
Capitolo 4

Metriche Riemanniane

4.1 Definizioni

Introduciamo ora la vera protagonista di questo corso.

Definizione 4.1.1: Una metrica Riemanniana su una varietà M è un campo tensoriale g ∈ T2(M) simmetrico
(cioè tale che gp(w, v) = gp(v, w) per ogni v, w ∈ TpM e p ∈ M) e definito positivo (cioè g(v, v) > 0 per
ogni v 6= O). La coppia (M, g) è detta varietà Riemanniana. Spesso useremo anche la notazione 〈v, w〉p al
posto di gp(v, w), e indicheremo con ‖ · ‖p la norma su TpM indotta dal prodotto scalare gp.

In altre parole, una metrica Riemanniana associa a ogni punto p ∈ M un prodotto scalare definito
positivo gp:TpM × TpM → R che dipende in modo C∞ dal punto p.

Osservazione 4.1.1. Ci sono alcune situazioni (per esempio in relatività) in cui è utile studiare varietà
equipaggiate con un campo tensoriale g ∈ T2(M) simmetrico non degenere (cioè tale che gp(v, w) = 0 per
ogni w ∈ TpM se e solo se v = Op); un tale tensore g è spesso detto metrica pseudo-Riemanniana. Diversi
dei risultati di questo capitolo (per esempio la costruzione della connessione di Levi-Civita nel paragrafo 4)
sono validi anche in questa situazione più generale; indicheremo esplicitamente i casi più significativi.

Esercizio 4.1.1. Sia M una varietà, e supponiamo di avere per ogni p ∈ M un prodotto scalare definito
positivo gp:TpM × TpM → R. Dimostra che g è una metrica Riemanniana se e solo se p 7→ gp

(
X(p), Y (p)

)
è di classe C∞ per ogni X, Y ∈ T (M).

Vediamo come si esprime una metrica Riemanniana (o, più in generale, un campo tensoriale g ∈ T2(M)
simmetrico) in coordinate locali. Fissata una carta locale (U, ϕ), indichiamo con (x1, . . . , xn) le corrispondenti
coordinate locali, e con {∂1, . . . , ∂n} il corrispondente riferimento locale di TM . Allora possiamo definire
delle funzioni ghk ∈ C∞(U) ponendo ghk = g(∂h, ∂k); e chiaramente abbiamo

g =
n∑

h,k=1

ghk dxh ⊗ dxk. (4.1.1)

Inoltre, la matrice simmetrica (ghk) è non degenere se e solo se g è non degenere, ed è definita positiva se e
solo se g è definita positiva.

Osservazione 4.1.2. D’ora in poi useremo la convenzione di Einstein sugli indici ripetuti: se lo stesso
indice appare due volte in una formula, una volta in basso e una volta in alto, supporremo sottintesa una
sommatoria su tutti i possibili valori di quell’indice. Per esempio, la (4.1.1) verrà scritta

g = ghk dxh ⊗ dxk,

sottintendendo la sommatoria su h e k che variano da 1 a n. Vale la pena avvertire che in alcuni testi si trova
scritto dxh dxk invece di dxh ⊗ dxk, e in particolare (dxj)2 invece di dxj ⊗ dxj . Infine, la matrice inversa
della matrice (ghk) sarà indicata con (ghk), in modo da avere

ghjg
jk = gkjgjh = δk

h,

dove δk
h è, come sempre, il delta di Kronecker.
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Esempio 4.1.1. Rn con la metrica euclidea. Identificando come al solito TpRn con Rn per ogni p ∈ Rn,
possiamo mettere su ciascuno spazio tangente il prodotto scalare canonico. In questo modo otteniamo una
metrica Riemanniana su Rn, detta metrica euclidea o metrica piatta su Rn, data da

g0 = δhk dxh ⊗ dxk = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn.

Esempio 4.1.2. La metrica prodotto. Siano (M1, g1) e (M2, g2) due varietà Riemanniane. Allora sulla
varietà M1 × M2 possiamo mettere la metrica prodotto g1 + g2 definita in questo modo: siccome per
ogni (p1, p2) ∈ M1 ×M2 lo spazio tangente T(p1,p2)(M1 ×M2) è isomorfo a Tp1M1 ⊕ Tp2M2, ogni elemento
di T(p1,p2)(M1 ×M2) è della forma v = (v1, v2), con vj ∈ Tpj

Mj , per cui poniamo

∀v, w ∈ T(p1,p2)(M1 ×M2) (g1 + g2)(p1,p2)(v, w) = (g1)p1(v1, w1) + (g2)p2(v2, w2).

Si verifica subito (esercizio) che g1 + g2 è una metrica Riemanniana.

Usando le partizioni dell’unità e la metrica piatta è facile dimostrare l’esistenza di metriche Riemanniane
su qualsiasi varietà:

Proposizione 4.1.1: Ogni varietà M (di Hausdorff a base numerabile) ammette una metrica Riemanniana.

Dimostrazione: Sia {ρα} una partizione dell’unità subordinata a un atlanteA = {(Uα, ϕα)} di M . Su ciascun
aperto Uα introduciamo la metrica piatta gα indotta dal sistema di coordinate: se p ∈ Uα, e v = vj∂j,α

e w = wj∂j,α è la scrittura in coordinate locali di due vettori v, w ∈ TpM , allora poniamo gα
p (v, w) =

∑
j vjwj

(in altre parole, la matrice (gα
hk) è la matrice identica). Definiamo allora un campo tensoriale g ∈ T2(M) con

∀p ∈M gp =
∑
α

ρα(p)gα
p ,

dove in ciascun punto p ∈ M solo un numero finito di addendi sono diversi da zero. È facile verificare
(esercizio) che questa formula definisce una metrica Riemanniana su M , in quanto la somma di tensori
simmetrici definiti positivi è ancora un campo tensoriale simmetrico definito positivo.

Osservazione 4.1.3. Sia (ghk) la matrice che rappresenta una metrica Riemanniana g rispetto alla carta
locale (U, ϕ), e (g̃ij) la matrice che rappresenta g rispetto a un’altra carta locale (Ũ , ϕ̃). Ricordando la (2.4.2)
e la formula che mostra come cambia la matrice che rappresenta un prodotto scalare cambiando base otte-
niamo

(g̃ij) =
(

∂x

∂x̃

)T

· (ghk) ·
(

∂x

∂x̃

)
in U ∩ Ũ , dove il · indica il prodotto di matrici. In altre parole abbiamo

g̃ij =
∂xh

∂x̃i

∂xk

∂x̃j
ghk.

In particolare,

det(g̃ij) =
[
det

(
∂x

∂x̃

)]2

det(ghk). (4.1.2)

Osservazione 4.1.4. Sia (U, ϕ) una carta locale in una varietà Riemanniana (M, g). Se applichiamo il
procedimento di Gram-Schmidt al riferimento locale {∂1, . . . , ∂n} otteniamo un riferimento locale ortonor-
male {E1, . . . , En}. Attenzione: di solito però non è possibile trovare una carta locale (U, ϕ) tale che il
riferimento {∂1, . . . , ∂n} sia ortonormale in U . Infatti, come vedremo nel paragrafo 6.1, questo è equivalente
a richiedere che la varietà Riemanniana sia piatta in U .⌈

Descriviamo ora alcune costruzioni standard che si possono effettuare usando una metrica Rieman-

niana. Cominciamo con la
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Proposizione 4.1.2: Sia (M, g) una varietà Riemanniana orientabile, e fissiamo un’orientazione. Allora
esiste un’unica n-forma νg ∈ An(M) mai nulla tale che νg(E1, . . . , En) = 1 per ogni p ∈ M e ogni base
ortonormale positiva {E1, . . . , En} di TpM .

Dimostrazione: Sia A = {(Uα, ϕα)} un atlante orientato, e indichiamo con (gα
ij) la matrice che rappresenta g

nelle coordinate di ϕα. Sia poi B = {E1, . . . , En} un riferimento locale ortonormale positivo di TM so-
pra U ; se poniamo dxh

α(Ek) = eh
k allora abbiamo Ek = eh

k∂h, e quindi det(eh
k) > 0 (perché B è positivo),

e gα
ije

i
hej

k = δhk (perché B è ortonormale), per cui√
det(gα

ij) det(eh
k) = 1. (4.1.3)

Supponiamo che esista una ν ∈ An(M) che soddisfa le ipotesi. Per ogni indice α esiste una fα ∈ C∞(Uα)
tale che ν|Uα = fα dx1

α ∧ · · · ∧ dxn
α. Ma allora

1 = ν(E1, . . . , En) = fα det(eh
k) =

fα√
det(gα

ij)
,

per cui necessariamente fα =
√

det(gα
ij), e ν è unica.

Viceversa, poniamo
νg|Uα

=
√

det(gα
ij) dx1

α ∧ · · · ∧ dxn
α.

Questa formula definisce una n-forma globale: infatti su Uα ∩ Uβ (4.1.2) dà√
det(gβ

ij) dx1
β ∧ · · · ∧ dxn

β = det

(
∂xh

α

∂xk
β

)√
det(gα

ij) det

(
∂xk

β

∂xh
α

)
dx1

α ∧ · · · ∧ dxn
α

=
√

det(gα
ij) dx1

α ∧ · · · ∧ dxn
α.

Chiaramente, νg non si annulla mai. Infine, νg è come richiesto: infatti, se B = {E1, . . . , En} è una base
ortonormale positiva di TpM con p ∈ Uα, (4.1.3) implica

νg(E1, . . . , En) =
√

det(gα
ij) det

(
dxh(Ek)

)
=

√
det(gα

ij) det(eh
k) = 1.

Definizione 4.1.2: Sia (M, g) una varietà Riemanniana orientabile. La n-forma νg ∈ An(M) è detta elemento
di volume Riemanniano di M .

Proseguiamo con altre costruzioni. Un prodotto scalare non degenere su uno spazio vettoriale V permette
di identificare V col suo duale V ∗. Analogamente, su una varietà Riemanniana abbiamo un isomorfismo
naturale [: TM → T ∗M definito in questo modo

∀v ∈ TpM v[ = gp(·, v) ∈ T ∗p M.

In coordinate locali, se v = vi∂i e g = (gij) allora

v[ = gijv
i dxj ,

cioè v[ = ωj dxj con ωj = gijv
i.

La mappa inversa sarà denotata da #: T ∗M → TM ; se ω = ωi dxi allora

ω# = gijωi ∂j ,

cioè ω# = vj∂j con vj = gijωi.

Osservazione 4.1.5. Il motivo della notazione musicale è che [ abbassa gli indici mentre # li alza.
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Definizione 4.1.3: Sia (M, g) una varietà Riemanniana, e f ∈ C∞(M). Allora il gradiente di f è il campo
vettoriale gradf = (df)# ∈ T (M).

In coordinate locali,

gradf = gij ∂f

∂xj
∂i,

per cui su Rn con la metrica piatta recuperiamo il gradiente usuale.

Definizione 4.1.4: Sia X ∈ T (M) un campo vettoriale su una varietà Riemanniana (M, g). Allora il rotore
di X è la 2-forma differenziale rot X = dX[.

In particolare abbiamo
rot(gradf) = d

(
(df)#)[ = d(df) = O.

In coordinate locali, se X = Xk∂k allora

rotX =
∂(gikXi)

∂xj
dxj ∧ dxk =

∑
1≤j<k≤n

[
∂(gikXi)

∂xj
− ∂(gijX

j)
∂xk

]
dxj ∧ dxk.

Osservazione 4.1.6. Su R3, il fibrato
∧2 R3 è un fibrato banale di rango 3, per cui è isomorfo a TR3, che

è anch’esso un fibrato banale di rango 3. Per questo motivo nell’Analisi Matematica usuale il rotore di un
campo vettoriale (calcolato rispetto alla metrica piatta di R3) viene presentato come un campo vettoriale e
non come una 2-forma, per lo stesso motivo per cui il prodotto estero di due vettori in R3 viene presentato

come un vettore di R3 (il prodotto vettore: confronta l’Esercizio 1.3.19).

⌋
Come prevedibile, le applicazioni che conservano una metrica Riemanniana hanno un nome particolare.

Definizione 4.1.5: Sia H: (M, g) → (M̃, g̃) un’applicazione C∞ fra due varietà Riemanniane della stessa
dimensione. Diremo che H è un’isometria in p ∈M1 se per ogni v, w ∈ TpM1 si ha

g̃H(p)(dHp(v), dHp(w)
)

= gp(v, w).

