Capitolo 5
Geodetiche

5.1 La mappa esponenziale

Il concetto chiave che ci permettera di penetrare nella struttura geometrica delle varieta Riemanniane e
quello di geodetica.

Definizione 5.1.1: Sia V una connessione lineare su una varieta M. Una geodetica per V e una curvao:I — M
tale che Do = 0. In altre parole o € una geodetica se e solo se il vettore tangente ¢ ¢ parallelo lungo o.

Osservazione 5.1.1. 1l simbolo ¢ verra usato per indicare il vettore tangente a o anche quando ¢ non e
parametrizzata rispetto alla lunghezza d’arco. In altre parole, ¢’ e ¢ sono la stessa cosa.

Se (U, ) & una carta locale e scriviamo o7 = ¢7 o g, da (4.3.3) vediamo che la curva o & una geodetica
se e solo se soddisfa il sistema di equazioni differenziali ordinarie

"+ (T 00)5'67 = 0. (5.1.1)

Si tratta di un sistema di equazioni differenziali ordinarie del secondo ordine. Possiamo trasformarlo in un
sistema di equazioni differenziali ordinarie del primo ordine introducendo delle variabili ausiliarie v?, ..., v"
per rappresentare le componenti di ¢ (vedi piu oltre la dimostrazione della Proposizione 5.1.2 per il significato
geometrico di questa operazione), in modo da ridurci al sistema equivalente del primo ordine

ok =k,

In particolare:

Proposizione 5.1.1: Sia V una connessione lineare su una varieta M. Allora per ognip € M ev € T,M
esistono un intervallo I C R con 0 € I e una geodetica o:1 — M tale che 0(0) = p e 6(0) = v. Inoltre,

se 6: I — M é un’altra geodetica soddisfacente le stesse condizioni allora o e ¢ coincidono in I N 1.

Dimostrazione: Il Teorema 3.3.3 applicato a (5.1.2) ci dice che esistono € > 0 e una curva o: (—¢,e) - U C M
che sia soluzione di (5.1.1) con condizioni iniziali 0(0) = p e 6(0) = v. Inoltre, se & & un’altra geodetica che
soddisfa le stesse condizioni iniziali allora ¢ e & coincidono in un qualche intorno di 0. Sia I il massimo
intervallo contenuto in I NI su cui o e & coincidono. Se Iy e strettamente contenuto in I N I , esiste un
estremo to di I, contenuto in IN 1, e possiamo applicare il solito Teorema 3.3.3 con condizioni iniziali (o)

e d(tg). Ma allora o e & coincidono anche in un intorno di ¢y, contro la definizione di Iy. Quindi Iy = INI.[J

Definizione 5.1.2: Sia V una connessione lineare su una varieta M, p € M e v € T,M. Indicheremo
con o,:I — M D'unica geodetica massimale (che esiste per la proposizione precedente) tale che o,(0) = p
e 6,(0) = v.

Vogliamo ora studiare come dipendono le geodetiche dalle condizioni iniziali. Per far cio, mostriamo come
associare alle geodetiche delle traiettorie di un opportuno campo vettoriale definito sul fibrato tangente T'M.

Ogni curva liscia 0: I — M definisce la curva dei vettori tangenti 6: I — T M. L’equazione (5.1.1) & in
realta un’affermazione su quest’ultima curva:
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Proposizione 5.1.2: Sia V una connessione lineare su una varieta M. Allora esiste un unico campo
vettoriale G € T (T M) le cui traiettorie siano tutte e sole le curve 6: I — TM con o: I — M geodetica in M.

Dimostrazione: Cominciamo col riscrivere (5.1.1) in una forma pilt utile ai nostri scopi. Come visto nell’E-
sempio 3.2.2, una carta locale (U, ¢) per M determina una carta locale (TU, @) di TM ponendo

Gv) = (', ... 2™0b ") € p(U) x R®

per ogni p € U e v € T,M, dove (z*,...,2™) = p(p) e v = v79;|,. Sia 0:1 — M una curva con sostegno
contenuto in U, in modo da poter scrivere ¢ o 0 = (a,...,0™). Allora la curva ¢ & rappresentata in queste
coordinate locali da go¢ = (o!,...,0™;6',...,6™), in quanto & = ¢79;.

Sia ora : I — T'M una qualsiasi curva con sostegno contenuto in T'U, per cui possiamo scrivere

per opportune funzioni z!,... 2" vl ... v™® € C°°(I). Allora v & una curva della forma & per una qualche
curva o: I — U se e solo se v/ = &7 per j =1,...,n; quindi v & una curva della forma & con o geodetica se
e solo se ¢ o« soddisfa il sistema di equazioni differenziali ordinarie del primo ordine

d k
; b (5.1.3)
v k .
- = I (z)v'o.
Nell’Esempio 3.2.2 abbiamo visto che un riferimento locale per T(T'M) sopra TU & ovviamente definito
da {9/0z',...,0/0x™;0/0v1, ... 0/0v"}; 1a (5.1.3) suggerisce allora di introdurre il campo vettoriale (per
il momento definito solo sopra TU e dipendente dalle coordinate locali scelte)

0

9 o
_ .k k i
G—U = _FZJU 'UJW.

o (5.1.4)

La (5.1.3) dice esattamente che : I — T'U & una traiettoria di G in TU se e solo se ¢ = 7o~ & una geodetica
per Vin U ey =0 (dove m: TM — M & la proiezione canonica).

Quindi per concludere la dimostrazione rimane solo da verificare che G non dipende dalle coordinate
scelte, per cui si estende a un campo vettoriale globale suT'M. Per far cio basta far vedere che per ognip € M,
veT,Mef e Cyy(~v) il numero G(v)(f) & indipendente dalle coordinate. Basta quindi dimostrare, per
esempio, che

fodv)

c)r) = M2 ),

dove f € un qualsiasi rappresentante di f. Ma infatti

d(fo6) g OF (arion+ OF
a0 = x50 + 5535 (0)
0 0 o
= a—fze(”)”’“ - a—zf;@)% (p)'v? = G()(f),
e ¢l siamo. -

Definizione 5.1.3: Sia V una connessione lineare su una varieta M. Il campo G € 7 (T'M) definito localmente
da (5.1.4) & detto campo geodetico, e il suo flusso flusso geodetico.

La conseguenza principale di questo risultato e che ci permette di applicare il Teorema 3.3.4 allo studio
delle geodetiche, e quindi di controllare simultaneamente il comportamento di tutte le geodetiche uscenti da
un unico punto. Per enunciare al meglio questo risultato, ci servono un lemma e una definizione.
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Lemma 5.1.3: Sia V una connessione lineare su una varieta M, p € M, v € T,M ec, t € R. Allora si ha
Oeo(t) = oy(ct) (5.1.5)

non appena uno dei due membri & definito.

Dimostrazione: Se ¢ = 0 non c¢’¢ nulla da dimostrare. Se ¢ # 0, cominciamo col dimostrare che (5.1.5) vale
non appena oy (ct) esiste. Poniamo (t) = 0, (ct); chiaramente 5(0) = p e 5(0) = cv, per cui basta dimostrare
che ¢ & una geodetica. Ma infatti se indichiamo con D la derivata covariante lungo & abbiamo

d

Di& = p

() +TE(6(1) 5" (1)o7 (t)| Ok = [P6L(ct) + °T%; (v (ct)) 5% (ct) 53 (ct) |0 = 2 Dey6ry = O,
e ci siamo.

Infine, supponiamo che o, (t) esista, e poniamo v = cv e s = ct. Allora 0., (t) = 0,/(c™1s) esiste, per
cui & uguale a g.-1,/(s) = g,(ct), e ci siamo. O

Definizione 5.1.4: Sia V una connessione lineare su una varieta M. Il dominio della mappa esponenziale &
I'insieme
E={veTM| o, ¢ definita in un intervallo contenente [0,1]} C TM.

La mappa esponenziale exp:E — M di V & allora definita da exp(v) = 0,(1). Inoltre, se p € M scrive-
remo &, = ENT,M e exp, = exp]|e,.

Il motivo per cui quest’applicazione si chiama “esponenziale” si puo far risalire al seguente esercizio (ma
vedi anche il Teorema 5.4.7 piu oltre):

Esercizio 5.1.1. Consideriamo R™ con la metrica ||t||, = h~!|¢| per ogni h € R e t € T;,RT, dove abbiamo
identificato T, R™ con R come al solito. Dimostra che expy,: T,RT — R & data dalla formula expy, (t) = he'.

Il Teorema 3.3.4 ci fornisce allora le seguenti proprieta della mappa esponenziale:

Teorema 5.1.4: Sia V una connessione lineare su una varieta M. Allora:

(i) L’insieme & é un intorno aperto della sezione nulla di TM, e ciascun &, é stellato rispetto all’origine.
(ii) Per ogni v € TM la geodetica massimale o, ¢ data da

ou(t) = exp(tv)

per tutti i t € R per cui uno dei due membri é definito.
(iii) La mappa esponenziale & di classe C*°.

