
Capitolo 5

Geodetiche

5.1 La mappa esponenziale

Il concetto chiave che ci permetterà di penetrare nella struttura geometrica delle varietà Riemanniane è
quello di geodetica.

Definizione 5.1.1: Sia∇ una connessione lineare su una varietà M . Una geodetica per∇ è una curva σ: I →M
tale che Dσ̇ ≡ 0. In altre parole σ è una geodetica se e solo se il vettore tangente σ̇ è parallelo lungo σ.

Osservazione 5.1.1. Il simbolo σ̇ verrà usato per indicare il vettore tangente a σ anche quando σ non è
parametrizzata rispetto alla lunghezza d’arco. In altre parole, σ′ e σ̇ sono la stessa cosa.

Se (U, ϕ) è una carta locale e scriviamo σj = ϕj ◦ σ, da (4.3.3) vediamo che la curva σ è una geodetica
se e solo se soddisfa il sistema di equazioni differenziali ordinarie

σ̈k + (Γk
ij ◦ σ) σ̇iσ̇j = 0. (5.1.1)

Si tratta di un sistema di equazioni differenziali ordinarie del secondo ordine. Possiamo trasformarlo in un
sistema di equazioni differenziali ordinarie del primo ordine introducendo delle variabili ausiliarie v1, . . . , vn

per rappresentare le componenti di σ̇ (vedi più oltre la dimostrazione della Proposizione 5.1.2 per il significato
geometrico di questa operazione), in modo da ridurci al sistema equivalente del primo ordine{

v̇k + (Γk
ij ◦ σ) vivj = 0,

σ̇k = vk.
(5.1.2)

In particolare:

Proposizione 5.1.1: Sia ∇ una connessione lineare su una varietà M . Allora per ogni p ∈ M e v ∈ TpM
esistono un intervallo I ⊆ R con 0 ∈ I e una geodetica σ: I → M tale che σ(0) = p e σ̇(0) = v. Inoltre,
se σ̃: Ĩ →M è un’altra geodetica soddisfacente le stesse condizioni allora σ e σ̃ coincidono in I ∩ Ĩ.

Dimostrazione: Il Teorema 3.3.3 applicato a (5.1.2) ci dice che esistono ε > 0 e una curva σ: (−ε, ε)→ U ⊂M
che sia soluzione di (5.1.1) con condizioni iniziali σ(0) = p e σ̇(0) = v. Inoltre, se σ̃ è un’altra geodetica che
soddisfa le stesse condizioni iniziali allora σ e σ̃ coincidono in un qualche intorno di 0. Sia I0 il massimo
intervallo contenuto in I ∩ Ĩ su cui σ e σ̃ coincidono. Se I0 è strettamente contenuto in I ∩ Ĩ, esiste un
estremo t0 di I0 contenuto in I ∩ Ĩ, e possiamo applicare il solito Teorema 3.3.3 con condizioni iniziali σ(t0)
e σ̇(t0). Ma allora σ e σ̃ coincidono anche in un intorno di t0, contro la definizione di I0. Quindi I0 = I ∩ Ĩ.

Definizione 5.1.2: Sia ∇ una connessione lineare su una varietà M , p ∈ M e v ∈ TpM . Indicheremo
con σv: I → M l’unica geodetica massimale (che esiste per la proposizione precedente) tale che σv(0) = p
e σ̇v(0) = v.

Vogliamo ora studiare come dipendono le geodetiche dalle condizioni iniziali. Per far ciò, mostriamo come
associare alle geodetiche delle traiettorie di un opportuno campo vettoriale definito sul fibrato tangente TM .

Ogni curva liscia σ: I → M definisce la curva dei vettori tangenti σ̇: I → TM . L’equazione (5.1.1) è in
realtà un’affermazione su quest’ultima curva:
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Proposizione 5.1.2: Sia ∇ una connessione lineare su una varietà M . Allora esiste un unico campo
vettoriale G ∈ T (TM) le cui traiettorie siano tutte e sole le curve σ̇: I → TM con σ: I →M geodetica in M .

Dimostrazione: Cominciamo col riscrivere (5.1.1) in una forma più utile ai nostri scopi. Come visto nell’E-
sempio 3.2.2, una carta locale (U, ϕ) per M determina una carta locale (TU, ϕ̃) di TM ponendo

ϕ̃(v) = (x1, . . . , xn; v1, . . . , vn) ∈ ϕ(U)× Rn

per ogni p ∈ U e v ∈ TpM , dove (x1, . . . , xn) = ϕ(p) e v = vj∂j |p. Sia σ: I → M una curva con sostegno
contenuto in U , in modo da poter scrivere ϕ ◦ σ = (σ1, . . . , σn). Allora la curva σ̇ è rappresentata in queste
coordinate locali da ϕ̃ ◦ σ̇ = (σ1, . . . , σn; σ̇1, . . . , σ̇n), in quanto σ̇ = σ̇j∂j .

Sia ora γ: I → TM una qualsiasi curva con sostegno contenuto in TU , per cui possiamo scrivere

ϕ̃ ◦ γ(t) =
(
x1(t), . . . , xn(t); v1(t), . . . , vn(t)

)
per opportune funzioni x1, . . . , xn, v1, . . . , vn ∈ C∞(I). Allora γ è una curva della forma σ̇ per una qualche
curva σ: I → U se e solo se vj ≡ ẋj per j = 1, . . . , n; quindi γ è una curva della forma σ̇ con σ geodetica se
e solo se ϕ̃ ◦ γ soddisfa il sistema di equazioni differenziali ordinarie del primo ordine

dxk

dt
= vk,

dvk

dt
= −Γk

ij(x)vivj .

(5.1.3)

Nell’Esempio 3.2.2 abbiamo visto che un riferimento locale per T (TM) sopra TU è ovviamente definito
da {∂/∂x1, . . . , ∂/∂xn; ∂/∂v1, . . . , ∂/∂vn}; la (5.1.3) suggerisce allora di introdurre il campo vettoriale (per
il momento definito solo sopra TU e dipendente dalle coordinate locali scelte)

G = vk ∂

∂xk
− Γk

ijv
ivj ∂

∂vk
. (5.1.4)

La (5.1.3) dice esattamente che γ: I → TU è una traiettoria di G in TU se e solo se σ = π ◦γ è una geodetica
per ∇ in U e γ = σ̇ (dove π:TM →M è la proiezione canonica).

Quindi per concludere la dimostrazione rimane solo da verificare che G non dipende dalle coordinate
scelte, per cui si estende a un campo vettoriale globale su TM . Per far ciò basta far vedere che per ogni p ∈M ,
v ∈ TpM e f ∈ C∞TM (v) il numero G(v)(f) è indipendente dalle coordinate. Basta quindi dimostrare, per
esempio, che

G(v)(f) =
d(f ◦ σ̇v)

dt
(0),

dove f è un qualsiasi rappresentante di f . Ma infatti

d(f ◦ σ̇v)
dt

(0) =
∂f

∂xk
(v)σ̇k

v (0) +
∂f

∂vk
(v)σ̈k

v (0)

=
∂f

∂xk
(v)vk − ∂f

∂vk
(v)Γk

ij(p)vivj = G(v)(f),

e ci siamo.

Definizione 5.1.3: Sia ∇ una connessione lineare su una varietà M . Il campo G ∈ T (TM) definito localmente
da (5.1.4) è detto campo geodetico, e il suo flusso flusso geodetico.

La conseguenza principale di questo risultato è che ci permette di applicare il Teorema 3.3.4 allo studio
delle geodetiche, e quindi di controllare simultaneamente il comportamento di tutte le geodetiche uscenti da
un unico punto. Per enunciare al meglio questo risultato, ci servono un lemma e una definizione.
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Lemma 5.1.3: Sia ∇ una connessione lineare su una varietà M , p ∈M , v ∈ TpM e c, t ∈ R. Allora si ha

σcv(t) = σv(ct) (5.1.5)

non appena uno dei due membri è definito.

Dimostrazione: Se c = 0 non c’è nulla da dimostrare. Se c 6= 0, cominciamo col dimostrare che (5.1.5) vale
non appena σv(ct) esiste. Poniamo σ̃(t) = σv(ct); chiaramente σ̃(0) = p e ˙̃σ(0) = cv, per cui basta dimostrare
che σ̃ è una geodetica. Ma infatti se indichiamo con D̃ la derivata covariante lungo σ̃ abbiamo

D̃t
˙̃σ =

[
d

dt
˙̃σk(t) + Γk

ij

(
σ̃(t)

) ˙̃σi(t) ˙̃σj(t)
]

∂k =
[
c2σ̈k

v (ct) + c2Γk
ij

(
σv(ct)

)
σ̇i

v(ct)σ̇j
v(ct)

]
∂k = c2Dctσ̇v = O,

e ci siamo.
Infine, supponiamo che σcv(t) esista, e poniamo v′ = cv e s = ct. Allora σcv(t) = σv′(c−1s) esiste, per

cui è uguale a σc−1v′(s) = σv(ct), e ci siamo.

Definizione 5.1.4: Sia ∇ una connessione lineare su una varietà M . Il dominio della mappa esponenziale è
l’insieme

E = {v ∈ TM | σv è definita in un intervallo contenente [0, 1]} ⊂ TM.

La mappa esponenziale exp: E → M di ∇ è allora definita da exp(v) = σv(1). Inoltre, se p ∈ M scrive-
remo Ep = E ∩ TpM e expp = exp |Ep

.

Il motivo per cui quest’applicazione si chiama “esponenziale” si può far risalire al seguente esercizio (ma
vedi anche il Teorema 5.4.7 più oltre):

Esercizio 5.1.1. Consideriamo R+ con la metrica ‖t‖h = h−1|t| per ogni h ∈ R+ e t ∈ ThR+, dove abbiamo
identificato ThR+ con R come al solito. Dimostra che exph:ThR+ → R+ è data dalla formula exph(t) = het.

