3.5) ¢ una conseguenza. Questo vuol dire che la connessione V su T*M ¢ univocamente deter-
minata da (i)—(iv); conoscendola su TM e su C°°(M) la (iii) implica che V & univocamente determinata su
qualsiasi T,?M . Per l'esattezza, otteniamo la seguente formula:

(VxEK) (W, ..., Y1,...,Y2)
=X (KW', ...,o"V1,.... %))

. (4.3.7)

h
=Y KW' Vxw', w0t YY) = Y K (W w0 Y, VY TR,
r=1

s=1

Infatti, ci basta dimostrarla per campi tensoriali della forma K = X; ® --- ® X, @ n' @ --- @ n*. Allora la
proprieta (iii) e la formula (4.3.5) implicano

VxK(W,.. ., vi,... .Y

(X1® - 0VxX,® X, 00 @) (w,..., " V,..., V)

M=

k
—I—Z(Xl®---®Xh®n1®-~-®VX778®-~-®-~-®nk)(w1,...,wh7Y1,...,Yk)

Y W (X)W (X (Y1) - Ve (Ye) - (Vi)
s=1

h
=D W' (X)) [X(WN(X) = (Vxw)(Xp)] o™ (X)n' (V) -0 (Ya)

k
+Y W (X)Xt (V) - [X (0P (Y) = P (VxYa)] ¥ (Vi)
s=1
=X(K(w',...,w"V1,...,}))

h
=Y KW' Vxw w0t YY) = Y K (W w0 Y, VY YR,
r=1

e ci siamo.
Viceversa, usiamo la (4.3.5) per definire V su T*M. Prima di tutto,

Vxn(fY)=X(finY)+ X)) —n(fVxY + X(f)Y) = fVxn(Y),

per cui la Proposizione 3.2.1 ci assicura che V x7 ¢ effettivamente una 1-forma. Siccome V x7n € chiaramente
C°(M)-lineare in X, e per ogni Y € 7 (M) si ha

Vx(fn)Y)=X(fn)) — f(VxY) = [X(f)n+ fVxnl(Y),
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otteniamo effettivamente una connessione su 7M. Analogamente, definiamo V su ciascun T,?M tramite
la (4.3.7); si verifica facilmente (esercizio) che si ottiene una connessione che possiede le proprieta volute.

Rimane da dimostrare che V & data anche da (4.3.6). Ricordando la Proposizione 4.3.6, basta verificare
che il trasporto parallelo indotto da V su ciascun T,?M (che indichiamo provvisoriamente con 6¢) coincide con
I'isomorfismo T'(5). Scegliamo un riferimento locale {vy, ..., v,} di TM parallelo lungo o, e sia {v*,..., 0"}
il riferimento duale di 7* M. Nota che anche i v/ sono paralleli rispetto a V: infatti la (4.3.5) implica

(va)(vi) = O'/(’Uj(’Ui)) —v3(Dv;) =0
per ogni i e j, per cui Dv/ = O. Questo implica che
61 (vi(0)) = v;(t) = T(6¢) (vi(0)) e 6:(v7(0)) = v (t) = T(5¢) (v (0))
per ogni 1 <4, j < n. Ma allora la proprieta (iii) e la definizione di T'(6;) implicano che
61 (v, (0) ® -+ ®v;, (0) ® V' (0) ® -+ @ v (0)) = v;, () @+~ ®v;, () @V (1) ® -+ @ VI (t)
=T(64)(vi, (0) ® - - @ 5, (0) ® 71 (0) ® - - - @ v7*(0)),
per ogni 1 <iy,...,jr < n, e quindi 6; = T(6¢), come volevamo. O
Ora, prendiamo K € T;*(M). Siccome V & C°°(M)-lineare in X, 'applicazione

(Wh .. WY Y X)) - VK (Wl W YY) (4.3.8)

& C°°(M)-multilineare in tutte le variabili, e quindi (Proposizione 3.2.1) definisce un campo tensoriale.

Definizione 4.3.7: Se K € T"(M) allora il campo tensoriale VK € T," | (M) definito da (4.3.8) si chiama
derivata covariante totale di K.

EseMPIO 4.3.3. Se f € C*°(M) allora Vf = df. Infatti per ogni X € 7(M) si ha
df(X) = X(f) = Vx[f=(V)(X).

Nel paragrafo 4.1 usando una metrica Riemanniana abbiamo definito il gradiente di una funzione.
Usando la derivata covariante totale possiamo generalizzare altri due concetti dell’ Analisi classica:

Definizione 4.3.8: Se f € C*°(M) il campo tensoriale V2f = V(V f) € To(M) ¢ detto Hessiano di f.

Definizione 4.3.9: La derivata covariante totale di un campo vettoriale X € 7 (M) & un campo tensoriale di
tipo (1) Quindi possiamo definire la funzione div(X) = C{(VX), che ¢ detta divergenza di X.

Calcoliamo 'espressione in coordinate locali di Hessiano e divergenza. Se X, Y € 7 (M) abbiamo
VA(X,Y) = V(VHX,Y) = (Vy(df)(X) =Y (df (X)) - df (Vy X) =Y (X(f)) = V¥ X(f). (43.9)

Quindi in coordinate locali
V2£(0;,0;) = 6.2f - —I"?-ﬁ.
T Qi 0t T Dk
In particolare, su R™ con la connessione piatta ritroviamo I’'Hessiano usuale. Nota perd che per connessioni
generali questo Hessiano non € simmetrico, in quanto non ¢ detto che si abbia F?i = I‘fj.

Poi, (4.3.1) permette di stabilire che se X = X", allora

VX =0 ® (dX* +T%, X" da?),
per cui
_ox*
Ok
(con sommatoria sottintesa sull’indice k), e di nuovo su R" con la connessione piatta recuperiamo la solita
divergenza.

div(X) + Tk, X"

FEsercizio 4.3.3. Sia V una connessione sulla varieta M. Dato X € T(M) ep e M, sia Ax ,: T,M — T,M
lapplicazione lineare data da Ax ,(v) = V,X. Dimostra che div(X)(p) = tr Ax .
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FEsercizio 4.3.4. Indichiamo con L£: 7T (M) x T(M) — T (M) la derivata di Lie Lx(Y) = [X,Y]. Dimostra
che £ non & una connessione, e che esistono due campi vettoriali X, Y € T(R?) tali che X(O) = O
ma LxY (0) # O.

Concludiamo questo paragrafo discutendo due altri modi di definire le connessioni.

Sia V: T (M) x E(M) — £(M) una connessione su un fibrato vettoriale 7: E — M. Sia {Ey,...,E,} un
riferimento locale per E sopra un aperto U C M. Allora possiamo definire una matrice w = (wf) di 1-forme
su U ponendo

VX € T(U) VxE; = wj(X)Ex;

sono 1-forme in quanto C°°(M)-lineari in X. Se U ¢ il dominio di una carta locale, in coordinate locali
chiaramente abbiamo A

w;-“ = Ffj dz".
Definizione 4.3.10: Sia V:T (M) x E(M) — &£(M) una connessione su un fibrato vettoriale m: E — M, e

{F1,...,E;} un riferimento locale per E su un aperto U. La matrice w = (wf) di 1-forme su U appena
definita ¢ detta matrice delle forme di connessione rispetto al dato riferimento locale.

Sia {E‘l, ceey ET} un altro riferimento locale per E sopra U. Allora deve esistere una matrice inverti-
bile A = (A¥) di funzioni C> su U tali che Ej, = A¥Ej. Se indichiamo con @ = (&) la matrice delle forme
di connessione rispetto a questo riferimento locale abbiamo

GMX)AVE, = 0M(X)E), = VxE; = Vx (ALE;) = AIVXE; + X(A)E;
= [Alwh(X) + dAF (X)) Ey,.

In termini matriciali questo vuol dire @ - A = A - w + dA, cioe
w=A10-A-A"1.dA. (4.3.10)

Esercizio 4.3.5. Sia m:E — M un fibrato vettoriale. Supponiamo di avere una famiglia di riferimenti
locali { E“} per E definiti su aperti {U, } che ricoprono M, e di avere una famiglia di matrici di 1-forme {w"},
con w® definita su Uy, che soddisfano (4.3.10) sull’intersezione dei domini di definizione. Dimostra che esiste
un’unica connessione V su E per cui le w® siano le matrici delle forme di connesione rispetto ai riferimenti
locali .

L’ultima interpretazione delle connessioni ¢ in termini di sottofibrati orizzontali, e la presenteremo con
una serie di definizioni ed esercizi.

Definizione 4.3.11: Sia m: E — M un fibrato vettoriale di rango r. Il sottofibrato verticale V C TE ¢ il
nucleo del differenziale di 7, cioe V = ker(dn). Siccome dm: TE — TM, il fibrato verticale (che & un fibrato
vettoriale su E) ha rango r.

Dato p € M e v € E,, indichiamo con j,: E, — E linclusione, e con k,: E, — T,(E,) la solita
identificazione canonica. Siccome 7 o j, = p, si ha dr o dj, = O, per cui

ty =d(jp)v 0 ky: Ep =V,

e un isomorfismo fra E, e lo spazio verticale V,.

Definizione 4.3.12: Sia m: E — M un fibrato vettoriale. Se A € R, indichiamo con py: E — FE la moltiplica-
zione per A, cioé py(v) = Av. Inoltre, indichiamo con o: E @ E — E la somma o(v1,v2) = v1 + va.

Esercizio 4.8.6. Dimostra che V,, (v) = d(px)o(Vo) € che ¢y, vy © d(ia)o = d(pia)y © Ly per ogni v € E e
ogni A € R.

Esercizio 4.3.7.  Dimostra che Vi, v,) = d0 (4, 0,) (Vo ©Va,) € che Loy, 0,)0d0 (0, 0,) = A0 (4, 05) © (Lo, Blw,)
per ogni (vi,v92) € E® E.
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Definizione 4.3.13: Sia w: E — M un fibrato vettoriale. Un sottofibrato orizzontale ¢ un sottofibrato H C TFE
tale che TE = H®V. Dato un sottofibrato orizzontale H, indicheremo con k: TE — V la proiezione associata.
Diremo che un sottofibrato orizzontale ¢ lineare se k,, (v) © d(pix)y = d(pix)v © Ky Per ogni v € E e ogni A € R,
€ Ko (vy,v2) © dU(Ul,vz) = dg(v1,v2) o (K, ® Ky,) per ogni (v1,v2) € E & E.

Esercizio 4.3.8. Dimostra che un sottofibrato orizzontale H ¢ lineare se e solo se si ha H,,, () = d(px)v(Hy)
per ogni v € E e ogni A € R, € Hy(y, 0,) = A0 (v, 05)(Ho, © Hao,) per ogni (vi,v2) € ED E.

Definizione 4.3.14: Sia w: E — M un fibrato vettoriale. Una k-forma a valori in E ¢ una sezione del fi-
brato A" M @ E. Indicheremo con A*(M; E) lo spazio delle k-forme a valori in E.

FEsercizio 4.3.9. SiaV: T (M)xE(M) — £(M) una connessione su un fibrato vettoriale 7: E — M. Dimostra
che V induce un’applicazione R-lineare D:E(M) — A'(M; E) tale che

D(fV)=df ®V + fDV (4.3.11)
per ogni f € C®(M) e ogni V € E(M) ponendo DV (X) = VxV. Viceversa, dimostra che ogni applicazione
R-lineare D: (M) — AY(M; E) che soddisfa (4.3.11) ¢ indotta da un’unica connessione su E.
Esercizio 4.3.10. Sia V:T (M) x £(M) — &£(M) una connessione su un fibrato vettoriale m: F — M.
Datip € M e v € E,, siano V, V € £(M) tali che V(p) = V(p) = v. Dimostra che

dVy — t, 0 DV, = dV,, — 1, 0 DV,,: T,M — T, E.

Definizione 4.3.15: Sia V: T (M) x E(M) — E(M) una connessione su un fibrato vettoriale 7: E — M. Per
ogni v € E definiamo I'applicazione 0,: T,y M — T, E data da

QP(X) = dVﬂ'(v) (X) - LU(VXV)
per ogni X € Ty M, dove V € £(M) ¢ una qualsiasi sezione tale che V(w(v)) = v. Il sottofibrato

orizzontale HY associato a V ¢ allora definito ponendo Hy = O, (Ty(,)M) per ogni v € E.

FEsercizio 4.3.11. Sia V:T(M) x E(M) — &E(M) una connessione su un fibrato vettoriale m: E — M.
Dimostra che HY & effettivamente un sottofibrato orizzontale, e che & lineare.

Definizione 4.3.16: Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale m: E — M, e sia
k:TE — V la proiezione relativa. La connessione D™ associata a H & applicazione D*: £(M) — A'(M; E)
definita da DTV = L;l oky odV.

Esercizio 4.3.12. Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale m: E — M. Dimostra
che la connessione D’ & un’applicazione R-lineare che soddisfa (4.3.11), per cui proviene da una connessione
su F, che indicheremo con V™.

Esercizio 4.8.13. Sia m: E — M un fibrato vettoriale. Dimostra che le corrispondenze V — HY e H +— V7
sono una inversa dell’altra, per cui abbiamo una corrispondenza biunivoca fra connessioni su E e sottofibrati

orizzontali lineari di TE.

4.4 La connessione di Levi-Civita

Connessioni su una varieta qualunque ne esistono a bizzeffe; ma lo scopo di questa sezione & mostrare come
sia possibile definire in modo canonico una connessione particolarmente utile su ogni varieta Riemanniana.

Definizione 4.4.1: Una connessione V su una varietd Riemanniana (M, g) & compatibile con la metrica se
Vx(Y,Z) =(VxY,Z) + (Y,Vx Z)

per tutti gi X, Y, Z € T(M).
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Proposizione 4.4.1: Sia V una connessione su una varieta Riemanniana (M, g). Le seguenti proprieta sono
equivalenti:

(i) V é compatibile con g;
(ii) Vg=0;
(iii) in un qualunque sistema di coordinate si ha
ngij = Dhagi + Thygi:
(iv) per ogni coppia di campi vettoriali V e W Iungo una curva o abbiamo

L v.w) = (pv.w) + (v, ow);

(v) per ogni coppia di campi vettoriali V' e W paralleli lungo una curva o il prodotto (V, W) é costante;
(vi) il trasporto parallelo lungo una qualsiasi curva é un’isometria.

Dimostrazione: (i)<=>(ii): per definizione,
Ve, Z,X) = (Vx9)(Y, 2) = X((Y, 2)) = (VxY, 2) = (Y, Vx2),

e ci siamo.
(ii)<=(iii): fissato un sistema di coordinate si ha

Vg(8;, 05, 0) = 0k((05,0;)) — (Vo,0i,0;) — (0, V,05) = Ok(9i5) — Thagis — Thygit,

e ci siamo.
(i)==(iv): Basta scrivere localmente V = V"9, o o, W = W¥9j, o o, e usare il fatto che

%<8h,8k>a = ' ({Oh, Or)o)-

(iv)=(v): se DV = DW = O la (iv) implica che (V, W) & costante.

(v)=>(vi): infatti la (v) dice esattamente che il trasporto parallelo conserva la metrica.

(vi)==(1): scelto p € M, sia ¢ una curva con o(0) = p e ¢’(0) = X,. Fissiamo una base ortonormale
{v1,...,v,} di T,M; per (vi) possiamo estendere ciascun v; a un campo vettoriale v;(t) parallelo lungo o e
tale che {vy(t),...,v,(t)} sia una base ortonormale di T, ;)M per ogni t. Scriviamo Y (c(t)) = Y"(t)vy(t)
e Z(o(t)) = Z*(t)vk(t); allora

n n h h
Vx, (Y, Z) = %<Y(a(t)), Z(o(t))) = % <Z yhzh> =y (%(o)zh(o) + yh(o)%(o))
t= h=1 t=0 h=1
h h
(O 20)) + (YO, 200, ) = (061.2) + (V. D2)
=(Vx,Y,Z) +(Y,Vx,2),
e ci siamo. O

{Esercizio 4.4.1. Sia V una connessione lineare su una varietd Riemanniana (M, g). Dimostra che V &

compatibile con g se e solo se le 1-forme di connessione (w;) rispetto a qualsiasi riferimento locale {F1, ..., E,}
di T'M sono tali che
girwy + ginw = dgij,

dove gi; = g(E;, Ej), come al solito. In particolare, se V & compatibile con la metrica allora la matrice (w})

rispetto a un riferimento locale ortonormale & necessariamente antisimmetrica.
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La compatibilita con la metrica non identifica univocamente una connessione, sfortunatamente:
Esercizio 4.4.2. Dimostra che se V & una connessione compatibile con la metrica su una varieta Rieman-
niana (M, g), e A € T}(M) & tale che

(AX,Y), Z)+(Y,A(X,Z))=0 (4.4.1)

per ogni X, Y, Z € T(M) allora V + A & ancora una connessione compatibile con la metrica. Dimostra

inoltre che se V! e V2 sono due connessioni compatibili con la metrica allora V! — V2 & un campo tensoriale
di tipo (3) che soddisfa (4.4.1).

In un certo senso, un campo tensoriale che soddisfa (4.4.1) ¢ antisimmetrico, il che fa sospettare che
una connessione compatibile con la metrica e che sia simmetrica in qualche senso dovrebbe essere unica. Il
concetto giusto di simmetria e rivelato dal

Lemma 4.4.2: Data una connessione lineare V su una varieta M, definiamo 7: 7 (M) x T (M) — T (M)
ponendo

7(X,Y)=VxY -VyX — [X|Y].
Allora 7 é un campo tensoriale di tipo (;)

Dimostrazione: Siccome 7(Y,X) = —7(X,Y), per far vedere che 7 & un campo tensoriale di tipo (é) grazie
alla Proposizione 3.2.1.(ii) ¢ sufficiente dimostrare che 7 & C°(M)-lineare nella prima variabile. Ma infatti

T(fX,)Y) =VixY = Vy (fX) = [fX,Y] = fVxY = fVy X =Y (/)X - fIX, Y]+ Y (/)X = fr(X,Y).

O

Definizione 4.4.2: La torsione di una connessione V su una varieta M & il campo tensoriale 7 € 73'(M)
definito da

T(X,)Y)=VxY -VyX — [X|Y].
La connessione V ¢ detta simmetrica se 7 = O.

Esercizio 4.4.3. Dimostra che se V € una connessione lineare di torsione 7 allora V = V — <7 & una

connessione lineare simmetrica.

1
2

Lemma 4.4.3: Sia V una connessione su una varieta M. Allora le seguenti affermazioni sono equivalenti:
(i) V é simmetrica;

(ii) i simboli di Christoffel rispetto a un qualsiasi sistema di coordinate sono simmetrici, cioé F?j = F;-Li ;

(ili) I’'Hessiano V2 f & simmetrico per ogni f € C*°(M).

Dimostrazione: (i)<=>(ii): Fissiamo una carta locale, e scriviamo X = X", e Y = Y*9j. Allora (4.3.1) ci
da
m(X,Y) = XYM = T3,005,

per cul 7(X,Y) = O per ogni X, Y € T(M) se e solo se i simboli di Christoffel sono simmetrici.
(i)«<=(iii): Grazie a (4.3.9) abbiamo

V2F(X,Y) = V2F(Y, X) = —[X,Y](f) = Vv X(f) + VXY (f) = 7(X,Y) (),

e ci siamo. O

Esercizio 4.4.4. Trova una connessione lineare V compatibile con una metrica Riemanniana ¢ tale che
V=V- %T non sia compatibile con g, dove 7 ¢ la torsione di V.
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Esercizio 4.4.5. Sia V una connessione lineare su una varietd M, {E,...,E,} un riferimento locale

di TM, {¢',...,¢"} il riferimento duale di T*M, e (w?) la matrice delle 1-forme di connessione. Sia infine
la torsione di V, e definiamo 77: 7 (M) x T (M) — C°>°(M) per j = 1,...,n tramite la formula

(X,Y)=7(X,Y)E;.
Dimostra che 71,. .., 7" sono delle 2-forme locali (dette forme di torsione), e dimostra la prima equazione di
struttura di Cartan: 4 ' . ,
do’ = @' ANw! + 77
perj=1,...,n.
Il risultato che permette alla geometria Riemanniana di prendere davvero vita ¢ il seguente:

Teorema 4.4.4: Su ogni varieta Riemanniana (M, g) esiste un’unica connessione V simmetrica e compatibile
con la metrica. Inoltre, V soddisfa

1
(VXY,Z) = SAX(Y, 2) + Y(2,X) - Z(XY) + (X,Y].2) - (V. 2. X) + (2, X)) (442)
per ogni X, Y, Z € T(M). In particolare, se {E1,...,E,} & un riferimento locale ortonormale abbiamo
1
<VE1,EJ7 Ek> = §{<[Ela Ej]5 Ek> - <[Ej7 Ek}? E7> + <[Eka El}? E]> }7 (443)

mentre i simboli di Christoffel di V sono dati da

%gkl (ag” 4 o _ agij) . (4.4.4)

Tk — J :
ozrt Oz Ozl

1y

Dimostrazione: Cominciamo con I'unicita. Se V € una connessione compatibile con g si deve avere

X(Y,Z) = (VxY,Z)+ (Y,VxZ),
Y(Z,X) = (Vy Z,X) + (Z,Vy X),
Z(X,Y) = (VzX,Y) 4+ (X,V,Y).

Quindi se V & anche simmetrica otteniamo

XY, 2)+Y(Z,X)-Z(X,)Y)=(VxZ -VzX, Y)Y+ (VyZ -VzY,X)+(VxY + Vv X, Z)
e quindi V ¢ data da (4.4.2).
Viceversa, definiamo V: 7 (M) x T (M) — T (M) tramite (4.4.2); dobbiamo verificare che otteniamo una

connessione simmetrica compatibile con la metrica. Iniziamo mostrando che il secondo membro di (4.4.2) &
C*°(M)-lineare in Z; infatti

(VxY, fZ) = % (XY, [2) +Y(f2,X) = f2(X,Y) + (X, Y], f2) = [V, 2], X) + ([/ 2, X], Y}

= (VXY 2) + 5 (XU, 2) 4 Y (FUZ.X) ~ Y ()Z,X) = X(NZ YY)
= f(VxY,Z).

Quindi (VxY,-) & una 1-forma, per cui VxY = (VxY,)# & effettivamente un campo vettoriale.
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Poi, V & C'°°(M)-lineare nel primo argomento:
(VixY,2) = S{ X0, 2) + Y2, £X) = 2K ) + (UX,Y), 2) = (Y, 2), 1X) + (12,0X),Y)
= FVxY.2) 4 S {Y (2. X) — 200X, ¥) = Y ()X, 2) + 2K, Y) | = (VY. 2),

come voluto. In modo analogo (esercizio) si verifica la formula di Leibniz. Controlliamo ora la compatibilita
con la metrica:

(VxY,Z) + (Y, VxZ) = %{X(Y, Z)+Y(Z,X) — Z(X,Y) + ([X,Y],2) — [V, 2], X) + ([, X],Y>}

F X2 Y) 20 X) Y (X,2) 4 (X, 2)Y) (2], X) + (V. X), 2) )
= X(Y,2),

come desiderato. Infine & facile vedere (esercizio) che V & anche simmetrica.
La (4.4.2) chiaramente implica la (4.4.3). Infine, siccome [Of, O] = O per ogni h, k = 1,...,n, abbiamo

gLl = (V9,05,01) = = (0i(g51) + 9;(91:) — 9ilg3;)),

N |

e la (4.4.4) segue. O

Definizione 4.4.3: Sia M una varieta Riemanniana. L’unica connessione V simmetrica e compatibile con la
metrica si dice connessione di Levi-Civita della varieta Riemanniana M.