Dimostrazione: Il Lemma 5.1.3 applicato con ¢ = 1 dice esattamente che exp(cv) = o.(1) = 0,(c) non
appena uno dei due membri ¢ definito, per cui (ii) ¢ soddisfatta. In particolare, se 0 < ¢t < 1 e v € £ abbiamo
che exp(tv) = 0, (1) = 0, (t) € definito, per cui ciascun &, & stellato rispetto all’origine.

Ora, per la Proposizione 5.1.2 le geodetiche di V sono la proiezione delle traiettorie del campo geode-
tico G. Indichiamo con I':U4 — T'M il flusso del campo geodetico che, grazie al Teorema 3.3.4, & definito
in un intorno aperto U di {0} x TM in R x TM. In particolare, v € £ se e solo se (1,v) € U; ma allora si
ha & = mo (U N ({1} x TM)), dove m: R x TM — TM ¢ la proiezione sulla seconda coordinata, per cui &
e aperto. Infine, sempre per il Teorema 3.3.4 il flusso di G ¢ di classe C*°, per cui la mappa esponenziale,
essendo data dalla formula exp(v) = m2(I'(1,v)), & anch’essa di classe C. O

Essendo la mappa esponenziale differenziabile, possiamo calcolarne il differenziale. In particolare, &
interessante considerare d(expp)o:TO(TpM ) — T, M; infatti, essendo T, M uno spazio vettoriale, possiamo
identificare canonicamente To (7, M) con T, M, per cui d(exp,)o risulta essere un endomorfismo di 7, M.
Ed & un endomorfismo molto particolare:
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Proposizione 5.1.5: Sia V una connessione lineare su una varieta M, e p € M. Allora d(expp)o =id. In
particolare, esistono un intorno U di O in T,M e un intorno V di p in M tali che exp, ly:U — V sia un
diffeomorfismo.

Dimostrazione: Dato v € To(T,M) = T, M, una curva in T,,M che parte da O tangente a v & y(t) = tv.
Allora

d d .
d(exp,)o(v) = 7 XPp (v(1)) == exp,, (tv) =6,(0) = v.
t=0 t=0
La seconda affermazione segue dal teorema della funzione inversa. O

Definizione 5.1.5: Sia V una connessione lineare su una varieta M, e p € M. Un intorno aperto V di p in M
diffeomorfo tramite exp, a un intorno stellato U di O in T, M & detto intorno normale di p.

Tutto quanto visto finora chiaramente si applica anche alla connessione di Levi-Civita di una varieta
Riemanniana. Inoltre, in questo caso possiamo introdurre le definizioni seguenti:

Definizione 5.1.6: Sia V la connessione di Levi-Civita di una varieta Riemanniana (M,g), e p € M. Indi-
chiamo con B.(0O,) C T,M la palla aperta rispetto alla metrica g di centro lorigine e raggio ¢ > 0 in T, M.
1l raggio d’iniettivita injrad(p) € RT di M in p & definito da

injrad(p) = sup{e > 0 | exp,, ristretto a B.(O,) ¢ un diffeomorfismo con I'immagine}.

La palla geodetica B:(p) di centro p e raggio 0 < e < injrad(p) in M & l'intorno normale di p della
forma exp, (B:(0,)). 1l suo bordo dB:(p) = exp,, (0B:(0y)) & detto sfera geodetica. Le geodetiche in Be(p)
uscenti da p sono dette geodetiche radiali. Se {E1,...,E,} ¢ una base ortonormale di T,M, e x: T,M — R"
¢ l'isomorfismo dato dalle coordinate rispetto a questa base, allora le coordinate ¢ = x o exp,, L. B.(p) — R"
sono dette coordinate normali centrate in p.

Il raggio d’iniettivita chiaramente dipende dal punto. Non & necessariamente continuo, ma ha estremo
inferiore strettamente positivo sui compatti. Per dimostrarlo, introduciamo la seguente

Definizione 5.1.7: 1l raggio d’iniettivita di un sottoinsieme C' C M ¢ il numero
injrad(C) = inf{injrad(q) | ¢ € C}.

Diremo che un aperto W C M & uniformemente normale se ha raggio d’iniettivita positivo. In altre parole,
esiste 0 > 0 tale che exp, ¢ un diffeomorfismo in Bs(O,) per ogni g € W.

Allora

Proposizione 5.1.6: Sia V la connessione di Levi-Civita di una varietd Riemanniana (M,g). Allora
ogni p € M ha un intorno uniformemente normale W.

Dimostrazione: Dati un intorno V di p e § > 0, gli insiemi
Vs={veTM|q=mn(v) Vv, <d},

dove, come al solito, m: TM — M e la proiezione canonica, formano un sistema fondamentale d’intorni di O,.
Siccome O, € &£, possiamo trovare V' e d; > 0 tali che V5, C £.

Sia E: Vs, — M x M data da E(v) = (7(v), exp,(,)(v)); cominciamo col dimostrare che E & invertibile
in un intorno di O,,.

A meno di restringere V, possiamo supporre che sia il dominio di una carta locale ¢ = (a!,... 2")
centrata in p. Come gia visto nel corso della dimostrazione della Proposizione 5.1.2, ¢ induce coordinate
locali ¢ = (z',...,z™;v',...,v") in Vj,. Unabase diTo, Vs, ¢ quindi {0/8z',...,0/02™,0/0v',...,0/0v"}.
Una curva 7 in Vs, con ¥(0) = O, e %(0) = 8/0v’|o, & ¥(t) = t0/027|,. Quindi

d . 0
= — (p,exp,(t9/0xp)) T (Opv Ee

dt

i, (1) - A0

t=0
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D’altra parte, una curva 7 in Vs, con 7(0) = O, e 7(0) = 8/dx7|o, & 7(t) = Oexp, (t8/0xi],); quindi
0 d j
dEOp @ = E (epr<t 6/856 |;D)7 expexpp(t 0/0x7|p) (O)) —0

_[2
0 oI » '

Quindi dFo,, mandando una base di Tp,, Vs, in una base di T}, M x T}, M, ¢ non singolare, per cui esistono
un intorno W C V.dipeun 0 < § < 4, tali che Ely, sia un diffeomorfismo. Ma questo implica in particolare
che per ogni ¢ € W la mappa esponenziale exp,: Bs(O,) — Bs(q) ¢ un diffeomorfismo, e ci siamo. ]

0

, —
J
» ox

d . .
= (expp(t 0/0z7|,), expp(t 0/0x? |p))

Corollario 5.1.7: Sia M una varieta Riemanniana. Allora ogni K C M compatto ha raggio d’iniettivita
positivo.

Dimostrazione: La proposizione precedente ci fornisce per ogni p € K un 4, > 0 e un intorno W,, di p tali
che injrad(q) > 6, per ogni ¢ € W,,. Sia {W,,,,...,W,, } un sottoricoprimento finito di K; allora

injrad(K) > min{dp,,...,0p, } > 0.

O

Esercizio 5.1.2. Dimostra che un’isometria locale fra varietad Riemanniana manda geodetiche in geodetiche,
nel senso che se H: M — N & un’isometria locale allora ¢: I — M & una geodetica in M se e solose Hoo ¢
una geodetica in N.

Esercizio 5.1.5. Sia (M, g) una varietd Riemanniana, e sia E: & — M x M data da E(v) = (7(v), exp(v)),
dove m: TM — M ¢ la proiezione canonica. Dimostra che dE, ¢ invertibile se e solo se d(exp,,), & invertibile,
dove p = w(v).

Esercizio 5.1.4. Date due connessioni lineari V e V su una varieta M, siano B, S, A: T(M)xT (M) — T (M)
definite da B(X,Y) =VxY — VxY,

S(X,Y)=>(B(X,Y)+ B(Y,X)) e A(X,Y)==(B(X,Y)- B(Y,X)).

N
N —

Indichiamo inoltre con 7 la torsione di V, e con 7 la torsione di V.

(i) Dimostra che B, S, A € T,}(M).

(ii) Dimostra che 24 =7 — 7.

(iii) Dimostra che le seguenti affermazioni sono equivalenti:
(a) V e V hanno le stesse geodetiche (cioé ogni geodetica di V & anche geodetica di V, e viceversa);
(b) B(v,v) = O per ogni v € TM;
(¢) S=0;
(d) B=A.

(iv) Dimostra che V e V hanno le stesse geodetiche e la stessa torsione se e solo se V = V.

(v) Dimostra che esiste un’unica connessione simmetrica V* che ha le stesse geodetiche di V.

Definizione 5.1.8: Diremo che due connessioni V e V su una varietd M sono riferite proiettivamente se per
ogni geodetica o: I — M di V esiste un diffeomorfismo h: J — I tale che ¢ o h sia una geodetica di V.

