
Capitolo 3

Fibrati vettoriali

3.1 Definizioni ed esempi

Uno dei motivi per cui la struttura di varietà è cos̀ı utile è che l’unione disgiunta degli spazi tangenti a una
varietà ha a sua volta una struttura naturale di varietà. Si tratta del primo esempio di una categoria di
oggetti estremamente importanti, i fibrati vettoriali.

Definizione 3.1.1: Un fibrato vettoriale di rango r su una varietà M è un’applicazione differenziabile surget-
tiva π:E →M fra una varietà E (detta spazio totale del fibrato) e la varietà M (detta base del fibrato) che
soddisfa le seguenti proprietà:
(i) per ogni p ∈ M l’insieme Ep = π−1(p), detto fibra di E sopra p, è dotato di una struttura di spazio

vettoriale su R di dimensione r, e indicheremo con Op il vettore nullo di Ep;
(ii) per ogni p ∈ M esiste un intorno U di p in M e un diffeomorfismo χ: π−1(U) → U × Rr, detto

banalizzazione locale di E, tale che π1 ◦χ = π (dove abbiamo indicato con π1:U ×Rr → U la proiezione
sulla prima coordinata), e tale che la restrizione di χ a ciascuna fibra sia un isomorfismo fra gli spazi
vettoriali Ep e {p} × Rr.

I fibrati vettoriali di rango 1 sono chiamati fibrati in rette. Quando non c’è rischio di confondersi useremo lo
spazio totale E per indicare un fibrato vettoriale π:E →M , sottintendendo la proiezione π. Infine, partendo
da spazi vettoriali su C invece che da spazi vettoriali su R si ottiene la nozione di fibrato vettoriale complesso.

In altre parole, un fibrato vettoriale è un modo differenziabile di associare uno spazio vettoriale a ciascun
punto di una varietà.

Esempio 3.1.1. Se M è una varietà, allora E = M × Rr considerato con la proiezione π:M × Rr → M
sulla prima coordinata è un fibrato vettoriale di rango r, detto fibrato banale.

Esempio 3.1.2. Sia π:E → M un fibrato vettoriale su M di rango r, e U ⊂ M un aperto. Al-
lora πU :EU → U , dove EU = π−1(U) e πU = π|π−1(U), è un fibrato vettoriale di rango r su U , detto
restrizione di E a U .

Esercizio 3.1.1. Sia π:E →M un fibrato vettoriale di rango r sulla varietà M , e S ⊂M una sottovarietà.
Dimostra che πS : E|S → S, dove E|S = π−1(S) e πS = π|π−1(S), è un fibrato vettoriale di rango r su S,
detto restrizione di E a S. (Suggerimento: può essere utile l’Esercizio 2.5.12).

C’è un modo tipico per verificare se una collezione di spazi vettoriali è un fibrato vettoriale:

Proposizione 3.1.1: Siano M una varietà, E un insieme e π:E → M un’applicazione surgettiva. Sup-
poniamo di avere un atlante A = {(Uα, ϕα)} di M e applicazioni bigettive χα: π−1(Uα) → Uα × Rr tali
che

(a) π1 ◦ χα = π, dove π1:U × Rr → U è la proiezione sulla prima coordinata;
(b) per ogni coppia (α, β) di indici tale che Uα ∩ Uβ 6= ∅ esiste un’applicazione differenziabile

gαβ :Uα ∩ Uβ → GL(r, R)

tale che la composizione χα ◦ χ−1
β : (Uα ∩ Uβ)× Rr → (Uα ∩ Uβ)× Rr sia della forma

χα ◦ χ−1
β (p, v) =

(
p, gαβ(p)v

)
. (3.1.1)
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Allora l’insieme E ammette un’unica struttura di fibrato vettoriale di rango r su M per cui le χα siano
banalizzazioni locali.

Dimostrazione: Poniamo Ep = π−1(p) per ogni p ∈M . Se p ∈ Uα, la restrizione di χα a Ep è una bigezione
con {p} ×Rr, e quindi possiamo usarla per definire una struttura di spazio vettoriale su Ep: se u1, u2 ∈ Ep

sono tali che χα(uj) = (p, vj) per opportuni v1, v2 ∈ Rr, poniamo

u1 + u2 = χ−1
α (p, v1 + v2) e λu1 = χ−1

α (p, λv1) (3.1.2)

per ogni λ ∈ R. A priori, la struttura di spazio vettoriale cos̀ı definita potrebbe dipendere dalla banaliz-
zazione χα usata, nel qual caso saremmo nei guai, in quanto in un fibrato vettoriale la struttura di spazio
vettoriale delle fibre dev’essere definita indipendentemente dalle banalizzazioni. Ma per fortuna la (3.1.1)
ci evita questo problema. Infatti, se p appartiene anche a un altro Uβ , e scriviamo χβ(uj) = (p, wj) per
opportuni w1, w2 ∈ Rr, abbiamo

(p, vj) = χα ◦ χ−1
β (p, wj) =

(
p, gαβ(p)wj

)
,

cioè vj = gαβ(p)wj , e quindi

χ−1
α (p, v1 + v2) = χ−1

α

(
p, gαβ(p)w1 + gαβ(p)w2

)
= χ−1

α

(
p, gαβ(p)(w1 + w2)

)
= χ−1

α ◦ (χα ◦ χ−1
β )(p, w1 + w2) = χ−1

β (p, w1 + w2),

per cui l’operazione di somma non dipende dalla banalizzazione usata per definirla. Analogamente si dimostra
che l’operazione di prodotto per uno scalare è ben definita.

Poniamo ora Ũα = π−1(Uα) e χ̃α = (ϕα, id)◦χα. Allora χ̃α ◦ χ̃−1
β = (ϕα ◦ϕ−1

β , gαβ ◦ϕ−1
β ) è di classe C∞,

per cui Ã = {(Ũα, χ̃α)} è un atlante su E di dimensione n + r, che soddisfa (esercizio) tutte le proprietà
necessarie perché π:E →M sia un fibrato vettoriale.

Viceversa, supponiamo di avere su E una struttura di fibrato vettoriale per cui le χα siano banalizzazioni
locali. In tal caso, le χα devono indurre isomorfismi fra le fibre ed Rr, per cui la (3.1.2) dev’essere valida,
e la struttura di spazio vettoriale su ciascuna fibra è unica. Inoltre, le χ̃α = (ϕα, id) ◦ χα sono chiaramente
diffeomorfismi con aperti di Rn+r, dove n = dimM , e quindi la struttura differenziabile di E coincide con
quella indotta dall’atlante Ã definito tramite le χ̃α.

Definizione 3.1.2: Sia π:E →M un fibrato vettoriale. Diremo che una carta locale (U, ϕ) di M banalizza E
se esiste una banalizzazione locale del fibrato definita su π−1(U). Un atlante A di M banalizza il fibrato E
se ogni carta di A lo fa.

Sia A = {(Uα, ϕα)} un atlante che banalizza un fibrato vettoriale π:E → M , e indichiamo con χα

la banalizzazione sopra Uα. Allora le composizioni χα ◦ χ−1
β devono indurre per ogni p ∈ Uα ∩ Uβ un

isomorfismo di Rr che dipende in modo C∞ da p, per cui devono necessariamente esistere applicazioni
differenziabili gαβ :Uα ∩ Uβ → GL(r, R) che soddisfano (3.1.1).

Definizione 3.1.3: Sia A = {(Uα, ϕα)} un atlante che banalizza un fibrato vettoriale π:E → M . Le appli-
cazioni gαβ :Uα ∩ Uβ → GL(r, R) che soddisfano (3.1.1) sono dette funzioni di transizione per il fibrato E
rispetto all’atlante A.

I prossimi due esercizi mostrano come per definire un fibrato vettoriale su una varietà M sia sufficiente
avere le funzioni di transizione.

Esercizio 3.1.2. Siano {gαβ} le funzioni di transizione di un fibrato vettoriale π:E → M rispetto a
un atlante A = {(Uα, ϕα)} di M . Dimostra che gβα = g−1

αβ (inversa di matrici) su Uα ∩ Uβ 6= ∅, e
che gαβgβγ = gαγ (prodotto di matrici) su Uα ∩ Uβ ∩ Uγ 6= ∅.

Esercizio 3.1.3. Supponiamo di avere un atlante A = {(Uα, ϕα)} su M , e funzioni gαβ :Uα∩Uβ → GL(r, R)
che soddisfano le proprietà dell’esercizio precedente. Dimostra che esiste un unico (a meno di isomorfismi:
vedi oltre per l’ovvia definizione di isomorfismo fra fibrati vettoriali) fibrato vettoriale E su M che abbia
le gαβ come funzioni di transizione rispetto all’atlante A. (Suggerimento: leggi l’Esempio 3.1.4 più sotto.)
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Proviamo ad applicare la Proposizione 3.1.1 agli spazi tangenti. Data una varietà M , indichiamo con TM
l’unione disgiunta degli spazi tangenti TpM al variare di p ∈M , e sia π:TM →M la proiezione che manda
ciascun TpM in p. Dato un atlante {(Uα, ϕα)}, possiamo definire bigezioni χα:π−1(Uα)→ Uα×Rn ponendo

χα

 n∑
j=1

vj ∂

∂xj
α

∣∣∣∣
p

 = (p, v),

dove ϕα = (x1
α, . . . , xn

α) e v = (v1, . . . , vn). La (2.4.2) ci dice allora che

χα ◦ χ−1
β (p, v) = χα

 n∑
j=1

vj ∂

∂xj
β

∣∣∣∣∣
p

 = χα

 n∑
h=1

 n∑
j=1

∂xh
α

∂xj
β

(p)vj

 ∂

∂xh
α

∣∣∣∣
p

 =
(

p,
∂xα

∂xβ
(p)v

)
,

dove ∂xα/∂xβ è la matrice jacobiana del cambiamento di coordinate ϕα ◦ ϕ−1
β . Quindi (3.1.1) è soddisfatta

con
gαβ =

∂xα

∂xβ
,

per cui otteniamo una struttura di fibrato vettoriale su TM .

Definizione 3.1.4: Sia M una varietà di dimensione n. Il fibrato vettoriale π:TM → M di rango n con la
struttura appena definita si dice fibrato tangente alla varietà.

Un altro esempio è il fibrato cotangente. Indichiamo con T ∗p M lo spazio duale di TpM , e con T ∗M
l’unione disgiunta dei T ∗p M al variare di p ∈ M , con l’ovvia proiezione π:T ∗M → M . Data una carta
locale ϕα = (x1

α, . . . , xn
α) in un punto p ∈M , indichiamo con {dx1

α|p, . . . , dxn
α|p} la base di T ∗p M duale della

base {∂/∂x1
α|p, . . . , ∂/∂xn

α|p} di TpM . È facile verificare che (2.4.2) implica

dxk
β |p =

n∑
h=1

∂xk
β

∂xh
α

(p) dxh
α|p, (3.1.3)

per cui possiamo nuovamente applicare la Proposizione 3.1.1. Infatti, se definiamo χα:π−1(Uα)→ Uα × Rn

anche stavolta ponendo

χα

 n∑
j=1

wj dxj
α|p

 = (p, wT ),

dove wT ∈ Rn è il vettore colonna trasposto del vettore riga (w1, . . . , wn) ∈ (Rn)∗, otteniamo

χα ◦ χ−1
β (p, wT ) = χα

 n∑
j=1

wj dxj
β |p

 = χα

 n∑
h=1

 n∑
j=1

∂xj
β

∂xh
α

(p)wj

 dxh
α|p

 =

(
p,

[
∂xβ

∂xα
(p)

]T

wT

)
,

per cui recuperiamo (3.1.1) con

gαβ =
[
∂xβ

∂xα

]T

,

dove AT indica la trasposta della matrice A.

Definizione 3.1.5: Sia M una varietà di dimensione n. Il fibrato vettoriale π:T ∗M → M di rango n con la
struttura appena definita si dice fibrato cotangente alla varietà.

Osservazione 3.1.1. Data una carta locale ϕ = (x1, . . . , xn) in un punto p di una varietà M , abbiamo
introdotto due notazioni pericolosamente simili: dxj

p, che indica il differenziale in p della funzione coordi-
nata xj , e dxj |p, l’elemento della base duale di T ∗p M . Per fortuna, ricordando l’Osservazione 2.4.6 di fatto
possiamo identificare questi due oggetti. Infatti, dxj

p è un’applicazione lineare da TpM a valori in R, per cui
è un elemento di T ∗p M ; inoltre,

dxj
p

(
∂

∂xh

∣∣∣∣
p

)
=

∂xj

∂xh
(p) = δj

h,

per cui dxj
p = dxj |p.
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Osservazione 3.1.2. Come diventerà ancora più chiaro a partire dal prossimo capitolo, in geometria
differenziale è importante mantenere distinti vettori colonna e vettori riga, ovvero non identificare Rn con
il suo duale (Rn)∗. La scelta di una base fornisce un isomorfismo fra TpM e Rn; la scelta della base duale
corrisponde a considerare l’inversa del duale di questo isomorfismo, e quindi identifica T ∗p M con (Rn)∗. In
altre parole, le coordinate rispetto alla base duale degli elementi di T ∗p M vivono in maniera naturale in (Rn)∗,
per cui sono vettori riga, e non vettori colonna. Siccome come modello per i fibrati vettoriali usiamo Rn e
non il suo duale, nelle formule riguardanti il fibrato cotangente siamo costretti a introdurre la trasposizione.
In particolare, le funzioni di transizione del fibrato cotangente sono le inverse trasposte delle funzioni di
transizione del fibrato tangente, e non semplicemente le inverse.

Nel Capitolo 1 abbiamo visto altre operazioni che possiamo effettuare sugli spazi vettoriali TpM ; pos-
siamo per esempio costruire l’algebra tensoriale, o l’algebra esterna. Abbiamo anche visto come ottenere
delle basi di questi spazi, facendo prodotti tensoriali o prodotti esterni di elementi delle basi di TpM e T ∗p M .
La multilinearità del prodotto tensoriale e del prodotto esterno ci dice anche come cambiano queste basi
cambiando carte locali: otteniamo formule del tipo

∂

∂xj1
β

⊗ · · · ⊗ ∂

∂xjr

β

⊗ dxh1
β ⊗ · · · ⊗ dxhs

β

=
n∑

a1,...,ar=1

n∑
b1,...,bs=1

∂xa1
α

∂xj1
β

· · · ∂xar
α

∂xjr

β

∂xh1
β

∂xb1
α

· · ·
∂xhs

β

∂xbs
α

∂

∂xa1
α
⊗ · · · ⊗ ∂

∂xar
α
⊗ dxb1

α ⊗ · · · ⊗ dxbs
α ,

per cui possiamo procedere (esercizio) come fatto nel caso dei fibrati tangente e cotangente, ottenendo i
fibrati tensoriali.

Definizione 3.1.6: Sia M una varietà. Indichiamo con T k
l M l’unione disgiunta degli spazi T k

l (TpM) al variare
di p ∈M , e sia π:T k

l M →M la proiezione associata. Allora T k
l M , con la struttura naturale sopra descritta,

è detto fibrato dei
(
k
l

)
-tensori su M . Indicheremo invece con

∧r
M il fibrato delle r-forme ottenuto prendendo

l’unione disgiunta degli spazi
∧r(T ∗p M). In particolare,

∧1
M = T ∗M .

Osservazione 3.1.3. Attenzione:
∧r

p M è uguale a
∧r(T ∗p M) e non a

∧r(TpM) come ci si sarebbe potuti
aspettare, per cui

∧r
M è contenuto in T 0

r M invece di T r
0 M . Il motivo di questa scelta è che mentre il

fibrato delle r-forme come definito qui è infinitamente utile in geometria differenziale, il fibrato ottenuto
considerando gli spazi

∧r(TpM) viene usato cos̀ı di rado da non meritare un simbolo speciale.

I fibrati tensoriali naturalmente non esauriscono la categoria dei fibrati vettoriali interessanti.

Esempio 3.1.3. Sia S una sottovarietà di dimensione k di una varietà n-dimensionale M . Abbiamo già
osservato come per ogni p ∈ S possiamo identificare ciascun TpS con un sottospazio vettoriale di TpM .
Allora il fibrato normale di S in M è il fibrato vettoriale NS su S di rango n−k ottenuto prendendo l’unione
disgiunta degli spazi vettoriali quozienti TpM/TpS, con la proiezione naturale π:NS → S. Per costruire le
banalizzazioni locali, scegliamo un atlante {(Uα, ϕα)} di S in modo che ciascuna carta (Uα, ϕα) provenga
da una carta (Ũα, ϕ̃α) di M come indicato nel Corollario 2.5.4. In particolare, posto ϕ̃α = (x1

α, . . . , xn
α), per

ogni p ∈ Uα i vettori {∂/∂x1
α|p, . . . , ∂/∂xk

α|p} formano una base di TpS, per cui una base di TpM/TpS
è data da {∂/∂xk+1

α |p + TpS, . . . , ∂/∂xn
α|p + TpS}. Quindi possiamo definire una banalizzazione locale

χα:π−1(Uα)→ Uα × Rn−k ponendo

χα

n−k∑
j=1

vj

(
∂

∂xn+j
α

∣∣∣∣
p

+ TpS

) = (p, v),

e non è difficile (esercizio) verificare che le ipotesi della Proposizione 3.1.1 sono soddisfatte.