Il Teorema 3.3.4 ci fornisce allora le seguenti proprietà della mappa esponenziale:

Teorema 5.1.4: Sia ∇ una connessione lineare su una varietà M . Allora:

(i) L’insieme E è un intorno aperto della sezione nulla di TM , e ciascun Ep è stellato rispetto all’origine.

(ii) Per ogni v ∈ TM la geodetica massimale σv è data da

σv(t) = exp(tv)

per tutti i t ∈ R per cui uno dei due membri è definito.

(iii) La mappa esponenziale è di classe C∞.

Dimostrazione: Il Lemma 5.1.3 applicato con t = 1 dice esattamente che exp(cv) = σcv(1) = σv(c) non
appena uno dei due membri è definito, per cui (ii) è soddisfatta. In particolare, se 0 ≤ t ≤ 1 e v ∈ E abbiamo
che exp(tv) = σtv(1) = σv(t) è definito, per cui ciascun Ep è stellato rispetto all’origine.

Ora, per la Proposizione 5.1.2 le geodetiche di ∇ sono la proiezione delle traiettorie del campo geode-
tico G. Indichiamo con Γ:U → TM il flusso del campo geodetico che, grazie al Teorema 3.3.4, è definito
in un intorno aperto U di {0} × TM in R × TM . In particolare, v ∈ E se e solo se (1, v) ∈ U ; ma allora si
ha E = π2

(
U ∩ ({1} × TM)

)
, dove π2: R × TM → TM è la proiezione sulla seconda coordinata, per cui E

è aperto. Infine, sempre per il Teorema 3.3.4 il flusso di G è di classe C∞, per cui la mappa esponenziale,
essendo data dalla formula exp(v) = π2

(
Γ(1, v)

)
, è anch’essa di classe C∞.

Essendo la mappa esponenziale differenziabile, possiamo calcolarne il differenziale. In particolare, è
interessante considerare d(expp)O:TO(TpM) → TpM ; infatti, essendo TpM uno spazio vettoriale, possiamo
identificare canonicamente TO(TpM) con TpM , per cui d(expp)O risulta essere un endomorfismo di TpM .
Ed è un endomorfismo molto particolare:
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Proposizione 5.1.5: Sia ∇ una connessione lineare su una varietà M , e p ∈ M . Allora d(expp)O = id. In
particolare, esistono un intorno U di O in TpM e un intorno V di p in M tali che expp |U :U → V sia un
diffeomorfismo.

Dimostrazione: Dato v ∈ TO(TpM) = TpM , una curva in TpM che parte da O tangente a v è γ(t) = tv.
Allora

d(expp)O(v) =
d

dt
expp

(
γ(t)

)∣∣∣∣
t=0

=
d

dt
expp(tv)

∣∣∣∣
t=0

= σ̇v(0) = v.

La seconda affermazione segue dal teorema della funzione inversa.

Definizione 5.1.5: Sia ∇ una connessione lineare su una varietà M , e p ∈M . Un intorno aperto V di p in M
diffeomorfo tramite expp a un intorno stellato U di O in TpM è detto intorno normale di p.

Tutto quanto visto finora chiaramente si applica anche alla connessione di Levi-Civita di una varietà
Riemanniana. Inoltre, in questo caso possiamo introdurre le definizioni seguenti:

Definizione 5.1.6: Sia ∇ la connessione di Levi-Civita di una varietà Riemanniana (M, g), e p ∈ M . Indi-
chiamo con Bε(Op) ⊂ TpM la palla aperta rispetto alla metrica g di centro l’origine e raggio ε > 0 in TpM .
Il raggio d’iniettività inj rad(p) ∈ R+ di M in p è definito da

inj rad(p) = sup{ε > 0 | expp ristretto a Bε(Op) è un diffeomorfismo con l’immagine}.

La palla geodetica Bε(p) di centro p e raggio 0 < ε ≤ inj rad(p) in M è l’intorno normale di p della
forma expp

(
Bε(Op)

)
. Il suo bordo ∂Bε(p) = expp

(
∂Bε(Op)

)
è detto sfera geodetica. Le geodetiche in Bε(p)

uscenti da p sono dette geodetiche radiali. Se {E1, . . . , En} è una base ortonormale di TpM , e χ:TpM → Rn

è l’isomorfismo dato dalle coordinate rispetto a questa base, allora le coordinate ϕ = χ ◦ exp−1
p :Bε(p)→ Rn

sono dette coordinate normali centrate in p.

Il raggio d’iniettività chiaramente dipende dal punto. Non è necessariamente continuo, ma ha estremo
inferiore strettamente positivo sui compatti. Per dimostrarlo, introduciamo la seguente

Definizione 5.1.7: Il raggio d’iniettività di un sottoinsieme C ⊆M è il numero

inj rad(C) = inf{inj rad(q) | q ∈ C}.

Diremo che un aperto W ⊆M è uniformemente normale se ha raggio d’iniettività positivo. In altre parole,
esiste δ > 0 tale che expq è un diffeomorfismo in Bδ(Oq) per ogni q ∈W .

Allora

Proposizione 5.1.6: Sia ∇ la connessione di Levi-Civita di una varietà Riemanniana (M, g). Allora
ogni p ∈M ha un intorno uniformemente normale W .

Dimostrazione: Dati un intorno V di p e δ > 0, gli insiemi

Vδ = {v ∈ TM | q = π(v) ∈ V, ‖v‖q < δ},

dove, come al solito, π:TM →M è la proiezione canonica, formano un sistema fondamentale d’intorni di Op.
Siccome Op ∈ E , possiamo trovare V e δ1 > 0 tali che Vδ1 ⊂ E .

Sia E:Vδ1 →M ×M data da E(v) =
(
π(v), expπ(v)(v)

)
; cominciamo col dimostrare che E è invertibile

in un intorno di Op.
A meno di restringere V , possiamo supporre che sia il dominio di una carta locale ϕ = (x1, . . . , xn)

centrata in p. Come già visto nel corso della dimostrazione della Proposizione 5.1.2, ϕ induce coordinate
locali ϕ̃ = (x1, . . . , xn; v1, . . . , vn) in Vδ1 . Una base di TOp

Vδ1 è quindi {∂/∂x1, . . . , ∂/∂xn, ∂/∂v1, . . . , ∂/∂vn}.
Una curva γ in Vδ1 con γ(0) = Op e γ̇(0) = ∂/∂vj |Op è γ(t) = t ∂/∂xj |p. Quindi

dEOp

(
∂

∂vj

)
=

d

dt
E

(
γ(t)

)∣∣∣∣
t=0

=
d

dt

(
p, expp(t ∂/∂xj |p)

)∣∣∣∣
t=0

=

(
Op,

∂

∂xj

∣∣∣∣
p

)
.
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D’altra parte, una curva τ in Vδ1 con τ(0) = Op e τ̇(0) = ∂/∂xj |Op è τ(t) = Oexpp(t ∂/∂xj |p); quindi

dEOp

(
∂

∂xj

)
=

d

dt

(
expp(t ∂/∂xj |p), expexpp(t ∂/∂xj |p)(O)

)∣∣∣∣
t=0

=
d

dt

(
expp(t ∂/∂xj |p), expp(t ∂/∂xj |p)

)∣∣∣∣
t=0

=

(
∂

∂xj

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
.

Quindi dEOp
, mandando una base di TOp

Vδ1 in una base di TpM×TpM , è non singolare, per cui esistono
un intorno W ⊆ V di p e un 0 < δ ≤ δ1 tali che E|Wδ

sia un diffeomorfismo. Ma questo implica in particolare
che per ogni q ∈W la mappa esponenziale expq:Bδ(Oq)→ Bδ(q) è un diffeomorfismo, e ci siamo.

Corollario 5.1.7: Sia M una varietà Riemanniana. Allora ogni K ⊆ M compatto ha raggio d’iniettività
positivo.

Dimostrazione: La proposizione precedente ci fornisce per ogni p ∈ K un δp > 0 e un intorno Wp di p tali
che inj rad(q) ≥ δp per ogni q ∈Wp. Sia {Wp1 , . . . , Wpk

} un sottoricoprimento finito di K; allora

inj rad(K) ≥ min{δp1 , . . . , δpk
} > 0.

Esercizio 5.1.2. Dimostra che un’isometria locale fra varietà Riemanniana manda geodetiche in geodetiche,
nel senso che se H:M → N è un’isometria locale allora σ: I →M è una geodetica in M se e solo se H ◦ σ è
una geodetica in N .

Esercizio 5.1.3. Sia (M, g) una varietà Riemanniana, e sia E: E →M ×M data da E(v) =
(
π(v), exp(v)

)
,

dove π:TM →M è la proiezione canonica. Dimostra che dEv è invertibile se e solo se d(expp)v è invertibile,
dove p = π(v).

Esercizio 5.1.4. Date due connessioni lineari∇ e ∇̃ su una varietà M , siano B, S, A: T (M)×T (M)→ T (M)
definite da B(X, Y ) = ∇̃XY −∇XY ,

S(X, Y ) =
1
2
(
B(X, Y ) + B(Y, X)

)
e A(X, Y ) =

1
2
(
B(X, Y )−B(Y, X)

)
.

Indichiamo inoltre con τ la torsione di ∇, e con τ̃ la torsione di ∇̃.

(i) Dimostra che B, S, A ∈ T 1
2 (M).

(ii) Dimostra che 2A = τ̃ − τ .
(iii) Dimostra che le seguenti affermazioni sono equivalenti:

(a) ∇ e ∇̃ hanno le stesse geodetiche (cioè ogni geodetica di ∇ è anche geodetica di ∇̃, e viceversa);
(b) B(v, v) = O per ogni v ∈ TM ;
(c) S ≡ O;
(d) B ≡ A.

(iv) Dimostra che ∇ e ∇̃ hanno le stesse geodetiche e la stessa torsione se e solo se ∇ ≡ ∇̃.
(v) Dimostra che esiste un’unica connessione simmetrica ∇∗ che ha le stesse geodetiche di ∇.