Esercizio 5.1.5.  Dimostra che due connessioni simmetriche V e V su una varietd M sono riferite proietti-
vamente se e solo se esiste una 1-forma ¢ € A'(M) tale che V — V = ¢ ® id + id ®¢.
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5.2 La distanza Riemanniana

In questo paragrafo dimostreremo che una varieta Riemanniana € in maniera canonica uno spazio metrico;
vedremo poi che le relazioni fra le proprieta topologiche della distanza canonica e le proprietd geometri-
che della varieta sono estremamente interessanti. Cominciamo con delle definizioni che ci serviranno per
introdurre la distanza.

Definizione 5.2.1: Una curva continua o: [a,b] — M in una varieta M ¢ detta regolare a tratti se esiste una
suddivisione a = to < t; < --- < t; = b di [a,b] tale che oy, _, ) sia di classe C> e regolare (cioe con
vettore tangente mai nullo) o costante per j =1,...,k.

Definizione 5.2.2: Sia o:]a,b] — M una curva regolare a tratti in una varietd Riemanniana (M,g). La
lunghezza d’arco di o ¢ la funzione

s(t) = / 16 loa s

dove || - ||, ¢ la norma di 7, M indotta da g. La Iunghezza di o ¢

b
L(o) = [ 16}l du

Diremo che ¢ ¢ parametrizzata rispetto alla lunghezza d’arco se ||6(u)||s(uy) = 1 quando &(u) ¢ definito; in
particolare, o non ha tratti costanti, e s(t) =t — a.

FEsercizio 5.2.1. Se o:[a,b] — M & una curva regolare a tratti con & # O dove definito, di lunghezza ¢,
dimostra che esiste un omeomorfismo C* a tratti h: [0, £] — [a, b] tale che o o h sia parametrizzata rispetto
alla lunghezza d’arco. (Suggerimento: h™1 & la lunghezza d’arco di o.)

FEsercizio 5.2.2. Sia H:M — N una isometria locale fra varietd Riemanniane, e o:[a,b] — M una curva
regolare a tratti. Dimostra che la lunghezza di ¢ in M ¢ uguale alla lunghezza di H oo in N.

Definizione 5.2.3: Sia (M, g) una varietd Riemanniana (connessa). La funzione d: M x M — R* data da
d(p,q) = inf{L(0) | 0:[a,b] — M & una curva regolare a tratti con o(a) =p e o(b) = q}

e detta distanza Riemanniana su M indotta da g.

Proposizione 5.2.1: Sia (M, g) una varietd Riemanniana connessa. Allora la funzione d: M x M — RT
appena definita e una distanza che induce la topologia della varieta.

Dimostrazione: Dalla definizione ¢ chiaro che d(p,q) = d(q,p) > 0 e che d(p,p) = 0. La disuguaglianza
triangolare segue (esercizio) dal fatto che possiamo combinare una curva regolare a tratti da p; a ps con una
da po a p3 ottenendo una curva regolare a tratti la cui lunghezza e la somma delle lunghezze delle prime due
curve.

Rimane da dimostrare che se p # ¢ allora d(p,q) # 0, e che la topologia indotta da d & quella della
varieta. Scegliamo p € M, e sia @: Bo.(p) — B2.(0) C R"™ un sistema di coordinate normali centrato in p,
dove Ba-(O) ¢ la palla di centro lorigine e raggio 0 < 2e < injrad(p) in R" rispetto alla norma euclidea || - ||o.
Indichiamo con gy la metrica Riemanniana su Ba.(p) indotta tramite ¢ dalla metrica euclidea di R": in altre
parole, se ¢ € Ba.(p) e v € T;M la norma di v rispetto a go ¢ data da

[0llo.q = lldepq () llo-

In particolare, se Lo(o) & la lunghezza rispetto a gg di una curva regolare a tratti o: [a,b] — Bac(p), abbiamo

Lo(0) = Lo(p o o) > ||¢(o (b)) — ¢(o(a)], (5.2.1)

dove Lo(p o o) & la lunghezza euclidea della curva ¢ o o.
Ora, l'insieme

K={veT,M|qe B:p), |[vllog=1} CTM
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¢ chiaramente compatto; quindi se poniamo
Cp = ulglf( HvH'fr(v) < 32113 ||v||7r(v) = va

dove m: TM — M ¢ la proiezione canonica, € || - ||, € la norma su T, M indotta dalla metrica Riemanniana g,
abbiamo 0 < ¢, < C), < +c0 e
cpllvllog < lvllg < Cpllvlog

per ogni ¢ € B:(p) e v € T;M. Dunque se ¢ & una curva regolare a tratti la cui immagine & contenuta

in B.(p) otteniamo
cpLo(o) < L(o) < CpLy(0). (5.2.2)

Se q # p possiamo scegliere e > 0 in modo che g ¢ B.(p). Quindi ogni curva regolare a tratti o: [a, ] — M
da p a ¢ deve intersecare la sfera geodetica B (p) in un primo punto o(¢g), per cui (5.2.1) e (5.2.2) danno

L(0) = L(0{aty) = ¢p Lo(0|ja10]) = cp ||e(0(t0)) || = cpe > 0. (5.2.3)

Siccome questo vale per ogni curva regolare a tratti o otteniamo d(p,q) > c,e > 0, come voluto.

Rimane da far vedere che la topologia di M e quella indotta dalla distanza d coincidono. Siccome le
palle geodetiche B.(p) formano un sistema fondamentale di intorni di p per la topologia di M, e le palle
metriche B(p, §) formano un sistema fondamentale di intorni per la topologia metrica, & sufficiente far vedere
che

B(p,cye) € Ba(p) C B(p, Cpe)

per ogni € > 0 abbastanza piccolo.

Prendiamo ¢ € B.(p), e sia 0:[0,1] — B:(p) la geodetica radiale da p a ¢ parametrizzata rispetto alla
lunghezza d’arco misurata con gg. In altre parole, o(t) = ¢~ !(tv) per un opportuno v € R™ di lunghezza
unitaria, per cui ! < € e quindi

d(p,q) < L(0) < CpLo(0) = Cpl < Cpe,

da cui segue B:(p) C B(p, Cpe).

Viceversa, sia ¢ € B(p, cpe), per cui esiste una curva regolare a tratti o da p a ¢ di lunghezza strettamente
minore di cpe. Se fosse ¢ ¢ B,(¢), la (5.2.3) darebbe L(o) > ¢,e, contraddizione. Quindi B(p, ¢ye) C Be(p),
e abbiamo finito. ]

Osservazione 5.2.1. Faremo vedere fra poco che in realta B.(p) = B(p,¢) per ogni 0 < € < injrad(p).
Le curve che realizzano la distanza meritano chiaramente un nome particolare.

Definizione 5.2.4: Una curva regolare a tratti o:[a,b] — M ¢ detta minimizzante se ha lunghezza mi-
nore o uguale a quella di qualsiasi altra curva regolare a tratti con gli stessi estremi, ovvero se e solo
se d(o(a),o(b)) = L(o). La curva o ¢ localmente minimizzante se per ogni t € [a,b] esiste € > 0 tale
che o[[;_c 14+ ¢ minimizzante (con le ovvie convenzioni se t = a o t = b).

Ovviamente, ogni curva minimizzante & anche localmente minimizzante (perché?); il viceversa & falso
(un esempio ¢ dato dai cerchi massimi sulla sfera: vedi 'Esempio 5.4.2).

Il nostro obiettivo ora e dimostrare che una curva e localmente minimizzante se e solo se e una geodetica,
che ¢ il risultato che fornira il legame fra la distanza Riemanniana e la geometria della varieta.

Cominciamo con l'osservare che tutte le geodetiche non costanti sono parametrizzate rispetto a un
multiplo della lunghezza d’arco, e quindi sono in particolare curve regolari:

Lemma 5.2.2: Se 0:1 — M ¢é una geodetica di una varieta Riemanniana M allora ||6| & costante. In
particolare, o & sempre (costante oppure) regolare.

Dimostrazione: Infatti, indicata con D la derivata covariante lungo o, abbiamo

d,. . sy
E<J, o) =2(Dg,c) = 0.
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Abbiamo introdotto in precedenza il concetto di campo vettoriale lungo una curva liscia. Nel seguito ci
servira ’analogo concetto per curve regolari a tratti:

Definizione 5.2.5: Sia o:[a,b] — M una curva regolare a tratti. Un campo vettoriale X lungo o & dato da:
(a) una suddivisione a = to < t; < --- < t, = b di [a,b] tale che 0|, , 4, sia di classe C> per j =1,..., h;
(b) campi vettoriali X|j,_, .)€ T(cly, ;) perj=1,...,h.

Se i vari campi vettoriali si raccordano con continuita nei punti interni ¢y, . .., tx_1 della suddivisione, diremo
che X & un campo continuo. Lo spazio dei campi vettoriali lungo o & ancora indicato con 7 (¢). Infine, un
campo vettoriale X € T (o) lungo o ¢ detto proprio se X(a) = X (b) = O.

