Capitolo 3

Fibrati vettoriali

3.1 Definizioni ed esempi

Uno dei motivi per cui la struttura di varieta e cosi utile e che 'unione disgiunta degli spazi tangenti a una
varieta ha a sua volta una struttura naturale di varieta. Si tratta del primo esempio di una categoria di
oggetti estremamente importanti, i fibrati vettoriali.

Definizione 3.1.1: Un fibrato vettoriale di rango r su una varieta M e un’applicazione differenziabile surget-
tiva m: E — M fra una varieta E (detta spazio totale del fibrato) e la varieta M (detta base del fibrato) che
soddisfa le seguenti proprieta:

(i) per ogni p € M linsieme E, = 7~ '(p), detto fibra di E sopra p, ¢ dotato di una struttura di spazio
vettoriale su R di dimensione r, e indicheremo con O, il vettore nullo di Ej;

(ii) per ogni p € M esiste un intorno U di p in M e un diffeomorfismo x:7~}(U) — U x R", detto
banalizzazione locale di E, tale che m oy = 7 (dove abbiamo indicato con 71: U x R” — U la proiezione
sulla prima coordinata), e tale che la restrizione di x a ciascuna fibra sia un isomorfismo fra gli spazi
vettoriali E, e {p} x R".

I fibrati vettoriali di rango 1 sono chiamati fibrati in rette. Quando non c’e rischio di confondersi useremo lo

spazio totale E per indicare un fibrato vettoriale 7: E — M, sottintendendo la proiezione 7. Infine, partendo

da spazi vettoriali su C invece che da spazi vettoriali su R si ottiene la nozione di fibrato vettoriale complesso.

In altre parole, un fibrato vettoriale & un modo differenziabile di associare uno spazio vettoriale a ciascun
punto di una varieta.

Esempio 3.1.1. Se M & una varieta, allora E = M x R" considerato con la proiezione m: M x R" — M
sulla prima coordinata e un fibrato vettoriale di rango r, detto fibrato banale.

EsempPio 3.1.2. Sia m:E — M un fibrato vettoriale su M di rango r, e U C M un aperto. Al-
lora my: By — U, dove By = 7 YU) e iy = Tlr—1(v), € un fibrato vettoriale di rango 7 su U, detto
restrizione di E a U.

Esercizio 3.1.1. Sia m: E — M un fibrato vettoriale di rango r sulla varieta M, e S C M una sottovarieta.
Dimostra che 7g: E|g — S, dove E|ls = 77(S) e mg = 7|,-1(g), ¢ un fibrato vettoriale di rango r su S,
detto restrizione di E a S. (Suggerimento: pud essere utile I'Esercizio 2.5.12).

C’¢ un modo tipico per verificare se una collezione di spazi vettoriali ¢ un fibrato vettoriale:

Proposizione 3.1.1: Siano M una varieta, E un insieme e m: E — M un’applicazione surgettiva. Sup-
poniamo di avere un atlante A = {(U,,¢a)} di M e applicazioni bigettive xo: 7 1(Uy) — U, x R tali
che

(a) m 0 xa =, dove m1: U x R" — U ¢ la proiezione sulla prima coordinata;
(b) per ogni coppia («, 8) di indici tale che U, N Ug # @ esiste un’applicazione differenziabile

9ap:Ua NUg — GL(1,R)

tale che la composizione X, © XEIZ (UaNUg) xR" — (U, NUg) x R" sia della forma

Xa © X5 (p:0) = (P, 9ap(p)v). (3.1.1)
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Allora l'insieme E ammette un’unica struttura di fibrato vettoriale di rango r su M per cui le x, siano
banalizzazioni locali.

Dimostrazione: Poniamo E, = 7~1(p) per ogni p € M. Se p € U,, la restrizione di y, a E, & una bigezione
con {p} x R", e quindi possiamo usarla per definire una struttura di spazio vettoriale su E,: se u1, us € E,
sono tali che xq(u;) = (p,v;) per opportuni vy, v € R", poniamo

uy +uz = x5 (p,v1 + v2) e Ay = x5 (p, Avr) (3.1.2)

per ogni A € R. A priori, la struttura di spazio vettoriale cosi definita potrebbe dipendere dalla banaliz-
zazione Y, usata, nel qual caso saremmo nei guai, in quanto in un fibrato vettoriale la struttura di spazio
vettoriale delle fibre dev’essere definita indipendentemente dalle banalizzazioni. Ma per fortuna la (3.1.1)
ci evita questo problema. Infatti, se p appartiene anche a un altro Ug, e scriviamo xg(u;) = (p,w;) per
opportuni wi, wy € R", abbiamo

(p7 Uj) = Xa © Xgl(pv wj) = (p7 gaﬂ(p)wj)v

cioe v; = gag(p)w;, € quindi

Xa' (0,1 +02) = X5 (9, Gap(P)w1 + gap(P)w2) = x5 ' (P, gas(p) (w1 + w2))

=Xa' 0o (Xa 0 X5 ") (P w1 + w2) = x5 (p, w1 +w2),

per cui 'operazione di somma non dipende dalla banalizzazione usata per definirla. Analogamente si dimostra
che I'operazione di prodotto per uno scalare & ben definita.

Poniamo ora U, = 77 1(Uy) € Xa = (@a,id) 0 Xo. Allora f(aof(gl = (@aogpgl,gaﬁowgl) ¢ di classe C*°,
per cui A = {(Us, Xa)} ¢ un atlante su £ di dimensione n + r, che soddisfa (esercizio) tutte le proprieta
necessarie perché m: E — M sia un fibrato vettoriale.

Viceversa, supponiamo di avere su F una struttura di fibrato vettoriale per cui le x,, siano banalizzazioni
locali. In tal caso, le x, devono indurre isomorfismi fra le fibre ed R", per cui la (3.1.2) dev’essere valida,
e la struttura di spazio vettoriale su ciascuna fibra ¢ unica. Inoltre, le Xo = (¢q,1d) 0 X4 sono chiaramente
diffeomorfismi con aperti di R™"", dove n = dim M, e quindi la struttura differenziabile di E coincide con
quella indotta dall’atlante A definito tramite le Yq. Il

Definizione 3.1.2: Sia m: E — M un fibrato vettoriale. Diremo che una carta locale (U, p) di M banalizza E
se esiste una banalizzazione locale del fibrato definita su 7= 1(U). Un atlante A di M banalizza il fibrato E
se ogni carta di A lo fa.

Sia A = {(U,,pa)} un atlante che banalizza un fibrato vettoriale m: E — M, e indichiamo con x4
la banalizzazione sopra U,. Allora le composizioni x, o Xgl devono indurre per ogni p € U, N Ug un
isomorfismo di R" che dipende in modo C* da p, per cui devono necessariamente esistere applicazioni
differenziabili gog: Uy N Uz — GL(r,R) che soddisfano (3.1.1).

Definizione 3.1.3: Sia A = {(Uq, ¢o)} un atlante che banalizza un fibrato vettoriale =: E — M. Le appli-
cazioni go3: Uy NUg — GL(r,R) che soddisfano (3.1.1) sono dette funzioni di transizione per il fibrato E
rispetto all’atlante A.

I prossimi due esercizi mostrano come per definire un fibrato vettoriale su una varieta M sia sufficiente
avere le funzioni di transizione.