Definizione 5.1.8: Diremo che due connessioni ∇ e ∇̃ su una varietà M sono riferite proiettivamente se per
ogni geodetica σ: I →M di ∇ esiste un diffeomorfismo h:J → I tale che σ ◦ h sia una geodetica di ∇̃.

Esercizio 5.1.5. Dimostra che due connessioni simmetriche ∇ e ∇̃ su una varietà M sono riferite proietti-
vamente se e solo se esiste una 1-forma ϕ ∈ A1(M) tale che ∇̃ − ∇ = ϕ⊗ id + id⊗ϕ.
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5.2 La distanza Riemanniana

In questo paragrafo dimostreremo che una varietà Riemanniana è in maniera canonica uno spazio metrico;
vedremo poi che le relazioni fra le proprietà topologiche della distanza canonica e le proprietà geometri-
che della varietà sono estremamente interessanti. Cominciamo con delle definizioni che ci serviranno per
introdurre la distanza.

Definizione 5.2.1: Una curva continua σ: [a, b] → M in una varietà M è detta regolare a tratti se esiste una
suddivisione a = t0 < t1 < · · · < tk = b di [a, b] tale che σ|[tj−1,tj ] sia di classe C∞ e regolare (cioè con
vettore tangente mai nullo) o costante per j = 1, . . . , k.

Definizione 5.2.2: Sia σ: [a, b] → M una curva regolare a tratti in una varietà Riemanniana (M, g). La
lunghezza d’arco di σ è la funzione

s(t) =
∫ t

a

‖σ̇(u)‖σ(u) du,

dove ‖ · ‖p è la norma di TpM indotta da g. La lunghezza di σ è

L(σ) =
∫ b

a

‖σ̇(u)‖σ(u) du.

Diremo che σ è parametrizzata rispetto alla lunghezza d’arco se ‖σ̇(u)‖σ(u) = 1 quando σ̇(u) è definito; in
particolare, σ non ha tratti costanti, e s(t) = t− a.

Esercizio 5.2.1. Se σ: [a, b] → M è una curva regolare a tratti con σ̇ 6= O dove definito, di lunghezza `,
dimostra che esiste un omeomorfismo C∞ a tratti h: [0, `]→ [a, b] tale che σ ◦ h sia parametrizzata rispetto
alla lunghezza d’arco. (Suggerimento: h−1 è la lunghezza d’arco di σ.)

Esercizio 5.2.2. Sia H:M → N una isometria locale fra varietà Riemanniane, e σ: [a, b] → M una curva
regolare a tratti. Dimostra che la lunghezza di σ in M è uguale alla lunghezza di H ◦ σ in N .

Definizione 5.2.3: Sia (M, g) una varietà Riemanniana (connessa). La funzione d:M ×M → R+ data da

d(p, q) = inf{L(σ) | σ: [a, b]→M è una curva regolare a tratti con σ(a) = p e σ(b) = q}

è detta distanza Riemanniana su M indotta da g.

Proposizione 5.2.1: Sia (M, g) una varietà Riemanniana connessa. Allora la funzione d: M ×M → R+

appena definita è una distanza che induce la topologia della varietà.

Dimostrazione: Dalla definizione è chiaro che d(p, q) = d(q, p) ≥ 0 e che d(p, p) = 0. La disuguaglianza
triangolare segue (esercizio) dal fatto che possiamo combinare una curva regolare a tratti da p1 a p2 con una
da p2 a p3 ottenendo una curva regolare a tratti la cui lunghezza è la somma delle lunghezze delle prime due
curve.

Rimane da dimostrare che se p 6= q allora d(p, q) 6= 0, e che la topologia indotta da d è quella della
varietà. Scegliamo p ∈ M , e sia ϕ:B2ε(p) → B2ε(O) ⊆ Rn un sistema di coordinate normali centrato in p,
dove B2ε(O) è la palla di centro l’origine e raggio 0 < 2ε ≤ inj rad(p) in Rn rispetto alla norma euclidea ‖·‖0.
Indichiamo con g0 la metrica Riemanniana su B2ε(p) indotta tramite ϕ dalla metrica euclidea di Rn: in altre
parole, se q ∈ B2ε(p) e v ∈ TqM la norma di v rispetto a g0 è data da

‖v‖0,q = ‖dϕq(v)‖0.

In particolare, se L0(σ) è la lunghezza rispetto a g0 di una curva regolare a tratti σ: [a, b]→ B2ε(p), abbiamo

L0(σ) = L0(ϕ ◦ σ) ≥
∥∥ϕ

(
σ(b)

)
− ϕ

(
σ(a)

)∥∥, (5.2.1)

dove L0(ϕ ◦ σ) è la lunghezza euclidea della curva ϕ ◦ σ.
Ora, l’insieme

K = {v ∈ TqM | q ∈ Bε(p), ‖v‖0,q = 1} ⊂ TM
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è chiaramente compatto; quindi se poniamo

cp = inf
v∈K
‖v‖π(v) ≤ sup

v∈K
‖v‖π(v) = Cp,

dove π:TM →M è la proiezione canonica, e ‖ · ‖p è la norma su TpM indotta dalla metrica Riemanniana g,
abbiamo 0 < cp ≤ Cp < +∞ e

cp‖v‖0,q ≤ ‖v‖q ≤ Cp‖v‖0,q

per ogni q ∈ Bε(p) e v ∈ TqM . Dunque se σ è una curva regolare a tratti la cui immagine è contenuta
in Bε(p) otteniamo

cpL0(σ) ≤ L(σ) ≤ CpL0(σ). (5.2.2)

Se q 6= p possiamo scegliere ε > 0 in modo che q /∈ Bε(p). Quindi ogni curva regolare a tratti σ: [a, b]→M
da p a q deve intersecare la sfera geodetica ∂Bε(p) in un primo punto σ(t0), per cui (5.2.1) e (5.2.2) danno

L(σ) ≥ L(σ|[a,t0]) ≥ cp L0(σ|[a,t0]) ≥ cp

∥∥ϕ
(
σ(t0)

)∥∥ = cpε > 0. (5.2.3)

Siccome questo vale per ogni curva regolare a tratti σ otteniamo d(p, q) ≥ cpε > 0, come voluto.
Rimane da far vedere che la topologia di M e quella indotta dalla distanza d coincidono. Siccome le

palle geodetiche Bε(p) formano un sistema fondamentale di intorni di p per la topologia di M , e le palle
metriche B(p, δ) formano un sistema fondamentale di intorni per la topologia metrica, è sufficiente far vedere
che

B(p, cpε) ⊆ Bε(p) ⊆ B(p, Cpε)

per ogni ε > 0 abbastanza piccolo.
Prendiamo q ∈ Bε(p), e sia σ: [0, l] → Bε(p) la geodetica radiale da p a q parametrizzata rispetto alla

lunghezza d’arco misurata con g0. In altre parole, σ(t) = ϕ−1(tv) per un opportuno v ∈ Rn di lunghezza
unitaria, per cui l < ε e quindi

d(p, q) ≤ L(σ) ≤ CpL0(σ) = Cpl < Cpε,

da cui segue Bε(p) ⊆ B(p, Cpε).
Viceversa, sia q ∈ B(p, cpε), per cui esiste una curva regolare a tratti σ da p a q di lunghezza strettamente

minore di cpε. Se fosse q /∈ Bp(ε), la (5.2.3) darebbe L(σ) ≥ cpε, contraddizione. Quindi B(p, cpε) ⊆ Bε(p),
e abbiamo finito.

Osservazione 5.2.1. Faremo vedere fra poco che in realtà Bε(p) = B(p, ε) per ogni 0 < ε < inj rad(p).

Le curve che realizzano la distanza meritano chiaramente un nome particolare.

Definizione 5.2.4: Una curva regolare a tratti σ: [a, b] → M è detta minimizzante se ha lunghezza mi-
nore o uguale a quella di qualsiasi altra curva regolare a tratti con gli stessi estremi, ovvero se e solo
se d

(
σ(a), σ(b)

)
= L(σ). La curva σ è localmente minimizzante se per ogni t ∈ [a, b] esiste ε > 0 tale

che σ|[t−ε,t+ε] è minimizzante (con le ovvie convenzioni se t = a o t = b).

Ovviamente, ogni curva minimizzante è anche localmente minimizzante (perché?); il viceversa è falso
(un esempio è dato dai cerchi massimi sulla sfera: vedi l’Esempio 5.4.2).

Il nostro obiettivo ora è dimostrare che una curva è localmente minimizzante se e solo se è una geodetica,
che è il risultato che fornirà il legame fra la distanza Riemanniana e la geometria della varietà.

Cominciamo con l’osservare che tutte le geodetiche non costanti sono parametrizzate rispetto a un
multiplo della lunghezza d’arco, e quindi sono in particolare curve regolari:

Lemma 5.2.2: Se σ: I → M è una geodetica di una varietà Riemanniana M allora ‖σ̇‖ è costante. In
particolare, σ è sempre (costante oppure) regolare.

Dimostrazione: Infatti, indicata con D la derivata covariante lungo σ, abbiamo

d

dt
〈σ̇, σ̇〉 = 2〈Dσ̇, σ̇〉 ≡ 0.
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Abbiamo introdotto in precedenza il concetto di campo vettoriale lungo una curva liscia. Nel seguito ci
servirà l’analogo concetto per curve regolari a tratti:

Definizione 5.2.5: Sia σ: [a, b]→M una curva regolare a tratti. Un campo vettoriale X lungo σ è dato da:
(a) una suddivisione a = t0 < t1 < · · · < th = b di [a, b] tale che σ|[tj−1,tj ] sia di classe C∞ per j = 1, . . . , h;
(b) campi vettoriali X|[tj−1,tj ] ∈ T (σ|[tj−1,tj ]) per j = 1, . . . , h.
Se i vari campi vettoriali si raccordano con continuità nei punti interni t1, . . . , tk−1 della suddivisione, diremo
che X è un campo continuo. Lo spazio dei campi vettoriali lungo σ è ancora indicato con T (σ). Infine, un
campo vettoriale X ∈ T (σ) lungo σ è detto proprio se X(a) = X(b) = O.