Se H è un’isometria in p, il differenziale di H in p è invertibile, e quindi H è un diffeomorfismo di un intorno
di p con un intorno di H(p). Diremo che H è un’isometria locale in p ∈M se p ha un intorno U tale che H|U
sia un’isometria in ogni punto di U ; e che è un’isometria locale se lo è in ogni punto di M . Infine, diremo
che H è un’isometria se è un diffeomorfismo globale e un’isometria in ogni punto di M . Data una varietà
Riemanniana (M, g), indicheremo con Iso(M) il gruppo di tutte le isometrie di M con se stessa.

Definizione 4.1.6: Diremo che la varietà Riemanniana (M, g) è localmente isometrica alla varietà Rieman-
niana (M̃, g̃) se per ogni p ∈ M esiste un’isometria di un intorno di p in M con un aperto di M̃ . Infine,
diremo che (M, g) e (M̃, g̃) sono isometriche se esiste un’isometria globale fra (M, g) e (M̃, g̃).

Esercizio 4.1.2. Dimostra che un’applicazione H: (M, g)→ (M̃, g̃) di classe C∞ fra varietà Riemanniane è
un’isometria locale se e solo se è un’isometria in ogni punto di M .

Esercizio 4.1.3. Costruisci un esempio di un’isometria locale che non sia un’isometria.

Più in generale, un’immersione in una varietà Riemanniana induce una metrica Riemanniana anche
nella varietà di partenza.

Definizione 4.1.7: Sia F :M → N un’immersione, e g una metrica Riemanniana su N . Definiamo per
ogni p ∈M un prodotto scalare (F ∗g)p su TpM ponendo

∀v, w ∈ TpM (F ∗g)p(v, w) = gF (p)

(
dFp(v), dFp(w)

)
.

È facile verificare (esercizio) che F ∗g è una metrica Riemanniana su M , detta metrica indotta da g tramite F ,
o metrica pullback.
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Esempio 4.1.3. Se ι:M → N è una sottovarietà di una varietà Riemanniana (N, g), la metrica indotta ι∗g
verrà a volte indicata con g|S . Dunque ogni sottovarietà di una varietà Riemanniana è a sua volta una
varietà Riemanniana con la metrica indotta; per esempio, questo vale per le sottovarietà di Rn considerato
con la metrica piatta.

Abbiamo visto (Teorema 2.5.6) che ogni varietà può essere realizzata come sottovarietà chiusa di un
qualche RN , per N abbastanza grande, e quindi eredita una metrica Riemanniana indotta dalla metrica piatta
di RN . Viene allora naturale chiedersi se in questo modo è possibile ottenere tutte le varietà Riemanniane.
La risposta, positiva, è il famoso Teorema di Nash:

Teorema 4.1.3: (Nash, 1956) Ogni varietà Riemanniana ammette un embedding isometrico in RN , consi-
derato con la metrica piatta, per N abbastanza grande.

Esempio 4.1.4. Sia π: M̃ →M un rivestimento liscio, e supponiamo di avere una metrica Riemanniana g
su M . Un rivestimento liscio è, in particolare, un diffeomorfismo locale, e quindi un tipo molto speciale
di immersione; possiamo quindi equipaggiare M̃ con la metrica indotta π∗g. È facile (esercizio) verificare
che π∗g è l’unica metrica Riemanniana su M̃ che rende π un’isometria locale.

Esempio 4.1.5. Sia π: M̃ → M di nuovo un rivestimento liscio, ma supponiamo stavolta di avere una
metrica Riemanniana g̃ su M̃ . Non è detto che esista una metrica Riemanniana g su M che rende π
un’isometria locale. Infatti, supponiamo che g esista, e sia F : M̃ → M̃ un automorfismo del rivestimento,
cioè un’applicazione continua tale che π ◦ F = π; nota che F è automaticamente C∞ (perché?). Allora per
ogni p̃ ∈ M̃ e ogni v, w ∈ Tp̃M̃ si deve avere

g̃p̃(v, w) = gπ(p̃)

(
dπp̃(v), dπp̃(w)

)
= gπ(F (p̃))

(
dπF (p̃)(dFp̃(v)), dπF (p̃)(dFp̃(w))

)
= g̃F (p̃)

(
dFp̃(v), dFp̃(w)

)
,

cioè F dev’essere un’isometria per g̃. Viceversa, supponiamo che ogni automorfismo del rivestimento sia
un’isometria, e che il gruppo degli automorfismi del rivestimento agisca in maniera transitiva sulle fibre
(ipotesi quest’ultima equivalente a richiedere che il rivestimento sia normale, cioè tale che π∗

(
π1(M̃, p̃)

)
sia

un sottogruppo normale di π1

(
M, π(p̃)

)
per un qualsiasi p̃ ∈ M̃); allora non è difficile dimostrare (esercizio)

che esiste un’unica metrica Riemanniana g su M per cui π risulta essere un’isometria locale: è sufficiente
per ogni p ∈M e v, w ∈ TpM porre

gp(v, w) = g̃p̃(ṽ, w̃),

dove p̃ ∈ M̃ e ṽ, w̃ ∈ Tp̃M̃ sono tali che π(p̃) = p, dπp̃(ṽ) = v e dπp̃(w̃) = w.

Usando la nozione di metrica indotta possiamo esprimere in maniera concisa quando un’immersione
conserva la metrica Riemanniana:

Definizione 4.1.8: Un’immersione (embedding) F : (M, gM ) → (N, gN ) fra varietà Riemanniane è un’immer-
sione (embedding) isometrica se F ∗gN = gM , dove F ∗gN è la metrica indotta su M appena definita.

Esercizio 4.1.4. Costruisci due varietà Riemanniane (M, g) e (M̃, g̃) tali che (M, g) è localmente isometrica
a (M̃, g̃) ma (M̃, g̃) non è localmente isometrica a (M, g).

Concludiamo questo paragrafo definendo, più in generale, la nozione di metrica Riemanniana su un
fibrato vettoriale.

Definizione 4.1.9: Una metrica lungo le fibre su un fibrato vettoriale π:E → M è l’assegnazione per ogni
punto p ∈M di un prodotto scalare definito positivo 〈· , ·〉p:Ep×Ep → R tale che la funzione p 7→ 〈σ(p), τ(p)〉p
sia di classe C∞ per ogni coppia di sezioni σ, τ ∈ E(M).

Una volta data una metrica Riemanniana su M otteniamo automaticamente metriche lungo le fibre su
tutti i fibrati tensoriali Th

k M :

Proposizione 4.1.4: Sia (M, g) una varietà Riemanniana, e h, k ∈ N. Allora esiste un’unica metrica lungo
le fibre di Th

k M tale che se {E1, . . . , En} è un riferimento locale ortonormale per TM e {ω1, . . . , ωn} è il suo
riferimento duale, allora {Ei1⊗· · ·⊗Eih

⊗ωj1⊗· · ·⊗ωjk} forma un riferimento locale ortonormale per Th
k M .
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Dimostrazione: Sia (gij) la matrice che rappresenta g in una qualche carta locale (U, ϕ), e prendiamo due
elementi F = F i1...ih

j1...jk
∂i1 ⊗ · · ·⊗∂ih

⊗ dxj1 ⊗ · · ·⊗ dxjk , G = Gi1...ih
j1...jk

∂i1 ⊗ · · ·⊗∂ih
⊗ dxj1 ⊗ · · ·⊗ dxjk ∈ Th

k U .
Allora ponendo

〈F, G〉 = gj1s1 · · · gjkskgi1r1 · · · gihrh
F i1...ih

j1...jk
Gr1...rh

s1...sk

è facile verificare (esercizio) che otteniamo una metrica lungo le fibre che soddisfa le condizioni richieste.
Siccome data una base esiste un unico prodotto scalare rispetto a cui detta base è ortonormale, la metrica
cos̀ı ottenuta è l’unica possibile.

Esercizio 4.1.5. Dimostra che la metrica lungo le fibre cos̀ı ottenuta coincide con quella che si otterrebbe
applicando la Proposizione 1.2.1 alla metrica Riemanniana data su ciascun spazio tangente.

In particolare, data una metrica Riemanniana su M otteniamo una metrica lungo le fibre di T ∗M , e la
Proposizione 1.2.1.(iv) ci dice che le applicazioni bemolle e diesis sono allora delle isometrie rispetto a queste
metriche. Possiamo verificarlo anche in coordinate locali: infatti,

〈ω#, η#〉 = ghkgihωig
kjηj = gijωiηj = 〈ω, η〉,

e analogamente si vede che
〈v[, w[〉 = 〈v, w〉.

4.2 Esempi

In questo paragrafo descriveremo alcuni esempi importanti di varietà Riemanniane.

Esempio 4.2.1. La sfera. Sia Sn
R la sfera di raggio R > 0 e centro l’origine in Rn+1. La metrica indotta

dalla metrica euclidea di Rn è detta metrica sferica. Vogliamo calcolare i coefficienti gij della metrica sferica
rispetto alle coordinate sferiche introdotte nell’Esempio 2.1.11. Il riferimento locale di TpS

n
R indotto dalle

coordinate sferiche è composto dai campi vettoriali locali

∂

∂θj
= R sin θj+1 · · · sin θn

[
cos θj

j−1∑
l=0

cos θl sin θl+1 · · · sin θj−1 ∂

∂xl+1
− sin θj ∂

∂xj+1

]
,

per j = 1, . . . , n, dove (x1, . . . , xn+1) sono le coordinate di Rn+1, e dove abbiamo posto per conven-
zione θ0 ≡ 0. Quindi otteniamo

gij =
{

R2(sin θi+1 · · · sin θn)2 se i = j,
0 se i 6= j;

in particolare, la matrice (gij) è diagonale.

Esempio 4.2.2. Sia π:Sn → Pn(R) il rivestimento universale dello spazio proiettivo. Allora combinando
gli Esempi 4.1.4 e 4.2.1 otteniamo una metrica Riemanniana sullo spazio proiettivo.⌈

Una caratteristica interessante della sfera è che è localmente conformemente piatta (anche se, come

vedremo, non è affatto piatta).

Definizione 4.2.1: Due metriche Riemanniane g1 e g2 su una varietà M sono dette conformi se esiste una
funzione f ∈ C∞(M) sempre positiva tale che g2 = fg1. Due varietà Riemanniane (M1, g1) e (M2, g2) sono
dette conformemente equivalenti se esiste un diffeomorfismo F :M1 →M2, detto equivalenza conforme, tale
che F ∗g2 sia conforme a g1. Diremo che (M1, g1) è localmente conforme a (M2, g2) se per ogni p ∈ M1

esistono un intorno U ⊆ M1 di p e un diffeomorfismo con l’immagine F :U → M2 tale che F ∗g2|F (U) sia
conforme a g1|U . Infine, diremo che (M, g) è localmente conformemente piatta se è localmente conforme
a Rn con la metrica piatta, dove n = dimM .
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Proposizione 4.2.1: Sn
R è localmente conformemente piatta.

Dimostrazione: Sia N = (0, . . . , 0, R) ∈ Sn
R il polo nord, e indichiamo con ϕN :Sn

R \ {N} → Rn ⊂ Rn+1 la
proiezione stereografica dal polo nord descritta nell’Esempio 2.1.10; vogliamo dimostrare che ϕN è un’equi-
valenza conforme.

Indichiamo con gR la metrica Riemanniana su Sn
R, e con g0 la metrica euclidea su Rn; basta far vedere

che (ϕ−1
N )∗gR e g0 sono conformi. Preso x ∈ Rn e v = vj∂j ∈ TxRn dobbiamo calcolare

(ϕ−1
N )∗gR(v, v) = gR

(
d(ϕ−1

N )x(v), d(ϕ−1
N )x(v)

)
=

∥∥d(ϕ−1
N )x(v)

∥∥2
.

Ora,

d(ϕ−1
N )x(v) = vj ∂(ϕ−1

N )h

∂xj
∂h =

2R2

‖x‖2 + R2
v − 4R2〈v, x〉

(‖x‖2 + R2)2
(xh∂h −R∂n+1);

quindi

(ϕ−1
N )∗gR(v, v) =

4R4

(‖x‖2 + R2)2
‖v‖2,

cioè

(ϕ−1
N )∗gR =

4R4

(‖x‖2 + R2)2
g0,

per cui (ϕ−1
N )∗gR è conforme alla metrica euclidea, come voluto. Infine, usando la proiezione stereografica

rispetto al polo sud S = −N si conclude la dimostrazione che Sn
R è localmente conformemente piatta.