Osservazione 4.4.1. Nella dimostrazione precedente abbiamo usato solo il fatto che (-,-), fosse un pro-
dotto scalare non-degenere, e non che fosse definito positivo. Quindi e possibile definire una connessione di
Levi-Civita in varietd equipaggiate con un campo tensoriale g € 75(M) simmetrico e non-degenere (cioe tale
che g, (v, w) = 0 per ogni w € T, M implica v = O). Questo ¢ utile, per esempio, in relativita generale.

EsEMPIO 4.4.1. La connessione piatta ¢ la connessione di Levi-Civita per la metrica euclidea di R".

ESEMPIO 4.4.2. Sia M una varietd Riemanniana con connessione di Levi-Civita VM, ¢ N una sottovarieta
di M. Se indichiamo con m: TM — TN la proiezione ortogonale (dove: per ogni p € N consideriamo T, N
come sottospazio di T, M, e 7|1, n: Ty M — T, N ¢ la proiezione ortogonale rispetto al prodotto scalare dato
dalla metrica su M), allora si verifica facilmente (esercizio) che VV: 7 (N) x T(N) — T(N) data da

VX,Y € T(N) VY = 7(VY)

¢ una connessione simmetrica, in quanto VM lo &. Inoltre, se mettiamo su N la metrica ¢”V indotta da
quella di M, si vede subito (esercizio) che V¥ & compatibile con g", e quindi VV & proprio la connessione
di Levi-Civita di IV considerata con la metrica indotta.

Esercizio 4.4.6. Dimostra che se M & una superficie regolare di R® equipaggiata con la metrica indotta
dalla metrica euclidea, allora i simboli di Christoffel introdotti nella teoria classica delle superfici coincidono
con quelli introdotti qui.

Una conseguenza immediata dell’unicita della connessione di Levi-Civita ¢ la seguente

Proposizione 4.4.5: Sia F: (M, g) — (M, §) un’isometria fra due varietd Riemanniane. Allora:

(i) F porta la connessione di Levi-Civita V di M nella connessione di Levi-Civita V di M nel senso che
VX,Y € T(M) AF(VxY) = Vapx)dF (Y);
(ii) se o é una curva in M si ha

YV e T(o) dF(DV) = D(dF(V)),
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dove D (rispettivamente, D) ¢ la derivata covariante lungo la curva o (rispettivamente, & = F o o) indotta
da V (rispettivamente, V).

Dimostrazione: (i) Definiamo un’applicazione F*V: T (M) x T (M) — T (M) ponendo

VX,Y € T(M) (F*V)xY = (dF) " (Vapx)dF(Y)).
Si vede subito che F*V & una connessione su M. Inoltre

(F*N)xY, Z)n + (Y, (F*V)x Z) s = ((dF) ™ (Vapx)dF(Y)), Z) ,, + (Y, (dF) " (Vapx)dF(2)))
= (Varx)dF (Y),dF(Z )) +< F(Y),Varx)dF(2))

AF(X)((dF(Y),dF(Z)) ) = dF(X)((Y, Z)ps 0 F)

XY, Z)um,

per cui F*V & compatibile con la metrica. Infine

(F*V)xY = (F*V)y X — [X,Y] = (dF) " (Vapx)dF(Y) = Vapp)ydF(X)) — [X, Y]
— (dF) " ([dF(X),dF(Y)]) - [X,Y]
= O’
(dove abbiamo usato 'Esercizio 3.3.3), per cui F*V & simmetrica. Il Teorema 4.4.4 implica allora F*V = V,

come voluto. .
(ii) Se si definisce F*D:T (o) — T (o) con

(F*D)V = (dF)~"(DdF(V)),

l'unicita di D enunciata nella Proposizione 4.3.3 (assieme a F*V = V) implicano che F*D = D, e ci siamo. ]

Esercizio 4.4.7. Sia F: M — N un’immersione globalmente iniettiva, e ¢ una metrica Riemanniana su N.
Indichiamo con V la connessione di Levi-Civita su N, e per ogni p € M sia 7m,: Tppy N — dF,(T,M) la
proiezione ortogonale. Definiamo F*V:7 (M) x T(M) — 7 (M) ponendo

F*VxY (p) = (dF,) ™" (mp(Var, x)dF(Y))).

Dimostra che F*V & la connessione di Levi-Civita della metrica F*g su M.

Avendo a disposizione una connessione e una metrica possiamo introdurre la generalizzazione di un altro
concetto dell’Analisi classica. Per farlo ci serve un risultato di algebra lineare che lasciamo per esercizio.

Definizione 4.4.4: La traccia di una forma bilineare simmetrica S:V x V — R su uno spazio vettoriale V'
dotato di un prodotto scalare definito positivo ¢ definita da

= Z S(vj,v5), (4.4.5)

dove {v1,...,v,} & una qualunque base ortonormale di V.

Esercizio 4.4.8. Verifica che il secondo membro di (4.4.5) non dipende dalla base ortonormale scelta, per
cui la traccia di una forma bilineare simmetrica ¢ ben definita.

Definizione 4.4.5: Sia M una varietd Riemanniana, e f € C°°(M). Diremo Laplaciano di f la funzione
Af =tr(V2f),

dove V e la connessione di Levi-Civita di f.
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Esercizio 4.4.9. Dimostra che
Af = divgrad(f),

10 5 Of
8= T (V9055 )

e che in coordinate locali si ha

dove G = det(g;5).

Concludiamo questo capitolo determinando la connessione di Levi-Civita in alcuni casi particolarmente
significativi. Nell’Esempio 4.4.1 abbiamo trovato la connessione di Levi-Civita per R"; vediamo adesso
I’aspetto delle connessioni di Levi-Civita sulla sfera e sullo spazio iperbolico.

ESEMPIO 4.4.3. Sia gp la metrica sferica su Sj C R™"! (Esempio 4.2.1); vogliamo calcolare i simboli di
Christoffel della connessione di Levi-Civita di gr rispetto alle coordinate sferiche. Conservando le notazioni
introdotte nell’Esempio 4.2.1 abbiamo

5 cos 6!
sin 0!
0 altrimenti.

0gi5 _ {232(sin9”1---sin9”) sei=7j<lI,

0ol
Quindi (4.4.4) ci da
cos gmax{i.j} o .
. m bek:’t<j0k:j<7,,
Iy, = 1 )
! fi(sin Ot sin 0F 1) 2sin(20%) sei=j <k,
0 altrimenti.

In particolare, per la sfera unitaria in R® otteniamo
1.
M, =T =0%=03%=0%,=0, T'i,=03 =ctgd’, I'}= -5 sin(26%).
EseEmPIO 4.4.4. Calcoliamo i simboli di Christoffel per la connessione di Levi-Civita sullo spazio iperbolico

(Esempio 4.2.3). Cominciamo con B%; una base dello spazio tangente ¢ data da {9/dx',...,8/0z"}, per
cui

- 4R4 S 8gij o 16R41‘k 5o
Y = (R — =72 *7 ok (R? — ||lz|?)? "
e quindi ‘
27
=~ =k
Rz T
2t . .
= B TR
2xF
A S
R ap *PITh
0 altrimenti.

Nel caso di Hj, la base dello spazio tangente e la stessa, ma

R2 8gij 2R2
gij:W(sijv W:—W&jékm
per cui
1 .
— set=7<k=n,
T
F?j_ 1 ) . . . o
—— sei=k<j=noj=k<i=noi=j=k=n,
T

0 altrimenti.
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Esercizio 4.4.10. Calcola i simboli di Christoffel della metrica g}z di Up rispetto alle coordinate locali

oul,. .., u") = (ul,...,u", VR?+ ||u||2) :

ESEMPIO 4.4.5. Sia G un gruppo di Lie su cui abbiamo messo una metrica invariante a sinistra g, e

indichiamo con g ’algebra di Lie, e con V la connessione di Levi-Civita. Prima di tutto, e facile verificare
che V ¢ invariante a sinistra, cioe che

VXy(h) =dLy (Vdthl(X)dLh—l(Y)(e)) (4.4.6)

per ogni X, Y € 7(G) e h € G. Infatti, se usiamo il lato destro di (4.4.6) per definire una nuova connes-
sione V, si vede subito che V & (effettivamente una connessione ed ¢) simmetrica e compatibile con la metrica,
per cui coincide con V. Se {Xi,...,X,} € una base di g, estendiamo gli X; a campi vettoriali invarianti a
sinistra. Chiaramente otteniamo un riferimento globale per T'G, e ogni campo vettoriale su G (non neces-
sariamente invariante a sinistra) si scrive come combinazione lineare a coeflicienti in C*°(G) di X3,..., X,.
Quindi per determinare V ci basta vedere quanto fa applicata agli X;; e per I'invarianza a sinistra ci basta
effettuare questo calcolo nell’identita. Ora, I'invarianza a sinistra di g implica che g;; = (X;, X;) ¢ costante
su G; quindi la (4.4.2) ci dice che

(Vx, X5 Xi)e = = (qunch; — guchi + g1¢ki), (4.4.7)

N =

dove le céj sono le costanti di struttura di g rispetto alla base {X1,...,X,,} (vedi la Definizione 3.3.10), e
abbiamo determinato V.

EsSEMPIO 4.4.6. Sia G = GL(n,R) il gruppo delle matrici invertibili a coefficienti reali. Prendiamo come
base di gl(n,R) la base canonica {E;;}, dove E;; € la matrice con 1 al posto (Z,5) e 0 altrove, cioe

(Eij)rs = 5ir6js-
Abbiamo visto (Esempio 3.3.2) che le costanti di struttura sono

ey = OirOksOjn — Ornba;Oi.
Mettiamo su gl(n, R) il prodotto scalare rispetto a cui la base canonica {E;; } ¢ ortonormale, ed estendiamolo
in modo da avere una metrica Riemanniana invariante a sinistra (che non ¢ la metrica euclidea). Allora
la (4.4.7) ci fornisce la connessione di Levi-Civita rispetto a questa metrica:

1. (re) (i) (hk)
(Ve Buks Brs) = 51¢0550k) — Chkyrs) T Srs)i)]

1
= 5[5ir5kj5jh — Onr0js0ik — Onidsj0kr + 0ir0jk0ns + OnrOjklis — OinlksOjr].
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Capitolo 5
Geodetiche

5.1 La mappa esponenziale

Il concetto chiave che ci permettera di penetrare nella struttura geometrica delle varieta Riemanniane e
quello di geodetica.

Definizione 5.1.1: Sia V una connessione lineare su una varieta M. Una geodetica per V e una curvao:I — M
tale che Do = 0. In altre parole o € una geodetica se e solo se il vettore tangente ¢ ¢ parallelo lungo o.

Osservazione 5.1.1. 1l simbolo ¢ verra usato per indicare il vettore tangente a o anche quando ¢ non e
parametrizzata rispetto alla lunghezza d’arco. In altre parole, ¢’ e ¢ sono la stessa cosa.

Se (U, ) & una carta locale e scriviamo o7 = ¢7 o g, da (4.3.3) vediamo che la curva o & una geodetica
se e solo se soddisfa il sistema di equazioni differenziali ordinarie

"+ (T 00)5'67 = 0. (5.1.1)

Si tratta di un sistema di equazioni differenziali ordinarie del secondo ordine. Possiamo trasformarlo in un
sistema di equazioni differenziali ordinarie del primo ordine introducendo delle variabili ausiliarie v?, ..., v"
per rappresentare le componenti di ¢ (vedi piu oltre la dimostrazione della Proposizione 5.1.2 per il significato
geometrico di questa operazione), in modo da ridurci al sistema equivalente del primo ordine

ok =k,

In particolare:

Proposizione 5.1.1: Sia V una connessione lineare su una varieta M. Allora per ognip € M ev € T,M
esistono un intervallo I C R con 0 € I e una geodetica o:1 — M tale che 0(0) = p e 6(0) = v. Inoltre,

se 6: I — M é un’altra geodetica soddisfacente le stesse condizioni allora o e ¢ coincidono in I N 1.

Dimostrazione: Il Teorema 3.3.3 applicato a (5.1.2) ci dice che esistono € > 0 e una curva o: (—¢,e) - U C M
che sia soluzione di (5.1.1) con condizioni iniziali 0(0) = p e 6(0) = v. Inoltre, se & & un’altra geodetica che
soddisfa le stesse condizioni iniziali allora ¢ e & coincidono in un qualche intorno di 0. Sia I il massimo
intervallo contenuto in I NI su cui o e & coincidono. Se Iy e strettamente contenuto in I N I , esiste un
estremo to di I, contenuto in IN 1, e possiamo applicare il solito Teorema 3.3.3 con condizioni iniziali (o)

e d(tg). Ma allora o e & coincidono anche in un intorno di ¢y, contro la definizione di Iy. Quindi Iy = INI.[J

Definizione 5.1.2: Sia V una connessione lineare su una varieta M, p € M e v € T,M. Indicheremo
con o,:I — M D'unica geodetica massimale (che esiste per la proposizione precedente) tale che o,(0) = p
e 6,(0) = v.

Vogliamo ora studiare come dipendono le geodetiche dalle condizioni iniziali. Per far cio, mostriamo come
associare alle geodetiche delle traiettorie di un opportuno campo vettoriale definito sul fibrato tangente T'M.

Ogni curva liscia 0: I — M definisce la curva dei vettori tangenti 6: I — T M. L’equazione (5.1.1) & in
realta un’affermazione su quest’ultima curva:
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Proposizione 5.1.2: Sia V una connessione lineare su una varieta M. Allora esiste un unico campo
vettoriale G € T (T M) le cui traiettorie siano tutte e sole le curve 6: I — TM con o: I — M geodetica in M.

Dimostrazione: Cominciamo col riscrivere (5.1.1) in una forma pilt utile ai nostri scopi. Come visto nell’E-
sempio 3.2.2, una carta locale (U, ¢) per M determina una carta locale (TU, @) di TM ponendo

Gv) = (', ... 2™0b ") € p(U) x R®

per ogni p € U e v € T,M, dove (z*,...,2™) = p(p) e v = v79;|,. Sia 0:1 — M una curva con sostegno
contenuto in U, in modo da poter scrivere ¢ o 0 = (a,...,0™). Allora la curva ¢ & rappresentata in queste
coordinate locali da go¢ = (o!,...,0™;6',...,6™), in quanto & = ¢79;.

Sia ora : I — T'M una qualsiasi curva con sostegno contenuto in T'U, per cui possiamo scrivere

per opportune funzioni z!,... 2" vl ... v™® € C°°(I). Allora v & una curva della forma & per una qualche
curva o: I — U se e solo se v/ = &7 per j =1,...,n; quindi v & una curva della forma & con o geodetica se
e solo se ¢ o« soddisfa il sistema di equazioni differenziali ordinarie del primo ordine

d k
; b (5.1.3)
v k .
- = I (z)v'o.
Nell’Esempio 3.2.2 abbiamo visto che un riferimento locale per T(T'M) sopra TU & ovviamente dato da
{0/02,...,0/0z™;0/0v!,...,0/0v™}; la (5.1.3) suggerisce allora di introdurre il campo vettoriale (per il
momento definito solo sopra TU e dipendente dalle coordinate locali scelte)

0

9 o
_ .k k i
G—U = _FZJU 'UJW.

o (5.1.4)

La (5.1.3) dice esattamente che : I — T'U & una traiettoria di G in TU se e solo se ¢ = 7o~ & una geodetica
per Vin U ey =0 (dove m: TM — M & la proiezione canonica).

Quindi per concludere la dimostrazione rimane solo da verificare che G non dipende dalle coordinate
scelte, per cui si estende a un campo vettoriale globale su TM. Per far cio basta far vedere che per
ognip € M, v € T,M ef € C®(v) il numero G(v)(f) & indipendente dalle coordinate. Basta quindi
dimostrare, per esempio, che

fodv)

aw)n) = M2 ),

dove f € un qualsiasi rappresentante di f. Ma infatti

d(fo6) g OF (arion+ OF
a0 = x50 + 5535 (0)
0 0 o
= a—fze(”)”’“ - a—zf;@)% (p)'v? = G()(f),
e ¢l siamo. -

Definizione 5.1.3: Sia V una connessione lineare su una varieta M. Il campo G € 7 (T'M) definito localmente
da (5.1.4) & detto campo geodetico, e il suo flusso flusso geodetico.

La conseguenza principale di questo risultato e che ci permette di applicare il Teorema 3.3.4 allo studio
delle geodetiche, e quindi di controllare simultaneamente il comportamento di tutte le geodetiche uscenti da
un unico punto. Per enunciare al meglio questo risultato, ci servono un lemma e una definizione.
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Lemma 5.1.3: Sia V una connessione lineare su una varieta M, p € M, v € T,M ec, t € R. Allora si ha
Oeo(t) = oy(ct) (5.1.5)

non appena uno dei due membri & definito.

Dimostrazione: Se ¢ = 0 non c¢’¢ nulla da dimostrare. Se ¢ # 0, cominciamo col dimostrare che (5.1.5) vale
non appena oy (ct) esiste. Poniamo (t) = 0, (ct); chiaramente 5(0) = p e 5(0) = cv, per cui basta dimostrare
che ¢ & una geodetica. Ma infatti se indichiamo con D la derivata covariante lungo & abbiamo

d

Di& = p

() +TE(6(1) 5" (1)o7 (t)| Ok = [P6L(ct) + °T%; (v (ct)) 5% (ct) 53 (ct) |0 = 2 Dey6ry = O,
e ci siamo.

Infine, supponiamo che o, (t) esista, e poniamo v = cv e s = ct. Allora 0., (t) = 0,/(c™1s) esiste, per
cui & uguale a g.-1,/(s) = g,(ct), e ci siamo. O

Definizione 5.1.4: Sia V una connessione lineare su una varieta M. Il dominio della mappa esponenziale &
I'insieme
E={veTM| o, ¢ definita in un intervallo contenente [0,1]} C TM.

La mappa esponenziale exp:E — M di V & allora definita da exp(v) = 0,(1). Inoltre, se p € M scrive-
remo &, = ENT,M e exp, = exp]|e,.

Il motivo per cui quest’applicazione si chiama “esponenziale” si puo far risalire al seguente esercizio (ma
vedi anche il Teorema 5.4.7 piu oltre):

Esercizio 5.1.1. Consideriamo R™ con la metrica ||t||, = h~!|¢| per ogni h € R e t € T;,RT, dove abbiamo
identificato T, R™ con R come al solito. Dimostra che expy,: 1] LWRT — RT ¢ data dalla formula exp, (t) = he.

Il Teorema 3.3.4 ci fornisce allora le seguenti proprieta della mappa esponenziale:

Teorema 5.1.4: Sia V una connessione lineare su una varieta M. Allora:

(i) L’insieme & é un intorno aperto della sezione nulla di TM, e ciascun &, é stellato rispetto all’origine.
(ii) Per ogni v € TM la geodetica massimale o, ¢ data da

ou(t) = exp(tv)

per tutti i t € R per cui uno dei due membri é definito.
(iii) La mappa esponenziale & di classe C*°.

Dimostrazione: Il Lemma 5.1.3 applicato con ¢ = 1 dice esattamente che exp(cv) = o.(1) = 0,(c) non
appena uno dei due membri ¢ definito, per cui (ii) ¢ soddisfatta. In particolare, se 0 < ¢t < 1 e v € £ abbiamo
che exp(tv) = 0, (1) = 0, (t) € definito, per cui ciascun &, & stellato rispetto all’origine.

Ora, per la Proposizione 5.1.2 le geodetiche di V sono la proiezione delle traiettorie del campo geode-
tico G. Indichiamo con I':U4 — T'M il flusso del campo geodetico che, grazie al Teorema 3.3.4, & definito
in un intorno aperto U di {0} x TM in R x TM. In particolare, v € £ se e solo se (1,v) € U; ma allora
& =m(UN ({1} x TM)), dove m3: R x TM — TM & la proiezione sulla seconda coordinata, per cui & &
aperto. Infine, sempre per il Teorema 3.3.4 il flusso di G e di classe C™, per cui la mappa esponenziale,
essendo data dalla formula exp(v) = m2(I'(1,v)), & anch’essa di classe C. O

Essendo la mappa esponenziale differenziabile, possiamo calcolarne il differenziale. In particolare, &
interessante considerare d(expp)o:TO(TpM ) — T, M; infatti, essendo T, M uno spazio vettoriale, possiamo
identificare canonicamente To (7, M) con T, M, per cui d(exp,)o risulta essere un endomorfismo di 7, M.
Ed & un endomorfismo molto particolare:
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Proposizione 5.1.5: Sia V una connessione lineare su una varieta M, e p € M. Allora d(expp)o =id. In
particolare, esistono un intorno U di O in T,M e un intorno V di p in M tali che exp, ly:U — V sia un
diffeomorfismo.

Dimostrazione: Dato v € To(T,M) = T, M, una curva in T,,M che parte da O tangente a v & y(t) = tv.
Allora

d d .
d(exp,)o(v) = 7 XPp (v(1)) == exp,, (tv) =6,(0) = v.
t=0 t=0
La seconda affermazione segue dal teorema della funzione inversa. O

Definizione 5.1.5: Sia V una connessione lineare su una varieta M, e p € M. Un intorno aperto V di p in M
diffeomorfo tramite exp, a un intorno stellato U di O in T, M & detto intorno normale di p.

Tutto quanto visto finora chiaramente si applica anche alla connessione di Levi-Civita di una varieta
Riemanniana. Inoltre, in questo caso possiamo introdurre le definizioni seguenti:

Definizione 5.1.6: Sia V la connessione di Levi-Civita di una varieta Riemanniana (M,g), e p € M. Indi-
chiamo con B.(0O,) C T,M la palla aperta rispetto alla metrica g di centro lorigine e raggio ¢ > 0 in T, M.
1l raggio d’iniettivita injrad(p) € RT di M in p & definito da

injrad(p) = sup{e > 0 | exp,, ristretto a B.(O,) ¢ un diffeomorfismo con I'immagine}.

La palla geodetica B:(p) di centro p e raggio 0 < ¢ < injrad(p) in M & 'intorno normale di p della forma
exp,, (B:(0p)). 1 suo bordo dB.(p) = exp,(9B:(0,)) ¢ detto sfera geodetica. Le geodetiche in Be(p)
uscenti da p sono dette geodetiche radiali. Se {E1,...,E,} ¢ una base ortonormale di T,M, e x: T,M — R"
¢ l'isomorfismo dato dalle coordinate rispetto a questa base, allora le coordinate ¢ = x o exp,, L. B.(p) — R"
sono dette coordinate normali centrate in p.

Il raggio d’iniettivita chiaramente dipende dal punto. Non & necessariamente continuo, ma ha estremo
inferiore strettamente positivo sui compatti. Per dimostrarlo, introduciamo la seguente

Definizione 5.1.7: 1l raggio d’iniettivita di un sottoinsieme C' C M ¢ il numero
injrad(C) = inf{injrad(q) | ¢ € C}.

Diremo che un aperto W C M & uniformemente normale se ha raggio d’iniettivita positivo. In altre parole,
esiste 0 > 0 tale che exp, ¢ un diffeomorfismo in Bs(O,) per ogni g € W.

Allora

Proposizione 5.1.6: Sia V la connessione di Levi-Civita di una varietd Riemanniana (M,g). Allora
ogni p € M ha un intorno uniformemente normale W.