Osservazione 5.2.2. Notiamo esplicitamente che non tutti i campi vettoriali X ∈ T (σ) sono continui;
per esempio, il vettore tangente di una curva regolare a tratti non liscia è un campo vettoriale non continuo
lungo la curva.

Per stabilire se una curva è minimizzante o meno, dovremo confrontare la sua lunghezza con quella di
curve vicine. Il concetto di “curve vicine” è formalizzato nella seguente

Definizione 5.2.6: Sia σ: [a, b] → M una curva regolare a tratti. Una variazione di σ è un’applicazione
continua Σ: (−ε, ε)× [a, b]→M tale che, posto σs = Σ(s, ·), si ha
(i) σ0 = σ;
(ii) ciascuna curva principale σs è una curva regolare a tratti;
(iii) esiste una suddivisione a = t0 < t1 < · · · < tk = b di [a, b] (detta suddivisione associata a Σ) tale

che Σ(−ε,ε)×[tj−1,tj ] è di classe C∞ per j = 1, . . . , k.
Le curve trasverse alla variazione sono le curve σt = Σ(·, t), e sono tutte curve di classe C∞. Infine, una
variazione Σ è detta propria se σs(a) = σ(a) e σs(b) = σ(b) per ogni s ∈ (−ε, ε).

I vettori tangenti ci forniscono due campi vettoriali lungo le curve principali e trasverse di una variazione:

Definizione 5.2.7: Sia Σ: (−ε, ε) × [a, b] → M una variazione di una curva regolare a tratti σ: [a, b] → M .
Allora poniamo

S(s, t) = σ̇t(s) = dΣ(s,t)

(
∂

∂s

)
=

∂Σ
∂s

(s, t)

per ogni (s, t) ∈ (−ε, ε)× [a, b], e

T (s, t) = σ̇s(t) = dΣ(s,t)

(
∂

∂t

)
=

∂Σ
∂t

(s, t)

per ogni (s, t) ∈ (−ε, ε)× [tj−1, tj ] e j = 1, . . . , k−1, dove a = t0 < t1 < · · · < tk = b è una suddivisione asso-
ciata a Σ. In particolare, i campi t 7→ S(s, t) e t 7→ T (s, t) sono campi vettoriali lungo σs, e i campi s 7→ S(s, t)
e s 7→ T (s, t) sono campi vettoriali lungo σt. Infine, il campo variazione di Σ è V = S(0, ·) ∈ T (σ).

Il campo variazione è un campo continuo lungo σ. Viceversa, dato un campo vettoriale continuo lungo
una curva regolare a tratti possiamo trovare una variazione che abbia quel campo come campo variazione:

Lemma 5.2.3: Sia σ: [a, b]→M una curva regolare a tratti, e V ∈ T (σ) un campo continuo. Allora esiste
una variazione Σ di σ con V come campo variazione. Inoltre, se V è proprio si può trovare Σ propria.

Dimostrazione: Essendo [a, b] compatto, il raggio d’iniettività δ del sostegno di σ è strettamente positivo, e
il massimo M di ‖V (t)‖σ(t) è finito. Se ε = δ/M > 0, allora l’applicazione Σ(s, t) = exp

(
sV (t)

)
è definita

su (−ε, ε)× [a, b], e quindi è una variazione di σ. Siccome

S(0, t) =
∂

∂s
exp

(
sV (t)

)∣∣∣∣
s=0

= d(exp)Oσ(t)

(
V (t)

)
= V (t),

il campo variazione coincide con V . Infine, se V (a) = V (b) = O è evidente che Σ è propria.

Nel seguito ci servirà il seguente lemma elementare ma fondamentale:
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Lemma 5.2.4: Sia Σ: (−ε, ε)× [a, b]→M una variazione di una curva regolare a tratti σ: [a, b]→M in una
varietà Riemanniana M . Allora su ogni rettangolo (−ε, ε)× [tj−1, tj ] su cui Σ è di classe C∞ si ha

DsT = DtS,

dove Ds è la derivata covariante lungo le curve trasverse, e Dt quella lungo le curve principali.

Dimostrazione: Basta fare il conto in coordinate locali. Scrivendo

S(s, t) =
∂Σi

∂s
(s, t) ∂i|Σ(s,t), T (s, t) =

∂Σj

∂t
(s, t) ∂j |Σ(s,t),

la formula (4.3.2) dà

DsT =
[
∂2Σk

∂s∂t
+ (Γk

ij ◦ Σ)
∂Σi

∂s

∂Σj

∂t

]
∂k|Σ

=
[
∂2Σk

∂t∂s
+ (Γk

ji ◦ Σ)
∂Σi

∂s

∂Σj

∂t

]
∂k|Σ = DtS,

grazie alla simmetria della connessione di Levi-Civita.

Definizione 5.2.8: Sia σ: [a, b] → M una curva regolare a tratti, e a = t0 < t1 < · · · < tk = b una sud-
divisione di [a, b] tale che σ sia di classe C∞ in ciascun intervallo [tj−1, tj ]. Allora per j = 0, . . . , k defi-
niamo ∆j σ̇ ∈ Tσ(tj)M ponendo ∆0σ̇ = σ̇(a), ∆kσ̇ = −σ̇(b) e

∆j σ̇ = σ̇(t+j )− σ̇(t−j )

per j = 1, . . . , k − 1, dove σ̇(t+j ) = limt→t+
j

σ̇(t), e σ̇(t−j ) = limt→t−
j

σ̇(t).

E ora siamo in grado di dimostrare una formula importante:

Teorema 5.2.5: (Prima variazione della lunghezza d’arco) Sia σ: [a, b] → M una curva regolare a tratti
parametrizzata rispetto alla lunghezza d’arco in una varietà Riemanniana M , e Σ: (−ε, ε)× [a, b]→M una
sua variazione con suddivisione associata a = t0 < t1 < · · · < tk = b. Indichiamo con V ∈ T (σ) il campo
variazione di Σ, e definiamo la funzione L: (−ε, ε)→ R ponendo L(s) = L(σs). Allora

dL

ds
(0) = −

∫ b

a

〈V (t), Dtσ̇〉 dt−
k∑

j=0

〈V (tj), ∆j σ̇〉. (5.2.4)

Dimostrazione: In un intervallo [tj−1, tj ] dove tutto è di classe C∞ abbiamo

d

ds
L(σs|[tj−1,tj ]) =

∫ tj

tj−1

∂

∂s
〈T, T 〉1/2 dt =

∫ tj

tj−1

1
‖T‖〈DsT, T 〉 dt =

∫ tj

tj−1

1
‖T‖〈DtS, T 〉 dt,

dove abbiamo usato il Lemma 5.2.4. Ponendo s = 0 e ricordando che S(0, t) = V (t), T (0, t) = σ̇(t) e ‖σ̇‖ ≡ 1,
otteniamo

d

ds
L(σs|[tj−1,tj ])

∣∣∣∣
s=0

=
∫ tj

tj−1

〈DtV, σ̇(t)〉 dt =
∫ tj

tj−1

[
d

dt
〈V, σ̇〉 − 〈V (t), Dtσ̇〉

]
dt

= 〈V (tj), σ̇(t−j )〉 − 〈V (tj−1), σ̇(t+j−1)〉 −
∫ tj

tj−1

〈V (t), Dtσ̇〉 dt.

Sommando su j otteniamo la tesi.

Siamo ora in grado di dimostrare che ogni curva localmente minimizzante è una geodetica:
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Teorema 5.2.6: Ogni curva localmente minimizzante parametrizzata rispetto alla lunghezza d’arco in una
varietà Riemanniana è una geodetica — e quindi in particolare è di classe C∞.

Dimostrazione: Siccome l’enunciato è locale, possiamo supporre che σ: [a, b] → M sia una curva regolare a
tratti minimizzante parametrizzata rispetto alla lunghezza d’arco; dobbiamo dimostrare che è una geodetica.
Essendo una curva minimizzante, dL(σs)/ds(0) = 0 per ogni variazione propria Σ di σ; quindi il Lemma 5.2.3
ci assicura che il secondo membro di (5.2.4) è nullo per ogni campo vettoriale V proprio lungo σ.

Sia a = t0 < t1 < · · · < tk = b una suddivisione di [a, b] tale che σ sia di classe C∞ in ciascun
intervallo [tj−1, tj ], e sia χj ∈ C∞(R) una funzione tale che χj > 0 in (tj−1, tj) e χj ≡ 0 altrove. Allora
(5.2.4) con V = χjDσ̇ diventa

0 = −
∫ tj

tj−1

χj(t)‖Dtσ̇‖2 dt,

per cui Dσ̇ ≡ 0 in ciascun intervallo [tj−1, tj ], e quindi σ è una geodetica all’interno di ciascuno di questi
intervalli.

Ora vogliamo dimostrare che ∆j σ̇ = O per j = 1, . . . , k − 1. Ma infatti basta prendere un campo
vettoriale V ∈ T (σ) tale che V (tj) = ∆j σ̇ e V (ti) = O per i 6= j; in tal caso (5.2.4) si riduce a 0 = −‖∆j σ̇‖2,
e ci siamo.

Dunque σ̇ è continuo; per l’unicità delle geodetiche tangenti a una data direzione otteniamo che σ|[tj ,tj+1]

è la continuazione di σ|[tj−1,tj ] per j − 1, . . . , k − 1, e quindi σ è liscia e una geodetica dappertutto.

In realtà abbiamo dimostrato qualcosina di più.

Definizione 5.2.9: Diremo che una curva regolare a tratti σ: [a, b]→ M in una varietà Riemanniana M è un
punto critico del funzionale lunghezza se

dL(σs)
ds

(0) = 0

per ogni variazione propria Σ di σ.

Allora la dimostrazione del teorema precedente implica chiaramente il

Corollario 5.2.7: Una curva regolare a tratti parametrizzata rispetto alla lunghezza d’arco in una varietà
Riemanniana è un punto critico del funzionale lunghezza se e solo se è una geodetica.