Esercizio 3.1.4. Definisci i concetti di sottofibrato di un fibrato vettoriale, di quoziente di un fibrato per
un suo sottofibrato, di somma diretta e di prodotto tensoriale di due fibrati sulla stessa varietà, e ve-
rifica che il fibrato normale NS introdotto nel precedente esempio può essere identificato con il fibrato
quoziente TM |S/TS, dove TM |S è la restrizione di TM a S (vedi l’Esercizio 3.1.1).
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Esempio 3.1.4. Vogliamo introdurre una famiglia di fibrati in rette sullo spazio proiettivo Pn(R). Sia
A = {(U0, ϕ0), . . . , (Un, ϕn)} l’atlante introdotto nell’Esempio 2.1.12, e prendiamo d ∈ Z. Indichiamo con Ed

l’unione disgiunta degli insiemi U0 × R, . . . , Un × R quozientato rispetto alla relazione d’equivalenza ∼ cos̀ı
definita: (x, λ) ∈ Uh × R è equivalente a (x̃, λ̃) ∈ Uk × R se e solo se

x = x̃ e λ =
(

xk

xh

)d

λ̃,

dove abbiamo scritto x = [x0 : · · · : xn] come al solito. In particolare, (x, λ) ∼ (x̃, λ̃) implica che
x = x̃ ∈ Uh ∩ Uk, per cui la relazione d’equivalenza è ben definita e abbiamo una proiezione natu-
rale π:Ed → Pn(R). È ora facile usare la Proposizione 3.1.1 per dimostrare che abbiamo definito dei
fibrati in rette: infatti per ogni j = 0, . . . , n la proiezione sul quoziente è una bigezione fra Uj ×R e π−1(Uj),
per cui possiamo usarne l’inversa χj :π−1(Uj)→ Uj ×R per definire le banalizzazioni locali. Per costruzione
le funzioni di transizione ghk:Uh ∩ Uk → GL(1, R) = R∗ sono date da

ghk(x) =
(

xk

xh

)d

.

Chiaramente, E0 = Pn(R) × R è il fibrato in rette banale. Si può inoltre dimostrare che gli Ed, a meno di
isomorfismi (vedi sotto per la definizione — ovvia — di isomorfismo fra fibrati), sono tutti e soli i fibrati in
rette su Pn.

Concludiamo questo paragrafo introducendo anche le applicazioni fra fibrati:

Definizione 3.1.7: Siano π1:E1 → M1 e π2:E2 → M2 due fibrati vettoriali. Un morfismo fra i due fibrati
è una coppia di applicazioni differenziabili L:E1 → E2 e F :M1 → M2 tali che π2 ◦ L = F ◦ π1 (per
cui L

(
(E1)p

)
⊆ (E2)F (p) per ogni p ∈ M1, cioè L manda fibre in fibre), e che L|(E1)p

: (E1)p → (E2)F (p) sia
lineare per ogni p ∈M . Un morfismo invertibile (cioè tale che sia L che F siano diffeomorfismi) è detto isomor-
fismo di fibrati vettoriali. A volte indicheremo un morfismo di fibrati scrivendo semplicemente L:E1 → E2

sottintendendo l’applicazione F . Quando M1 = M2, cioè se E1 ed E2 sono fibrati sulla stessa base, a meno
di avviso di contrario supporremo sempre che l’applicazione F sia l’identità, per cui L soddisfa π2 ◦ L = π1.
Spesso viene detto banale un qualsiasi fibrato vettoriale isomorfo al fibrato banale.

In altre parole, un morfismo di fibrati è un’applicazione che rispetta sia la struttura differenziabile che
la struttura di fibrato vettoriale.

Esercizio 3.1.5. Se F :M → N è un’applicazione differenziabile, dimostra che dF :TM → TN è un morfismo
di fibrati.

Esercizio 3.1.6. Sia F :M → N un’applicazione differenziabile, e π: E → N un fibrato vettoriale di rango r
su N . Per ogni p ∈ M poniamo (F ∗E)p = EF (p), e sia F ∗E l’unione disgiunta degli (F ∗E)p al variare
di p ∈M , con la proiezione canonica π̃:F ∗E →M . Dimostra che F ∗E ha una struttura naturale di fibrato
vettoriale di rango r su M , detto fibrato pull-back (o fibrato indotto) di E rispetto a F . Dimostra inoltre
che se ι:S →M è una sottovarietà e E è un fibrato su M , allora ι∗E = E|S .

Esercizio 3.1.7. Sia (L, F ) un morfismo fra i fibrati vettoriali π1:E1 → M1 e π2:E2 → M2. Dimostra che
Ker(L, F ) = {v ∈ E1 | L(v) = OF (p)} ⊆ E1 è un sottofibrato di E1, e che Im(L, F ) = L(E1) ⊆ E2 è un
sottofibrato di E2.

Esercizio 3.1.8. Sia A = {(Uα, ϕα)} un atlante che banalizza due fibrati vettoriali π:E → M e π̃: Ẽ → M
di rango r su M , e indichiamo con {gαβ} e {g̃αβ} le relative funzioni di transizione. Dimostra che E e Ẽ
sono isomorfi se e solo se esistono applicazioni differenziabili σα:Uα → GL(r, R) tali che g̃αβ = σ−1

α gαβσβ .
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3.2 Sezioni di fibrati

Quando si ha un fibrato vettoriale, una cosa che risulta molto utile è studiare le applicazioni dalla base allo
spazio totale del fibrato che associano a ogni punto della base un elemento della fibra su quel punto.

Definizione 3.2.1: Sia π:E →M un fibrato vettoriale su una varietà M . Una sezione di E è un’applicazione
differenziabile s:M → E tale che π ◦ s = idM , cioè tale che s(p) ∈ Ep per ogni p ∈ M . Lo spazio vettoriale
delle sezioni di E verrà indicato con E(M). La sezione OE ∈ E(M) che a ogni punto p ∈M associa il vettore
nullo Op ∈ Ep è detta sezione nulla di E.

Osservazione 3.2.1. Se E = M × Rr è il fibrato banale di rango r, allora lo spazio delle sezioni E(M)
è canonicamente isomorfo allo spazio C∞(M, Rr) delle applicazioni differenziabili a valori in Rr. Infatti,
se s ∈ E(M) è una sezione allora π2 ◦ s ∈ C∞(M, Rr), dove π2:M × Rr → Rr è la proiezione sulla seconda
coordinata; viceversa, se F ∈ C∞(M, Rr) allora p 7→

(
p, F (p)

)
è una sezione di M ×Rr. Quindi in un certo

senso le sezioni di un fibrato sono una generalizzazione delle applicazioni differenziabili a valori in Rr.

Osservazione 3.2.2. Ogni fibrato vettoriale ammette sezioni. Sia π:E → M un fibrato vettoriale di
rango r, e χ:π−1(U)→ U × Rr una banalizzazione locale. Scegliamo una qualsiasi applicazione differenzia-
bile F : U → Rr e sia ρ ∈ C∞(M) tale che supp(ρ) ⊂ U . Allora l’applicazione s:M → E data da

s(p) =
{

χ−1
(
p, ρ(p)F (p)

)
se p ∈ U ,

Op se p ∈M \ supp(ρ),

è chiaramente una sezione di E.

Le sezioni del fibrato tangente, e più in generale dei fibrati tensoriali, hanno nomi particolari.

Definizione 3.2.2: Un campo vettoriale su una varietà M è una sezione del fibrato tangente TM . Lo spazio
vettoriale dei campi vettoriali su M verrà indicato con T (M). Una k-forma differenziale su M è una sezione
del fibrato

∧k
M . Lo spazio vettoriale delle k-forme differenziali su M verrà indicato con Ak(M). Un campo

tensoriale di tipo
(
k
l

)
(o

(
k
l

)
-tensore) su M è una sezione del fibrato T k

l M . Lo spazio vettoriale dei
(
k
l

)
-tensori

verrà indicato con T k
l (M).

Osservazione 3.2.3. Se X ∈ T (M) è un campo vettoriale e p ∈M , a volte scriveremo Xp invece di X(p).
Analogamente, se ω ∈ Ak(M) è una k-forma, a volte scriveremo ωp invece di ω(p).

Sia (U, ϕ) una carta in p ∈M , e scriviamo ϕ = (x1, . . . , xn) come al solito. Abbiamo quindi delle sezioni
locali ∂1, . . . , ∂n di TM definite su U ponendo

∂j(p) =
∂

∂xj

∣∣∣∣
p

∈ TpM.

Se X ∈ T (M) è un campo vettoriale qualsiasi e p ∈ U , allora X(p) dev’essere una combinazione lineare
di ∂1(p), . . . , ∂n(p), per cui possiamo trovare funzioni a1, . . . , an:U → R tali che

X(p) =
n∑

j=1

aj(p)∂j(p).

Siccome
(
a1(p), . . . , an(p)

)
= dϕp

(
X(p)

)
, si vede subito che le funzioni aj sono di classe C∞.

Osservazione 3.2.4. A volte scriveremo anche

X =
n∑

j=1

âj∂j ,

dove le âj sono funzioni C∞ definite su un aperto di Rn (l’immagine della carta locale), e non su un aperto
di M (il dominio della carta locale). In altre parole, âj(x) = aj ◦ ϕ−1(x) per ogni x ∈ ϕ(U).
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Se (Ũ , ϕ̃) è un’altra carta con U ∩ Ũ 6= ∅, sappiamo che

∂̃h =
n∑

k=1

∂xk

∂x̃h
∂k,

su U ∩ Ũ . Quindi se scriviamo X =
∑

j aj∂j =
∑

h ãh∂̃h troviamo

aj =
n∑

h=1

∂xj

∂x̃h
ãh, (3.2.1)

che è la formula che ci dice come cambiano i coefficienti di un campo vettoriale al cambiare della carta.

Esercizio 3.2.1. Sia A = {(Uα, ϕα)} un atlante su una n-varietà M . Supponiamo di avere per ogni α
una n-upla di funzioni aα = (a1

α, . . . , an
α) ∈ C∞(Uα)n in modo che su Uα ∩ Uβ le aα e le aβ siano legate

da (3.2.1). Dimostra che la formula X =
∑

j aj
α∂j,α, dove ∂j,α = ∂/∂xj

α, definisce un campo vettoriale
globale X ∈ T (M).

Dunque la scelta di coordinate locali fornisce una base dello spazio tangente che varia in modo differen-
ziabile sul corrispondente aperto coordinato, il primo esempio di riferimento locale per un fibrato vettoriale.

Definizione 3.2.3: Sia π:E →M un fibrato vettoriale di rango r sulla varietà M , e U ⊆M un aperto di M . Un
riferimento locale per E su U è una r-upla σ1, . . . , σr ∈ E(U) di sezioni di E su U tali che {σ1(p), . . . , σr(p)}
sia una base di Ep per ogni p ∈ U .

Osservazione 3.2.5. Dare un riferimento locale è equivalente a dare una banalizzazione locale. In-
fatti, sia χ: π−1(U) → U × Rr una banalizzazione locale di un fibrato vettoriale E di rango r. Po-
nendo σj(p) = χ−1(p, ej), dove ej è il j-esimo vettore della base canonica di Rr, otteniamo chiaramente
un riferimento locale per E su U . Viceversa, se {σ1, . . . , σr} è un riferimento locale per E su U , defi-
niamo ξ:U × Rr → π−1(U) ponendo

ξ(p, w) = w1σ1(p) + · · ·+ wrσr(p) ∈ Ep.

Chiaramente ξ è bigettiva, di classe C∞, e χ = ξ−1 è una banalizzazione locale. L’unica cosa non del
tutto ovvia è verificare che χ sia di classe C∞. Per dimostrarlo scegliamo una qualsiasi banalizzazione χ̃
nell’intorno di p ∈ U , e sia {σ̃1, . . . , σ̃r} il corrispondente riferimento locale. Inoltre, poniamo χ̃o = π2 ◦ χ̃,
dove π2:U × Rr → Rr è la proiezione sulla seconda coordinata, in modo che si abbia χ̃(v) =

(
p, χ̃o(v)

)
.

Scriviamo χ̃o(σj) = (a1
j , . . . , a

r
j); allora (ah

j ) è una matrice invertibile con elementi di classe C∞, per cui
anche la sua inversa B = (bj

h) ha tutti gli elementi di classe C∞, e si ha σ̃h =
∑

j bj
hσj . Ma allora se v ∈ Ep

abbiamo

v =
r∑

h=1

ṽhσ̃h =
r∑

h,j=1

ṽhbj
hσj ,

dove (ṽ1, . . . , ṽr) = χ̃o(v), per cui v = ξ(p, w) con w = Bχ̃o(v), e quindi

χ(v) =
(
p, Bχ̃o(v)

)
è di classe C∞, come voluto.

Osservazione 3.2.6. Una conseguenza della precedente osservazione è che un fibrato vettoriale è (isomorfo
al fibrato) banale se e solo se ammette un riferimento globale.

Siano χα e χβ due banalizzazioni locali, e {σ1,α, . . . , σr,α}, {σ1,β , . . . , σr,β} i corrispondenti riferimenti
locali. Se scriviamo σj,β =

∑
k(gαβ)k

j σk,α abbiamo(
p,

∑
k

(gαβ)k
j ek

)
= χα

(∑
k

(gαβ)k
j σk,α

)
= χα(σj,β) = χα ◦ χ−1

β (p, ej) =
(
p, gαβ(p)ej

)
,
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dove gαβ è la funzione di transizione da χα a χβ , per cui le (gαβ)k
j sono le componenti della funzione di

transizione gαβ .
Sia ora σ una sezione qualunque di E, e scriviamo σ =

∑
j aj

ασj,α =
∑

h ah
βσh,β . Allora il conto

precedente ci dice che

aj
α =

r∑
h=1

(gαβ)j
h ah

β , (3.2.2)

è la formula che esprime come cambiano i coefficienti di una sezione al cambiare della banalizzazione locale.

Esercizio 3.2.2. Sia A = {(Uα, ϕα)} un atlante su M , e gαβ :Uα ∩ Uβ → GL(r, R) una famiglia di fun-
zioni di transizione per un fibrato E. Supponi di avere per ogni α una r-upla di funzioni differenzia-
bili aα = (a1

α, . . . , ar
α) ∈ C∞(Uα)r in modo che su Uα ∩ Uβ le aα e le aβ siano legate da (3.2.2). Dimostra

che esiste un’unica sezione σ di E tale che le aj
α siano i coefficienti di σ relativi a un appropriato riferimento

locale su Uα.

Esercizio 3.2.3. Sia σ:M → E una sezione (non necessariamente C∞) di un fibrato vettoriale su M .
Dimostra che σ è C∞ se e solo se per ogni riferimento locale {σ1, . . . , σr} di E su U ⊆ M si può scri-
vere σ = a1σ1 + · · ·+arσr con a1, . . . , ar ∈ C∞(U) se e solo se questo avviene per una famiglia di riferimenti
locali i cui domini di definizione formano un ricoprimento aperto di M .

Esempio 3.2.1. Una funzione f : Rn+1 → R è detta d-omogenea (con d ∈ Z) se f(λx) = λdf(x) per
ogni λ ∈ R∗ e x ∈ Rn+1. È evidente che ogni funzione 0-omogenee f : Rn+1 → R definisce una fun-
zione f̃ ∈ C∞

(
Pn(R)

)
tale che f̃ ◦ π = f , dove π: Rn+1 \ {O} → Pn(R) è la proiezione naturale. Viceversa,

ogni funzione 0-omogenea è della forma f̃ ◦π per un’opportuna funzione C∞ definita sullo spazio proiettivo.
Ricordando l’Osservazione 3.2.1, abbiamo quindi un isomorfismo fra lo spazio delle funzioni 0-omogenee
su Rn+1 e lo spazio delle sezioni del fibrato banale E0 = Pn(R) × R. Vogliamo ora far vedere che, più in
generale, c’è un naturale isomorfismo fra lo spazio delle funzioni d-omogenee su Rn+1 e lo spazio Ed

(
Pn(R)

)
delle sezioni del fibrato in rette πd:Ed → Pn(R) introdotto nell’Esempio 3.1.4. Infatti, sia f : Rn+1 → R una
funzione d-omogenea, e definiamo f̃ : Pn(R)→ Ed nel seguente modo:

∀x ∈ Uj f̃(x) = χ−1
j

(
x, f([x]j)

)
,

dove [x]j ∈ Rn+1 è l’unico elemento y ∈ Rn+1 tale che π(y) = x e yj = 1. Per verificare che f̃ è una sezione
di Ed è sufficiente controllare che sia ben definita, visto che localmente è chiaramente C∞. Sia x ∈ Uh ∩Uk;
allora [x]h = (xk/xh)[x]k, per cui ricordando la definizione di Ed troviamo

χh ◦ χ−1
k

(
x, f([x]k)

)
=

(
x,

(
xk

xh

)d

f([x]k)

)
=

(
x, f

(
xk

xh
· [x]k

))
=

(
x, f([x]h)

)
,

e f̃ è ben definita. Viceversa, data f̃ ∈ Ed
(
Pn(R)

)
possiamo definire f̃j :Uj → R con χj

(
f̃(x)

)
=

(
x, f̃j(x)

)
per ogni x ∈ Uj e ogni j = 0, . . . , n. Se x ∈ Uh ∩ Uk si verifica subito che

f̃k(x) =
(

xh

xk

)d

f̃h(x). (3.2.3)

Possiamo allora definire f : Rn+1 → R ponendo f(O) = 0 e f(y) = (yj)df̃j

(
π(y)

)
per un qualsiasi j = 0, . . . , n

tale che yj 6= 0. Grazie alla (3.2.3) si vede subito che f è ben definita, ed è chiaramente d-omogenea.