Esercizio 3.1.2. Siano {gng} le funzioni di transizione di un fibrato vettoriale m: E — M rispetto a
un atlante A = {(Uy,¢q)} di M. Dimostra che gg, = g;é (inversa di matrici) su Uy, NUg # @, e
che gaggsy = ga~y (prodotto di matrici) su Uy NUg N U, # @.

FEsercizio 8.1.8. Supponiamo di avere un atlante A = {(Uy, pa)} su M, e funzioni g,g: Uy NUg — GL(r,R)
che soddisfano le proprieta dell’esercizio precedente. Dimostra che esiste un unico (a meno di isomorfismi:
vedi oltre per I'ovvia definizione di isomorfismo fra fibrati vettoriali) fibrato vettoriale E su M che abbia
le gop come funzioni di transizione rispetto all’atlante A. (Suggerimento: leggi 'Esempio 3.1.4 piu sotto.)
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Proviamo ad applicare la Proposizione 3.1.1 agli spazi tangenti. Data una varieta M, indichiamo con T'M
I'unione disgiunta degli spazi tangenti T}, M al variare di p € M, e sia m: T'M — M la proiezione che manda
ciascun T, M in p. Dato un atlante {(Uy, @)}, possiamo definire bigezioni xo: 7! (Uys) — U, x R™ ponendo

0
Xa ZU] N = (p7v)7
i Ozaly
dove o = (zL,...,2%) e v = (v},...,v"). La (2.4.2) ci dice allora che
"L | & Ozt |0 Oz
a0 Xz (pv) = v]— = Xa S| =<p,—apv),
Xa 0 X Z ol ) 21250 | g, 5y )

dove 0z, /0x3 ¢ la matrice jacobiana del cambiamento di coordinate ¢, o @El. Quindi (3.1.1) & soddisfatta

con
Oz,
Jap = a.’I/'@’

per cui otteniamo una struttura di fibrato vettoriale su T'M.

Definizione 3.1.4: Sia M una varieta di dimensione n. Il fibrato vettoriale m: TM — M di rango n con la
struttura appena definita si dice fibrato tangente alla varieta.

Un altro esempio ¢ il fibrato cotangente. Indichiamo con Ty M lo spazio duale di T),M, e con T"M
I'unione disgiunta dei T M al variare di p € M, con l'ovvia prmezmne mT*M — M. Data una carta
locale p, = (x},... ,xg) in un punto p € M, indichiamo con {da |, ..., dz%|,} la base di Ty M duale della

base {9/0zt|,,...,0/0x7|,} di T,M. E facile verificare che (2.4.2) 1mplica

n

oxk
dafil, = aTf(p) dzl|,, (3.1.3)
h=1 @

per cui possiamo nuovamente applicare la Proposizione 3.1.1. Infatti, se definiamo xo: 7 }(U,) — U, x R”
anche stavolta ponendo

n
Zwﬂ dx31|17 = (pa wT)7
Jj=1

dove wT € R™ ¢ il vettore colonna trasposto del vettore riga (wy, ..., w,) € (R™)*, otteniamo
Xa 0 X' (pyw ij drfly | = Xa Zn: ) g%%@)wj dall, | = <p, [%(?)}TU/T) ;
h=1 |j=1 """«
per cui recuperiamo (3.1.1) con
3}
Jap = [ . ] :

dove AT indica la trasposta della matrice A.
Definizione 3.1.5: Sia M una varieta di dimensione n. Il fibrato vettoriale m: T*M — M di rango n con la
struttura appena definita si dice fibrato cotangente alla varieta.

Osservazione 3.1.1. Data una carta locale ¢ = ( L ...,2") in un punto p di una varietdh M, abbiamo

introdotto due notazioni pericolosamente simili: d:vJ , che indica il differenziale in p della funzione coordi-
nata z7, e dz’|,, 'elemento della base duale di T;M . Per fortuna, ricordando 1’Osservazione 2.4.6 di fatto
possiamo identificare questi due oggetti. Infatti, dxg, e un’applicazione lineare da 7, M a valori in R, per cui

¢ un elemento di 77 M; inoltre,
0 0z’ ;
o (W ) = 5 ) =0

per cui dv), = da’|,.
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Osservazione 3.1.2. Come diventera ancora piu chiaro a partire dal prossimo capitolo, in geometria
differenziale ¢ importante mantenere distinti vettori colonna e vettori riga, ovvero non identificare R™ con
il suo duale (R™)*. La scelta di una base fornisce un isomorfismo fra T, M e R"; la scelta della base duale
corrisponde a considerare I'inversa del duale di questo isomorfismo, e quindi identifica 7,y M con (R")*. In
altre parole, le coordinate rispetto alla base duale degli elementi di 7)) M vivono in maniera naturale in (R™)*,
per cui sono vettori riga, e non vettori colonna. Siccome come modello per i fibrati vettoriali usiamo R" e
non il suo duale, nelle formule riguardanti il fibrato cotangente siamo costretti a introdurre la trasposizione.
In particolare, le funzioni di transizione del fibrato cotangente sono le inverse trasposte delle funzioni di
transizione del fibrato tangente, e non semplicemente le inverse.

Nel Capitolo 1 abbiamo visto altre operazioni che possiamo effettuare sugli spazi vettoriali 1), M; pos-
siamo per esempio costruire l'algebra tensoriale, o 1’algebra esterna. Abbiamo anche visto come ottenere
delle basi di questi spazi, facendo prodotti tensoriali o prodotti esterni di elementi delle basi di T, M e T,y M.
La multilinearita del prodotto tensoriale e del prodotto esterno ci dice anche come cambiano queste basi
cambiando carte locali: otteniamo formule del tipo

0 0
— R ® . ®dzh1®...®dmhs
At oxir B B
B B
n n a ar h1 hs
_ E § 8xa1 axa axﬁ axﬁ 9 dxb drxbs
= ajl.”ajrabl.”absax‘“@”.@W@ Ty Q- Qaxy,
aryemar=1by,...b,=1 913 Tg Ola Lo Tha =

per cui possiamo procedere (esercizio) come fatto nel caso dei fibrati tangente e cotangente, ottenendo i
fibrati tensoriali.

Definizione 3.1.6: Sia M una varieta. Indichiamo con T} M I'unione disgiunta degli spazi T} (T, M) al variare
dip € M, esia m: TFM — M la proiezione associata. Allora T}* M, con la struttura naturale sopra descritta,
¢ detto fibrato dei (];) -tensori su M. Indicheremo invece con \" M il fibrato delle r-forme ottenuto prendendo

I'unione disgiunta degli spazi A" (T, M). In particolare, A' M =T*M.

Osservazione 3.1.3. Attenzione: /\:j M & uguale a \" (T M) e non a \"(T,M) come ci si sarebbe potuti
aspettare, per cui A" M & contenuto in TOM invece di Ty M. Il motivo di questa scelta ¢ che mentre il
fibrato delle r-forme come definito qui € infinitamente utile in geometria differenziale, il fibrato ottenuto
considerando gli spazi A" (T, M) viene usato cosi di rado da non meritare un simbolo speciale.

I fibrati tensoriali naturalmente non esauriscono la categoria dei fibrati vettoriali interessanti.