Il nostro prossimo obiettivo è dimostrare il viceversa del Teorema 5.2.6, cioè dimostrare che ogni geo-
detica è localmente minimizzante. Per far ciò ci serve il seguente

Lemma 5.2.8: (Gauss) Sia M una varietà Riemanniana, p ∈M e v ∈ Ep. Allora si ha

〈d(expp)v(v), d(expp)v(w)〉expp(v) = 〈v, w〉p (5.2.5)

per ogni w ∈ TpM , dove abbiamo identificato come al solito Tv(TpM) con TpM .

Dimostrazione: Cominciamo a dimostrare (5.2.5) per w = v. Una curva in TpM passante per v e tangente
a v è τ(t) = v + tv; quindi

d(expp)v(v) =
d

dt
expp

(
(1 + t)v

)∣∣∣∣
t=0

=
d

dt
σv(1 + t)

∣∣∣∣
t=0

= σ̇v(1), (5.2.6)

dove come sempre σv denota la geodetica massimale con σv(0) = p e σ̇v(0) = v. Quindi

〈d(expp)v(v), d(expp)v(v)〉expp(v) = ‖σ̇v(1)‖2σv(1) = 〈v, v〉p,

perché, grazie al Lemma 5.2.2, ‖σ̇v(1)‖σv(1) = ‖σ̇v(0)‖σv(0) = ‖v‖p.
Per la linearità di d(expp)v ci basta allora dimostrare che se w è perpendicolare a v allora

〈d(expp)v(v), d(expp)v(w)〉expp(v) = 0.
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Siccome 〈w, v〉p = 0, il vettore w, considerato come vettore in Tv(TpM), è tangente in v alla sfera ∂B‖v‖p
(Op)

di centro l’origine e raggio ‖v‖p. Quindi possiamo trovare una curva τ : (−ε, ε) → TpM con τ(0) = v,
τ̇(0) = w e ‖τ(s)‖p ≡ ‖v‖p. Siccome v ∈ Ep, possiamo supporre che τ(s) ∈ Ep per ogni s, e definire una
variazione Σ: (−ε, ε)× [0, 1]→ TpM di σv ponendo

Σ(s, t) = expp

(
tτ(s)

)
.

Notiamo esplicitamente che le curve principali di Σ sono geodetiche, che Σ(0, 1) = expp(v), e che

T (0, 1) = d(expp)v(v) = σ̇v(1), S(0, 1) =
∂

∂s
expp

(
τ(s)

)∣∣∣∣
s=0

= d(expp)v(w),

per cui ci basta dimostrare che 〈T (0, 1), S(0, 1)〉expp(v) = 0. Ora,

∂

∂t
〈T, S〉Σ = 〈DtT, S〉Σ + 〈T, DtS〉Σ = 〈T, DsT 〉Σ =

1
2

∂

∂s
‖T‖2Σ = 0,

dove abbiamo usato: DtT ≡ O, in quanto ciascuna σs è una geodetica; il Lemma 5.2.4; e

‖T (s, t)‖Σ(s,t) = ‖σ̇s(t)‖σs(t) ≡ ‖σ̇s(0)‖p = ‖τ(s)‖p ≡ ‖v‖p.

Dunque 〈T, S〉Σ non dipende da t; e quindi

〈T (0, 1), S(0, 1)〉expp(v) = 〈T (0, 0), S(0, 0)〉p = 0,

in quanto σ0 ≡ p implica S(0, 0) = σ̇0(0) = Op.

Vogliamo dare un’interpretazione più geometrica di questo risultato.

Definizione 5.2.10: Sia Bε(p) ⊂ M una palla geodetica di centro p in una varietà Riemanniana M , dove ε è
tale che 0 < ε ≤ inj rad(p), e poniamo B∗ε (p) = Bε(p) \ {p}. Indichiamo con r:Bε(p)→ R+ la funzione data
da r(q) = ‖ exp−1

p (q)‖p per ogni q ∈ Bε(p). Chiaramente, r ∈ C∞
(
B∗ε (p)

)
. Il campo radiale ∂/∂r ∈ T

(
B∗ε (p)

)
è il gradiente di r:

∂

∂r

∣∣∣∣
q

= (grad r)(q)

per ogni q ∈ B∗ε (p).

Osservazione 5.2.3. Dimostreremo fra poco che r:Bε(p) → R+ è la distanza Riemanniana dal punto p;
nota nel frattempo che Bδ(p) = r−1([0, δ)) per ogni 0 ≤ δ ≤ ε.

Proposizione 5.2.9: Sia Bε(p) una palla geodetica in una varietà Riemanniana M . Allora:

(i) per ogni q = expp(v) ∈ B∗ε (p) si ha

∂

∂r

∣∣∣∣
q

= d(expp)v

(
v

‖v‖p

)
=

σ̇v(1)
‖v‖p

= σ̇v/‖v‖p
(‖v‖p),

e in particolare, ‖∂/∂r‖ ≡ 1;
(ii) le geodetiche radiali uscenti da p parametrizzate rispetto alla lunghezza d’arco sono le traiettorie di ∂/∂r;
(iii) il campo radiale è ortogonale alle sfere geodetiche ∂Bδ(p) contenute in Bε(p).

Dimostrazione: (i) Prima di tutto, derivando l’uguaglianza σv/‖v‖p
(t) = σv(t/‖v‖p) otteniamo

σ̇v/‖v‖p
(‖v‖p) =

σ̇v(1)
‖v‖p

;
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quindi, ricordando la (5.2.6), rimane da dimostrare solo che

drexpp(v)(w̃) =
1
‖v‖p

〈d(expp)v(v), w̃〉expp(v) (5.2.7)

per ogni v ∈ Bε(Op), v 6= Op, e ogni w̃ ∈ Texpp(v)M .
Ora, ogni w̃ ∈ Texpp(v)M è della forma w̃ = d(expp)v(w) per un unico w ∈ TpM , in quanto expp è un

diffeomorfismo fra Bε(Op) e Bε(p) — e stiamo identificando Tv(TpM) con TpM come al solito. Dunque

drexpp(v)(w̃) = drexpp(v)

(
d(expp)v(w)

)
= d(r ◦ expp)v(w) =

〈v, w〉p
‖v‖p

,

dove l’ultima eguaglianza segue da r◦expp = ‖·‖p, e quindi (5.2.7) è esattamente equivalente al Lemma 5.2.8.
(ii) Se q = expp(v) ∈ B∗ε (p), la geodetica radiale parametrizzata rispetto alla lunghezza d’arco uscente

da p passante per q è esattamente t 7→ σv/‖v‖p
(t), e raggiunge q per t = ‖v‖p. La tesi segue allora da (i).

(iii) Siccome ∂Bδ(p) = expp

(
∂Bδ(Op)

)
, i vettori tangenti a ∂Bδ(p) in q = expp(v) sono esattamente

l’immagine tramite d expp dei vettori tangenti a ∂Bδ(Op) in v, i quali sono proprio i vettori ortogonali a v.
La tesi segue allora dal Lemma 5.2.8.

E ora siamo arrivati al cruciale

Teorema 5.2.10: Sia (M, g) una varietà Riemanniana, p ∈M e 0 < ε ≤ inj rad(p). Allora:

(i) Se q appartiene a una palla geodetica Bε(p) di centro p, allora la geodetica radiale da p a q è l’unica (a
meno di riparametrizzazioni) curva minimizzante da p a q.

(ii) La funzione r introdotta nella Definizione 5.2.10 coincide con la distanza Riemanniana dal punto p, per
cui ogni palla geodetica Bε(p) è la palla di centro p e raggio ε per la distanza Riemanniana di M .

(iii) Ogni geodetica di M è localmente minimizzante.

Dimostrazione: (i) Sia σ: [0, `] → M la geodetica radiale da p a q parametrizzata rispetto alla lunghezza
d’arco, per cui σ(t) = expp(tv) per un opportuno vettore v ∈ TpM di lunghezza unitaria. Siccome si
ha L(σ) = ` = r(q), dobbiamo dimostrare che ogni altra curva regolare a tratti da p a q ha lunghezza
maggiore o uguale a `, e uguale a ` se e solo se è una riparametrizzazione di σ.

Sia τ : [a, b] → M una curva regolare a tratti da p a q parametrizzata rispetto alla lunghezza d’arco, e
supponiamo per il momento che l’immagine di τ sia tutta contenuta in Bε(p). Chiaramente, possiamo anche
supporre che τ(t) 6= p per t > a. Per la proposizione precedente possiamo scrivere τ̇ in tutti i punti in cui
esiste come

τ̇(t) = α(t)
∂

∂r

∣∣∣∣
τ(t)

+ w(t),

per un’opportuna funzione α e un’opportuno campo w ∈ T (τ), con la proprietà che w(t) è tangente alla
sfera geodetica passante per τ(t). Siccome questa è una decomposizione ortogonale abbiamo

‖τ̇(t)‖2 = |α(t)|2 + ‖w(t)‖2 ≥ |α(t)|2.

Inoltre, siccome le sfere geodetiche sono le ipersuperfici di livello della funzione r, abbiamo dr(w) ≡ 0, e
quindi

α(t) = dr
(
τ̇(t)

)
.