Osservazione 5.2.2. Notiamo esplicitamente che non tutti i campi vettoriali X € 7 (o) sono continui;
per esempio, il vettore tangente di una curva regolare a tratti non liscia € un campo vettoriale non continuo
lungo la curva.

Per stabilire se una curva ¢ minimizzante o meno, dovremo confrontare la sua lunghezza con quella di
curve vicine. Il concetto di “curve vicine” & formalizzato nella seguente

Definizione 5.2.6: Sia o:[a,b] — M una curva regolare a tratti. Una variazione di o ¢ un’applicazione
continua X: (—¢,¢€) X [a,b] — M tale che, posto o5 = X(s, ), si ha

(i) o0 =03
(ii) cilascuna curva principale o4 € una curva regolare a tratti;
(iii) esiste una suddivisione a = to < t; < -+ < t; = b di [a,b] (detta suddivisione associata a X) tale

che ¥ oyxpt e di classe C>®° per j=1,...,k.

i—1:t5]
Le curve trasverse alla variazione sono le curve o! = ¥(-, 1), e sono tutte curve di classe C*°. Infine, una

variazione ¥ & detta propria se os(a) = o(a) e o4(b) = o(b) per ogni s € (—¢,¢).
I vettori tangenti ci forniscono due campi vettoriali lungo le curve principali e trasverse di una variazione:

Definizione 5.2.7: Sia X: (—¢,¢) X [a,b] — M una variazione di una curva regolare a tratti o:[a,b] — M.
Allora poniamo

) 0 o
S(S,t) = O't(S) = dz(s,t) <£> = E(S,t)
per ogni (s,t) € (—¢,¢) X [a,b], e
. 0 15)
T(S7t) = O-s(t) = dz(s,t) (a) = E(Sat)
per ogni (s,t) € (—e,e) X [tj_1,t;]ej=1,...,k—1,dovea =ty < t; <--- < tx = b & una suddivisione asso-

ciata a X. In particolare, i campi ¢t — S(s,t) e t — T'(s,t) sono campi vettoriali lungo o, e i campi s — S(s,t)
e s — T(s,t) sono campi vettoriali lungo o*. Infine, il campo variazione di ¥ ¢ V = S(0,-) € T (o).

Il campo variazione € un campo continuo lungo o. Viceversa, dato un campo vettoriale continuo lungo
una curva regolare a tratti possiamo trovare una variazione che abbia quel campo come campo variazione:

Lemma 5.2.3: Sia o0:[a,b] — M una curva regolare a tratti, e V € T (o) un campo continuo. Allora esiste
una variazione Y. di o con V come campo variazione. Inoltre, se V é proprio si puo trovare Y. propria.

Dimostrazione: Essendo [a, b] compatto, il raggio d’iniettivita & del sostegno di o & strettamente positivo, e
il massimo M di ||[V(t)||s(;) ¢ finito. Se e = §/M > 0, allora I'applicazione (s, t) = exp(sV (t)) & definita
su (—e,¢) X [a,b], e quindi & una variazione di . Siccome

0
S(0,t) = s exp(sV(t)) =d(exp)o,,, (V(t) = V(1)
s=0
il campo variazione coincide con V. Infine, se V(a) = V(b) = O & evidente che ¥ & propria. 0

Nel seguito ci servira il seguente lemma elementare ma fondamentale:
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Lemma 5.2.4: Sia X: (—¢,¢) X [a,b] — M una variazione di una curva regolare a tratti o: [a,b] — M in una
varieta Riemanniana M. Allora su ogni rettangolo (—e,e) x [t;_1,t;] su cui ¥ & di classe C* si ha

DT = D,S,

dove Dy é la derivata covariante lungo le curve trasverse, e D; quella lungo le curve principali.

Dimostrazione: Basta fare il conto in coordinate locali. Scrivendo

ox? o
S(Sat) = Js (S7t) ai|2(s,t)a T(Sat) = W(svt) aj|2(s,t)7
la formula (4.3.2) da
9?xF oxt 9%
DT = FoX —
: {058t+( i ° 2, m]akb
9*sk %t o%7
[81&85 e )5 5 ] el = Di5,
grazie alla simmetria della connessione di Levi-Civita. ]
Definizione 5.2.8: Sia o:[a,b] — M una curva regolare a tratti, e a = to < 1 < -+ < t = b una sud-
divisione di [a,b] tale che o sia di classe C* in ciascun intervallo [t;_1,%;]. Allora per j = 0,...,k defi-

niamo A;é € T, ()M ponendo Ags = &(a), Axo = —d(b) e

Ao = c'f(tj) —o(ty)

7) =lim,_,- o(t).

per j =1,....k—1, dove ¢(t]) = lim,_,+ 6(t), e o(t :
J J

E ora siamo in grado di dimostrare una formula importante:

Teorema 5.2.5: (Prima variazione della lunghezza d’arco) Sia o:[a,b] — M una curva regolare a tratti
parametrizzata rispetto alla lunghezza d’arco in una varieta Riemanniana M, e 3: (—¢,¢) X [a,b] — M una
sua variazione con suddivisione associata a = tg < t; < .-+ < t = b. Indichiamo con V € T (o) il campo
variazione di ¥, e definiamo la funzione L: (—e,e) — R ponendo L(s) = L(o). Allora

b k
%(0) = */ (V(t), Do) dt — > (V(t;),A;6). (5.2.4)
a =0

Dimostrazione: In un intervallo [t;_1,t;] dove tutto & di classe C'*° abbiamo

4 o] = [0 2 mra [T L prma= [T L sy
ds Nl st B/ [ A A ) Rt

j—

dove abbiamo usato il Lemma 5.2.4. Ponendo s = 0 e ricordando che S(0,t) = V(¢), T(0,t) = &(t) e ||o|| = 1,

otteniamo
d L bTd
wtole )| = [ ovema= [T we - .00 @
S s=0 tj—1 ti—1 dt
tj
= (V(t):6(65) = (V). 5050) = [ (VD). D).
tj—1
Sommando su j otteniamo la tesi. ]

Siamo ora in grado di dimostrare che ogni curva localmente minimizzante ¢ una geodetica:
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Teorema 5.2.6: Ogni curva localmente minimizzante parametrizzata rispetto alla lunghezza d’arco in una
varieta Riemanniana € una geodetica — e quindi in particolare é di classe C™°.

Dimostrazione: Siccome l’enunciato € locale, possiamo supporre che o: [a,b] — M sia una curva regolare a
tratti minimizzante parametrizzata rispetto alla lunghezza d’arco; dobbiamo dimostrare che & una geodetica.
Essendo una curva minimizzante, dL(o)/ds(0) = 0 per ogni variazione propria ¥ di o; quindi il Lemma 5.2.3
ci assicura che il secondo membro di (5.2.4) & nullo per ogni campo vettoriale V' proprio lungo o.

Siaa =ty < t; < --- < tx = b una suddivisione di [a,b] tale che o sia di classe C*° in ciascun
intervallo [t;_1,t;], e sia x; € C°°(R) una funzione tale che x; > 0 in (t;_1,t;) e x; = 0 altrove. Allora
(5.2.4) con V = x,; D¢ diventa

tj
0=~ [ Dl

ti1
per cui D& = 0 in ciascun intervallo [t;_1,t;], e quindi ¢ & una geodetica all'interno di ciascuno di questi
intervalli.

Ora vogliamo dimostrare che Aj6 = O per j = 1,...,k — 1. Ma infatti basta prendere un campo
vettoriale V € 7T (o) tale che V(t;) = Ajo e V(t;) = O per i # j; in tal caso (5.2.4) si riduce a 0 = —||A;5||%,
e ci siamo.

Dunque ¢ ¢ continuo; per I'unicita delle geodetiche tangenti a una data direzione otteniamo che o}, ;
¢ la continuazione di U\[t]»,l,tj] per j—1,...,k—1, e quindi o ¢ liscia e una geodetica dappertutto.

j+1]

In realta abbiamo dimostrato qualcosina di pit.

Definizione 5.2.9: Diremo che una curva regolare a tratti o:[a,b] — M in una varietd Riemanniana M ¢ un
punto critico del funzionale lunghezza se

per ogni variazione propria X di o.
Allora la dimostrazione del teorema precedente implica chiaramente il

Corollario 5.2.7: Una curva regolare a tratti parametrizzata rispetto alla lunghezza d’arco in una varieta
Riemanniana é un punto critico del funzionale lunghezza se e solo se é una geodetica.

Il nostro prossimo obiettivo & dimostrare il viceversa del Teorema 5.2.6, cioé dimostrare che ogni geo-
detica ¢ localmente minimizzante. Per far cio ci serve il seguente

Lemma 5.2.8: (Gauss) Sia M una varieta Riemanniana, p € M ev € &,. Allora si ha

(d(expy)o(0), dexp)o (1) exp, (o) = (0, 0), (5.2.5)

per ogni w € T,M, dove abbiamo identificato come al solito T,,(T,M) con T, M.