EseEmMPIO 3.1.3. Sia S una sottovarieta di dimensione k di una varieta n-dimensionale M. Abbiamo gia
osservato come per ogni p € S possiamo identificare ciascun 7,5 con un sottospazio vettoriale di T,,M.
Allora il fibrato normale di S in M ¢ il fibrato vettoriale Ng su .S di rango n — k ottenuto prendendo 1'unione
disgiunta degli spazi vettoriali quozienti T, M /T,S, con la proiezione naturale m: Ng — S. Per costruire le
banalizzazioni locali, scegliamo un atlante {(Ua, pq)} di S in modo che ciascuna carta (U,, ¢q) provenga

da una carta (Uy, $o) di M come indicato nel Corollario 2.5.4. In particolare, posto @, = (zk,...,27), per
ogni p € U, i vettori {9/9zL],,...,0/0x%|,} formano una base di 7,5, per cui una base di T,M/T,S
¢ data da {0/0zF*Y, + T,S,...,0/02"|, + T,S}. Quindi possiamo definire una banalizzazione locale

Xa: T 1 (Uy) — Uy X R™ ¥ ponendo

+TPS> = (pvv)v
p

n—k ' 9
Xa Z(a—

Jj=1

e non ¢ difficile (esercizio) verificare che le ipotesi della Proposizione 3.1.1 sono soddisfatte.

Esercizio 3.1.4. Definisci i concetti di sottofibrato di un fibrato vettoriale, di quoziente di un fibrato per
un suo sottofibrato, di somma diretta e di prodotto tensoriale di due fibrati sulla stessa varieta, e ve-
rifica che il fibrato normale Ng introdotto nel precedente esempio puo essere identificato con il fibrato
quoziente TM|g/TS, dove TM|s ¢ la restrizione di TM a S (vedi I'Esercizio 3.1.1).
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EsEmPIO 3.1.4. Vogliamo introdurre una famiglia di fibrati in rette sullo spazio proiettivo P"(R). Sia
A={(Uy,¢0),--.,(Un,pn)} latlante introdotto nell’Esempio 2.1.12, e prendiamo d € Z. Indichiamo con Ey4
I'unione disgiunta degli insiemi Uy X R, ..., U, x R quozientato rispetto alla relazione d’equivalenza ~ cosi
definita: (z,\) € Up, x R & equivalente a (#, A) € Uy X R se e solo se

d
- o\ <
rT=71 e ={=] M
x

dove abbiamo scritto © = [z : z"] come al solito. In particolare, (z,\) ~ (&) implica che
x = 2 € Up N U, per cui la relazione d’equivalenza ¢ ben definita e abbiamo una proiezione natu-
rale m: Ey — P"(R). E ora facile usare la Proposizione 3.1.1 per dimostrare che abbiamo definito dei
fibrati in rette: infatti per ogni j = 0, ..., n la proiezione sul quoziente ¢ una bigezione fra U; xR e 71'_1(Uj)7
per cui possiamo usarne linversa x;: 71 (U;) — U; x R per definire le banalizzazioni locali. Per costruzione
le funzioni di transizione gpx: Up N Uy — GL(1,R) = R* sono date da

gnk(z) = (%)d .

Chiaramente, Ey = P"(R) x R & il fibrato in rette banale. Si puo inoltre dimostrare che gli Ey4, a meno di
isomorfismi (vedi sotto per la definizione — ovvia — di isomorfismo fra fibrati), sono tutti e soli i fibrati in
rette su P”.

0 . ...

Concludiamo questo paragrafo introducendo anche le applicazioni fra fibrati:

Definizione 3.1.7: Siano m1: By — M e my: B3 — My due fibrati vettoriali. Un morfismo fra i due fibrati
¢ una coppia di applicazioni differenziabili L: By — Fy e F:M; — M> tali che mo o L = F o m; (per
cui L((E1)p) € (E2)r(p) per ogni p € My, cioé L manda fibre in fibre), e che L(g,y,: (E1)p — (E2)p(p) sia
lineare per ogni p € M. Un morfismo invertibile (cioe tale che sia L che F siano diffeomorfismi) ¢ detto isomor-
fismo di fibrati vettoriali. A volte indicheremo un morfismo di fibrati scrivendo semplicemente L: £; — FEo
sottintendendo ’applicazione F'. Quando M; = My, cioe se E1 ed E5 sono fibrati sulla stessa base, a meno
di avviso di contrario supporremo sempre che I’applicazione F' sia l'identita, per cui L soddisfa w5 o L = 7.
Spesso viene detto banale un qualsiasi fibrato vettoriale isomorfo al fibrato banale.

In altre parole, un morfismo di fibrati &€ un’applicazione che rispetta sia la struttura differenziabile che
la struttura di fibrato vettoriale.

Esercizio 3.1.5. Se F: M — N & un’applicazione differenziabile, dimostra che dF: TM — TN & un morfismo
di fibrati.

Esercizio 3.1.6. Sia F: M — N un’applicazione differenziabile, e m: E'— N un fibrato vettoriale di rango r
su N. Per ogni p € M poniamo (F*E), = Ep(, e sia ["*E 'unione disgiunta degli (F*E), al variare
di p € M, con la proiezione canonica 7: F*E — M. Dimostra che F*E ha una struttura naturale di fibrato
vettoriale di rango r su M, detto fibrato pull-back (o fibrato indotto) di E rispetto a F. Dimostra inoltre
che se 1: S — M & una sottovarieta e E ¢ un fibrato su M, allora .*F = E|g.

FEsercizio 3.1.7. Sia (L, F') un morfismo fra i fibrati vettoriali m1: F1 — M; e mo: F3 — Ms. Dimostra che
Ker(L,F) = {v € By | L(v) = Op@)} € E1 ¢ un sottofibrato di E1, e che Im(L, F) = L(E;) € Es ¢ un
sottofibrato di Es.

Esercizio 3.1.8. Sia A = {(Uy, pa)} un atlante che banalizza due fibrati vettoriali m: E — M e 7: E — M
di rango 7 su M, e indichiamo con {gag} € {Jag} le relative funzioni di transizione. Dimostra che E e E
sono isomorfi se e solo se esistono applicazioni differenziabili o,: U, — GL(r,R) tali che jog = 0, gapsos.
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3.2 Sezioni di fibrati

Quando si ha un fibrato vettoriale, una cosa che risulta molto utile ¢ studiare le applicazioni dalla base allo
spazio totale del fibrato che associano a ogni punto della base un elemento della fibra su quel punto.

Definizione 3.2.1: Sia m: E — M un fibrato vettoriale su una varieta M. Una sezione di E ¢ un’applicazione
differenziabile s: M — E tale che m o s = idy, cioé tale che s(p) € E, per ogni p € M. Lo spazio vettoriale
delle sezioni di E verra indicato con £(M). La sezione O € (M) che a ogni punto p € M associa il vettore
nullo O, € E, ¢ detta sezione nulla di E.

N

Osservazione 3.2.1. Se E = M x R" ¢ il fibrato banale di rango r, allora lo spazio delle sezioni £(M)
¢ canonicamente isomorfo allo spazio C*°(M,R") delle applicazioni differenziabili a valori in R". Infatti,
se s € E(M) & una sezione allora mg 0 s € C°°(M,R"), dove mg: M X R” — R" & la proiezione sulla seconda
coordinata; viceversa, se F' € C°°(M,R") allora p — (p, F(p)) ¢ una sezione di M x R". Quindi in un certo
senso le sezioni di un fibrato sono una generalizzazione delle applicazioni differenziabili a valori in R".