Esempio 3.2.2. Se M è una varietà di dimensione n, allora TM è una varietà di dimensione 2n, per cui
possiamo considerare il fibrato tangente del tangente π̃:T (TM) → TM di rango 2n su TM . Vogliamo ora
descrivere dei riferimenti locali naturali per T (TM). Sia (U, ϕ) una carta locale per M ; abbiamo visto che ϕ
induce una banalizzazione locale χ:π−1(U)→ U × Rn e un riferimento locale {∂1, . . . , ∂n} per TM tali che

χ(v) =
(
p, (v1, . . . , vn)

)
se e solo se v = v1∂1|p + · · ·+ vn∂n|p ∈ TpM,
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dove π:TM → M è la proiezione naturale. Inoltre, se poniamo χ̃ = (ϕ, id) ◦ χ otteniamo una carta lo-
cale

(
π−1(U), χ̃

)
di TM . Scrivendo ϕ = (x1, . . . , xn) è chiaro che χ̃(v) =

(
x1(p), . . . , xn(p), v1, . . . , vn

)
per ogni v ∈ TpM e p ∈ U . Dunque alla carta locale χ̃ di TM possiamo associare il riferimento lo-
cale {∂/∂x1, . . . , ∂/∂xn, ∂/∂v1, . . . , ∂/∂vn} di T (TM) sopra π−1(U) = TU . Per capire meglio chi sono ∂/∂xh

e ∂/∂vk vediamo come si comportano rispetto al differenziale della proiezione π. Ora, se f ∈ C∞(U) è chiaro
(perché?) che

∂

∂xh

∣∣∣∣
v

(f ◦ π) = ∂h|p(f) e
∂

∂vk

∣∣∣∣
v

(f ◦ π) = 0

quale che sia v ∈ TpM ; in altre parole, i ∂/∂xh riproducono la derivate nelle coordinate di M , mentre
i ∂/∂vk danno le derivate delle funzioni ristrette ai singoli spazi tangenti. In termini più formali, questo vuol
dire che dπv(∂/∂xh) = ∂h|π(v) e dπv(∂/∂vk) = Oπ(v). In particolare, {∂/∂v1, . . . , ∂/∂vn} è un riferimento
locale per il fibrato verticale V = Ker(dπ) ⊂ T (TM). Nota che mentre il fibrato verticale è ben definito
indipendentemente dalla carta locale scelta, non esiste una definizione canonica per un “fibrato orizzon-
tale” H ⊂ T (TM) tale che T (TM) = H ⊕ V; per esempio, è facile dimostrare (esercizio) che, in generale,
se ϕ̃ = (x̃1, . . . , x̃n) è un’altra carta locale allora Span(∂/∂x1, . . . , ∂/∂xn) 6= Span(∂/∂x̃1, . . . , ∂/∂x̃n). Ne
riparleremo nel prossimo capitolo quando introdurremo il concetto di connessione.

Esempio 3.2.3. Se ϕ = (x1, . . . , xn) è una carta locale su M , allora le 1-forme {dx1, . . . , dxn} definite come
base duale di {∂1, . . . , ∂n} (o come differenziale delle coordinate locali; vedi l’Osservazione 3.1.1) formano un
riferimento locale del fibrato cotangente. La Proposizione 1.3.4 allora implica che un riferimento locale per
il fibrato

∧k
M delle k-forme è dato dalle forme

dxi1 ∧ · · · ∧ dxik

con 1 ≤ i1 < · · · < ik ≤ n, per cui ogni k-forma si può scrivere localmente come

ω =
∑

1≤i1<···<ik≤n

ai1...ik
dxi1 ∧ · · · ∧ dxik

per opportune funzioni ai1...ik
. In particolare, quando k = n un riferimento locale per il fibrato in rette

∧n
M

è dato dalla n-forma dx1∧· · ·∧dxn. Se ϕ̃ = (x̃1, . . . , x̃n) è un’altra carta locale, usando la (3.1.3) e ricordando
l’Osservazione 1.3.7 troviamo subito che

dx̃1 ∧ · · · ∧ dx̃n = det
(

∂x̃h

∂xk

)
dx1 ∧ · · · ∧ dxn.

Un tensore di tipo
(
h
k

)
definito su uno spazio vettoriale V prende come argomenti h elementi di V ∗

e k elementi di V , e restituisce un numero. Analogamente, un campo di tensoriale di tipo
(
h
k

)
può essere

calcolato punto per punto su h 1-forme e k campi vettoriali, ottenendo una funzione. Viceversa, perché
un’applicazione con argomenti h 1-forme e k campi vettoriali e valore una funzione su M sia indotta da un
campo tensoriale di tipo

(
h
k

)
occorre come minimo che il suo valore in un punto p dipenda soltanto dal valore

dei suoi argomenti nel punto p e non da come si comportano altrove (come succederebbe invece se stessimo
calcolando una derivata). Un risultato non difficile ma importante è che per ottenere questo è sufficiente (e
necessario) richiedere la C∞(M)-multilinearità:

Proposizione 3.2.1: Sia M una varietà. Allora

(i) Un’applicazione τ̃ :A1(M)h × T (M)k → C∞(M) è C∞(M)-multilineare se e solo se esiste un campo
tensoriale τ ∈ T h

k (M) tale che

τ̃(ω1, . . . , ωh, X1, . . . , Xk)(p) = τp

(
ω1(p), . . . , ωh(p), X1(p), . . . , Xk(p)

)
(3.2.4)

per tutti gli ω1, . . . , ωh ∈ A1(M), X1, . . . , Xk ∈ T (M) e p ∈M .
(ii) Un’applicazione τ̂ : T (M)k → T h(M) è C∞(M)-multilineare se e solo se esiste un campo tensoriale

τ ∈ T h
k (M) tale che

τ̂(X1, . . . , Xk)(p)(ω1
p, . . . , ωh

p ) = τp

(
ω1

p, . . . , ωh
p , X1(p), . . . , Xk(p)

)
(3.2.5)
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per tutti gli ω1
p, . . . , ωh

p ∈ T ∗p M , X1, . . . , Xk ∈ T (M) e p ∈M .

Dimostrazione: (i) Dato τ ∈ T h
k (M), cominciamo col dimostrare che l’applicazione

p 7→ τp

(
ω1(p), . . . , ωh(p), X1(p), . . . , Xk(p)

)
è di classe C∞(M) per ogni ω1, . . . , ωh ∈ A1(M) e X1, . . . , Xk ∈ T (M). Infatti, se (U, ϕ) è una carta locale
in p, possiamo scrivere localmente ωi =

∑
r ωi

r dxr, ∂j =
∑

s Xs
j ∂s e

τ =
∑

u1,...,uh,v1,...,vk

τu1...uh
v1...vk

∂u1 ⊗ · · · ⊗ ∂uh
⊗ dxv1 ⊗ · · · ⊗ dxvk , (3.2.6)

con ωi
r, Xs

j , τu1...uh
v1...vk

∈ C∞(U), per cui localmente abbiamo

τ(ω1, . . . , ωh, X1, . . . , Xk

)
=

∑
u1,...,uh,v1,...,vk

τu1...uh
v1...vk

ω1
u1
· · ·ωh

uh
Xv1

1 · · ·Xvk

k ,

che è chiaramente di classe C∞. La stessa formula ci dice anche che l’applicazione τ̃ definita da (3.2.4)
è C∞(M)-multilineare.

Viceversa, supponiamo di avere una τ̃ :A1(M)h × T (M)k → C∞(M) che sia C∞(M)-multilineare;
vogliamo far vedere che proviene da un campo tensoriale. Prima di tutto, dimostriamo che se ω1 ≡ O in
un intorno U di un punto p ∈ M allora τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = 0 per ogni ω2, . . . , ωh ∈ A1(M)
e ogni X1 . . . , Xk ∈ T (M). Il Corollario 2.3.2 ci fornisce una funzione g ∈ C∞(M) tale che g(p) = 1
e g|M\U ≡ 0. Allora gω1 ≡ O e quindi

τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = g(p)τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = τ̂(gω1, . . . , ωh, X1, . . . , Xk)(p)

= τ̂(O, . . . , ωh, X1, . . . , Xk)(p) = τ̂(0 ·O, . . . , ωh, X1, . . . , Xk)(p)

= 0 · τ̂(O, . . . , ωh, X1, . . . , Xk)(p) = 0.

In particolare, se ω̃1 e ω̄1 sono tali che ω̃1 ≡ ω̄1 in un intorno U di un punto p, applicando questo argomento
a ω1 = ω̃1 − ω̄1 troviamo τ̂(ω̃1, . . . , ωh, X1, . . . , Xk)(p) = τ̂(ω̄1, . . . , ωh, X1, . . . , Xk)(p).

Lo stesso ragionamento si applica chiaramente a ω2, . . . , ωh e a X1, . . . , Xk, per cui per calcolare
τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) ci basta conoscere il comportamento di ω1, . . . , ωh, X1, . . . , Xk in un intorno
di p. In altre parole, per ogni aperto U ⊆ M la τ̂ definisce un’applicazione τ̂U :A1(U)h × T (U)k → C∞(U)
che è C∞(U)-multilineare.

Supponiamo adesso di prendere p ∈M e ω1 ∈ A1(M) tale che ω1
p = O, e scegliamo una carta locale (U, ϕ)

centrata in p. Allora possiamo scrivere ω1|U =
∑

r ω1
r dxr per opportune ω1

r ∈ C∞(U) con ω1
r(p) = 0. Dunque

τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) = τ̂U (ω1|U , . . . , ωh|U , X1|U , . . . , Xk|U )(p)

= τ̂U

(
n∑

r=1

ω1
r dxr, ω2|U , . . . , ωh|U , X1|U , . . . , Xk|U

)

=
n∑

r=1

ω1
r(p)τ̂U (dxr, ω2|U , . . . , ωh|U , X1|U , . . . , Xk|U )(p) = 0.

Argomentando come sopra, e ripetendo il ragionamento per ω2, . . . , ωh e per X1, . . . , Xk, vediamo quindi
che τ̂(ω1, . . . , ωh, X1, . . . , Xk)(p) dipende esclusivamente dal valore di ω1, . . . , ωh, X1, . . . , Xk in p. Quindi per
ogni p ∈M la τ̂ induce un’applicazione R-multilineare (T ∗p M)h×(TpM)k → R, cioè un elemento di Th

k (TpM).
In altre parole, abbiamo dimostrato che τ̂ definisce un’unica sezione τ di Th

k M che soddisfa (3.2.4); per
concludere dobbiamo solo dimostrare che τ è di classe C∞. Scriviamo τ in coordinate locali come in (3.2.6);
allora

τu1...uh
v1...vk

= τ̂U (dxu1 , . . . , dxuh , ∂v1 , . . . , ∂vk
) ∈ C∞(U),

e τ è di classe C∞ grazie all’Esercizio 3.2.3.
(ii) Un’applicazione τ̂ : T (M)k → T h(M) è C∞(M)-multilineare se e solo se ponendo

τ̃(ω1, . . . , ωh, X1, . . . , Xk) = τ̂(X1, . . . , Xk)(ω1, . . . , ωh)

otteniamo un’applicazione C∞(M)-multilineare τ̃ :A1(M)h × T (M)k → C∞(M). La tesi segue allora dalla
parte (i).
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Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 3.2.4. Sia π:E →M un fibrato vettoriale su una varietà M , K ⊆M un compatto, e U ⊆M un
intorno aperto di K. Dimostra che per ogni sezione σ ∈ E(U) esiste una sezione σ̃ ∈ E(M) tale che σ̃|K ≡ σ|K .

Esercizio 3.2.5. Sia F :M → N un’applicazione differenziabile, e π: E → N un fibrato vettoriale di rango r
su N . Dimostra che lo spazio delle sezioni su M del fibrato pull-back F ∗E (vedi l’Esercizio 3.1.5) è isomorfo
allo spazio delle applicazioni σ:M → E di classe C∞ tali che σ(p) ∈ EF (p) per ogni p ∈M .

Esercizio 3.2.6. Siano π:E → M e π′:E′ → M due fibrati vettoriali su una varietà M . Dimostra che
un’applicazione F : E(M) → E ′(M) è C∞(M)-lineare se e solo se esiste un morfismo F :E → E′ di fibrati
tale che F(s) = F ◦ s per ogni s ∈ E(M).

Esercizio 3.2.7. Sia σ:M → T h
k M una sezione (non necessariamente C∞). Dimostra che σ è C∞ se

e solo se per ogni aperto U ⊆ M , ogni k-upla di campi vettoriali X1, . . . , Xk ∈ T (U) e ogni h-upla
di 1-forme ω1, . . . , ωh ∈ A1(U) la funzione p 7→ σp

(
ω1

p, . . . , ωh
p , X1(p), . . . , Xk(p)

)
è di classe C∞.

Esercizio 3.2.8. Dimostra che un’applicazione τ̄ :
(
A1(M)

)h ×
(
T (M)

)k → T l(M) è C∞(M)-multilineare
se e solo se esiste un campo tensoriale τ ∈ T h+l

k (M) tale che

τ̄(ω1, . . . , ωh, X1, . . . , Xk)(p)(η1
p, . . . , ηl

p) = τp

(
η1

p, . . . , ηl
p, ω

1(p), . . . , ωh(p), X1(p), . . . , Xk(p)
)

per ogni η1
p, . . . , ηl

p ∈ T ∗p M , ω1, . . . , ωh ∈ A1(M), X1, . . . , Xk ∈ T (M) e p ∈M .

Esercizio 3.2.9. Sia τ ∈ T h
k (M) un campo tensoriale di tipo

(
h
k

)
. Scelti 1 ≤ i ≤ h e 1 ≤ j ≤ k,

siano ω1, . . . , ωi ∈ A1(M) delle 1-forme, e X1, . . . , Xj ∈ T (M) dei campi vettoriali. Dimostra che l’ap-
plicazione p 7→ τp

(
ω1(p), . . . , ωi(p), ·, X1(p), . . . , Xj(p), ·

)
può essere interpretata in modo naturale come un

campo tensoriale di tipo
(

h−i
k−j

)
.

Esercizio 3.2.10. Sia π:E →M un fibrato vettoriale di rango k su una varietà M , e siano σ1, . . . , σl ∈ E(U)
sezioni di E su un aperto U ⊆M tali che {σ1(q), . . . , σl(q)} siano linearmente indipendenti per ogni q ∈ U .
Dimostra che per ogni p ∈ U possiamo trovare un intorno V ⊆ U di p e sezioni σl+1, . . . , σk ∈ E(V ) tali
che {σ1, . . . , σk} sia un riferimento locale di E su V .

3.3 Flusso di un campo vettoriale

Torniamo adesso ai campi vettoriali, dandone una caratterizzazione equivalente.

Definizione 3.3.1: Sia A un’algebra sul campo K. Una derivazione di A è un’applicazione D:A → A che sia
K-lineare e che soddisfi la regola di Leibniz: D(ab) = aD(b) + bD(a) per ogni a, b ∈ A.

Proposizione 3.3.1: Lo spazio vettoriale T (M) dei campi vettoriali su una varietà M è isomorfo allo spazio
vettoriale delle derivazioni X:C∞(M)→ C∞(M).

Dimostrazione: Sia X ∈ T (M) un campo vettoriale. Per ogni f ∈ C∞(M) otteniamo un’altra fun-
zione Xf :M → R ponendo

(Xf)(p) = Xp(f),

dove f ∈ C∞(p) è il germe rappresentato da f . Nelle coordinate locali date una carta locale ϕ = (x1, . . . , xn),
scrivendo X =

∑
j Xj∂j troviamo

Xf =
∑

j

Xj ∂(f ◦ ϕ−1)
∂xj

per cui Xf ∈ C∞(M), ed è assolutamente chiaro che f 7→ Xf è una derivazione.
Viceversa, sia X:C∞(M)→ C∞(M) una derivazione. Prima di tutto dimostriamo che se f ∈ C∞(M)

è zero in un intorno U di p allora (Xf)(p) = 0. Infatti, sia h ∈ C∞(M) tale che h(p) = 0 e h|M\U ≡ 1
(Corollario 2.3.2). Allora hf ≡ f per cui

(Xf)(p) = X(hf)(p) = h(p)(Xf)(p) + f(p)(Xh)(p) = 0.
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Questo vuol dire che se f e g coincidono in un intorno di p abbiamo (Xf)(p) = (Xg)(p). Siccome ogni fun-
zione definita in un intorno di un punto può essere estesa a una funzione definita su tutto M (Corollario 2.3.3),
per ogni aperto U ⊆M la X definisce una derivazione X:C∞(U)→ C∞(U), e per ogni p ∈M una deriva-
zione Xp: C∞(p)→ R, e quindi una sezione di TM . Siccome in coordinate locali Xp =

∑
j X(xj)(p)∂j(p), si

vede subito (esercizio) che questa sezione è di classe C∞. Quindi abbiamo ottenuto un campo vettoriale, ed
è chiaro che questa costruzione è l’inversa di quella descritta sopra.

Quindi se X e Y sono due campi vettoriali e f ∈ C∞(M) possiamo considerare anche la funzione X(Y f).
Sfortunatamente, f 7→ X(Y f) non è una derivazione: infatti

X
(
Y (fg)

)
= X

(
fY (g) + gY (f)

)
= fX(Y g) +

(
X(f)Y (g) + X(g)Y (f)

)
+ gX(Y f).

Ma questa stessa formula mostra che XY − Y X è una derivazione: infatti

(XY − Y X)(fg) = fX(Y g) + gX(Y f)− fY (Xg)− gY (Xf) = f(XY − Y X)(g) + g(XY − Y X)(f).

Dunque XY − Y X è un campo vettoriale:

Definizione 3.3.2: La parentesi di Lie di due campi X, Y ∈ T (M) è il campo vettoriale [X, Y ] = XY − Y X
definito da

∀f ∈ C∞(M) [X, Y ](f) = X(Y f)− Y (Xf).

Diremo che due campi vettoriali X, Y ∈ T (M) commutano se [X, Y ] ≡ O.