Dimostrazione: Dati un intorno V di p e § > 0, gli insiemi
Vs={veTM|q=mn(v) eV |vlq <},

dove, come al solito, m: TM — M e la proiezione canonica, formano un sistema fondamentale d’intorni di O,.
Siccome O, € &£, possiamo trovare V e d; > 0 tali che V5, C &

Sia E: Vs, — M x M data da E(v) = (7(v), exp,(,)(v)); cominciamo col dimostrare che E & invertibile
in un intorno di O,,.

A meno di restringere V, possiamo supporre che sia il dominio di una carta locale ¢ = (a!,... 2")
centrata in p. Come gia visto nel corso della dimostrazione della Proposizione 5.1.2, ¢ induce coordinate
locali ¢ = (z',...,z™;v',...,v") in Vj,. Unabase diTo, Vs, ¢ quindi {0/8z',...,0/02™,0/0v',...,0/0v"}.
Una curva 7 in Vs, con ¥(0) = O, e %(0) = 8/0v’|o, & ¥(t) = t0/027|,. Quindi

d . 0
= — (p,exp,(t9/0xp)) T (Opv Ee

dt

i, (1) - A0

t=0
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D’altra parte, una curva 7 in Vs, con 7(0) = O, e 7(0) = 8/dx7|o, & 7(t) = Oexp, (t8/0xi],); quindi
0 d j
dEOp @ = E (epr<t 6/856 |;D)7 expexpp(t 0/0x7|p) (O)) —0

_[2
0 oI » '

Quindi dFo,, mandando una base di Tp,, Vs, in una base di T}, M x T}, M, ¢ non singolare, per cui esistono
un intorno W C V.dipeun 0 < § < 4, tali che Ely, sia un diffeomorfismo. Ma questo implica in particolare
che per ogni ¢ € W la mappa esponenziale exp,: Bs(O,) — Bs(q) ¢ un diffeomorfismo, e ci siamo. ]

0

, —
J
» ox

d . .
= (expp(t 0/0z7|,), expp(t 0/0x? |p))

Corollario 5.1.7: Sia M una varieta Riemanniana. Allora ogni K C M compatto ha raggio d’iniettivita
positivo.

Dimostrazione: La proposizione precedente ci fornisce per ogni p € K un 4, > 0 e un intorno W,, di p tali
che injrad(q) > 6, per ogni ¢ € W,,. Sia {W,,,,...,W,, } un sottoricoprimento finito di K; allora

injrad(K) > min{dp,,...,0p, } > 0.

O

Esercizio 5.1.2. Dimostra che un’isometria locale fra varietad Riemanniana manda geodetiche in geodetiche,
nel senso che se H: M — N & un’isometria locale allora ¢: I — M & una geodetica in M se e solose Hoo ¢
una geodetica in N.

Esercizio 5.1.5. Sia (M, g) una varietd Riemanniana, e sia E: & — M x M data da E(v) = (7(v), exp(v)),
dove m: TM — M ¢ la proiezione canonica. Dimostra che dE, ¢ invertibile se e solo se d(exp,,), & invertibile,
dove p = w(v).

Esercizio 5.1.4. Date due connessioni lineari V e V su una varieta M, siano B, S, A: T(M)xT (M) — T (M)
definite da B(X,Y) =VxY — VxY,

S(X,Y)=>(B(X,Y)+ B(Y,X)) e A(X,Y)==(B(X,Y)- B(Y,X)).

N
N —

Indichiamo inoltre con 7 la torsione di V, e con 7 la torsione di V.

(i) Dimostra che B, S, A € T,}(M).

(ii) Dimostra che 24 =7 — 7.

(iii) Dimostra che le seguenti affermazioni sono equivalenti:
(a) V e V hanno le stesse geodetiche (cioé ogni geodetica di V & anche geodetica di V, e viceversa);
(b) B(v,v) = O per ogni v € TM;
(¢) S=0;
(d) B=A.

(iv) Dimostra che V e V hanno le stesse geodetiche e la stessa torsione se e solo se V = V.

(v) Dimostra che esiste un’unica connessione simmetrica V* che ha le stesse geodetiche di V.

Definizione 5.1.8: Diremo che due connessioni V e V su una varietd M sono riferite proiettivamente se per
ogni geodetica o: I — M di V esiste un diffeomorfismo h: J — I tale che ¢ o h sia una geodetica di V.

Esercizio 5.1.5.  Dimostra che due connessioni simmetriche V e V su una varietd M sono riferite proietti-
vamente se e solo se esiste una 1-forma ¢ € A'(M) tale che V — V = ¢ ® id + id ®¢.
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5.2 La distanza Riemanniana

In questo paragrafo dimostreremo che una varieta Riemanniana € in maniera canonica uno spazio metrico;
vedremo poi che le relazioni fra le proprieta topologiche della distanza canonica e le proprietd geometri-
che della varieta sono estremamente interessanti. Cominciamo con delle definizioni che ci serviranno per
introdurre la distanza.

Definizione 5.2.1: Una curva continua o: [a,b] — M in una varieta M ¢ detta regolare a tratti se esiste una
suddivisione a = to < t; < --- < t; = b di [a,b] tale che oy, _, ) sia di classe C> e regolare (cioe con
vettore tangente mai nullo) o costante per j =1,...,k.

Definizione 5.2.2: Sia o:]a,b] — M una curva regolare a tratti in una varietd Riemanniana (M,g). La
lunghezza d’arco di o ¢ la funzione

s(t) = / 16 loa s

dove || - ||, ¢ la norma di 7, M indotta da g. La Iunghezza di o ¢

b
L(o) = [ 16}l du

Diremo che ¢ ¢ parametrizzata rispetto alla lunghezza d’arco se ||6(u)||s(uy) = 1 quando &(u) ¢ definito; in
particolare, o non ha tratti costanti, e s(t) =t — a.

FEsercizio 5.2.1. Se o:[a,b] — M & una curva regolare a tratti con & # O dove definito, di lunghezza ¢,
dimostra che esiste un omeomorfismo C* a tratti h: [0, £] — [a, b] tale che o o h sia parametrizzata rispetto
alla lunghezza d’arco. (Suggerimento: h™1 & la lunghezza d’arco di o.)

FEsercizio 5.2.2. Sia H:M — N una isometria locale fra varietd Riemanniane, e o:[a,b] — M una curva
regolare a tratti. Dimostra che la lunghezza di ¢ in M ¢ uguale alla lunghezza di H oo in N.

Definizione 5.2.3: Sia (M, g) una varietd Riemanniana (connessa). La funzione d: M x M — R* data da
d(p,q) = inf{L(0) | 0:[a,b] — M & una curva regolare a tratti con o(a) =p e o(b) = q}

e detta distanza Riemanniana su M indotta da g.

Proposizione 5.2.1: Sia (M, g) una varietd Riemanniana connessa. Allora la funzione d: M x M — RT
appena definita e una distanza che induce la topologia della varieta.

Dimostrazione: Dalla definizione ¢ chiaro che d(p,q) = d(q,p) > 0 e che d(p,p) = 0. La disuguaglianza
triangolare segue (esercizio) dal fatto che possiamo combinare una curva regolare a tratti da p; a ps con una
da po a p3 ottenendo una curva regolare a tratti la cui lunghezza e la somma delle lunghezze delle prime due
curve.

Rimane da dimostrare che se p # ¢ allora d(p,q) # 0, e che la topologia indotta da d & quella della
varieta. Scegliamo p € M, e sia @: Bo.(p) — B2.(0) C R"™ un sistema di coordinate normali centrato in p,
dove Ba-(O) ¢ la palla di centro lorigine e raggio 0 < 2e < injrad(p) in R" rispetto alla norma euclidea || - ||o.
Indichiamo con gy la metrica Riemanniana su Ba.(p) indotta tramite ¢ dalla metrica euclidea di R": in altre
parole, se ¢ € Ba.(p) e v € T;M la norma di v rispetto a go ¢ data da

[0llo.q = lldepq () llo-

In particolare, se Lo(o) & la lunghezza rispetto a gg di una curva regolare a tratti o: [a,b] — Bac(p), abbiamo

Lo(0) = Li(p o o) > ||¢(o (b)) — ¢(a(a)], (5.2.1)

dove L{(p o o) & la lunghezza euclidea della curva ¢ o o.
Ora, I'insieme

K={veT,M|qe B:p), |[vllog=1} CTM
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¢ chiaramente compatto; quindi se poniamo
Cp = vlél;( ”v”ﬂ(v) < 52}13 ”U”w(v) = CP>

dove m: TM — M ¢ la proiezione canonica, € || - ||, € la norma su T, M indotta dalla metrica Riemanniana g,
abbiamo 0 < ¢, < Cp < o0 e
cpllvllog < llvllg < Cpllvllo,g

per ogni ¢ € B.(p) e v € T,M. Dunque se ¢ & una curva regolare a tratti la cui immagine & contenuta
in B.(p) otteniamo

eyLo(0) < L(0) < CpLo(o). (5.2.2)

Se ¢ # p possiamo scegliere ¢ > 0 in modo che ¢ ¢ B.(p). Quindi ogni curva regolare a tratti
o:la,b] = M da p a g deve intersecare la sfera geodetica B (p) in un primo punto o(ty), per cui (5.2.1)
e (5.2.2) danno

L(o) > L(U‘[aﬂgo]) > ¢ L0(0|[a,t0]) > ¢ ||<p(0(t0)) H = cpe > 0. (5.2.3)

Siccome questo vale per ogni curva regolare a tratti o otteniamo d(p,q) > c,e > 0, come voluto.

Rimane da far vedere che la topologia di M e quella indotta dalla distanza d coincidono. Siccome le
palle geodetiche B.(p) formano un sistema fondamentale di intorni di p per la topologia di M, e le palle
metriche B(p, d) formano un sistema fondamentale di intorni per la topologia metrica, ¢ sufficiente far vedere
che

B(p, cpe) € B:(p) € B(p, Cpe)

per ogni € > 0 abbastanza piccolo.

Prendiamo g € B.(p), e sia 0:[0,1] — B:(p) la geodetica radiale da p a ¢ parametrizzata rispetto alla
lunghezza d’arco misurata con gg. In altre parole, o(t) = ¢~ !(tv) per un opportuno v € R™ di lunghezza
unitaria, per cui ! < € e quindi

d(p,q) < L(0) < CpLo(0) = Cpl < Cpe,

da cui segue B.(p) C B(p, Cpe).

Viceversa, sia ¢ € B(p, c,e), per cui esiste una curva regolare a tratti o da p a ¢ di lunghezza strettamente
minore di cpe. Se fosse ¢ ¢ Bp(e), questo contraddirebbe (5.2.3). Quindi B(p, cye) € Be(p), e abbiamo
finito. Il

Osservazione 5.2.1. Faremo vedere fra poco che in realta B.(p) = B(p, ) per ogni 0 < € < injrad(p).
Le curve che realizzano la distanza meritano chiaramente un nome particolare.

Definizione 5.2.4: Una curva regolare a tratti o:[a,b] — M & detta minimizzante se ha lunghezza mi-
nore o uguale a quella di qualsiasi altra curva regolare a tratti con gli stessi estremi, ovvero se e solo
se d(o(a),o(b)) = L(0). La curva o & localmente minimizzante se per ogni t € [a,b] esiste € > 0 tale
che o[[;_c 14 ¢ minimizzante (con le ovvie convenzioni se t = a o t = b).

Ovviamente, ogni curva minimizzante ¢ anche localmente minimizzante (perché?); il viceversa ¢ falso
(un esempio ¢ dato dai cerchi massimi sulla sfera: vedi I’'Esempio 5.4.2).

Il nostro obiettivo ora € dimostrare che una curva e localmente minimizzante se e solo se ¢ una geodetica,
che ¢ il risultato che fornira il legame fra la distanza Riemanniana e la geometria della varieta.

Cominciamo con l'osservare che tutte le geodetiche non costanti sono parametrizzate rispetto a un
multiplo della lunghezza d’arco, e quindi sono in particolare curve regolari:

Lemma 5.2.2: Se 0:1 — M ¢é una geodetica di una varieta Riemanniana M allora ||d| & costante. In
particolare, o & sempre (costante oppure) regolare.

Dimostrazione: Infatti, indicata con D la derivata covariante lungo o, abbiamo

d, . . o
E<O’, o) =2(Dg,5) =0.
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Abbiamo introdotto in precedenza il concetto di campo vettoriale lungo una curva liscia. Nel seguito ci
servira ’analogo concetto per curve regolari a tratti:

Definizione 5.2.5: Sia o:[a,b] — M una curva regolare a tratti. Un campo vettoriale X lungo o & dato da:
(a) una suddivisione a = to < t; < --- < t, = b di [a,b] tale che 0|, , 4, sia di classe C> per j =1,..., h;
(b) campi vettoriali X|j,_, .)€ T(cly, ;) perj=1,...,h.

Se i vari campi vettoriali si raccordano con continuita nei punti interni ¢y, . .., tx_1 della suddivisione, diremo
che X & un campo continuo. Lo spazio dei campi vettoriali lungo o & ancora indicato con 7 (¢). Infine, un
campo vettoriale X € T (o) lungo o ¢ detto proprio se X(a) = X (b) = O.

Osservazione 5.2.2. Notiamo esplicitamente che non tutti i campi vettoriali X € 7 (o) sono continui;
per esempio, il vettore tangente di una curva regolare a tratti non liscia € un campo vettoriale non continuo
lungo la curva.

Per stabilire se una curva ¢ minimizzante o meno, dovremo confrontare la sua lunghezza con quella di
curve vicine. Il concetto di “curve vicine” & formalizzato nella seguente

Definizione 5.2.6: Sia o: [a,b] — M una curva regolare a tratti. Una variazione di o & un’applicazione continua
¥:(—e,¢e) X [a,b] — M tale che, posto o5 = X(s,+), si ha

(i) o9 = o;
(ii) cilascuna curva principale o4 € una curva regolare a tratti;
(iii) esiste una suddivisione a = to < t; < --- < t), = b di [a,b] (detta suddivisione associata a ¥) tale che

Y(—ee)xt;_1.t;] Sia di classe C* per j =1,... k.
Le curve trasverse alla variazione sono le curve o = (-, t), che sono tutte curve di classe C*°. Infine, una
variazione ¥ & detta propria se os(a) = o(a) e o4(b) = o(b) per ogni s € (—¢,¢).

I vettori tangenti ci forniscono due campi vettoriali lungo le curve principali e trasverse di una variazione:

Definizione 5.2.7: Sia X: (—¢,¢) X [a,b] — M una variazione di una curva regolare a tratti o:[a,b] — M.
Allora poniamo

) 0 o
S(S,t) = O't(S) = dz(s,t) <£> = E(S,t)
per ogni (s,t) € (—¢,¢) X [a,b], e
. 0 15)
T(S7t) = O-s(t) = dz(s,t) (a) = E(Sat)
per ogni (s,t) € (—e,e) X [tj_1,t;]ej=1,...,k—1,dovea =ty < t; <--- < tx = b & una suddivisione asso-

ciata a X. In particolare, i campi ¢t — S(s,t) e t — T'(s,t) sono campi vettoriali lungo o, e i campi s — S(s,t)
e s — T(s,t) sono campi vettoriali lungo o*. Infine, il campo variazione di ¥ ¢ V = S(0,-) € T (o).

Il campo variazione € un campo continuo lungo o. Viceversa, dato un campo vettoriale continuo lungo
una curva regolare a tratti possiamo trovare una variazione che abbia quel campo come campo variazione:

Lemma 5.2.3: Sia o0:[a,b] — M una curva regolare a tratti, e V € T (o) un campo continuo. Allora esiste
una variazione Y. di o con V come campo variazione. Inoltre, se V é proprio si puo trovare Y. propria.

Dimostrazione: Essendo [a, b] compatto, il raggio d’iniettivita & del sostegno di o & strettamente positivo, e
il massimo M di ||[V(t)||s(;) ¢ finito. Se e = §/M > 0, allora I'applicazione (s, t) = exp(sV (t)) & definita
su (—e,¢) X [a,b], e quindi & una variazione di . Siccome

0
S(0,t) = s exp(sV(t)) =d(exp)o,,, (V(t) = V(1)
s=0
il campo variazione coincide con V. Infine, se V(a) = V(b) = O & evidente che ¥ & propria. 0

Nel seguito ci servira il seguente lemma elementare ma fondamentale:
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Lemma 5.2.4: Sia X: (—¢,¢) X [a,b] — M una variazione di una curva regolare a tratti o: [a,b] — M in una
varieta Riemanniana M. Allora su ogni rettangolo (—e,e) x [t;_1,t;] su cui ¥ & di classe C* si ha

DT = D,S,

dove Dy é la derivata covariante lungo le curve trasverse, e D; quella lungo le curve principali.

Dimostrazione: Basta fare il conto in coordinate locali. Scrivendo

ox? o
S(Sat) = Js (S7t) ai|2(s,t)a T(Sat) = W(svt) aj|2(s,t)7
la formula (4.3.2) da
9?xF oxt 9%
DT = FoX —
: {058t+( i ° 2, m]akb
9*sk %t o%7
[81&85 e )5 5 ] el = Di5,
grazie alla simmetria della connessione di Levi-Civita. ]
Definizione 5.2.8: Sia o:[a,b] — M una curva regolare a tratti, e a = to < 1 < -+ < t = b una sud-
divisione di [a,b] tale che o sia di classe C* in ciascun intervallo [t;_1,%;]. Allora per j = 0,...,k defi-

niamo A;é € T, ()M ponendo Ags = &(a), Axo = —d(b) e

Ao = c'f(tj) —o(ty)

7) =lim,_,- o(t).

per j =1,....k—1, dove ¢(t]) = lim,_,+ 6(t), e o(t :
J J

E ora siamo in grado di dimostrare una formula importante:

Teorema 5.2.5: (Prima variazione della lunghezza d’arco) Sia o:[a,b] — M una curva regolare a tratti
parametrizzata rispetto alla lunghezza d’arco in una varieta Riemanniana M, e 3: (—¢,¢) X [a,b] — M una
sua variazione con suddivisione associata a = tg < t; < .-+ < t = b. Indichiamo con V € T (o) il campo
variazione di ¥, e definiamo la funzione L: (—e,e) — R ponendo L(s) = L(o). Allora

b k
%(0) = */ (V(t), Do) dt — > (V(t;),A;6). (5.2.4)
a =0

Dimostrazione: In un intervallo [t;_1,t;] dove tutto & di classe C'*° abbiamo

4 o] = [0 2 mra [T L prma= [T L sy
ds Nl st B/ [ A A ) Rt

j—

dove abbiamo usato il Lemma 5.2.4. Ponendo s = 0 e ricordando che S(0,t) = V(¢), T(0,t) = &(t) e ||o|| = 1,

otteniamo
d L bTd
wtole )| = [ ovema= [T we - .00 @
S s=0 tj—1 ti—1 dt
tj
= (V(t):6(65) = (V). 5050) = [ (VD). D).
tj—1
Sommando su j otteniamo la tesi. ]

Siamo ora in grado di dimostrare che ogni curva localmente minimizzante ¢ una geodetica:
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Teorema 5.2.6: Ogni curva localmente minimizzante parametrizzata rispetto alla lunghezza d’arco in una
varieta Riemanniana € una geodetica — e quindi in particolare é di classe C™°.

Dimostrazione: Siccome l’enunciato € locale, possiamo supporre che o: [a,b] — M sia una curva regolare a
tratti minimizzante parametrizzata rispetto alla lunghezza d’arco; dobbiamo dimostrare che & una geodetica.
Essendo una curva minimizzante, dL(o)/ds(0) = 0 per ogni variazione propria ¥ di o; quindi il Lemma 5.2.3
ci assicura che il secondo membro di (5.2.4) & nullo per ogni campo vettoriale V' proprio lungo o.

Siaa =ty < t; < --- < tx = b una suddivisione di [a,b] tale che o sia di classe C*° in ciascun
intervallo [t;_1,t;], e sia x; € C°°(R) una funzione tale che x; > 0 in (t;_1,t;) e x; = 0 altrove. Allora
(5.2.4) con V = x,; D¢ diventa

tj
0=~ [ Dl

ti1
per cui D& = 0 in ciascun intervallo [t;_1,t;], e quindi ¢ & una geodetica all'interno di ciascuno di questi
intervalli.

Ora vogliamo dimostrare che Aj6 = O per j = 1,...,k — 1. Ma infatti basta prendere un campo
vettoriale V € 7T (o) tale che V(t;) = Ajo e V(t;) = O per i # j; in tal caso (5.2.4) si riduce a 0 = —||A;5||%,
e ci siamo.

Dunque ¢ ¢ continuo; per I'unicita delle geodetiche tangenti a una data direzione otteniamo che o}, ;
¢ la continuazione di U\[t]»,l,tj] per j—1,...,k—1, e quindi o ¢ liscia e una geodetica dappertutto.

j+1]

In realta abbiamo dimostrato qualcosina di pit.

Definizione 5.2.9: Diremo che una curva regolare a tratti o:[a,b] — M in una varietd Riemanniana M ¢ un
punto critico del funzionale lunghezza se

per ogni variazione propria X di o.
Allora la dimostrazione del teorema precedente implica chiaramente il

Corollario 5.2.7: Una curva regolare a tratti parametrizzata rispetto alla lunghezza d’arco in una varieta
Riemanniana é un punto critico del funzionale lunghezza se e solo se é una geodetica.

Il nostro prossimo obiettivo & dimostrare il viceversa del Teorema 5.2.6, cioé dimostrare che ogni geo-
detica ¢ localmente minimizzante. Per far cio ci serve il seguente

Lemma 5.2.8: (Gauss) Sia M una varieta Riemanniana, p € M ev € &,. Allora si ha

(d(expy)o(0), dexp)o (1) exp, (o) = (0, 0), (5.2.5)

per ogni w € T,M, dove abbiamo identificato come al solito T,,(T,M) con T, M.

Dimostrazione: Cominciamo a dimostrare (5.2.5) per w = v. Una curva in T, M passante per v e tangente
av e 7(t) =+ tv; quindi

d d
d(exp, ), (V) = — ex v = —o0y, = 0,(1), 2.
(e,)ul0) = exp,(1400)| = Foul+0)| =) (5.2.6)

dove come sempre o, denota la geodetica massimale con 0,(0) = p e 6,(0) = v. Quindi
(d(expp)u(v), d(expy ) (V))exp, (v) = l6u(DII* = (v,v)p,

perché, grazie al Lemma 5.2.2, ||6,(1)]| = ||6,(0)] = ||v]|-
Per la linearita di d(expp)v ci basta allora dimostrare che se w € perpendicolare a v allora

(d(expy)u(v), d(expy)o (W) exp, ) = 0-
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Siccome (w,v), = 0, il vettore w, considerato come vettore in T, (T, M), & tangente in v alla sfera 9B, (Op)
di centro l'origine e raggio ||v||,. Quindi possiamo trovare una curva 7:(—¢,e) — T,M con 7(0) = v,
7(0) = w e [|[7(s)|lp = ||v]lp. Siccome v € &,, possiamo supporre che 7(s) € &, per ogni s, e definire una
variazione X: (—¢,¢) x [0,1] — T,M di o, ponendo

¥(s,t) = exp, (t7(s)).
Notiamo esplicitamente che le curve principali di ¥ sono geodetiche, che 3(0,1) = exp,(v), e che
T(0,1) = d(exp,)o(v) = du(1),  S(0,1) = d(exp,)o(w),
per cui ci basta dimostrare che (T'(0,1),.5(0, 1)>expp(v) = 0. Ora,

0
—<T, S>E = <DtT, S>E + <T7 DtS>Z = <T, DST>2 =

TIZ =0
5 175 =0,

10
2 0s
dove abbiamo usato: D;T = O, in quanto ciascuna o & una geodetica; il Lemma 5.2.4; e

17(s, )lIsx(s,ty) = l&s(2)]

os(t) = HdS(O)”p = ”T(S)Hp = HU”p-
Dunque (T, S)s, non dipende da t; e quindi
<T(07 1)7 S(O’ 1)>6pr(v) = <T(O’ 0)7 S(O’ 0)>P =0,

in quanto 0 = p implica S(0,0) = 5°(0) = O,. U
Vogliamo dare un’interpretazione piu geometrica di questo risultato.