Osservazione 3.2.2. Ogni fibrato vettoriale ammette sezioni. Sia 7m: E — M un fibrato vettoriale di
rango r, e x: 7 1(U) — U x R" una banalizzazione locale. Scegliamo una qualsiasi applicazione differenzia-
bile F:U — R" e sia p € C*°(M) tale che supp(p) C U. Allora applicazione s: M — FE data da

s(p) = | X1 p(P)F(p)) sepeU,
) { Op se p € M \ supp(p),

¢ chiaramente una sezione di E.
Le sezioni del fibrato tangente, e piu in generale dei fibrati tensoriali, hanno nomi particolari.

Definizione 3.2.2: Un campo vettoriale su una varieta M € una sezione del fibrato tangente TM. Lo spazio
vettoriale dei campi vettoriali su M verra indicato con 7 (M). Una k-forma differenziale su M & una sezione
del fibrato A" M. Lo spazio vettoriale delle k-forme differenziali su M verra indicato con A*(M). Un campo
tensoriale di tipo (’f) (o (’;)—tensore) su M & una sezione del fibrato T* M. Lo spazio vettoriale dei (’;)—tensori
verrd indicato con T,F(M).

Osservazione 3.2.3. Se X € T (M) ¢ un campo vettoriale e p € M, a volte scriveremo X, invece di X (p).
Analogamente, se w € A¥(M) & una k-forma, a volte scriveremo w,, invece di w(p).

Sia (U, ¢) una carta in p € M, e scriviamo ¢ = (z!,...,2™) come al solito. Abbiamo quindi delle sezioni

locali 01,...,0, di TM definite su U ponendo

9i(p) = 5

e T,M.
p

Se X € T(M) & un campo vettoriale qualsiasi e p € U, allora X (p) dev’essere una combinazione lineare
di 1(p), ..., 0n(p), per cui possiamo trovare funzioni a',...,a": U — R tali che

X(p) =Y a’(p)d;(p).
j=1

Siccome (al(p), .oat (p)) = dp, (X(p)), si vede subito che le funzioni a7 sono di classe C.
Osservazione 3.2.4. A volte scriveremo anche

n

X =Y o,

Jj=1

dove le @’ sono funzioni C*° definite su un aperto di R” (I'immagine della carta locale), e non su un aperto
di M (il dominio della carta locale). In altre parole, a’(z) = a’ o p~1(x) per ogni z € ¢(U).
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Se (U, @) & un’altra carta con U N U + @, sappiamo che

oxk

ah = :1Waka

su UNU. Quindi se scriviamo X =3, a?d; =Y, a" 9y troviamo

Z 8xh h (3.2.1)
h=1

che ¢ la formula che ci dice come cambiano i coefficienti di un campo vettoriale al cambiare della carta.

FEsercizio 3.2.1. Sia A = {(Ua, ¢o)} un atlante su una n-varietd M. Supponiamo di avere per ogni «
una n-upla di funzioni a, = (al,...,a?) € C*(U,)™ in modo che su U, N Up le a, e le ag siano legate
da (3.2.1). Dimostra che la formula X = 3, al,0j o, dove ;. = 0/0x),, definisce un campo vettoriale
globale X € T(M).

Dunque la scelta di coordinate locali fornisce una base dello spazio tangente che varia in modo differen-
ziabile sul corrispondente aperto coordinato, il primo esempio di riferimento locale per un fibrato vettoriale.

Definizione 3.2.3: Sia m: E — M un fibrato vettoriale di rango r sulla varieta M, e U C M un apertodi M. Un
riferimento locale per E su U & una r-upla o1, ...,0, € £(U) di sezioni di E su U tali che {o1(p),...,0-(p)}
sia una base di E, per ogni p € U.

Osservazione 3.2.5. Dare un riferimento locale € equivalente a dare una banalizzazione locale. In-
fatti, sia ;7 1(U) — U x R" una banalizzazione locale di un fibrato vettoriale E di rango r. Po-
nendo oj(p) = x"'(p,e;), dove e; & il j-esimo vettore della base canonica di R”, otteniamo chiaramente
un riferimento locale per E su U. Viceversa, se {o1,...,0,} & un riferimento locale per E su U, defi-
niamo &: U x R — 7~ 1(U) ponendo

Ep,w) =w'o1(p) + -+ w'on(p) € Ep.

Chiaramente £ & bigettiva, di classe C®, e x = £~ & una banalizzazione locale. L’unica cosa non del
tutto ovvia e verificare che y sia di classe C*°. Per dimostrarlo scegliamo una qualsiasi banalizzazione y
nell’intorno di p € U, e sia {51, ...,5,} il corrispondente riferimento locale. Inoltre, poniamo Y, = m3 o ¥,
dove mo:U x R" — R" & la proiezione sulla seconda coordinata, in modo che si abbia x(v) = (p, )Zo(v)).

Scriviamo Xo(0;) = (aj,...,a}); allora (a") & una matrice invertibile con elementi di classe C°, per cui

J
anche la sua inversa B = (b’) ha tutti gli elementi di classe C>, e si ha &), =3 _; v ,0j. Ma allora se v € E,

abbiamo
’U*Z’U Gp = Z vhbjaj,

h,j=1

dove (01,...,97) = X, (v), per cui v = £(p,w) con w = BY,(v), e quindi

x(v) = (p, BXo(v))
e di classe C'°°, come voluto.

Osservazione 3.2.6. Una conseguenza della precedente osservazione ¢ che un fibrato vettoriale & (isomorfo
al fibrato) banale se e solo se ammette un riferimento globale.

Siano x. e xp due banalizzazioni locali, e {o1,4,...,0ra}, {01,8,...,0,3} 1 corrispondenti riferimenti
locali. Se scriviamo 0,5 = Y-, (gap)s Ok,o abbiamo

( 72(9@6)?@6) = Xa (Z(gaﬁ) Ok a) = Xa(aj,ﬁ) = Xa © Xgl(p7 ej) = (p7 gaﬁ(p)ej)u

k k
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dove gop € la funzione di transizione da x, a xg, per cui le (gag)g? sono le componenti della funzione di
transizione gng.
Sia ora ¢ una sezione qualunque di E, e scriviamo o = >, al0ja = >, agahﬁ. Allora il conto

precedente ci dice che
T

al, = (gap)] afy, (3.2.2)
h=1

¢ la formula che esprime come cambiano i coefficienti di una sezione al cambiare della banalizzazione locale.

Esercizio 3.2.2. Sia A = {(Uy, o)} un atlante su M, e gop: Uy, N Ug — GL(r,R) una famiglia di fun-
zioni di transizione per un fibrato E. Supponi di avere per ogni « una r-upla di funzioni differenzia-
bili a, = (ak,...,al) € C*®(U,)" in modo che su U, N Ug le a, e le ag siano legate da (3.2.2). Dimostra
che esiste un’unica sezione o di E tale che le a?, siano i coefficienti di o relativi a un appropriato riferimento

locale su U,.

FEsercizio 3.2.3. Sia 0: M — E una sezione (non necessariamente C*) di un fibrato vettoriale su M.
Dimostra che o & C™ se e solo se per ogni riferimento locale {oy,...,0,.} di E su U C M si pud scri-
vere 0 = aloy+---+a"o, conal,...,a” € C®(U) se e solo se questo avviene per una famiglia di riferimenti
locali i cui domini di definizione formano un ricoprimento aperto di M.