Proposizione 3.3.2: Se X, Y e Z sono campi vettoriali su una varietà M , a, b ∈ R e f , g ∈ C∞(M), si ha:

(i) [X, Y ] = −[Y, X] (anticommutatività);
(ii) [aX + bY, Z] = a[X, Z] + b[Y, Z] (linearità);
(iii)

[
X, [Y, Z]

]
+

[
Y, [Z, X]

]
+

[
Z, [X, Y ]

]
= 0 (identità di Jacobi);

(iv) [fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X;
(v) se in coordinate locali abbiamo X =

∑
h Xh∂h e Y =

∑
k Y k∂k allora

[X, Y ] =
n∑

h,k=1

(
Xh ∂Y k

∂xh
− Y h ∂Xk

∂xh

)
∂k.

In particolare, [∂h, ∂k] = 0.

Dimostrazione: (i) e (ii) sono ovvie. Poi si ha[
X, [Y, Z]

]
= XY Z −XZY − Y ZX + ZY X,[

Y, [Z, X]
]

= Y ZX − Y XZ − ZXY + XZY,[
Z, [X, Y ]

]
= ZXY − ZY X −XY Z + Y XZ,

e sommando si ottiene la (iii). Inoltre,

[fX, gY ] = fX(gY )− gY (fX) = fg(XY )+ f(Xg)Y − fg(Y X)− g(Y f)X = fg[X, Y ]+ f(Xg)Y − g(Y f)X,

e anche (iv) è dimostrata. Il Teorema di Schwartz sulle derivate seconde dice che

[∂h, ∂k](f) =
∂2(f ◦ ϕ−1)

∂xh∂xk
− ∂2(f ◦ ϕ−1)

∂xk∂xh
≡ 0,

dove ϕ = (x1, . . . , xn) è la carta locale che stiamo usando, per cui [∂h, ∂k] = 0, e (v) segue dalle precedenti.

In un certo senso, [X, Y ] rappresenta la derivata di Y nella direzione di X. Per dare senso a questa
affermazione cominciamo richiamando il fondamentale teorema di esistenza e unicità locale delle soluzioni di
un sistema di equazioni differenziali ordinarie:
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Teorema 3.3.3: Dati un aperto U ⊆ Rn e funzioni X1, . . . , Xn ∈ C∞(U), si consideri il seguente problema
di Cauchy per una curva σ: I → U :

dσj

dt
(t) = Xj

(
σ(t)

)
, j = 1, . . . , n,

σ(t0) = x ∈ U.

(3.3.1)

Allora si ha:

(i) Per ogni t0 ∈ R e x0 ∈ U esistono δ > 0 e un intorno aperto U0 ⊆ U di x0 tali che per ogni x ∈ U0 esiste
una curva σx: (t0− δ, t0 + δ)→ U soluzione di (3.3.1). Inoltre, l’applicazione Θ: (t0− δ, t0 + δ)×U0 → U
data da Θ(t, x) = σx(t) è di classe C∞.

(ii) Due soluzioni di (3.3.1) coincidono sempre nell’intersezione dei loro domini di definizione.

Vediamo come tradurre questo risultato sulle varietà.

Definizione 3.3.3: Sia X ∈ T (M) un campo vettoriale su una varietà M , e p ∈ M . Una curva σ: I → M ,
dove I ⊆ R è un intervallo contenente l’origine, tale che{

σ′(t) = X
(
σ(t)

)
,

σ(0) = p,

è detta curva integrale (o traiettoria) di X uscente da p.

Sia (U, ϕ) una carta locale centrata in p ∈ M , e X ∈ T (M) un campo vettoriale. In coordinate locali,
possiamo scrivere X =

∑
j Xj∂j . Se σ: (−ε, ε) → M è una curva uscente da p, cioè tale che σ(0) = p,

possiamo scegliere ε abbastanza piccolo in modo che tutto il sostegno di σ sia contenuto in U , e quindi
possiamo scrivere ϕ ◦ σ = (σ1, . . . , σn). Usando l’Esempio 2.4.3 otteniamo

σ′(t) =
n∑

j=1

(σj)′(t)
∂

∂xj

∣∣∣∣
σ(t)

.

Quindi σ è una curva integrale di X se e solo se la curva ϕ ◦ σ in ϕ(U) soddisfa il sistema di equazioni
differenziali ordinarie

dσj

dt
= Xj

(
ϕ ◦ σ(t)

)
, j = 1, . . . , n.

Allora il Teorema 3.3.3 diventa il seguente teorema fondamentale:

Teorema 3.3.4: Sia X ∈ T (M) un campo vettoriale su una varietà M . Allora esistono un unico intorno
aperto U di {0} ×M in R ×M e un’unica applicazione Θ:U → M di classe C∞ che soddisfano le seguenti
proprietà:

(i) Per ogni p ∈M l’insieme Up = {t ∈ R | (t, p) ∈ U} è un intervallo aperto contenente 0.
(ii) Per ogni p ∈ M la curva θp:Up → M definita da θp(t) = Θ(t, p) è l’unica curva integrale massimale

di X uscente da p.
(iii) Per ogni t ∈ R l’insieme Ut = {p ∈M | (t, p) ∈ U} è un aperto di M .
(iv) Se p ∈ Ut, allora p ∈ Us+t se e solo se Θ(t, p) ∈ Us, e in questo caso

θs

(
θt(p)

)
= θs+t(p), (3.3.2)

dove θt:Ut →M è definita da θt(p) = Θ(t, p). In particolare, θ0 = id e θt:Ut → U−t è un diffeomorfismo
con inversa θ−t.

(v) Per ogni (t, p) ∈ U , si ha d(θt)p(X) = Xθt(p).
(vi) Per ogni f ∈ C∞(M) e p ∈M si ha

d

dt
(f ◦ θp)

∣∣∣∣
t=0

= (Xf)(p).



52 Elementi di Geometria Differenziale, A.A. 2005/06

Dimostrazione: Cominciamo col notare che il Teorema 3.3.3 implica, grazie a quanto visto sopra, che per
ogni p ∈ X una curva integrale di X uscente da p esiste sempre.

Siano σ, σ̃: I → M due curve integrali di X tali che σ(t0) = σ̃(t0) per qualche t0 ∈ I, e sia J ⊆ I
l’insieme degli t ∈ I tali che σ(t) = σ̃(t). Allora l’insieme J è non vuoto, chiuso, ed è anche aperto, grazie
al Teorema 3.3.3.(ii); quindi J = I, e dunque due curve integrali che coincidono in un punto coincidono
nell’intersezione dei loro domini di definizione.

Per ogni p ∈M indichiamo allora con Up l’unione di tutti gli intervalli aperti I ⊆ R contenenti 0 su cui
sia definita una curva integrale uscente da p. Chiaramente, Up è un intervallo aperto contenente l’origine,
e l’argomento precedente ci dice (perché?) che esiste una curva integrale θp:Up → M di X uscente da p
definita su tutto Up, e che questa è la curva integrale massimale uscente da p.

Poniamo allora U = {(t, p) ∈ R×M | t ∈ Up}, e definiamo Θ:U →M ponendo Θ(t, p) = θp(t). Inoltre,
poniamo Ut = {p ∈ M | (t, p) ∈ U}, e definiamo θt:Ut → M con θt(p) = Θ(t, p). In questo modo abbiamo
ottenuto (i) e (ii); vediamo di dimostrare (iv).

Per definizione, U0 = M e θ0 = idM . Prendiamo ora p ∈ M e t ∈ Up, e poniamo q = θp(t). Allora la
curva σ:Up − t→M definita da

σ(s) = θp(s + t),

dove Up − t = {s ∈ R | s + t ∈ Up}, è ancora una curva integrale di X: infatti

σ′(s) =
dθp

ds
(s + t) = X

(
θp(t + s)

)
= X

(
σ(s)

)
.

Quindi necessariamente σ(s) = θq(s), cioè θθp(t)(s) = θp(s + t), ovvero Θ
(
s,Θ(t, p)

)
= Θ(s + t, p), o anche

θs+t(p) = θs

(
θt(p)

)
,

e Up − t ⊆ Uq. Siccome 0 ∈ Up, otteniamo −t ∈ Uq, e θq(−t) = p. Applicando questo ragionamento
a (−t, q) invece di (t, p), otteniamo che Uq + t ⊆ Up, e quindi Up − t = UΘ(t,p), che vuol dire esattamente
che Θ(t, p) ∈ Us se e solo se p ∈ Us+t. Quindi (iv) è dimostrata.

Ora facciamo vedere che U è aperto in R ×M , da cui segue (iii), e che Θ è di classe C∞. Sia W ⊆ U
l’insieme dei (t, p) ∈ U tale che esista un intorno di (t, p) della forma I×U , con I intervallo aperto contenente 0
e t, e U intorno aperto di p in M , su cui Θ sia definita e di classe C∞. Chiaramente ci basta dimostrare
che W = U .

Prima di tutto, il Teorema 3.3.3 ci dice che (0, p) ∈ W per ogni p ∈ M . Supponiamo per assurdo che
esista (t0, p0) ∈ U \W. Siccome t0 6= 0, possiamo assumere per semplicità t0 > 0; il caso t0 < 0 sarà analogo.
Sia τ = sup{t ∈ R | (t, p0) ∈ W}; per costruzione, 0 < τ ≤ t0. Siccome t0 ∈ Up0 , abbiamo τ ∈ Up0 ;
poniamo q0 = θp0(τ). Il Teorema 3.3.3 ci fornisce un δ > 0 e un intorno U0 di q0 tale che Θ sia definita
e di classe C∞ su (−δ, δ) × U0. Scegliamo t1 < τ tale che t1 + δ > τ e θp0(t1) ∈ U0. Siccome t1 < τ ,
abbiamo (t1, p0) ∈ W, e quindi esiste un intorno (−ε, t1 + ε) × U1 di (t1, p0) su cui Θ è definita e di
classe C∞. Inoltre, possiamo anche scegliere U1 in modo che Θ({t1} × U1) ⊆ U0.

Dunque, se p ∈ U1 abbiamo che θt1(p) è definito e dipende C∞ da p. Inoltre, essendo θt1(p) ∈ U0,
abbiamo che θt−t1 ◦ θt1(p) è definito e dipende C∞ da p ∈ U1 e t ∈ (t1 − δ, t1 + δ). Ma (iii) ci dice
che θt−t1 ◦ θt1(p) = θt(p); quindi abbiamo esteso Θ in modo C∞ a un aperto della forma (−ε, t1 + δ)× U1,
per cui (t1 + δ, p0) ∈ W, contro la definizione di τ . Questa contraddizione mostra che W = U , come voluto.

La (vi) è ora immediata: infatti,

(Xf)(p) = dfp(X) =
d

dt
(f ◦ θp)

∣∣∣∣
t=0

,

in quanto θp è una curva con θp(0) = p e (θp)′(0) = X(p).
Infine, dimostriamo (v). Preso (t0, p0) ∈ U e posto q = θt0(p0), per ogni germe f ∈ C∞(q) si ha

d(θt0)p0(X)(f) = Xp0(f ◦ θt0) =
d

dt
(f ◦ θt0 ◦ θp0)

∣∣∣∣
t=0

=
d

dt
f
(
θt0+t(p0)

)∣∣∣∣
t=0

=
d

dt
f
(
θp0(t0 + t)

)∣∣∣∣
t=0

= Xθp0 (t0)(f),

e ci siamo.
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Definizione 3.3.4: L’applicazione Θ:U →M introdotta nel precedente Teorema è detta flusso locale del campo
vettoriale X. Il campo X ∈ T (M) è detto completo se U = R×M , cioè se tutte le curve integrali di X sono
definite per tutti i tempi. Un campo vettoriale Y ∈ T (M) è detto X-invariante se d(θt)p(Y ) = Yθt(p) per
ogni (t, p) nel dominio di Θ. In particolare, ogni campo vettoriale è invariante rispetto a se stesso.

Esercizio 3.3.1. Una curva σ: R→M in una varietà M è periodica se esiste T > 0 tale che σ(t) = σ(t + T )
per ogni t ∈ R. Sia X ∈ T (M) un campo vettoriale, e σ una curva integrale massimale di X.
(i) Dimostra che se σ non è costante allora o è iniettiva o è periodica.
(ii) Dimostra che se σ è periodica non costante allora esiste un unico numero positivo T0 (il periodo di σ)

tale che σ(t) = σ(t′) se e solo se t− t′ = kT0 per qualche k ∈ Z.
(iii) Dimostra che se σ non è costante allora è un’immersione, e l’immagine di σ ha una struttura naturale

di varietà 1-dimensionale diffeomorfa a R o a S1.

Ora, se Θ è il flusso locale di un campo vettoriale X ∈ T (M), e Y ∈ T (M) è un altro campo vettoriale,
l’applicazione Y ◦ Θ è di classe C∞. Ma allora t 7→ d(θ−t)θt(p)(Y ) è una funzione C∞ a valori in TpM che
dipende in modo C∞ dal punto p, e abbiamo trovato un modo di misurare la derivata di Y nella direzione
di X:

Definizione 3.3.5: Siano X, Y ∈ T (M) due campi vettoriali su una varietà M . La derivata di Lie di Y
lungo X è il campo vettoriale LXY ∈ T (M) definito da

LXY (p) =
d

dt
d(θ−t)θt(p)(Y )

∣∣∣∣
t=0

= lim
t→0

d(θ−t)θt(p)(Y )− Yp

t

per ogni p ∈M .

Il risultato tutt’altro che evidente che vogliamo dimostrare ora è che la derivata di Lie di Y lungo X è
esattamente uguale a [X, Y ]. Ci serve ancora un lemma:

Lemma 3.3.5: Sia U ⊆ M un aperto di una varietà M , δ > 0, e h: (−δ, δ) × U → R una funzione di
classe C∞ con h(0, q) = 0 per ogni q ∈ U . Allora esiste una g: (−δ, δ)× U → R di classe C∞ tale che

h(t, q) = tg(t, q)

e g(0, q) = ∂h
∂t (0, q) per ogni q ∈ U .

Dimostrazione: Basta porre

g(t, q) =
∫ 1

0

∂h

∂t
(ts, q) ds;

infatti

tg(t, q) =
∫ 1

0

∂h

∂t
(ts, q) d(ts) = h(t, q).

Allora

Proposizione 3.3.6: Siano X, Y ∈ T (M) due campi vettoriali su una varietà M . Allora LXY = [X, Y ].

Dimostrazione: Indichiamo con Θ:U →M il flusso locale di X. Dato p ∈M , scegliamo δ > 0 e un intorno U0

di p tali che (−δ, δ) × U0 ⊆ U . Sia (U, f) un rappresentante di un germe in p, dove abbiamo scelto U in
modo che Θ

(
(−δ, δ) × U

)
⊆ U0. Definiamo h: (−δ, δ) × U → R ponendo h(t, q) = f(q) − f

(
θ−t(q)

)
, e

sia g: (−δ, δ) × U → R la funzione data dal lemma precedente. Allora ricordando il Teorema 3.3.4.(vi)
otteniamo

f ◦ θ−t(q) = f(q)− tg(t, q) e g(0, q) = Xf(q),

per cui
d(θ−t)θt(p)(Y )(f) = Yθt(p)(f ◦ θ−t) = (Y f)

(
θt(p)

)
− t(Y gt)

(
θt(p)

)
,
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dove abbiamo posto gt(q) = g(t, q). Quindi

lim
t→0

1
t
[d(θ−t)θt(p)(Y )− Yp](f) = lim

t→0

(Y f)
(
θt(p)

)
− (Y f)(p)

t
− (Y g0)(p)

=
d

dt
((Y f) ◦ θp)

∣∣∣∣
t=0

− Yp(Xf) = X(Y f)(p)− Y (Xf)(p) = [X, Y ](f)(p),

grazie nuovamente al Teorema 3.3.4.(vi), e ci siamo.

Se F :M → N è un diffeomorfismo, e X ∈ T (M), allora possiamo definire un campo vettoriale su N ,
che indicheremo con dF (X), ponendo

∀q ∈ N dF (X)q = dFF−1(q)(XF−1(q)).
Se F :M → N non è un diffeomorfismo, questa formula non si può applicare: se F non è surgettiva esi-
stono dei q ∈ N per cui F−1(q) è vuoto, e se F non è iniettiva potrebbero esistere p1, p2 ∈ M per
cui q = F (p1) = F (p2) ma dFp1(Xp1) 6= dFp2(Xp2), per cui questa formula non dà un modo univoco
per definire un vettore tangente in q. Introduciamo allora la seguente

Definizione 3.3.6: Sia F :M → N un’applicazione di classe C∞ fra due varietà. Diremo che un campo
vettoriale V ∈ T (N) è F -correlato a un campo vettoriale X ∈ T (M) se VF (p) = dFp(Xp) per ogni p ∈M .

Chiaramente, se F è un diffeomorfismo allora dF (X) è l’unico campo vettoriale su N che è F -correlato
a X, ma se F non è un diffeomorfismo potrebbero esistere più campi vettoriali F -correlati a X, o potrebbe
non esisterne nessuno.

Esercizio 3.3.2. Sia F :M → N un’applicazione di classe C∞ fra varietà, X ∈ T (M) e Y ∈ T (N). Dimostra
che Y è F -correlato a X se e solo se X(f ◦ F ) = Y (f) ◦ F per ogni f ∈ C∞(N).

Esercizio 3.3.3. Dimostra che se F :M → N è un diffeomorfismo allora
[dF (X), dF (Y )] = dF ([X, Y ])

per ogni X, Y ∈ T (M). Più in generale, senza assumere che F sia un diffeomorfismo, dimostra che
se V ∈ T (N) è F -correlato a X ∈ T (M) e W ∈ T (N) è F -correlato a Y ∈ T (M), allora [V, W ] è F -
correlato a [X, Y ].

Esercizio 3.3.4. Sia F :M → N un’applicazione di classe C∞ fra varietà, X ∈ T (M) e Y ∈ T (N). In-
dichiamo con Θ:U → M il flusso locale di X, e con Ψ:V → N il flusso locale di Y . Dimostra che Y è
F -correlato a X se e solo se per ogni t ∈ R si ha ψt ◦ F = F ◦ θt su Ut.⌈

Concludiamo questo paragrafo parlando dei campi vettoriali sui gruppi di Lie.