Definizione 5.2.10: Sia B.(p) C M una palla geodetica di centro p in una varietd Riemanniana M, dove

0 < & < injrad(p), e poniamo BZ(p) = B-(p) \ {p}. Indichiamo con r: B.(p) — R la funzione data da

r(q) = |l exp, *(q)ll, per ogni ¢ € Bc(p). Chiaramente, r € C>(BZ(p)). 1l campo radiale 8/9r € T (BZ(p))

¢ il gradiente di r:

0
| = ()
per ogni g € BX(p).

Osservazione 5.2.3. Dimostreremo fra poco che 7: B.(p) — R™ & la distanza Riemanniana dal punto p;
nota nel frattempo che Bs(p) = r~1([0,6)) per ogni 0 < < ¢.

Proposizione 5.2.9: Sia B.(p) una palla geodetica in una varieta Riemanniana M. Allora:

(i) per ogni q = exp,(v) € BZ(p) si ha

0 ) &, (1) .

91— dexp,) (—)—o o (0],

or|, P\ Tolly) — Tl — /Il
e in particolare, ||0/0r| = 1;

(ii) le geodetiche radiali uscenti da p parametrizzate rispetto alla lunghezza d’arco sono le traiettorie di 9/0r;
(iii) il campo radiale é ortogonale alle sfere geodetiche OBs(p) contenute in B (p).

Dimostrazione: (i) Prima di tutto, derivando 'uguaglianza o, /||, (t) = 0, (t/||v[|,) otteniamo

Gu(1)

lvllp°

Fo/oll, UlV][p) =
quindji, ricordando la (5.2.6), rimane da dimostrare solo che

. 1 -
AT exp, (v) (W) = m(d(expp)v(v), D)exp, (v) (5.2.7)
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per ogni v € B:(0,), v # O,, e ogni w € Toxp, (v)M.
Ora, ogni W € Texp (v)M & della forma @ = d(exp,),(w) per un unico w € T, M, in quanto exp, ¢ un
diffeomorfismo fra B.(O)p) e B:(p) — e stiamo identificando T, (T, M) con T,M come al solito. Dunque

. (v, w)
e 0)(0) = 0 (A0, ) 0) = d(r 0 exp,), ) = {72502
p
dove I'ultima eguaglianza segue da roexp,, = || ||, e quindi (5.2.7) ¢ esattamente equivalente al Lemma 5.2.8.

(ii) Se ¢ = exp,(v) € BZ(p), la geodetica radiale parametrizzata rispetto alla lunghezza d’arco uscente
da p passante per g ¢ esattamente ¢ — 7,/ (t), e raggiunge ¢ per ¢t = ||v||,. La tesi segue allora da (i).

(iii) Siccome 0Bs(p) = exp, (aBg(Op)), i vettori tangenti a dBs(p) in ¢ = exp,(v) sono esattamente
I'immagine tramite dexp,, dei vettori tangenti a 9B5(O,) in v, i quali sono proprio i vettori ortogonali a v.
La tesi segue allora dal Lemma 5.2.8. O

E ora siamo arrivati al cruciale

Teorema 5.2.10: Sia (M, g) una varieta Riemanniana, p € M e 0 < € < injrad(p). Allora:

(i) Se q appartiene a una palla geodetica B.(p) di centro p, allora la geodetica radiale da p a q é 'unica (a
meno di riparametrizzazioni) curva minimizzante da p a q.
(ii) La funzione r introdotta nella Definizione 5.2.10 coincide con la distanza Riemanniana dal punto p, per
cui ogni palla geodetica B (p) ¢ la palla di centro p e raggio € per la distanza Riemanniana di M.
(iii) Ogni geodetica di M & localmente minimizzante.

Dimostrazione: (i) Sia o0:[0,£] — M la geodetica radiale da p a ¢ parametrizzata rispetto alla lunghezza
d’arco, per cui o(t) = exp,(tv) per un opportuno vettore v € T,M di lunghezza unitaria. Siccome
L(o) = ¢ =r(q), dobbiamo dimostrare che ogni altra curva regolare a tratti da p a ¢ ha lunghezza maggiore
o uguale a /£, e uguale a £ se e solo se & una riparametrizzazione di o.

Sia 7:[a,b] — M una curva regolare a tratti da p a ¢ parametrizzata rispetto alla lunghezza d’arco, e
supponiamo per il momento che 'immagine di 7 sia tutta contenuta in B.(p). Chiaramente, possiamo anche
supporre che 7(t) # p per t > a. Per la proposizione precedente possiamo scrivere 7 in tutti i punti in cui
esiste come

0

O =al) 5|

+ w(t),
per un’opportuna funzione « e un’opportuno campo w € 7 (1), con la proprieta che w(t) & tangente alla
sfera geodetica passante per 7(t). Siccome questa ¢ una decomposizione ortogonale abbiamo

17O = la@®)]? + [lw®)]* > a)[.
Inoltre, siccome le sfere geodetiche sono le ipersuperfici di livello della funzione r, abbiamo dr(w) = 0, e

quindi
a(t) = dr((t)).

Di conseguenza

b b b b ror
= [1rOld> [awla> [Caroya= [N g o) =

a

come voluto. Inoltre, si ha uguaglianza se e solo se 7 ¢ un multiplo positivo di 9/9r; essendo entrambi di
lunghezza unitaria, dobbiamo avere 7 = (9/0r) o 7. Quindi sia 7 che o sono traiettorie di 9/0r passanti
per q al tempo t = ¢, e quindi 7 = 0.

Infine, se 7: [a,b] — M & una qualsiasi curva regolare a tratti da p a g, sia ag € [a, b] I'ultimo valore ¢ per
cui 7(¢) = p, e by € [a,b] il primo valore t > ag tale che 7(t) € OB.(p), se esiste; altrimenti poniamo by = b.
Chiaramente, la curva 0‘|[a0’b0} ha supporto contenuto in B.(t) tranne eventualmente per il punto finale;
siccome

L(T) > L(T|[ao,b0])a
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con eguaglianza se e solo se ag = a e by = b, la tesi segue allora da quanto gia visto.

(ii) Se ¢ € B.(p), esiste un unico v € B:(O,) tale che ¢ = exp,(v), e la geodetica minimizzante da p a g
parametrizzata rispetto alla lunghezza d’arco ¢ o, /|j,),. Quindi 7(q) = ||[v[l, = L(ow/ vy, lj0.101,]) = 4P, q), €
r coincide con la distanza Riemanniana da p. In particolare, B.(p) € contenuta nella palla B(p,€) di centro p
e raggio € per la distanza Riemanniana. Viceversa, se ¢ € B(p,e) deve esistere una curva o da p a ¢ di
lunghezza minore di €; ma abbiamo visto che ogni curva che esce da B:(p) deve avere lunghezza almeno
uguale a e, per cui ¢ € B:(p), e ci siamo.

(iii) Sia 0:I — M una geodetica massimale parametrizzata rispetto alla lunghezza d’arco, ty € T
e p=o(tg). Scegliamo € > 0 in modo che B.(p) sia una palla geodetica. Allora per ogni ¢ € B:(p) No(I) la
geodetica o e la geodetica radiale da p a ¢, e quindi € la curva minimizzante da p a ¢, per cui in particolare
o € localmente minimizzante nell’intorno (tg — €, ¢y + €) di to. O

5.3 Il teorema di Hopf-Rinow

Possiamo finalmente affrontare il problema di quando ’esponenziale ¢ definito su tutto lo spazio tangente.

Teorema 5.3.1: (Hopf-Rinow) Sia M una varieta Riemanniana. Allora le seguenti condizioni sono equiva-
lenti:

(i) Ia distanza Riemanniana é completa;

(ii) per ogni p € M la mappa esponenziale exp,, ¢ definita su tutto T, M;
(iii) esiste un punto p € M tale che la mappa esponenziale exp,, ¢ definita su tutto T, M;
(iv) ogni insieme chiuso limitato di M é compatto.

Inoltre, ciascuna di queste condizioni implica che

(v) ogni coppia di punti di M puo essere collegata da una geodetica minimizzante.

Dimostrazione: (i) = (ii): Dobbiamo dimostrare che per ogni p € M e ogni v € T,M la geodetica o, &
definita anche in ¢ = 1. Sia [0,¢() il pitt grande intervallo aperto su cui o, € definita, e supponiamo per
assurdo che t( sia finito. Siccome

d(gv(s)aav(t)) < L(UU|[s,t]) = ”U” |S - t|

perogni 0 < s <t < tg, se {tx} C [0,tg) converge crescendo a tg la successione {0, (tx)} & di Cauchy in M per
la distanza d, e quindi converge a un punto ¢ € M, chiaramente indipendente dalla successione scelta. Dunque
ponendo o,(tg) = g otteniamo un’applicazione continua da [0,%o] in M. Sia U un intorno uniformemente
normale di ¢, con raggio d’iniettivita 6 > 0. Per ogni k abbastanza grande, abbiamo sia |t — to| < 0/|v||
che o, (tr) € U. In particolare, le geodetiche radiali uscenti da o,,(¢x) si prolungano per una lunghezza almeno
uguale a §; siccome L(oy|,,4]) = Ito — trl[|v]] < 0, la geodetica o, si prolunga oltre o, contraddizione.
Quindi tg = 400, e in particolare v € £.

(if) = (iii): Ovvio.

Introduciamo ora la condizione
(v') Esiste un punto p € M che pud essere collegato a qualsiasi altro punto con una geodetica minimizzante.

(iii) = (v'): Dato ¢ € M, poniamo r = d(p,q), e sia Ba.(p) una palla geodetica di centro p tale
che ¢ ¢ B:(p). Sia zy € 0B.(p) un punto in cui la funzione continua d(g,z) ammette minimo. Possiamo
scrivere x¢ = exp,(ev) per un opportuno v € T, M di norma uno; vogliamo dimostrare che o, (r) = q.

Poniamo

A={se0,r]]d(ou(s),q) =7 — s}.

L’insieme A & non vuoto (0 € A), ed & chiuso in [0, r]; se dimostriamo che sup A = r abbiamo finito. Sia
S0 € A minore di r; ci basta far vedere che sy + 6 € A per § > 0 abbastanza piccolo (inoltre, se sg = 0
Pargomento che stiamo per presentare dimostrera che ¢ € A). Prendiamo una palla geodetica Bs (UU (SO));
possiamo supporre che g ¢ Bg (UU (30)). Per costruzione,

d(p,0v(s0)) < so = d(p,q) — d(ov(s0),q),
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che & possibile se e solo se d(p,o,(s0)) = so. Sia z{, € 0B;5(0,(s0)) un punto in cui d(z,q) assume minimo.
Allora

r—s0 = d(o,(s0), ) < 6+ d(x,9);
d’altra parte, se T & una curva regolare a tratti da o,(sg) a ¢, suddividendo 7 nella parte fino all’ultima

intersezione con 0By (Uv(so)) e nel resto, si ha

L(t)>d6+ min d(z,q) =8 +d(z), q),
(1) > peontin (z,4q) (20,49)

per cui abbiamo
r—so=208+d(xy,q),

e quindi

d(p,zp) > d(p,q) — d(q,zp) =7 — (1 — 50 — 0) = 50 + 0.

D’altra parte, la curva & ottenuta unendo o,|j s, con la geodetica radiale da o,(sg) a zy ha lunghezza
esattamente so + 0; quindi d(p,x) = so + . In particolare, la curva & ¢ minimizzante, per cui & una
geodetica e dunque coincide con o,. Ma allora o,(sg + 0) = x{, e quindi

d(UU(So + 6))Q) = d(xéaQ) =T —= (50 + 6)a

cioe sg + 6 € A, come voluto.

(ili)+(v") = (iv): basta far vedere che le palle chiuse di centro p per la distanza sono compatte. Ma
infatti, grazie a (v') coincidono con le immagini tramite exp,, delle palle B,.(O,), che sono compatte.

(iv) = (i): & un risultato classico di topologia.
(ii) = (v): si ragiona come in (iii) = (v'). O
Definizione 5.3.1: Una varieta Riemanniana la cui distanza Riemanniana & completa sara detta completa.

Come vedremo, le varieta Riemanniane complete sono 'ambiente giusto in cui studiare proprieta globali.
Uno dei motivi & che una varieta Riemanniana completa non puo essere allargata, nel senso che non puo
essere realizzata come aperto di una varieta Riemanniana pit grande:

Proposizione 5.3.2: Sia M una varieta Riemanniana, e supponiamo che esista un embedding F: M — N
in un’altra varieta Riemanniana N connessa tale che F'(M) sia un aperto proprio di N, e F' sia un’isometria
fra M ed F(M). Allora M non é completa.

Dimostrazione: Scegliamo un punto qo € OF (M), e una geodetica radiale o:[0,¢) — N minimizzante uscente
da gg contenuta in F'(M) tranne per il punto iniziale. Scegliamo una successione {t;} C (0, ) convergente a 0;
in particolare, la successione {qr = o(tx)} converge a qo ed ¢ di Cauchy per la distanza Riemanniana di N.
Poniamo pr = F~1(qx). La distanza in M fra p, e py & minore o uguale alla lunghezza in M di F~! 00| [ty t1]5
essendo F' un’isometria, questa lunghezza ¢ uguale alla lunghezza di o]y, 4,1, e quindi alla distanza in N di gy,
e qx. In particolare, quindi, la successione {p;} & di Cauchy per la distanza Riemanniana di M. Se M fosse
completa, allora {py} dovrebbe convergere a un punto pg € M; ma allora g, = F(pr) — F(po) € F(M),
contro l'ipotesi che {gx} convergesse a un punto del bordo di F(M). O

Esercizio 5.8.1. Dimostra che ogni varieta Riemanniana omogenea € completa.

5.4 Esempi

EseEMPIO 5.4.1. Lo spazio euclideo. Le geodetiche di R™ rispetto alla metrica euclidea sono chiaramente le
rette. In particolare, un aperto convesso limitato di R"™ mostra che in generale non ¢ vero che la condizione (v)
del Teorema di Hopf-Rinow implichi le altre.
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EsEmPIO 5.4.2. La sfera. Un cerchio massimo su S% ¢ l'intersezione di S7 con un piano passante per
Porigine. Vogliamo far vedere che le geodetiche di S7 sono proprio i cerchi massimi, parametrizzati rispetto
a un multiplo della lunghezza d’arco. Sia o una geodetica uscente dal polo nord N = (0,...,0,1) e tangente
al vettore 9/0x!. Se I'immagine di o non fosse contenuta nel piano 7 di equazione z? = --- = 2™ = 0,
la simmetria p rispetto a questo piano (che & un’isometria della metrica sferica) manderebbe o in una
geodetica p o o diversa ma sempre uscente da N e tangente a 9/9z', impossibile. Quindi I'immagine di o
dev’essere contenuta in 7, per cui ¢ necessariamente una parametrizzazione a velocita costante del cerchio
massimo SENm. Siccome, grazie all’Esempio 4.2.4, possiamo mandare con una rotazione il vettore 8/9z|x in
un qualunque vettore di 7'S% di lunghezza unitaria, e le rotazioni mandano geodetiche in geodetiche e cerchi
massimi in cerchi massimi, abbiamo finito. In particolare, abbiamo esempi di geodetiche non minimizzanti: i
cerchi massimi smettono di essere minimizzanti non appena si supera il punto diametralmente opposto. Piu
precisamente, abbiamo injrad(p) = 7R ed exp, (Brr(0p)) = S\ {—p} per ogni p € S. Infine, la sfera &
per forza completa, in quanto compatta.

FEsercizio 5.4.1. Dimostra che le geodetiche dello spazio iperbolico sono: in Ug le “iperboli massime”,
cioe le intersezioni di Uj con piani passanti per l'origine; in B} i diametri e gli archi di circonferenza che
intersecano 0BF ortogonalmente; in H7 le semirette verticali e le semicirconferenze con centro in 0HE.
Deduci che lo spazio iperbolico &€ completo, che il raggio d’iniettivita di ogni punto e infinito, e che per ogni
punto p dello spazio iperbolico la mappa esponenziale & un diffeomorfismo fra lo spazio tangente nel punto
e l'intero spazio iperbolico.

EsempIO 5.4.3. I cilindro piatto. Consideriamo M = {x € R" | (2!)?2 + .-+ + (2"~ 1)? = 1}, con la
metrica indotta dalla metrica euclidea di R"™. Siccome M & omogeneo (esercizio), possiamo limitarci a
studiare le geodetiche uscenti dal punto py = (1,0,...,0). Lo spazio tangente a M in pg ¢ l'iperpiano
TpoM = {v € R" | v} = 0}, e un versore normale a M in R" nel punto p € M & N(p) = (p',...,p""1,0).
Sia 0: I — M la geodetica con o(0) = pg e 6(0) = v € T, M. Allora sappiamo che

R e T R i (5:41)

inoltre, siccome la connessione di Levi-Civita di M & la proiezione della connessione piatta di R", I’equazione
delle geodetiche diventa

§=ANoo (5.4.2)
per un’opportuna funzione A € C°°(I). In particolare, abbiamo subito ¢”(t) = v"t, e se 0, = (o!,..., 0" 1)
lequazione (5.4.2) diventa

0o = AOy.
Derivando due volte ||o,||? = 1 troviamo (5,, 7,)+||0,]|? = 0, per cui A = —||v,||?, dove v, = (0,02,..., 0" 1).

Mettendo tutto insieme ricaviamo

U2 ) ,Unfl ) "
o(t) = (cos(vo||t)7 —||v H sm(||vo\|t),...,—”v H sin(||ve||t), v t) .
o o

Nel resto di questo paragrafo studieremo le geodetiche di un gruppo di Lie connesso Gj; fra l'altro,

daremo un’ulteriore motivazione per il nome della mappa esponenziale.
Cominciamo con una definizione cruciale:

Definizione 5.4.1: Sia G un gruppo di Lie connesso. Un sottogruppo a un parametro di G € una 6: R — G di
classe C*° che sia un omomorfismo di gruppi. In altre parole, richiediamo che 6(0) = e sia 'identita di G, e
che 0(t +s) = 6(t) - 0(s) per ogni s, t € R.

Come vedremo, i sottogruppi a un parametro sono geodetiche per opportune connessioni lineari. Ini-
ziamo con il realizzarli come curve integrali:
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Lemma 5.4.1: Sia G un gruppo di Lie, X e ge X € 7T (G) il campo vettoriale invariante a sinistra associato
a X. Allora:

(i) la curva integrale di X uscente da e ¢ un sottogruppo a un parametro di G;
(ii) viceversa, se §:R — G ¢ un semigruppo a un parametro con ¢'(0) = X, allora ¢ ¢ la curva integrale
di X uscente da e.

Dimostrazione: (i) Sia o: (—¢,€) — G la curva integrale massimale di X uscente da e. Vogliamo dimostrare
che per ogni ty € (—¢,¢) la curva v: (—¢,¢) — G data da y(t) = o(tp)o(t) € una curva integrale di X uscente
da o(tp). Infatti si ha

7'(t) = d(Lo(to))o(r) (0" (1) = d(Loro) ot (X (a(2))) = X (7(1)),
come voluto. Ma 'unicita delle curve integrali ci dice che allora (t) = o(to + t), cioe
oty +1t) = o(to)o(t)

per ogni tg, t € (—¢,¢). In particolare questo implica che e dev’essere necessariamente infinito (perché?), e
che o & un sottogruppo a un parametro.
(ii) Supponiamo che 6 sia un sottogruppo a un parametro con 6'(0) = X. Allora

d .
0'(to) = = (Logtg) ©0)| = dlLo(r))e (¢'(0)) = d(Logry))e(X) = X (0(t0)),
t=0
per cui 6 & la curva integrale di X uscente da e. O

In particolare, quindi, per ogni X € g esiste un unico sottogruppo a un parametro fx:R — G tale
che 0% (0) = X: & la curva integrale di X uscente da e.

Definizione 5.4.2: Sia G un gruppo di Lie. L’applicazione esponenziale di G & I'applicazione exp: g — G data
da exp(X) = 0x(1).

Osservazione 5.4.1. Se s € R, abbiamo che ¢ — 6x(st) & un semigruppo a un parametro tangente
a sX in 0; quindi exp(sX) = Ox(s). In altre parole, tutti i sottogruppi a un parametro di G sono della
forma t — exp(tX) per qualche X € g.

EsemMPIO 5.4.4. Sia G = GL(n,R), per cui g = gl(n,R). Allora per ogni X € gl(n, R) possiamo definire
0x:R — GL(n,R) ponendo
9X (t) = etX,

dove etX & il solito esponenziale di matrici. Si verifica subito che §x & un sottogruppo a un parametro

con 60 (0) = X, per cui 'applicazione esponenziale di GL(n,R) & I'usuale esponenziale di matrici. Lo stesso
argomento lo si puo applicare a GL(V'), dove V & un qualsiasi spazio vettoriale di dimensione finita, usando
come definizione di esponenziale di un endomorfismo L € gl(V) = End(V) la

o0
=2
k=0

dove L* indica la composizione di L con se stesso k volte.

| —

Lk

o

Ora, se sul gruppo di Lie G mettiamo una connessione lineare, ci troviamo con due applicazioni espo-
nenziali a disposizione: quella appena definita, e quella che viene dalle geodetiche. Vogliamo determinare
delle condizioni per cui queste due applicazioni coincidano.

La prima richiesta naturale ¢ che la connessione sia invariante a sinistra:

Definizione 5.4.3: Sia G un gruppo di Lie. Diremo che una connessione lineare V su G ¢ invariante a sinistra
se

d(Ly)(VxY) = Vyr,)x)d(Ly)(Y)
perogni X,Y € T(G)egeG.
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Il seguente esercizio ¢ elementare:

Esercizio 5.4.2. Dimostra che esiste una corrispondenza biunivoca fra le connessioni lineari invarianti a
sinistra su un gruppo di Lie G e 'insieme delle applicazioni bilineari a: g X g — g, corrispondenza ottenuta
associando alla connessione V 'applicazione ay(X,Y) = VX?(e), dove per ogni X € g il campo X € T(G)
& Punico campo invariante a sinistra tale che X (e) = X.