EsEMPIO 3.2.1. Una funzione f:R™' — R & detta d-omogenea (con d € Z) se f(Ax) = Mf(z) per
ogni A € R* e z € R". E evidente che ogni funzione 0-omogenee f:R"™! — R definisce una fun-
zione f € C*® (P"(R)) tale che fom=f, dove m: R"™\ {O} — P"(R) ¢ la proiezione naturale. Viceversa,
ogni funzione 0-omogenea e della forma f o per un’opportuna funzione C'°° definita sullo spazio proiettivo.
Ricordando 1’Osservazione 3.2.1, abbiamo quindi un isomorfismo fra lo spazio delle funzioni 0-omogenee
su R™"! e lo spazio delle sezioni del fibrato banale Ey = P"(R) x R. Vogliamo ora far vedere che, piti in
generale, ¢’& un naturale isomorfismo fra lo spazio delle funzioni d-omogenee su R" ™ e lo spazio &y (IP’"(]R))
delle sezioni del fibrato in rette mq: Eq — P™(R) introdotto nell’Esempio 3.1.4. Infatti, sia f:R"*" — R una
funzione d-omogenea, e definiamo f:P"(R) — E4 nel seguente modo:

Vo € Uj f($)=X}1<$,f([$]j>)7
dove [z]; € R™™ & l'unico elemento y € R™™ tale che 7(y) = z e y? = 1. Per verificare che f & una sezione
di Ey ¢ sufficiente controllare che sia ben definita, visto che localmente ¢ chiaramente C'°°. Sia x € Uy N Uyg;
allora [z], = (z¥/2")[x]x, per cui ricordando la definizione di F4 troviamo

i o i (. (1) = (m (j—i)dmxm) = (o (55 12k) ) = (o 1),

e f & ben definita. Viceversa, data f € & (P"(R)) possiamo definire fi:U; — R con x; (f(m)) = (z, fi(z))
per ogni x € U;j e ogni j =0,...,n. Se x € Uy N Uy si verifica subito che

fe(@) = (mh>dfh(x). (3.2.3)

xk

Possiamo allora definire f: R™*' — R ponendo f(O) =0e f(y) = (yj)dfj (7(y)) per un qualsiasi j =0,...,n
tale che y/ # 0. Grazie alla (3.2.3) si vede subito che f & ben definita, ed & chiaramente d-omogenea.

EsEMPIO 3.2.2. Se M & una varieta di dimensione n, allora TM ¢ una varieta di dimensione 2n, per cui
possiamo considerare il fibrato tangente del tangente 7: T(TM) — T'M di rango 2n su TM. Vogliamo ora
descrivere dei riferimenti locali naturali per T'(TM). Sia (U, ¢) una carta locale per M; abbiamo visto che ¢
induce una banalizzazione locale x: 7~ 1(U) — U x R™ e un riferimento locale {0y, ...,8,} per TM tali che

x(v) = (p,(v',...,v")) seesolose v=10v'O,+  +0"dy|, € T,M,
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dove m: TM — M & la proiezione naturale. Inoltre, se poniamo ¥ = (ip,id) o x otteniamo una carta lo-
cale (m='(U),x) di TM. Scrivendo ¢ = (z',...,2") & chiaro che Y(v) = (z'(p),...,z"(p),v',...,v")
per ogni v € T,M e p € U. Dunque alla carta locale ¥ di 7'M possiamo associare il riferimento lo-
cale {0/0z,...,0/0x™,0/0v,... 8/0v"} di T(TM) sopra 71 (U) = TU. Per capire meglio chi sono 9/9z"
e 0/0v* vediamo come si comportano rispetto al differenziale della proiezione 7. Ora, se f € C°°(U) ¢ chiaro

(perché?) che

5| oM =0 e 5| (Fom) =0

quale che sia v € T,M; in altre parole, i 0/0z" riproducono la derivate nelle coordinate di M, mentre
i 0/0v"* danno le derivate delle funzioni ristrette ai singoli spazi tangenti. In termini pitt formali, questo vuol
dire che dm,(9/0z") = Oy |x(v) € dmy(9/0V") = Or(y). In particolare, {9/dv',...,8/0v"} & un riferimento
locale per il fibrato verticale V = Ker(dr) C T(T'M). Nota che mentre il fibrato verticale ¢ ben definito
indipendentemente dalla carta locale scelta, non esiste una definizione canonica per un “fibrato orizzon-
tale” H C T(TM) tale che T(TM) = H @& V; per esempio, ¢ facile dimostrare (esercizio) che, in generale,
se @ = (!,...,2") & un’altra carta locale allora Span(d/dx!,...,8/0z™) # Span(9/0i*,...,0/93™). Ne
riparleremo nel prossimo capitolo quando introdurremo il concetto di connessione.

ESEMPIO 3.2.3.  Se ¢ = (z!,...,2") & una carta locale su M, allora le 1-forme {dz!, ..., dz"} definite come
base duale di {01, ...,0,} (0 come differenziale delle coordinate locali; vedi I’Osservazione 3.1.1) formano un

riferimento locale del fibrato cotangente. La Proposizione 1.3.4 allora implica che un riferimento locale per
il fibrato A* M delle k-forme ¢ dato dalle forme

dz® A - A dat
con 1 <iy; <---<ig <n, per cui ogni k-forma si puo scrivere localmente come

w= Z iy .., dz A -+ A dat

1<iy <--<ip<n

per opportune funzioni a;, _;, . In particolare, quando k = n un riferimento locale per il fibrato in rette A" M
¢ dato dalla n-forma dz' A+ - -Adz™. Se ¢ = (z!,...,3") & un’altra carta locale, usando la (3.1.3) e ricordando
I’Osservazione 1.3.7 troviamo subito che

~h

d:?:l/\~~~/\di”det(%> da' A~ A da.
T

Un tensore di tipo (:) definito su uno spazio vettoriale V prende come argomenti h elementi di V*
e k elementi di V, e restituisce un numero. Analogamente, un campo di tensoriale di tipo (Z) puo essere
calcolato punto per punto su h 1-forme e k campi vettoriali, ottenendo una funzione. Viceversa, perché
un’applicazione con argomenti h 1-forme e k campi vettoriali e valore una funzione su M sia indotta da un
campo tensoriale di tipo (Z) occorre come minimo che il suo valore in un punto p dipenda soltanto dal valore
dei suoi argomenti nel punto p e non da come si comportano altrove (come succederebbe invece se stessimo

calcolando una derivata). Un risultato non difficile ma importante & che per ottenere questo e sufficiente (e
necessario) richiedere la C'*°(M)-multilinearita:

Proposizione 3.2.1: Sia M una varieta. Allora
(i) Un’applicazione 7: AL(M)"* x T(M)k — C(M) & C°°(M)-multilineare se e solo se esiste un campo
tensoriale T € T, (M) tale che
Flwh . W X, X)) () = Tp(wl(p), W), X1(p), .. ,Xk(p)) (3.2.4)

per tutti gli wt, ..., w" € AY(M), X1,...,Xp €T(M)epe M.
(ii) Un’applicazione #: T (M)* — T"(M) & C>(M)-multilineare se e solo se esiste un campo tensoriale
T € T"(M) tale che

7(Xq,. .. 7Xk)(p)(w;, e ,wg) = Tp(wll), . ,wZ,Xl(p), o, Xi(p)) (3.2.5)
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per tutti gli w;,...,wz eTyM, Xy,...,. X, €T (M) epe M.
Dimostrazione: (i) Dato 7 € 7,*(M), cominciamo col dimostrare che 1’applicazione

p= Tp(wl(p)v s awh(p)aXl(p)a s ,Xk(p))
& di classe C>°(M) per ogni w',...,wh € AY(M) e Xi,..., Xy, € T(M). Infatti, se (U, ) & una carta locale
in p, possiamo scrivere localmente w? = o widx", 8; = Do X;@S e
T = > TSI, @ ® Oy, @ AT ® - @ dat, (3.2.6)
UL yeeeyUR Ul yeeny Vk

con wy, X7, Tyl € C°(U), per cui localmente abbiamo

1 h _ Uuy...up, 1 h V1 Vi
T(wy .. .,w ,Xl,...,Xk) = E oLy NRLID CLERED. ¢

u1..

che & chiaramente di classe C*°. La stessa formula ci dice anche che Papplicazione 7 definita da (3.2.4)
¢ C°°(M)-multilineare.