⌋
Esempio 4.2.3. Lo spazio iperbolico. Introduciamo ora un altro esempio importante di varietà Rieman-
niana, in tre incarnazioni diverse.
(a) L’iperboloide. Sia Un

R = {x ∈ Rn+1 | (xn+1)2−‖x′‖2 = R2, xn+1 > 0} la falda superiore dell’iperboloide
ellittico, dove x′ = (x1, . . . , xn) ∈ Rn. Su Un

R introduciamo il campo tensoriale simmetrico non degenere

g1
R = dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn − dxn+1 ⊗ dxn+1;

dimostreremo fra un attimo che g1
R è effettivamente definita positiva su TUn

R, per cui è effettivamente
una metrica Riemanniana.

(b) La palla di Poincaré. Sia Bn
R = {x ∈ Rn | ‖x‖ < R} la palla aperta di raggio R in Rn. Su Bn

R poniamo
la metrica

g2
R =

4R4

(R2 − ‖x‖2)2 (dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn).

(c) Il semispazio superiore di Poincaré. Sia Hn
R = {x ∈ Rn | xn > 0} il semispazio superiore in Rn. Su Hn

R

poniamo la metrica

g3
R =

R2

(xn)2
(dx1 ⊗ dx1 + · · ·+ dxn ⊗ dxn).

Le ultime due metriche sono chiaramente conformi alla metrica euclidea, per cui Bn
R e Hn

R sono localmente
conformemente piatte. In realtà questo vale anche per Un

R, in quanto

Proposizione 4.2.2: Le varietà Riemanniane (Un
R, g1

R), (Bn
R, g2

R) e (Hn
R, g3

R) sono isometriche.

Dimostrazione: Cominciamo costruendo un’isometria F :Un
R → Bn

R. Dato S = (0, . . . , 0,−R) ∈ Rn+1

e x ∈ Un
R, sia F (x) ∈ Rn ⊂ Rn+1 il punto d’intersezione fra Bn

R e la retta da S a x. Si verifica subito
che

F (x) =
R

R + xn+1
x′ ∈ Bn

R,

e che

F−1(p) =
(

2R2p

R2 − ‖p‖2 , R
R2 + ‖p‖2
R2 − ‖p‖2

)
.



78 Elementi di Geometria Differenziale, A.A. 2005/06

Vogliamo dimostrare che F ∗g2
R = g1

R. Per far ciò ricordiamo (Proposizione 2.5.5) che v ∈ TxUn
R se e solo

se xn+1vn+1 = 〈x′, v′〉; inoltre,

dFx(v) =
R

R + xn+1

(
v′ − vn+1

R + xn+1
x′

)
.

Quindi

F ∗g2
R(v, v) = g2

R

(
dFx(v), dFx(v)

)
=

4R4(
R2 − ‖F (x)‖2

)2 ‖dFx(v)‖2

=
4(

1− ‖x′‖2
(R+xn+1)2

)2

R2

(R + xn+1)2

∥∥∥∥v′ − vn+1

R + xn+1
x′

∥∥∥∥2

= ‖v′‖2 − 2vn+1

R + xn+1
〈x′, v′〉+ |vn+1|2

(R + xn+1)2
‖x′‖2

= ‖v′‖2 − |vn+1|2 = g1
R(v, v),

come voluto.
Costruiamo ora un diffeomorfismo G: Bn

R → Hn
R imitando la trasformata di Cayley di una variabile

complessa:

G(p) =
(

2R2p′

‖p′‖2 + (pn −R)2
, R

R2 − ‖p′‖2 − |pn|2
‖p′‖2 + (pn −R)2

)
,

dove stavolta p′ = (p1, . . . , pn−1) ∈ Rn−1. L’inversa è data da

G−1(q) =
(

2R2q′

‖q′‖2 + (qn + R)2
, R
‖q′‖2 + |qn|2 −R2

‖q′‖2 + (qn + R)2

)
,

e un conto analogo al precedente mostra che G∗g3
R = g2

R.

Definizione 4.2.2: Una qualunque varietà Riemanniana isometrica a una delle tre varietà Riemanniane della
proposizione precedente è detta spazio iperbolico di dimensione n.

Vedremo in seguito (nel paragrafo 6.4) che Rn con la metrica piatta, le sfere e gli spazi iperbolici sono le
uniche (a meno di isometrie) varietà Riemanniane semplicemente connesse di curvatura sezionale costante.
Per farlo, ci servirà il seguente

Esempio 4.2.4. Gli elementi del gruppo ortogonale O(n + 1) sono ovviamente delle isometrie di Sn
R.

Inoltre, O(n + 1) agisce transitivamente sulle basi ortonomali in TSn
R. In altre parole, per ogni p, p̃ ∈ Sn

R

e basi ortonormali {Ej} di TpS
n
R e {Ẽj} di Tp̃S

n
R esiste A ∈ O(n + 1) tale che A(p) = p̃ e dAp(Ej) = Ẽj

per j = 1, . . . , n. Infatti, è sufficiente far vedere che per ogni p ∈ Sn
R e ogni base ortonormale {Ej} di TpS

n
R

esiste A ∈ O(n + 1) che manda il polo nord N = (0, . . . , 0, R) in p e la base canonica {e1, . . . , en} di TNSn
R

in {Ej}. Ma infatti sia {e1, . . . , en, N/R} che {E1, . . . , En, p/‖p‖} sono basi ortonormali di Rn+1, per cui
esiste un’unica A ∈ O(n + 1) che manda la prima nella seconda (e dAN = A, in quanto A è lineare). Nel
paragrafo 6.4 faremo vedere che, come conseguenza di questo fatto, Iso(Sn

R) = O(n + 1).

Esercizio 4.2.1. Sia O(n, 1) il gruppo delle trasformazioni lineari di Rn+1 che conserva g1
R considerata come

forma quadratica su Rn+1, e indichiamo con O+(n, 1) il sottogruppo che manda Un
R in sé. Dimostra che

gli elementi di O+(n, 1) sono isometrie di Un
R, e che O+(n, 1) agisce transitivamente sulle basi ortonormali

di TUn
R.⌈
Concludiamo questo paragrafo parlando di metriche Riemanniane su gruppi di Lie.

Definizione 4.2.3: Una metrica Riemanniana g su un gruppo di Lie G è invariante a sinistra (rispettivamente,
invariante a destra) se L∗hg = g (rispettivamente, R∗hg = g) per ogni h ∈ G, cioè se tutte le traslazioni
sinistre (destre) sono delle isometrie. Una metrica Riemanniana invariante sia a sinistra che a destra è detta
bi-invariante.
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Sia G un gruppo di Lie. Se scegliamo arbitrariamente un prodotto scalare definito positivo 〈· , ·〉e
sull’algebra di Lie g, otteniamo (perché?) una metrica Riemanniana invariante a sinistra ponendo

∀h ∈ G, ∀v, w ∈ ThG 〈v, w〉h =
〈
(dLh−1)h(v), (dLh−1)h(w)

〉
e
.

In maniera analoga si ottengono metriche Riemanniane invarianti a destra, ed è chiaro che tutte le metriche
Riemanniane invarianti a sinistra o a destra si ricavano in questo modo.

Esercizio 4.2.2. Dimostra che su un gruppo di Lie compatto G esiste sempre una metrica Riemanniana
bi-invariante seguendo la traccia seguente:
(a) Dimostra che l’unico omomorfismo continuo f :G→ R∗ è la costante 1.
(b) Sia ν ∈ An(G) una n-forma invariante a sinistra, cioè tale che L∗hν = ν per ogni h ∈ G. Dimostra che ν

è anche invariante a destra. (Suggerimento: per ogni h ∈ G, la n-forma R∗hν è invariante a sinistra, per
cui R∗hν = f(h)ν; verifica che f :G→ R∗ è un omomorfismo di gruppi.)

(c) Dimostra che esiste una n-forma di volume invariante a sinistra su G.
(d) Sia 〈· , ·〉 una metrica Riemanniana invariante a sinistra su G, e sia ν una n-forma di volume invariante

a sinistra su G. Dimostra che ponendo

〈〈v, w〉〉g =
∫

G

〈(dRx)gv, (dRx)gw〉gx dν

dove g ∈ G e v, w ∈ TgG, si ottiene una metrica Riemanniana bi-invariante su G.

Definizione 4.2.4: Se θ:G×M →M è un’azione di un gruppo di Lie G su una varietà Riemanniana M tale
che θg è un’isometria per ogni g ∈ G, diremo che G agisce per isometrie su M .

Dunque se G agisce fedelmente per isometrie su una varietà Riemanniana M allora G può essere pensato
come un sottogruppo del gruppo Iso(M) di tutte le isometrie di M . A dire il vero, lo stesso gruppo Iso(M)
è un gruppo di Lie e l’applicazione g 7→ θg è sempre di classe C∞, grazie ai seguenti due teoremi:

Teorema 4.2.3: Siano G e H due gruppi di Lie, e F : G→ H un omomorfismo continuo di gruppi. Allora F
è automaticamente di classe C∞.

Teorema 4.2.4: (Myers, Steenrod) Sia M una varietà Riemanniana. Allora il gruppo Iso(M) ammette una
struttura di gruppo di Lie tale che l’applicazione naturale (F, p) 7→ F (p) sia un’azione di Iso(M) su M .

Definizione 4.2.5: Diremo che una varietà Riemanniana M è omogenea se Iso(M) agisce in modo transitivo.
Diremo che M è isotropa in un punto p ∈M se il sottogruppo di isotropia Iso(M)p agisce in modo transitivo
sui vettori unitari in TpM , dove Iso(M)p agisce su TpM tramite l’applicazione (F, v) 7→ dFp(v).

Osservazione 4.2.1. Se M è omogenea, e isotropa in un punto, allora è isotropa in ogni punto.

⌋

4.3 Connessioni

L’obiettivo di questo paragrafo è trovare un modo per derivare campi vettoriali definiti lungo una curva. Il
problema è che i valori del campo vettoriale appartengono a spazi vettoriali diversi, per cui non è possibile
scrivere un rapporto incrementale. Storicamente, questo problema venne risolto introducendo una tecnica
(il trasporto parallelo) per confrontare spazi tangenti in punti diversi; noi invece faremo il percorso inverso,
definendo prima cosa vuol dire derivare campi vettoriali e deducendo poi il concetto di trasporto parallelo.

La formalizzazione moderna del concetto di derivazione di campi vettoriali è data dalla definizione di
connessione.

Definizione 4.3.1: Sia π:E →M un fibrato vettoriale su una varietà M . Una connessione su E è un’applica-
zione ∇: T (M)× E(M)→ E(M), scritta (X, V ) 7→ ∇XV , tale che
(a) ∇XV è C∞(M)-lineare in X: per ogni X1, X2 ∈ T (M), V ∈ E(M), e f , g ∈ C∞(M) si ha

∇fX1+gX2V = f∇X1V + g∇X2V ;
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(b) ∇XV è R-lineare in V : per ogni X ∈ T (M), V1, V2 ∈ E(M), e a, b ∈ R si ha

∇X(aV1 + bV2) = a∇XV1 + b∇XV2;

(c) ∇ soddisfa un’identità di Leibniz: per ogni X ∈ T (M), V ∈ E(M), e f ∈ C∞(M) si ha

∇X(fV ) = f∇XV + (Xf)V.

La sezione ∇XV è detta derivata covariante di V lungo X. Infine, una connessione su TM verrà chiamata
connessione lineare, o semplicemente connessione su M .

Esempio 4.3.1. Sia E = M × Rr un fibrato banale sulla varietà M . Ogni sezione V ∈ E(M) è della
forma V = V jEj per opportune V j ∈ C∞(M), dove {E1, . . . , Er} è il riferimento globale di E ottenuto
ponendo Ej(p) = (p, ej) per ogni p ∈ M , dove {e1, . . . , er} è la base canonica di Rr. In altre parole, una
sezione del fibrato banale di rango r è essenzialmente una r-upla di funzioni differenziabili. Possiamo allora
definire la connessione piatta su E ponendo

∇XV = X(V j)Ej .

Si verifica subito che è effettivamente una connessione.