Dimostrazione: Cominciamo a dimostrare (5.2.5) per w = v. Una curva in T, M passante per v e tangente
av e 7(t) =+ tv; quindi

d d
d(exp, ), (V) = — ex v = —o0y, = 0,(1), 2.
(e,)ul0) = exp,(1400)| = Foul+0)| =) (5.2.6)

dove come sempre o, denota la geodetica massimale con 0,(0) = p e 6,(0) = v. Quindi

<d(epr)v(U)7d(epr)v(U»expp(v) = Hdv(l)llfrv(l) = <U7U>pv

perché, grazie al Lemma 5.2.2, [|6,(1) ||, (1) = [|05(0) |6, 0) = I[v]lp-
Per la linearita di d(expp)v ci basta allora dimostrare che se w € perpendicolare a v allora

(d(expy)u(v), d(expy)o (W) exp, ) = 0-



5.2 La distanza Riemanniana 107

Siccome (w,v), = 0, il vettore w, considerato come vettore in T, (T, M), & tangente in v alla sfera 9B, (Op)
di centro l'origine e raggio ||v||,. Quindi possiamo trovare una curva 7:(—¢,e) — T,M con 7(0) = v,
7(0) = w e [|[7(s)|lp = ||v]lp. Siccome v € &,, possiamo supporre che 7(s) € &, per ogni s, e definire una
variazione X: (—¢,¢) x [0,1] — T,M di o, ponendo

Y(s,t) = exp, (tr(s)).

Notiamo esplicitamente che le curve principali di ¥ sono geodetiche, che ¥(0,1) = exp,(v), e che

T(0,1) = d(expp)v(v) = d,(1), S5(0,1) = % epr(T(S)) B = d(expp)v(w),

per cui ci basta dimostrare che (T'(0, 1), 5(0, 1))expp(v) = 0. Ora,

0 10
§<T7 S)s = (DT, S)s + (T, DS)s = (T, D;T)s = §£HT||22 =0,

dove abbiamo usato: D;T = O, in quanto ciascuna o, € una geodetica; il Lemma 5.2.4; e

1T (s, )5,y = 65D lloaty = 65 O)lp = [I7(5)llp = [|v]lp-

Dunque (T, S)s non dipende da t; e quindi
<T(07 1)7 S(Ov 1)>expp(v) = <T(07 O)v S(O’ 0)>P =0,

in quanto ¢ = p implica S(0,0) = 5°(0) = O,,. O
Vogliamo dare un’interpretazione piu geometrica di questo risultato.

Definizione 5.2.10: Sia B.(p) C M una palla geodetica di centro p in una varietd Riemanniana M, dove ¢ ¢
tale che 0 < ¢ < injrad(p), e poniamo B*(p) = B-(p) \ {p}. Indichiamo con r: B.(p) — R™ la funzione data
dar(q) = [|exp,*(q)|l, per ogni ¢ € B:(p). Chiaramente, r € C*° (B (p)). Il campo radiale d/0r € T (B (p))
¢ il gradiente di r:

| = (o)

per ogni g € BX(p).

Osservazione 5.2.3. Dimostreremo fra poco che r: B.(p) — R* & la distanza Riemanniana dal punto p;
nota nel frattempo che Bs(p) = 771([0,6)) per ogni 0 < § < e.

Proposizione 5.2.9: Sia B.(p) una palla geodetica in una varieta Riemanniana M. Allora:

(i) per ogni q = exp,(v) € BZ(p) si ha

0 v (1) .

91 dexp,). (—) _ o) (ol

or|, P\ Tolly) — T, — /Il
e in particolare, ||0/0r|| = 1;

(ii) le geodetiche radiali uscenti da p parametrizzate rispetto alla lunghezza d’arco sono le traiettorie di 8 /0r;
(iii) il campo radiale é ortogonale alle sfere geodetiche OBgs(p) contenute in B.(p).

Dimostrazione: (i) Prima di tutto, derivando 'uguaglianza o, ||, (t) = 0. (t/||v[|,) otteniamo

ou(1).

lvllp°

o/, (I0lp) =
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quindi, ricordando la (5.2.6), rimane da dimostrare solo che
. 1 N
AT exp,, (v) (W) = o (d(exp,) o (V), Wexp, (v) (5.2.7)
P

per ogni v € B:(Op), v # Op, e ogni @ € Ty, (1) M.

Ora, ogni w € T, yM & della forma w = d(exp,),(w) per un unico w € T, M, in quanto exp,, & un

xp,, (v

diffeomorfismo fra B.(O,) e B:(p) — e stiamo identificando T, (T, M) con T,M come al solito. Dunque

. v,w
rexp, () () = drexp, (v) (d(exp,)y (w)) = d(r o exp,)y (w) = <||v|| .
P
dove l'ultima eguaglianza segue da roexp,, = || ||,,, e quindi (5.2.7) & esattamente equivalente al Lemma 5.2.8.

(ii) Se ¢ = exp,(v) € B(p), la geodetica radiale parametrizzata rispetto alla lunghezza d’arco uscente
da p passante per g ¢ esattamente t — o, /|, (t), e raggiunge g per t = ||v||,. La tesi segue allora da (i).

(iii) Siccome dB;(p) = exp,(0B5(0,)), i vettori tangenti a dBs(p) in ¢ = exp,(v) sono esattamente
I'immagine tramite dexp,, dei vettori tangenti a 0Bs(0p) in v, i quali sono proprio i vettori ortogonali a v.
La tesi segue allora dal Lemma 5.2.8. ]

E ora siamo arrivati al cruciale

Teorema 5.2.10: Sia (M, g) una varieta Riemanniana, p € M e 0 < € < injrad(p). Allora:

(i) Se q appartiene a una palla geodetica B.(p) di centro p, allora la geodetica radiale da p a q & 'unica (a
meno di riparametrizzazioni) curva minimizzante da p a q.
(ii) La funzione r introdotta nella Definizione 5.2.10 coincide con la distanza Riemanniana dal punto p, per
cui ogni palla geodetica B (p) & la palla di centro p e raggio € per la distanza Riemanniana di M.
(iii) Ogni geodetica di M & localmente minimizzante.

Dimostrazione: (i) Sia o0:[0,f] — M la geodetica radiale da p a ¢ parametrizzata rispetto alla lunghezza
d’arco, per cui o(t) = expp(tv) per un opportuno vettore v € T, M di lunghezza unitaria. Siccome si
ha L(c) = ¢ = r(q), dobbiamo dimostrare che ogni altra curva regolare a tratti da p a ¢ ha lunghezza
maggiore o uguale a £, e uguale a £ se e solo se € una riparametrizzazione di o.

Sia 7:[a,b] — M una curva regolare a tratti da p a ¢ parametrizzata rispetto alla lunghezza d’arco, e
supponiamo per il momento che 'immagine di 7 sia tutta contenuta in B.(p). Chiaramente, possiamo anche
supporre che 7(t) # p per t > a. Per la proposizione precedente possiamo scrivere 7 in tutti i punti in cui
esiste come

per un’opportuna funzione « e un’opportuno campo w € 7 (1), con la proprieta che w(t) & tangente alla
sfera geodetica passante per 7(t). Siccome questa ¢ una decomposizione ortogonale abbiamo

1712 = la®) + [w®)]* = |at)]*.
Inoltre, siccome le sfere geodetiche sono le ipersuperfici di livello della funzione r, abbiamo dr(w) = 0, e

quindi
a(t) = dr(7(t)).

Di conseguenza

b b b b ror
L) = [prlaz [Calaz [CaGoya= [ 2D =0 - )=,

a

come voluto. Inoltre, si ha uguaglianza se e solo se 7 & un multiplo positivo di 9/9r; essendo entrambi di
lunghezza unitaria, dobbiamo avere 7 = (9/0r) o 7. Quindi sia 7 che o sono traiettorie di 9/0r passanti
per ¢ al tempo t = ¢, e quindi 7 = 0.
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Infine, se 7: [a,b] — M & una qualsiasi curva regolare a tratti da p a g, sia ag € [a, b] 'ultimo valore ¢ per
cui 7(t) = p, e by € [a,b] il primo valore t > ag tale che 7(t) € B.(p), se esiste; altrimenti poniamo by = b.
Chiaramente, la curva 7|, 5, ha supporto contenuto in B.(t) tranne eventualmente per il punto finale;
siccome

L(7) = L(7{ag,bo])
con eguaglianza se e solo se ag = a e by = b, la tesi segue allora da quanto gia visto.

(ii) Se ¢ € Be(p), esiste un unico v € B:(0)) tale che ¢ = exp,(v), e la geodetica minimizzante da p a ¢
parametrizzata rispetto alla lunghezza d’arco € o, |,|,- Quindi 7(q) = [[v|, = L(ow /v, |[0,)0],]) = d(p,q), e
r coincide con la distanza Riemanniana da p. In particolare, B.(p) & contenuta nella palla B(p, e) di centro p
e raggio ¢ per la distanza Riemanniana. Viceversa, se ¢ € B(p,e) deve esistere una curva ¢ da p a ¢ di
lunghezza minore di €; ma abbiamo visto che ogni curva che esce da B:(p) deve avere lunghezza almeno
uguale a g, per cui ¢ € B.(p), e ci siamo.