Corollario 5.4.2: Sia V una lineare connessione invariante a sinistra su un gruppo di Lie G, e X € g.
Allora le seguenti affermazioni sono equivalenti:

(i) av(X,X) = 0;

(ii) la geodetica ox uscente da e tangente a X & un sottogruppo a un parametro di G.
Dimostrazione: Essendo V invariante a sinistra, da ay (X, X) = O otteniamo VzX = O, dove X € 7(G)
¢ il campo vettoriale invariante a sinistra associato a X. In particolare, quindi, la curva integrale di X
uscente da e € una geodetica per V, e questa geodetica risulta essere un sottogruppo a un parametro grazie
al Lemma 5.4.1.(i)

Viceversa, se ox (t) & un sottogruppo a un parametro, il Lemma 5.4.1.(ii) ci dice che & la curva integrale
di X uscente da e; ma allora abbiamo V ¢ X (e) = O, cio¢ ay (X, X) = O. O

Di connessioni lineari che soddisfano le condizioni di questo corollario ce ne sono a bizzeffe; per esempio
quelle ottenute prendendo ay (X,Y) = ¢[X, Y] per qualche ¢ € R. Ma a noi interessa sapere quando la con-
nessione di Levi-Civita (ottenuta partendo da una metrica invariante a sinistra) soddisfa questa condizione.
Per enunciare in maniera pulita il risultato, introduciamo la seguente

Definizione 5.4.4: Sia g un’algebra di Lie. Allora I’applicazione aggiunta di g ¢ 'omomorfismo di algebre di
Lie ad: g — gl(g) dato da ad(X)(Y) = [X,Y].
Proposizione 5.4.3: Sia (-,-) una metrica invariante a sinistra su un gruppo di Lie G, e V la connessione
di Levi-Civita. Allora le seguenti condizioni sono equivalenti:

(1) Oév(X, Y) = %[Xv Y]a

(ii) ad(X) é antisimmetrico per ogni X € g;
(iii) exp, = exp, cioé I semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: 11 Teorema 4.4.4 ci dice che
1

per cui l'equivalenza fra (i) e (ii) & evidente.
11 Corollario 5.4.2 ci dice che (iii) vale se e solo se ay (X, X) = O per ogni X € g. Ora, (5.4.3) implica
(av (X, X),Z) = (ad(Z2) X, X).
Quindi av (X, X) = O per ogni X € g se e solo se (ad(Z)X, X) = 0 per ogni Z, X € g, e questo accade se e
solo se ad(Z) ¢ antisimmetrico per ogni Z € g. ]

La cosa interessante e che tutto cio e legato a quando una metrica invariante a sinistra € anche inva-
riante a destra. Per dimostrarlo ci servono un paio di risultati generali sui gruppi di Lie, importanti anche
indipendentemente.

Proposizione 5.4.4: Sia 1): G — H un omomorfismo di gruppi di Lie. Allora di.:g — b é un omomorfismo
delle corrispondenti algebre di Lie, e si ha

VX eg Y (exp(X)) = exp(dipe(X)). (5.4.4)
Dimostrazione: Sia 0x(t) = exp(tX) il sottogruppo a un parametro in G tangente a X € g. Allora pofx &
un sottogruppo a un parametro in H tangente a di).(X), per cui w(ex(t)) = exp (tdwe(X))7 e (5.4.4) vale.

Inoltre, abbiamo ¢ o Ly = L4y 09 per ogni g € G; quindi per ogni X € g abbiamo

dipg (d(Lg)e(X)) = d(Ly(g))e(dpe(X)).

Questo vuol dire che il campo X invariante a sinistra che estende X & sempre i-correlato al campo invariante
a sinistra che estende diy.(X). L’Esercizio 3.3.3 ci assicura allora che di), ¢ un omomorfismo di algebre di
Lie. O
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Proposizione 5.4.5: Sia U C G un intorno aperto dell’elemento neutro in un gruppo di Lie connesso G.
Allora U genera tutto G, nel senso che ogni elemento di G si ottiene come prodotto di un numero finito di
elementi di U.

Dimostrazione: Notiamo prima di tutto che un sottogruppo aperto € anche chiuso. Infatti, se H C G ¢ un
sottogruppo aperto, allora

G\H=|JgH
g¢H
¢ aperto, per cui H e chiuso.
Ora, se U ¢ un intorno aperto di e, allora il sottogruppo generato da U &

o) =um
neN

dove U™ ¢ l'insieme di tutti i possibili prodotti di n elementi di U. Quindi (U) & un sottogruppo aperto, e
dunque chiuso, di G; essendo G connesso, dev’essere (U) = G, come affermato. Il

Definizione 5.4.5: Sia G un gruppo di Lie. Se g € G, indichiamo con Cy: G — G il coniugio Cy(x) = grg™?,

in modo che Cy o C, = Cyy, per ogni g, h € G. La rappresentazione aggiunta di G ¢ 'omomorfismo
Ad: G — GL(g) definito da Ad(g) = d(Cy)e.

Notiamo che la (5.4.4) implica che
Cy(exp X) = exp(Ad(g)(X)). (5.4.5)
Ci servira il seguente
FEsercizio 5.4.3. Dimostra che se X € caT(G) & un campo vettoriale invariante a sinistra su un gruppo di
Lie G si ha 6,0 Ly = Ly 0 6, per ogni g € G, dove 0, = O(t,-) ¢ il flusso di X. (Suggerimento: ricorda
I’Esercizio 3.3.4.)
Da questo otteniamo il
Lemma 5.4.6: Sia G un gruppo di Lie, e Ad: G — GL(g) la rappresentazione aggiunta. Allora
d(Ad).(X) = ad(X)
per ogni X € g. In particolare, quindi,
VX cg Ad(exp X) = 24X, (5.4.6)
Dimostrazione: Siccome t — exp(tX) & una curva in G tangente a X in e, abbiamo
AAD(X)(Y) = LAd(exptX)(Y) y
per ogni X, Y € g. Indicando con Y € 7 (G) Vestensione invariante a sinistra di Y, abbiamo
Ad(exptX)(Y) = d(Cexp(tx))e(Y) = d(Rexp(—tx))exp(tx) © A Lexp(tx))e(Y)
= d(chp(—tX))cxp(tX) (?(exp(tX))).
Ora, per ogni g € G si ha
Rexpex)(9) = gexp(tX) = Ly (exp(tX)) = Ly(6:(e)) = 0:(Lg(e)) = 0:(g),

dove 6; ¢ il flusso di X, 'estensione invariante a sinistra di X, e abbiamo usato 'Esercizio 5.4.3. Ma allora
questo vuol dire che Rey,(—¢x) = 0, per cui

Ad(eXp tX)(Y) = d(e—t)et (e) (Y)a
e la Proposizione 3.3.6 ci permette di concludere che

AADLXNY) = G- o, (V)| = £x¥(0) = [X,¥] = ad(X)(1),

come voluto. Infine, (5.4.6) segue da (5.4.4) e dall’Esempio 5.4.4. O
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Siamo ora in grado di dimostrare il

Teorema 5.4.7: Sia G un gruppo di Lie connesso, e (-,-) una metrica Riemanniana invariante a sinistra
su G. Allora le seguenti affermazioni sono equivalenti:

(i) (-,-) & anche invariante a destra;
(ii) Ad(g) é un’isometria di g per ogni g € G;
(iii) ad(X) é antisimmetrica per ogni X € g;
(iv) exp, = exp, cioé i semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: La metrica (-,-) ¢ invariante a destra se e solo se (d(Rg)n(v), d(Rg)n(w))ng = (v,w); per
ogni g, h € G e v, w € T4G. Usando 'invarianza a sinistra della metrica, questo si riduce a dimostrare che

(d(Ly,} o Ry o Li)e(X),d(Ly) 0 Ry o Ly)e(Y))e = (X,Y),

perogni h, g€ Ge X,Y € g. Ma L,;gl oRyoLp = Cy,equindi (-,-) ¢ invariante a destra se e solo se
ogni Ad(g) & un’isometria di g.

Supponiamo ora che (ii) valga. Per il Lemma 5.4.6, allora, e2d(tX) & un’isometria per ogni X € get € R.
Derivando

<€ad(tX)(Y),ead(tX)(Z)>e — <Y, Z>e
rispetto a t e calcolando in ¢ = 0 otteniamo
<a’d(X)(Y)7 Z>e + <Y7 ad(X)(Z)>e =0

per ogni X, Y, Z € g, e quindi (iii) vale.
Viceversa, supponiamo che (iii) valga. Siccome si verifica subito che

%ead(tX) — ad(X) ° ead(tX)’

troviamo

%<ead(tX)()/),ead(tX)(Z»e _ <ad(X) ° ead(tX)(y)’ead(tX)(Z»e + <€ad(tX)(Y),ad(X) ° €ad(tX)(Z)>e =0.
Dunque (e24X)(Y) e2d(X) (7)), & una funzione costante, e calcolando per ¢t = 0 e per t = 1 vediamo
che e2dX) & un’isometria per ogni X € g. Ma allora Ad(exp X) ¢ un’isometria per ogni X € g. Ora,
dalla definizione si ricava subito che d exp, = id; quindi 'immagine dell’esponenziale contiene un intorno U
dell’elemento neutro e, e Ad(g) ¢ un’isometria per ogni g € U. Siccome la composizione di isometrie &
un’isometria, la Proposizione 5.4.5 ci assicura allora che Ad(g) ¢ un’isometria per ogni g € G, e abbiamo
dimostrato (ii).

Infine, 'equivalenza fra (iii) e (iv) & gia stata dimostrata nella Proposizione 5.4.3. U

EseMPIO 5.4.5. Non ¢ difficile verificare che la metrica euclidea su gl(n,R), cioe quella dell’Esempio 4.4.6,
si puo esprimere scrivendo

VA, B € gl(n,R) (A, B) = tr(BT A).
Ora, se X € gl(n,R) abbiamo
([X,A], B) = tr(BT X A) — tr(BT AX),
(A, [X,B]) = tr(BTXTA) — tr(XTBTA) = tr(BTXT A) — tr(BT AXT),

dove abbiamo usato il fatto che tr(CD) = tr(DC) per ogni C, D € gl(n,R). Quindi in generale ad(X) non &
antisimmetrico rispetto alla metrica euclidea, per cui i sottogruppi a un parametro visti nell’Esempio 5.4.4
non sono geodetiche per la connessione di Levi-Civita su GL(n,R) calcolata nell’Esempio 4.4.6.

(5.4.7)

EseMPIO 5.4.6. Nell’Esercizio 3.3.9 abbiamo visto che I'algebra di Lie del gruppo SO(n) ¢ 'algebra so(n)
delle matrici antisimmetriche. Ma allora (5.4.7) ci dice che ad(X) ¢ antisimmetrica rispetto al prodotto
scalare dell’esempio precedente per ogni X € so(n). Quindi la metrica dell’Esempio 4.4.6 ristretta a SO(n)
¢ bi-invariante, e i sottogruppi a un parametro sono geodetiche per la corrispondente connessione di Levi-
Civita.
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Capitolo 6

Curvatura

6.1 Gli operatori di curvatura

Obiettivo di questo capitolo e lo studio della curvatura di una varieta Riemanniana, e delle relazioni fra la
curvatura e la topologia della varieta.

Per vedere come potremmo definire la curvatura di una varieta Riemanniana, ricordiamo che la curvatura
Gaussiana K di una superficie S C R® pud essere calcolata con la seguente formula:

Cuers, oy,
E | oxt 0z

K= + (T50% —THI%) | (6.1.1)

dove i I, sono i simboli di Christoffel della connessione di Levi-Civita della metrica indotta su S dalla
metrica piatta di R?, calcolati rispetto a una carta locale ¢(p) = (z(p),2%(p)), ed E = ||O1].

Siccome la formula (6.1.1) dipende solo dalla metrica su S, potremmo tentare di definire un concetto di
curvatura su una varieta Riemanniana qualsiasi nel modo seguente:

Definizione 6.1.1: Sia M una varieta Riemanniana, p € M e m C T, M un 2-piano. Diremo curvatura sezionale
di M in p lungo 7 la curvatura Gaussiana in p della superficie exp,(m N &,) C M calcolata usando (6.1.1)
applicata a un sistema di coordinate normali centrate in p ottenute estendendo a T), M una base ortonormale
di 7.

Questa definizione, benché geometricamente chiara, ha perd due problemi evidenti. Il primo e che
bisogna verificare che sia una definizione ben posta, cioé che non dipenda dal sistema di coordinate normali
scelto. La seconda ¢ che non ¢ chiaro che struttura abbia (ammesso che ne abbia una) 'insieme delle
curvature sezionali in un punto.

Per ovviare a questi problemi procederemo per via analitica invece che geometrica. L’idea cruciale & che
siccome (6.1.1) contiene i simboli di Christoffel, la curvatura dev’essere legata alla connessione di Levi-Civita.
Allora cominciamo con la seguente

Definizione 6.1.2: Sia M una varieta Riemanniana con connessione di Levi-Civita V. Per ogni X, Y € 7(M)
I'endomorfismo di curvatura Rxy: T,*(M) — T,'(M) & dato da

Rxy =VxVy —VyVx —V(xy]

In realta, Rxy ¢ molto di pit di un semplice endomorfismo: ¢ C°°(M)-lineare in tutte le variabili.
Infatti,

Rxy(fK)=Vx(fVyK+Y(f)K) = Vy(fVxK + X(f)K) — fVix v} K — [X,Y](/)K = fRxyK
per ogni K € T,"(M) e f € C*°(M). Inoltre Ryx = —Rxy e
Rx(sy) = fVxVy + X(/)Vy = fVyVx — fVixy] — X(f)Vy = fRxy.

Quindi R: T (M) x T(M) x T;H(M) — T,'(M) determina un campo tensoriale R € Thh:kﬁQ(M). 11 caso per
noi piu interessante ¢ il seguente:
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Definizione 6.1.3: 1l tensore di curvatura R € T3 (M) & il campo tensoriale R: 7 (M) x7T (M)x7T (M) — T (M)
dato da R(X,Y,Z) = RxyZ. A questo associamo anche un altro campo tensoriale R € 7,(M) definito da

R(X,Y,Z,W) = (Rxy Z,W).

Esercizio 6.1.1. Dimostra che se H: M — N & un’isometria fra varietd, Riemanniane allora H*RY = RM,
nel senso che

RN (dH(X),dH(Y),dH(Z)) = R™(X,Y, Z)
per ogni X, Y, Z € T(M), dove RM (rispettivamente, R"™) & il tensore di curvatura di M (rispettiva-
mente, N).

Come vedremo, le proprieta di simmetria del tensore di curvatura saranno utilissime:

Proposizione 6.1.1: II tensore di curvatura R di una varieta Riemanniana ha le seguenti proprieta:

(i) Rxy = —Ryx;

(ii) RxyZ + RyzX + RzxY = O (prima identita di Bianchi);
(iii) <RXyz, W> = —<Z7 nyW>,'
(iV) (RXyZ, W> = <ffzm/)(7 Y>

Dimostrazione: (i) Ovvia.
(ii) Usando la simmetria della connessione e l'identita di Jacobi si ottiene

RxyZ + RyzX + RzxY = (VxVyZ - VyVxZ - V(x y|Z)
+(VyVzX = VzVyX — Viy 7 X)
+(V2VxY = Vx VY — Vi xY)
Vi (VyZ = ViY) + Ve (V2X — Vi Z) + V2 (VxY — Vy X)
—Vix,y1Z — Viy,z21X — Vizx1Y¥
=Vx[Y,Z]|+ Vy[Z,X]+ Vz[X,Y] - Vixy1Z —Viy,z1X —VizxY
=X V. Z]|+ [V, [Z2, X]| + [Z,[X, Y]] = O.

(iii) Basta dimostrare che (Rxy Z, Z) = 0. La compatibilita con la metrica da

XY||Z|?* =2X(VyZ,2Z) =2(NxVvyZ,Z) + 2(Ny Z,Vx Z),
YX|Z|? =2Y(VxZ,Z) =2(VyVxZ,Z) +2(VxZ,VyZ),
(X, Y|Z|? = 2Vixv1Z, Z).

Sottraendo le ultime due dalla prima, il membro sinistro si annulla e otteniamo
0=2(RxvZ,7),

come voluto.
(iv) Scriviamo la prima identita di Bianchi quattro volte, permutando ciclicamente gli argomenti:

(RxyZ,W) + (RyzX, W)+ (RzxY,W) =0,
(RyzW, X))+ (RzwY, X) + (Rwy Z,X) =0,
(RzwX,Y)+ (RwxZ,Y)+ (RxzW,Y) =0,
(RwxY,Z)+ (RxyW, Z) + (RywX, Z) = 0,

e sommiamo. Grazie a (iii) le prime due colonne si cancellano. Applicando (i) e (iii) all’'ultima colonna
otteniamo 2(RxzW,Y) — 2(Rwy X, Z) = 0, che & equivalente alla tesi. O
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FEsercizio 6.1.2. Dimostra la seconda identita di Bianchi:
VR(X,Y,Z,VW)+VR(X,Y,V,W,Z)+ VR(X,Y,W,Z, V) =0

perogni X,Y, Z, V., W e T(M).
Esercizio 6.1.5. Dimostra Uidentita di Ricci: se K € T (M) allora

V2K(Z,W,X,Y) - V?K(Z,W,Y,X) = (Rxy K)(Z,W)

perogni X, Y, Z, W € T(M).

h

In coordinate locali, se poniamo Rp,s,0r = R; jkah, si trova,

h 8P?k' ar?k

ELER oxI

+ 0 = T3, (6.1.2)

gr

formula che ci fa sospettare di essere nella direzione giusta. In particolare, se poniamo R;;nr = <Raiaj Oh, Ok)
otteniamo R;jnx = grk Ry, € la Proposizione 6.1.1.(1)—(iv) & equivalente alle seguenti simmetrie dei coeffi-

ijh?
cienti di R:
Rijnk + Rjnik + Ruij =0, Rijne = —Rjink, Rijak = —Rijin,  Rijhk = Rukij-
Osservazione 6.1.1. Se avessimo una carta locale tale che i vettori {01, ...,d,} formino un riferimento

locale ortonormale di 7'M, i simboli di Christoffel sarebbero identicamente nulli, e quindi la curvatura sarebbe
identicamente nulla. Questo conferma quanto anticipato nell’Osservazione 4.1.4.

Le proprieta di simmetria fanno sospettare che per conoscere 'intero tensore di curvatura sia sufficiente
sapere come si comporta su alcune particolari quadruple di vettori. Le quadruple giuste sono quelle indicate
nella prossima

Definizione 6.1.4: Sia M una varieta Riemanniana con tensore di curvatura R. Definiamo per ogni p € M la
forma quadratica Q,: T, M x T,M — R data da

Qp(va ’U}) = Rp(uw,w, U) = <vaw7U>P

per ogni v, w € T, M.

La forma Q,(v1,v2) in realtd dipende piu dal piano generato dai vettori v1 e v che dai vettori in sé.
Prima di tutto, se v1 e vg sono linearmente dipendenti (cioé generano una retta in 7, M) allora le proprieta
di simmetria di R implicano subito (verificare, prego) che @Q,(v1,v2) = 0. Supponiamo invece che v1 e vo
siano linearmente indipendenti, e siano w; = aévi (per j =1, 2) altri due vettori generanti lo stesso piano,
dove (a}) € GL(2,R) ¢ la matrice di cambiamento di base. Allora la multilinearita e le proprieta di simmetria
di R danno

Qp(wy, ws) = (det(a}))*Qy(v1,v2).

Ora, I’Esercizio 1.3.17 ci dice che la norma dell’elemento v; A vo € /\2 T,M rispetto al prodotto scalare
indotto dalla metrica Riemanniana ¢ data da

1
v Avelly = \/Hv1||§||vzl\,% = [{o1, v2)p %

nota che il secondo membro ¢ ’area del parallelogrammo generato da v; e vp in T, M. In particolare,
otteniamo anche
Aws)? = (det(a?))?[lor A va|?
lwi Awally = (det(ag)) [lvr A va[5-

Quindi il numero
2Qp(v17 Uz)
o1 Avall3

dipende solo dal piano generato dai vettori v; e va. Abbiamo recuperato la curvatura sezionale:
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Proposizione 6.1.2: Sia M una varieta Riemanniana con tensore di curvatura R. Allora per ogni p € M
e 2-piano ® C T, M si ha

K(r) = 2Qp(v1, v2)
o1 Awal|2”

dove {v1,v2} & una qualunque base di .

Dimostrazione: Sia {vi,v2} una base ortonormale di 7; completiamola a una base ortonormale di T,M, e
usiamo quest’ultima base per definire coordinate normali centrate in p. Allora le simmetrie del tensore di
curvatura danno

2Qp(vlv 02)
Sep L2 = Rioo1 = R
Hvl /\02”127 Qp(vl,vz) 1221 2112,
che ¢ esattamente uguale a K (), grazie a (6.1.1), (6.1.2), e alla simmetria dei simboli di Christoffel. O

Dunque il tensore di curvatura definito tramite la connessione di Levi-Civita ci permette di recuperare
la curvatura sezionale definita geometricamente. Viceversa, la curvatura sezionale determina completamente
il tensore di curvatura:

Proposizione 6.1.3: Sia V' uno spazio vettoriale di dimensione n > 2 dotato di un prodotto scalare definito
positivo (-,+), e R, R":V x V x V — V due applicazioni multilineari soddistacenti le proprieta (i)—(iv) della
Proposizione 6.1.1. Per ogni x, y, v, w € V e ogni 2-piano m C V definiamo

2
Qo) = o), o ir) = F

dove {v1,v2} & una base qualunque del 2-piano . Definiamo analogamente )’ e K'. Allora R = R’ se e solo
se K =K'.

Dimostrazione: Una direzione & ovvia. Supponiamo allora K = K’ e quindi Q = @Q’. Allora
R(z +v,y,y,7 +v) = R (z +v,y,y, 2 +v)

perogniz, y, v € V (dove per semplicita di scrittura abbiamo posto (R.,v, w) = R(x,y, v, w), e analogamente
per R'), per cui

R(z,y,y,x) + 2R(x,y,y,v) + R(v,y,y,v) = R'(z,y,y,z) + 2R (z,y,y,v) + R'(v,y,y,v),

e percio
R(z,y,y,v) = R'(z,y,y,v).

Dunque
R(x7y+w’y+w7/u) = R/<x7y+w7y+w7v>7

per ogni z, y, v, w € V, per cui
R(z,y,w,v) + R(z,w,y,v) = R'(z,y,w,v) + R'(z,w,y,v),

o meglio
R(‘rayvvvw) - R/(Jj,y,U,UJ) = R(y,’U,.T,U)) - R/(y,v,x,w).

Dunque la quantita R(z,y,v,w) — R'(z,y,v,w) & invariante per permutazioni cicliche dei primi tre elementi.
Usando la prima identita di Bianchi, cioe la Proposizione 6.1.1.(ii), otteniamo allora

3[R(3;‘, Y, v, ’LU) - R/(.%‘, Y, v, w)] =0,

e ci siamo. O
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Esercizio 6.1.4. Dimostra che

R(X,Y,Z,W) = %{Q(Y+Z,X+W)7Q(X+Z,Y+W)

FRXLY+W)+QY, X +2) +Q(Z,Y + W) + Q(W, X + Z)
—QX,Y+2Z)- QY. X+ W) - Q(Z, X +W) - QW,Y + 2)
+Q(X, 2) + Q(X, W) = Q(Y, Z) - Q(Y, W) }.

Uno degli obiettivi tipici dei geometri e classificare tutti gli oggetti che hanno determinate proprieta. Nel
caso della geometria Riemanniana, viene naturale cercare di classificare le varieta in base alla loro curvatura.
Il caso pin semplice, ma comunque molto importante (e che discuteremo nel paragrafo 6.4) & quello delle
varieta a curvatura sezionale costante:

Definizione 6.1.5: Una varietd Riemanniana M ha curvatura sezionale costante k € R se K(m) = k per
ogni p € M e ogni 2-piano m C T, M.

Osservazione 6.1.2. Usando la seconda identita di Bianchi ¢ possibile dimostrare che una varieta Rie-
manniana M connessa di dimensione n > 3 per cui esista una funzione k: M — R tale che K (7) = k(p) per
ogni p € M e ogni 2-piano m C T, M & necessariamente a curvatura sezionale costante (cioe la funzione k &
costante).