Usando la connessione piatta e le partizioni dell’unità è facile definire connessioni su qualsiasi fibrato:

Proposizione 4.3.1: Su qualsiasi fibrato vettoriale π: E →M esiste sempre una connessione.

Dimostrazione: Scegliamo un atlante {(Uα, ϕα)} di M che banalizza E, con banalizzazioni locali date
da χα:π−1(Uα) → Uα × Rr, e sia {ρα} una partizione dell’unità subordinata al ricoprimento {Uα}. Su
ciascun Uα definiamo una connessione ∇α ponendo

∀X ∈ T (Uα) ∀V ∈ E(Uα) ∇α
XV = χ−1

α

(
∇0

Xχα(V )
)
,

dove ∇0 è la connessione piatta su Uα × Rr. Incolliamo ora le ∇α definendo

∀X ∈ T (M) ∀V ∈ E(M) ∇XV =
∑
α

ρα

(
∇α

X|Uα
V |Uα

)
.

Le proprietà (a) e (b) della Definizione 4.3.1 sono chiaramente soddisfatte. Per la proprietà (c) abbiamo

∇X(fV ) =
∑
α

ρα∇α
X|Uα

(fV |Uα
) =

∑
α

ρα

(
f∇α

X|Uα
V |Uα

+ X(f)V |Uα

)
= f∇XV +

(∑
α

ρα

)
X(f)V = f∇XV + X(f)V,

e quindi ∇ è una connessione.

Osservazione 4.3.1. In generale, la somma di connessioni (o il prodotto di uno scalare per una connes-
sione) non è una connessione, in quanto la proprietà (c) non viene conservata. Invece, la combinazione affine
di connessioni è una connessione: se ∇1, . . . ,∇k sono connessioni su un fibrato E e µ1, . . . .µk ∈ R sono tali
che µ1 + · · ·+ µk = 1, allora si verifica facilmente che µ1∇1 + · · ·+ µk∇k è ancora una connessione.

Facciamo ora vedere che in realtà ∇XV (p) dipende solo dal valore di X in p ∈M e dal comportamento
di V in un intorno di p (o, più precisamente, solo da X(p) e dal comportamento di V ristretto a una curva
tangente a X(p) in p):
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Lemma 4.3.2: Sia π: E →M un fibrato vettoriale, e ∇: T (M)× E(M)→ E(M) una connessione.

(i) Se X, X̃ ∈ T (M) e V , Ṽ ∈ E(M) sono tali che X(p) = X̃(p) e V ≡ Ṽ in un intorno di p ∈M allora si
ha ∇XV (p) = ∇X̃ Ṽ (p).

(ii) Per ogni aperto U ⊆ M esiste un’unica connessione ∇U : T (U) × E(U) → E(U) su E|U tale che per
ogni X ∈ T (M), V ∈ E(M) e p ∈ U si abbia

∇U
X|U V |U (p) = ∇XV (p).

(iii) Se X ∈ T (M) e V , Ṽ ∈ E(M) sono tali che esiste una curva σ: (−ε, ε)→M con σ(0) = p, σ′(0) = X(p)
e V ◦ σ = Ṽ ◦ σ allora ∇XV (p) = ∇X Ṽ (p).

Dimostrazione: Prima di tutto dimostriamo che se V ≡ O in un intorno U di p allora ∇XV (p) = O per
ogni X ∈ T (M). Sia g ∈ C∞(M) tale che g(p) = 1 e g|M\U ≡ 0 (vedi il Corollario 2.3.2). Allora gV ≡ O,
per cui ∇X(gV ) = ∇X(0 · gV ) = 0∇X(gV ) ≡ O e quindi

O = ∇X(gV )(p) = g(p)∇XV (p) + (Xg)(p)V (p) = ∇XV (p).

Dunque se V , Ṽ ∈ E(M) sono tali che V ≡ Ṽ in un intorno di p, abbiamo V − Ṽ ≡ O in un intorno di p, e
quindi ∇XV (p) = ∇X Ṽ (p) quale che sia X ∈ T (M).

Dimostriamo analogamente che se X ≡ O in un intorno U di p allora ∇XV (p) = O per ogni V ∈ E(M).
Infatti, se g ∈ C∞(M) è la stessa funzione di prima si ha gX ≡ O, per cui ∇gXV = ∇0gXV = 0∇gXV ≡ O
e quindi

O = ∇gXV (p) = g(p)∇XV (p) = ∇XV (p).

Da questo segue, come prima, che se X ≡ X̃ in un intorno di p allora ∇XV (p) = ∇X̃V (p) quale che
sia V ∈ E(M).

In particolare, quindi, il valore di ∇XV in p dipende solo dal comportamento di X e V in un intorno
di p, per cui se una connessione ∇U come in (ii) esiste allora è unica. Ma possiamo usare questa proprietà
anche per definire ∇U . Infatti, per ogni p ∈ U scegliamo, usando la Proposizione 2.3.1, una χp ∈ C∞(M)
tale che χp ≡ 1 in un intorno di p e supp(χp) ⊂ U . Allora per ogni X ∈ T (U) il campo vettoriale χpX,
esteso a zero fuori da U , è un campo vettoriale globale che coincide con X in un intorno di p. In modo
analogo, per ogni V ∈ E(U) possiamo considerare χpV come una sezione globale di E che coincide con V in
un intorno di p. Quindi se definiamo ∇U : T (U)× E(U)→ E(U) ponendo

∇U
XV (p) = ∇χpX(χpV )(p)

per quanto visto otteniamo una connessione ben definita (cioè indipendente dalla scelta delle χp), e abbiamo
dimostrato (ii).

Possiamo ora completare la dimostrazione di (i), facendo vedere che in realtà ∇XV (p) dipende solo dal
valore di X in p (e dal comportamento di V in un intorno di p). Al solito, basta far vedere che X(p) = O
implica ∇XV (p) = O per ogni V ∈ E(M). Sia (U, ϕ) una carta locale centrata in p, e scriviamo X|U = Xj∂j ,
con Xj(p) = 0 per j = 1, . . . , n in quanto X(p) = O. Per quanto detto, ha senso calcolare ∇∂j V (p), e si ha

∇XV (p) = ∇Xj∂j
V (p) = Xj(p)∇∂j

V (p) = O.

Per dimostrare (iii), basta far vedere che se V ◦ σ ≡ O allora ∇XV (p) = O. Sia {E1, . . . , Er} un
riferimento locale per E su un intorno U di p, e scriviamo V = V jEj . Da V (p) = V

(
σ(0)

)
= O otte-

niamo V 1(p) = · · · = V r(p) = 0. Per quanto detto ha senso calcolare ∇XEj(p), e si ha

∇XV (p) = ∇X(V jEj)(p) = V j(p)∇XEj(p) + X(p)(V j)Ej(p) =
d(V j ◦ σ)

dt
(0)Ej(p) = O.
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Per non appesantire le notazioni, nel seguito indicheremo con ∇ e non con ∇U la connessione indotta
sull’aperto U ⊆M .

Sia (U, ϕ) una carta locale che banalizza E, e {E1, . . . , Er} un riferimento locale su U . Allora si deve
poter scrivere

∇∂j
Eh = Γk

jhEk,

per opportune funzioni Γk
jh ∈ C∞(U).

Definizione 4.3.2: Le funzioni Γk
ij sono dette simboli di Christoffel della connessione rispetto al dato riferi-

mento locale.

I simboli di Christoffel determinano completamente la connessione: infatti se X ∈ T (U) e V ∈ E(U),
localmente possiamo scrivere X = Xj∂j e V = V hEh, e abbiamo

∇XV = Xj∇∂j
V = [Xj∂j(V k) + Γk

jhXjV h]Ek. (4.3.1)

In particolare, i simboli di Christoffel della connessione piatta su un fibrato banale sono identicamente nulli.
Il Lemma 4.3.2.(iii) ci dice che per calcolare la derivata covariante di una sezione basta conoscerne il

comportamento lungo una curva. Questo ci suggerisce la seguente:

Definizione 4.3.3: Sia π:E → M un fibrato vettoriale e σ: I → M una curva in M , dove I ⊆ R è un
intervallo. Una sezione di E lungo σ è un’applicazione V : I → E di classe C∞ tale che V (t) ∈ Eσ(t) per
ogni t ∈ I. Lo spazio vettoriale delle sezioni di E lungo σ verrà indicato con E(σ), o con T (σ) se E = TM .
Una sezione V ∈ E(σ) è estendibile se esiste un intorno U del sostegno di σ e una sezione Ṽ ∈ E(U) tale
che V (t) = Ṽ

(
σ(t)

)
per ogni t ∈ I.

Esempio 4.3.2. Il vettore tangente a una curva σ′(t) = dσ(d/dt) è un tipico esempio di sezione di TM
lungo una curva. Inoltre, se σ(t1) = σ(t2) ma σ′(t1) 6= σ′(t2) allora σ′ non è estendibile.

Esercizio 4.3.1. Sia π: E → M un fibrato vettoriale, e σ: I → M una curva di classe C∞. Sia t0 ∈ I tale
che σ′(t0) 6= O. Dimostra che esiste un intervallo aperto J ⊆ I contenente t0 tale che ogni X ∈ E(σ|J) è
estendibile.

Il vero significato del Lemma 4.3.2.(iii) è contenuto nella

Proposizione 4.3.3: Sia ∇ una connessione su un fibrato vettoriale π:E → M , e σ: I → M una curva
su M . Allora esiste un unico operatore D: E(σ)→ E(σ) soddisfacente le seguenti proprietà:

(i) è R-lineare:

∀a, b ∈ R D(aV1 + bV2) = aDV1 + bDV2;

(ii) soddisfa una regola di Leibniz:

∀f ∈ C∞(I) D(fV ) = f ′V + fDV ;

(iii) se V ∈ E(σ) è estendibile, e Ṽ è un’estensione di V , si ha

DV (t) = ∇σ′(t)Ṽ .

Dimostrazione: Cominciamo con l’unicità. Dato t0 ∈ I, un ragionamento analogo a quello usato per dimo-
strare il Lemma 4.3.2.(i) mostra che DV (t0) dipende solo dai valori di V in un intorno di t0. Possiamo allora
usare un riferimento locale e coordinate locali, scrivere V (t) = V h(t)Eh

(
σ(t)

)
, σ′(t0) = (σj)′(t0)∂j

(
σ(t0)

)
e

usare le proprietà di D per ottenere

DV (t0) = (V h)′(t0)Eh

(
σ(t0)

)
+ V h(t0)D(Eh ◦ σ)(t0)

= (V h)′(t0)Eh

(
σ(t0)

)
+ V h(t0)∇σ′(t0)Eh

(
σ(t0)

)
=

[
(V k)′(t0) + Γk

jh

(
σ(t0)

)
(σj)′(t0)V h(t0)

]
Ek

(
σ(t0)

)
,

(4.3.2)

dove abbiamo usato il fatto che Eh◦σ è estendibile in un intorno di t0; quindi D è univocamente determinato.
Per l’esistenza, se il sostegno di σ è contenuto in una sola carta locale banalizzante E, possiamo

usare (4.3.2) per definire D, ed è facile verificare che soddisfa le condizioni richieste. In generale, co-
priamo σ(I) con carte locali banalizzanti E, e usiamo (4.3.2) per definire un operatore D su ciascuna di
queste carte. Nelle intersezioni, abbiamo due operatori che soddisfano (i)–(iii); per l’unicità, questi due
operatori devono coincidere, e quindi abbiamo definito D globalmente.



4.3 Connessioni 83

Definizione 4.3.4: L’operatore D definito sopra è detto derivata covariante lungo la curva σ: I →M . Se t ∈ I
e V ∈ E(σ), scriveremo spesso DtV invece di DV (t).

Esercizio 4.3.2. Sia ∇ una connessione su un fibrato vettoriale π:E → M , e σ: I → M una curva di
classe C∞; indichiamo con D: E(σ) → E(σ) la derivata covariante lungo σ. Sia poi h:J → I di classe C∞,
dove J ⊆ R è un intervallo, e indichiamo con D̃ la derivata covariante lungo la curva σ̃ = σ ◦ h. Dimostra
che per ogni X ∈ E(σ) si ha X ◦ h ∈ E(σ ◦ h) e

D̃(X ◦ h) = h′(DX ◦ h).