(iii) Sia 0:1 — M una geodetica massimale parametrizzata rispetto alla lunghezza d’arco, ty € I
e p = o(tg). Scegliamo ¢ > 0 in modo che B.(p) sia una palla geodetica. Allora per ogni ¢ € B.(p) No(I)
la geodetica o € la geodetica radiale da p a ¢, e quindi & la curva minimizzante da p a ¢. In altre parole, o &
localmente minimizzante nell’intorno (tg — ¢,tg + €) di tp. O

5.3 Il teorema di Hopf-Rinow
Possiamo finalmente affrontare il problema di quando ’esponenziale e definito su tutto lo spazio tangente.

Teorema 5.3.1: (Hopf-Rinow) Sia M una varieta Riemanniana. Allora le seguenti condizioni sono equiva-
lenti:

(i) Ia distanza Riemanniana é completa;
per ognip € eogniv e a geodetica o, e definita su tutto IX;
i M i T,M I deti ¢ definit tutto R
(iii) per ognip € M la mappa esponenziale exp,, ¢ definita su tutto T),M;
(iv) esiste un punto p € M tale che la mappa esponenziale exp,, ¢ definita su tutto T, M;
) esiste un punto p € M tale che per ogni v € T,M la geodetica o, ¢ definita su tutto R;
(vi) ogni insieme chiuso limitato di M é compatto.

Inoltre, ciascuna di queste condizioni implica che

(vil) ogni coppia di punti di M puo essere collegata da una geodetica minimizzante.

Dimostrazione: (i) = (ii): Dobbiamo dimostrare che per ogni p € M e ogni v € T,M la geodetica o, &
definita su tutto R. Sia [0,¢y) il pit grande intervallo aperto a destra su cui o, ¢ definita, e supponiamo per
assurdo che tq sia finito. Siccome

d(0v<5)70v(t)) < L(UU|[s,t]) = ||7)|| |S - t|

perogni 0 < s <t < tg, se {tx} C [0,tg) converge crescendo a tg la successione {0, (tx)} & di Cauchy in M per
la distanza d, e quindi converge a un punto ¢ € M, chiaramente indipendente dalla successione scelta. Dunque
ponendo o,(tg) = ¢ otteniamo un’applicazione continua da [0,%o] in M. Sia U un intorno uniformemente
normale di ¢, con raggio d’iniettivita 6 > 0. Per ogni k abbastanza grande, abbiamo sia |t — to] < 0/|v||
che o, (t;) € U. In particolare, le geodetiche radiali uscenti da o, (¢x) si prolungano per una lunghezza almeno
uguale a §; siccome L(oy|, 1) = Ito — trl[|v]] < 0, la geodetica o, si prolunga oltre o, contraddizione.
Quindi ty = 400, € 0, & definita su R*. Siccome o_y(t) = g,(—t), lo stesso ragionamento applicato a o_,
dimostra che o, ¢ definita su tutto R.

(if) = (iii) e (v) = (iv): Ovvio.

(iii) = (iv): Ovvio.

(iv) = (v): Per ipotesi exp,(tv) = o4,(1) & definito per ogni v € T,M e t € R; quindi o, (t) = 0,(1) &
definito per ogni v € T,M et € R.

Introduciamo ora la condizione
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(vii") Esiste un punto p € M che puo essere collegato a qualsiasi altro punto con una geodetica minimizzante.

(v) = (vii’): Dato ¢ € M, poniamo r = d(p,q), e sia Bs.(p) una palla geodetica di centro p tale
che ¢ ¢ B:(p). Sia zy € 0B.(p) un punto in cui la funzione continua d(g,z) ammette minimo. Possiamo
scrivere x¢ = exp,(ev) per un opportuno v € T, M di norma uno; vogliamo dimostrare che o, (r) = q.

Poniamo

A={se[0,r]] d(UU(S),q) =r— s}

L’insieme A ¢ non vuoto (0 € A), ed & chiuso in [0, r]; se dimostriamo che sup A = r abbiamo finito. Sia
S0 € A minore di r; ci basta far vedere che sy + 6 € A per § > 0 abbastanza piccolo (inoltre, se sg = 0
Pargomento che stiamo per presentare dimostrera che € € A). Prendiamo una palla geodetica Bs (UU (80));
possiamo supporre che g ¢ B; (UU (80)). Per costruzione,

d(p,ou(s0)) < so = d(p,q) — d(ow(s0),q),

che & possibile se e solo se d(p, oy (s0)) = so. Sia f, € dBs(04(s0)) un punto in cui d(z, ¢) assume minimo.
Allora

r—358 = d(Jv(So),Q) <d+ d(x67Q);

d’altra parte, se 7 & una curva regolare a tratti da o,(sg) a ¢, suddividendo 7 nella parte fino all’ultima
intersezione con dB;(o,(s0)) e nel resto, si ha

L(t) > 6+ d(z,q) = 6§ + d(xy, q),

min
2€0Bs(04(s0))
per cui abbiamo
r—so=20+d(xy,q),
e quindi
d(p,xg) > d(p,q) — d(g,z5) =7 — (r — 5o — ) = s + 0.

D’altra parte, la curva & ottenuta unendo oy|j s, con la geodetica radiale da o,(sg) a zj ha lunghezza
esattamente sg 4+ 0; quindi d(p,x() = so + . In particolare, la curva & & minimizzante, per cui & una
geodetica e dunque coincide con o,. Ma allora o,(so + §) = z{, e quindi

d(UU(So + 6))Q) = d(x/05Q) =T —= (50 + 6)a

cioe sg + 6 € A, come voluto.

(v)+(vii") = (vi): basta far vedere che le palle chiuse di centro p per la distanza sono compatte. Ma
infatti coincidono, grazie a (vii') e (iv), con le immagini tramite exp,, delle palle B,.(O,), che sono compatte.

(vi) = (i): ¢ un risultato classico di topologia.

(ii) = (vii): si ragiona come in (v) = (vii’). O
Definizione 5.3.1: Una varieta Riemanniana la cui distanza Riemanniana € completa sara detta completa.
Esercizio 5.3.1. Dimostra che ogni varieta Riemanniana omogenea ¢ completa.

Come vedremo, le varieta Riemanniane complete sono ’ambiente giusto in cui studiare proprieta globali.
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EsEMPIO 5.4.1. Lo spazio euclideo. Le geodetiche di R™ rispetto alla metrica euclidea sono chiaramente le
rette. In particolare, un aperto convesso limitato di R™ mostra che in generale non ¢ vero che la condizione (v)
del Teorema di Hopf-Rinow implichi le altre.

EsEMPIO 5.4.2. La sfera. Un cerchio massimo su S} & l'intersezione di S% con un piano passante per

Porigine. Vogliamo far vedere che le geodetiche di S% sono proprio i cerchi massimi, parametrizzati rispetto
a un multiplo della lunghezza d’arco. Sia o una geodetica uscente dal polo nord N = (0,...,0,1) e tangente
al vettore 9/0z!. Se I'immagine di o non fosse contenuta nel piano 7 di equazione x? = .- = 2" = 0,
la simmetria p rispetto a questo piano (che ¢ un’isometria della metrica sferica) manderebbe o in una
geodetica p o o diversa ma sempre uscente da N e tangente a 9/dz', impossibile. Quindi I'immagine di o
dev’essere contenuta in 7, per cui ¢ necessariamente una parametrizzazione a velocita costante del cerchio
massimo SEN7. Siccome, grazie all’Esempio 4.2.4, possiamo mandare con una rotazione il vettore 9/ 0zt|y in
un qualunque vettore di 7'S% di lunghezza unitaria, e le rotazioni mandano geodetiche in geodetiche e cerchi
massimi in cerchi massimi, abbiamo finito. In particolare, abbiamo esempi di geodetiche non minimizzanti: i
cerchi massimi smettono di essere minimizzanti non appena si supera il punto diametralmente opposto. Piu
precisamente, abbiamo injrad(p) = 7R ed exp, (Bxr(0p)) = Si \ {—p} per ogni p € S%. Infine, la sfera &
per forza completa, in quanto compatta.

FEsercizio 5.4.1. Dimostra che le geodetiche dello spazio iperbolico sono: in Ug le “iperboli massime”,
cioe le intersezioni di Up con piani passanti per I'origine; in B% i diametri e gli archi di circonferenza che
intersecano 0BF ortogonalmente; in HE le semirette verticali e le semicirconferenze con centro in 0HE.
Deduci che lo spazio iperbolico & completo, che il raggio d’iniettivita di ogni punto & infinito, e che per ogni
punto p dello spazio iperbolico la mappa esponenziale ¢ un diffeomorfismo fra lo spazio tangente nel punto
e l'intero spazio iperbolico.