Definizione 3.3.7: Un campo vettoriale X ∈ T (G) su un gruppo di Lie G è invariante a sinistra se si
ha dLh(X) = X per ogni h ∈ G, cioè se

∀h, x ∈ G d(Lh)x(Xx) = Xhx,

dove Lh:G→ G è la traslazione sinistra.

Lemma 3.3.7: Sia G un gruppo di Lie di elemento neutro e ∈ G. Allora:

(i) L’applicazione X 7→ X(e) è un isomorfismo fra il sottospazio di T (M) costituito dai campi vettoriali
invarianti a sinistra e lo spazio tangente TeG.

(ii) Se X, Y ∈ T (G) sono invarianti a sinistra, allora anche [X, Y ] lo è.

Dimostrazione: (i) Se X ∈ T (G) è invariante a sinistra, chiaramente abbiamo
Xh = d(Lh)e(Xe)

per ogni h ∈ G, per cui X è completamente determinato dal suo valore in e. Viceversa, se scegliamo v ∈ TeG
e definiamo X ∈ T (G) ponendo Xh = d(Lh)e(v) ∈ ThG per ogni h ∈ G otteniamo (esercizio) un campo
vettoriale invariante a sinistra che vale v nell’elemento neutro.

(ii) Se X e Y sono campi vettoriali invarianti a sinistra l’Esercizio 3.3.3 dice che
dLh[X, Y ] = [dLhX, dLhY ] = [X, Y ]

per ogni h ∈ G, per cui anche [X, Y ] è invariante a sinistra.
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Esercizio 3.3.5. Diremo che una varietà M è parallelizzabile se TM è un fibrato banale. Dimostra che ogni
gruppo di Lie è parallelizzabile.

Dunque lo spazio tangente all’identità di un gruppo di Lie eredita dai campi vettoriali invarianti a
sinistra un’ulteriore struttura algebrica data dalla parentesi di Lie.

Definizione 3.3.8: Uno spazio vettoriale V dotato di un’ulteriore operazione [· , ·]:V × V → V che soddisfa le
proprietà (i)-(iii) della Proposizione 3.3.2 è detto algebra di Lie. Se V e W sono algebre di Lie, un morfismo
di algebre di Lie è un’applicazione L:V →W lineare tale che [L(v1), L(v2)] = L[v1, v2] per ogni v1, v2 ∈ V .

Esempio 3.3.1. Sia A un’algebra non commutativa sul campo K. Allora possiamo fornire A di una
struttura di algebra di Lie tramite il commutatore [· , ·]:A×A→ A definito da

∀X, Y ∈ A [X, Y ] = XY − Y X;

si verifica subito che il commutatore soddisfa le proprietà (i)-(iii) della Proposizione 3.3.2. In particolare, lo
spazio vettoriale delle matrici Mn,n(K) con questa struttura di algebra di Lie verrà indicato con gl(n, K).

Esercizio 3.3.6. Sia sl(n, K) = {X ∈ gl(n, K) | trX = 0} il sottospazio delle matrici quadrate a traccia
nulla, e so(n, K) = {X ∈ gl(n, K) | XT + X = O} il sottospazio delle matrici antisimmetriche. Dimostra
che X, Y ∈ sl(n, K) implica [X, Y ] ∈ sl(n, K), e che X, Y ∈ so(n, K) implica [X, Y ] ∈ so(n, K), per
cui sl(n, K) e so(n, K) sono delle algebre di Lie.

Definizione 3.3.9: Sia G un gruppo di Lie di elemento neutro e ∈ G. Per ogni v ∈ TeG, indichiamo
con Xv ∈ T (G) il campo vettoriale invariante a sinistra tale che Xv(e) = v. Allora lo spazio tangente all’ele-
mento neutro, considerato con la sua struttura di spazio vettoriale e con l’operazione [·, ·]:TeG×TeG→ TeG
definita da [v, w] = [Xv, Xw](e), è detto algebra di Lie g del gruppo G.

Non avremo il tempo di vederlo nei dettagli, ma si può ragionevolmente affermare che praticamente
tutte le proprietà di un gruppo di Lie semplicemente connesso si possono ricavare dalle proprietà algebriche
della sua algebra di Lie.

Definizione 3.3.10: Sia G un gruppo di Lie di dimensione n, g la sua algebra di Lie, e B = {v1, . . . , vn} una
base di g come spazio vettoriale. Allora per ogni i, j = 1, . . . , n devono esistere c1

ij , . . . , c
n
ij ∈ R tali che

[vi, vj ] =
n∑

k=1

ck
ijvk.

Le costanti ck
ij ∈ R sono dette costanti di struttura di g rispetto alla base B.

Esempio 3.3.2. Sia G = GL(n, R) il gruppo delle matrici invertibili a coefficienti reali; vogliamo dimostrare
che la sua algebra di Lie è l’algebra gl(n, R) introdotta nell’Esempio 3.3.1. Siccome G è un aperto di Rn2

,
lo spazio tangente nell’identità a G è canonicamente isomorfo come spazio vettoriale a gl(n, R); dobbiamo
dimostrare che anche le strutture di algebra di Lie coincidono. Per ogni a = (aij) ∈ gl(n, R) indichiamo
con ã ∈ T (G) la sua estensione come campo vettoriale invariante a sinistra. Se x = (xhk) ∈ G e f ∈ C∞(x),
abbiamo

ãx(f) = d(Lx)I(a)(f) = a(f ◦ Lx) =
n∑

i,j=1

aij
∂(f ◦ Lx)

∂yij
(I)

=
n∑

i,j=1

aij

n∑
h,k=1

∂f

∂xhk
(x)

n∑
r=1

∂(xhryrk)
∂yij

=
n∑

i,j,h,k,r=1

aijxhrδriδkj
∂f

∂xhk
(x)

=
n∑

h,j,r=1

xhrarj
∂f

∂xhj
(x),

per cui
ãx = Ra(x) = xa.
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Da questo segue facilmente che [ã, b̃]x = x(ab − ba), per cui effettivamente la struttura di algebra di Lie è
data dal commutatore:

∀a, b ∈ gl(n, R) [a, b] = ab− ba.

In particolare, se indichiamo con B = {Eij}i,j=1,...,n la base canonica di gl(n, R), dove Eij è la matrice con 1
al posto (i, j) e 0 altrove, cioè

(Eij)rs = δirδjs,

le costanti di struttura di gl(n, R) rispetto a B sono date da

c
(rs)
(ij)(hk) = δirδksδjh − δrhδsjδik.

Esempio 3.3.3. Se V è uno spazio vettoriale di dimensione n su R, il gruppo di Lie G = GL(V )
è chiaramente isomorfo a GL(n, R), e la sua algebra di Lie gl(V ) è isomorfa a gl(n, R). In partico-
lare, gl(V ) = Hom(V, V ) come spazio vettoriale, e la struttura di algebra di Lie è di nuovo data dal commu-
tatore.

Esercizio 3.3.7. Siano G e H due gruppi di Lie, con algebre di Lie g e h rispettivamente, e sia F :G → H
un morfismo di gruppi di Lie. Dimostra che per ogni X ∈ T (G) invariante a sinitra esiste un unico
Y = F∗(X) ∈ T (H) che è F -correlato a X, e che l’applicazione F∗: g→ h definita da F∗(Xe) = (F∗X)e è un
morfismo di algebre di Lie.

Esercizio 3.3.8. Sia H un sottogruppo di Lie di un gruppo di Lie di algebra di Lie g. Dimostra che
se v, w ∈ TeH ⊆ TeG = g allora [v, w] ∈ TeH, per cui TeH è un’algebra di Lie, e dimostra che TeH è
canonicamente isomorfa all’algebra di Lie di H.

Esercizio 3.3.9. Dimostra che l’algebra di Lie di SL(n, R) è canonicamente isomorfa a sl(n, R), e che

l’algebra di Lie di SO(n) è canonicamente isomorfa a so(n, R).

⌋

3.4 Il teorema di Frobenius⌈
Questo paragrafo è dedicato alla dimostrazione di un risultato fondamentale per lo studio dei campi vetto-

riali su una varietà: il teorema di Frobenius.
Cominciamo ponendoci un problema preliminare: supponiamo di avere su una varietà M di dimen-

sione n un riferimento locale {X1, . . . , Xn} del fibrato tangente TM . Quando esiste una carta locale ϕ di M
tale che X1 = ∂1, . . . , Xn = ∂n? Una condizione necessaria è data dalla Proposizione 3.3.2.(v): si deve
avere [Xi, Xj ] ≡ O per ogni i, j = 1, . . . , n. Vogliamo dimostrare che questa condizione è (essenzialmente)
anche sufficiente; per farlo procederemo per gradi.

Definizione 3.4.1: Sia X ∈ T (M) un campo vettoriale su una varietà M . Diremo che p ∈ M è un punto
singolare di X se Xp = Op; diremo che p è un punto regolare altrimenti.

Proposizione 3.4.1: Sia p ∈ M un punto regolare di un campo vettoriale X ∈ T (M). Allora esiste una
carta locale (U, ϕ) centrata in p tale che X|U ≡ ∂/∂x1.

Dimostrazione: Trattandosi di un problema locale, possiamo supporre M = Rn e p = O. Inoltre, es-
sendo Xp 6= Op, a meno di permutare le coordinate possiamo anche supporre che la prima coordinata di X
non si annulli in p. Il nostro obiettivo è trovare una carta locale (U, ϕ) in O tale che si abbia

Xq = d(ϕ−1)ϕ(q)

(
∂

∂x1

∣∣∣∣
ϕ(q)

)

per ogni q ∈ U .
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Sia Θ:U → Rn il flusso locale di X, e scegliamo ε > 0 e un intorno aperto U0 dell’origine tali
che (−ε, ε) × U0 ⊆ U . Poniamo S0 = U0 ∩ {x1 = 0}, e S = {x′ ∈ Rn−1 | (0, x′) ∈ S0} ⊆ Rn−1. Defi-
niamo allora ψ: (−ε, ε)× S → Rn con

ψ(t, x′) = θt(0, x′).

L’idea è che dψ(∂/∂t) ≡ X ◦ψ e che dψ0,O′ è invertibile; allora ψ è localmente invertibile, e l’inversa locale ϕ
di ψ ci fornirà la carta locale cercata.

Dato (t0, x′0) ∈ (−ε, ε)× S e f ∈ C∞
(
(−ε, ε)× U0

)
abbiamo

dψ(t0,x′0)

(
∂

∂t

∣∣∣∣
(t0,x′0)

)
(f) =

∂

∂t
(f ◦ ψ)

∣∣∣∣
(t0,x′0)

=
∂

∂t
f
(
θt(0, x′0)

)∣∣∣∣
t=t0

= (Xf)
(
ψ(t0, x′0)

)
,

per cui dψ(∂/∂t) ≡ X ◦ ψ, come voluto.
Infine, siccome ψ(0, x′) = (0, x′) per ogni x′ ∈ S, abbiamo

dψ(0,O′)

(
∂

∂xi

)
=

∂

∂xi

∣∣∣∣
O

per ogni i = 2, . . . , n. Quindi dψ(0,O′) manda una base di T(0,O′)Rn in una base di TORn (ricorda che la
prima coordinata di XO è non nulla!), per cui dψ(0,O′) è invertibile come richiesto, e ci siamo.

Per trattare il caso generale ci serve la seguente

Proposizione 3.4.2: Siano X, Y ∈ T (M) due campi vettoriali su una varietà M . Indichiamo con Θ:U →M
il flusso locale di X, e con Ψ:V →M il flusso locale di Y . Allora le seguenti affermazioni sono equivalenti:

(i) [X, Y ] = O;
(ii) Y è X-invariante;
(iii) X è Y -invariante;
(iv) ψs ◦ θt = θt ◦ ψs non appena uno dei due membri è definito.

Dimostrazione: Se Y è X-invariante, chiaramente LXY = O, e quindi [X, Y ] = O. Viceversa, supponiamo
che [X, Y ] = O; dobbiamo dimostrare che Y è X-invariante. Sia p ∈ M qualsiasi, e sia V :Up → TpM data
da

V (t) = d(θ−t)θt(p)(Y );

per far vedere che Y è X-invariante ci basta dimostrare che V è costante. Ma infatti per ogni t0 ∈ Up si ha

dV

dt
(t0) =

d

dt
d(θ−t)θt(p)(Y )

∣∣∣∣
t=t0

=
d

ds
d(θ−t0−s)θt0+s(p)(Y )

∣∣∣∣
s=0

=
d

ds
d(θ−t0)θt0 (p) ◦ d(θ−s)θs(θt0 (p))(Y )

∣∣∣∣
s=0

= d(θ−t0)θt0 (p)

(
d

ds
d(θ−s)θs(θt0 (p))(Y )

∣∣∣∣
s=0

)
= d(θ−t0)θt0 (p)(LXY ) = O,

per cui V (t) ≡ V (0) = Yp e ci siamo.
Abbiamo quindi dimostrato che (i) è equivalente a (ii); essendo [Y, X] = −[X, Y ], in modo analogo si

dimostra che (i) è equivalente a (iii).
Dimostriamo ora che (iii) implica (iv). Scegliamo s ∈ R e p ∈ Vs, e consideriamo la curva σ: I → M

ottenuta ponendo σ = ψs ◦ θp, dove I ⊆ R è un intervallo contenente l’origine su cui σ è definita. Allora per
ogni t ∈ I abbiamo

σ′(t) = (ψs ◦ θp)′(t) = d(ψs)θp(t)

(
(θp)′(t)

)
= d(ψs)θp(t)(Xθp(t)) = Xσ(t),

dove l’ultima eguaglianza segue dal fatto che X è Y -invariante. Ma allora questo vuol dire che σ è la curva
integrale di X uscente da ψs(p), per cui ψs ◦ θt(p) è definito se e solo se θt ◦ ψs(p) lo è, e i due sono uguali.

Infine, supponiamo che valga (iv). Allora

d(ψs)p(X) =
d

dt
(ψs ◦ θp)

∣∣∣∣
t=0

=
d

dt

(
ψs ◦ θt(p)

)∣∣∣∣
t=0

=
d

dt

(
θt(ψs(p))

)∣∣∣∣
t=0

= (θψs(p))′(0) = Xψs(p),

per cui X è Y -invariante, come voluto.
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Possiamo allora dimostrare il

Teorema 3.4.3: Siano X1, . . . , Xk ∈ T (M) campi vettoriali linearmente indipendenti in ogni punto di una
varietà M di dimensione n. Allora le seguenti affermazioni sono equivalenti:

(i) Per ciascun p ∈M esiste una carta locale (U, ϕ) centrata in p tale che Xj |U = ∂/∂xj per j = 1, . . . , k;
(ii) [Xi, Xj ] ≡ O per i, j = 1, . . . , k.

Dimostrazione: Abbiamo già notato che (i) implica (ii); supponiamo allora che (ii) valga. Essendo un
problema locale, possiamo supporre M = Rn e p = O. A meno di permutare le coordinate, possiamo anche
supporre che {X1|p, . . . , Xk|p, ∂/∂x̃k+1|p, . . . , ∂/∂x̃n|p} sia una base di TpM . Indichiamo con Θj il flusso
locale di Xj , per j = 1, . . . , k. Ragionando per induzione su k si dimostra facilmente che esistono ε > 0 e un
intorno W ⊆ Ũ di p tali che la composizione (θk)tk

◦· · ·◦(θ1)t1 è ben definita su W per ogni t1, . . . , tk ∈ (−ε, ε).
Poniamo S = {(xk+1, . . . , xn) ∈ Rn−k | (0, . . . , 0, xk+1, . . . , xn) ∈W}, e definiamo ψ: (−ε, ε)k × S → Rn

con
ψ(t1, . . . , tk, xk+1, . . . , xn) = (θk)tk ◦ · · · ◦ (θ1)t1(0, . . . , 0, xk+1, . . . , xn).

Dimostriamo prima di tutto che

dψ

(
∂

∂ti

)
= Xi (3.4.1)

per i = 1, . . . , k. Infatti, se f ∈ C∞(Rn) e x ∈ (−ε, ε)k × S la proposizione precedente ci dà

dψx

(
∂

∂ti

)
(f) =

∂

∂ti
(f ◦ ψ)

∣∣∣∣
x

=
∂

∂ti
f
(
(θk)tk ◦ · · · ◦ (θ1)t1(0, . . . , 0, xk+1, . . . , xn)

)∣∣∣∣
x

=
∂

∂ti
f
(
(θi)ti ◦ (θk)tk ◦ · · · ◦ (θi+1)ti+1 ◦ (θi−1)ti−1 ◦ (θ1)t1(0, . . . , 0, xk+1, . . . , xn)

)∣∣∣∣
x

= (Xif)
(
ψ(x)

)
,

e (3.4.1) è dimostrata. Per concludere la dimostrazione ci basta far vedere che dψO è invertibile, perché in
tal caso ψ è invertibile in un intorno dell’origine, e l’inversa ϕ di ψ è la carta locale cercata. Ma infatti
siccome ψ(0, . . . , 0, xk+1, . . . , xn) = (0, . . . , 0, xk+1, . . . , xn), vediamo subito che

dψO

(
∂

∂xj

)
=

∂

∂xj

∣∣∣∣
O

per j = k + 1, . . . , n, e la (3.4.1) insieme all’ipotesi che {X1|p, . . . , Xk|p, ∂/∂x̃k+1|p, . . . , ∂/∂x̃n|p} fosse una
base di TpM ci dà la tesi.

Questo era solo l’antipasto. Una conseguenza del Teorema 3.3.4 è che dato un campo vettoriale mai
nullo X ∈ T (M) possiamo decomporre la varietà M nell’unione delle curve integrali di X: ogni punto di M
appartiene a una e una sola curva integrale, e ciascuna curva integrale è un’immersione (in quanto abbiamo
supposto che X non abbia punti singolari).