Se E = M × Rr è il fibrato banale, ∇ è la connessione piatta, e σ: I → M è una curva, si vede subito
che V ∈ E(σ) soddisfa DV ≡ O se e solo se V è costante, cioè se V (t) è sempre lo stesso vettore di Rr che si
sposta parallelamente lungo la curva σ. Questo fatto suggerisce la seguente definizione:

Definizione 4.3.5: Sia ∇ una connessione su un fibrato vettoriale π:E → M , e σ: I → M una curva. Una
sezione V ∈ E(σ) è detta parallela se DV ≡ O.

La condizione di parallelismo è localmente un sistema lineare di equazioni differenziali ordinarie: infatti
(4.3.2) implica che DV ≡ O in una carta banalizzante E se e solo se

dV k

dt
+ (Γk

jh ◦ σ)(σj)′V h = 0. (4.3.3)

Citiamo a questo punto il Teorema di esistenza e unicità delle soluzioni di un sistema di equazioni differenziali
ordinarie lineari:

Teorema 4.3.4: Dati un intervallo I ⊆ R, un numero naturale k ≥ 1, un t0 ∈ I, punti x0, . . . , xk−1 ∈ Rn,
e un’applicazione A: I × (Rn)k → Rn di classe C∞ lineare rispetto a (Rn)k, il problema di Cauchy

dkV

dtk
(t) = A

(
t, V (t), . . . ,

dk−1V

dtk−1
(t)

)
V (t0) = x0, . . . ,

dk−1V

dtk−1
(t0) = xk−1,

(4.3.4)

ammette una e una sola soluzione V : I → Rn di classe C∞.

Questo teorema implica che, posto I = [a, b] e p = σ(a), per ogni v ∈ Ep esiste un unico V ∈ E(σ)
parallelo tale che V (a) = v. Infatti, essendo σ(I) compatto, possiamo trovare un numero finito di carte
(U1, ϕ1), . . . , (Ur, ϕr) banalizzanti E che coprono il sostegno di σ; possiamo anche supporre che si ab-
bia Uj∩σ(I) = σ([sj , tj ]) per j = 1, . . . , r, con a = s1 < s2 < t1 < s3 < t2 < · · · < sr < tr−1 < tr = b. Allora
il Teorema 4.3.4 applicato a (4.3.3) ci fornisce un’unica sezione parallela V1 lungo σ|[s1,t1] tale che V1(a) = v.
Analogamente, il Teorema 4.3.4 ci fornisce un’unica sezione parallela V2 lungo σ|[s2,t2] tale che V2(t1) = V1(t1);
in particolare, l’unicità implica che V1 e V2 coincidono in [s2, t1], definendo quindi un’unica sezione parallela
lungo σ|[s1,t2]. Procedendo in questo modo troviamo un’unica sezione V parallela lungo σ tale che V (a) = v.
Questo ci permette di introdurre la seguente

Definizione 4.3.6: Sia ∇ una connessione su un fibrato vettoriale π:E → M , e σ: [0, 1] → M una curva.
Poniamo p0 = σ(0) e p1 = σ(1). Dato v ∈ Ep0 , l’unica sezione V ∈ E(σ) parallela lungo σ tale che
V (0) = v ∈ Ep0 è detta estensione parallela di v lungo σ. Il trasporto parallelo lungo σ (relativo a ∇) è
l’applicazione σ̃: Ep0 → Ep1 definita da σ̃(v) = V (1), dove V ∈ E(σ) è l’estensione parallela di v ∈ Ep0 .

Lemma 4.3.5: Sia ∇ una connessione su un fibrato vettoriale π: E → M , e σ: [0, 1] → M una curva.
Poniamo p0 = σ(0) e p1 = σ(1). Allora il trasporto parallelo lungo σ è un isomorfismo fra Ep0 e Ep1 .

Dimostrazione: Siccome (4.3.3) è un sistema lineare di equazioni differenziali ordinarie, la soluzione dipende
linearmente dalle condizioni iniziali, e quindi σ̃ è un’applicazione lineare.

Poniamo ora σ−(t) = σ(1 − t), e sia D− la derivata covariante lungo σ−; inoltre per ogni V ∈ E(σ)
poniamo V −(t) = V (1− t), in modo da avere V − ∈ E(σ−). La formula (4.3.2) mostra subito che

D−t V − = −D1−tV ;

in particolare, V − è parallelo lungo σ− se e solo se V è parallelo lungo σ. Questo vuol dire in particolare
che se V è l’estensione parallela di v ∈ Ep0 , allora V − è l’estensione parallela di V (1) = σ̃(v) ∈ Ep1 , per
cui σ̃− = σ̃−1, e σ̃ è un isomorfismo.
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Osservazione 4.3.2. Il trasporto parallelo è definito anche lungo curve C∞ a tratti; basta fare la compo-
sizione dei trasporti paralleli lungo i singoli pezzi lisci.

Osservazione 4.3.3. Se σ: [0, 1]→M è una curva chiusa, con σ(0) = σ(1) = p, allora il trasporto parallelo
lungo σ diventa un automorfismo di TpM . L’insieme degli automorfismi cos̀ı ottenuti si chiama gruppo di
olonomia di M in p, ed è un invariante importante della connessione.

Osservazione 4.3.4. Un fatto utile è che dati una curva σ: I → M , un fibrato vettoriale π:E → M di
rango r e una connessione su E esiste sempre un riferimento locale parallelo lungo σ, cioè una r-upla di
sezioni E1, . . . , Er ∈ E(σ) parallele lungo σ tali che {E1(t), . . . , Er(t)} sia una base di Eσ(t) per ogni t ∈ I.
Infatti, basta prendere un qualsiasi t0 ∈ I, una qualsiasi base {e1, . . . , er} di Eσ(t0), ed estendere parallela-
mente e1, . . . , er lungo σ.

Partendo da una connessione abbiamo costruito il trasporto parallelo. Possiamo fare anche il viceversa:

Proposizione 4.3.6: Sia ∇ una connessione su un fibrato vettoriale π:E →M , σ: I →M una curva in M ,
e t0 ∈ I. Allora

∀V ∈ E(σ) Dt0V =
d

dt
σ̃−1

t

(
V (t)

)∣∣∣∣
t=t0

,

dove σ̃t:Eσ(t0) → Eσ(t) è il trasporto parallelo lungo σ, e D è la derivata covariante lungo σ. In particolare,
se σ(t0) = p e σ′(t0) = v ∈ TpM allora

∀V ∈ E(M) ∇vV =
d

dt
σ̃−1

t

(
V

(
σ(t)

))∣∣∣∣
t=t0

.

Dimostrazione: Sia {E1, . . . , Er} un riferimento locale parallelo lungo σ (ottenuto prendendo una base qual-
siasi di Ep e trasportandola parallelamente lungo σ), e scriviamo V (t) = V j(t)Ej(t). Allora

σ̃−1
t

(
V (σ(t))

)
= V j(t)Ej(t0) =⇒ d

dt
σ̃−1

t

(
V

(
σ(t)

))∣∣∣∣
t=t0

=
dV j

dt
(t0)Ej(t0).

D’altra parte, abbiamo

Dt0(V
jEj) =

dV j

dt
(t0)Ej(t0) + V j(t0)Dt0Ej =

dV j

dt
(t0)Ej(t0),

perché gli Ej sono paralleli lungo σ.

Esercizio 4.3.3. Indichiamo con L: T (M) × T (M) → T (M) la derivata di Lie LX(Y ) = [X, Y ]. Dimostra
che L non è una connessione, e che esistono due campi vettoriali X, Y ∈ T (R2) tali che X(O) = O
ma LXY (O) 6= O.

Nel seguito lavoreremo principalmente con connessioni lineari, cioè con connessioni definite sul fibrato
tangente TM . Una delle caratteristiche delle connessioni lineari è che inducono una connessione su ciascun
fibrato tensoriale:

Proposizione 4.3.7: Sia ∇ una connessione lineare su una varietà M . Allora esiste un unico modo di
definire per ogni h, k ∈ N una connessione su Th

k M , ancora indicata con ∇, in modo da soddisfare le
seguenti condizioni:

(i) su TM la connessione ∇ coincide con la connessione lineare data;
(ii) su T 0M = C∞(M) si ha ∇X(f) = X(f);
(iii) se Kj ∈ T hj

kj
(M), per j = 1, 2 e X ∈ T (M) si ha

∇X(K1 ⊗K2) = (∇XK1)⊗K2 + K1 ⊗ (∇XK2);

(iv) ∇ commuta con le contrazioni.
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Inoltre, se η ∈ A1(M) e X, Y ∈ T (M) si ha

(∇Xη)(Y ) = X
(
η(Y )

)
− η(∇XY ). (4.3.5)

Infine, se p ∈M , v ∈ TpM , e K ∈ T h
k (M) si ha

∇vK =
d

dt

[
T (σ̃t)−1

(
K

(
σ(t)

))]∣∣∣∣
t=0

∈ Th
k (M)p, (4.3.6)

dove σ: (−ε, ε) → M è una curva in M con σ(0) = p e σ′(0) = v, e T (σ̃t) è l’isomorfismo fra (Th
k M)p

e (Th
k M)σ(t) indotto dal trasporto parallelo lungo σ come descritto nell’Osservazione 1.2.3.

Dimostrazione: Cominciamo a verificare l’unicità. Se ∇ soddisfa (i)–(iv) allora abbiamo

X
(
η(Y )

)
= ∇X

(
η(Y )

)
= ∇XC11(Y ⊗ η)

= C11∇X(Y ⊗ η) = C11(∇XY ⊗ η + Y ⊗∇Xη)
= ∇Xη(Y ) + η(∇XY ),

per cui (4.3.5) è una conseguenza. Questo vuol dire che la connessione ∇ su T ∗M è univocamente deter-
minata da (i)–(iv); conoscendola su TM e su C∞(M) la (iii) implica che ∇ è univocamente determinata su
qualsiasi Th

k M . Per l’esattezza, otteniamo la seguente formula:

(∇XK)(ω1, . . . , ωh, Y1, . . . , Yk)

= X
(
K(ω1, . . . , ωh, Y1, . . . , Yk)

)
−

h∑
r=1

K(ω1, . . . ,∇Xωr, . . . , ωh, Y1, . . . , Yk)−
k∑

s=1

K(ω1, . . . , ωh, Y1, . . . ,∇XYs, . . . , Yk).

(4.3.7)

Infatti, ci basta dimostrarla per campi tensoriali della forma K = X1 ⊗ · · · ⊗Xh ⊗ η1 ⊗ · · · ⊗ ηk. Allora la
proprietà (iii) e la formula (4.3.5) implicano

∇XK(ω1, . . . , ωh, Y1, . . . , Yk)

=
h∑

r=1

(X1 ⊗ · · · ⊗ ∇XXr ⊗ · · · ⊗Xh ⊗ η1 ⊗ · · · ⊗ ηk)(ω1, . . . , ωh, Y1, . . . , Yk)

+
k∑

s=1

(X1 ⊗ · · · ⊗Xh ⊗ η1 ⊗ · · · ⊗ ∇Xηs ⊗ · · · ⊗ · · · ⊗ ηk)(ω1, . . . , ωh, Y1, . . . , Yk)

=
h∑

r=1

ω1(X1) · · ·ωr(∇XXr) · · ·ωh(Xh)η1(Y1) · · · ηk(Yk)

+
k∑

s=1

ω1(X1) · · ·ωh(Xh)η1(Y1) · · · ∇Xηs(Ys) · · · ηk(Yk)

=
h∑

r=1

ω1(X1) · · ·
[
X

(
ωr(Xr)

)
− (∇Xωr)(Xr)

]
· · ·ωh(Xh)η1(Y1) · · · ηk(Yk)

+
k∑

s=1

ω1(X1) · · ·ωh(Xh)η1(Y1) · · ·
[
X

(
ηs(Ys)

)
− ηs(∇XYs)

]
· · · ηk(Yk)

= X
(
K(ω1, . . . , ωh, Y1, . . . , Yk)

)
−

h∑
r=1

K(ω1, . . . ,∇Xωr, . . . , ωh, Y1, . . . , Yk)−
k∑

s=1

K(ω1, . . . , ωh, Y1, . . . ,∇XYs, . . . , Yk),
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e ci siamo.
Viceversa, usiamo la (4.3.5) per definire ∇ su T ∗M . Prima di tutto,

∇Xη(fY ) = X(f)η(Y ) + fX
(
η(Y )