Il tensore di curvatura di una varietd Riemanniana a curvatura sezionale costante ¢ completamente
determinato:

Corollario 6.1.4: Una varieta Riemanniana M ha curvatura sezionale costante k € R se e solo se il suo
tensore di curvatura ¢ dato da
RxyZ =k[(Y,Z)X — (X, Z)Y]. (6.1.3)

Dimostrazione: Una direzione ¢ immediata. Viceversa, supponiamo che M abbia curvatura sezionale co-
stante k € R. Definiamo un campo tensoriale R’ € 75t (M) tramite il membro destro della (6.1.3). Si vede su-
bito che R’ soddisfa le proprieta (i)—(iv) della Proposizione 6.1.1, e che Q'(X,Y) = k[|| X ||V [|? - (X, Y)[*];
quindi K’ = K = k, e la Proposizione 6.1.3 ci assicura che R = R'. Il

Ci sono altri tipi di curvature che meritano di essere ricordati.

Definizione 6.1.6: Sia. M una varieta Riemanniana con tensore di curvatura R. Se indichiamo con Ric(X,Y)
la traccia dell’operatore lineare Z +— RzxY otteniamo il tensore di Ricci Ric € T)(M).

Osservazione 6.1.3. Un veloce richiamo di algebra lineare: se L: V' — V & un endomorfismo di uno spazio
vettoriale di dimensione finita, ¢ B = {vy,...,v,} & una base di V, allora scrivendo L(v;) = alv; (ciot se

(a%) & la matrice che rappresenta L rispetto alla base B) troviamo che tr(L) = aj. Se poi B ¢ una base

ortonormale rispetto a un prodotto scalare (-,-) su V, allora a

7 = (L(v;),v}), e quindi

=1
Il tensore di Ricci & simmetrico: se {Z1,..., Z,} & una base ortonormale di 7, M I'osservazione precedente
e le simmetrie del tensore di curvatura implicano
n n
Ric(X,Y) =Y (Rz,xY,Z;) = (Rz,v X, Z;) = Rie(Y, X).
j=1 j=1

Definizione 6.1.7: Sia M una varietd Riemanniana con tensore di curvatura R. La curvatura di Ricci del
vettore X € T,M ¢ la forma quadratica associata al tensore di Ricci: Ric(X) = Ric(X, X). L’operatore
di Ricci ¢ 1'unico operatore lineare simmetrico R € 731(M) tale che Ric(X,Y) = (R(X),Y). La curvatura
scalare S € C*°(M) ¢ la traccia dell’operatore di Ricci.
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Se {Z1,...,Zy,} & di nuovo una base ortonormale di T, M otteniamo

n

RiC(X):Z<RZjXXaZj>:ZQ(Zj7X)7 R(X):ZRXZija

j=1 j=1
e quindi
S(p) =D (R(Z)):Z;) = > _Ric(Z;,2;) = Y (Rz.2,25, %) = Y QZi, Z;)
j=1 =1 ij=1 ij=1

In coordinate locali, se poniamo Ric(9;,0;) = R;; e R(0;) = Rﬁ 0, troviamo
Ri; = Rllzij’ R{ = gthih = gthllziha S = Rﬁ = gihRih = githlzih'

Per completezza, concludiamo questo paragrafo richiamando una definizione che si trova spesso in let-
teratura.

Definizione 6.1.8: Una metrica Riemanniana g su una varietd M ¢ detta di Einstein se esiste A € C*°(M)
tale che Ric = Ag.

Se (M, g) ¢ di Einstein, allora 'operatore di Ricci & Aid; calcolando la traccia troviamo A = %S , dove
n & la dimensione di M. Quindi g & di Einstein se e solo se

1
Ric = — Sg.
n

Osservazione 6.1.4. In realta, usando la seconda identita di Bianchi si puo dimostrare che la curvatura
scalare di una varieta di Einstein di dimensione n > 3 & costante, per cui Ric risulta essere un multiplo
costante della metrica.

Osservazione 6.1.5. Molto di quanto fatto in questo paragrafo si puo ripetere per varieta fornite di
un tensore simmetrico non degenere g € 7,)(M), per le quali, come gia notato nell’Osservazione 4.4.1, la
connessione di Levi-Civita ¢ definita. L’unica differenza ¢ che in questo caso si definisce la curvatura scalare
come la traccia (nel senso della Definizione 4.4.4) del tensore di Ricci, senza passare attraverso ’operatore
di Ricci (dove con “base ortonormale” di T,M s’intende una base {Z1,...,Z,} tale che g(Z;,Z;) = 0 se
1#7,e9(Zi,Z;) =+l peri=1,...,n). In particolare, una metrica di Einstein in questo senso piu generale
soddisfa ’equazione Ric = t%@ Sg.

Concludiamo il paragrafo con alcune definizioni e alcuni esercizi.

FEsercizio 6.1.5. Se (M, g) & una varietd Riemanniana e k > 0, & evidente che anche (M, kg) & una varieta
Riemanniana. Trova che relazione esiste fra la connessione di Levi-Civita e il tensore di curvatura di (M, g)
e i corrispondenti oggetti per (M, kg).

Definizione 6.1.9: Siano (Mj,g1) e (Ms, g2) due varietd Riemanniane. La metrica prodotto sul prodotto
cartesiano M7 X Ms ¢ la metrica Riemanniana definita da

<(Ula U2)7 (wla w2)>(p1,p2) = <v17 w1>p1 + <U27 w2>p2
per ogni (p1,p2) € My x My e ogni (v1,v2), (w1, w2) € T(p, p,) (M1 x Ma) =T, My & T}, M>.
Esercizio 6.1.6. Trova come si esprimono la connessione di Levi-Civita e il tensore di curvatura della metrica

prodotto in funzione delle connessioni di Levi-Civita e dei tensori di curvatura dei due fattori.

Definizione 6.1.10: Una sottovarieta N C M di una varieta Riemanniana & totalmente geodetica se per
ogni p € N ev € T,N la geodetica di M uscente da p in direzione v ¢ completamente contenuta in V.
Diremo invece che N & piatta se il tensore di curvatura in N della metrica indotta & identicamente nullo.

Esercizio 6.1.7. Sia S? C R? la sfera unitaria con la metrica indotta dalla metrica euclidea di R?, e sia
M = 52 x S? considerata con la metrica prodotto.

(i) Dimostra che la curvatura sezionale di M & non-negativa.
(i) Trova una sottovarieta N di M totalmente geodetica, piatta e diffeomorfa a un 2-toro T2 = St x S*.
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Esercizio 6.1.8. Sia M una sottovarieta di una varieta Riemanniana M , considerata con la metrica indotta.
In questo esercizio indicheremo con la tilde tutti gli oggetti (connessione di Levi-Civita V, curvatura R,
eccetera) relativi a M, e senza tilde i corrispondenti oggetti relativi a M. Indicheremo poi con T: TM — TM
e con L:TM — (TM)™* le proiezioni ortogonali. Infine, N'(M) sara lo spazio delle sezioni di TM|; ovunque
ortogonali a T'M. In altre parole, una sezione N: M — T'M |y appartiene a N'(M) se e solo se N (p) € (T, M)+
per ogni p € M.

(i) Dimostra che Papplicazione II: N (M) x T (M) x T (M) — C* (M), detta seconda forma fondamentale

di M in M, data da
II(N,X,Y) = (VxN,Y)

¢ C°(M)-trilineare, ed & inoltre simmetrica negli ultimi due argomenti.
(i) Sia S: T (M) x T(M) — N(M) Poperatore di forma definito da

S(X,Y)=—- L (VxY)

perogni X,Y € 7(M). Dimostra che (S(X,Y),N) = II(N,X,Y) perogni N e N(M)e X,Y € T(M).
(iii) Dimostra I’equazione di Gauss

<RXYZa W> = <RXY27 W> + <S<Y7 Z)>S(X’ W)> - <S(X’ Z),S(Y, W)>

perogni X, Y, Z, W € T(M).
(iv) Dimostra ’equazione di Codazzi-Mainardi

L RxyZ=5(Y,5(X,2)) +S(VyX,Z) + S(X,VyZ) — S(X,S(Y,Z2)) = S(VxY,Z) — S(Y,Vx Z)

perogni X, Y, Z € T(M).

(v) Trova che relazione c’¢ fra la seconda forma fondamentale, le equazioni di Gauss e le equazioni di
Codazzi-Mainardi viste per le superfici in R? e quelle definite qui.

(vi) Dimostra il lemma di Synge: sia o:(—e,e) — M una geodetica per M il cui sostegno sia contenuto
in M, e m C Ty0yM un 2-piano contenente ¢(0). Allora K () < K(m).

6.2 Campi di Jacobi

Vogliamo ora introdurre quello che risultera essere lo strumento essenziale per collegare il comportamento
delle geodetiche con la curvatura.
Per cominciare ci servono una definizione, un esempio e un lemma.

Definizione 6.2.1: Sia X:(—¢,¢) X [a,b] — M una variazione di una curva regolare a tratti o:[a,b] — M.
Un campo vettoriale X lungo ¥ & dato da una suddivisione a = ¢y < t; < .-+ < tx = b di [a, b] associata
a ¥ e da applicazioni X:(—¢,¢) x [tj_1,t;] — TM di classe C* tali che X(s,t) € Tx+M per ogni
(s,t) € (—e,e) x [tj_1,t;] e 5 =1,...,k. Se i vari campi vettoriali si raccordano con continuita nei punti
interni tq,...,t;_1 della suddivisione, diremo che X ¢ un campo continuo.

ESEMPIO 6.2.1. Sia X:(—¢,¢) x [a,b] — M una variazione di una curva regolare a tratti o:[a,b] — M.
Allora i campi S e T introdotti nella Definizione 5.2.7 sono esempi di campi vettoriali lungo 3. Inoltre, S &
un campo continuo, mentre 7' potrebbe non esserlo.

Il prossimo risultato ¢ analogo al Lemma 5.2.4.

Lemma 6.2.1: Sia ¥: (—¢,¢) X [a,b] — M una variazione di una curva o: [a,b] — M regolare a tratti in una
varieta Riemanniana M. Allora per ogni campo vettoriale V' lungo ¥ e su ogni rettangolo (—¢,e) X [t;_1,t;]
su cui ¥ e V sono di classe C* abbiamo

DsDtV - DtDSV - RST‘/,
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dove D, é la derivata covariante lungo le curve principali, e Ds quella lungo le curve trasverse.

Dimostrazione: Calcoliamo in coordinate locali. Posto V = V!9, abbiamo

oV’ .
DtV = Wal + 14 Dtaz
° o*Vi ov? oV’
Vi Ve Ve .
DDV =——0;,+ —Ds0;, + — D0, 'D¢D;0;.
s tV asataz"‘ 6t aaz+ 88 taz+v s taz
Analogamente,
o2V ov? ov? .
D Ds = 4,4 Yi —D () _Ds () 'D Ds iy
DV atasa+ EP +0i + BT 0; +V'D.D;0
per cui

D,D;V — D;D,V = VY (D,D;0; — D;D;0;).

Ora, se indichiamo con %" le coordinate di ¥ abbiamo

oxh oxh
T = —8t ah € S == —85 ah.
Quindi
oxh
D:0; = T T o, Vi
+0; = V10, 5 Vo, 0
e
oxh o?xh oxh o?xh oxh oxk
D,Di0; = D, | —— i | = =7 i + —— i = S i + i
0 ( ot vaha> gsar ¥ 0t T VsVan0i = 55NV an 0t S5 Vo Va0
In maniera analoga si calcola D;D,0;. Ricordando che [0, dx] = O otteniamo infine
oxh o3k
D,D0; — D:D,0; = WER‘?’“B’”‘& = Rs70;
e ci siamo. O

Usando questo lemma possiamo caratterizzare i campi variazione di variazioni in cui tutte le curve
principali sono geodetiche.

Definizione 6.2.2: Una variazione geodetica di una geodetica o:[a,b] — M in una varietd Riemanniana M &
una variazione liscia 3: (—¢,¢) X [a,b] — M tale che ogni curva principale o, = (s, -) sia una geodetica.
L’esempio principale di variazione geodetica ¢ descritto nel prossimo
Lemma 6.2.2: Sia 0:[a,b] — M una geodetica, e v, w € Tyq)M. Allora esiste una variazione geodetica
Y (—¢,e) x [a,b] = M di o il cui campo variazione V soddista V(a) =v e D,V = w. La variazione % & data
da
2(57 t) = eXpT(S) ((t - CL)(U(S) + S’LU(S))),

dove 7:(—¢,e) — M & una curva uscente da o(a) tangente a v, mentre u, w € T (1) sono le estensioni
parallele lungo 7 di 6(a) e w rispettivamente.

Dimostrazione: Se 7:(—e,e) — M & una curva e ¢ € 7 (1), allora la ¥: (—¢,¢) x [a,b] — M data da
S(s,t) = eXPr(s) ((t — a)w(s))
¢ sempre una variazione geodetica della geodetica oo (t) = exp, (g ((t—a)(0)), non appena (b—a)y(0) € &, (o)

ed € & abbastanza piccolo. Quindi vogliamo trovare 7 e ¥ in modo che oy = ¢ e il campo variazione V di %
soddisfi V(a) =v e D,V = w.
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Ora, o(t) = exp, ((t — a)5(a)); quindi per avere og = o basta scegliere 7 e ¢ in modo che 7(0) = o(a)
e ¥(0) = d(a). Poi X(s,a) = 7(s), per cui V(a) = S(0,a) = 7(a) e quindi V(a) = v non appena 7 & scelta
in modo che 7(a) = v.

Infine, T'(s,t) = d(exp,(s))(t—a)y(s) (¢(3)), per cui il Lemma 5.2.4 da

DtS|t:a = DST(87 a) = Dsl/%

per cui D,V = DyS|i=q,s=0 = Do¥, e quindi D,V = w non appena ¢ & scelto in modo che Do) = w.
Ma il modo pitu semplice per scegliere un campo lungo 7 fissando il suo valore iniziale e il valore iniziale
della sua derivata covariante lungo 7 € prendendolo lineare rispetto alla derivata covariante, cioe della
forma 9(s) = u(s) + sw(s), con u e w paralleli lungo 7 e con u(0) = d(a) e w(0) = w. In questo modo si
ha ¥(0) = 6(a) e Ds1p = w(s), come voluto, e ci siamo. O

Siamo allora in grado di caratterizzare completamente i campi variazione di variazioni geodetiche:

Proposizione 6.2.3: Sia o:[a,b] — M una geodetica. Allora un campo J € T (o) é il campo variazione di
una variazione geodetica di o se e solo se

D?J + Rjs6 = O. (6.2.1)

Inoltre, dati v, w € T,q)M esiste un unico campo J € 7 (o) soddisfacente (6.2.1) e tale che J(a) = v
e D,J =w.

Dimostrazione: Sia ¥ una variazione geodetica di o, di campo variazione J, e indichiamo come al solito
con D, la derivata covariante lungo le curve principali di 3, e con D, quella lungo le curve trasverse. Per
ipotesi abbiamo D;T = O; quindi

O=D;D,T =D/D,T+ RerT = D:DyS + RsrT,

dove abbiamo usato i Lemmi 6.2.1 e 5.2.4. Siccome per s = 0 si ha S = J e T' = ¢, abbiamo ricavato (6.2.1).

Ora, sia {E1,...,E,} una base ortonormale di T, M, con E1 = d(a)/||6(a)|s@), e indichiamo
con Ej(t) l'estensione parallela di E; lungo o, in modo che {E;(t),..., E,(t)} sia una base ortonormale
di T,y M per ogni t € [a,b]. Definiamo inoltre funzioni f%; nk' 1@, b] — R ponendo

RE; (B, 1) Er(t) = -é;hk(t)El(t)

Ogni J € T(0) si pud scrivere come J(t) = J'(t)E;(t) per opportune funzioni J*',...,J": [a,b] — R;
in particolare, J(a) = J¥(a)E;. Inoltre, essendo gli E;(t) paralleli otteniamo D;J = J'(t)E;(t), per
cui D,J = J%(a)E;. Quindi J soddisfa (6.2.1) se e solo se si ha

Ji+ ||0'.(G')H(27(a)é§11‘]j =0

per ¢ =1,...,n. Dunque (6.2.1) & un sistema lineare di equazioni differenziali ordinarie del secondo ordine,
per cui (Teorema 4.3.4, adattato al caso dei sistemi del second’ordine come nella dimostrazione della Pro-
posizione 5.1.2) per ogni v, w € T4 M esiste un’unica soluzione J € 7 (o) di (6.2.1) tale che J(a) = v
e D,J =w.

Infine, supponiamo che J soddisfi (6.2.1), e sia X: (—¢,¢) X [a,b] — M una variazione geodetica di o il
cui campo variazione V soddisfi V(a) = J(a) e D,V = D,J, costruita per esempio come nel Lemma 6.2.2.
Allora anche V soddisfa (6.2.1), con le stesse condizioni iniziali di J; quindi V' = J, e ci siamo. O

Definizione 6.2.3: Sia o:[a,b] — M una geodetica. Un campo di Jacobi lungo o & una soluzione J € T (o)
di (6.2.1), che & detta equazione di Jacobi. Lo spazio vettoriale dei campi di Jacobi lungo o verra indicato
con J (o). Un campo di Jacobi J € J (o) sara detto proprio se J(t) L &(t) per ogni t € [a, b]. 1l sottospazio
dei campi di Jacobi propri sara indicato con Jy(o).

Alcune proprieta elementari dei campi di Jacobi sono contenute nella seguente
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Proposizione 6.2.4: Sia o:[a,b] — M una geodetica. Allora:

(i) gli zeri di un campo di Jacobi J € J (o) non identicamente nullo sono isolati;
(ii) per ogni J € J (o) abbiamo

<J(t)7 d(t»d(t) = <J(a)7 d(a»a(a) + <Da<]v d<a’)>a(a) (t - a); (622)

(iii) un campo di Jacobi J € J (o) é proprio se e solo se J(a) L 6(a) e Do J L d(a) se e solo se é ortogonale
a ¢ in due punti;

(iv) ogni campo di Jacobi J lungo o si pud scrivere in modo unico nella forma J = Jy + [co + c1(t — a)]d,
dove Jy € Jo(o) e cg, c1 € R;

(v) dimJ(c) =2dim M e dim Jp(o) = 2dim M — 2.

Dimostrazione: (i) Se tg € [a,b] ¢ uno zero non isolato di J, possiamo trovare una successione {t,} C [a, b]
convergente a ty di zeri di J. Ma allora

D7 — g T (J(t)) = (ko)
fo v—+00 t, —to

:O7

grazie alla Proposizione 4.3.6, dove G, 4,: T5(10)M — T4, )M ¢ il trasporto parallelo lungo 0. Ma allora
J = O per la Proposizione 6.2.3, in quanto J ha derivata covariante nulla in un punto in cui si annulla.
(i) Siccome D = O abbiamo 4(J &), = (D.J,&), e

d? . ) ..
@<Jao—>a = <D2Ja0—>a = _<RJ('7'O—70->0' =0,

dove T'ultima eguaglianza segue dalle simmetrie del tensore di curvatura. In particolare, (J, &), dev’essere
lineare affine in ¢, e otteniamo (6.2.2).

(iii) Segue subito da (ii).

(iv) Prima di tutto, si verifica subito che [co 4+ ¢1(t — a)]d & un campo di Jacobi lungo o quali
che sianno ¢y, ¢; € R. Ora, dato J € J(o), vogliamo diomostrare che esistono unici ¢y, ¢; € R tali
che Jy = J — [co + ¢1(t — a)]é sia un campo di Jacobi proprio lungo o. Per il punto (iii), Jy € proprio se e
solo se Jy(a) e D,Jg sono ortogonali a d(a). Ma

<J0(a)7(}(a)>a(a) = <J(a)’d(a)>a(a) - COHd(a)”i(a) € <D(l‘]07é'(a)>o(a) = <DaJad(a)>U(a) - 01”('7(&)”5(&);

quindi Jy € proprio se e solo se

_ <J(a)vd(a)>o'(a) - <Da‘]’d(a)>0(a)
CO= """z Cl =~V
@2 @2,
e ci siamo.
(v) Che la dimensione di J (o) sia uguale a 2dim M segue dall’esistenza e unicita della soluzione dell’e-
quazione di Jacobi date le condizioni iniziali. Infine, (iv) implica che dim Jy(o) = 2dim M — 2. O

Uno dei motivi per cui i campi di Jacobi sono importanti & che ci permettono di stabilire quando exp,
smette di essere un diffeomorfismo locale.

Definizione 6.2.4: Sia o:[a,b] — M una geodetica con o(a) = p e o(b) = ¢q. Diremo che ¢q & coniugato a p
lungo o se esiste un campo di Jacobi J € J (o) non identicamente nullo tale che J(a) = J(b) = O. L’ordine
di ¢ come punto coniugato di p ¢ la dimensione del sottospazio dei campi di Jacobi lungo o (necessariamente
propri) che si annullano in a e b. Chiaramente, I'ordine ¢ al massimo n — 1 = dim{J € Jy(o) | J(a) = O}.

Allora abbiamo la
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Proposizione 6.2.5: Data una varieta Riemanniana M, scegliamo p € M, un vettore v € £, C T,M, e
poniamo q = exp,,(v). Allora exp, ¢ un diffeomorfismo locale nell’intorno di v se e solo se ¢ non & coniugato
a p lungo la geodetica 0:[0,1] — M data da o(t) = exp,(tv). Inoltre, I'ordine di ¢ come punto coniugato
di p lungo o ¢ esattamente la dimensione del nucleo di d(exp,,),.

Dimostrazione: Grazie al teorema della funzione inversa (Corollario 2.4.5), exp,, ¢ un diffeomorfismo locale
nellintorno di v se e solo se v non & un punto critico di exp,, cioe se e solo se d(exp,), ¢ iniettivo; quindi
per avere la tesi ci basta costruire un isomorfismo x fra il nucleo di d(exp,), e il sottospazio dei campi di
Jacobi lungo o che si annullano in 0 e 1.

In realta, faremo di pit: costruiremo un isomorfismo x fra T,M e {J € J (o) | J(0) = O} che man-
dera Kerd(exp,), esattamente in {J € J(o) | J(0) = J(1) = O} € Jy(0). Dato w € T,(T,M) = T, M,
definiamo una variazione geodetica ¥,,: (—¢,¢) x [0,1] = M di o ponendo

Sw(s,t) = exp, (t(v + sw)).
Il campo variazione J,, di questa variazione geodetica ¢ dato da
Juw(t) = td(exp, ) (w);

in particolare, J,(0) = O e DyJ, = w. Dunque lapplicazione x:T,M — J(o) data da x(w) = J, &
lineare e iniettiva; siccome dimT,M = n = dim{J € J(o) | J(0) = O}, 'immagine di x ¢ esattamente il
sottospazio di tutti i campi di Jacobi che si annullano in 0. Ma J,,(1) = d(exp,),(w); quindi x manda il
nucleo di d(expp)v sul sottospazio dei campi di Jacobi lungo o che si annullano in 0 e 1, e ci siamo. Il

6.3 Il Teorema di Cartan-Hadamard

In questo paragrafo dimostreremo il primo risultato fondamentale sulle relazioni fra la curvatura e la topologia
di una varieta Riemanniana: il Teorema di Cartan-Hadamard sulle varieta con curvatura sezionale non
positiva. Ci servira il

Lemma 6.3.1: Sia H: M — N un’isometria locale fra varieta Riemanniane connesse, e supponiamo che M
sia completa. Allora anche N é completa, e H é un rivestimento.