Se ci dimentichiamo della parametrizzazione delle curve integrali, possiamo riformulare il risultato in que-
sto modo: da una parte abbiamo selezionato in modo C∞ un sottospazio uni-dimensionale in ciascun spazio
tangente TpM (il sottospazio generato da Xp); dall’altra abbiamo che ogni punto è contenuto nell’immagine
dell’immersione di una varietà 1-dimensionale tangente in ogni punto a questi sottospazi unidimensionali. Il
teorema di Frobenius è la generalizzazione di questo enunciato al caso di sottospazi k-dimensionali.

Introduciamo una serie di definizioni per giungere a un enunciato preciso del teorema di Frobenius.

Definizione 3.4.2: Una distribuzione k-dimensionale su una varietà M è un sottoinsieme D ⊂ TM del fibrato
tangente tale che Dp = D ∩ TpM è un sottospazio k-dimensionale di TpM per ogni p ∈ M . Diremo che
la distribuzione k-dimensionale D è liscia se per ogni p ∈ M esiste un intorno aperto U ⊆ M di p e k
campi vettoriali locali Y1, . . . , Yk ∈ T (U) tali che Dp = Span

(
Y1(p), . . . , Yk(p)

)
per ogni p ∈ U . La k-

upla (Y1, . . . , Yk) è detta riferimento locale per D su U .

Esercizio 3.4.1. Dimostra che una distribuzione D ⊆ TM k-dimensionale è una distribuzione liscia se e solo
se è un sottofibrato vettoriale di TM di rango k.
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Definizione 3.4.3: Una sezione locale di una distribuzione liscia D su un aperto U ⊆ M di una varietà M è
un campo vettoriale X ∈ T (U) tale che Xp ∈ Dp per ogni p ∈ U . Indicheremo con TD(U) lo spazio delle
sezioni locali di D sull’aperto U . Diremo che la distribuzione liscia D è involutiva se [X, Y ] ∈ TD(U) per
ogni X, Y ∈ TD(U) e ogni aperto U ⊆M .

Esercizio 3.4.2. Dimostra che una distribuzione liscia D è involutiva se e solo se per ogni p ∈ M esi-
ste un riferimento locale (Y1, . . . , Yk) per D su un intorno aperto U di p tale che [Yi, Yj ] ∈ TD(U) per
ogni i, j = 1, . . . , k.

Definizione 3.4.4: Una sottovarietà immersa di dimensione k in una varietà M è un sottoinsieme S ⊆ M
dotato di una struttura di varietà k-dimensionale (non necessariamente con la topologia indotta da M) tale
che l’inclusione ι:S ↪→M sia un’immersione di classe C∞.

Osservazione 3.4.1. Se F :N → M è un’immersione iniettiva, allora F (N), con la struttura di varietà
indotta da N come descritto nell’Osservazione 2.5.1, è una sottovarietà immersa di M . Inoltre, se S è una
sottovarietà immersa in M , il differenziale dell’inclusione permette di identificare TpS con un sottospazio
di TpM per ogni p ∈ S.

Esercizio 3.4.3. Sia ι:S ↪→M una sottovarietà immersa in una varietà M . Dimostra che per ogni X ∈ T (M)
tale che Xp ∈ TpS per ogni p ∈ S esiste un unico campo vettoriale X|S ∈ T (S) che è ι-correlato a X. Deduci
che se X, Y ∈ T (M) sono tali che Xp, Yp ∈ TpS per ogni p ∈ S allora [X, Y ]p ∈ TpS per ogni p ∈ S.

Esercizio 3.4.4. Sia S ⊆ M un sottoinsieme di una varietà M . Dimostra che per ogni topologia su S
esiste al più una struttura di varietà differenziabile su S che induce la topologia data su S e la rende una
sottovarietà immersa di M .

Definizione 3.4.5: Sia D ⊆ TM una distribuzione liscia. Una sottovarietà integrale di D è una sottovarietà
immersa S ↪→ M tale che TpS = Dp per ogni p ∈ S. Diremo che D è integrabile se ogni punto di M è
contenuto in una sottovarietà integrale di D.

Proposizione 3.4.4: Ogni distribuzione liscia integrabile è involutiva.

Dimostrazione: Sia D ⊆ TM una distribuzione integrabile, e X, Y ∈ TD(U) due sezioni di D su un aperto U .
Preso p ∈ U , sia N ⊆ U una sottovarietà integrale di D contenente p. Siccome X e Y sono sezioni di D,
abbiamo Xq, Yq ∈ TqN per ogni q ∈ N ; l’Esercizio 3.4.3 ci dice allora che [X, Y ]p ∈ TpN = Dp. Siccome
questo vale per qualsiasi p ∈ U , otteniamo [X, Y ] ∈ TD(U), come voluto.

Come già succedeva per le curve integrali, le sottovarietà integrali sono (almeno localmente) a due a due
disgiunte e, in un certo senso, parallele. Per precisare questo concetto ci servono un altro paio di definizioni.

Definizione 3.4.6: SiaD ⊆ TM una distribuzione liscia k-dimensionale in una varietà di dimensione n. Diremo
che una carta locale (U, ϕ) è piatta per D se ϕ(U) = V ′ × V ′′ con V ′ aperto in Rk e V ′′ aperto in Rn−k, e
se (∂/∂x1, . . . , ∂/∂xk) è un riferimento locale per D su U . Diremo che D è completamente integrabile se per
ogni p ∈ M esiste una carta locale (U, ϕ) in p piatta per D. Se (U, ϕ) è una carta piatta per D, gli insiemi
della forma {xk+1 = ck+1, . . . , xn = cn} con ck+1, . . . , cn ∈ R sono detti foglie di U .

Lemma 3.4.5: Ogni distribuzione liscia completamente integrabile è integrabile.

Dimostrazione: Infatti se (U, ϕ) è una carta piatta per una distribuzione k-dimensionale liscia D allora le
foglie di U sono chiaramente delle sottovarietà integrali di D.

Dunque completamente integrabile implica integrabile che implica involutiva. Il Teorema di Frobenius
locale ci assicura che queste implicazioni sono in realtà delle equivalenze:

Teorema 3.4.6: (Frobenius) Ogni distribuzione liscia involutiva è completamente integrabile.

Dimostrazione: Sia D ⊆ TM una distribuzione k-dimensionale liscia involutiva. Grazie al Teorema 3.4.3, per
dimostrare che D è completamente integrabile ci basta trovare nell’intorno di ogni punto di M un riferimento
locale di D composto da campi vettoriali che commutano.
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Dato p ∈ M , scegliamo una carta locale (U, ϕ) centrata in p tale che esista un riferimento locale
(X1, . . . , Xk) per D su U . Inoltre, a meno di permutare le coordinate di ϕ, possiamo anche supporre che{

X1(p), . . . , Xk(p),
∂

∂xk+1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

}

sia una base di TpM . Per comodità di notazione, poniamo Xj = ∂/∂xj per j = k + 1, . . . , n, e sce-
gliamo aj

i ∈ C∞(U) tali che

Xi =
n∑

j=1

aj
i

∂

∂xj

su U , per i = 1, . . . , n. La matrice (aj
i ) è invertibile in p; a meno di restringere ulteriormente U possiamo

supporre che sia invertibile su tutto U , e sia (bi
j) la sua inversa. Allora

∂

∂xj
=

n∑
i=1

bi
jXi =

k∑
i=1

bi
jXi +

n∑
i=k+1

bi
j

∂

∂xi

per j = 1, . . . , n. Definiamo allora Yj =
∑k

i=1 bi
jXi ∈ TD(U) per j = 1, . . . , k; per concludere ci basta

dimostrare che (Y1, . . . , Yk) è un riferimento locale per D composto da campi vettoriali che commutano.
Sia F :U → Rk data da F = π ◦ϕ, dove π: Rn → Rk è la proiezione sulle prime k coordinate. Allora per

ogni q ∈ U e ogni j = 1, . . . , k abbiamo

dFq(Yj) = dFq(Yj) +
n∑

i=k+1

bi
j(q) dFq

(
∂

∂xi

)
= dFq

(
∂

∂xj

)
=

∂

∂xj

∣∣∣∣
F (q)

.

Quindi gli Yj sono linearmente indipendenti su tutto U , per cui formano un riferimento locale per D, e
dFq|Dq è iniettivo per ogni q ∈ U . Inoltre, l’Esercizio 3.3.3 implica che

dFq([Yi, Yj ]) =
[

∂

∂xi
,

∂

∂xj

] (
F (q)

)
= O

per ogni q ∈ U e i, j = 1, . . . , k. Ma allora, essendo D involutiva abbiamo [Yi, Yj ](q) ∈ Dq, ed essendo dFq|Dq

iniettivo troviamo [Yi, Yj ](q) = Oq, come voluto.

Vogliamo ora dare una descrizione di come sono disposte le sottovarietà integrali, descrizione che ci
servirà poi per dare la versione globale del Teorema di Frobenius.

Proposizione 3.4.7: Sia D ⊆ TM una distribuzione liscia involutiva k-dimensionale in una varietà M ,
(U, ϕ) una carta piatta per D, e N una sottovarietà integrale di D. Allora N ∩ U è unione disgiunta al più
numerabile di aperti connessi di foglie di U , ciascuno dei quali è aperto in N ed embedded in M .

Dimostrazione: Siccome l’inclusione ι:N ↪→ M è continua, l’intersezione N ∩ U = ι−1(U) è aperta in N ,
e quindi è unione di una quantità al più numerabile di componenti connesse, ciascuna delle quali è aperta
in N .

Sia V una di queste componenti connesse; cominciamo col dimostrare che è contenuta in un’unica foglia
di U . Essendo (U, ϕ) una carta piatta per D, per ogni p ∈ U abbiamo Dp = Ker(dxk+1) ∩ · · · ∩ Ker(dxn).
Quindi la restrizione di dxk+1, . . . , dxn a TV è identicamente nulla; essendo V connesso, questo vuol dire
che le funzioni xk+1, . . . , xn sono costanti su V , e quindi V è contenuto in un’unica foglia S di U .

Siccome S è una sottovarietà (embedded) di M , l’inclusione V ↪→ S è di classe C∞, essendolo a valori
in M . Ma allora è un’immersione iniettiva fra varietà della stessa dimensione, per cui è un diffeomorfismo
locale e un omeomorfismo con l’immagine, che è aperta in S; in altre parole, è un embedding. Essendo S
embedded in M , ne segue che V è embedded in M .
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Definizione 3.4.7: Una foliazione di dimensione k di una n-varietà è una partizione F di M in sottovarietà
immerse connesse, disgiunte e di dimensione k (dette foglie della foliazione) tali che per ogni punto p ∈ M
esiste una carta locale (U, ϕ) in p per cui ϕ(U) = V ′ × V ′′, con V ′ aperto in Rk e V ′′ aperto in Rn−k, e tale
che ogni foglia della foliazione intersechi U o nell’insieme vuoto o in una unione disgiunta al più numerabile di
foglie k-dimensionali di U della forma {xk+1 = ck+1, . . . , xn = cn} per opportune costanti ck+1, . . . , cn ∈ R.
Una tale carta locale sarà detta piatta per la foliazione F .

Esercizio 3.4.5. Dimostra che l’unione degli spazi tangenti alle foglie di una foliazione k-dimensionale forma
una distribuzione liscia k-dimensionale involutiva.

La versione globale del Teorema di Frobenius ci dice che è vero anche l’inverso di questo esercizio, per
cui foliazioni o distribuzioni involutive sono di fatto la stessa cosa.

Per dimostrarlo, ci serve un ultimo

Lemma 3.4.8: Sia D ⊆ TM una distribuzione liscia involutiva in una varietà M , e sia {Nα} una collezione
di sottovarietà integrali connesse di D con un punto in comune. Allora N =

⋃
α Nα ha un’unica struttura di

varietà rispetto alla quale è una sottovarietà integrale connessa di D tale che ciascun Nα sia aperto in N .

Dimostrazione: Su ciascun Nα fissiamo un atlante composto da carte locali della forma (S∩Nα, π◦ϕ), dove S
è un’unica foglia di una carta (U, ϕ) piatta per D, e π: Rn → Rk è la proiezione sulle prime k-coordinate.
Se N ha una struttura di varietà che soddisfa le richieste queste carte devono farvi parte; quindi ci basta
dimostrare che mettendole insieme otteniamo un atlante di N .

Per avere la compatibilità topologica delle carte, dobbiamo prima di tutto dimostrare che Nα ∩ Nβ

è aperto in Nβ quali che siano α e β. Prendiamo q ∈ Nα ∩ Nβ , sia (U, ϕ) una carta in q piatta per D,
e indichiamo con Vα (rispettivamente, Vβ) la componente connessa di Nα ∩ U (rispettivamente, Nβ ∩ U)
contenente q. La Proposizione 3.4.7 ci dice che Vα e Vβ sono aperti di una foglia S di U , necessariamente la
stessa per entrambi in quanto deve contenere q. Quindi Vα ∩ Vβ è aperto in S, e quindi in Nβ , come voluto.

Siccome due foglie distinte di una carta piatta sono disgiunte, se (Sα∩Nα)∩(Sβ∩Nβ) 6= ∅ allora Sα = Sβ .
Quindi i cambiamenti di coordinate nel nostro atlante saranno della forma π ◦ (ψ ◦ϕ−1) ◦ (π|ϕ(S))−1, definiti
su aperti di Rk per quanto detto finora, e chiaramente di classe C∞.

Siccome essere un’immersione è una proprietà locale, l’inclusione N ↪→M è un’immersione, ed è evidente
che N è una sottovarietà integrale connessa di D.

Rimane quindi da dimostrare che la strutturà di varietà cos̀ı definita su N è di Hausdorff e ha una
base numerabile. Se q, q′ ∈ N sono punti distinti, prendiamo intorni disgiunti U e U ′ in M ; allora, essendo
l’inclusione N ↪→M continua, U ∩N e U ′∩N sono intorni disgiunti di q e q′ in N , per cui N è di Hausdorff.

Ora, sia U = {Ui} un ricoprimento aperto numerabile di M composto da domini di carte piatte per D.
Per far vedere che N ha una base numerabile è sufficiente far vedere che N ∩ Ui è contenuto in un’unione
numerabile di foglie di Ui per ciascun i, in quanto qualsiasi aperto di una foglia ha una base numerabile.

Fissiamo un punto p ∈ M contenuto in tutti gli Nα, scegliamo Ui ∈ U, e sia S ⊂ Ui una foglia di Ui

contenente un punto q ∈ N . Per definizione, deve esistere un α tale che Nα contiene sia p che q. Essendo Nα

connesso per archi, esiste una curva continua σ: [0, 1] → Nα che collega p con q. Siccome l’immagine di σ
è compatta, esiste una partizione 0 = t0 < t1 < · · · < tm = 1 di [0, 1] tale che σ([tj−1, tj ]) è contenuto
in un Uij

∈ U per ogni j = 1, . . . , m. Essendo σ([tj−1, tj ]) connesso, è contenuto in un’unica componente
connessa di Nα ∩ Uij

, e quindi in un’unica foglia Sij
di Uij

.
Diremo che una foglia S di un qualche Uk è accessibile da p se esiste una successione finita di in-

dici i0, . . . , im e di foglie Sij ⊂ Uij tali che p ∈ Si0 , Sim = S e Sij−1 ∩ Sij 6= ∅ per j = 1, . . . , m. Siccome
ogni foglia Sij−1 è a sua volta una sottovarietà integrale di D, per la Proposizione 3.4.7 può intersecare al
più una quantità numerabile di foglie di Uij

. Questo vuol dire che esistono al più una quantità numerabile
di foglie accessibili da p; ma la discussione precedente mostra che ogni foglia che interseca N è accessibile
da p, e abbiamo finito.

E infine, ecco il Teorema di Frobenius globale:

Teorema 3.4.9: Sia D ⊆ TM una distribuzione liscia involutiva in una varietà M . Allora la collezione di
tutte le sottovarietà integrali massimali di D forma una foliazione di M .

Dimostrazione: Per ogni p ∈ M indichiamo con Lp l’unione di tutte le sottovarietà integrali connesse di D
che contengono p; grazie al lemma precedente, Lp è una sottovarietà integrale connessa di D, chiaramente
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massimale. Se Lp ∩ Lp′ 6= ∅, allora Lp ∪ Lp′ è ancora una sottovarietà integrale connessa di D, e quindi
per massimalità Lp = Lp′ . Quindi le sottovarietà integrali connesse massimali di D formano una partizione
di M .

Se (U, ϕ) è una carta locale piatta per D, allora Lp ∩ U è unione al più numerabile di aperti di foglie
di U , per la Proposizione 3.4.7. Se per una di tali foglie S si avesse Lp ∩ S 6= S, allora Lp ∪ S sarebbe una
sottovarietà integrale connessa di D contenente propriamente Lp, contro la massimalità. Quindi Lp ∩ U è

sempre unione di una quantità al più numerabile di foglie di U , per cui {Lp | p ∈M} è una foliazione.