)
− η

(
f∇XY + X(f)Y

)
= f∇Xη(Y ),

per cui la Proposizione 3.2.1 ci assicura che ∇Xη è effettivamente una 1-forma. Siccome ∇Xη è chiaramente
C∞(M)-lineare in X, e per ogni Y ∈ T (M) si ha

∇X(fη)(Y ) = X
(
fη(Y )

)
− fη(∇XY ) = [X(f)η + f∇Xη](Y ),

otteniamo effettivamente una connessione su T ∗M . Analogamente, definiamo ∇ su ciascun Th
k M tramite

la (4.3.7); si verifica facilmente (esercizio) che si ottiene una connessione che possiede le proprietà volute.
Rimane da dimostrare che ∇ è data anche da (4.3.6). Ricordando la Proposizione 4.3.6, basta verificare

che il trasporto parallelo indotto da∇ su ciascun T h
k M (che indichiamo provvisoriamente con σ̂t) coincide con

l’isomorfismo T (σ̃t). Scegliamo un riferimento locale {v1, . . . , vn} di TM parallelo lungo σ, e sia {v1, . . . , vn}
il riferimento duale di T ∗M . Nota che anche i vj sono paralleli rispetto a ∇: infatti la (4.3.5) implica

(Dvj)
(
vi

)
= σ′

(
vj(vi)

)
− vj(Dvi) = O

per ogni i e j, per cui Dvj = O. Questo implica che

σ̂t

(
vi(0)

)
= vi(t) = T (σ̃t)

(
vi(0)

)
e σ̂t

(
vj(0)

)
= vj(t) = T (σ̃t)

(
vj(0)

)
per ogni 1 ≤ i, j ≤ n. Ma allora la proprietà (iii) e la definizione di T (σ̃t) implicano che

σ̂t

(
vi1(0)⊗ · · · ⊗ vih

(0)⊗ vj1(0)⊗ · · · ⊗ vjk(0)
)

= vi1(t)⊗ · · · ⊗ vih
(t)⊗ vj1(t)⊗ · · · ⊗ vjk(t)

= T (σ̃t)
(
vi1(0)⊗ · · · ⊗ vih

(0)⊗ vj1(0)⊗ · · · ⊗ vjk(0)
)
,

per ogni 1 ≤ i1, . . . , jk ≤ n, e quindi σ̂t ≡ T (σ̃t), come volevamo.

Ora, prendiamo K ∈ T h
k (M). Siccome ∇ è C∞(M)-lineare in X, l’applicazione

(ω1, . . . , ωh, Y1, . . . , Yk, X) 7→ ∇XK(ω1, . . . , ωh, Y1, . . . , Yk) (4.3.8)

è C∞(M)-multilineare in tutte le variabili, e quindi (Proposizione 3.2.1) definisce un campo tensoriale.

Definizione 4.3.7: Se K ∈ T h
k (M) allora il campo tensoriale ∇K ∈ T h

k+1(M) definito da (4.3.8) si chiama
derivata covariante totale di K.

Esempio 4.3.3. Se f ∈ C∞(M) allora ∇f = df . Infatti per ogni X ∈ T (M) si ha

df(X) = X(f) = ∇Xf = (∇f)(X).⌈
Nel paragrafo 4.1 usando una metrica Riemanniana abbiamo definito il gradiente di una funzione.

Usando la derivata covariante totale possiamo generalizzare altri due concetti dell’Analisi classica:

Definizione 4.3.8: Se f ∈ C∞(M) il campo tensoriale ∇2f = ∇(∇f) ∈ T2(M) è detto Hessiano di f .

Definizione 4.3.9: La derivata covariante totale di un campo vettoriale X ∈ T (M) è un campo tensoriale di
tipo

(
1
1

)
. Quindi possiamo definire la funzione div(X) = C11(∇X), che è detta divergenza di X.

Calcoliamo l’espressione in coordinate locali di Hessiano e divergenza. Se X, Y ∈ T (M) abbiamo

∇2f(X, Y ) = ∇(∇f)(X, Y ) =
(
∇Y (df)

)
(X) = Y

(
df(X)

)
− df(∇Y X) = Y

(
X(f)

)
−∇Y X(f). (4.3.9)

Quindi in coordinate locali

∇2f(∂i, ∂j) =
∂2f

∂xj∂xi
− Γk

ji

∂f

∂xk
.
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In particolare, su Rn con la connessione piatta ritroviamo l’Hessiano usuale. Nota però che per connessioni
generali questo Hessiano non è simmetrico, in quanto non è detto che si abbia Γk

ji = Γk
ij .

Poi, (4.3.1) permette di stabilire che se X = Xh∂h allora

∇X = ∂k ⊗ (dXk + Γk
jhXh dxj),

per cui

div(X) =
∂Xk

∂xk
+ Γk

khXh,

(con sommatoria sottintesa sull’indice k), e di nuovo su Rn con la connessione piatta recuperiamo la solita
divergenza.

Esercizio 4.3.4. Sia ∇ una connessione sulla varietà M . Dato X ∈ T (M) e p ∈M , sia AX,p:TpM → TpM
l’applicazione lineare data da AX,p(v) = ∇vX. Dimostra che div(X)(p) = trAX,p.

Concludiamo questo paragrafo discutendo due altri modi di definire le connessioni.
Sia ∇: T (M)×E(M)→ E(M) una connessione su un fibrato vettoriale π:E →M . Sia {E1, . . . , Er} un

riferimento locale per E sopra un aperto U ⊆M . Allora possiamo definire una matrice ω = (ωk
j ) di 1-forme

su U ponendo

∀X ∈ T (U) ∇XEj = ωk
j (X)Ek;

sono 1-forme in quanto C∞(M)-lineari in X. Se U è il dominio di una carta locale, in coordinate locali
chiaramente abbiamo

ωk
j = Γk

ij dxi.

Definizione 4.3.10: Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π:E → M ,
e {E1, . . . , Er} un riferimento locale per E su un aperto U . La matrice ω = (ωk

j ) di 1-forme su U appena
definita è detta matrice delle forme di connessione rispetto al dato riferimento locale.

Sia {Ẽ1, . . . , Ẽr} un altro riferimento locale per E sopra U . Allora deve esistere una matrice inverti-
bile A = (Ak

h) di funzioni C∞ su U tali che Ẽh = Ak
hEk. Se indichiamo con ω̃ = (ω̃h

i ) la matrice delle forme
di connessione rispetto a questo riferimento locale abbiamo

ω̃h
i (X)Ak

hEk = ω̃h
i (X)Ẽh = ∇XẼi = ∇X(Aj

iEj) = Aj
i∇XEj + X(Aj

i )Ej

= [Aj
iω

k
j (X) + dAk

i (X)]Ek.

In termini matriciali questo vuol dire ω̃ ·A = A · ω + dA, cioè

ω = A−1 · ω̃ ·A−A−1 · dA. (4.3.10)

Esercizio 4.3.5. Sia π: E → M un fibrato vettoriale. Supponiamo di avere una famiglia di riferimenti
locali {Eα} per E definiti su aperti {Uα} che ricoprono M , e di avere una famiglia di matrici di 1-forme {ωα},
con ωα definita su Uα, che soddisfano (4.3.10) sull’intersezione dei domini di definizione. Dimostra che esiste
un’unica connessione ∇ su E per cui le ωα siano le matrici delle forme di connessione rispetto ai riferimenti
locali Eα.

L’ultima interpretazione delle connessioni è in termini di sottofibrati orizzontali, e la presenteremo con
una serie di definizioni ed esercizi.

Definizione 4.3.11: Sia π: E → M un fibrato vettoriale di rango r. Il sottofibrato verticale V ⊂ TE è il
nucleo del differenziale di π, cioè V = ker(dπ). Siccome dπ:TE → TM , il fibrato verticale (che è un fibrato
vettoriale su E) ha rango r.

Dato p ∈ M e v ∈ Ep, indichiamo con jp:Ep → E l’inclusione, e con kv:Ep → Tv(Ep) la solita
identificazione canonica. Siccome π ◦ jp ≡ p, si ha dπ ◦ djp ≡ O, per cui

ιv = d(jp)v ◦ kv:Ep → Vv

è un isomorfismo fra Ep e lo spazio verticale Vv.
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Definizione 4.3.12: Sia π:E → M un fibrato vettoriale. Se λ ∈ R, indichiamo con µλ:E → E la moltiplica-
zione per λ, cioè µλ(v) = λv. Inoltre, indichiamo con σ: E ⊕ E → E la somma σ(v1, v2) = v1 + v2.

Esercizio 4.3.6. Dimostra che Vµλ(v) = d(µλ)v(Vv) e che ιµλ(v) ◦ d(µλ)v = d(µλ)v ◦ ιv per ogni v ∈ E e
ogni λ ∈ R.

Esercizio 4.3.7. Dimostra che Vσ(v1,v2) = dσ(v1,v2)(Vv1⊕Vv2) e che ισ(v1,v2) ◦dσ(v1,v2) = dσ(v1,v2) ◦(ιv1⊕ιv2)
per ogni (v1, v2) ∈ E ⊕ E.

Definizione 4.3.13: Sia π:E →M un fibrato vettoriale. Un sottofibrato orizzontale è un sottofibrato H ⊂ TE
tale che TE = H⊕V. Dato un sottofibrato orizzontaleH, indicheremo con κ:TE → V la proiezione associata.
Diremo che un sottofibrato orizzontale è lineare se κµλ(v) ◦d(µλ)v = d(µλ)v ◦κv per ogni v ∈ E e ogni λ ∈ R,
e κσ(v1,v2) ◦ dσ(v1,v2) = dσ(v1,v2) ◦ (κv1 ⊕ κv2) per ogni (v1, v2) ∈ E ⊕ E.

Esercizio 4.3.8. Dimostra che un sottofibrato orizzontale H è lineare se e solo se si ha Hµλ(v) = d(µλ)v(Hv)
per ogni v ∈ E e ogni λ ∈ R, e Hσ(v1,v2) = dσ(v1,v2)(Hv1 ⊕Hv2) per ogni (v1, v2) ∈ E ⊕ E.

Definizione 4.3.14: Sia π: E → M un fibrato vettoriale. Una k-forma a valori in E è una sezione del fi-
brato

∧k
M ⊗ E. Indicheremo con Ak(M ;E) lo spazio delle k-forme a valori in E.

Esercizio 4.3.9. Sia∇: T (M)×E(M)→ E(M) una connessione su un fibrato vettoriale π:E →M . Dimostra
che ∇ induce un’applicazione R-lineare D: E(M)→ A1(M ;E) tale che

D(fV ) = df ⊗ V + fDV (4.3.11)

per ogni f ∈ C∞(M) e ogni V ∈ E(M) ponendo DV (X) = ∇XV . Viceversa, dimostra che ogni applicazione
R-lineare D: E(M)→ A1(M ;E) che soddisfa (4.3.11) è indotta da un’unica connessione su E.

Esercizio 4.3.10. Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π:E → M .
Dati p ∈M e v ∈ Ep, siano V , Ṽ ∈ E(M) tali che V (p) = Ṽ (p) = v. Dimostra che

dṼp − ιv ◦DṼp = dVp − ιv ◦DVp:TpM → TvE.

Definizione 4.3.15: Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π:E → M . Per
ogni v ∈ E definiamo l’applicazione Θv: Tπ(v)M → TvE data da

Θp(X) = dVπ(v)(X)− ιv(∇XV )

per ogni X ∈ Tπ(v)M , dove V ∈ E(M) è una qualsiasi sezione tale che V
(
π(v)

)
= v. Il sottofibrato

orizzontale H∇ associato a ∇ è allora definito ponendo H∇v = Θv(Tπ(v)M) per ogni v ∈ E.

Esercizio 4.3.11. Sia ∇: T (M) × E(M) → E(M) una connessione su un fibrato vettoriale π:E → M .
Dimostra che H∇ è effettivamente un sottofibrato orizzontale, e che è lineare.

Definizione 4.3.16: Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale π:E → M , e sia
κ:TE → V la proiezione relativa. La connessione DH associata a H è l’applicazione DH: E(M)→ A1(M ;E)
definita da DHV = ι−1

V ◦ κV ◦ dV .

Esercizio 4.3.12. Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale π:E → M . Dimostra
che la connessione DH è un’applicazione R-lineare che soddisfa (4.3.11), per cui proviene da una connessione
su E, che indicheremo con ∇H.