Di conseguenza

L(τ) =
∫ b

a

‖τ̇(t)‖ dt ≥
∫ b

a

|α(t)| dt ≥
∫ b

a

dr
(
τ̇(t)

)
dt =

∫ b

a

d(r ◦ τ)
dt

dt = r(q)− r(p) = `,

come voluto. Inoltre, si ha uguaglianza se e solo se τ̇ è un multiplo positivo di ∂/∂r; essendo entrambi di
lunghezza unitaria, dobbiamo avere τ̇ ≡ (∂/∂r) ◦ τ . Quindi sia τ che σ sono traiettorie di ∂/∂r passanti
per q al tempo t = `, e quindi τ = σ.
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Infine, se τ : [a, b]→M è una qualsiasi curva regolare a tratti da p a q, sia a0 ∈ [a, b] l’ultimo valore t per
cui τ(t) = p, e b0 ∈ [a, b] il primo valore t > a0 tale che τ(t) ∈ ∂Bε(p), se esiste; altrimenti poniamo b0 = b.
Chiaramente, la curva τ |[a0,b0] ha supporto contenuto in Bε(t) tranne eventualmente per il punto finale;
siccome

L(τ) ≥ L(τ |[a0,b0]),

con eguaglianza se e solo se a0 = a e b0 = b, la tesi segue allora da quanto già visto.
(ii) Se q ∈ Bε(p), esiste un unico v ∈ Bε(Op) tale che q = expp(v), e la geodetica minimizzante da p a q

parametrizzata rispetto alla lunghezza d’arco è σv/‖v‖p
. Quindi r(q) = ‖v‖p = L(σv/‖v‖p

|[0,‖v‖p]) = d(p, q), e
r coincide con la distanza Riemanniana da p. In particolare, Bε(p) è contenuta nella palla B(p, ε) di centro p
e raggio ε per la distanza Riemanniana. Viceversa, se q ∈ B(p, ε) deve esistere una curva σ da p a q di
lunghezza minore di ε; ma abbiamo visto che ogni curva che esce da Bε(p) deve avere lunghezza almeno
uguale a ε, per cui q ∈ Bε(p), e ci siamo.

(iii) Sia σ: I → M una geodetica massimale parametrizzata rispetto alla lunghezza d’arco, t0 ∈ I
e p = σ(t0). Scegliamo ε > 0 in modo che Bε(p) sia una palla geodetica. Allora per ogni q ∈ Bε(p) ∩ σ(I)
la geodetica σ è la geodetica radiale da p a q, e quindi è la curva minimizzante da p a q. In altre parole, σ è
localmente minimizzante nell’intorno (t0 − ε, t0 + ε) di t0.

5.3 Il teorema di Hopf-Rinow

Possiamo finalmente affrontare il problema di quando l’esponenziale è definito su tutto lo spazio tangente.

Teorema 5.3.1: (Hopf-Rinow) Sia M una varietà Riemanniana. Allora le seguenti condizioni sono equiva-
lenti:

(i) la distanza Riemanniana è completa;
(ii) per ogni p ∈M e ogni v ∈ TpM la geodetica σv è definita su tutto R;
(iii) per ogni p ∈M la mappa esponenziale expp è definita su tutto TpM ;
(iv) esiste un punto p ∈M tale che la mappa esponenziale expp è definita su tutto TpM ;
(v) esiste un punto p ∈M tale che per ogni v ∈ TpM la geodetica σv è definita su tutto R;
(vi) ogni insieme chiuso limitato di M è compatto.

Inoltre, ciascuna di queste condizioni implica che

(vii) ogni coppia di punti di M può essere collegata da una geodetica minimizzante.

Dimostrazione: (i) =⇒ (ii): Dobbiamo dimostrare che per ogni p ∈ M e ogni v ∈ TpM la geodetica σv è
definita su tutto R. Sia [0, t0) il più grande intervallo aperto a destra su cui σv è definita, e supponiamo per
assurdo che t0 sia finito. Siccome

d
(
σv(s), σv(t)

)
≤ L(σv|[s,t]) = ‖v‖ |s− t|

per ogni 0 ≤ s ≤ t < t0, se {tk} ⊂ [0, t0) converge crescendo a t0 la successione {σv(tk)} è di Cauchy in M per
la distanza d, e quindi converge a un punto q ∈M , chiaramente indipendente dalla successione scelta. Dunque
ponendo σv(t0) = q otteniamo un’applicazione continua da [0, t0] in M . Sia U un intorno uniformemente
normale di q, con raggio d’iniettività δ > 0. Per ogni k abbastanza grande, abbiamo sia |tk − t0| < δ/‖v‖
che σv(tk) ∈ U . In particolare, le geodetiche radiali uscenti da σv(tk) si prolungano per una lunghezza almeno
uguale a δ; siccome L(σv|[tk,t0]) = |t0 − tk|‖v‖ < δ, la geodetica σv si prolunga oltre t0, contraddizione.
Quindi t0 = +∞, e σv è definita su R+. Siccome σ−v(t) = σv(−t), lo stesso ragionamento applicato a σ−v

dimostra che σv è definita su tutto R.
(ii) =⇒ (iii) e (v) =⇒ (iv): Ovvio.
(iii) =⇒ (iv): Ovvio.
(iv) =⇒ (v): Per ipotesi expp(tv) = σtv(1) è definito per ogni v ∈ TpM e t ∈ R; quindi σv(t) = σtv(1) è

definito per ogni v ∈ TpM e t ∈ R.
Introduciamo ora la condizione
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(vii′) Esiste un punto p ∈M che può essere collegato a qualsiasi altro punto con una geodetica minimizzante.

(v) =⇒ (vii′): Dato q ∈ M , poniamo r = d(p, q), e sia B2ε(p) una palla geodetica di centro p tale
che q /∈ Bε(p). Sia x0 ∈ ∂Bε(p) un punto in cui la funzione continua d(q, x) ammette minimo. Possiamo
scrivere x0 = expp(εv) per un opportuno v ∈ TpM di norma uno; vogliamo dimostrare che σv(r) = q.

Poniamo

A = {s ∈ [0, r] | d
(
σv(s), q) = r − s}.

L’insieme A è non vuoto (0 ∈ A), ed è chiuso in [0, r]; se dimostriamo che sup A = r abbiamo finito. Sia
s0 ∈ A minore di r; ci basta far vedere che s0 + δ ∈ A per δ > 0 abbastanza piccolo (inoltre, se s0 = 0
l’argomento che stiamo per presentare dimostrerà che ε ∈ A). Prendiamo una palla geodetica Bδ

(
σv(s0)

)
;

possiamo supporre che q /∈ Bδ

(
σv(s0)

)
. Per costruzione,

d
(
p, σv(s0)

)
≤ s0 = d(p, q)− d

(
σv(s0), q

)
,

che è possibile se e solo se d
(
p, σv(s0)

)
= s0. Sia x′0 ∈ ∂Bδ

(
σv(s0)

)
un punto in cui d(x, q) assume minimo.

Allora

r − s0 = d
(
σv(s0), q) ≤ δ + d(x′0, q);

d’altra parte, se τ è una curva regolare a tratti da σv(s0) a q, suddividendo τ nella parte fino all’ultima
intersezione con ∂Bδ

(
σv(s0)

)
e nel resto, si ha

L(τ) ≥ δ + min
x∈∂Bδ(σv(s0))

d(x, q) = δ + d(x′0, q),

per cui abbiamo

r − s0 = δ + d(x′0, q),

e quindi

d(p, x′0) ≥ d(p, q)− d(q, x′0) = r − (r − s0 − δ) = s0 + δ.

D’altra parte, la curva σ̃ ottenuta unendo σv|[0,s0] con la geodetica radiale da σv(s0) a x′0 ha lunghezza
esattamente s0 + δ; quindi d(p, x′0) = s0 + δ. In particolare, la curva σ̃ è minimizzante, per cui è una
geodetica e dunque coincide con σv. Ma allora σv(s0 + δ) = x′0 e quindi

d
(
σv(s0 + δ), q) = d(x′0, q) = r − (s0 + δ),

cioè s0 + δ ∈ A, come voluto.

(v)+(vii′) =⇒ (vi): basta far vedere che le palle chiuse di centro p per la distanza sono compatte. Ma
infatti coincidono, grazie a (vii′) e (iv), con le immagini tramite expp delle palle Br(Op), che sono compatte.

(vi) =⇒ (i): è un risultato classico di topologia.

(ii) =⇒ (vii): si ragiona come in (v) =⇒ (vii′).

Definizione 5.3.1: Una varietà Riemanniana la cui distanza Riemanniana è completa sarà detta completa.

Esercizio 5.3.1. Dimostra che ogni varietà Riemanniana omogenea è completa.

Come vedremo, le varietà Riemanniane complete sono l’ambiente giusto in cui studiare proprietà globali.
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5.4 Esempi

Esempio 5.4.1. Lo spazio euclideo. Le geodetiche di Rn rispetto alla metrica euclidea sono chiaramente le
rette. In particolare, un aperto convesso limitato di Rn mostra che in generale non è vero che la condizione (v)
del Teorema di Hopf-Rinow implichi le altre.

Esempio 5.4.2. La sfera. Un cerchio massimo su Sn
R è l’intersezione di Sn

R con un piano passante per
l’origine. Vogliamo far vedere che le geodetiche di Sn

R sono proprio i cerchi massimi, parametrizzati rispetto
a un multiplo della lunghezza d’arco. Sia σ una geodetica uscente dal polo nord N = (0, . . . , 0, 1) e tangente
al vettore ∂/∂x1. Se l’immagine di σ non fosse contenuta nel piano π di equazione x2 = · · · = xn = 0,
la simmetria ρ rispetto a questo piano (che è un’isometria della metrica sferica) manderebbe σ in una
geodetica ρ ◦ σ diversa ma sempre uscente da N e tangente a ∂/∂x1, impossibile. Quindi l’immagine di σ
dev’essere contenuta in π, per cui è necessariamente una parametrizzazione a velocità costante del cerchio
massimo Sn

R∩π. Siccome, grazie all’Esempio 4.2.4, possiamo mandare con una rotazione il vettore ∂/∂x1|N in
un qualunque vettore di TSn

R di lunghezza unitaria, e le rotazioni mandano geodetiche in geodetiche e cerchi
massimi in cerchi massimi, abbiamo finito. In particolare, abbiamo esempi di geodetiche non minimizzanti: i
cerchi massimi smettono di essere minimizzanti non appena si supera il punto diametralmente opposto. Più
precisamente, abbiamo inj rad(p) = πR ed expp

(
BπR(Op)

)
= Sn

R \ {−p} per ogni p ∈ Sn
R. Infine, la sfera è

per forza completa, in quanto compatta.