⌋

3.5 Forme differenziali e differenziale esterno

In questo paragrafo raccoglieremo alcune proprietà fondamentali delle forme differenziali.
Prima di tutto, se η ∈ Ar(M) e ω ∈ As(M) sono rispettivamente una r-forma e una s-forma su una

varietà M , è chiaro che possiamo definire la (r + s)-forma η ∧ ω ∈ Ar+s(M) ponendo

∀p ∈M η ∧ ω(p) = η(p) ∧ ω(p);

in questo modo otteniamo su

A•(M) =
dim M⊕
r=0

Ar(M)

una naturale struttura di algebra associativa e anticommutativa.
Abbiamo notato nel Paragrafo 3.3 che, in generale, è difficile trasportare campi vettoriali da una varietà

a un’altra usando applicazioni differenziabili. Uno dei vantaggi delle forme differenziali è che sono invece
molto semplici da trasportare:

Definizione 3.5.1: Sia ω ∈ Ar(N) una r-forma sulla varietà N , e F :M → N un’applicazione di classe C∞. Il
pull-back di ω lungo F è la r-forma F ∗ω ∈ Ar(M) definita da

F ∗ωp(v1, . . . , vr) = ωF (p)

(
dFp(v1), . . . , dFp(vr)

)
per ogni v1, . . . , vr ∈ TpM . Si verifica subito (esercizio) che F ∗ω è r-lineare, alternante e di classe C∞, per
cui è effettivamente una r-forma su M . Se ι: M ↪→ N è una sottovarietà, scriveremo anche ω|M per ι∗ω.

Esercizio 3.5.1. Sia F :M → N un’applicazione di classe C∞ fra varietà. Dimostra che

(i) F ∗:Ar(N)→ Ar(M) è lineare per ogni r ≥ 0;
(ii) F ∗(η ∧ ω) = F ∗η ∧ F ∗ω per ogni η, ω ∈ A•(N);
(iii) se

ω =
∑

i1<···<ir

ωi1...irdyi1 ∧ · · · ∧ dyir

è l’espressione in coordinate locali (y1, . . . , yn) di una r-forma ω ∈ Ar(N), allora

F ∗ω =
∑

i1<···<ir

(ωi1...ir ◦ F ) d(yi1 ◦ F ) ∧ · · · ∧ d(yir ◦ F ).

In particolare, se M ed N hanno entrambi dimensione n, (x1, . . . , xn) sono coordinate locali su un
aperto U di M , (y1, . . . , yn) sono coordinate locali su un aperto V di N con F (U) ⊆ V , e f ∈ C∞(V ),
allora dimostra che

F ∗(f dy1 ∧ · · · ∧ dyn) = (f ◦ F ) det(dF ) dx1 ∧ · · · ∧ dxn.
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Se f ∈ C∞(M) è una funzione differenziabile su M (ovvero una 0-forma), il differenziale df induce

un’applicazione C∞(M)-lineare df : T (M) → C∞(M), cioè, grazie alla Proposizione 3.2.1.(i), una 1-forma
differenziale. Quindi abbiamo un’applicazione lineare d:A0(M)→ A1(M) data in coordinate locali da

df =
n∑

j=1

∂f

∂xj
dxj .

Una delle principali proprietà delle forme differenziali è che possiamo estendere quest’applicazione d a
tutto A•(M), cioè possiamo definire in maniera coerente il differenziale di qualsiasi forma differenziale:

Teorema 3.5.1: Sia M una n-varietà. Allora esiste un’unica applicazione lineare d: A•(M) → A•(M)
soddisfacente le quattro condizioni seguenti:

(a) d
(
Ar(M)

)
⊆ Ar+1(M) per ogni r ∈ N;

(b) se f ∈ C∞(M) = A0(M) allora df ∈ A1(M) è il differenziale di f ;
(c) se ω ∈ Ar(M) e η ∈ As(M) allora

d(ω ∧ η) = dω ∧ η + (−1)rω ∧ dη;

(d) d ◦ d = O.

Questa applicazione soddisfa anche le seguenti proprietà:

(i) d è locale: se ω ≡ ω′ su un aperto U di M , allora (dω)|U ≡ (dω′)|U ;
(ii) d commuta con la restrizione: se U ⊆M è aperto, allora d(ω|U ) = (dω)|U ;
(iii) più in generale, d commuta con i pull-back: se F :M → N è di classe C∞ e ω ∈ Ar(N), allora

d(F ∗ω) = F ∗(dω);
(iv) se ω ∈ A1(M) è una 1-forma e X, Y ∈ T (M), allora

dω(X, Y ) = X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X, Y ]);

(v) se (x1, . . . , xn) sono coordinate locali in un aperto di M , allora

d

 ∑
1≤i1<···<ir≤n

ωi1...ir
dxi1 ∧ · · · ∧ dxir

 =
∑

1≤i1<···<ir≤n

dωi1...ir
∧ dxi1 ∧ · · · ∧ dxir

=
∑

1≤i1<···<ir≤n

n∑
j=1

∂ωi1...ir

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxir .

(3.5.1)

Dimostrazione: Iniziamo con il caso particolare in cui esista una carta globale (M, ϕ), con ϕ = (x1, . . . , xn),
e definiamo d:Ar(M)→ Ar+1(M) per ogni r ∈ N con la (3.5.1); in particolare, d|Ar(M) ≡ O per ogni r ≥ n.
Chiaramente d è lineare e soddisfa (a) e (b); dobbiamo dimostrare che soddisfa (c) e (d). Per far ciò
introduciamo la seguente notazione: se I = (i1, . . . , ir) è un multiindice, scriveremo dxI per dxi1 ∧ · · ·∧dxir .
Inoltre, useremo il simbolo

∑′
I per indicare la somma su tutti multiindici I = (i1, . . . , ir) crescenti, cioè tali

che 1 ≤ i1 < · · · < ir ≤ n. Quindi con queste notazioni la (3.5.1) diventa

d

(∑
I

′
ωI dxI

)
=

∑
I

′
dωI ∧ dxI .

In particolare, abbiamo d(f dxI) = df ∧ dxI per ogni multiindice crescente I, e quindi (perché?) per ogni
multiindice I, anche non crescente.

Per dimostrare (c), grazie alla linearità possiamo supporre ω = f dxI e η = g dxJ . Allora

d(ω ∧ η) = d(fg dxI ∧ dxJ) = d(fg) ∧ dxI ∧ dxJ

= df ∧ dxI ∧ g dxJ + dg ∧ f dxI ∧ dxJ = (df ∧ dxI) ∧ η + (−1)rω ∧ (dg ∧ dxJ)
= dω ∧ η + (−1)rω ∧ dη,
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dove il fattore (−1)r compare perché dg è una 1-forma mentre dxI è una r-forma.
Per dimostrare (d), supponiamo prima r = 0. Allora

d(df) = d

 n∑
j=1

∂f

∂xj
dxj

 =
n∑

i,j=1

∂2f

∂xi∂xj
dxi ∧ dxj =

∑
1≤i<j≤n

[
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

]
dxi ∧ dxj = O.

Sia ora r > 0 qualsiasi. Allora usando il caso r = 0 e la proprietà (c) otteniamo

d(dω) = d

(∑
J

′
dωJ ∧ dxj1 ∧ · · · ∧ dxjr

)

=
∑

J

′
d(dωJ) ∧ dxj1 ∧ · · · ∧ dxjr +

∑
J

′ r∑
i=1

(−1)i dωJ ∧ dxj1 ∧ · · · ∧ d(dxji) ∧ · · · ∧ dxjr = O.

Quindi abbiamo ottenuto un’applicazione lineare soddisfacente (a)–(d), e chiaramente valgono anche (i), (ii)
e (v); si possono anche dimostrare le proprietà (iii) e (iv), ma lo rimandiamo al caso generale.

Vediamo ora l’unicità della d, sempre in questo caso particolare. Supponiamo che d̃:A•(M) → A•(M)
sia un’altra applicazione lineare che soddisfa (a)–(d). Presa ω =

∑′
J ωJ dxJ ∈ Ar(M), usando (b), (c) e (d)

troviamo

d̃ω =
∑

J

′
d̃ωJ ∧ dxj1 ∧ · · · ∧ dxjr + (−1)0

∑
J

′
ωJ d̃(dxj1 ∧ · · · ∧ dxjr )

=
∑

J

′
dωJ ∧ dxj1 ∧ · · · ∧ dxjr +

∑
J

′
ωJ

r∑
i=1

(−1)i−1 dxj1 ∧ · · · ∧ d̃(dxji) ∧ · · · ∧ dxjr

= dω +
∑

J

′
ωJ

r∑
i=1

(−1)i−1 dxj1 ∧ · · · ∧ d̃(d̃xji) ∧ · · · ∧ dxjr = dω,

come voluto. In particolare, dω non dipende dalla carta globale usata in (3.5.1).
Ora sia M una varietà qualsiasi. Se U ⊆ M è il dominio di una carta locale, la discussione precedente

ci fornisce un’applicazione lineare dU :A•(U) → A•(U) che soddisfa (a)–(d), (i), (ii) e (v). Sull’interse-
zione U ∩ U ′ dei domini di due carte locali abbiamo

(dUω)|U∩U ′ = dU∩U ′ω = (dU ′ω)|U∩U ′ ,

grazie a (ii) e all’unicità di dU e dU ′ . Quindi possiamo definire un’applicazione lineare d:A•(M) → A•(M)
ponendo

(dω)p = dU (ω|U )p

per ogni ω ∈ Ar(M), p ∈M e carta (U, ϕ) in p, e d soddisfa (a)–(d), (i), (ii) e (v).
Dimostriamo ora l’unicità nel caso generale. Sia d̃:A•(M) → A•(M) un’altra applicazione lineare che

soddisfa (a)–(d). Cominciamo col dimostrare che d̃ soddisfa anche (i). Chiaramente basta far vedere che
se η ∈ Ar(M) è tale che η|U ≡ O per un qualche aperto U ⊆ M , allora (dη)|U ≡ O. Sia p ∈ U qualunque,
e sia g ∈ C∞(M) una funzione con g ≡ 1 in un intorno di p e g|M\U ≡ 0 (vedi la Proposizione 2.3.1).
Allora gη ≡ O su tutto M , per cui

O = d̃(gη)p = dgp ∧ ηp + g(p)d̃ηp = d̃ηp.

Essendo p generico, otteniamo d̃η|U ≡ O.
Sia ora (U, ϕ) una carta locale qualsiasi, e definiamo un’applicazione lineare d̃U :A•(U) → A•(U) po-

nendo (d̃Uω)p = (d̃ω̃)p per ogni p ∈ U e ω ∈ Ar(U), dove ω̃ ∈ Ar(M) è una r-forma globale che coincide con ω

in un intorno di p. L’estensione ω̃ esiste grazie all’Esercizio 3.2.4, e d̃Uω non dipende dall’estensione scelta
grazie alla proprietà (i) di d̃. Chiaramente, d̃U soddisfa (a)–(d); ma allora, per quanto già visto, d̃U = dU .
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In particolare, se ω ∈ Ar(M), p ∈ M e (U, ϕ) è una carta in p, possiamo usare ω stessa come estensione
di ω|U e quindi

(dω)p = (dUω|U )p = (d̃Uω|U )p = (d̃ω)p.

Essendo p e ω generici, otteniamo d̃ ≡ d, e l’unicità è dimostrata.
Passiamo ora a verificare (iii). Grazie a (i), ci basta dimostrare (iii) nell’intorno di ciascun punto, per

cui possiamo supporre di avere coordinate globali (x1, . . . , xn). Per linearità, possiamo anche supporre che ω
sia della forma ω = f dxi1 ∧ · · · ∧ dxir . Allora l’Esercizio 3.5.1 dà

F ∗(dω) = F ∗(df ∧ dxi1 ∧ · · · ∧ dxir ) = d(f ◦ F ) ∧ d(xi1 ◦ F ) ∧ · · · ∧ d(xir ◦ F )

= d
(
(f ◦ F ) d(xi1 ◦ F ) ∧ · · · ∧ d(xir ◦ F )

)
= d(F ∗ω),

come voluto.
Infine, dobbiamo verificare (iv). Grazie alla linearità e alla proprietà (i), ci basta (perché?) considerare

il caso ω = u dv. Allora

dω(X, Y ) = du ∧ dv(X, Y ) = du(X)dv(Y )− du(Y )dv(X) = X(u)Y (v)−X(v)Y (u)

= X(u)Y (v) + uX
(
Y (v)

)
− Y (u)X(v)− uY

(
X(v)

)
− u

(
X

(
Y (v)

)
− Y

(
X(v)

))
= X

(
uY (v)

)
− Y

(
uX(v)

)
− u[X, Y ](v)

= X
(
ω(Y )

)
− Y

(
ω(X)

)
− ω([X, Y ]),

e abbiamo finito.

Definizione 3.5.2: L’applicazione lineare d:A•(M)→ A•(M) la cui esistenza è dimostrata nel Teorema 3.5.1
è detta differenziale esterno di M .

Esercizio 3.5.2. Sia M una varietà, e ω ∈ Ar(M). Dimostra che

dω(X1, . . . , Xr+1) =
r+1∑
j=1

(−1)j−1Xj

(
ω(X1, . . . , X̂j , . . . , Xr+1)

)
+

∑
1≤i<j≤r+1

(−1)i+jω
(
[Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xr+1

)
,

per ogni X1, . . . , Xr+1 ∈ T (M), dove l’accento circonflesso indica elementi omessi dalla lista.

Esercizio 3.5.3. Sia {E1, . . . , En} un riferimento locale per il fibrato tangente TM di una n-varietà M
sopra un aperto U , e indichiamo con {ε1, . . . , εn} il riferimento locale duale di T ∗M sopra U . Siano inol-
tre ck

ij ∈ C∞(U) tali che

[Ei, Ej ] =
n∑

k=1

ck
ijEk

per i, j, k = 1, . . . , n. Dimostra che

dεk = −
n∑

i,j=1

ck
ij εi ∧ εj

per k = 1, . . . , n.

Definizione 3.5.3: Diremo che una k-forma ω ∈ Ak(M) è chiusa se dω = O; diremo che è esatta se esiste
una (k − 1)-forma η ∈ Ak−1(M) tale che dη = ω. Indicheremo con Zk(M) il sottospazio delle k-forme
chiuse, e con Bk(M) il sottospazio delle k-forme esatte. Siccome d ◦ d ≡ O, ogni forma esatta è chiusa,
cioè Bk(M) ⊆ Zk(M). Il k-esimo gruppo di coomologia di de Rham della varietà M è allora definito come
il quoziente Hk

dR(M) = Zk(M)/Bk(M).

Un risultato fondamentale che non dimostreremo è il Teorema di de Rham, che dice che i gruppi di
coomologia di de Rham sono degli invarianti topologici della varietà:
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Teorema 3.5.2: (de Rham) Per ogni varietà M e ogni k ∈ N il gruppo di coomologia di de Rham Hk
dR(M)

è canonicamente isomorfo al k-esimo gruppo di coomologia singolare Hk(M ; R) di M a coefficienti in R.

Concludiamo questo paragrafo con una serie di esercizi che mostrano come introdurre il concetto di
distribuzione liscia involutiva usando le forme differenziali invece dei campi vettoriali.

Esercizio 3.5.4. Sia D ⊆ TM una distribuzione k-dimensionale su una n-varietà M . Dimostra che D è
liscia se e solo se per ogni punto p ∈M esistono un intorno U di p e ω1, . . . , ωn−k ∈ A1(U) tali che

Dq = Kerω1
q ∩ · · · ∩Kerωn−k

q (3.5.2)

per ogni q ∈ U .

Definizione 3.5.4: Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M , e U ⊆ M
aperto. Ogni (n − k)-upla di 1-forme ω1, . . . , ωn−k ∈ A1(M) che soddisfano (3.5.2) saranno dette forme di
definizione locali per D. Diremo inoltre che una p-forma η ∈ Ap(M) annichila D se η(X1, . . . , Xp) ≡ O per
ogni X1, . . . , Xp ∈ TD(M). Indicheremo con Ip

M (D) ⊆ Ap(M) il sottospazio delle p-forme che annichilano D,
e porremo IM (D) = I0

M (D)⊕ · · · ⊕ In
M (D).

Esercizio 3.5.5. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra che
una p-forma η ∈ Ap(M) annichila D se e solo se ogni volta che esistono delle forme di definizione lo-
cali ω1, . . . , ωn−k ∈ A1(U) per D su un aperto U ⊆M allora

η|U =
n−k∑
i=1

ωi ∧ βi

per opportune (p− 1)-forme β1, . . . , βn−k ∈ Ap−1(U).

Esercizio 3.5.6. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra che D
è involutiva se e solo se per ogni aperto U ⊆M si ha d

(
I1

U (D)
)
⊆ I2

U (D).

Esercizio 3.5.7. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra
che D è involutiva se e solo se per ogni aperto U ⊆ M e ogni (n − k)-upla di forme di definizione lo-
cali ω1, . . . , ωn−k ∈ A1(U) per D sopra U esistono delle 1-forme αi

j ∈ A1(U) tali che

dωi =
n−k∑
j=1

ωj ∧ αi
j

per i = 1, . . . , n− k.

Definizione 3.5.5: Un ideale di A•(M) è un sottospazio vettoriale I ⊆ A•(M) tale che ω ∧ η ∈ I per
ogni ω ∈ A•(M) e ogni η ∈ I.
Esercizio 3.5.8. Sia D ⊆ TM una distribuzione k-dimensionale liscia su una n-varietà M . Dimostra

che IM (D) è un ideale di A•(M), e che D è involutiva se e solo se d
(
IM (D)

)
⊆ IM (D).

⌋

3.6 Orientabilità

Scopo di questo paragrafo è dare una definizione di orientabilità adatta a varietà di dimensione qualunque.

Definizione 3.6.1: Diremo che una varietà connessa M è orientabile se esiste una n-forma ν ∈ An(M) che
non si annulla mai. Diremo che due n-forme mai nulle ν1, ν2 ∈ An(M) determinano la stessa orientazione
se esiste una funzione f ∈ C∞(M) sempre positiva tale che ν2 = fν1. Una n-forma mai nulla su M è detta
forma (o elemento) di volume di M . Una varietà su cui sia stata fissata una forma di volume è detta varietà
orientata.
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Definizione 3.6.2: Sia M una varietà orientata da una forma di volume ν ∈ An(M). Diremo che una
base {v1, . . . , vn} di TpM è positiva se νp(v1, . . . , vn) > 0; negativa altrimenti (nota che νp(v1, . . . , vn) è neces-
sariamente diverso da zero; perché?). Una carta (U, ϕ) sarà detta orientata se esiste una funzione f ∈ C∞(U)
sempre positiva tale che dx1 ∧ · · · ∧ dxn = f ν|U , dove ϕ = (x1, . . . , xn) come al solito. In altre parole, (U, ϕ)
è orientata se e solo se {∂1, . . . , ∂n} è una base positiva di TpM per ogni p ∈ U (perché?).