Esercizio 4.3.13. Sia π:E →M un fibrato vettoriale. Dimostra che le corrispondenze ∇ 7→ H∇ e H 7→ ∇H
sono una inversa dell’altra, per cui abbiamo una corrispondenza biunivoca fra connessioni su E e sottofibrati

orizzontali lineari di TE.

⌋
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4.4 La connessione di Levi-Civita

Connessioni su una varietà qualunque ne esistono a bizzeffe; ma lo scopo di questa sezione è mostrare come
sia possibile definire in modo canonico una connessione particolarmente utile su ogni varietà Riemanniana.

Definizione 4.4.1: Una connessione ∇ su una varietà Riemanniana (M, g) è compatibile con la metrica se

∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

per tutti gli X, Y , Z ∈ T (M).

Proposizione 4.4.1: Sia ∇ una connessione su una varietà Riemanniana (M, g). Le seguenti proprietà sono
equivalenti:

(i) ∇ è compatibile con g;
(ii) ∇g ≡ O;
(iii) in un qualunque sistema di coordinate si ha

∂kgij = Γl
kiglj + Γl

kjgil;

(iv) per ogni coppia di campi vettoriali V e W lungo una curva σ abbiamo

d

dt
〈V, W 〉 = 〈DV, W 〉+ 〈V, DW 〉;

(v) per ogni coppia di campi vettoriali V e W paralleli lungo una curva σ il prodotto 〈V, W 〉 è costante;
(vi) il trasporto parallelo lungo una qualsiasi curva è un’isometria.

Dimostrazione: (i)⇐⇒(ii): per definizione,

∇g(Y, Z, X) = (∇Xg)(Y, Z) = X
(
〈Y, Z〉

)
− 〈∇XY, Z〉 − 〈Y,∇XZ〉,

e ci siamo.
(ii)⇐⇒(iii): fissato un sistema di coordinate si ha

∇g(∂i, ∂j , ∂k) = ∂k(〈∂i, ∂j〉)− 〈∇∂k
∂i, ∂j〉 − 〈∂i,∇∂k

∂j〉 = ∂k(gij)− Γl
kiglj − Γl

kjgil,

e ci siamo.
(i)=⇒(iv): Basta scrivere localmente V = V h∂h ◦ σ, W = W k∂k ◦ σ, e usare il fatto che

d

dt
〈∂h, ∂k〉σ = σ′(〈∂h, ∂k〉σ).

(iv)=⇒(v): se DV = DW ≡ O la (iv) implica che 〈V, W 〉 è costante.
(v)=⇒(vi): infatti la (v) dice esattamente che il trasporto parallelo conserva la metrica.
(vi)=⇒(i): scelto p ∈ M , sia σ una curva con σ(0) = p e σ′(0) = Xp. Fissiamo una base ortonor-

male {v1, . . . , vn} di TpM ; per (vi) possiamo estendere ciascun vj a un campo vettoriale vj(t) parallelo lungo σ
e tale che {v1(t), . . . , vn(t)} sia una base ortonormale di Tσ(t)M per ogni t. Scriviamo Y

(
σ(t)

)
= Y h(t)vh(t)

e Z
(
σ(t)

)
= Zk(t)vk(t); allora

∇Xp〈Y, Z〉 =
d

dt

〈
Y

(
σ(t)

)
, Z

(
σ(t)

)〉∣∣∣∣
t=0

=
d

dt

(
n∑

h=1

Y hZh

)∣∣∣∣∣
t=0

=
n∑

h=1

(
dY h

dt
(0)Zh(0) + Y h(0)

dZh

dt
(0)

)

=
〈

dY h

dt
(0)vh, Z(0)

〉
+

〈
Y (0),

dZh

dt
(0)vh

〉
= 〈D0Y, Z〉+ 〈Y, D0Z〉

= 〈∇XpY, Z〉+ 〈Y,∇XpZ〉,

e ci siamo.
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Esercizio 4.4.1. Sia ∇ una connessione lineare su una varietà Riemanniana (M, g). Dimostra che ∇ è

compatibile con g se e solo se le 1-forme di connessione (ωi
j) rispetto a qualsiasi riferimento locale {E1, . . . , En}

di TM sono tali che
gjkωk

i + gikωk
j = dgij ,

dove gij = g(Ei, Ej), come al solito. In particolare, se ∇ è compatibile con la metrica allora la matrice (ωi
j)

rispetto a un riferimento locale ortonormale è necessariamente antisimmetrica.

⌋
La compatibilità con la metrica non identifica univocamente una connessione, sfortunatamente:

Esercizio 4.4.2. Dimostra che se ∇ è una connessione compatibile con la metrica su una varietà Rieman-
niana (M, g), e A ∈ T 1

2 (M) è tale che

〈A(X, Y ), Z〉+ 〈Y, A(X, Z)〉 = 0 (4.4.1)

per ogni X, Y , Z ∈ T (M) allora ∇ + A è ancora una connessione compatibile con la metrica. Dimostra
inoltre che se ∇1 e ∇2 sono due connessioni compatibili con la metrica allora ∇1−∇2 è un campo tensoriale
di tipo

(
1
2

)
che soddisfa (4.4.1).

In un certo senso, un campo tensoriale che soddisfa (4.4.1) è antisimmetrico, il che fa sospettare che
una connessione compatibile con la metrica e che sia simmetrica in qualche senso dovrebbe essere unica. Il
concetto giusto di simmetria è rivelato dal

Lemma 4.4.2: Data una connessione lineare ∇ su una varietà M , definiamo τ : T (M) × T (M) → T (M)
ponendo

τ(X, Y ) = ∇XY −∇Y X − [X, Y ].

Allora τ è un campo tensoriale di tipo
(
1
2

)
.

Dimostrazione: Siccome τ(Y, X) = −τ(X, Y ), per far vedere che τ è un campo tensoriale di tipo
(
1
2

)
grazie

alla Proposizione 3.2.1.(ii) è sufficiente dimostrare che τ è C∞(M)-lineare nella prima variabile. Ma infatti

τ(fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ] = f∇XY − f∇Y X − Y (f)X − f [X, Y ] + Y (f)X = fτ(X, Y ).

Definizione 4.4.2: La torsione di una connessione ∇ su una varietà M è il campo tensoriale τ ∈ T 1
2 (M)

definito da
τ(X, Y ) = ∇XY −∇Y X − [X, Y ].

La connessione ∇ è detta simmetrica se τ ≡ O.

Esercizio 4.4.3. Dimostra che se ∇ è una connessione lineare di torsione τ allora ∇̃ = ∇ − 1
2τ è una

connessione lineare simmetrica.

Lemma 4.4.3: Sia ∇ una connessione su una varietà M . Allora le seguenti affermazioni sono equivalenti:

(i) ∇ è simmetrica;
(ii) i simboli di Christoffel rispetto a un qualsiasi sistema di coordinate sono simmetrici, cioè Γh

ij = Γh
ji;

(iii) l’Hessiano ∇2f è simmetrico per ogni f ∈ C∞(M).

Dimostrazione: (i)⇐⇒(ii): Fissiamo una carta locale, e scriviamo X = Xh∂h e Y = Y k∂k. Allora (4.3.1) ci
dà

τ(X, Y ) = XhY k[Γj
hk − Γj

kh]∂j ,

per cui τ(X, Y ) ≡ O per ogni X, Y ∈ T (M) se e solo se i simboli di Christoffel sono simmetrici.
(i)⇐⇒(iii): Grazie a (4.3.9) abbiamo

∇2f(X, Y )−∇2f(Y, X) = −[X, Y ](f)−∇Y X(f) +∇XY (f) = τ(X, Y )(f),

e ci siamo.
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Esercizio 4.4.4. Trova una connessione lineare ∇ compatibile con una metrica Riemanniana g tale che la
connessione ∇̃ = ∇− 1

2τ non sia compatibile con g, dove τ è la torsione di ∇.⌈
Esercizio 4.4.5. Sia ∇ una connessione lineare su una varietà M , {E1, . . . , En} un riferimento locale

di TM , {ϕ1, . . . , ϕn} il riferimento duale di T ∗M , e (ωi
j) la matrice delle 1-forme di connessione. Sia infine τ

la torsione di ∇, e definiamo τ j : T (M)× T (M)→ C∞(M) per j = 1, . . . , n tramite la formula

τ(X, Y ) = τ j(X, Y )Ej .

Dimostra che τ1, . . . , τn sono delle 2-forme locali (dette forme di torsione), e dimostra la prima equazione di
struttura di Cartan:

dϕj = ϕi ∧ ωj
i + τ j

per j = 1, . . . , n.

⌋
Il risultato che permette alla geometria Riemanniana di prendere davvero vita è il seguente:

Teorema 4.4.4: Su ogni varietà Riemanniana (M, g) esiste un’unica connessione∇ simmetrica e compatibile
con la metrica. Inoltre, ∇ soddisfa

〈∇XY, Z〉 =
1
2
{X〈Y, Z〉+ Y 〈Z, X〉 − Z〈X, Y 〉+ 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z, X], Y 〉} (4.4.2)

per ogni X, Y , Z ∈ T (M). In particolare, se {E1, . . . , En} è un riferimento locale ortonormale abbiamo

〈∇EiEj , Ek〉 =
1
2

{
〈[Ei, Ej ], Ek〉 − 〈[Ej , Ek], Ei〉+ 〈[Ek, Ei], Ej〉

}
, (4.4.3)

mentre i simboli di Christoffel di ∇ sono dati da

Γk
ij =

1
2
gkl

(
∂glj

∂xi
+

∂gil

∂xj
− ∂gij

∂xl

)
. (4.4.4)

Dimostrazione: Cominciamo con l’unicità. Se ∇ è una connessione compatibile con g si deve avere

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉,
Y 〈Z, X〉 = 〈∇Y Z, X〉+ 〈Z,∇Y X〉,
Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉.

Quindi se ∇ è anche simmetrica otteniamo

X〈Y, Z〉+ Y 〈Z, X〉 − Z〈X, Y 〉 = 〈∇XZ −∇ZX, Y 〉+ 〈∇Y Z −∇ZY, X〉+ 〈∇XY +∇Y X, Z〉
= −〈[Z, X], Y 〉+ 〈[Y, Z], X〉 − 〈[X, Y ], Z〉+ 2〈∇XY, Z〉,

e quindi ∇ è data da (4.4.2).
Viceversa, definiamo ∇: T (M)×T (M)→ T (M) tramite (4.4.2); dobbiamo verificare che otteniamo una

connessione simmetrica compatibile con la metrica. Iniziamo mostrando che il secondo membro di (4.4.2)
è C∞(M)-lineare in Z; infatti

〈∇XY, fZ〉 =
1
2
{X〈Y, fZ〉+ Y 〈fZ, X〉 − fZ〈X, Y 〉+ 〈[X, Y ], fZ〉 − 〈[Y, fZ], X〉+ 〈[fZ, X], Y 〉}

= f〈∇XY, Z〉+ 1
2
{X(f)〈Y, Z〉+ Y (f)〈Z, X〉 − Y (f)〈Z, X〉 −X(f)〈Z, Y 〉}

= f〈∇XY, Z〉.
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Quindi 〈∇XY, ·〉 è una 1-forma, per cui ∇XY = 〈∇XY, ·〉# è effettivamente un campo vettoriale.
Poi, ∇ è C∞(M)-lineare nel primo argomento:

〈∇fXY, Z〉 =
1
2

{
fX〈Y, Z〉+ Y 〈Z, fX〉 − Z〈fX, Y 〉+ 〈[fX, Y ], Z〉 − 〈[Y, Z], fX〉+ 〈[Z, fX], Y 〉

}
= f〈∇XY, Z〉+ 1

2

{
Y (f)〈Z, X〉 − Z(f)〈X, Y 〉 − Y (f)〈X, Z〉+ Z(f)〈X, Y 〉

}
= 〈f∇XY, Z〉,

come voluto. In modo analogo (esercizio) si verifica la formula di Leibniz. Controlliamo ora la compatibilità
con la metrica:

〈∇XY, Z〉+ 〈Y,∇XZ〉 =
1
2

{
X〈Y, Z〉+ Y 〈Z, X〉 − Z〈X, Y 〉+ 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z, X], Y 〉

}
+

1
2

{
X〈Z, Y 〉+ Z〈Y, X〉 − Y 〈X, Z〉+ 〈[X, Z], Y 〉 − 〈[Z, Y ], X〉+ 〈[Y, X], Z〉

}
= X〈Y, Z〉,

come desiderato. Infine è facile vedere (esercizio) che ∇ è anche simmetrica.
La (4.4.2) chiaramente implica la (4.4.3). Infine, siccome [∂h, ∂k] = O per ogni h, k = 1, . . . , n, abbiamo

gklΓk
ij = 〈∇∂i

∂j , ∂l〉 =
1
2
(
∂i(gjl) + ∂j(gli)− ∂l(gij)

)
,

e la (4.4.4) segue.