Dimostrazione: Cominciamo col dimostrare un fatto prelimare. Sia ¢ € H(M), e p € H'(q). Allora per
ogni geodetica o uscente da ¢ esiste un’unica geodetica & uscente da p tale che 0 = H o . Infatti, prima
di tutto ricordiamo che (Esercizio 5.1.2) & & una geodetica in M se e solo se o & una geodetica in N. Poi,
se vale 0 = H o ¢ si deve avere 6(0) = dH, (5(0)), per cui & & 'unica geodetica di M uscente da p e tale
che 5(0) = (dH,)~*(5(0)). Viceversa, data ¢ indichiamo con & I'unica geodetica di M uscente da p e tale
che 5(0) = (dH,)™* (6(0)); allora H oG dev’essere una geodetica di N uscente da ¢ tangente a 6(0), per cui
H o6 = o, come voluto.

Dimostriamo che N & completa. Dato ¢ € H(M), sia o una geodetica radiale uscente da ¢, e prendiamo
p € H™1(q). Essendo M completa, la geodetica & uscente da p tale che 0 = H o & & definita su tutto R. Ma
allora anche o lo ¢, e, per il Teorema di Hopf-Rinow, N & completa.

Ora dimostriamo che H ¢ surgettiva. Siano qo = H(p) € p(M) e ¢ € N qualsiasi. Essendo N completa,
esiste una geodetica minimizzante o da ¢g a ¢; poniamo w = ¢(0). Ma allora ¢ = H o & per un’opportuna
geodetica ¢ in M uscente da p, per cui ¢ risulta essere nell'immagine di H.

Rimane da far vedere che H ¢ un rivestimento. Prendiamo gg € N, e sia U = B.(qo) una palla geodetica
di centro go; vogliamo dimostrare che U & un intorno ben rivestito di go. Scriviamo H~!(qo) = {pa}, €
indichiamo con U, la palla di centro p, e raggio € per la distanza Riemanniana d* di M. Cominciamo
a far vedere che Uy NUg = @ se a # [B. Infatti, essendo M completa possiamo trovare una geodetica
minimizzante 6 da p, a ps. La sua proiezione 0 = H o & e una geodetica in N da gy a go. Siccome le
geodetiche che partono da gy in B:(go) sono solo quelle radiali, o deve uscire da U e rientrarvi; quindi ha
lunghezza maggiore di 2¢. Dunque d (p,,ps) = L(5) = L(o) > 2¢ (dove abbiamo usato 1'Esercizio 5.2.2),
e per la disuguaglianza triangolare U, N Ug = @.
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Adesso mostriamo che H=1(U) = |JU,. Siccome H & un’isometria locale, sempre 1'Esercizio 5.2.2

implica che
dN (H(p1), H(ps)) < d™(p1,p2)

per ogni p1, po € M, dove dV ¢ la distanza Riemanniana di N. In particolare, essendo U la palla per dV di
centro g e raggio ¢ (Teorema 5.2.10), otteniamo H (U, ) C U per ogni a. Viceversa, sia p € H~1(U). Questo
significa che ¢ = H(p) € U, per cui esiste una geodetica minimizzante o da q a qo, e 7 = d™¥ (qo,q) < . Sia &
la geodetica uscente da p tale che o = H o &; allora H (6(r)) = o(r) = qo, per cui 6(r) = p, per qualche a,
e p € U, come voluto.

Infine, dobbiamo dimostrare che H|y,_: U, — U ¢ un diffeomorfismo per ogni . Sappiamo che H manda
la geodetica radiale in U, uscente da p, tangente a w € T, M nella geodetica radiale in U uscente da qqo
tangente a dH), (w) € Ty, N. Ma questo vuol dire esattamente che

B. (Opa ) ) ! ?
e quindi ¢ un diffeomorfismo. Il

Hl|y, = exp,, odH,,, o (exppa

Esercizio 6.3.1. Sia H: M — N un’isometria locale fra varieta Riemanniane connesse, e supponiamo che N
sia completa. Dimostra che se H € un rivestimento allora anche M & completa, e trova un esempio di
un’isometria locale fra una varietd M non completa e una varieta N completa.

E allora abbiamo il

Teorema 6.3.2: (Cartan-Hadamard) Sia (M, g) una varieta Riemanniana completa. Allora:
(i) se M ha curvatura sezionale K < 0 allora ogni p € M non ha punti coniugati;
(ii) se esiste p € M senza punti coniugati allora exp,: T, M — M é un rivestimento.
In particolare, ogni varieta Riemanniana completa semplicemente connessa di dimensione n con curvatura
sezionale non positiva & diffeomorfa a R".

Dimostrazione: (i) Dato p € M, sia ¢ una geodetica uscente da p. Dobbiamo dimostrare che se J € J (o)
& un campo di Jacobi lungo o non identicamente nullo che si annulla in 0 allora J(t) # O per ogni t # 0.
Sia f:R — R data da f(t) = ||J(t)||(2f(t). Allora " = 2(DJ, J),, per cui f(0) = f'(0) =0, e
d*f . .
iz = 2IDJNG + (D>, J)e| = 2[IDII5 = (Rusb, J)o] = 2[IDT]5 = Qo (1 6)] 20,
grazie all’ipotesi sul segno della curvatura sezionale. Quindi f € una funzione convessa non negativa con zeri
isolati che si annulla in 0, per cui puo annullarsi in un altro punto soltanto se e identicamente nulla, e ci
siamo.

(ii) Poniamo su T, M la metrica Riemanniana gy = (expp)*g; siccome p € privo di punti coniugati,
exp,, ¢ un diffeomorfismo locale grazie alla Proposizione 6.2.5, e quindi go ¢ ben definita. Per costruzione,
exp,,: (T, M, go) — (M, g) & un’isometria locale; quindi le rette uscenti dall’origine sono geodetiche (in quanto
le loro immagini sono geodetiche in M). Per il Teorema di Hopf-Rinow, (T,,M, go) € completa, e la tesi segue
allora dal Lemma 6.3.1. ]

Concludiamo questa sezione con alcune definizioni ed esercizi.

N

Definizione 6.3.1: Sia M una varieta Riemanniana. Diremo che una funzione f: M — R di classe C*° ¢ stret-
tamente convessa se 'Hessiano V2 f & definito positivo in ogni punto di M (e scriveremo V2f > 0). Diremo
invece che un sottoinsieme S C M & strettamente convesso se il supporto di ogni geodetica minimizzante
collegante due punti di S & contenuto nell'interno di S (con la possibile eccezione dei punti estremi).

Esercizio 6.3.2. Sia M una varietd Riemanniana.

(i) Dimostra che una funzione f: M — R & strettamente convessa se e solo se per ogni geodetica o di M la
funzione f o o & strettamente convessa nel senso usuale.

(ii) Dato pg € M definiamo r: M — R ponendo r(p) = d(p,po). Dimostra che r? ¢ di classe C*° in un
intorno di po, e che V2r2(pg) > 0.

(iii) Dimostra che per ogni py € M esiste § > 0 tale che se 0 < € < § la palla geodetica B.(pg) di centro pg
e raggio € ¢ strettamente convessa.

(iv) Dimostra che se M & completa, semplicemente connessa, e con curvatura sezionale K < 0, allora per
ogni pg € M la funzione r? definita in (ii) ¢ strettamente convessa su tutta M.
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Definizione 6.3.2: Sia M una varieta Riemanniana completa. Una funzione f: M — R & detta esaustione se
I'insieme {p € M | f(p) < ¢} & compatto per ogni ¢ € R.

Esercizio 6.3.3. Sia M una varieta Riemanniana completa.

(i) Dimostra che un’esaustione strettamente convessa ha un unico punto di minimo e nessun altro punto
critico.

(ii) Sia G un gruppo di Lie compatto di isometrie di M, g una misura di Borel su G, e f: M — R di

classe C'*°. Dimostra che la funzione f :M — R data da

f(p) = /G £(o(p)) dn(g)

e strettamente convessa.
(iii) La misura di Haar di un gruppo topologico compatto G & I'unica misura di Borel p su G tale che u(G) =1
e

/ £(gh) dys(g) = / £(9) duo)
G G

per ogni f € C%@G) e h € G. Usando l'esistenza della misura di Haar su qualsiasi gruppo topologico
compatto, dimostra che se M & semplicemente connessa con curvatura sezionale K < 0, allora ogni
gruppo di Lie compatto di isometrie di M ammette un punto fisso, cioe un punto py € M tale

che g(po) = po per ogni g € G.

6.4 Spazi di curvatura costante

Vogliamo ora trovare tutte le varieta semplicemente connesse a curvatura sezionale costante. Per arrivarci
ci serviranno due interessanti risultati dovuti a E. Cartan.

Il primo dice che localmente il tensore di curvatura determina la metrica, una specie di viceversa locale
dell’Esercizio 6.1.1.

Definizione 6.4.1: Siano M e M due varietd Riemanniane di uguale dimensione, p € M, p € M. Un’isometria
lineare I: T,M — TI;J\NJ determina una corrispondenza biunivoca fra le geodetiche uscenti da p e quelle
uscenti da p: alla geodetica o, si associa la geodetica oy(,). Diremo che I preserva il trasporto parallelo della
curvatura sezionale se Ky (6,(m)) = K 7(51) (I(7))) per ogni 2-piano © C T,M e ogni v € T, M, dove &,
(rispettivamente, 77(,)) indica il trasporto parallelo lungo o, (rispettivamente, lungo oy,)).

Proposizione 6.4.1: (E Cartan) Siano M e M due varieta Riemanniane, p € M, p € M e I: oM — Tf,M
un’isometria lineare che preserva il trasporto parallelo della curvatura sezionale. Scegliamo un numero
0 < 6 < injrad(p) tale che Bs(Op) sia contenuto nel dominio & dell’esponenziale di M. Allora

F =expzolo eXp;1: Bs(p) — Bs(p)

& un’isometria locale. In particolare, se si ha anche 6 < injrad(p) allora F' é un’isometria.

Dimostrazione: Preso v € T,M, poniamo v = I(v) € TZ;M ; allora ci basta dimostrare che per ogni
w e T,(T,M) = T,M si ha

[[d(expy)s (I(w)) || = lld(exp, )o (w)]l (6.4.1)
Siccome I & un’isometria, il Lemma 5.2.8 ci dice che basta dimostrare (6.4.1) per w versore ortogonale a v (e in
tal caso I(w) & un versore ortogonale a v). Sia {E1,..., E,} una base ortonormale di T, M con Ey = v/|jv]|,
e F, = w, e poniamo Ej = I(E;). Sia o la geodetica uscente da p tangente a v, e & la geodetica uscente da p
tangente a ¥; indicheremo con Fj(t) e E;(t) I'estensione parallela di E; ed E; lungo o e & rispettivamente.
Definiamo ora le variazioni ¥ e ¥ di o e &:

3(s,t) = exp, (t(v + sw)), (s, t) = exp; (t(o+ sI(w))),
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e siano J e J i corrispondenti campi di Jacobi. Allora J(0) = O = J(0), DoJ = w e poj = I(w). Inoltre
J(1) = d(exp,)y(w) e J(1) = d(exp;)s (I(w)); quindi basta dimostrare che [|J(1)|| = [|J(1)||. Ora, scriviamo

J(t) = JU(t)Ei(t) e Rg,t)g;t) Ex(t) = R (1) Ex(t), e analogamente per J e R; quindi le funzioni J' e J°

ijk
soddisfano le ! )
d?J P d2J A
—z IR =0, o + )RR T =0,
' P dJi i
JH(0) =0, —-(0) =4, JH(0) =0, —-(0) =4,

Ma
Rj‘n(t) = <REj (t)El(t)El (t)in(t»U(t) = <REj(t)E1(t)E1 (t)a Ei(t»&(t) = R§'11(t)a
in quanto la curvatura sezionale determina il tensore di curvatura, e la curvatura sezionale ¢ preservata per

trasporto parallelo. Siccome |[v]|, = [|[I(v)||5, ne segue che (J,...,J") e (J',...,J") soddisfano lo stesso
sistema lineare di equazioni differenziali ordinarie con le stesse condizioni iniziali; quindi coincidono, e

I = | Do 1OR = | D ITOR = 1T,
i=1 =1

come volevasi dimostrare. O
Ci servira anche un altro risultato di E. Cartan:

Teorema 6.4.2: (E Cartan) Siano ¢, ¥: M — M due isometrie locali fra due varieti Riemanniane
connesse. Supponiamo che esista pg € M tale che ¢(po) = ¥(po) € dpp, = dipp,. Allora v = ).

Dimostrazione: L'insieme C = {p € M | ¢(p) = ¥ (p),dp, = dip,} & un chiuso non vuoto di M; ci bastera
dimostrare che ¢ aperto. Prendiamo p € C, e sia 0 < ¢ < min{injrad(p),injrad ¢(p)}, per cui B,(6) C M e
By (0) C M sono palle geodetiche. Siccome ¢ e 1) sono isometrie locali, mandano geodetiche uscenti da p
in geodetiche uscenti da ¢(p) = ¥(p). Ma allora

€XPy,(p) odpy = ¢ o exp, e €XPy(p) odipy = 1P oexp,

su Bo, (4), per cui

0l B, (5) = €XPy(p) odipp © (exp,) |5, (5) = €XPy(py dibp © (exp,) 5, 5) = Y|B, (5),

per cui B,(d) C C, ed ¢ fatta. O

Corollario 6.4.3: Sia F: M — M un’isometria di una varieta Riemanniana in sé. Supponiamo che esi-
stap € M tale che F(p) =p e dF, =id. Allora F =idy,.

Dimostrazione: Basta applicare il Teorema precedente con M = M, ¢ = F e ¢ = idyy. Il
Possiamo ora dimostrare un’affermazione fatta nell’Esempio 4.2.4:
Corollario 6.4.4: Iso(S}) =O(n+1).

Dimostrazione: Sia F € Iso(S}%) un’isometria qualunque di S%, N € S% il polo nord, p = F(N) e poniamo
E; = dFn(e;) per j =1,...,n, dove {e1,...,ent1} € la base canonica di R""!. Essendo F un’isometria,
{E1,...,E,} & una base ortonormale di T,,S%; scegliamo A € O(n + 1) tale che A(N) =p e A(e;) = E; per
j=1,...,n. Allora G = A~! o F & un’isometria di S% tale che G(N) = N e dGn(e;) =e; per j =1,...,n;
quindi dGy = id, e il Corollario 6.4.3 implica G =id, cioe F = A € O(n + 1). O]

FEsercizio 6.4.1. Dimostra che il gruppo delle isometrie dello spazio iperbolico U} ¢ il gruppo O4(1,n)
introdotto nell’Esercizio 4.2.1.
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Come gia detto, il nostro obiettivo e classificare le varieta Riemanniane semplicemente connesse a
curvatura sezionale costante. Vediamo quali esempi conosciamo gia.

EsEmPIO 6.4.1. Lo spazio euclideo R™ con la metrica euclidea ha chiaramente curvatura sezionale costante
nulla.

EsEMPIO 6.4.2. La sfera S3 C R™! ha curvatura sezionale costante. Infatti, abbiamo visto nell’Esem-
pio 4.2.4 che il gruppo O(n + 1) agisce isometricamente su S%, e transitivamente sulle basi ortonormali
in T'S%. Quindi se p, p € S} sono due punti qualsiasi, e 7 C T,S% e @ C T3SE sono due 2-piani qualsiasi,
esiste (perché?) un’isometria A € O(n + 1) tale che A(p) = p e dA,(w) = A(w) = 7; essendo la curvatura
sezionale invariante per isometrie, ne deduciamo che K(7w) = K(7). Per conoscere la curvatura sezionale
di S% ci basta allora calcolarla su un 2-piano qualsiasi. Indichiamo con ¢ = 9 1= (6%, ...,0m™) le coordinate
sferiche introdotte nell’Esempio 2.1.11, e con cui abbiamo lavorato negli Esempi 4.2.1 e 4.4.3. Prendiamo
p=(1,0,...,0) = @(n/2,...,m/2), per cui /90|, = —RI/dz’! per j = 1,...,n. Indichiamo con = il
piano generato da 9/96'|, e 9/96?|,. Allora
2
H% A % ) =R € Q@p < 09 ) =R, (i o9 i) = Ri221(p) = gr1 Ri25(p)-

901" 992 90 962’ 992" 9O

L’Esempio 4.2.1 ci dice che g11(p) = R? e g,1(p) = 0 se r # 1. Quindi usando i valori dei simboli di Christoffel
calcolati nell’Esempio 4.4.3 e la formula (6.1.2) troviamo

ori, ori,
001 062

gr1 Rl = R? [ + gy + T3, — DT, — F%2F%2] (p) = R?,

e quindi la sfera S% ha curvatura sezionale costante 1/R?.

EseEMPIO 6.4.3. Anche sullo spazio iperbolico esiste un gruppo di isometrie che agisce transitivamente sui
2-piani (Esercizio 4.2.1), per cui & a curvatura sezionale costante. Per calcolare il valore della curvatura
sezionale possiamo usare come modello B%, prendere come punto p I'origine, e come piano quello generato
da 8/0zt e 9/0x2, per cui di nuovo dobbiamo calcolare Ry291(p). Usando i simboli di Christoffel determinati
nell’Esempio 4.4.4 otteniamo Rig1(p) = —16/R? e [|0/0x" A 8/822||2 = 16, per cui lo spazio iperbolico ha
curvatura sezionale costante —1/R2.

Dunque per ogni k € R e n > 2 abbiamo trovato una varieta Riemanniana semplicemente connessa di
dimensione n con curvatura sezionale costante uguale a k. Il fatto interessante & che non ce ne sono altre:

Teorema 6.4.5: Due varieta Riemanniane M e M semplicemente connesse complete della stessa dimensione
e con uguale curvatura sezionale costante k € R sono necessariamente isometriche.

Dimostrazione: Consideriamo prima il caso k < 0. Scegliamo p € M e p € M, e sia I: T,;M — T, M un’iso-
metria qualsiasi. Per il Teorema di Cartan-Hadamard la ¢ = exp,, oI o exp; L. M — M @& un diffeomorfismo.
Inoltre, siccome la curvatura sezionale ¢ costante ed € uguale per entrambe le varieta, I preserva banalmente
il trasporto parallelo della curvatura sezionale. Quindi per la Proposizione 6.4.1 la ¢ ¢ I'isometria cercata.

Supponiamo ora k = 1/R? > 0; ci basta dimostrare che M & isometrica a M = Sk, dove n = dim M.
Scegliamo py € S%, g0 € M e un’isometria lineare qualsiasi I: T, S — Tg, M. Allora (Esempio 5.4.2)
injrad(pg) = 7R, e exp;o1 ¢ definito su S \ {—po}, per cui otteniamo un’applicazione ¢ = exp, ol o exp;o1
da SE\{—po} in M. Siccome di nuovo I preserva banalmente il trasporto parallelo della curvatura sezionale,
la Proposizione 6.4.1 ci dice che ¢ € un’isometria locale.

Ora prendiamo p € S \ {po, —po} e definiamo : S \ {—p} — M ponendo 1) = exp,,,) odipp © expzjl.
Come prima, ¢ & un’isometria locale; inoltre ¢(p) = ¥ (p) e dy, = dip, per definizione. Quindi il Teo-
rema 6.4.2 ci assicura che ¢ = ¢ su S% \ {—po, —p}. In altre parole, possiamo estendere ¢ a una isometria
locale ¢: Sf — M. Ma ST & completa (in quanto compatta); il Lemma 6.3.1 ci assicura allora che ¢ ¢ un
rivestimento. Ma M & semplicemente connessa, per cui ¢ € un’isometria, come voluto. Il

Concludiamo questo paragrafo calcolando i campi di Jacobi e la metrica in coordinate normali per spazi
a curvatura sezionale costante.
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Lemma 6.4.6: Sia M una varietd Riemanniana a curvatura sezionale costante k € R, e 0:[0,r] — M
una geodetica parametrizzata rispetto alla lunghezza d’arco. Allora i campi di Jacobi propri lungo o che si
annullano in 0 sono tutti e soli i campi della forma J(t) = u(t)E(t), dove E € T (o) é un campo parallelo
ortogonale a &, e u:[0,r] — R ¢é la funzione

t se k =0;
Rsi i se k= L 0;
u(t)y = g seR=pr 2 (6.4.2)
t 1
Rsinhﬁ sek:—ﬁ<0.

Dimostrazione: Siccome M ha curvatura sezionale costante, il tensore di curvatura ¢ dato da (6.1.3). Quindi
un campo di Jacobi proprio J deve soddisfare

O = D*J + k[||6]|2J — (J,6),6] = D*J + kJ.

Sia allora w € T,(oyM un vettore ortogonale a ¢(0), ed E(t) l'estensione parallela di w lungo o. Allora si
vede subito che il campo J(t) = u(t)E(t) con u data da (6.4.2) ¢ effettivamente un campo di Jacobi proprio
con J(0) = O e DyJ = w; siccome i campi di Jacobi propri che si annullano in 0 sono completamente
determinati dalla loro derivata covariante in 0, li abbiamo trovati tutti. O

Proposizione 6.4.7: Sia (M, g) una varieta Riemanniana con curvatura sezionale costante k € R. Dato
p € M, sia{En,...,E,} una base ortonormale di T, M, e indichiamo con ¢:U — R" le corrispondenti coordi-
nate normali centrate in p definite in una palla geodetica U. Infine, indichiamo con ||-||o la norma euclidea in
queste coordinate (nel senso che se v = v'0; allora [[v]lo = \/(v1)2 + -+ 4 (v")2). Se ¢ = exp,(vo) € U \ {p}
ev € T,M, scriviamo v =ad/9r|, + v*, dove v+ € T,M ¢é perpendicolare a 8/0r|,. Allora

lal? + [lv- 13 se k= 0;
R? r
2 2 L2 _ :
galw,0) = { 1+ 5 (s0® ) WG se k= 75 >0
R? 1
|a|2—|-T—2 (Sinh2 %) o132 sek:—ﬁ <0,

dove r = ||lvol|, = d(p, q).

Dimostrazione: Trattandosi di una decomposizione ortogonale, ed essendo il campo radiale 9/9r un campo
di versori, dobbiamo solo calcolare [[v*||2.

Indichiamo con o: [0, 7] — M la geodetica radiale da p a ¢ parametrizzata rispetto alla lunghezza d’arco,
in modo che si abbia ¢ = o(r). Scegliamo w € T, M tale che v = d(exp,,)y, (rw), e consideriamo la solita
variazione geodetica di o data da

Vo
(s, t) = (t (— )) .
(s,t) = exp, . + sw
Il campo di Jacobi di ¥ & dato da
J(t) = td(expp)tvo/’r‘(w)v
per cui J(0) = O, DyJ = w e J(r) = vt. D’altra parte, il Lemma precedente ci dice che possiamo scrivere .J
nella forma J(t) = u(t)E(t), dove u & data da (6.4.2) ed E ¢ parallelo lungo o. In particolare, essendo
%(0) = 1, abbiamo w = DyJ = E(0) e quindi
[o 117 = 1T()Il; = [u() PIE@Z = [u@)PIEO) = u(r)*lw]2.
Quindi ci rimane da calcolare la norma di w. Ora, per definizione le coordinate normali sono date da
@~ (x) = exp,(2'E;), e quindi
1 0
8i|q =d(p )ap(q) % = d(epr)vo (Ez)

L= vlai|q otteniamo rw = v'F;, per cui

In particolare, se scriviamo v
Lo
Hw||f, = 2 v ||3~

Mettendo tutto insieme otteniamo la tesi. O
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FEsercizio 6.4.2. Sia M una varietd Riemanniana di curvatura sezionale costante, e sia J € Jp(o) un campo
di Jacobi proprio lungo una geodetica o: [a,b] — M. Dimostra che se J(tg) = O per qualche ty € [a, b] allora
J & quasi parallelo, nel senso che esiste un campo di versori W € 7 (o) parallelo e una funzione f € C*°([a, b])
tali che J = fW.