Viceversa, supponiamo di avere una 7: A*(M)" x T(M)* — C%(M) che sia C°°(M)-multilineare;
vogliamo far vedere che proviene da un campo tensoriale. Prima di tutto, dimostriamo che se w! = O in
un intorno U di un punto p € M allora 7(w!,...,w", X1,...,X3)(p) = 0 per ogni w?,...,w" € A} (M)
eogni Xy...,X, € T(M). 1l Corollario 2.3.2 ci fornisce una funzione g € C*°(M) tale che g(p) = 1
e glanw = 0. Allora gw' = O e quindi

'f(wl, e ,wh,Xl,...,Xk)(p) = g(p)i'(wl, e ,wh,Xl,...,Xk)(p) = A(gwl,...,wh,Xl, o Xe)(p)
O,...,0" X1,...,X1)(p) =7(0-0,...,0w" X1,..., X)(p)
S0, Wh X, XE)(p) = 0.

S

1 1

In particolare, se @' e @' sono tali che &' = @' in un intorno U di un punto p, applicando questo argomento

1

S | ; A1 h PV h
aw' =o' —o! troviamo 7(&h, ..., w", X1, ..., Xg)(p) = 7F(@, ..., 0", Xy, .., Xk) (D).

Lo stesso ragionamento si applica chiaramente a w?,...,w" e a Xi,..., X}, per cui per calcolare
Fwh, ... wh X1,..., Xi)(p) ci basta conoscere il comportamento di w',...,w" X;,..., X} in un intorno

di p. In altre parole, per ogni aperto U C M la 7 definisce un’applicazione 7r: AY(U)" x T(U)F — C>=(U)
che & C*°(U)-multilineare.
Supponiamo adesso di prendere p € M e w! € AY(M) tale che w; = O, e scegliamo una carta locale (U, p)

centrata in p. Allora possiamo scrivere w!|y = Y, w! da” per opportune w} € C*(U) con w} (p) = 0. Dunque

f(wl, e ,wh7X1, .. ,Xk)(p) = 7A'U(w1|U, . ,wh|U7X1\U, N 7Xk|U)(p)

n
= 7A'U <Zwr1 dmr,w2|U,...,wh|U,X1|U,...,XkU)

r=1
n
= wp)iu(da”, |y, ....w" v, X1lu, .., Xilv)(p) = 0.
r=1

Argomentando come sopra, e ripetendo il ragionamento per w?,...,w" e per Xi,..., X}, vediamo quindi
che 7(w!,...,wh X1,..., X})(p) dipende esclusivamente dal valore di w!, ... ,w" X1,..., X} in p. Quindi per
ogni p € M la 7 induce un’applicazione R-multilineare (T;M)h x (T,M)* — R, cioe un elemento di T}*(T,,M).
In altre parole, abbiamo dimostrato che 7 definisce un’unica sezione 7 di T, ,?M che soddisfa (3.2.4); per
concludere dobbiamo solo dimostrare che 7 ¢ di classe C*°. Scriviamo 7 in coordinate locali come in (3.2.6);
allora
Tl = qy(datt, .. dat Dy, ..., 0y,) € C(U),
e 7 ¢ di classe C* grazie all’Esercizio 3.2.3.
(ii) Un’applicazione 7: T (M)¥ — T"(M) & C°°(M)-multilineare se e solo se ponendo

Flwh . W X, X)) = AKX X)WL W)

otteniamo un’applicazione C°° (M )-multilineare 7: AL (M)" x T(M)* — C°(M). La tesi segue allora dalla
parte (i). O
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Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 3.2.4. Sia m: E — M un fibrato vettoriale su una varieta M, K C M un compatto, e U C M un
intorno aperto di K. Dimostra che per ogni sezione o € £(U) esiste una sezione & € £(M) tale che |k = 0| k.

Esercizio 3.2.5. Sia F: M — N un’applicazione differenziabile, e m: E'— N un fibrato vettoriale di rango r
su N. Dimostra che lo spazio delle sezioni su M del fibrato pull-back F*E (vedi 'Esercizio 3.1.5) & isomorfo
allo spazio delle applicazioni o: M — E di classe C*° tali che o(p) € Ep(,) per ogni p € M.

FEsercizio 3.2.6. Siano mE — M e n': E' — M due fibrati vettoriali su una varietd M. Dimostra che
un’applicazione F:E(M) — &£'(M) & C°°(M)-lineare se e solo se esiste un morfismo F: E — E’ di fibrati
tale che F(s) = F o s per ogni s € E(M).

Esercizio 3.2.7. Sia ot M — T}'M una sezione (non necessariamente C*°). Dimostra che o & C™ se
e solo se per ogni aperto U C M, ogni k-upla di campi vettoriali Xy,..., Xy € T(U) e ogni h-upla
di 1-forme w!,...,w" € AY(U) la funzione p — Up(w;, e ,w;},Xl(p), e ,Xk(p)) ¢ di classe C°.

FEsercizio 3.2.8. Dimostra che un’applicazione 7: (Al(M))h X (’T(M))k — TYM) & C>(M)-multilineare
se e solo se esiste un campo tensoriale 7 € T,"*' (M) tale che

Fwh W XL X @) s anh) = (w0t (D), W (0), Xa (), - Xik(p))
per ogui ny,...,nh € TrM, w',... ,w" e A(M), X1,..., X, € T(M) epe M.

Esercizio 3.2.9. Sia 7 € ’ZZ‘(M) un campo tensoriale di tipo (Z) Scelti 1 < i < hel < j <k,
siano w!,...,w" € AY(M) delle 1-forme, e Xi,...,X; € T(M) dei campi vettoriali. Dimostra che l'ap-

plicazione p — 7, (wl(p), cnwi(p), L, Xa(p), ..., X(p), ) puo essere interpretata in modo naturale come un
campo tensoriale di tipo (g:;)

Esercizio 3.2.10. Sia m: E — M un fibrato vettoriale di rango k su una varietd M, e siano o1, ...,0; € E(U)
sezioni di E su un aperto U C M tali che {o1(q),...,01(q)} siano linearmente indipendenti per ogni ¢ € U.
Dimostra che per ogni p € U possiamo trovare un intorno V. C U di p e sezioni 0j41,...,0, € E(V) tali
che {o1,...,0%} sia un riferimento locale di FE su V.

3.3 Flusso di un campo vettoriale

Torniamo adesso ai campi vettoriali, dandone una caratterizzazione equivalente.