Esemp1io 5.4.3. I cilindro piatto. Consideriamo M = {z € R" | (#1)?2 + .-+ + (2""1)2 = 1}, con
la metrica indotta dalla metrica euclidea di R". Siccome M & omogeneo (esercizio), possiamo limitarci
a studiare le geodetiche uscenti dal punto py = (1,0,...,0). Lo spazio tangente a M in py & liper-
piano T,, M = {v € R" | v! = 0}, e un versore normale a M in R" nel puntop € M & N(p) = (p,...,p"1,0).
Sia 0: I — M la geodetica con ¢(0) = pg € 6(0) = v € T,,, M. Allora sappiamo che

‘0_1|2+._.+|0n71|2 =1, ‘é-1|2+..._|_|(';”|25 HU”Z; (5.4.1)

inoltre, siccome la connessione di Levi-Civita di M & la proiezione della connessione piatta di R", I’equazione
delle geodetiche diventa

F=ANoo (5.4.2)
per un’opportuna funzione A € C*°(I). In particolare, abbiamo subito o”(t) = v"t, e se 0, = (c1,...,0"" 1)
l’equazione (5.4.2) diventa
0o = AO,.
Derivando due volte ||o,]|? = 1 troviamo (G,, 7,)+||0,]|? = 0, per cui A = —||v,||?, dove v, = (0,02,..., 0" 1).

Mettendo tutto insieme ricaviamo

’U2 ) vn—l . N
o(t) = (cos(voﬂt)7 —||v H sm(||vo\|t),...,—||v H sin(]|ve||t), v t> .
o o

Nel resto di questo paragrafo studieremo le geodetiche di un gruppo di Lie connesso Gj fra l’altro,

daremo un’ulteriore motivazione per il nome della mappa esponenziale.
Cominciamo con una definizione cruciale:

Definizione 5.4.1: Sia G un gruppo di Lie connesso. Un sottogruppo a un parametro di G € una 0: R — G di
classe C*° che sia un omomorfismo di gruppi. In altre parole, richiediamo che 6(0) = e sia 'identita di G, e
che 0(t + s) = 0(t) - 0(s) per ogni s, t € R.
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Come vedremo, i sottogruppi a un parametro sono geodetiche per opportune connessioni lineari. Ini-
ziamo con il realizzarli come curve integrali:

Lemma 5.4.1: Sia G un gruppo di Lie, X € g e X e 7 (G) il campo vettoriale invariante a sinistra associato
a X. Allora:

(i) la curva integrale di X uscente da e ¢ un sottogruppo a un parametro di G;
(ii) viceversa, se §:R — G ¢ un semigruppo a un parametro con ¢'(0) = X, allora ¢ ¢ la curva integrale
di X uscente da e.

Dimostrazione: (i) Sia o: (—¢,¢) — G la curva integrale massimale di X uscente da e. Vogliamo dimostrare
che per ogni tg € (—¢,¢) la curva v: (—e,e) — G data da y(t) = o(tg)o(t) & una curva integrale di X uscente
da o(tp). Infatti si ha

Y () = d(Lot0)) o) (0" (1)) = d(Lo(t))oin) (X (a(8)) = X (v(1)),
come voluto. Ma 'unicita delle curve integrali ci dice che allora (t) = o(to + t), cioe
o(to +1t) = o(to)o(t)
per ogni tg, t € (—¢,¢). In particolare questo implica che € dev’essere necessariamente infinito (perché?), e

che o € un sottogruppo a un parametro.
(ii) Supponiamo che 6 sia un sottogruppo a un parametro con 6'(0) = X. Allora

d -
0'(to) = g Loy 00 = d(Lo(1))e (0'(0)) = d(Lo(iy))e(X) = X (0(t0)),
t=0
per cui 6 & la curva integrale di X uscente da e. O

In particolare, quindi, per ogni X € g esiste un unico sottogruppo a un parametro 6x:R — G tale
che 0% (0) = X: & la curva integrale di X uscente da e.

Definizione 5.4.2: Sia G un gruppo di Lie. I’applicazione esponenziale di G ¢ 'applicazione exp: g — G data
da exp(X) = 0x(1).

Osservazione 5.4.1. Se s € R, abbiamo che ¢t — 0x(st) ¢ un semigruppo a un parametro tangente
a sX in 0; quindi exp(sX) = Ox(s). In altre parole, tutti i sottogruppi a un parametro di G sono della
forma t — exp(tX) per qualche X € g.

EsemMPIO 5.4.4. Sia G = GL(n,R), per cui g = gl(n,R). Allora per ogni X € gl(n, R) possiamo definire
Papplicazione 0x:R — GL(n,R) ponendo
9X (t) = etX,

dove e!X ¢ il solito esponenziale di matrici. Si verifica subito che fx ¢ un sottogruppo a un parametro

con 0% (0) = X, per cui 'applicazione esponenziale di GL(n,R) ¢ 'usuale esponenziale di matrici. Lo stesso
argomento lo si puo applicare a GL(V'), dove V & un qualsiasi spazio vettoriale di dimensione finita, usando
come definizione di esponenziale di un endomorfismo L € gl(V') = End(V) la

oo
el = E
k=0

| —

Lk

o

dove L* indica la composizione di L con se stesso k volte.

Ora, se sul gruppo di Lie G mettiamo una connessione lineare, ci troviamo con due applicazioni espo-
nenziali a disposizione: quella appena definita, e quella che viene dalle geodetiche. Vogliamo determinare
delle condizioni per cui queste due applicazioni coincidano.

La prima richiesta naturale & che la connessione sia invariante a sinistra:
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Definizione 5.4.3: Sia G un gruppo di Lie. Diremo che una connessione lineare V su G ¢ invariante a sinistra
se

d(Lg)(VxY) = Var,)x)d(Lg)(Y)
perogni X,Y € T(G)egeG.
Il seguente esercizio & elementare:

Esercizio 5.4.2. Dimostra che esiste una corrispondenza biunivoca fra le connessioni lineari invarianti a
sinistra su un gruppo di Lie G e I'insieme delle applicazioni bilineari a:: g X g — g, corrispondenza ottenuta
associando alla connessione V I'applicazione ay (X,Y) = VY (e), dove per ogni X € g il campo X € 7(G)
& Punico campo invariante a sinistra tale che X (e) = X.

Corollario 5.4.2: Sia V una lineare connessione invariante a sinistra su un gruppo di Lie G, e X € g.
Allora le seguenti affermazioni sono equivalenti:

(i) av(X,X)=0;

(ii) la geodetica ox uscente da e tangente a X & un sottogruppo a un parametro di G.

Dimostrazione: Essendo V invariante a sinistra, da ay (X, X) = O otteniamo VzX = O, dove X € 7(G)
¢ il campo vettoriale invariante a sinistra associato a X. In particolare, quindi, la curva integrale di X
uscente da e € una geodetica per V, e questa geodetica risulta essere un sottogruppo a un parametro grazie
al Lemma 5.4.1.(i)

_Viceversa, se ox(t) ¢ un sottogruppo a un parametro, il Lemma 5.4.1.(ii) ci dice che ¢ la curva integrale
di X uscente da e; ma allora abbiamo V ¢ X (e) = O, cioe ay (X, X) = O. O

Di connessioni lineari che soddisfano le condizioni di questo corollario ce ne sono a bizzeffe; per esempio
quelle ottenute prendendo avy(X,Y) = ¢[X, Y] per qualche ¢ € R. Ma a noi interessa sapere quando la con-
nessione di Levi-Civita (ottenuta partendo da una metrica invariante a sinistra) soddisfa questa condizione.
Per enunciare in maniera pulita il risultato, introduciamo la seguente

Definizione 5.4.4: Sia g un’algebra di Lie. Allora I'applicazione aggiunta di g ¢ 'omomorfismo di algebre di
Lie ad: g — gl(g) dato da ad(X)(Y) = [X,Y].
Proposizione 5.4.3: Sia (-,-) una metrica invariante a sinistra su un gruppo di Lie G, e V la connessione
di Levi-Civita. Allora le seguenti condizioni sono equivalenti:

(1) aV(X7 Y) = %[X7 Y]a

(ii) ad(X) é antisimmetrico per ogni X € g;

(iii) exp, = exp, cioé I semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: 11 Teorema 4.4.4 ci dice che

(av(X,Y),2) = = [([X,Y], Z) + (ad(2)X,Y) + (X, ad(Z)(Y))], (5.4.3)

DN | =

per cui 'equivalenza fra (i) e (ii) & evidente.
11 Corollario 5.4.2 ci dice che (iii) vale se e solo se ay (X, X) = O per ogni X € g. Ora, (5.4.3) implica

(av(X,X),Z) = (ad(2) X, X).
Quindi av (X, X) = O per ogni X € g se e solo se (ad(Z)X, X) = 0 per ogni Z, X € g, e questo accade se e
solo se ad(Z) ¢ antisimmetrico per ogni Z € g. ]

La cosa interessante e che tutto cio e legato a quando una metrica invariante a sinistra ¢ anche inva-
riante a destra. Per dimostrarlo ci servono un paio di risultati generali sui gruppi di Lie, importanti anche
indipendentemente.
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Proposizione 5.4.4: Sia ¢: G — H un omomorfismo di gruppi di Lie. Allora di.:g — b é un omomorfismo
delle corrispondenti algebre di Lie, e si ha

VX €g Y (exp(X)) = exp(dipe(X)). (5.4.4)

Dimostrazione: Sia 0x (t) = exp(tX) il sottogruppo a un parametro in G tangente a X € g. Allora ) ofx &
un sottogruppo a un parametro in H tangente a diy.(X), per cui w(GX(t)) = exp (td'l/)e(X)), e (5.4.4) vale.
Inoltre, abbiamo v o L, = L4y o9 per ogni g € G; quindi per ogni X € g abbiamo

dipg (d(Lg)e(X)) = d(Ly(g))e(dpe(X)).