6.5 La seconda variazione della lunghezza d’arco

Abbiamo visto che le geodetiche di una varieta Riemanniana sono i punti critici del funzionale lunghezza.
Dall’Analisi arriva allora il suggerimento che per avere ulteriori informazioni sulle geodetiche potrebbe essere
utile studiare il comportamento della derivata seconda del funzionale lunghezza.

Teorema 6.5.1: (Seconda variazione della lunghezza d’arco) Sia o: [a,b] — M una geodetica parametrizzata
rispetto alla lunghezza d’arco in una varieta Riemanniana M, e ¥: (—¢,¢€) X [a,b] — M una sua variazione,
con campo variazione V € T (o). Definiamo L: (—¢,¢) — R ponendo L(s) = L(os). Allora

L oot d ?
F(O) =(VyS5,0)s +/ |IDV|2 = (Rys6,V)y — (E(V, d}o) dt. (6.5.1)
In particolare, ponendo V+ =V — (V,6),0 otteniamo
d*L Lot
@(0) = (VyS,6)s +/ [IDVH)2 = (Ry 156, V), dt. (6.5.2)

Dimostrazione: Nel corso della dimostrazione del Teorema 5.2.5 abbiamo visto che

dL b q
B = [ s

dove Dy denote la derivata covariante lungo le curve trasverse (e D; denotera la derivata covariante lungo le
curve principali). Quindi

d’L a1 b 1 1 )
w9= 5 QM@TTO“‘K{|mMDTﬂ*WM(Dﬂ'<mmﬂﬂﬂ“

[ ,
_A l: ||TH3<D$S T> HTH (”DtSH <DsDtS,T>):| dt

b 1 d 2 1 2 d
- [ |- (80 = 5.0m)) + g (IDSIP + GUD.8.7) = (0.5.D1) - (ks 5))

dove come al solito abbiamo usato i Lemmi 6.2.1 e 5.2.4 e le simmetrie del tensore di curvatura. Ma ¢ € una
geodetica parametrizzata rispetto alla lunghezza d’arco; quindi ponendo s = 0 otteniamo (6.5.1).
Infine, si verifica subito che (V+, &) = 0. Quindi (DV+,5) =0,

DV =DV+ — (jtw 0>)

e le simmetrie del tensore di curvatura ci permettono di dedurre (6.5.2) da (6.5.1). O
La formula (6.5.2) suggerisce la seguente

Definizione 6.5.1: Sia o: [a,b] — M una geodetica parametrizzata rispetto alla lunghezza d’arco in una varieta
Riemanniana M. Indichiamo con Ny(o) C 7 (o) lo spazio dei campi vettoriali regolari a tratti continui propri
(cioé che si annullano in a e b) e normali (cioe ortogonali a d) lungo o. La forma di Morse lungo o ¢ la forma
bilineare simmetrica I: No(o) x Np(o) — R definita da

I(V7 W) = /b [<DV,DW>U - <RV¢'7(5'7W>U] dt

per ogni V, W € Ny(o).

Dunque mettendo insieme il Teorema 6.5.1 e il Lemma 5.2.3 otteniamo il
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Corollario 6.5.2: Sia o0:[a,b] — M una geodetica parametrizzata rispetto alla lunghezza d’arco in una
varieta Riemanniana M. Se ¥ & una variazione propria di o con campo di variazione proprio normale
V € Ny(o), allora la derivata seconda di L(s) = L(cs) in 0 & esattamente I(V,V). In particolare, se o &
minimizzante allora I(V,V) > 0 per ogni V € Ny(0o).

La forma di Morse ha anche un’altra espressione che chiarisce il collegamento con i campi di Jacobi:

Lemma 6.5.3: Sia o: [a,b] — M una geodetica parametrizzata rispetto alla lunghezza d’arco in una varieta
Riemanniana M. Allora per ogni V., W € Ny(o) si ha

b k—1

IV, W) = _/ (D2V + Rya6, W) dt — S (ADV,W ()00,
@ i=1
dove a =tg <t; < --- <ty = b & una partizione di [a,b] tale che V|i;,_, +,) sia di classe C* peri=1,... k,

e
A; DV = lim D,V — lim D,V

t—tf t—t;
¢ il salto di D;V int;, peri=1,...,k— 1.

Dimostrazione: Sia a = sg < --- < 8, = b una partizione di [a, b] tale che sia V' che W siano di classe C*° su
ciascun intervallo [s;_1,s;]. In questi intervalli si ha

d
E<DV’ W), = (D*V,W), + (DV,DW),,
per cui
85 5j 83
[ oviowyde=~ [ (0w, de+ v,
Sj—1 Sj—1 Sj—1
Siccome W & continuo e W(a) = W (b) = 0, sommando su tutti gli intervalli otteniamo la tesi. O

Usando la forma di Morse possiamo descrivere un importante collegamento fra punti coniugati e proprieta
di minimizzazione delle geodetiche:

Proposizione 6.5.4: Sia o:[a,b] — M una geodetica parametrizzata rispetto alla lunghezza d’arco in una
varieta Riemanniana M. Supponiamo che esista to € (a,b) tale che o(ty) sia coniugato a p = o(a) Iungo o.
Allora esiste X € Ny(o) tale che I(X, X) < 0. In particolare, una geodetica o non é mai minimizzante oltre
il primo punto coniugato.

Dimostrazione: L’ipotesi ¢ che esista un campo di Jacobi non banale J € Jy(0|q,4,)) che si annulla in a e
in ¢g. Sia allora V' € Ny(o) dato da

[ J(@) seté€][a,to],
Vi) = {O se t € [to, b].

L’unica discontinuita di DV & per t = t¢, dove il salto ¢ ADV = —D, J. Notiamo che D;,J # O, perché
altrimenti J sarebbe un campo di Jacobi con J(ty) = Dy, J = O, e quindi sarebbe identicamente nullo.
Scegliamo W € Ny(o) di classe C* tale che W (tg) = —Dy,J, e per € > 0 poniamo X, = V + cW.
Allora X, € Ny(o) e
I(X., X.) = I(V,V) + 2 I(V,W) + 2 I(W, W).

Siccome V' & un campo di Jacobi sia su [a, tg] che su [tg,b] e V(tg) = O, il Lemma 6.5.3 ci dice che
I(V,V) = ~(ADV,V(t0))at) =0,  I(V,W) = —(ADV, W (t0))o(r) = ~ W (t0)lI51o)-

Quindi
I(X87 Xe) = _2€||W(t0)||52r(t0) + 52](VV, W)v

e per ¢ abbastanza piccolo otteniamo I(X., X.) < 0. Il
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Definizione 6.5.2: Sia M una varieta Riemanniana completa, p € M, v € T,M di lunghezza unitaria, e
04:[0,400) — M la geodetica parametrizzata rispetto alla lunghezza d’arco con 0,(0) = p e 5,(0) = v. Sia

to(v) = sup{t € R | d(p,0,(t)) = t}.

Se to(v) < +o0, diremo che o,(tp) € un punto di taglio di o, rispetto a p. Il luogo di taglio di M rispetto
a p e l'insieme

C(p) = {ou(to) | v € T, M, ||v||, = 1,0,(to) punto di taglio di o, rispetto a p}.

FEsercizio 6.5.1. Sia M una varieta Riemanniana completa, p € M, v € T,M di lunghezza unitaria,
e 0,:[0,4+00) — M la geodetica parametrizzata rispetto alla lunghezza d’arco con 0,(0) = p e ¢,(0) = v.

(i) Dimostra che o, (o) & un punto di taglio per p se e solo se una delle due condizioni seguenti si verifica
per t = to e nessuna delle due si verifica per valori di ¢ minori di #g:

(a) o,(t) & coniugato a p lungo o,;
(b) esiste una geodetica T # o, da p a 0,(t) tale che L(1) = L(0y).

(i) Sia C = {v € TM | ||v|| = 1,t5(v) < 400}, e definiamo p:C — R ponendo p(v) = d(r(v), o, (to(v))),
dove m: TM — M e la proiezione canonica e d ¢ la distanza Riemanniana. Dimostra che p € una funzione
continua, e deduci che C(p) & un insieme chiuso.

(iii) Dimostra che inj rad(p) = d(p, C(p)).

(iv) Sia g € C(p) tale che d(p,q) = d( 7C’(p)). Dimostra che o esiste una geodetica minimizzante o da p
a ¢ tale che ¢ sia coniugato a p lungo o, oppure esistono esattamente due geodetiche minimizzanti o e 7
parametrizzate rispetto alla lunghezza d’arco da p a g tali che d(d(p, q)) = —T'(d(p, q))

6.6 I teoremi di Bonnet-Myers e Synge-Weinstein
Vediamo che conseguenze possiamo trarre da quanto fatto finora per varieta con curvatura sezionale positiva.

Teorema 6.6.1: (Bonnet, Myers) Sia M una varieta Riemanniana completa di dimensione n > 2. Suppo-
niamo che esista r > 0 tale che la curvatura di Ricci di M soddisfi

-1
Ric(v) > n_2 >0
r

per ogni p € M ev € T,M di lunghezza unitaria. Allora

(i) M é compatto e di diametro minore o uguale a 7r;
(ii) il rivestimento universale di M é compatto, e il gruppo fondamentale di M é finito.

Dimostrazione: (i) Siano p e ¢ due punti di M. Siccome M & completa, esiste una geodetica minimizzante
0:10,¢] — M da p a g parametrizzata rispetto alla lunghezza d’arco; ci basta dimostrare che L(o) < 7r.
Infatti in tal caso d(p, ¢) < 7r, per cui il diametro di M & minore o uguale a 7r e dunque M, essendo limitata
e completa, & anche compatta, per il teorema di Hopf-Rinow.

Supponiamo allora, per assurdo, che L(c) = £ > mr. Scegliamo una famiglia {E1,...,E,—1} C 7 (o)
di campi paralleli tali che {E;(t),..., E,_1(t),c(t)} sia una base ortonormale di T, M per ogni ¢ € [0, £].
Poniamo poi

V;(t) = sin (%t) 0,
per j = 1,...,n — 1. Il Lemma 6.4.6 ci dice che se M fosse una varieta con curvatura sezionale co-
stante (m/¢)* < 1/r? allora i V; sarebbero campi di Jacobi; vediamo invece di che proprieta godono su M.
Chiaramente V;(0) = V;(¢) = O, per cui V; € Ny(o) per j =1,...,n — 1. Inoltre

7T2

L 4
1.9 == [ 0+ Rsoiaai= [ st (50) [ - Quta)] ar



136 Elementi di Geometria Differenziale, A.A. 2004/05

Sommando su j e ricordando che Q,(,5) = 0 otteniamo

n—1

S IV, V) = /g sin’ (%t) [(n - 1)7;—22 - Ric(d)} dt.

j=1 0

Ma l'ipotesi ci dice che

2 L. w2 1
(n— 1)6_2 —Ric(6) < (n—1) [5_2 - T—J < 05
uindi
4 n—1
1(V;,Vj) <0.
j=1

Dunque deve esistere almeno un jy tale che I(V},,V;,) < 0, per cui il Corollario 6.5.2 implica che ¢ non &
minimizzante, contraddizione.

(ii) Sia m: M — M il rivestimento universale di M. Se g € la metrica Riemanniana su M, possiamo
mettere su M la metrica Riemanniana m* g, in modo che il rivestimento 7 diventi un’isometria locale. In
particolare, per ogni p € Meve T, M il sollevamento & uscente da p della geodetica o in M uscente da 7(p)
tangente a dm,(v) € una geodetica in M. Essendo M completa, o & definita su tutto R; quindi anche & lo &,
e il teorema di Hopf-Rinow ci assicura che anche (M ,m*g) & completa.

Siccome la curvatura si calcola localmente, anche la curvatura di Ricci di M ¢ limitata inferiormente
da (n —1)/r2. La parte (i) ci assicura allora che anche M & compatta; in particolare, il numero dei fogli del
rivestimento e finito — e da questo segue subito che il gruppo fondamentale di M & finito. O

Corollario 6.6.2: Sia M una varieta Riemanniana completa con curvatura sezionale K > 1/r? > 0. Allora
M é compatta, con diametro minore o uguale a 7r, e w1 (M) ¢é finito.

Dimostrazione: Infatti K > 1/r? implica Ric > (n — 1)/r?, dove n = dim M. O

Osservazione 6.6.1. L’ipotesi K > 0 non basta: infatti il paraboloide {(z,y,2) € R® | z = 2® 4+ 4} ha
curvatura sezionale positiva ma non & compatto.

Osservazione 6.6.2. La stima sul diametro e la migliore possibile: la sfera S™ ha diametro 7 e curvatura
sezionale costante uguale a 1 (e quindi curvatura di Ricci costante uguale a n — 1).

Il Teorema di Bonnet-Myers € solo il primo di una serie di teoremi profondi sulla topologia di varieta
con curvatura sezionale positiva, di cui il pitt famoso & probabilmente il

Teorema 6.6.3: (della sfera di Berger e Klingenberg) Sia M una varieta Riemanniana completa, semplice-
mente connessa di dimensione n. Supponiamo che esista R > 0 tale che

1 1
N < —
42<K(7r)_

per ogni 2-piano m C T M. Allora M é omeomorta a S™.

Concludiamo invece il capitolo con un risultato sulle varieta orientate, che ha come conseguenza il fatto
che in certe situazioni curvatura sezionale positiva implica la semplice connessione.
Per dimostrarlo ci serviranno un lemma di algebra lineare e un’osservazione.

Lemma 6.6.4: Sia A € O(n — 1) tale che det A = (—1)". Allora 1 & autovalore di A, cioé esiste v € R
non nullo tale che Av = v.

Dimostrazione: Essendo A ortogonale, gli autovalori reali di A sono +1, e quelli complessi sono in coppie
complesse coniugate di modulo 1. Quindi det A = 1 se —1 & autovalore di A con molteplicita pari, e
det A = —1 se —1 & autovalore di A con molteplicita dispari.

Se n & pari, det A = 1, per cui —1 ha molteplicita pari; gli autovalori complessi coniugati sono anch’essi
in numero pari, ma n — 1, che & il numero di autovalori di A, & dispari, per cui 1 deve essere autovalore
di A. Analogamente, se n ¢ dispari —1 ha molteplicita dispari, ma n — 1 & pari, per cui di nuovo 1 dev’essere
autovalore. O
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Osservazione 6.6.3. Sia M una varietd Riemanniana orientata da una forma di volume v € A™(M). Al-
lora il trasporto parallelo lungo una qualsiasi curva conserva ’orientazione, nel senso che manda basi positive
in basi positive. Infatti, se {E1(t), ..., E,(t)} ¢l trasporto parallelo di una base positiva {E1, ..., E,} lungo
una curva o:[a,b] — M, allora la funzione ¢ — vy (El(t), e ,En(t)) ¢ una funzione di classe C'*°, mai
nulla e positiva per t = a, e quindi positiva per ogni valore di ¢ € [a, b].

Teorema 6.6.5: (Weinstein) Sia F: M — M un’isometria di una varietda Riemanniana compatta orien-

tata M di dimensione n con curvatura sezionale positiva. Supponiamo inoltre che F' conservi 'orientazione
se n & pari, e che la inverta se n & dispari. Allora F' ha un punto fisso.

Dimostrazione: Supponiamo, per assurdo, che F(q) # ¢ per ogni ¢ € M. Essendo M compatta, la funzione
q— d(q, F(q)) assume minimo in un punto p € M, e il minimo & strettamente positivo. Inoltre, essendo
M completa, esiste una geodetica minimizzante o:[0,¢/] — M da p a F(p), parametrizzata rispetto alla
lunghezza d’arco. Cominciamo col dimostrare che

dF,(5(0)) = &(0). (6.6.1)

Infatti, essendo F' un’isometria e o una geodetica minimizzante da p a F(p), la scelta di p implica che per
ogni t € (0,¢) si ha

d(p, F(p)) < d(o(t), F(a(t))) < d(a(t), F(p)) + d(F(p), F(o(t))) = d(a(t), F(p)) + d(p,o(t))
=d(p, F(p)).

In particolare,
d(a(t), F(o(t))) = d(a(t), F(p)) + d(F(p), F(co(t))).

Siccome o e F o ¢ sono geodetiche minimizzanti, questo implica che la curva ottenuta unendo o e F'o o &
ancora minimizzante, e quindi una geodetica. In particolare ¢ liscia, per cui 6(¢) = (F o)'(0) = dF,(5(0)),
come voluto.

Poniamo A = &[1 odF,: T,M — T,M, dove &, ¢ il trasporto parallelo da p a F(p) lungo o; chiaramente,
A ¢ un’isometria. Inoltre, ricordando I’Osservazione 6.6.3 vediamo che A manda basi positive in basi positive
se n € pari, e basi positive in basi negative se n ¢ dispari; in particolare,

det A = (—1)™. (6.6.2)
Da (6.6.1) segue subito che
A(5(0) = (5, 0 dFy)(6(0)) = 6, (6(0) = 6(0).

Dunque A manda il sottospazio W = 5(0)+ C T, M ortogonale a 5(0) in se stesso; indichiamo con A: W — W
la restrizione di A a W. L’applicazione lineare A € un’isometria con determinante uguale a quello di fl; quindi
per il Lemma 6.6.4 possiamo allora trovare un campo parallelo E; € 7 (o) ortogonale a ¢ di lunghezza unitaria
e tale che AE;(0) = E1(0).

Sia 7:(—€,e) — M una geodetica con 7(0) = p e 7(0) = E1(0). Siccome AF;(0) = F1(0) otteniamo
dF,(E1(0)) = Ey(£), per cui la geodetica F o7 & tale che F o 7(0) = F(p) e (F oT1)'(0) = Ey(¢).

Sia X: (—¢,¢€) x [0,¢] — M la variazione di o data da

N(s,t) = exp, ) (sE1(t)).

Allora X(s,0) = 7(s) e
3(s,£) = expp(p) (sEr(0)) = For(s).
In particolare, S(s,0) = 7(s) e S(s,£) = (F o7)'(s).
Il campo variazione V' di ¥ & chiaramente E;, per cui DV = O. Ma allora (6.5.2) ci da

d*L

Ca 0= (V5,5.0),

¢ ¢ ¥/
—/ QU<E1,d>dt=—/ Qo (Er, &) dt,
0 0 0
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in quanto le curve trasverse ¢® e of sono geodetiche tangenti a E;(0) e Ey(f) rispettivamente, per cui
Ve @S =0pert=0et=/{ Mala curvatura sezionale di M ¢ strettamente positiva; quindi

@(0) <0. (6.6.3)
Se tutte le curve principali della variazione avessero lunghezza maggiore o uguale a o, la funzione L(s)
assumerebbe minimo assoluto in s = 0, contro la (6.6.3); quindi deve esistere un sg tale che L(os,) < L(o).
Ma o, € una curva da 7(sg) a F(T(so)); quindi dovremmo avere

d(T(SO)vF(T(SO))) S L(gso) < L(J) = d(p,F(p)),

contro la scelta di p. Abbiamo trovato una contraddizione, e la dimostrazione ¢ conclusa. O

Questo risultato ha come consequenza relazioni inaspettate fra orientabilita e topologia delle varieta
compatte con curvatura sezionale positiva:

Corollario 6.6.6: (Synge) Sia M una varieta compatta di dimensione n con curvatura sezionale positiva.
Allora:

(i) Sen & pari e M & orientabile allora M é semplicemente connessa.
(ii) Se n & pari e M non é orientabile allora m (M) = Zs.
(ii) Se n ¢ dispari allora M ¢é orientabile.

Dimostrazione: (i) Sia m: M — M il rivestimento universale di M. Se g & la metrica Riemanniana di M,
mettiamo su M la metrica § = n*g, e orientiamo M in modo che 7 conservi l'orientazione. Siccome M &
compatta con curvatura sezionale positiva, deve esistere § > 0 tale che K > ¢. Quindi possiamo applicare il
Teorema 6.6.1, e anche M & compatta, con curvatura sezionale positiva in quanto 7 & un’isometria locale.

Sia F: M — M un automorfismo del rivestimento, ciot 7o F' = 7. Allora F & un’isometria di M che
conserva 'orientazione (in quanto 7 la conserva), per cui il Teorema 6.6.5 implica che F' ha un punto fisso.
Ma I'unico automorfismo di un rivestimento che puo avere punti fissi ¢ l'identita, per cui F' = id;;. Quindi
il gruppo di automorfismi di 7 si riduce all’identita, e questo equivale a dire che 7 & un diffeomorfismo, cioe
che M & semplicemente connessa.

(ii) Se M non ¢ orientabile, sia 7 M — M il rivestimento a 2 fogli dato dalla Proposizione 3.6.2.
Mettendo su M la metrica indotta dalla metrica di M possiamo applicare a M il punto (1); quindi M e
semplicemente connessa, per cui ¢ il rivestimento universale di M e m (M) = Zs.

(iii) Supponiamo per assurdo M non orientabile, e sia di nuovo 7: M — M il rivestimento a 2 fogli dato
dalla Proposizione 3.6.2. Mettiamo di nuovo su M la metrica indotta, e sia F: M — M un automorfismo
del rivestimento diverso dall’identitd. Ma M & compatta con curvatura sezionale positiva; siccome F inverte
lorientazione di M e n & dispari, possiamo applicare il Teorema 6.6.5 e ottenere un punto fisso per F,
contraddizione. Quindi M & orientabile. ]

Concludiamo con un esempio che mostra come le differenze fra le dimensioni pari e le dimensioni dispari
siano inevitabili, e alcuni esercizi finali:

ESEMPIO 6.6.1. Sia m:S™ — P"(R) il rivestimento universale dello spazio proiettivo. Siccome la mappa
antipodale A(p) = —p & un’isometria di S™, ed & I'unico automorfismo non banale del rivestimento T,
otteniamo una metrica Riemanniana su P"(R) rispetto a cui 7w diventa un’isometria locale. In particolare,
quindi, P"(R) & compatto con curvatura sezionale positiva e gruppo fondamentale 7 (]P’"(]R)) = Zo. Inoltre,e
orientabile se e solo se n & dispari (Esercizio 3.5.3). Quindi P?(R) & un esempio di varietd compatta, non
orientabile, di dimensione pari con curvatura sezionale costante positiva, mentre IP’?’(R) ¢ un esempio di
varieta compatta, orientabile, non semplicemente connessa, con curvatura sezionale positiva e di dimensione
dispari.

Esercizio 6.6.1. Scegliamo un punto po in una varietd Riemanniana compatta M, e sia r: M — RT data
da r(q) = d(po, q) per ogni ¢ € M, dove d & la distanza Riemanniana. Dimostra che r non & mai di classe C'*

su M\ {po}.
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Esercizio 6.6.2. Dimostra la seguente generalizzazione del Teorema di Bonnet-Myers: sia M una varieta
Riemanniana completa. Supponiamo che esistano a > 0 e ¢ > 0 tali che per ogni coppia di punti di M e ogni
geodetica minimizzante o parametrizzata rispetto alla lunghezza d’arco che unisce questi due punti si abbia

daf

Ric(6 >a+ —

ic(6(s)) > a I

lungo o, per una qualche funzione f tale che |f(s)| < ¢ lungo o. Dimostra che M & compatto, e trova una

stima sul diametro.