Definizione 3.3.1: Sia A un’algebra sul campo K. Una derivazione di A € un’applicazione D: A — A che sia
K-lineare e che soddisfi la regola di Leibniz: D(ab) = aD(b) + bD(a) per ogni a, b € A.

Proposizione 3.3.1: Lo spazio vettoriale T (M) dei campi vettoriali su una varieta M é isomorfo allo spazio
vettoriale delle derivazioni X: C*°(M) — C*(M).

Dimostrazione: Sia X € T (M) un campo vettoriale. Per ogni f € C°°(M) otteniamo un’altra fun-
zione X f: M — R ponendo
(Xf)(p) = Xp(f),

dove f € C°°(p) ¢ il germe rappresentato da f. Nelle coordinate locali date una carta locale ¢ = (z!,...,2"),
scrivendo X =}, X70; troviamo

O(fop™h)
— j
per cui X f € C*°(M), ed ¢ assolutamente chiaro che f — X f & una derivazione.
Viceversa, sia X: C*®(M) — C*°(M) una derivazione. Prima di tutto dimostriamo che se f € C*>°(M)
1

¢ zero in un intorno U di p allora (X f)(p) = 0. Infatti, sia h € C°°(M) tale che h(p) = 0 e hlynu =
(Corollario 2.3.2). Allora hf = f per cui

(X[)(p) = X(nf)(p) = h(p)(X f)(p) + f(p)(Xh)(p) = 0.
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Questo vuol dire che se f e g coincidono in un intorno di p abbiamo (X f)(p) = (Xg)(p). Siccome ogni fun-
zione definita in un intorno di un punto puo essere estesa a una funzione definita su tutto M (Corollario 2.3.3),
per ogni aperto U C M la X definisce una derivazione X: C*(U) — C*(U), e per ogni p € M una deriva-
zione X,: C*°(p) — R, e quindi una sezione di T'M. Siccome in coordinate locali X, =} X (27)(p)9;(p), si
vede subito (esercizio) che questa sezione ¢ di classe C*°. Quindi abbiamo ottenuto un campo vettoriale, ed
¢ chiaro che questa costruzione e I'inversa di quella descritta sopra. ]

Quindi se X e Y sono due campi vettoriali e f € C*° (M) possiamo considerare anche la funzione X (Y f).
Sfortunatamente, f — X (Y f) non & una derivazione: infatti

X(Y(fg9) = X(fY(9) +9Y(f) = FX(Yg) + (X(N)Y (9) + X(9)Y(f)) + X (Y [).
Ma questa stessa formula mostra che XY — Y X ¢ una derivazione: infatti
(XY =Y X)(fg) = [X(Yg)+gX(Y[) - [Y(Xg) —gY(X[) = [(XY =Y X)(9) + g(XY = YX)(f).

Dunque XY — Y X & un campo vettoriale:

Definizione 3.3.2: La parentesi di Lie di due campi X, Y € T(M) ¢ il campo vettoriale [X,Y] = XY - Y X
definito da

Vfe=(M) (X, Y](f) = X(Yf) = Y (X[).

Diremo che due campi vettoriali X, Y € 7(M) commutano se [X,Y] = O.

Proposizione 3.3.2: Se X, Y e Z sono campi vettoriali su una varieta M, a, b€ R e f, g € C°°(M), si ha:

(i) [X,Y] = -]V, X] (anticommutativita);
[aX +bY,Z] = a[X, Z] + b]Y, Z] (linearita);
(iii) [X,[Y, H Y, [Z, X]] + [Z,[X,Y]] =0 (1dentité di Jacobi);

(i)

iii)

(v) [/X.g¥] = fglX.Y] + f(X)Y — (Y )X

(v) se in coordinate locali abbiamo X =", Xh(?h eY =Y, Yk9, allora

- oYk oxk
X. Y] = Xh——Yh
)= S (X0 Y ) o

In particolare, [0, 0x] = 0.

Dimostrazione: (i) e (ii) sono ovvie. Poi si ha

[X,[Y,Z]] = XYZ - XZY - YZX + ZY X,
[Y,[2,X]] =YZX - YXZ - ZXY + X ZY,
[Z,[X,Y]] = ZXY - ZYX - XYZ +YXZ,

e sommando si ottiene la (iii). Inoltre,
[fX,9Y] = fX(gY) —gY (fX) = fg(XY) + f(X9)Y — fg(YX) —g(Y /)X = fg[X, Y]+ f(Xg)Y —g(Y )X
e anche (iv) ¢ dimostrata. Il Teorema di Schwartz sulle derivate seconde dice che

P(fop™) P(fop™)
Oxhoxk Oxkozxh

[On, Ok)(f) = =0,

dove ¢ = (z!,...,2™) ¢ la carta locale che stiamo usando, per cui [0y, %] = 0, e (v) segue dalle precedenti.[]

In un certo senso, [X,Y] rappresenta la derivata di Y nella direzione di X. Per dare senso a questa
affermazione cominciamo richiamando il fondamentale teorema di esistenza e unicita locale delle soluzioni di
un sistema di equazioni differenziali ordinarie:
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Teorema 3.3.3: Dati un aperto U C R" e funzioni X',..., X" € C>(U), si consideri il seguente problema
di Cauchy per una curva o:1 — U:

do? i .
=X (), j=1....n (3.3.1)
O'(t()) =xeU.

Allora si ha:

(i) Per ognitg € R exy € U esistono § > 0 e un intorno aperto Uy C U di x tali che per ogni x € Uy esiste
una curva oy: (tg — 9,to +6) — U soluzione di (3.3.1). Inoltre, I'applicazione O: (to — d,to+ ) x Uy — U
data da O(t,z) = o,(t) & di classe C*°.

(ii) Due soluzioni di (3.3.1) coincidono sempre nell’intersezione dei loro domini di definizione.

Vediamo come tradurre questo risultato sulle varieta.

Definizione 3.3.3: Sia X € T(M) un campo vettoriale su una varietd M, e p € M. Una curva o: 1 — M,
dove I C R e un intervallo contenente 1’origine, tale che

{ o'(t) = X(J(t)),
a(0) =p,

¢ detta curva integrale (o traiettoria) di X uscente da p.

Sia (U, ¢) una carta locale centrata in p € M, e X € 7(M) un campo vettoriale. In coordinate locali,
possiamo scrivere X = Zj X79;. Se 0:(—e,e) — M & una curva uscente da p, cio¢ tale che o(0) = p,
possiamo scegliere ¢ abbastanza piccolo in modo che tutto il sostegno di o sia contenuto in U, e quindi
possiamo scrivere p o o = (o1,...,0™). Usando 'Esempio 2.4.3 otteniamo

=30 5|

Jj=1

Quindi o ¢ una curva integrale di X se e solo se la curva ¢ o o in ¢(U) soddisfa il sistema di equazioni

differenziali ordinarie )
do?

E:Xj(@og(t)), jil,,n

Allora il Teorema 3.3.3 diventa il seguente teorema fondamentale:

Teorema 3.3.4: Sia X € T(M) un campo vettoriale su una varieta M. Allora esistono un unico intorno
aperto U di {0} x M in R x M e un’unica applicazione ©:U — M di classe C*° che soddisfano le seguenti
proprieta:

(i) Per ognip € M l'insieme UP = {t € R| (¢t,p) € U} ¢ un intervallo aperto contenente 0.

(ii) Per ogni p € M la curva 6P:UP? — M definita da 07(t) = ©O(t,p) é I'unica curva integrale massimale

di X uscente da p.