Definizione 3.6.3: Diremo che due carte (Uα, ϕα) e (Uβ , ϕβ) di una varietà M sono equiorientate se il deter-
minante del differenziale del cambiamento di coordinate ϕα ◦ϕ−1

β è positivo in tutti i punti di ϕβ(Uα ∩Uβ).
Un atlante A = {(Uα, ϕα)} è orientato se ogni coppia di carte in A è equiorientata.

Proposizione 3.6.1: Sia M una varietà connessa n-dimensionale. Allora M è orientabile se e solo se
ammette un atlante orientato.

Dimostrazione: Supponiamo che M sia orientabile, e sia ν ∈ An(M) una n-forma mai nulla. Prendiamo
un atlante A = {(Uα, ϕα)} con ciascun Uα connesso. Allora dx1

α ∧ · · · ∧ dxn
α ∈ An(Uα) è una n-forma

locale mai nulla; siccome
∧n

M ha rango 1, deve esistere una funzione fα ∈ C∞(Uα) mai nulla tale
che dx1

α ∧ · · · ∧ dxn
α = fα ν|Uα . Essendo Uα connesso, la funzione fα ha segno costante; quindi a meno

di modificare ϕα scambiando le ultime due coordinate possiamo supporre che tutte le fα siano positive.
Vogliamo dimostrare che l’atlante A cos̀ı ottenuto è orientato. Infatti l’Esempio 3.2.3 ci dà

fα ν|Uα∩Uβ
= dx1

α ∧ · · · ∧ dxn
α = det

(
∂xh

α

∂xk
β

)
dx1

β ∧ · · · ∧ dxn
β = det

(
∂xh

α

∂xk
β

)
fβ ν|Uα∩Uβ

,

per cui fα|Uα∩Uβ
= det

(
∂xh

α

∂xk
β

)
fβ |Uα∩Uβ

e dunque det
(

∂xh
α

∂xk
β

)
> 0 come voluto.

Viceversa, sia A = {(Uα, ϕα)} un atlante orientato, e sia {ρα} una partizione dell’unità subordinata a
questo atlante. Poniamo

ν =
∑
α

ρα dx1
α ∧ · · · ∧ dxn

α.

Le proprietà delle partizioni dell’unità ci assicurano (perché) che ν ∈ An(M) è globalmente definita; dob-
biamo dimostrare che non è mai nulla. Ora, ciascuna dx1

α ∧ · · · ∧ dxn
α non si annulla mai; inoltre

dx1
α ∧ · · · ∧ dxn

α = det

(
∂xh

α

∂xk
β

)
dx1

β ∧ · · · ∧ dxn
β

su Uα ∩ Uβ , per cui dx1
α ∧ · · · ∧ dxn

α e dx1
β ∧ · · · ∧ dxn

β differiscono per un fattore moltiplicativo strettamente
positivo in quanto l’atlante è orientato. Quindi nell’intorno di ogni punto ν è somma di un numero finito di
termini che sono tutti un multiplo positivo l’uno dell’altro, per cui ν non si può mai annullare.

Dunque una varietà è orientabile se e solo se possiamo orientare coerentemente tutti gli spazi tangenti.

Esempio 3.6.1. Una varietà con un atlante costituito da una sola carta (esempio: un grafico) o da due
carte che abbiano intersezione connessa (esempio: la sfera) è chiaramente orientabile.

Esercizio 3.6.1. Sia F :M → N un diffeomorfismo locale fra due varietà di dimensione n. Dimostra che
se ν ∈ An(N) è una forma di volume su N allora F ∗ν è una forma di volume su M .

Definizione 3.6.4: Sia F :M → N un diffeomorfismo locale fra due varietà orientate. Diremo che F conserva
l’orientazione se F ∗ν determina l’orientazione data su M per ogni forma di volume ν ∈ An(N) che determina
l’orientazione data su N ; altrimenti diremo che F inverte l’orientazione.

Esercizio 3.6.2. Sia F :M → N un diffeomorfismo locale fra due varietà orientate. Dimostra che F conserva
l’orientazione se e solo se det Jac(ψ ◦ F ◦ ϕ−1) > 0 per ogni carta orientata (U, ϕ) di M e ogni carta
orientata (V, ψ) di N tali che F (U) ⊆ V .

Esercizio 3.6.3. Sia F :M → N un diffeomorfismo locale fra due varietà orientate di dimensione n. Dimostra
che F conserva l’orientazione se e solo se per ogni p ∈M l’immagine tramite dFp di una base positiva di TpM
è una base positiva di TF (p)N .
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Esercizio 3.6.4. Dimostra che Pn(R) è orientabile se e solo se n è dispari.

Esercizio 3.6.5. Dimostra che il prodotto di due varietà orientabili è orientabile.

Esercizio 3.6.6. Sia M una varietà tale che TM sia il fibrato banale. Dimostra che M è orientabile.

Esercizio 3.6.7. Posto I = [0, 1], sia p: I → S1 data da p(t) = e2πit. Indichiamo inoltre con π1: I×R→ I la
proiezione sul primo fattore. Sia ∼ la relazione d’equivalenza su I ×R che identifica i punti (0, y) ∈ {0}×R
con i punti (1,−y) ∈ {1} × R. Poniamo E = (I × R)/ ∼. Siccome p ◦ π1: I × R→ S1 è costante sulle classi
d’equivalenza di ∼, otteniamo un’applicazione continua surgettiva π:E → S1. Dimostra che questo è un
fibrato vettoriale di rango 1 su S1 (detto fibrato di Möbius), che E è una varietà non orientabile, e deduci
che E non è un fibrato banale.

Non tutte le varietà connesse sono orientabili (vedi gli Esercizi 3.6.4 e 3.6.7). Esiste però una procedura
standard per ottenere una varietà orientabile a partire da una non orientabile:

Proposizione 3.6.2: Sia M una varietà connessa non orientabile. Allora esiste un rivestimento liscio a
due fogli π: M̃ → M tale che M̃ sia una varietà connessa orientabile. Inoltre il gruppo di automorfismi
del rivestimento è isomorfo a Z2, e se F : M̃ → M̃ è l’automorfismo diverso dall’identità allora F inverte
l’orientazione di M̃ .

Dimostrazione: Per ogni p ∈ M indichiamo con +p e −p le due possibili orientazioni su TpM ; inoltre,
se {e1, . . . , en} è una base di TpM indichiamo con [e1 . . . en] l’orientazione indotta da questa base. Infine,
indichiamo con M̃ l’unione disgiunta delle coppie (p, +p) e (p,−p), cioè

M̃ =
⋃

p∈M

{(p, +p), (p,−p)},

e sia π: M̃ → M data da π(p,±p) = p. Vogliamo definire su M̃ una struttura di varietà soddisfacente le
richieste.

Sia A = {(Uα, ϕα)} un atlante di M tale che ogni Uα sia connesso, e tale che per ogni p ∈ M esistano
due carte locali (Uα, ∂α), (Uα′ , ∂α′) ∈ A in p tali che [∂1,α|p . . . ∂n,α|p] = +p e [∂1,α′ |p . . . ∂n,α′ |p] = −p. Per
ogni (Uα, ϕα) ∈ A definiamo ψα:ϕα(Uα)→ M̃ ponendo

ψα(x) =
(
ϕ−1

α (x), [∂1,α|ϕ−1
α (x) . . . ∂n,α|ϕ−1

α (x)]
)
,

dove p = ϕ−1
α (x). Ogni ψα è chiaramente iniettiva; la sua inversa è data da ϕ̃α = ϕα ◦ π, definita

su Ũα = ψα

(
ϕα(Uα)

)
. Allora Ã = {(Ũα, ϕ̃α)} è un atlante su M̃ . Infatti, copre M̃ per l’ipotesi su A,

e le carte sono compatibili in quanto

ϕ̃α ◦ ϕ̃−1
β = ϕα ◦ π ◦ ψβ = ϕα ◦ ϕ−1

β .

Siccome ϕα ◦ π ◦ ϕ̃−1
α = id, la proiezione π è differenziabile e chiaramente surgettiva. Inoltre se −Ũα ⊂ M̃ è

definito da (p,±p) ∈ −Ũα se e solo se (p,∓p) ∈ Ũα, allora π−1(Uα) = Ũα ∪ (−Ũα), e π ristretto sia a Ũα che
a −Ũα è un diffeomorfismo con Uα; quindi π è un rivestimento a due fogli.

Ora, se Ũα ∩ Ũβ 6= ∅ allora Uα ∩Uβ 6= ∅ e in ogni punto di Uα ∩Uβ si ha [∂1,α . . . ∂n,α] = [∂1,β . . . ∂n,β ],
per cui

det Jac(ϕ̃α ◦ ϕ̃−1
β ) = det Jac(ϕα ◦ ϕ−1

β ) > 0,

e quindi Ã è orientato.
Se M̃ non fosse connessa, la restrizione di π a ciascuna componente connessa sarebbe un rivestimento a

un foglio, cioè un diffeomorfismo, e M sarebbe orientabile, contraddizione.
Essendo π un rivestimento a due fogli, il gruppo di automorfismi di π è necessariamente Z2. L’automor-

fismo F è dato da F (p,±p) = (p,∓p), e si verifica subito che F inverte l’orientazione. Infatti, preso p ∈M ,
sia (U, ϕ) una carta in p tale che [∂1 . . . ∂n] = +p, e indichiamo con (U, ϕ−) la carta ottenuta invertendo le
ultime due coordinate di ϕ. Allora

ϕ̃− ◦ F ◦ ϕ̃−1(x) = ϕ̃− ◦ F
(
ϕ−1(x),+ϕ−1(x)

)
= ϕ̃−

(
ϕ−1(x),−ϕ−1(x)

)
= ϕ− ◦ ϕ−1(x) = (x1, . . . , xn, xn−1),

e la tesi segue dall’Esercizio 3.6.2.



3.6 Orientabilità 69

Corollario 3.6.3: Ogni varietà connessa semplicemente connessa è orientabile.

Dimostrazione: Se non fosse orientabile, per la proposizione precedente dovrebbe avere un rivestimento a
due fogli e quindi non potrebbe essere semplicemente connessa.

Esercizio 3.6.8. Sia E un fibrato vettoriale di rango r su una varietà n-dimensionale M . Indichiamo
con OE ⊂ E l’immagine della sezione nulla, e poniamo E∗ = E \OE . Il proiettivizzato P(E) è l’insieme otte-
nuto quozientando E∗ rispetto alla relazione d’equivalenza v ∼ w se e solo se esiste λ ∈ R∗ tale che v = λw.
Dimostra che P(E) ha una naturale struttura di varietà di dimensione r + n − 1 tale che la proiezione na-
turale π: P(E) → M è C∞. Inoltre, dimostra che π−1(p) è diffeomorfo a Pr−1(R) per ogni p ∈ M . Infine
dimostra che la varietà M̃ introdotta nella Proposizione 3.6.2 è diffeomorfa a P(ΛnM).

Esercizio 3.6.9. Sia M una varietà connessa di dimensione 1. Dimostra che M è necessariamente diffeomorfa
a R oppure a S1 nel seguente modo:
(i) Dimostra la tesi quando M è orientabile costruendo un campo vettoriale su M mai nullo e applicando

l’Esercizio 3.3.1.
(ii) Dimostra che M è sempre orientabile, facendo vedere che il suo rivestimento universale è diffeomorfo

a R e che ogni diffeomorfismo di R che inverte l’orientazione ha necessariamente un punto fisso.⌈
Il motivo per cui una n-forma mai nulla si chiama forma di volume è che permette di integrare delle

funzioni a supporto compatto su una varietà. Questo perché, come discuteremo fra un attimo, su una varietà
orientata di dimensione n è sempre possibile integrare n-forme a supporto compatto; e allora se ν è una forma
di volume e g è una funzione a supporto compatto, possiamo definire l’integrale di g come l’integrale di gν.

Ma andiamo per gradi.

Lemma 3.6.4: Sia M una varietà n-dimensionale orientata, e ω ∈ An(M) una n-forma a supporto compatto.
Supponiamo di avere due carte orientate (U, ϕ) e (Ũ , ϕ̃) tali che il supporto di ω sia contenuto in U ∩ Ũ .
Allora ∫

ϕ(U)

(ϕ−1)∗ω =
∫

ϕ̃(Ũ)

(ϕ̃−1)∗ω.

Dimostrazione: Ricordo che se η = f dx1 ∧ · · · ∧ dxn è una n-forma con supporto compatto in un aperto V
di Rn abbiamo per definizione ∫

V

η =
∫

V

f dx1 · · · dxn,

dove a secondo membro abbiamo l’usuale integrale di Lebesgue.
Scriviamo allora (ϕ−1)∗ω = f dx1 ∧ · · · ∧ dxn e (ϕ̃−1)∗ω = f̃ dx̃1 ∧ · · · ∧ dx̃n, per opportune fun-

zioni f ∈ C∞
(
ϕ(U)

)
e f̃ ∈ C∞

(
ϕ̃(U)

)
. Siccome

(ϕ̃−1)∗ω = (ϕ ◦ ϕ̃−1)∗(ϕ−1)∗ω,

troviamo
f̃ = f ◦ (ϕ ◦ ϕ̃−1) det Jac(ϕ ◦ ϕ̃−1).

Siccome le carte sono orientate, abbiamo det Jac(ϕ◦ ϕ̃−1) > 0, per cui la formula di cambiamento di variabile
negli integrali multipli ci dà∫

ϕ̃(Ũ)

(ϕ̃−1)∗ω =
∫

ϕ̃(U∩Ũ)

(ϕ̃−1)∗ω =
∫

ϕ̃(U∩Ũ)

f̃ dx̃1 · · · dx̃n

=
∫

ϕ̃(U∩Ũ)

f ◦ (ϕ ◦ ϕ̃−1) det Jac(ϕ ◦ ϕ̃−1) dx̃1 · · · dx̃n

=
∫

ϕ̃(U∩Ũ)

f ◦ (ϕ ◦ ϕ̃−1)
∣∣det Jac(ϕ ◦ ϕ̃−1)

∣∣ dx̃1 · · · dx̃n

=
∫

ϕ(U∩Ũ)

f dx1 · · · dxn =
∫

ϕ(U)

(ϕ−1)∗ω.
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Quindi se ω ∈ An(M) è una n-forma con supporto compatto contenuto nel dominio di una carta
orientata (U, ϕ) qualsiasi, possiamo definire

∫
M

ω ponendo∫
M

ω =
∫

ϕ(U)

(ϕ−1)∗ω.

La definizione dell’integrale per forme a supporto compatto qualunque si ottiene allora usando le partizioni
dell’unità:

Lemma 3.6.5: Sia M una varietà n-dimensionale orientata, e scegliamo un atlante orientatoA = {(Uα, ϕα)}
e una partizione dell’unità {ρα} subordinata a questo atlante. Allora per ogni n-forma ω ∈ An(M) a supporto
compatto il numero ∫

M

ω =
∑
α

∫
M

ραω (3.6.1)

non dipende né dall’atlante orientato scelto né dalla partizione dell’unità scelta.

Dimostrazione: Prima di tutto notiamo che siccome il supporto di ω è compatto, e i supporti delle funzioni
della partizione dell’unità formano un ricoprimento localmente finito, la somma in (3.6.1) contiene solo un
numero finito di termini non nulli, per cui è ben definita.

Sia Ã = {(Ũβ , ϕ̃β)} un altro atlante orientato di M , e {ρ̃β} una partizione dell’unità a lui subordinata.
Per ogni α abbiamo ∫

M

ραω =
∫

M

∑
β

ρ̃β

 ραω =
∑

β

∫
M

ρ̃βραω,

e sommando su α otteniamo ∑
α

∫
M

ραω =
∑
α,β

∫
M

ρ̃βραω.

L’integrando di ciascun addendo a secondo membro ha supporto compatto contenuto nel dominio di una
singola carta (Uα oppure Ũβ , per esempio), per cui il valore di ciascun addendo non dipende dalla carta
usata per calcolarlo.

In maniera analoga otteniamo ∑
β

∫
M

ρ̃βω =
∑
α,β

∫
M

ραρ̃βω,

e la tesi segue.

Definizione 3.6.5: Sia M una varietà orientata n-dimensionale. L’integrale
∫

M
ω di una n-forma ω ∈ An(M)

a supporto compatto su M è definito dalla formula (3.6.1). In particolare, se ν ∈ An(M) è una forma di
volume per M e f ∈ C∞(M) è a supporto compatto, poniamo∫

M

f =
∫

M

f ν.

Se M è compatta, diremo ν-volume di M il numero volν(M) =
∫

M
ν.

Non posso concludere questo capitolo senza citare un caso particolare (ma particolarmente importante)
del fondamentale Teorema di Stokes:

Teorema 3.6.6: (Stokes) Sia M una varietà compatta orientata n-dimensionale, e η ∈ An−1(M). Allora∫
M

dη = 0.

In generale, si può definire il concetto di varietà con bordo in modo che il bordo ∂M di una varietà M
con bordo n-dimensionale orientata sia una varietà (senza bordo) orientata (n − 1)-dimensionale. Allora il
Teorema di Stokes generale dice che ∫

M

dη =
∫

∂M

η

per ogni (n− 1)-forma η a supporto compatto in M .

⌋