Esercizio 5.4.1. Dimostra che le geodetiche dello spazio iperbolico sono: in Un
R le “iperboli massime”,

cioè le intersezioni di Un
R con piani passanti per l’origine; in Bn

R i diametri e gli archi di circonferenza che
intersecano ∂Bn

R ortogonalmente; in Hn
R le semirette verticali e le semicirconferenze con centro in ∂Hn

R.
Deduci che lo spazio iperbolico è completo, che il raggio d’iniettività di ogni punto è infinito, e che per ogni
punto p dello spazio iperbolico la mappa esponenziale è un diffeomorfismo fra lo spazio tangente nel punto
e l’intero spazio iperbolico.

Esempio 5.4.3. Il cilindro piatto. Consideriamo M = {x ∈ Rn | (x1)2 + · · · + (xn−1)2 = 1}, con
la metrica indotta dalla metrica euclidea di Rn. Siccome M è omogeneo (esercizio), possiamo limitarci
a studiare le geodetiche uscenti dal punto p0 = (1, 0, . . . , 0). Lo spazio tangente a M in p0 è l’iper-
piano Tp0M = {v ∈ Rn | v1 = 0}, e un versore normale a M in Rn nel punto p ∈M è N(p) = (p1, . . . , pn−1, 0).
Sia σ: I →M la geodetica con σ(0) = p0 e σ̇(0) = v ∈ Tp0M . Allora sappiamo che

|σ1|2 + · · ·+ |σn−1|2 ≡ 1, |σ̇1|2 + · · ·+ |σ̇n|2 ≡ ‖v‖2; (5.4.1)

inoltre, siccome la connessione di Levi-Civita di M è la proiezione della connessione piatta di Rn, l’equazione
delle geodetiche diventa

σ̈ = λN ◦ σ (5.4.2)

per un’opportuna funzione λ ∈ C∞(I). In particolare, abbiamo subito σn(t) = vnt, e se σo = (σ1, . . . , σn−1)
l’equazione (5.4.2) diventa

σ̈o = λσo.

Derivando due volte ‖σo‖2 ≡ 1 troviamo (σ̈o, σo)+‖σ̇o‖2 ≡ 0, per cui λ = −‖vo‖2, dove vo = (0, v2, . . . , vn−1).
Mettendo tutto insieme ricaviamo

σ(t) =
(

cos(‖vo‖t),
v2

‖vo‖
sin(‖vo‖t), . . . ,

vn−1

‖vo‖
sin(‖vo‖t), vnt

)
.

⌈
Nel resto di questo paragrafo studieremo le geodetiche di un gruppo di Lie connesso G; fra l’altro,

daremo un’ulteriore motivazione per il nome della mappa esponenziale.
Cominciamo con una definizione cruciale:

Definizione 5.4.1: Sia G un gruppo di Lie connesso. Un sottogruppo a un parametro di G è una θ: R→ G di
classe C∞ che sia un omomorfismo di gruppi. In altre parole, richiediamo che θ(0) = e sia l’identità di G, e
che θ(t + s) = θ(t) · θ(s) per ogni s, t ∈ R.
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Come vedremo, i sottogruppi a un parametro sono geodetiche per opportune connessioni lineari. Ini-
ziamo con il realizzarli come curve integrali:

Lemma 5.4.1: Sia G un gruppo di Lie, X ∈ g e X̃ ∈ T (G) il campo vettoriale invariante a sinistra associato
a X. Allora:

(i) la curva integrale di X̃ uscente da e è un sottogruppo a un parametro di G;
(ii) viceversa, se θ: R → G è un semigruppo a un parametro con θ′(0) = X, allora θ è la curva integrale

di X̃ uscente da e.

Dimostrazione: (i) Sia σ: (−ε, ε)→ G la curva integrale massimale di X̃ uscente da e. Vogliamo dimostrare
che per ogni t0 ∈ (−ε, ε) la curva γ: (−ε, ε)→ G data da γ(t) = σ(t0)σ(t) è una curva integrale di X̃ uscente
da σ(t0). Infatti si ha

γ′(t) = d(Lσ(t0))σ(t)

(
σ′(t)

)
= d(Lσ(t0))σ(t)

(
X̃(σ(t))

)
= X̃

(
γ(t)

)
,

come voluto. Ma l’unicità delle curve integrali ci dice che allora γ(t) = σ(t0 + t), cioè

σ(t0 + t) = σ(t0)σ(t)

per ogni t0, t ∈ (−ε, ε). In particolare questo implica che ε dev’essere necessariamente infinito (perché?), e
che σ è un sottogruppo a un parametro.

(ii) Supponiamo che θ sia un sottogruppo a un parametro con θ′(0) = X. Allora

θ′(t0) =
d

dt
(Lθ(t0) ◦ θ)

∣∣∣∣
t=0

= d(Lθ(t0))e

(
θ′(0)

)
= d(Lθ(t0))e(X) = X̃

(
θ(t0)

)
,

per cui θ è la curva integrale di X̃ uscente da e.

In particolare, quindi, per ogni X ∈ g esiste un unico sottogruppo a un parametro θX : R → G tale
che θ′X(0) = X: è la curva integrale di X̃ uscente da e.

Definizione 5.4.2: Sia G un gruppo di Lie. L’applicazione esponenziale di G è l’applicazione exp: g→ G data
da exp(X) = θX(1).

Osservazione 5.4.1. Se s ∈ R, abbiamo che t 7→ θX(st) è un semigruppo a un parametro tangente
a sX in 0; quindi exp(sX) = θX(s). In altre parole, tutti i sottogruppi a un parametro di G sono della
forma t 7→ exp(tX) per qualche X ∈ g.

Esempio 5.4.4. Sia G = GL(n, R), per cui g = gl(n, R). Allora per ogni X ∈ gl(n, R) possiamo definire
l’applicazione θX : R→ GL(n, R) ponendo

θX(t) = etX ,

dove etX è il solito esponenziale di matrici. Si verifica subito che θX è un sottogruppo a un parametro
con θ′X(0) = X, per cui l’applicazione esponenziale di GL(n, R) è l’usuale esponenziale di matrici. Lo stesso
argomento lo si può applicare a GL(V ), dove V è un qualsiasi spazio vettoriale di dimensione finita, usando
come definizione di esponenziale di un endomorfismo L ∈ gl(V ) = End(V ) la

eL =
∞∑

k=0

1
k!

Lk,

dove Lk indica la composizione di L con se stesso k volte.

Ora, se sul gruppo di Lie G mettiamo una connessione lineare, ci troviamo con due applicazioni espo-
nenziali a disposizione: quella appena definita, e quella che viene dalle geodetiche. Vogliamo determinare
delle condizioni per cui queste due applicazioni coincidano.

La prima richiesta naturale è che la connessione sia invariante a sinistra:
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Definizione 5.4.3: Sia G un gruppo di Lie. Diremo che una connessione lineare ∇ su G è invariante a sinistra
se

d(Lg)(∇XY ) = ∇d(Lg)(X)d(Lg)(Y )

per ogni X, Y ∈ T (G) e g ∈ G.

Il seguente esercizio è elementare:

Esercizio 5.4.2. Dimostra che esiste una corrispondenza biunivoca fra le connessioni lineari invarianti a
sinistra su un gruppo di Lie G e l’insieme delle applicazioni bilineari α: g× g→ g, corrispondenza ottenuta
associando alla connessione ∇ l’applicazione α∇(X, Y ) = ∇X̃ Ỹ (e), dove per ogni X ∈ g il campo X̃ ∈ T (G)
è l’unico campo invariante a sinistra tale che X̃(e) = X.

Corollario 5.4.2: Sia ∇ una lineare connessione invariante a sinistra su un gruppo di Lie G, e X ∈ g.
Allora le seguenti affermazioni sono equivalenti:

(i) α∇(X, X) = O;

(ii) la geodetica σX uscente da e tangente a X è un sottogruppo a un parametro di G.

Dimostrazione: Essendo ∇ invariante a sinistra, da α∇(X, X) = O otteniamo ∇X̃X̃ ≡ O, dove X̃ ∈ T (G)
è il campo vettoriale invariante a sinistra associato a X. In particolare, quindi, la curva integrale di X̃
uscente da e è una geodetica per ∇, e questa geodetica risulta essere un sottogruppo a un parametro grazie
al Lemma 5.4.1.(i)

Viceversa, se σX(t) è un sottogruppo a un parametro, il Lemma 5.4.1.(ii) ci dice che è la curva integrale
di X̃ uscente da e; ma allora abbiamo ∇X̃X̃(e) = O, cioè α∇(X, X) = O.

Di connessioni lineari che soddisfano le condizioni di questo corollario ce ne sono a bizzeffe; per esempio
quelle ottenute prendendo α∇(X, Y ) = c[X, Y ] per qualche c ∈ R. Ma a noi interessa sapere quando la con-
nessione di Levi-Civita (ottenuta partendo da una metrica invariante a sinistra) soddisfa questa condizione.
Per enunciare in maniera pulita il risultato, introduciamo la seguente

Definizione 5.4.4: Sia g un’algebra di Lie. Allora l’applicazione aggiunta di g è l’omomorfismo di algebre di
Lie ad: g→ gl(g) dato da ad(X)(Y ) = [X, Y ].

Proposizione 5.4.3: Sia 〈· , ·〉 una metrica invariante a sinistra su un gruppo di Lie G, e ∇ la connessione
di Levi-Civita. Allora le seguenti condizioni sono equivalenti:

(i) α∇(X, Y ) = 1
2 [X, Y ];

(ii) ad(X) è antisimmetrico per ogni X ∈ g;

(iii) expe = exp, cioè i semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: Il Teorema 4.4.4 ci dice che

〈α∇(X, Y ), Z〉 =
1
2
[
〈[X, Y ], Z〉+ 〈ad(Z)X, Y 〉+ 〈X, ad(Z)(Y )〉

]
, (5.4.3)

per cui l’equivalenza fra (i) e (ii) è evidente.
Il Corollario 5.4.2 ci dice che (iii) vale se e solo se α∇(X, X) = O per ogni X ∈ g. Ora, (5.4.3) implica

〈α∇(X, X), Z〉 = 〈ad(Z)X, X〉.