(iii) Per ognit € R I'insieme Uy = {p € M | (t,p) € U} & un aperto di M.
(iv) Se p € Uy, allora p € U1 se e solo se O(t,p) € Us, e in questo caso

05 (0:(p)) = Os14(p), (3.3.2)

dove 0;:U; — M é definita da 6;(p) = ©(t, p). In particolare, 8y = id e 0;: Uy — U_; & un diffeomorfismo
con inversa 0_;.

(v) Per ogni (t,p) € U, si ha d(0;),(X) = Xy, p)-

(vi) Per ogni f € C*°(M) ep € M si ha

d P —
G| =Nw),



52 Elementi di Geometria Differenziale, A.A. 2005/06

Dimostrazione: Cominciamo col notare che il Teorema 3.3.3 implica, grazie a quanto visto sopra, che per
ogni p € X una curva integrale di X uscente da p esiste sempre.

Siano o, 6: I — M due curve integrali di X tali che o(tg) = &(tg) per qualche ty € I, e sia J C T
I'insieme degli ¢ € I tali che o(t) = 6(¢t). Allora I'insieme J & non vuoto, chiuso, ed & anche aperto, grazie
al Teorema 3.3.3.(ii); quindi J = I, e dunque due curve integrali che coincidono in un punto coincidono
nell’intersezione dei loro domini di definizione.

Per ogni p € M indichiamo allora con P 'unione di tutti gli intervalli aperti I C R contenenti 0 su cui
sia definita una curva integrale uscente da p. Chiaramente, UP € un intervallo aperto contenente 1’origine,
e largomento precedente ci dice (perché?) che esiste una curva integrale 6P:UP — M di X uscente da p
definita su tutto UP, e che questa ¢ la curva integrale massimale uscente da p.

Poniamo allora U = {(t,p) € R x M |t € UP}, e definiamo ©:U — M ponendo O(¢,p) = 0P(t). Inoltre,
poniamo Uy = {p € M | (¢,p) € U}, e definiamo 0,:U; — M con 0;(p) = O(t,p). In questo modo abbiamo
ottenuto (i) e (ii); vediamo di dimostrare (iv).

Per definizione, Uy = M e 0y = idy;. Prendiamo ora p € M e t € UP, e poniamo g = 6P(t). Allora la
curva o:UP —t — M definita da

o(s) = 07(s + 1),
dove UP —t = {s € R| s+t € UP}, & ancora una curva integrale di X: infatti

der
ds

Quindi necessariamente o(s) = 09(s), cioe 6% ) (s) = 6P(s +t), ovvero O(s, O(t,p)) = O(s + t,p), o anche

Os1¢(p) = 05 (9t( ))

eUP —t C UY?. Siccome 0 € UP, otteniamo —t € U9, e §9(—t) = p. Applicando questo ragionamento
a (—t,q) invece di (t,p), otteniamo che U +t C UP, e quindi U? —t = UP®P), che vuol dire esattamente
che O(t,p) € Us se e solo se p € Usy¢. Quindi (iv) & dimostrata.

Ora facciamo vedere che U & aperto in R x M, da cui segue (iii), e che O ¢ di classe C>°. Sia W C U
Pinsieme dei (¢, p) € U tale che esista un intorno di (¢, p) della forma I xU, con I intervallo aperto contenente 0
e t, e U intorno aperto di p in M, su cui © sia definita e di classe C*°. Chiaramente ci basta dimostrare
che W=U.

Prima di tutto, il Teorema 3.3.3 ci dice che (0,p) € W per ogni p € M. Supponiamo per assurdo che
esista (to, po) € U\ W. Siccome tg # 0, possiamo assumere per semplicita ¢y > 0; il caso g < 0 sara analogo.
Sia 7 = sup{t € R | (t,po) € W}; per costruzione, 0 < 7 < t3. Siccome ty € UP°, abbiamo 7 € UPY;
poniamo gg = 0P°(7). Il Teorema 3.3.3 ci fornisce un § > 0 e un intorno Uy di go tale che © sia definita
e di classe C* su (—6,d) x Up. Scegliamo ¢; < 7 tale che t; + 6 > 7 e 0P(¢;) € Up. Siccome t; < 7,
abbiamo (t1,pp) € W, e quindi esiste un intorno (—e,t; +¢) x Uy di (t1,p0) su cui © & definita e di
classe C*°. Inoltre, possiamo anche scegliere U; in modo che ©({t1} x Uy) C Uy.

Dunque, se p € U; abbiamo che 0y, (p) ¢ definito e dipende C*° da p. Inoltre, essendo 6y, (p) € Uy,
abbiamo che 6;_;, o 0, (p) ¢ definito e dipende C*° da p € Uy et € (t1 — 0,¢1 + J). Ma (iii) ci dice
che 6;_4, 0 04, (p) = 0:(p); quindi abbiamo esteso © in modo C* a un aperto della forma (—¢,t; +0) x Uy,
per cui (t1 + d,pg) € W, contro la definizione di 7. Questa contraddizione mostra che W = U, come voluto.

La (vi) ¢ ora immediata: infatti,

o'(s) = —(s+1) = X(0"(t+5)) = X(o(s)).

(X)) = dfy(X) = 5(F007)

t=0
in quanto 67 & una curva con 67(0) = p e (07)'(0) = X (p).
Infine, dimostriamo (v). Preso (tg,po) € U e posto ¢ = 0:,(po), per ogni germe f € C*(q) si ha

= if(9t0+t(po))

d
_(f © eto © 9100)
t=0 dt t=0

A(Bry)po (X)(£) = Xy (E 0 byy) = —

= if(GPO(tO +1))

dt == Xgpo (to)(f),

t=0

e ci siamo. m
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Definizione 3.3.4: L’applicazione ©:U — M introdotta nel precedente Teorema ¢ detta flusso locale del campo
vettoriale X. Il campo X € T (M) & detto completo se Y = R x M, cio¢ se tutte le curve integrali di X sono
definite per tutti i tempi. Un campo vettoriale Y € 7 (M) ¢ detto X-invariante se d(6;),(Y") = Yy, () per
ogni (¢, p) nel dominio di ©. In particolare, ogni campo vettoriale ¢ invariante rispetto a se stesso.

FEsercizio 8.3.1. Una curva 0: R — M in una varietd M ¢ periodica se esiste T > 0 tale che o(t) = o(t +T)
per ogni t € R. Sia X € T(M) un campo vettoriale, e o una curva integrale massimale di X.

(i) Dimostra che se o non ¢ costante allora o ¢ iniettiva o & periodica.
(ii) Dimostra che se o & periodica non costante allora esiste un unico numero positivo Ty (il periodo di o)
tale che o(t) = o(t’) se e solo se t — t' = kTp per qualche k € Z.
(iii) Dimostra che se o non & costante allora ¢ un’immersione, e 'immagine di ¢ ha una struttura naturale
di varietd 1-dimensionale diffeomorfa a R o a S!.

Ora, se © ¢ il flusso locale di un campo vettoriale X € 7(M), e Y € T(M) ¢ un altro campo vettoriale,
I'applicazione Y o © ¢ di classe C°°. Ma allora t +— d(0_¢)g, ) (Y) € una funzione C*° a valori in T,,M che
dipende in modo C*° dal punto p, e abbiamo trovato un modo di misurare la derivata di Y nella direzione
di X:

Definizione 3.3.5: Siano X, