Capitolo 4

Metriche Riemanniane

4.1 Definizioni

Introduciamo ora la vera protagonista di questo corso.

Definizione 4.1.1: Una metrica Riemanniana su una varietd M & un campo tensoriale g € To(M) simmetrico
(cioe tale che g,(w,v) = g,(v,w) per ogni v, w € T,M e p € M) e definito positivo (cio¢ g(v,v) > 0 per
ogni v # O). La coppia (M, g) ¢ detta varieta Riemanniana. Spesso useremo anche la notazione (v, w), al
posto di g,(v,w), e indicheremo con || - ||, la norma su 7, M indotta dal prodotto scalare g,,.

In altre parole, una metrica Riemanniana associa a ogni punto p € M un prodotto scalare definito
positivo gp: T, M x T,M — R che dipende in modo C*® dal punto p.

Osservazione 4.1.1. Ci sono alcune situazioni (per esempio in relativita) in cui & utile studiare varieta
equipaggiate con un campo tensoriale g € 73(M) simmetrico non degenere (cioe tale che g,(v, w) = 0 per
ogni w € T,M se e solo se v = O,); un tale tensore g & spesso detto metrica pseudo-Riemanniana. Diversi
dei risultati di questo capitolo (per esempio la costruzione della connessione di Levi-Civita nel paragrafo 4)
sono validi anche in questa situazione piu generale; indicheremo esplicitamente i casi piu significativi.

Esercizio 4.1.1. Sia M una varieta, e supponiamo di avere per ogni p € M un prodotto scalare definito
positivo g,: T, M x T, M — R. Dimostra che g ¢ una metrica Riemanniana se e solo se p — g, (X(p), Y(p))
e di classe C* per ogni X, Y € T(M).

Vediamo come si esprime una metrica Riemanniana (o, pill in generale, un campo tensoriale g € To(M)
simmetrico) in coordinate locali. Fissata una carta locale (U, ¢), indichiamo con (z!,...,z™) le corrispondenti
coordinate locali, e con {01,...,0,} il corrispondente riferimento locale di TM. Allora possiamo definire
delle funzioni g, € C*°(U) ponendo gpr. = g(0n, Ok ); e chiaramente abbiamo

9= Z gnk da" ® da. (4.1.1)
h,k=1

Inoltre, la matrice simmetrica (gnr) & non degenere se e solo se g & non degenere, ed & definita positiva se e
solo se g e definita positiva.

Osservazione 4.1.2. D’ora in poi useremo la convenzione di Einstein sugli indici ripetuti: se lo stesso
indice appare due volte in una formula, una volta in basso e una volta in alto, supporremo sottintesa una
sommatoria su tutti i possibili valori di quell’indice. Per esempio, la (4.1.1) verra scritta

9= gni, da" @ da*,

sottintendendo la sommatoria su h e k che variano da 1 a n. Vale la pena avvertire che in alcuni testi si trova
scritto dz” dz* invece di dz” ® dx*, e in particolare (dz?)? invece di do/ ® dz’. Infine, la matrice inversa
della matrice (gpy) sara indicata con (¢"*), in modo da avere

9 g"" = g" g1 = oF,

dove 5,@ ¢, come sempre, il delta di Kronecker.
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EseMPIO 4.1.1. R"™ con la metrica euclidea. Identificando come al solito T,R"™ con R™ per ogni p € R",
possiamo mettere su ciascuno spazio tangente il prodotto scalare canonico. In questo modo otteniamo una
metrica Riemanniana su R", detta metrica euclidea o metrica piatta su R", data da

go = Onk dz" @ da* = da' @ dzt + -+ - + da™ @ da™.

ESEMPIO 4.1.2. La metrica prodotto. Siano (Mi,g1) e (Ma,g2) due varietd Riemanniane. Allora sulla
varieta M7, X Ms possiamo mettere la metrica prodotto g1 + go definita in questo modo: siccome per
ogni (p1,p2) € My x Ms lo spazio tangente T\, ,,,)(M1 x M) ¢ isomorfo a T}, My & T, Mo, ogni elemento

di T, po) (M1 x My) & della forma v = (vi,vz), con v; € T, M;, per cui poniamo

Vo, w € T(p, po) (M1 X M2) (g1 + 92) (p1 .po) (Vs W) = (91)py (V1, W1) + (92)p, (V2, w2).

Si verifica subito (esercizio) che g1 + g2 ¢ una metrica Riemanniana.

Usando le partizioni dell’unita e la metrica piatta e facile dimostrare I’esistenza di metriche Riemanniane
su qualsiasi varieta:
Proposizione 4.1.1: Ogni varieta M (di Hausdorff a base numerabile) ammette una metrica Riemanniana.

Dimostrazione: Sia {p,} una partizione dell’unita subordinata a un atlante A = {(Uy, @)} di M. Su ciascun
aperto U, introduciamo la metrica piatta ¢® indotta dal sistema di coordinate: se p € Uy, € v = v79; 4
ew = w’ 0j.« € la scrittura in coordinate locali di due vettori v, w € T}, M, allora poniamo gg(v, w) = Zj viw?
(in altre parole, la matrice (gf},) € la matrice identica). Definiamo allora un campo tensoriale g € 73(M) con

Vpe M g =Y _ palp)gs,
(e}

dove in ciascun punto p € M solo un numero finito di addendi sono diversi da zero. E facile verificare
(esercizio) che questa formula definisce una metrica Riemanniana su M, in quanto la somma di tensori
simmetrici definiti positivi ¢ ancora un campo tensoriale simmetrico definito positivo. O

Osservazione 4.1.3. Sia (gpy) la matrice che rappresenta una metrica Riemanniana g rispetto alla carta
locale (U, ¢), e (gi;) la matrice che rappresenta g rispetto a un’altra carta locale (U, ¢). Ricordando la (2.4.2)
e la formula che mostra come cambia la matrice che rappresenta un prodotto scalare cambiando base otte-

niamo (3i;) = <%>T (gnk) - (%)

in UNU, dove il - indica il prodotto di matrici. In altre parole abbiamo

_ oz Oxk
9ij = %% 9hk-

In particolare,
2
det (i) = [det (%ﬂ det(gnr)- (4.1.2)

Osservazione 4.1.4. Sia (U, ) una carta locale in una varietd Riemanniana (M, g). Se applichiamo il
procedimento di Gram-Schmidt al riferimento locale {01,...,0,} otteniamo un riferimento locale ortonor-
male {F1,...,E,}. Attenzione: di solito perd non & possibile trovare una carta locale (U, ) tale che il
riferimento {01, ...,0,} sia ortonormale in U. Infatti, come vedremo nel paragrafo 6.1, questo & equivalente
a richiedere che la varieta Riemanniana sia piatta in U.

Descriviamo ora alcune costruzioni standard che si possono effettuare usando una metrica Rieman-

niana. Cominciamo con la
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Proposizione 4.1.2: Sia (M,g) una varieta Riemanniana orientabile, e fissiamo un’orientazione. Allora
esiste un’unica n-forma vy € A™(M) mai nulla tale che vy(E1,...,E,) = 1 per ogni p € M e ogni base
ortonormale positiva {En, ..., E,} di T,M.

Dimostrazione: Sia A = {(Ua, ¢a)} un atlante orientato, e indichiamo con (gg}) la matrice che rappresenta g
nelle coordinate di ¢,. Sia poi B = {FE,..., E,} un riferimento locale ortonormale positivo di TM so-
pra U; se poniamo dz(Ey) = e} allora abbiamo Ej, = e}d),, e quindi det(el?) > 0 (perché B & positivo),
e gf‘jeﬁlei = Sy (perché B & ortonormale), per cui

det(gg:) det(e}) = 1. (4.1.3)

Supponiamo che esista una v € A™(M) che soddisfa le ipotesi. Per ogni indice « esiste una f, € C*°(U,)
tale che v|y, = fadxl A--- Adz". Ma allora

1=v(EL,...,E,) = fodet(el) = L,

det(g5%)

per cui necessariamente f, = det(gf‘j)7 e v ¢ unica.

Vglu, = /det(ggy) dal, A - Adx.

Questa formula definisce una n-forma globale: infatti su U, N Up (4.1.2) da

Viceversa, poniamo

B 1 n 89:(}; a a.’I/‘Z 1 n
det(g;;) drg A -+ ANdzjg = det | —¢ det(gs;) det ok dzx,, A--- Ndz),

k
Or 5
= ,/det(g5) del Ao Adah.
Chiaramente, v4 non si annulla mai. Infine, v, & come richiesto: infatti, se B = {Ei,..., E,} € una base

ortonormale positiva di T, M con p € Uy, (4.1.3) implica

vg(En, ..., En) = /det(gs) det(dxh(Ek)) = det(g%)det(eﬁ) =1.
O

Definizione 4.1.2: Sia (M, g) una varieta Riemanniana orientabile. La n-forma v, € A™(M) & detta elemento
di volume Riemanniano di M.

Proseguiamo con altre costruzioni. Un prodotto scalare non degenere su uno spazio vettoriale V permette
di identificare V' col suo duale V*. Analogamente, su una varieta Riemanniana abbiamo un isomorfismo
naturale *: TM — T*M definito in questo modo

Yo e T,M v = g,(,v) € T, M.
In coordinate locali, se v = v'9; e g = (g;;) allora
W = gijvi da?,

fan ol — . ol L — gt
cloe v —wjdac con wj; = g;;v-.

La mappa inversa sara denotata da #:T*M — TM; se w = w; dz* allora
W = gYw; 9,
ciot w# = v79; con v = glw;.

Osservazione 4.1.5. Il motivo della notazione musicale & che b abbassa gli indici mentre # li alza.
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Definizione 4.1.3: Sia (M, g) una varietd Riemanniana, e f € C°°(M). Allora il gradiente di f & il campo
vettoriale grad f = (df)# € T (M).

In coordinate locali,
of

dai

per cui su R™ con la metrica piatta recuperiamo il gradiente usuale.

gradf = g == 0;,

Definizione 4.1.4: Sia X € T (M) un campo vettoriale su una varietd Riemanniana (M, g). Allora il rotore
di X ¢ la 2-forma differenziale rot X = dX".

In particolare abbiamo

rot(gradf) = d((df)#)" = d(df) = O.

In coordinate locali, se X = X*9), allora

LX) L X X ,
rot X = 29X i) gk — 3 OlgieX*) _ 009 X)| i p gk
oxJ 2 oxI ozk
1<j<k<n

Osservazione 4.1.6. Su R?’, il fibrato /\2 R? ¢ un fibrato banale di rango 3, per cui e isomorfo a T]RS, che
¢ anch’esso un fibrato banale di rango 3. Per questo motivo nell’Analisi Matematica usuale il rotore di un
campo vettoriale (calcolato rispetto alla metrica piatta di R3) viene presentato come un campo vettoriale e
non come una 2-forma, per lo stesso motivo per cui il prodotto estero di due vettori in R? viene presentato

come un vettore di R? (il prodotto vettore: confronta 1'Esercizio 1.3.19).J

Come prevedibile, le applicazioni che conservano una metrica Riemanniana hanno un nome particolare.

Definizione 4.1.5: Sia H:(M,g) — (M ,§) un’applicazione C*° fra due varietd Riemanniane della stessa
dimensione. Diremo che H & un’isometria in p € M; se per ogni v, w € T, M; si ha

GH(p) (dHp(v), de(w)) = gp(v,w).

Se H & un’isometria in p, il differenziale di H in p ¢ invertibile, e quindi H € un diffeomorfismo di un intorno
di p con un intorno di H(p). Diremo che H & un’isometria locale in p € M se p ha un intorno U tale che H|y
sia un’isometria in ogni punto di U; e che & un’isometria locale se lo € in ogni punto di M. Infine, diremo
che H & un’isometria se ¢ un diffeomorfismo globale e un’isometria in ogni punto di M. Data una varieta
Riemanniana (M, g), indicheremo con Iso(M) il gruppo di tutte le isometrie di M con se stessa.

Definizione 4.1.6: Diremo che la varietd Riemanniana (M, g) ¢ localmente isometrica alla varietd Rieman-
niana (M, g) se per ogni p € M esiste un’isometria di un intorno di p in M con un aperto di M. Infine,
diremo che (M, g) e (M, g) sono isometriche se esiste un’isometria globale fra (M, g) e (M, g).

Esercizio 4.1.2. Dimostra che un’applicazione H: (M, g) — (M, g) di classe C*° fra varietd Riemanniane &
un’isometria locale se e solo se ¢ un’isometria in ogni punto di M.

Esercizio 4.1.8. Costruisci un esempio di un’isometria locale che non sia un’isometria.

Pit in generale, un’immersione in una varietd Riemanniana induce una metrica Riemanniana anche
nella varieta di partenza.

Definizione 4.1.7: Sia F: M — N un’immersione, e g una metrica Riemanniana su N. Definiamo per
ogni p € M un prodotto scalare (F*g), su T, M ponendo

Yo, w e T,M (F*g)p(v,w) = grp) (dF,(v), dFy(w)).

E facile verificare (esercizio) che F*g & una metrica Riemanniana su M, detta metrica indotta da g tramite F,
o metrica pullback.
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EsemMPIO 4.1.3.  Se t: M — N & una sottovarieta di una varieta Riemanniana (IV, g), la metrica indotta ¢*g
verra a volte indicata con g|lg. Dunque ogni sottovarietd di una varietd Riemanniana & a sua volta una
varietd Riemanniana con la metrica indotta; per esempio, questo vale per le sottovarietd di R™ considerato
con la metrica piatta.

Abbiamo visto (Teorema 2.5.6) che ogni varietad puod essere realizzata come sottovarieta chiusa di un
qualche RY, per N abbastanza grande, e quindi eredita una metrica Riemanniana indotta dalla metrica piatta
di RY. Viene allora naturale chiedersi se in questo modo e possibile ottenere tutte le varieta Riemanniane.
La risposta, positiva, ¢ il famoso Teorema di Nash:

Teorema 4.1.3: (Nash, 1956) Ogni varieta Riemanniana ammette un embedding isometrico in RY, consi-
derato con la metrica piatta, per N abbastanza grande.

EsemPIO 4.1.4. Sia m: M — M un rivestimento liscio, e supponiamo di avere una metrica Riemanniana g
su M. Un rivestimento liscio ¢, in particolare, un diffeomorfismo locale, e qu1nd1 un tipo molto speciale
di immersione; possiamo quindi equipaggiare M con la metrica indotta 7* g. E facile (esercizio) verificare
che m* g e 'unica metrica Riemanniana su M che rende 7 un’isometria locale.

EsempIO 4.1.5. Sia m: M — M di nuovo un rivestimento liscio, ma supponiamo stavolta di avere una
metrica Riemanniana § su M. Non & detto che esista una metrica Riemanniana g su M che rende 7
un’isometria locale. Infatti, supponiamo che g esista, e sia F: M — M un automorfismo del rivestimento,
cio¢ un’applicazione continua tale che m o F' = 7; nota che F' ¢ automaticamente C* (perché?). Allora per
ogni p € M e ogni v, w € TZ;M si deve avere

G5(v, ) = gr(p) (dmp(v), drs(w)) = gu(r()) (A p ) (AF(0)), dTps) (dF5(w)))
= Gr(p) (dF5(v), dF5(w)),

cioe F' dev’essere un’isometria per g. Viceversa, supponiamo che ogni automorfismo del rivestimento sia
un’isometria, e che il gruppo degli automorfismi del rivestimento agisca in maniera transitiva sulle fibre
(ipotesi quest’ultima equivalente a richiedere che il rivestimento sia normale, cio¢ tale che 7, (ﬁl(M ,p)) sia
un sottogruppo normale di 7 (M , 77(;5)) per un qualsiasi p € M); allora non @ difficile dimostrare (esercizio)
che esiste un’unica metrica Riemanniana g su M per cui 7 risulta essere un’isometria locale: & sufficiente
per ognip € M e v, w € T, M porre
g (0, w) = G55, ®),
dove p € M e &, € T;M sono tali che 71(p) = p, drp(d) = v e dmp(d) = w.

Usando la nozione di metrica indotta possiamo esprimere in maniera concisa quando un’immersione
conserva la metrica Riemanniana:

Definizione 4.1.8: Un’immersione (embedding) F: (M, gM) — (N, g"V) fra varietd Riemanniane ¢ un’immer-
sione (embedding) isometrica se F*g" = gM, dove F*g"V & la metrica indotta su M appena definita.

Esercizio 4.1.4. Costruisci due varietad Riemanniane (M, g) e (M, §) tali che (M, g) & localmente isometrica
a (M,g) ma (M, g) non & localmente isometrica a (M, g).

Concludiamo questo paragrafo definendo, piu in generale, la nozione di metrica Riemanniana su un
fibrato vettoriale.

Definizione 4.1.9: Una metrica Iungo le fibre su un fibrato vettoriale 7m: £ — M ¢ l'assegnazione per ogni
punto p € M di un prodotto scalare definito positivo (-, -),: B, x E, — R tale che la funzione p — (o (p), 7(p)),
sia di classe C™ per ogni coppia di sezioni o, 7 € E(M).

Una volta data una metrica Riemanniana su M otteniamo automaticamente metriche lungo le fibre su

tutti 1 fibrati tensoriali T,?M :

Proposizione 4.1.4: Sia (M, g) una varieta Riemanniana, e h, k € N. Allora esiste un’unica metrica lungo
le fibre di T} M tale che se {Ex, ..., Ey,} & un riferimento locale ortonormale per TM e {w',...,w"} & il suo
riferimento duale, allora {E;, ® -+ ® E;, w/' @ --®wI*} forma un riferimento locale ortonormale per T}* M.
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Dimostrazione: Sia (g;;) la matrice che rappresenta g in una qualche carta locale (U, ¢), e prendiamo due
Allora ponendo

_ jlsl ]ksk . ... ) il...ih T1...Th
(F,G)=g g i G £ Gl

¢ facile verificare (esercizio) che otteniamo una metrica lungo le fibre che soddisfa le condizioni richieste.
Siccome data una base esiste un unico prodotto scalare rispetto a cui detta base ¢ ortonormale, la metrica
cosl ottenuta e l'unica possibile. Il

Esercizio 4.1.5. Dimostra che la metrica lungo le fibre cosi ottenuta coincide con quella che si otterrebbe
applicando la Proposizione 1.2.1 alla metrica Riemanniana data su ciascun spazio tangente.

In particolare, data una metrica Riemanniana su M otteniamo una metrica lungo le fibre di T*M, e la
Proposizione 1.2.1.(iv) ci dice che le applicazioni bemolle e diesis sono allora delle isometrie rispetto a queste
metriche. Possiamo verificarlo anche in coordinate locali: infatti,

(W# ") = gnrgwig"n; = gl win; = (w,m),

e analogamente si vede che

<vb,wb> = (v, w).

4.2 Esempi

In questo paragrafo descriveremo alcuni esempi importanti di varieta Riemanniane.

EsEMPIO 4.2.1. La sfera. Sia S% la sfera di raggio R > 0 e centro 'origine in R™*!

. La metrica indotta
dalla metrica euclidea di R™ & detta metrica sferica. Vogliamo calcolare i coefficienti g;; della metrica sferica
rispetto alle coordinate sferiche introdotte nell’Esempio 2.1.11. II riferimento locale di 7},S% indotto dalle

coordinate sferiche & composto dai campi vettoriali locali

B : g .0 9
507 = Rsin®*t...sind" [cos 6 ; cosf sin@' .. .ging/ ! I ES I sin 6 Qi+l |’

per j = 1,...,n, dove (x',...,2""1) sono le coordinate di

zione A = 0. Quindi otteniamo

R™". e dove abbiamo posto per conven-

[ R*(sin@t!...sing")* sei=j,
Yis 0 se i # J;

in particolare, la matrice (g;;) € diagonale.

EsEMPIO 4.2.2.  Sia m: 8™ — P"(R) il rivestimento universale dello spazio proiettivo. Allora combinando
gli Esempi 4.1.4 e 4.2.1 otteniamo una metrica Riemanniana sullo spazio proiettivo.

Una caratteristica interessante della sfera e che & localmente conformemente piatta (anche se, come

vedremo, non ¢ affatto piatta).

Definizione 4.2.1: Due metriche Riemanniane g; e go su una varieta M sono dette conformi se esiste una
funzione f € C°°(M) sempre positiva tale che g5 = fg1. Due varieta Riemanniane (M, g1) e (Ma, g2) sono
dette conformemente equivalenti se esiste un diffeomorfismo F': M; — M, detto equivalenza conforme, tale
che F*go sia conforme a g;. Diremo che (M1, ¢1) € localmente conforme a (Ma, g2) se per ogni p € M;
esistono un intorno U C M; di p e un diffeomorfismo con 'immagine F:U — M, tale che F*gz|F(U) sia
conforme a gi|y. Infine, diremo che (M, g) ¢ localmente conformemente piatta se ¢ localmente conforme
a R™ con la metrica piatta, dove n = dim M.
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Proposizione 4.2.1: S% é localmente conformemente piatta.

Dimostrazione: Sia N = (0,...,0,R) € S il polo nord, e indichiamo con ¢x:S% \ {N} — R" ¢ R""! 1a
proiezione stereografica dal polo nord descritta nell’Esempio 2.1.10; vogliamo dimostrare che ¢y € un’equi-
valenza conforme.

Indichiamo con g la metrica Riemanniana su Sp, e con go la metrica euclidea su R"; basta far vedere
che (p5")*gr € go sono conformi. Preso z € R™ e v = v79; € T,R™ dobbiamo calcolare

(") 9r(v,0) = gr(d(Px")e(v), diexN)e(v)) = [ld(er)e )]

Ora,
_ ()" 2R? 4R?*(v, )
1 — N _ _ ) h _ .
d(QDN )w(v) v al"] ah ||1'H2+R2 v (HI”Q +R2)2 (.’,U ah Ra’rr‘rl)a
quindi
4R*
—1\* _ 2
((pN ) gR(”:”) - (||$H2+R2)2 ||U|| )
cioe

(3D on =
SON dr = (”IHQ +R2)2 90,

per cui (go?vl)*gR ¢ conforme alla metrica euclidea, come voluto. Infine, usando la proiezione stereografica

rispetto al polo sud S = —N si conclude la dimostrazione che S7 & localmente conformemente piatta. [

EseEmpio 4.2.3. Lo spazio iperbolico. Introduciamo ora un altro esempio importante di varieta Rieman-
niana, in tre incarnazioni diverse.

(a) L’iperboloide. Sia U = {x € R"™! | (27+1)2 —||2’||2 = R?,2"*! > 0} la falda superiore dell’iperboloide

ellittico, dove 2/ = (x!,...,2™) € R". Su U% introduciamo il campo tensoriale simmetrico non degenere

gh =dr' @ dz' + - +da" @ da" — da"T! @ da" T

dimostreremo fra un attimo che g}2 ¢ effettivamente definita positiva su TUF, per cui ¢ effettivamente
una metrica Riemanniana.
b) La palla di Poincaré. Sia B% = {x € R" | ||z|| < R} la palla aperta di raggio R in R™. Su B% poniamo
( p [ P P g %D
la metrica

4R4

2 1 1 n n
=——(d d + - d d .
9r (R2 H ”2)2 ( T Qdr +dzr” ® dx )

(c) II semispazio superiore di Poincaré. Sia H} = {x € R" | 2™ > 0} il semispazio superiore in R". Su H}
poniamo la metrica
R2
g% = W(d:ﬁ@dajl + - dz" @ dx™).
Le ultime due metriche sono chiaramente conformi alla metrica euclidea, per cui B% e Hf sono localmente
conformemente piatte. In realta questo vale anche per Uy, in quanto

Proposizione 4.2.2: Le varieta Riemanniane (UR, %), (B%,g%) e (HS, g%) sono isometriche.

Dimostrazione: Cominciamo costruendo un’isometria F:Uj — B%. Dato S = (0,...,0,—R) € R

e x € Up, sia F(z) € R" ¢ R™! il punto d’intersezione fra B} e la retta da S a x. Si verifica subito
che

— / n

F(IE) = W X € BR7

e che

F—l(p) — 2R2p R2 + ||p||2
R? —|lpl|>" R* = Ip[I* )
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Vogliamo dimostrare che F*g%2 = g}%. Per far cio ricordiamo (Proposizione 2.5.5) che v € T,U}, se e solo
se " Tyt = (' v'); inoltre,

R , pntl ,
dF,(v) = R gt (v ~ Rt x .
Quindi
4R*
(R —||F(2)]?)
4 R?

1— ez ) (R anth)?
( _W)

2untl
R+ antl

= [lV|I* = " = gr(v,0),

F*gi(v,0) = gg(dF: (v), dFy(v)) = 5 ldF% (v)]?

2
, ,UnJrl

!
v R+:v"+1x

12 A, |Un+1|2 12
= [V = (', ') + 5112

(R+ an+1)

come voluto.
Costruiamo ora un diffeomorfismo G: B} — H} imitando la trasformata di Cayley di una variabile
complessa:

L VT
P[>+ @ = R)* PP+ (" —R)? )
dove stavolta p’ = (p',...,p" 1) € R"!. L'inversa & data da

Gl q) = ( 2R la'I12 + la" —RQ)
! 1711+ (" + B> dlI?+ (¢" + R)* )’

6=

e un conto analogo al precedente mostra che G*g% = g%. ]

Definizione 4.2.2: Una qualunque varieta Riemanniana isometrica a una delle tre varieta Riemanniane della
proposizione precedente e detta spazio iperbolico di dimensione n.

Vedremo in seguito (nel paragrafo 6.4) che R™ con la metrica piatta, le sfere e gli spazi iperbolici sono le
uniche (a meno di isometrie) varietd Riemanniane semplicemente connesse di curvatura sezionale costante.
Per farlo, ci servira il seguente

ESEMPIO 4.2.4. Gli elementi del gruppo ortogonale O(n + 1) sono ovviamente delle isometrie di Sp.
Inoltre, O(n + 1) agisce transitivamente sulle basi ortonomali in T'S%. In altre parole, per ogni p, p € S}
e basi ortonormali {E;} di T,S% e {E;} di T;S% esiste A € O(n + 1) tale che A(p) = p e dA,(E;) = E;
per j =1,...,n. Infatti, & sufficiente far vedere che per ogni p € S% e ogni base ortonormale {E;} di T,5%
esiste A € O(n + 1) che manda il polo nord N = (0,...,0, R) in p e la base canonica {eq,...,e,} di TyS%
in {E;}. Ma infatti sia {e1,...,e,, N/R} che {E1,..., E,,p/|p||} sono basi ortonormali di R™ per cui
esiste un’unica A € O(n + 1) che manda la prima nella seconda (e dAy = A, in quanto A & lineare). Nel
paragrafo 6.4 faremo vedere che, come conseguenza di questo fatto, Iso(S%) = O(n + 1).

Esercizio 4.2.1.  Sia O(n, 1) il gruppo delle trasformazioni lineari di R"**! che conserva g}, considerata come
forma quadratica su R", e indichiamo con 04 (n,1) il sottogruppo che manda U}, in sé. Dimostra che
gli elementi di O4(n,1) sono isometrie di Ug, e che Oy (n,1) agisce transitivamente sulle basi ortonormali
di TUR.

Concludiamo questo paragrafo parlando di metriche Riemanniane su gruppi di Lie.

Definizione 4.2.3: Una metrica Riemanniana ¢ su un gruppo di Lie G ¢ invariante a sinistra (rispettivamente,
invariante a destra) se L} g = g (rispettivamente, Ryg = g) per ogni h € G, cio¢ se tutte le traslazioni
sinistre (destre) sono delle isometrie. Una metrica Riemanniana invariante sia a sinistra che a destra & detta
bi-invariante.
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Sia G un gruppo di Lie. Se scegliamo arbitrariamente un prodotto scalare definito positivo (-, ).
sull’algebra di Lie g, otteniamo (perché?) una metrica Riemanniana invariante a sinistra ponendo

Vh e G, Yv,w € T),G (v,w), = ((dLp-1)n(v), (dLp-1)p(w)) .

e

In maniera analoga si ottengono metriche Riemanniane invarianti a destra, ed e chiaro che tutte le metriche
Riemanniane invarianti a sinistra o a destra si ricavano in questo modo.

Esercizio 4.2.2. Dimostra che su un gruppo di Lie compatto G esiste sempre una metrica Riemanniana
bi-invariante seguendo la traccia seguente:

(a) Dimostra che 'unico omomorfismo continuo f: G — R* & la costante 1.

(b) Sia v € A™(G) una n-forma invariante a sinistra, cioé tale che Ljv = v per ogni h € G. Dimostra che v
¢ anche invariante a destra. (Suggerimento: per ogni h € G, la n-forma R} v ¢ invariante a sinistra, per
cul Rjv = f(h)v; verifica che f: G — R* ¢ un omomorfismo di gruppi.)

(c¢) Dimostra che esiste una n-forma di volume invariante a sinistra su G.

(d) Sia (-,-) una metrica Riemanniana invariante a sinistra su G, e sia v una n-forma di volume invariante
a sinistra su G. Dimostra che ponendo

(0, w)y = /G (AR) g0, (AR y0) e di

dove g € G e v, w € TG, si ottiene una metrica Riemanniana bi-invariante su G.

Definizione 4.2.4: Se 0: G x M — M é un’azione di un gruppo di Lie G su una varieta Riemanniana M tale
che 6, ¢ un’isometria per ogni g € G, diremo che G agisce per isometrie su M.

Dunque se G agisce fedelmente per isometrie su una varieta Riemanniana M allora G puo essere pensato
come un sottogruppo del gruppo Iso(M) di tutte le isometrie di M. A dire il vero, lo stesso gruppo Iso(M)
¢ un gruppo di Lie e I'applicazione g — 0, ¢ sempre di classe C*°, grazie ai seguenti due teoremi:

Teorema 4.2.3: Siano G e H due gruppi di Lie, e F': G — H un omomorfismo continuo di gruppi. Allora F'
¢ automaticamente di classe C°.

Teorema 4.2.4: (Myers, Steenrod) Sia M una varieta Riemanniana. Allora il gruppo Iso(M) ammette una
struttura di gruppo di Lie tale che I'applicazione naturale (F,p) — F(p) sia un’azione di Iso(M) su M.

Definizione 4.2.5: Diremo che una varietd Riemanniana M & omogenea se Iso(M) agisce in modo transitivo.
Diremo che M & isotropa in un punto p € M se il sottogruppo di isotropia Iso(M), agisce in modo transitivo
sui vettori unitari in T, M, dove Iso(M), agisce su T, M tramite applicazione (F,v) — dF,(v).

Osservazione 4.2.1. Se M & omogenea, e isotropa in un punto, allora e isotropa in ogni punto.

4.3 Connessioni

L’obiettivo di questo paragrafo e trovare un modo per derivare campi vettoriali definiti lungo una curva. Il
problema e che i valori del campo vettoriale appartengono a spazi vettoriali diversi, per cui non & possibile
scrivere un rapporto incrementale. Storicamente, questo problema venne risolto introducendo una tecnica
(il trasporto parallelo) per confrontare spazi tangenti in punti diversi; noi invece faremo il percorso inverso,
definendo prima cosa vuol dire derivare campi vettoriali e deducendo poi il concetto di trasporto parallelo.

La formalizzazione moderna del concetto di derivazione di campi vettoriali & data dalla definizione di
connessione.

Definizione 4.3.1: Sia m: E — M un fibrato vettoriale su una varieta M. Una connessione su F ¢ un’applica-
zione V: T (M) x E(M) — E(M), scritta (X, V) — VxV, tale che
(a) VxV & C°°(M)-lineare in X: per ogni X1, Xo € T(M), Ve &(M),e f, g€ C>®(M) si ha

va1+ngV = va1V + QVX2V;
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(b) VxV & R-lineare in V: per ogni X € T(M), V1, Vo € E(M), e a, b € Rsi ha
Vx(aVi +bV2) = aVx Vi + bV x Va;
(¢) V soddisfa un’identita di Leibniz: per ogni X € T(M), V € E(M), e f € C>®(M) si ha

Vx(fV) = fUXV + (XP)V.

La sezione VxV ¢ detta derivata covariante di V lungo X. Infine, una connessione su T'M verra chiamata
connessione lineare, o semplicemente connessione su M.

EsempIO 4.3.1. Sia F = M x R" un fibrato banale sulla varieta M. Ogni sezione V € E(M) ¢ della
forma V = VJIE; per opportune V7 € C*(M), dove {E,...,E,} & il riferimento globale di E ottenuto
ponendo E;(p) = (p,e;) per ogni p € M, dove {ey,...,e,} € la base canonica di R". In altre parole, una
sezione del fibrato banale di rango r e essenzialmente una r-upla di funzioni differenziabili. Possiamo allora
definire la connessione piatta su E ponendo

VxV = X(V)E;.

Si verifica subito che e effettivamente una connessione.
Usando la connessione piatta e le partizioni dell’unita ¢ facile definire connessioni su qualsiasi fibrato:
Proposizione 4.3.1: Su qualsiasi fibrato vettoriale m: E — M esiste sempre una connessione.

Dimostrazione: Scegliamo un atlante {(U,,®q)} di M che banalizza E, con banalizzazioni locali date
da Xo:7m 1 (Uy) — Uy x R, e sia {p,} una partizione dell'unita subordinata al ricoprimento {U,}. Su
ciascun U, definiamo una connessione V¢ ponendo

VX € T(U,) VYV € E(U,) V4V = x2' (Vixa(V)),
dove VO ¢ la connessione piatta su U, x R”. Incolliamo ora le V® definendo

VX € T(M)VV € &(M) VxV =3 pa(V&. Viv.)-

Le proprieta (a) e (b) della Definizione 4.3.1 sono chiaramente soddisfatte. Per la proprieta (c) abbiamo

x(IV) = pa Vi, (FV10) =D pa(F V%), Ve + X(HV0)
=fVxV+ (Z pa> X(HV = VXV + X(f)V,

e quindi V ¢ una connessione. ]

Osservazione 4.3.1. In generale, la somma di connessioni (o il prodotto di uno scalare per una connes-
sione) non & una connessione, in quanto la proprieta (c¢) non viene conservata. Invece, la combinazione affine
di connessioni ¢ una connessione: se V!, ..., V¥ sono connessioni su un fibrato £ e p1,....u, € R sono tali
che py + -+ + g, = 1, allora si verifica facilmente che y11 V' + - - 4+ 11, V¥ & ancora una connessione.

Facciamo ora vedere che in realtd VxV(p) dipende solo dal valore di X in p € M e dal comportamento
di V in un intorno di p (o, pilt precisamente, solo da X (p) e dal comportamento di V ristretto a una curva
tangente a X (p) in p):
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Lemma 4.3.2: Sia m: E — M un fibrato vettoriale, e V: T (M) x E(M) — E(M) una connessione.

(i) Se X, X € T(M) eV, V € E(M) sono tali che X(p) = X(p) e V =V in un intorno di p € M allora si
ha va(p) = V)*(V(p)

(ii) Per ogni aperto U C M esiste un’unica connessione VV:T (U) x E({U) — E(U) su E|y tale che per
ogni X e T(M),V € E(M) ep €U si abbia

V&1, Vo (p) = VxV(p).

(iii) Se X € T(M) eV, V € £(M) sono tali che esiste una curva o: (—¢,e) — M con (0) = p, 0'(0) = X(p)
eVoo=Voo alloraVxV(p)=VxV(p).

Dimostrazione: Prima di tutto dimostriamo che se V' = O in un intorno U di p allora VxV(p) = O per
ogni X € T(M). Sia g € C*°(M) tale che g(p) =1 e g|ppv = 0 (vedi il Corollario 2.3.2). Allora gV = O,
per cui Vx(gV) =Vx(0-gV) =0Vx(¢gV) = O e quindi

O =Vx(gV)p) =9 VxV(p)+ (Xg)(p)V(p) = VxV(p).

Dunque se V, V € E(M) sono tali che V = V in un intorno di p, abbiamo V — V = O in un intorno di p, e
quindi VxV(p) = VxV(p) quale che sia X € T(M).

Dimostriamo analogamente che se X = O in un intorno U di p allora VxV(p) = O per ogni V € £(M).
Infatti, se g € C°°(M) ¢ la stessa funzione di prima si ha gX = O, per cui VyxV = Vo,xV =0V, xV =0
e quindi

0 =VyxV(p) =g9(p)VxV(p) = VxV(p).

Da questo segue, come prima, che se X = X in un intorno di p allora VxV(p) = VV(p) quale che
sia Ve E(M).

In particolare, quindi, il valore di VxV in p dipende solo dal comportamento di X e V' in un intorno
di p, per cui se una connessione V¥ come in (ii) esiste allora ¢ unica. Ma possiamo usare questa proprieta
anche per definire VY. Infatti, per ogni p € U scegliamo, usando la Proposizione 2.3.1, una Xp € C(M)
tale che x, = 1 in un intorno di p e supp(x,) C U. Allora per ogni X € T (U) il campo vettoriale x,X,
esteso a zero fuori da U, & un campo vettoriale globale che coincide con X in un intorno di p. In modo
analogo, per ogni V' € £(U) possiamo considerare x,V come una sezione globale di E che coincide con V' in
un intorno di p. Quindi se definiamo VV: 7 (U) x £(U) — &£(U) ponendo

V)U(V(p) = vpr(XpV) (»)

per quanto visto otteniamo una connessione ben definita (cio¢ indipendente dalla scelta delle ), e abbiamo
dimostrato (ii).

Possiamo ora completare la dimostrazione di (i), facendo vedere che in realta VxV (p) dipende solo dal
valore di X in p (e dal comportamento di V' in un intorno di p). Al solito, basta far vedere che X (p) = O
implica VxV (p) = O per ogni V € £(M). Sia (U, ¢) una carta locale centrata in p, e scriviamo X |y = X79;,
con X7 (p) =0 per j =1,...,nin quanto X (p) = O. Per quanto detto, ha senso calcolare Va,V(p), e si ha

VxV(p) = Vxia,V(p) = X' (p)Vs,V(p) = O.

Per dimostrare (iii), basta far vedere che se Voo = O allora VxV(p) = O. Sia {E1,...,E,} un
riferimento locale per E su un intorno U di p, e scriviamo V = VIE;. Da V(p) = V(o(0)) = O otte-

niamo V1(p) = --- = V"(p) = 0. Per quanto detto ha senso calcolare Vx E;(p), e si ha
j y j d(Vioo)
VxV(p) = Vx (V' E;)(p) = V() Vx E;(p) + X (p) (V') Ej(p) = —————(0)E;(p) = O.
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Per non appesantire le notazioni, nel seguito indicheremo con V e non con VY la connessione indotta
sull’aperto U C M.

Sia (U, ) una carta locale che banalizza E, e {E1,..., E,} un riferimento locale su U. Allora si deve
poter scrivere

Vo,En =T%,Ey,
per opportune funzioni I‘?h e C>*(U).

Definizione 4.3.2: Le funzioni Ffj sono dette simboli di Christoffel della connessione rispetto al dato riferi-
mento locale.

I simboli di Christoffel determinano completamente la connessione: infatti se X € T(U) e V € £(U),
localmente possiamo scrivere X = X79; e V = V" E),, e abbiamo

VxV =XV, V = [X/9;(VF) + T%, X/ V" Ey. (4.3.1)
In particolare, i simboli di Christoffel della connessione piatta su un fibrato banale sono identicamente nulli.

Il Lemma 4.3.2.(iii) ci dice che per calcolare la derivata covariante di una sezione basta conoscerne il
comportamento lungo una curva. Questo ci suggerisce la seguente:

Definizione 4.3.3: Sia m: E — M un fibrato vettoriale e 0:1 — M una curva in M, dove I C R & un
intervallo. Una sezione di E Iungo ¢ ¢ un’applicazione V:I — E di classe C* tale che V(t) € E, () per
ogni t € I. Lo spazio vettoriale delle sezioni di £ lungo o verra indicato con £(o), o con 7 (o) se E = TM.

Una sezione V' € &(0) ¢ estendibile se esiste un intorno U del sostegno di o e una sezione V' € £(U) tale
che V(t) = V(o(t)) per ognit € 1.
EsEMPIO 4.3.2. 1l vettore tangente a una curva o’(t) = do(d/dt) & un tipico esempio di sezione di TM

lungo una curva. Inoltre, se o(t1) = o(t2) ma o’ (t1) # o’(t2) allora ¢’ non & estendibile.

Esercizio 4.3.1. Sia m: E — M un fibrato vettoriale, e 0: I — M una curva di classe C*°. Sia tg € I tale
che ¢’(tg) # O. Dimostra che esiste un intervallo aperto J C I contenente ty tale che ogni X € £(ol;) &
estendibile.

11 vero significato del Lemma 4.3.2.(iii) & contenuto nella

Proposizione 4.3.3: Sia V una connessione su un fibrato vettoriale m: E — M, e o:1 — M una curva
su M. Allora esiste un unico operatore D:E(c) — £(o) soddisfacente le seguenti proprieta:

(i) é R-lineare:

Va,b e R D(aVi +bVa) = aDV; + bDVy;
(ii) soddisfa una regola di Leibniz:
VfeC>() D(fV)=f'V+ fDV;

(iii) se V € £(o) & estendibile, e V & un’estensione di V, si ha

DV (t) = vo’(t)v'
Dimostrazione: Cominciamo con 'unicita. Dato tg € I, un ragionamento analogo a quello usato per dimo-
strare il Lemma 4.3.2.(i) mostra che DV (to) dipende solo dai valori di V' in un intorno di . Possiamo allora
usare un riferimento locale e coordinate locali, scrivere V (t) = V(t)Ej, (0(t)), o’(to) = (¢7) (t0)d; (o (to)) e
usare le proprieta di D per ottenere

DV (tg) = (V") (to)En(o(to)) + V" (to)D(Ex 0 o)(to)
= (V") (to)En(o(to)) + V" (to) V(o) En (o (to)) (4.3.2)
= [(VE) (k) + Tl (o(t0)) (o) (t0) V" (t0) | B (0 (10)),

dove abbiamo usato il fatto che Ej oo ¢ estendibile in un intorno di ¢g; quindi D & univocamente determinato.

Per D'esistenza, se il sostegno di o e contenuto in una sola carta locale banalizzante FE, possiamo
usare (4.3.2) per definire D, ed ¢ facile verificare che soddisfa le condizioni richieste. In generale, co-
priamo o(I) con carte locali banalizzanti E, e usiamo (4.3.2) per definire un operatore D su ciascuna di
queste carte. Nelle intersezioni, abbiamo due operatori che soddisfano (i)—(iii); per l'unicita, questi due
operatori devono coincidere, e quindi abbiamo definito D globalmente. O
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Definizione 4.3.4: 1’operatore D definito sopra e detto derivata covariante lungo la curva o: I — M. Set € I
e V € &(o), scriveremo spesso D;V invece di DV (t).

Esercizio 4.3.2. Sia V una connessione su un fibrato vettoriale m: £ — M, e 0:1 — M una curva di
classe C°°; indichiamo con D:E(o) — £(o) la derivata covariante lungo o. Sia poi h:J — I di classe C°,
dove J C R & un intervallo, e indichiamo con D la derivata covariante lungo la curva 6 = o o h. Dimostra
che per ogni X € £(o) siha Xoh e &(ogoh)e

D(X oh) = h'(DX oh).

Se E = M x R" ¢ il fibrato banale, V ¢ la connessione piatta, e o: I — M & una curva, si vede subito
che V € £(o) soddisfa DV = O se e solo se V & costante, cioe se V (¢) & sempre lo stesso vettore di R" che si
sposta parallelamente lungo la curva o. Questo fatto suggerisce la seguente definizione:

Definizione 4.3.5: Sia V una connessione su un fibrato vettoriale 7: E — M, e 0:I — M una curva. Una
sezione V € &(o) ¢ detta parallela se DV = O.

La condizione di parallelismo e localmente un sistema lineare di equazioni differenziali ordinarie: infatti
(4.3.2) implica che DV = O in una carta banalizzante E se e solo se
dv® & o
W + (th 9] U)(JJ)/V =0. (4.3.3)
Citiamo a questo punto il Teorema di esistenza e unicita delle soluzioni di un sistema di equazioni differenziali
ordinarie lineari:

Teorema 4.3.4: Dati un intervallo I C R, un numero naturale k > 1, un ty € I, punti xq,...,z,_1 € R",
e un’applicazione A: I x (R")* — R"™ di classe C* lineare rispetto a (R"™)*, il problema di Cauchy
d*v d*=v
=4 (0. ey o)
. (4.3.4)
V(to) =Ty, W(to) = Tk—-1,

ammette una e una sola soluzione V:I — R" di classe C*°.

Questo teorema implica che, posto I = [a,b] e p = o(a), per ogni v € E, esiste un unico V € £(0)
parallelo tale che V(a) = v. Infatti, essendo o(I) compatto, possiamo trovare un numero finito di carte
(U1, ¢1),--,(Up, ) banalizzanti E che coprono il sostegno di o; possiamo anche supporre che si ab-
bia U;No(I) = o([s;,t;]) per j=1,...,r,cona =51 < sg <t1 < s3 <ty <--- <8 <tp_1 <ty =D>b. Allora
il Teorema 4.3.4 applicato a (4.3.3) ci fornisce un’unica sezione parallela Vi lungo o/, ¢, tale che Vi(a) = v.
Analogamente, il Teorema 4.3.4 ci fornisce un’unica sezione parallela V5 lungo o/}, ¢+, tale che Va(t1) = Vi(t1);
in particolare, I'unicita implica che V; e V5 coincidono in [sg, t1], definendo quindi un’unica sezione parallela
lungo o/(s, +,- Procedendo in questo modo troviamo un’unica sezione V' parallela lungo o tale che V' (a) = v.
Questo ci permette di introdurre la seguente

Definizione 4.3.6: Sia V una connessione su un fibrato vettoriale m: E — M, e 0:[0,1] — M una curva.
Poniamo py = ¢(0) e p1 = o(1). Dato v € E,,, l'unica sezione V € &£(o) parallela lungo o tale che
V(0) = v € E,, ¢ detta estensione parallela di v lungo o. Il trasporto parallelo lungo o (relativo a V) &
l'applicazione 6: E,, — E,, definita da ¢(v) = V(1), dove V € £(0) & 'estensione parallela di v € E,,.

Lemma 4.3.5: Sia V una connessione su un fibrato vettoriale m:E — M, e 0:][0,1] — M una curva.
Poniamo py = 0(0) e p1 = o(1). Allora il trasporto parallelo lungo ¢ & un isomorfismo fra E,, e E,, .

Dimostrazione: Siccome (4.3.3) & un sistema lineare di equazioni differenziali ordinarie, la soluzione dipende
linearmente dalle condizioni iniziali, e quindi ¢ & un’applicazione lineare.

Poniamo ora o_(t) = o(1 —t), e sia D~ la derivata covariante lungo o_; inoltre per ogni V € £(o)
poniamo V~(t) = V(1 —t), in modo da avere V=~ € £(o~). La formula (4.3.2) mostra subito che

D; V™ =—-D1_,V;
in particolare, V~ & parallelo lungo o_ se e solo se V' & parallelo lungo o. Questo vuol dire in particolare

che se V & l'estensione parallela di v € E,,, allora V'~ & lestensione parallela di V(1) = &(v) € E,,, per
cui 6_ = &1, e & & un isomorfismo.



84 Elementi di Geometria Differenziale, A.A. 2005/06

Osservazione 4.3.2. 1l trasporto parallelo & definito anche lungo curve C*° a tratti; basta fare la compo-
sizione dei trasporti paralleli lungo i singoli pezzi lisci.

Osservazione 4.3.3. Se 0:[0,1] — M & una curva chiusa, con o(0) = (1) = p, allora il trasporto parallelo
lungo o diventa un automorfismo di 7,M. L’insieme degli automorfismi cosi ottenuti si chiama gruppo di
olonomia di M in p, ed & un invariante importante della connessione.

Osservazione 4.3.4. Un fatto utile ¢ che dati una curva o:I — M, un fibrato vettoriale m: E — M di
rango r e una connessione su E esiste sempre un riferimento locale parallelo lungo o, cioé una r-upla di
sezioni Ey,..., E,. € £(o) parallele lungo o tali che {E1(t),..., E.(t)} sia una base di E,«) per ogni t € I.
Infatti, basta prendere un qualsiasi ¢y € I, una qualsiasi base {e1,...,e,} di Ey(,), ed estendere parallela-
mente eq,...,e, lungo o.

Partendo da una connessione abbiamo costruito il trasporto parallelo. Possiamo fare anche il viceversa:

Proposizione 4.3.6: Sia V una connessione su un fibrato vettoriale m: E — M, 0: I — M una curva in M,
ety € l. Allora

YV € &(o) D,V = %5;1(‘/(75))

)
t=to

dove 64: Eg 1,y — Egy(1) € il trasporto parallelo lungo o, e D ¢ la derivata covariante lungo o. In particolare,
se o(tg) =p ed'(ty) =v € T,M allora

d
YV e E(M) v,V = Eégl(v(a(t)))
t=to
Dimostrazione: Sia {Ej, ..., E,.} un riferimento locale parallelo lungo o (ottenuto prendendo una base qual-

siasi di E, e trasportandola parallelamente lungo o), e scriviamo V (t) = V7 (t)E;(t). Allora

- ; d__ dvi
6 (Vo)) =V (E;te) = =6 (V(e®))| == (to)E;to).
t=to
D’altra parte, abbiamo
4 dvi 4 dvi
Dy (VI Ej) = —=(t0) Ej(to) + V7 (t0) Dty Ej = —~(t0) E; (to),
perché gli E; sono paralleli lungo o. O
FEsercizio 4.3.3. Indichiamo con L£: T (M) x T(M) — T (M) la derivata di Lie Lx(Y) = [X,Y]. Dimostra
che £ non & una connessione, e che esistono due campi vettoriali X, Y € 7T(R?) tali che X(O) = O

ma LxY(0) # O.

Nel seguito lavoreremo principalmente con connessioni lineari, cioé con connessioni definite sul fibrato
tangente T'M. Una delle caratteristiche delle connessioni lineari € che inducono una connessione su ciascun
fibrato tensoriale:

Proposizione 4.3.7: Sia V una connessione lineare su una varieta M. Allora esiste un unico modo di
definire per ogni h, k € N una connessione su T}* M, ancora indicata con V, in modo da soddisfare le
seguenti condizioni:

(i) suTM la connessione V coincide con la connessione lineare data;
(i) suT°M = C>(M) si ha Vx(f) = X(f);
(iii) se K; € ’T,!:](M), perj=1,2eX € T(M) si ha
Vx(Kl ® KQ) = (VxKl) QK+ K1 ® (VXK2)§

(iv) V commuta con le contrazioni.
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Inoltre, sen € AY(M) e X, Y € T(M) si ha
(Vxn)(Y) = X (n(Y)) = n(VxY). (4.3.5)

Infine, sep € M, v € T,M, e K € T,"(M) si ha

€ T/(M),, (4.3.6)

dove o:(—e,e) — M & una curva in M con o(0) = p e '(0) = v, e T(6,) ¢ I'isomorfismo fra (T M),
e (T,?M )o(+) indotto dal trasporto parallelo lungo o come descritto nell’Osservazione 1.2.3.

Dimostrazione: Cominciamo a verificare 'unicita. Se V soddisfa (i)—(iv) allora abbiamo

X(n(Y)) =Vx(n(Y)) =VxCi (Y ®@n)
=ClVx(Y @) =CH(VxY ®@n+Y @ Vxn)
=Vxn(Y)+n(VxY),
per cui (4.3.5) ¢ una conseguenza. Questo vuol dire che la connessione V su T*M & univocamente deter-

minata da (i)—(iv); conoscendola su TM e su C*°(M) la (iii) implica che V & univocamente determinata su
qualsiasi T,?M . Per l'esattezza, otteniamo la seguente formula:

(VXK)(LUI,...,wh,Yl,... ,Yk)
=X (KW', ...,0o" V1,.... %))
k

h
=Y KW' Vxw', w0t YY) = Y K (W w0 Y, VY TR,
r=1 s=1

Infatti, ci basta dimostrarla per campi tensoriali della forma K = X; ® --- ®@ X;, @ n' @ --- @ n*. Allora la
proprieta (iii) e la formula (4.3.5) implicano

VxK(W', ..., vi,... . Y%

(X190 0VxX,® X, @0t ®---@nf) (W, ..., 0" Y1,..., Y2)

Il
.M?

+Z(X1®---®Xh®n1®-~-®VX77$®-~-®-~-®nk)(w1,...,wh,Y1,...,Yk)

+ Y WX W (X' (V) - Vi (V) - (Va)

s=1

h
=D W' (X0) - [X(WN(X) = (Vxw)(Xp)] o™ (X)n' (V) -0 (Ya)



86 Elementi di Geometria Differenziale, A.A. 2005/06

e ci siamo.
Viceversa, usiamo la (4.3.5) per definire V su T*M. Prima di tutto,

Vxn(fY)=X(f)inY)+ X)) —n(fVxY + X(f)Y) = fVxn(Y),

per cui la Proposizione 3.2.1 ci assicura che Vxn ¢ effettivamente una 1-forma. Siccome V x7 & chiaramente
C°(M)-lineare in X, e per ogni Y € 7 (M) si ha

Vx(fm)(Y) = X(fn(Y)) = fo(VxY) = [X(f)n+ fVxn)(Y),

otteniamo effettivamente una connessione su 7M. Analogamente, definiamo V su ciascun T,?M tramite
la (4.3.7); si verifica facilmente (esercizio) che si ottiene una connessione che possiede le proprieta volute.

Rimane da dimostrare che V ¢ data anche da (4.3.6). Ricordando la Proposizione 4.3.6, basta verificare
che il trasporto parallelo indotto da V su ciascun T,?M (che indichiamo provvisoriamente con 6¢) coincide con
I'isomorfismo T'(6). Scegliamo un riferimento locale {vy, ..., v,} di TM parallelo lungo o, e sia {v,..., 0"}
il riferimento duale di 7M. Nota che anche i v7 sono paralleli rispetto a V: infatti la (4.3.5) implica

(D7) (v;) = o’ (v (v;)) — v (Dv;) = O
per ogni i e j, per cui Dv/ = O. Questo implica che
6¢(vi(0)) = v;(t) = T(6¢) (vi(0)) e 6:(v7(0)) = v (t) = T(54) (v (0))
per ogni 1 <4, j < n. Ma allora la proprieta (iii) e la definizione di T'(6;) implicano che
6:(vi, (0) ® - ® v, (0) @V (0) ® -+ @ V*(0)) = v, (1) ® -+ ® vz, (1) @V (t) @ -+~ @ v/* (1)
=T(6¢)(vi,(0) ® -+ ® 03, (0) @71 (0) @ - - - ® v+ (0)),
per ogni 1 <iy,...,jr < n, e quindi 6; = T(6;), come volevamo. Il
Ora, prendiamo K € T;*(M). Siccome V & C°°(M)-lineare in X, 'applicazione
(Wh WY Y X)) = VK (W Wi Y, Y (4.3.8)

¢ C°°(M)-multilineare in tutte le variabili, e quindi (Proposizione 3.2.1) definisce un campo tensoriale.

Definizione 4.3.7: Se K € T"(M) allora il campo tensoriale VK € T," (M) definito da (4.3.8) si chiama
derivata covariante totale di K.

EseMPIO 4.3.3. Se f € C°°(M) allora Vf = df. Infatti per ogni X € 7(M) si ha

df(X) = X(f) = Vx [ = (VX).

Nel paragrafo 4.1 usando una metrica Riemanniana abbiamo definito il gradiente di una funzione.

Usando la derivata covariante totale possiamo generalizzare altri due concetti dell’ Analisi classica:
Definizione 4.3.8: Se f € C°°(M) il campo tensoriale V2f = V(Vf) € To(M) & detto Hessiano di f.

Definizione 4.3.9: La derivata covariante totale di un campo vettoriale X € 7 (M) ¢ un campo tensoriale di
tipo (1) Quindi possiamo definire la funzione div(X) = C{(VX), che ¢ detta divergenza di X.

Calcoliamo 'espressione in coordinate locali di Hessiano e divergenza. Se X, Y € 7 (M) abbiamo
V2E(X,Y) = V(VH(X,Y) = (Vy(df)) (X) = Y (df(X)) = df (Vv X) = Y (X(f)) = Vy X(f).  (4.3.9)

Quindi in coordinate locali
*f i

2 . ) = v
Vv £(9:,05) 0xidxt T Oxk’
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In particolare, su R™ con la connessione piatta ritroviamo I’'Hessiano usuale. Nota perd che per connessioni
generali questo Hessiano non & simmetrico, in quanto non & detto che si abbia F;‘Z = Ffj.

Poi, (4.3.1) permette di stabilire che se X = X"}, allora
VX =0, ® (dX* +T% X" da?),
per cui
_ox*
~ Ozk
(con sommatoria sottintesa sull’indice k), e di nuovo su R" con la connessione piatta recuperiamo la solita

divergenza.

FEsercizio 4.3.4. Sia V una connessione sulla varietd M. Dato X € T(M) ep e M, sia Ax ,: T,M — T,M
lapplicazione lineare data da Ax ,(v) = V,X. Dimostra che div(X)(p) = tr Ax .

div(X) + Tk, X"

Concludiamo questo paragrafo discutendo due altri modi di definire le connessioni.

Sia V: T (M) x E(M) — £(M) una connessione su un fibrato vettoriale 7: E — M. Sia {Eq,...,E .} un
riferimento locale per E sopra un aperto U C M. Allora possiamo definire una matrice w = (wf) di 1-forme
su U ponendo

VX € T(U) VxE; = wj(X)E;

sono 1-forme in quanto C°°(M)-lineari in X. Se U & il dominio di una carta locale, in coordinate locali
chiaramente abbiamo _
w;»“ = Ffj dz".

Definizione 4.3.10: Sia V:T(M) x E&(M) — E(M) una connessione su un fibrato vettoriale m: F — M,
e {F1,..., E.} un riferimento locale per F su un aperto U. La matrice w = (wf) di 1-forme su U appena
definita e detta matrice delle forme di connessione rispetto al dato riferimento locale.

Sia {El, ceey ET} un altro riferimento locale per E sopra U. Allora deve esistere una matrice inverti-
bile A = (A¥) di funzioni C* su U tali che Ej, = A Ej. Se indichiamo con & = (@) la matrice delle forme
di connessione rispetto a questo riferimento locale abbiamo

OMX)AFE), = 0M(X)Ey = VxE; = Vx(AlE)) = AIVxE; + X(A])E,
= [A]w (X) + dAF (X)) By
In termini matriciali questo vuol dire w - A = A - w + dA, cioe

w=A"1-o-A-A'-dA. (4.3.10)

Esercizio 4.3.5. Sia m: E — M un fibrato vettoriale. Supponiamo di avere una famiglia di riferimenti
locali { E*} per E definiti su aperti {U, } che ricoprono M, e di avere una famiglia di matrici di 1-forme {w®},
con w® definita su Uy, che soddisfano (4.3.10) sull’intersezione dei domini di definizione. Dimostra che esiste
un’unica connessione V su E per cui le w® siano le matrici delle forme di connessione rispetto ai riferimenti
locali E<.

L’ultima interpretazione delle connessioni ¢ in termini di sottofibrati orizzontali, e la presenteremo con
una serie di definizioni ed esercizi.

Definizione 4.3.11: Sia m: E — M un fibrato vettoriale di rango r. Il sottofibrato verticale V C TE e il
nucleo del differenziale di , cio¢ V = ker(dn). Siccome dm: TE — TM, il fibrato verticale (che ¢ un fibrato
vettoriale su E) ha rango r.

Dato p € M e v € E,, indichiamo con j,: E, — FE linclusione, e con k,: E, — T,(E,) la solita
identificazione canonica. Siccome 7 o j, = p, si ha dr o dj, = O, per cui

ty =d(jp)v 0 ky: Ep =V,

¢ un isomorfismo fra F, e lo spazio verticale V.
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Definizione 4.3.12: Sia m: F — M un fibrato vettoriale. Se A € R, indichiamo con py: E — E la moltiplica-
zione per A, cioé py(v) = . Inoltre, indichiamo con 0: E @ E — FE la somma o (v1,v3) = v1 + va.

Esercizio 4.5.6. Dimostra che V,, ) = d(ux)v(Vy) e che v, () © d(pix)y = d(pir)v © Ly per ogni v € E e
ogni A € R.

Esercizio 4.3.7.  Dimostra che Vi, (4, v,) = d0 (4, 0) (Vo ©Vu,) € che Loy, 0,)0d0 (0, 0,) = A0 (4, 05) © (Lo, Blw,)
per ogni (vy,v2) € E® E.

Definizione 4.3.13: Sia w: E — M un fibrato vettoriale. Un sottofibrato orizzontale ¢ un sottofibrato H C TE
tale che TE = H®V. Dato un sottofibrato orizzontale H, indicheremo con x: TE — V la proiezione associata.
Diremo che un sottofibrato orizzontale ¢ lineare se &, (v) © d(pix)y = d(pix)v © Ky Per ogni v € E e ogni A € R,
€ Ko (vr,0s) © A0(v; 05) = A0(vy vy) © (Ko, © Ky,) Per ogni (vi,ve) € B E.

Esercizio 4.5.8.  Dimostra che un sottofibrato orizzontale H ¢ lineare se e solo se si ha H,,, (,) = d(ux)e(Hy)
per ogni v € E e ogni A € R, € Hy (v, 0,) = A0 (v, 0)(Ho, © Hao,) per ogni (v, v2) € E® E.

Definizione 4.3.14: Sia m: E — M un fibrato vettoriale. Una k-forma a valori in E ¢ una sezione del fi-
brato /\k M ® E. Indicheremo con A¥(M; E) lo spazio delle k-forme a valori in E.

FEsercizio 4.3.9. SiaV: T (M)xE(M) — E(M) una connessione su un fibrato vettoriale 7: E — M. Dimostra
che V induce un’applicazione R-lineare D:E(M) — A'(M; E) tale che

D(fV)=df ®V + fDV (4.3.11)
per ogni f € C®°(M) e ogni V € E(M) ponendo DV (X) = VxV. Viceversa, dimostra che ogni applicazione
R-lineare D: (M) — AY(M; E) che soddisfa (4.3.11) ¢ indotta da un’unica connessione su E.
Esercizio 4.3.10. Sia V:T (M) x £(M) — &£(M) una connessione su un fibrato vettoriale m: E — M.
Datip € M e v € E,, siano V, V € £(M) tali che V(p) = V(p) = v. Dimostra che

dV,, — 1, 0 DV, = dVp, — 1, 0 DV,: T,M — T, E.

Definizione 4.3.15: Sia V: T (M) x £(M) — E(M) una connessione su un fibrato vettoriale 7: E — M. Per
ogni v € E definiamo I'applicazione ©,: T,y M — T, E data da

GP(X) = dV‘n'(v) (X) - L'U(VXV)

per ogni X € Ty, )M, dove V € (M) ¢ una qualsiasi sezione tale che V(TF(’U)) = wv. Il sottofibrato
orizzontale HY associato a V & allora definito ponendo HY = O, (Tr(wyM) per ogni v € E.

FEsercizio 4.8.11. Sia V:T(M) x E(M) — &(M) una connessione su un fibrato vettoriale m: ' — M.
Dimostra che HY & effettivamente un sottofibrato orizzontale, e che & lineare.

Definizione 4.3.16: Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale m: E — M, e sia
k:TE — V la proiezione relativa. La connessione D™ associata a H & I'applicazione D*: £(M) — A'(M; E)
definita da D*V = 13,' o ky 0 dV.

Esercizio 4.8.12. Sia H un sottofibrato orizzontale lineare di un fibrato vettoriale m: E — M. Dimostra
che la connessione D"t & un’applicazione R-lineare che soddisfa (4.3.11), per cui proviene da una connessione
su E, che indicheremo con V™.

Esercizio 4.8.13. Sia m: E — M un fibrato vettoriale. Dimostra che le corrispondenze V — HY e H — V7
sono una inversa dell’altra, per cui abbiamo una corrispondenza biunivoca fra connessioni su E e sottofibrati

orizzontali lineari di TE.
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4.4 La connessione di Levi-Civita

Connessioni su una varieta qualunque ne esistono a bizzeffe; ma lo scopo di questa sezione &€ mostrare come
sia possibile definire in modo canonico una connessione particolarmente utile su ogni varieta Riemanniana.

Definizione 4.4.1: Una connessione V su una varietda Riemanniana (M, g) ¢ compatibile con la metrica se
Vx(Y,Z) =(VxY,Z) +(Y,VxZ)

per tutti gi X, Y, Z € T(M).
Proposizione 4.4.1: Sia V una connessione su una varieta Riemanniana (M, g). Le seguenti proprieta sono
equivalenti:

(i) V é compatibile con g;
(ii) Vg=0;

(iii) in un qualunque sistema di coordinate si ha
l l
Okgi; = Uigij + U9
(iv) per ogni coppia di campi vettoriali V' e W lungo una curva o abbiamo

%Gﬂ W) = (DV,W) + (V, DWV);

(v) per ogni coppia di campi vettoriali V e W paralleli lungo una curva o il prodotto (V, W) é costante;
(vi) il trasporto parallelo lungo una qualsiasi curva é un’isometria.

Dimostrazione: (i)<=>(ii): per definizione,
V(Y. Z,X) = (Vx9)(Y,Z) = X((Y, 2)) = (VxY,Z) = (Y,Vx Z),

e ci siamo.
(ii)<=(iii): fissato un sistema di coordinate si ha

Vg(8s, 05, 0) = Ok((8i,0;)) = (Va,0i,0;) = (05, Vo, 0;) = Ok(9ij) — Thigiy — D9t

e ci siamo.
(i)==(iv): Basta scrivere localmente V = V"0, oo, W = W¥0; o o, e usare il fatto che

01,000 = 0 (D1, )0).

(iv)=(v): se DV = DW = O la (iv) implica che (V, W) & costante.

(v)==(vi): infatti la (v) dice esattamente che il trasporto parallelo conserva la metrica.

(vi)=>(i): scelto p € M, sia o una curva con o(0) = p e ¢’(0) = X,. Fissiamo una base ortonor-
male {v1,...,v,} di T,M; per (vi) possiamo estendere ciascun v; a un campo vettoriale v, (¢) parallelo lungo o
e tale che {v1(t),...,v,(t)} sia una base ortonormale di T, ;)M per ogni t. Scriviamo Y (o (t)) = Y"(t)vy(t)
e Z(o(t)) = Z*(t)uk(t); allora

n h h
Vi, V:2) = L0 (0(0). Z(o0)) -y (%(@ZWO) o2 <0))

t=0
- <dsth(0)vh,Z(0)> + <Y(0), @(o)vh> = (DY, Z) + (Y, Do Z)
=(Vx,Y,2) +(Y,Vx,2),

e ci siamo. m
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Esercizio 4.4.1. Sia V una connessione lineare su una varieta Riemanniana (M,g). Dimostra che V ¢

compatibile con g se e solo se le 1-forme di connessione (w*

) rispetto a qualsiasi riferimento locale {En, ..., Ep }
di T'M sono tali che

girwl + giw = dgij,

dove gi; = g(E;, Ej), come al solito. In particolare, se V & compatibile con la metrica allora la matrice (w})

rispetto a un riferimento locale ortonormale & necessariamente antisimmetrica.

La compatibilita con la metrica non identifica univocamente una connessione, sfortunatamente:

Esercizio 4.4.2. Dimostra che se V & una connessione compatibile con la metrica su una varieta Rieman-
niana (M, g), e A € T,-(M) & tale che

(AX,Y), Z) + (Y, A(X,Z)) =0 (4.4.1)

per ogni X, Y, Z € T(M) allora V + A & ancora una connessione compatibile con la metrica. Dimostra
inoltre che se V! e V2 sono due connessioni compatibili con la metrica allora V! — V2 & un campo tensoriale
di tipo (é) che soddisfa (4.4.1).

In un certo senso, un campo tensoriale che soddisfa (4.4.1) & antisimmetrico, il che fa sospettare che
una connessione compatibile con la metrica e che sia simmetrica in qualche senso dovrebbe essere unica. 1l
concetto giusto di simmetria e rivelato dal

Lemma 4.4.2: Data una connessione lineare V su una varieta M, definiamo 7: 7 (M) x T(M) — T (M)
ponendo
7(X,Y)=VyxY — Vy X — [X,Y].

Allora T é un campo tensoriale di tipo (;)

Dimostrazione: Siccome 7(Y, X) = —7(X,Y), per far vedere che 7 & un campo tensoriale di tipo (é) grazie
alla Proposizione 3.2.1.(ii) ¢ sufficiente dimostrare che 7 ¢ C°°(M)-lineare nella prima variabile. Ma infatti

T(fXY)=VixY = Vy(fX) - [fX,Y] = fVxY - fVy X - Y (/)X - fIX, Y]+ Y(f)X = fr(X.Y).
O

Definizione 4.4.2: La torsione di una connessione V su una varietad M & il campo tensoriale 7 € T3'(M)
definito da
T(X,Y)=VxY -VyX - [X,Y].

La connessione V ¢ detta simmetrica se 7 = O.

Esercizio 4.4.3. Dimostra che se V e una connessione lineare di torsione 7 allora V = V — 57 & una

connessione lineare simmetrica.

1
2

Lemma 4.4.3: Sia V una connessione su una varieta M. Allora le seguenti affermazioni sono equivalenti:
(i) V é simmetrica;

(ii) i simboli di Christoffel rispetto a un qualsiasi sistema di coordinate sono simmetrici, cioé I‘?j =T

(iii) I’Hessiano V2f ¢ simmetrico per ogni f € C*°(M).

h_.
3i

Dimostrazione: (i)<=>(ii): Fissiamo una carta locale, e scriviamo X = X0, e Y = Y*9. Allora (4.3.1) ci
da
T(X,)Y) = thk[Fik - Fih]aj’

per cui 7(X,Y) = O per ogni X, Y € T(M) se e solo se i simboli di Christoffel sono simmetrici.
(i)<=(iil): Grazie a (4.3.9) abbiamo

VEFX,Y) = V2F(Y, X) = = [X,Y](f) = Vv X(f) + VXY (f) = 7(X,Y) (),

e ci siamo. m
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Esercizio 4.4.4. Trova una connessione lineare V compatibile con una metrica Riemanniana g tale che la

connessione V =V — %T non sia compatibile con g, dove 7 & la torsione di V.

Esercizio 4.4.5. Sia V una connessione lineare su una varietd M, {Ei,...,E,} un riferimento locale

di TM, {¢',...,¢"} il riferimento duale di T*M, e (w}) la matrice delle 1-forme di connessione. Sia infine 7
la torsione di V, e definiamo 77: 7 (M) x T (M) — C°°(M) per j = 1,...,n tramite la formula

(X,Y)=7(X,Y)E;.
Dimostra che 71,..., 7™ sono delle 2-forme locali (dette forme di torsione), e dimostra la prima equazione di
struttura di Cartan: 4 ' . .
d(pj = @7/\0.23 +T]
perj=1,...,n.
Il risultato che permette alla geometria Riemanniana di prendere davvero vita ¢ il seguente:

Teorema 4.4.4: Su ogni varieta Riemanniana (M, g) esiste un’unica connessione V simmetrica e compatibile
con la metrica. Inoltre, V soddisfa

1
(VY. Z) = SAX{Y,2) £ Y(Z,X) = Z(X.V) (XY, 2) (.2, X) + (2.X],Y)) (142)
perogni X, Y, Z € T(M). In particolare, se {E1, ..., E,} é un riferimento locale ortonormale abbiamo
1
(Vi, By, Bi) = 3{([Bi. By}, Bi) — (B3, B, i) + (B, B, B}, (4.4.3)

mentre 1 simboli di Christoffel di V sono dati da

1 915 dgit 0gi;
k __ kl
Iy =39 <8xi T 9w ol ) (444)

Dimostrazione: Cominciamo con 'unicita. Se V € una connessione compatibile con g si deve avere

X{Y,Z) =(VxY,Z) + (Y, Vx Z),
Y{(Z, X)=(VyvZ, X))+ (Z,VyX),
Z(X,Y) = (VzX,Y) + (X, V,Y).

Quindi se V & anche simmetrica otteniamo

XY, Z)+Y{(Z,X)-Z(X,)Y)=(VxZ - Vz X, Y)+(VyZ -V;Y, X)+(VxY + Vy X, Z)
= _<[Z’X]7Y> + <[Y’Z]7X> - <[X,Y],Z> +2<VXYa Z>a

e quindi V ¢ data da (4.4.2).

Viceversa, definiamo V: 7 (M) x T (M) — T (M) tramite (4.4.2); dobbiamo verificare che otteniamo una
connessione simmetrica compatibile con la metrica. Iniziamo mostrando che il secondo membro di (4.4.2)
& C°°(M)-lineare in Z; infatti

(VxY, fZ) = %{X<Y7fZ> +Y(fZ2,X) - fZ(X,Y) + (X, Y], fZ) = [V, 2], X) + ([f 2, X].Y ) }

= [(VxY,Z) + % (XN, 2) +Y ()2, X) =Y ()2, X) = X(F){ZY)}
= f(VxY,Z).
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Quindi (VxY,-) & una 1-forma, per cui VxY = (VxY,)# & effettivamente un campo vettoriale.
Poi, V ¢ C'°°(M)-lineare nel primo argomento:

(VpxY,2) = S{FX{Y.2) 4 Y{Z,1X) — Z(X,Y) + (FX.Y], 2) ~ (¥, 2), 1) +{[Z, £X], ) }

XY, 2)+ LY (NZ.X) = 20)(X,Y) = Y (DX, 2) + Z()X,Y) ) = (19xY. 2),

come voluto. In modo analogo (esercizio) si verifica la formula di Leibniz. Controlliamo ora la compatibilita
con la metrica:

(VxY,Z) + (Y, VxZ) = %{X(Y, 2V +Y(Z,X) — Z(X,Y) + ([X,Y],Z) — [V, 2], X) + ([Z, X],Y>}

{ (Z,Y)+ 20, X) = Y (X, 2) + (X, 2),Y) = ([2,Y], X) + (¥, X], 2)}
= X(Y,2),

come desiderato. Infine & facile vedere (esercizio) che V & anche simmetrica.
La (4.4.2) chiaramente implica la (4.4.3). Infine, siccome [0, Ox] = O per ogni h, k = 1,...,n, abbiamo

(8i(gs1) + 05(g15) — Ai(gi5)),

l\JIr—\

gl = (Vo,0;,01) =

e la (4.4.4) segue. O

Definizione 4.4.3: Sia M una varieta Riemanniana. L’unica connessione V simmetrica e compatibile con la
metrica si dice connessione di Levi-Civita della varieta Riemanniana M.

Osservazione 4.4.1. Nella dimostrazione precedente abbiamo usato solo il fatto che (-,-), fosse un pro-
dotto scalare non degenere, e non che fosse definito positivo. Quindi & possibile definire una connessione di
Levi-Civita in varieta equipaggiate con un campo tensoriale g € 7o(M) simmetrico e non degenere (cioe tale
che g, (v, w) = 0 per ogni w € T, M implica v = O). Questo ¢ utile, per esempio, in relativita generale.

EsEMPIO 4.4.1. La connessione piatta ¢ la connessione di Levi-Civita per la metrica euclidea di R".

ESEMPIO 4.4.2. Sia M una varietd Riemanniana con connessione di Levi-Civita VM, e N una sottovarieta
di M. Se indichiamo con m: TM — TN la proiezione ortogonale (dove: per ogni p € N consideriamo T, N
come sottospazio di T, M, e 7|z, ar: Ty M — T, N ¢ la proiezione ortogonale rispetto al prodotto scalare dato
dalla metrica su M), allora si verifica facilmente (esercizio) che VV: 7 (N) x T(N) — T(N) data da

VX,Y € T(N) VY = n(V{Y)

¢ una connessione simmetrica, in quanto VM lo ¢. Inoltre, se mettiamo su N la metrica g%V indotta da
quella di M, si vede subito (esercizio) che V¥V & compatibile con g, e quindi Vv & proprio la connessione
di Levi-Civita di NV considerata con la metrica indotta.

Esercizio 4.4.6. Dimostra che se M & una superficie regolare di R® equipaggiata con la metrica indotta
dalla metrica euclidea, allora i simboli di Christoffel introdotti nella teoria classica delle superfici coincidono
con quelli introdotti qui.

Una conseguenza immediata dell’unicita della connessione di Levi-Civita ¢ la seguente

Proposizione 4.4.5: Sia F: (M, g) — (M, J) un’isometria fra due varieta Riemanniane. Allora:

(i) F porta la connessione di Levi-Civita V di M nella connessione di Levi-Civita V di M nel senso che
VX,Y € T(M) dF(VxY) = Varx)dF(Y);
(ii) se o é una curva in M si ha

vV € T (o) dF(DV) = D(dF(V)),
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dove D (rispettivamente, D) ¢ la derivata covariante lungo la curva o (rispettivamente, & = F o o) indotta
da V (rispettivamente, V).

Dimostrazione: (i) Definiamo un’applicazione F*V: T (M) x T (M) — T (M) ponendo

VX,Y € T(M) (F*V)xY = (dF) ™ (Vapx)dF(Y)).
Si vede subito che F*V & una connessione su M. Inoltre

(F*V)xY, Z)ar + (Y, (F*V)x Z)p = ((dF) " (Vapx)dF(Y)), Z),, + (Y, (dF) " (Vapx)dF(2)))
= (Varx)dF (Y),dF(Z )> +(dF(Y),Vapx)dF (Z))

=dF(X)((dF(Y),dF(Z))y) = dF(X)((Y,Z)p o F71)

XY, Z)ur,

per cui F' *V o compatibile con la metrica. Infine

(F*V)xY — (F*V)yX — [X,Y] = (dF) " (Varx)dF (Y) = Vap)dF (X)) — [X,Y]
= (dF)_lqu(X)vdF(Y)]) - [X’ Y]
=0,

(dove abbiamo usato I’Esercizio 3.3.3), per cui F*V & simmetrica. Il Teorema 4.4.4 implica allora F*V = V,

come voluto. R
(ii) Se si definisce F*D: T (c) — 7T (o) con

(F*D)V = (dF)™*(DdF(V)),

l'unicita di D enunciata nella Proposizione 4.3.3 (assieme a F*V = V) implicano che F*D = D, e ci siamo. ]

Esercizio 4.4.7. Sia F: M — N un’immersione globalmente iniettiva, e ¢ una metrica Riemanniana su N.
Indichiamo con V la connessione di Levi-Civita su N, e per ogni p € M sia m,: Ty N — dF,(T,M) la
proiezione ortogonale. Definiamo F*V:T (M) x T(M) — T (M) ponendo

F*VxY (p) = (dF,) " (7p(Var, x)dF(Y))).

Dimostra che F*V & la connessione di Levi-Civita della metrica F*g su M.

Avendo a disposizione una connessione e una metrica possiamo introdurre la generalizzazione di un

altro concetto dell’Analisi classica. Per farlo ci serve un risultato di algebra lineare che lasciamo per esercizio.

Definizione 4.4.4: La traccia di una forma bilineare simmetrica S:V x V' — R su uno spazio vettoriale V'
dotato di un prodotto scalare definito positivo & definita da

= S(Uj, ’Uj), (445)
j=1
dove {vy,...,v,} & una qualunque base ortonormale di V.

FEsercizio 4.4.8. Verifica che il secondo membro di (4.4.5) non dipende dalla base ortonormale scelta, per
cui la traccia di una forma bilineare simmetrica & ben definita.

Definizione 4.4.5: Sia M una varietd Riemanniana, e f € C°°(M). Diremo Laplaciano di f la funzione
Af =w(Vf),

dove V e la connessione di Levi-Civita di f.



94 Elementi di Geometria Differenziale, A.A. 2005/06

Esercizio 4.4.9. Dimostra che
Af = divgrad(f),

_1 .9 ik OF
Af= VG Ok <\/§gj 6a:j>’

e che in coordinate locali si ha

dove G = det(gi;)-

Concludiamo questo capitolo determinando la connessione di Levi-Civita in alcuni casi particolarmente
significativi. Nell’Esempio 4.4.1 abbiamo trovato la connessione di Levi-Civita per R"; vediamo adesso
I’aspetto delle connessioni di Levi-Civita sulla sfera e sullo spazio iperbolico.

ESEMPIO 4.4.3. Sia gp la metrica sferica su S c R™"! (Esempio 4.2.1); vogliamo calcolare i simboli di
Christoffel della connessione di Levi-Civita di gg rispetto alle coordinate sferiche. Conservando le notazioni
introdotte nell’Esempio 4.2.1 abbiamo

cos 0! .
2 sei=j<I,

sin 6!
0 altrimenti.

9gis _ J 2R*(sinf"*t .. .sin@™)
06!

Quindi (4.4.4) ci da
cos gmax{é,j} . o
. m Sek:Z<jOk:j<Z,
Iy, = 1 )
! —g(sin Ot sin 0F1)2sin(20%) sei=j <k,
0 altrimenti.

In particolare, per la sfera unitaria in R® otteniamo
1.
I, =T, =I7,=03 =03,=0, I'i,=I} =ctgd?, I3 = -5 sin(26?).

EseEmpio 4.4.4.  Calcoliamo i simboli di Christoffel per la connessione di Levi-Civita sullo spazio iperbolico
(Esempio 4.2.3). Cominciamo con Bp; una base dello spazio tangente ¢ data da {9/dz!,...,0/0z™}, per
cui

o 4R4 S 3g7;j _ 16R4Ik S
TR PR ek T (R [P
e quindi ‘
2 .
—R2—||a:H2 se 1=k,
21
— se j=k#1,
R e R
22k
- sei=j#k,
ap <7
0 altrimenti.
Nel caso di Hj, la base dello spazio tangente ¢ la stessa, ma
R2 agij 2R2
9ij = Wdij7 Ok = —W(Sijdkm
per cui
1 e k=
o set=7<k=n,
Iy = 1 ‘ , , . o
i set=k<j=noj=k<i=noi=j=k=n,

0 altrimenti.
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Esercizio 4.4.10. Calcola i simboli di Christoffel della metrica g}z di Up rispetto alle coordinate locali

oul,. .., u") = (ul,...,u", VR?+ ||u||2) :

ESEMPIO 4.4.5. Sia G un gruppo di Lie su cui abbiamo messo una metrica invariante a sinistra g, e

indichiamo con g ’algebra di Lie, e con V la connessione di Levi-Civita. Prima di tutto, e facile verificare
che V ¢ invariante a sinistra, cioe che

VXy(h) =dLy (Vdthl(X)dLh—l(Y)(e)) (4.4.6)

per ogni X, Y € 7(G) e h € G. Infatti, se usiamo il lato destro di (4.4.6) per definire una nuova connes-
sione V, si vede subito che V & (effettivamente una connessione ed ¢) simmetrica e compatibile con la metrica,
per cui coincide con V. Se {Xi,...,X,} € una base di g, estendiamo gli X; a campi vettoriali invarianti a
sinistra. Chiaramente otteniamo un riferimento globale per T'G, e ogni campo vettoriale su G (non neces-
sariamente invariante a sinistra) si scrive come combinazione lineare a coeflicienti in C*°(G) di X3,..., X,.
Quindi per determinare V ci basta vedere quanto fa applicata agli X;; e per I'invarianza a sinistra ci basta
effettuare questo calcolo nell’identita. Ora, I'invarianza a sinistra di g implica che g;; = (X;, X;) ¢ costante
su G; quindi la (4.4.2) ci dice che

(Vx, X5 Xi)e = = (qunch; — guchi + g1¢ki), (4.4.7)

N =

dove le céj sono le costanti di struttura di g rispetto alla base {X1,...,X,,} (vedi la Definizione 3.3.10), e
abbiamo determinato V.

EsSEMPIO 4.4.6. Sia G = GL(n,R) il gruppo delle matrici invertibili a coefficienti reali. Prendiamo come
base di gl(n,R) la base canonica {E;;}, dove E;; € la matrice con 1 al posto (Z,5) e 0 altrove, cioe

(Eij)rs = 5ir6js-
Abbiamo visto (Esempio 3.3.2) che le costanti di struttura sono

ey = OirOksOjn — Ornba;Oi.
Mettiamo su gl(n, R) il prodotto scalare rispetto a cui la base canonica {E;; } ¢ ortonormale, ed estendiamolo
in modo da avere una metrica Riemanniana invariante a sinistra (che non ¢ la metrica euclidea). Allora
la (4.4.7) ci fornisce la connessione di Levi-Civita rispetto a questa metrica:

1. (re) (i) (hk)
(Ve Buks Brs) = 51¢0550k) — Chkyrs) T Srs)i)]

1
= 5[5ir5kj5jh — Onr0js0ik — Onidsj0kr + 0ir0jk0ns + OnrOjklis — OinlksOjr].



96

Elementi di Geometria Differenziale, A.A. 2005/06