Definizione 4.4.3: Sia M una varietà Riemanniana. L’unica connessione ∇ simmetrica e compatibile con la
metrica si dice connessione di Levi-Civita della varietà Riemanniana M .

Osservazione 4.4.1. Nella dimostrazione precedente abbiamo usato solo il fatto che 〈· , ·〉p fosse un pro-
dotto scalare non degenere, e non che fosse definito positivo. Quindi è possibile definire una connessione di
Levi-Civita in varietà equipaggiate con un campo tensoriale g ∈ T2(M) simmetrico e non degenere (cioè tale
che gp(v, w) = 0 per ogni w ∈ TpM implica v = O). Questo è utile, per esempio, in relatività generale.

Esempio 4.4.1. La connessione piatta è la connessione di Levi-Civita per la metrica euclidea di Rn.

Esempio 4.4.2. Sia M una varietà Riemanniana con connessione di Levi-Civita ∇M , e N una sottovarietà
di M . Se indichiamo con π:TM → TN la proiezione ortogonale (dove: per ogni p ∈ N consideriamo TpN
come sottospazio di TpM , e π|TpM :TpM → TpN è la proiezione ortogonale rispetto al prodotto scalare dato
dalla metrica su M), allora si verifica facilmente (esercizio) che ∇N : T (N)× T (N)→ T (N) data da

∀X, Y ∈ T (N) ∇N
XY = π(∇M

X Y )

è una connessione simmetrica, in quanto ∇M lo è. Inoltre, se mettiamo su N la metrica gN indotta da
quella di M , si vede subito (esercizio) che ∇N è compatibile con gN , e quindi ∇N è proprio la connessione
di Levi-Civita di N considerata con la metrica indotta.

Esercizio 4.4.6. Dimostra che se M è una superficie regolare di R3 equipaggiata con la metrica indotta
dalla metrica euclidea, allora i simboli di Christoffel introdotti nella teoria classica delle superfici coincidono
con quelli introdotti qui.

Una conseguenza immediata dell’unicità della connessione di Levi-Civita è la seguente

Proposizione 4.4.5: Sia F : (M, g)→ (M̃, g̃) un’isometria fra due varietà Riemanniane. Allora:

(i) F porta la connessione di Levi-Civita ∇ di M nella connessione di Levi-Civita ∇̃ di M̃ nel senso che

∀X, Y ∈ T (M) dF (∇XY ) = ∇̃dF (X)dF (Y );

(ii) se σ è una curva in M si ha

∀V ∈ T (σ) dF (DV ) = D̃
(
dF (V )

)
,
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dove D (rispettivamente, D̃) è la derivata covariante lungo la curva σ (rispettivamente, σ̃ = F ◦ σ) indotta
da ∇ (rispettivamente, ∇̃).

Dimostrazione: (i) Definiamo un’applicazione F ∗∇̃: T (M)× T (M)→ T (M) ponendo

∀X, Y ∈ T (M) (F ∗∇̃)XY = (dF )−1
(
∇̃dF (X)dF (Y )

)
.

Si vede subito che F ∗∇̃ è una connessione su M . Inoltre

〈(F ∗∇̃)XY, Z〉M + 〈Y, (F ∗∇̃)XZ〉M =
〈
(dF )−1

(
∇̃dF (X)dF (Y )

)
, Z

〉
M

+
〈
Y, (dF )−1

(
∇̃dF (X)dF (Z)

)〉
M

= 〈∇̃dF (X)dF (Y ), dF (Z)〉M̃ + 〈dF (Y ), ∇̃dF (X)dF (Z)〉M̃
= dF (X)

(
〈dF (Y ), dF (Z)〉M̃

)
= dF (X)

(
〈Y, Z〉M ◦ F−1

)
= X〈Y, Z〉M ,

per cui F ∗∇̃ è compatibile con la metrica. Infine

(F ∗∇̃)XY − (F ∗∇̃)Y X − [X, Y ] = (dF )−1
(
∇̃dF (X)dF (Y )− ∇̃dF (Y )dF (X)

)
− [X, Y ]

= (dF )−1
(
[dF (X), dF (Y )]

)
− [X, Y ]

= O,

(dove abbiamo usato l’Esercizio 3.3.3), per cui F ∗∇̃ è simmetrica. Il Teorema 4.4.4 implica allora F ∗∇̃ = ∇,
come voluto.

(ii) Se si definisce F ∗D̃: T (σ)→ T (σ) con

(F ∗D̃)V = (dF )−1
(
D̃dF (V )

)
,

l’unicità di D enunciata nella Proposizione 4.3.3 (assieme a F ∗∇̃ = ∇) implicano che F ∗D̃ = D, e ci siamo.

Esercizio 4.4.7. Sia F :M → N un’immersione globalmente iniettiva, e g una metrica Riemanniana su N .
Indichiamo con ∇ la connessione di Levi-Civita su N , e per ogni p ∈ M sia πp:TF (p)N → dFp(TpM) la
proiezione ortogonale. Definiamo F ∗∇: T (M)× T (M)→ T (M) ponendo

F ∗∇XY (p) = (dFp)−1
(
πp

(
∇dFp(X)dF (Y )

))
.

Dimostra che F ∗∇ è la connessione di Levi-Civita della metrica F ∗g su M .⌈
Avendo a disposizione una connessione e una metrica possiamo introdurre la generalizzazione di un

altro concetto dell’Analisi classica. Per farlo ci serve un risultato di algebra lineare che lasciamo per esercizio.

Definizione 4.4.4: La traccia di una forma bilineare simmetrica S:V × V → R su uno spazio vettoriale V
dotato di un prodotto scalare definito positivo è definita da

tr(S) =
n∑

j=1

S(vj , vj), (4.4.5)

dove {v1, . . . , vn} è una qualunque base ortonormale di V .

Esercizio 4.4.8. Verifica che il secondo membro di (4.4.5) non dipende dalla base ortonormale scelta, per
cui la traccia di una forma bilineare simmetrica è ben definita.

Definizione 4.4.5: Sia M una varietà Riemanniana, e f ∈ C∞(M). Diremo Laplaciano di f la funzione

∆f = tr(∇2f),

dove ∇ è la connessione di Levi-Civita di f .
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Esercizio 4.4.9. Dimostra che
∆f = div grad(f),

e che in coordinate locali si ha

∆f =
1√
G

∂

∂xk

(√
G gjk ∂f

∂xj

)
,

dove G = det(gij).

⌋
Concludiamo questo capitolo determinando la connessione di Levi-Civita in alcuni casi particolarmente

significativi. Nell’Esempio 4.4.1 abbiamo trovato la connessione di Levi-Civita per Rn; vediamo adesso
l’aspetto delle connessioni di Levi-Civita sulla sfera e sullo spazio iperbolico.

Esempio 4.4.3. Sia gR la metrica sferica su Sn
R ⊂ Rn+1 (Esempio 4.2.1); vogliamo calcolare i simboli di

Christoffel della connessione di Levi-Civita di gR rispetto alle coordinate sferiche. Conservando le notazioni
introdotte nell’Esempio 4.2.1 abbiamo

∂gij

∂θl
=

{
2R2(sin θl+1 · · · sin θn)2

cos θl

sin θl
se i = j < l,

0 altrimenti.

Quindi (4.4.4) ci dà

Γk
ij =


cos θmax{i,j}

sin θmax{i,j} se k = i < j o k = j < i,

−1
2
(sin θi+1 · · · sin θk−1)2 sin(2θk) se i = j < k,

0 altrimenti.

In particolare, per la sfera unitaria in R3 otteniamo

Γ1
11 = Γ1

22 = Γ2
12 = Γ2

21 = Γ2
22 = 0, Γ1

12 = Γ1
21 = ctgθ2, Γ2

11 = −1
2

sin(2θ2).

Esempio 4.4.4. Calcoliamo i simboli di Christoffel per la connessione di Levi-Civita sullo spazio iperbolico
(Esempio 4.2.3). Cominciamo con Bn

R; una base dello spazio tangente è data da {∂/∂x1, . . . , ∂/∂xn}, per
cui

gij =
4R4

(R2 − ‖x‖2)2 δij ,
∂gij

∂xk
=

16R4xk

(R2 − ‖x‖2)3 δij ,

e quindi

Γk
ij =



2xj

R2 − ‖x‖2 se i = k,

2xi

R2 − ‖x‖2 se j = k 6= i,

− 2xk

R2 − ‖x‖2 se i = j 6= k,

0 altrimenti.
Nel caso di Hn

R, la base dello spazio tangente è la stessa, ma

gij =
R2

(xn)2
δij ,

∂gij

∂xk
= − 2R2

(xn)3
δijδkn,

per cui

Γk
ij =


1
xn

se i = j < k = n,

− 1
xn

se i = k < j = n o j = k < i = n o i = j = k = n,

0 altrimenti.
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Esercizio 4.4.10. Calcola i simboli di Christoffel della metrica g1
R di Un

R rispetto alle coordinate locali

ϕ(u1, . . . , un) =
(
u1, . . . , un,

√
R2 + ‖u‖2

)
.

⌈
Esempio 4.4.5. Sia G un gruppo di Lie su cui abbiamo messo una metrica invariante a sinistra g, e

indichiamo con g l’algebra di Lie, e con ∇ la connessione di Levi-Civita. Prima di tutto, è facile verificare
che ∇ è invariante a sinistra, cioè che

∇XY (h) = dLh

(
∇dLh−1 (X)dLh−1(Y )(e)

)
(4.4.6)

per ogni X, Y ∈ T (G) e h ∈ G. Infatti, se usiamo il lato destro di (4.4.6) per definire una nuova connes-
sione ∇̃, si vede subito che ∇̃ è (effettivamente una connessione ed è) simmetrica e compatibile con la metrica,
per cui coincide con ∇. Se {X1, . . . , Xn} è una base di g, estendiamo gli Xj a campi vettoriali invarianti a
sinistra. Chiaramente otteniamo un riferimento globale per TG, e ogni campo vettoriale su G (non neces-
sariamente invariante a sinistra) si scrive come combinazione lineare a coefficienti in C∞(G) di X1, . . . , Xn.
Quindi per determinare ∇ ci basta vedere quanto fa applicata agli Xj ; e per l’invarianza a sinistra ci basta
effettuare questo calcolo nell’identità. Ora, l’invarianza a sinistra di g implica che gij = 〈Xi, Xj〉 è costante
su G; quindi la (4.4.2) ci dice che

〈∇Xi
Xj , Xk〉e =

1
2
(
glkcl

ij − glic
l
jk + gljc

l
ki

)
, (4.4.7)

dove le cl
ij sono le costanti di struttura di g rispetto alla base {X1, . . . , Xn} (vedi la Definizione 3.3.10), e

abbiamo determinato ∇.

Esempio 4.4.6. Sia G = GL(n, R) il gruppo delle matrici invertibili a coefficienti reali. Prendiamo come
base di gl(n, R) la base canonica {Eij}, dove Eij è la matrice con 1 al posto (i, j) e 0 altrove, cioè

(Eij)rs = δirδjs.

Abbiamo visto (Esempio 3.3.2) che le costanti di struttura sono

c
(rs)
(ij)(hk) = δirδksδjh − δrhδsjδik.

Mettiamo su gl(n, R) il prodotto scalare rispetto a cui la base canonica {Eij} è ortonormale, ed estendiamolo
in modo da avere una metrica Riemanniana invariante a sinistra (che non è la metrica euclidea). Allora
la (4.4.7) ci fornisce la connessione di Levi-Civita rispetto a questa metrica:

〈∇Eij
Ehk, Ers〉 =

1
2
[c(rs)

(ij)(hk) − c
(ij)
(hk)(rs) + c

(hk)
(rs)(ij)]

=
1
2
[δirδkjδjh − δhrδjsδik − δhiδsjδkr + δirδjkδhs + δhrδjkδis − δihδksδjr].

⌋
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