Questo vuol dire che il campo X invariante a sinistra che estende X & sempre 1)-correlato al campo invariante
a sinistra che estende di.(X). L’Esercizio 3.3.3 ci assicura allora che di. ¢ un omomorfismo di algebre di
Lie. ]

Proposizione 5.4.5: Sia U C G un intorno aperto dell’elemento neutro in un gruppo di Lie connesso G.
Allora U genera tutto G, nel senso che ogni elemento di G si ottiene come prodotto di un numero finito di
elementi di U.

Dimostrazione: Notiamo prima di tutto che un sottogruppo aperto & anche chiuso. Infatti, se H C G & un
sottogruppo aperto, allora

G\H=|JgH
g¢H

¢ aperto, per cui H ¢ chiuso.
Ora, se U ¢ un intorno aperto di e, allora il sottogruppo generato da U &

o) =um
neN

dove U™ ¢ l'insieme di tutti i possibili prodotti di n elementi di U. Quindi (U) & un sottogruppo aperto, e
dunque chiuso, di G; essendo G connesso, dev’essere (U) = G, come affermato. Il

Definizione 5.4.5: Sia G un gruppo di Lie. Se g € G, indichiamo con Cy: G — G il coniugio Cy(x) = grg™?,

in modo che Cy o C, = Cyp per ogni g, h € G. La rappresentazione aggiunta di G ¢ I'omomorfismo
Ad: G — GL(g) definito da Ad(g) = d(Cy)e.

Notiamo che la (5.4.4) implica che
Cy(exp X) = exp(Ad(g)(X)). (5.4.5)

Ci servira il seguente

FEsercizio 5.4.3. Dimostra che se X € 7(G) & un campo vettoriale invariante a sinistra su un gruppo di
Lie G si ha 6,0 L, = Ly 06, per ogni g € G, dove §;, = O(t,-) ¢ il flusso di X. (Suggerimento: ricorda
I’Esercizio 3.3.4.)

Da questo otteniamo il

Lemma 5.4.6: Sia G un gruppo di Lie, e Ad: G — GL(g) la rappresentazione aggiunta. Allora
d(Ad).(X) = ad(X)
per ogni X € g. In particolare, quindi,
VX cg Ad(exp X) = (X, (5.4.6)

Dimostrazione: Siccome t — exp(tX) & una curva in G tangente a X in e, abbiamo

A(AD(X)(Y) = TAd(exptX)(Y)
t=0
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per ogni X, Y € g. Indicando con Y e 7 (G) Vestensione invariante a sinistra di Y, abbiamo
Ad(exp tX)(Y) = d(Cexp(tx))e(Y) = d(Rexp(—tx)Jexp(tx) © A Lexp(x))e(Y)
= d(Rexp(—1x))exp(ex) (Y (exp(tX))).
Ora, per ogni g € G si ha
Rexp(ex)(9) = gexp(tX) = Ly (exp(tX)) = Ly (0e(€)) = 0 (Lg(e)) = be(9),

dove 6; ¢ il flusso di X, 'estensione invariante a sinistra di X, e abbiamo usato 'Esercizio 5.4.3. Ma allora
questo vuol dire che Rey,(—¢x) = 0, per cui

Ad(exptX)(Y) = d(0-+)s, () (Y),

e la Proposizione 3.3.6 ci permette di concludere che

d - -
d(Ad)e(X)(Y) = 2 d(0-1)a, (V)| =LzV(e) =[X, Y] =ad(X)(Y),
=0
come voluto. Infine, (5.4.6) segue da (5.4.4) e dall’Esempio 5.4.4. O

Siamo ora in grado di dimostrare il

Teorema 5.4.7: Sia G un gruppo di Lie connesso, e (-,-) una metrica Riemanniana invariante a sinistra
su G. Allora le seguenti affermazioni sono equivalenti:

(i) (-,-) é anche invariante a destra;
(ii) Ad(g) é un’isometria di g per ogni g € G;
(iii) ad(X) e antisimmetrica per ogni X € g;
(iv) exp, = exp, cioé i semigruppi a un parametro sono tutte e sole le geodetiche di G uscenti da e.

Dimostrazione: La metrica (-,-) ¢ invariante a destra se e solo se (d(Rg)n(v),d(Rg)n(w))ng = (v, w)p per
ogni g, h € G e v, w € TyG. Usando l'invarianza a sinistra della metrica, questo si riduce a dimostrare che

(d(Lyy © Ry 0 Ln)e(X),d(Ly,y 0 Rgo Ln)e(Y))e = (X,Y).

perogni h, ge Ge X, Y € g. Ma L;gl oRyoLp=Cy,equindi (-,-) ¢ invariante a destra se e solo se
ogni Ad(g) & un’isometria di g.

Supponiamo ora che (ii) valga. Per il Lemma 5.4.6, allora, e
Derivando

ad(tX) & un’isometria per ogni X € get € R.

<ead(tX)(Y))€ad(tX)(Z)>e _ <Y7 Z>e
rispetto a t e calcolando in ¢ = 0 otteniamo
<ad(X)(Y)> Z>e + <Y7 ad(X)(Z)>e =0

per ogni X, Y, Z € g, e quindi (iii) vale.
Viceversa, supponiamo che (iii) valga. Siccome si verifica subito che

d
%ead(tX) — ad(X) o ead(tX)7

troviamo

%<6ad(tX)(Y),Bad(tx)(Z)>e _ <ad(X) ° 6ad(tX)(y)’ 6ad(tX)(Z)>e + <6ad(tX)(Y)’ ad(X) ° ead(tX)(Z»e =0.
Dunque (e24X) (V) e2d(X) (7)), & una funzione costante, e calcolando per t = 0 e per t = 1 vediamo
che e2dX) ¢ un’isometria per ogni X € g. Ma allora Ad(exp X) ¢ un’isometria per ogni X € g. Ora,
dalla definizione si ricava subito che dexp, = id; quindi I'immagine dell’esponenziale contiene un intorno U
dell’elemento neutro e, e Ad(g) ¢ un’isometria per ogni g € U. Siccome la composizione di isometrie &
un’isometria, la Proposizione 5.4.5 ci assicura allora che Ad(g) & un’isometria per ogni g € G, e abbiamo
dimostrato (ii).

Infine, 'equivalenza fra (iii) e (iv) & gia stata dimostrata nella Proposizione 5.4.3. O
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EsemMpIO 5.4.5. Non ¢ difficile verificare che la metrica euclidea su gl(n,R), cioé quella dell’Esempio 4.4.6,
si puo esprimere scrivendo

VA, B € gl(n,R) (A, B) = tr(BT A).
Ora, se X € gl(n,R) abbiamo

([X,A], B) = tr(BT X A) — tr(BT AX),

T T T T T T T AvT (5.4.7)
(A,[X,B]) =tr(B*' X" A) —tr(X*'B'"A) =tr(B" X" A) —tr(B" AX"),

dove abbiamo usato il fatto che tr(CD) = tr(DC) per ogni C, D € gl(n,R). Quindi in generale ad(X) non &

antisimmetrico rispetto alla metrica euclidea, per cui i sottogruppi a un parametro visti nell’Esempio 5.4.4

non sono geodetiche per la connessione di Levi-Civita su GL(n,R) calcolata nell’Esempio 4.4.6.

EseMPIO 5.4.6. Nell’Esercizio 3.3.9 abbiamo visto che I’algebra di Lie del gruppo SO(n) & 'algebra so(n)
delle matrici antisimmetriche. Ma allora (5.4.7) ci dice che ad(X) ¢ antisimmetrica rispetto al prodotto
scalare dell’esempio precedente per ogni X € so(n). Quindi la metrica dell’Esempio 4.4.6 ristretta a SO(n)
¢ bi-invariante, e i sottogruppi a un parametro sono geodetiche per la corrispondente connessione di Levi-

Civita.