Quindi α∇(X, X) = O per ogni X ∈ g se e solo se 〈ad(Z)X, X〉 = 0 per ogni Z, X ∈ g, e questo accade se e
solo se ad(Z) è antisimmetrico per ogni Z ∈ g.

La cosa interessante è che tutto ciò è legato a quando una metrica invariante a sinistra è anche inva-
riante a destra. Per dimostrarlo ci servono un paio di risultati generali sui gruppi di Lie, importanti anche
indipendentemente.
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Proposizione 5.4.4: Sia ψ:G→ H un omomorfismo di gruppi di Lie. Allora dψe: g→ h è un omomorfismo
delle corrispondenti algebre di Lie, e si ha

∀X ∈ g ψ
(
exp(X)

)
= exp

(
dψe(X)

)
. (5.4.4)

Dimostrazione: Sia θX(t) = exp(tX) il sottogruppo a un parametro in G tangente a X ∈ g. Allora ψ ◦ θX è
un sottogruppo a un parametro in H tangente a dψe(X), per cui ψ

(
θX(t)

)
= exp

(
tdψe(X)

)
, e (5.4.4) vale.

Inoltre, abbiamo ψ ◦ Lg = Lψ(g) ◦ ψ per ogni g ∈ G; quindi per ogni X ∈ g abbiamo

dψg

(
d(Lg)e(X)

)
= d(Lψ(g))e

(
dψe(X)

)
.

Questo vuol dire che il campo X̃ invariante a sinistra che estende X è sempre ψ-correlato al campo invariante
a sinistra che estende dψe(X). L’Esercizio 3.3.3 ci assicura allora che dψe è un omomorfismo di algebre di
Lie.

Proposizione 5.4.5: Sia U ⊂ G un intorno aperto dell’elemento neutro in un gruppo di Lie connesso G.
Allora U genera tutto G, nel senso che ogni elemento di G si ottiene come prodotto di un numero finito di
elementi di U .

Dimostrazione: Notiamo prima di tutto che un sottogruppo aperto è anche chiuso. Infatti, se H ⊆ G è un
sottogruppo aperto, allora

G \H =
⋃

g/∈H

gH

è aperto, per cui H è chiuso.
Ora, se U è un intorno aperto di e, allora il sottogruppo generato da U è

〈U〉 =
⋃
n∈N

Un,

dove Un è l’insieme di tutti i possibili prodotti di n elementi di U . Quindi 〈U〉 è un sottogruppo aperto, e
dunque chiuso, di G; essendo G connesso, dev’essere 〈U〉 = G, come affermato.

Definizione 5.4.5: Sia G un gruppo di Lie. Se g ∈ G, indichiamo con Cg:G→ G il coniugio Cg(x) = gxg−1,
in modo che Cg ◦ Ch = Cgh per ogni g, h ∈ G. La rappresentazione aggiunta di G è l’omomorfismo
Ad:G→ GL(g) definito da Ad(g) = d(Cg)e.

Notiamo che la (5.4.4) implica che

Cg(expX) = exp
(
Ad(g)(X)

)
. (5.4.5)

Ci servirà il seguente

Esercizio 5.4.3. Dimostra che se X ∈ T (G) è un campo vettoriale invariante a sinistra su un gruppo di
Lie G si ha θt ◦ Lg = Lg ◦ θt per ogni g ∈ G, dove θt = Θ(t, ·) è il flusso di X. (Suggerimento: ricorda
l’Esercizio 3.3.4.)

Da questo otteniamo il

Lemma 5.4.6: Sia G un gruppo di Lie, e Ad:G→ GL(g) la rappresentazione aggiunta. Allora

d(Ad)e(X) = ad(X)

per ogni X ∈ g. In particolare, quindi,

∀X ∈ g Ad(expX) = ead(X). (5.4.6)

Dimostrazione: Siccome t 7→ exp(tX) è una curva in G tangente a X in e, abbiamo

d(Ad)e(X)(Y ) =
d

dt
Ad(exp tX)(Y )

∣∣∣∣
t=0
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per ogni X, Y ∈ g. Indicando con Ỹ ∈ T (G) l’estensione invariante a sinistra di Y , abbiamo

Ad(exp tX)(Y ) = d(Cexp(tX))e(Y ) = d(Rexp(−tX))exp(tX) ◦ d(Lexp(tX))e(Y )

= d(Rexp(−tX))exp(tX)

(
Ỹ (exp(tX))

)
.

Ora, per ogni g ∈ G si ha

Rexp(tX)(g) = g exp(tX) = Lg

(
exp(tX)

)
= Lg

(
θt(e)

)
= θt

(
Lg(e)

)
= θt(g),

dove θt è il flusso di X̃, l’estensione invariante a sinistra di X, e abbiamo usato l’Esercizio 5.4.3. Ma allora
questo vuol dire che Rexp(−tX) = θ−t, per cui

Ad(exp tX)(Y ) = d(θ−t)θt(e)(Ỹ ),

e la Proposizione 3.3.6 ci permette di concludere che

d(Ad)e(X)(Y ) =
d

dt
d(θ−t)θt(e)(Ỹ )

∣∣∣∣
t=0

= LX̃ Ỹ (e) = [X, Y ] = ad(X)(Y ),

come voluto. Infine, (5.4.6) segue da (5.4.4) e dall’Esempio 5.4.4.

Siamo ora in grado di dimostrare il

Teorema 5.4.7: Sia G un gruppo di Lie connesso, e 〈· , ·〉 una metrica Riemanniana invariante a sinistra
su G. Allora le seguenti affermazioni sono equivalenti:

(i) 〈· , ·〉 è anche invariante a destra;
(ii) Ad(g) è un’isometria di g per ogni g ∈ G;
(iii) ad(X) è antisimmetrica per ogni X ∈ g;
(iv) expe = exp, cioè i semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: La metrica 〈· , ·〉 è invariante a destra se e solo se 〈d(Rg)h(v), d(Rg)h(w)〉hg = 〈v, w〉h per
ogni g, h ∈ G e v, w ∈ TgG. Usando l’invarianza a sinistra della metrica, questo si riduce a dimostrare che

〈d(L−1
hg ◦Rg ◦ Lh)e(X), d(L−1

hg ◦Rg ◦ Lh)e(Y )〉e = 〈X, Y 〉e

per ogni h, g ∈ G e X, Y ∈ g. Ma L−1
hg ◦ Rg ◦ Lh = Cg−1 , e quindi 〈· , ·〉 è invariante a destra se e solo se

ogni Ad(g) è un’isometria di g.
Supponiamo ora che (ii) valga. Per il Lemma 5.4.6, allora, ead(tX) è un’isometria per ogni X ∈ g e t ∈ R.

Derivando
〈ead(tX)(Y ), ead(tX)(Z)〉e = 〈Y, Z〉e

rispetto a t e calcolando in t = 0 otteniamo

〈ad(X)(Y ), Z〉e + 〈Y, ad(X)(Z)〉e = 0

per ogni X, Y , Z ∈ g, e quindi (iii) vale.
Viceversa, supponiamo che (iii) valga. Siccome si verifica subito che

d

dt
ead(tX) = ad(X) ◦ ead(tX),

troviamo
d

dt
〈ead(tX)(Y ), ead(tX)(Z)〉e = 〈ad(X) ◦ ead(tX)(Y ), ead(tX)(Z)〉e + 〈ead(tX)(Y ), ad(X) ◦ ead(tX)(Z)〉e ≡ 0.

Dunque 〈ead(tX)(Y ), ead(tX)(Z)〉e è una funzione costante, e calcolando per t = 0 e per t = 1 vediamo
che ead(X) è un’isometria per ogni X ∈ g. Ma allora Ad(expX) è un’isometria per ogni X ∈ g. Ora,
dalla definizione si ricava subito che d expO = id; quindi l’immagine dell’esponenziale contiene un intorno U
dell’elemento neutro e, e Ad(g) è un’isometria per ogni g ∈ U . Siccome la composizione di isometrie è
un’isometria, la Proposizione 5.4.5 ci assicura allora che Ad(g) è un’isometria per ogni g ∈ G, e abbiamo
dimostrato (ii).

Infine, l’equivalenza fra (iii) e (iv) è già stata dimostrata nella Proposizione 5.4.3.
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Esempio 5.4.5. Non è difficile verificare che la metrica euclidea su gl(n, R), cioè quella dell’Esempio 4.4.6,
si può esprimere scrivendo

∀A, B ∈ gl(n, R) 〈A, B〉 = tr(BT A).

Ora, se X ∈ gl(n, R) abbiamo

〈[X, A], B〉 = tr(BT XA)− tr(BT AX),

〈A, [X, B]〉 = tr(BT XT A)− tr(XT BT A) = tr(BT XT A)− tr(BT AXT ),
(5.4.7)

dove abbiamo usato il fatto che tr(CD) = tr(DC) per ogni C, D ∈ gl(n, R). Quindi in generale ad(X) non è
antisimmetrico rispetto alla metrica euclidea, per cui i sottogruppi a un parametro visti nell’Esempio 5.4.4
non sono geodetiche per la connessione di Levi-Civita su GL(n, R) calcolata nell’Esempio 4.4.6.

Esempio 5.4.6. Nell’Esercizio 3.3.9 abbiamo visto che l’algebra di Lie del gruppo SO(n) è l’algebra so(n)
delle matrici antisimmetriche. Ma allora (5.4.7) ci dice che ad(X) è antisimmetrica rispetto al prodotto
scalare dell’esempio precedente per ogni X ∈ so(n). Quindi la metrica dell’Esempio 4.4.6 ristretta a SO(n)
è bi-invariante, e i sottogruppi a un parametro sono geodetiche per la corrispondente connessione di Levi-

Civita.

⌋


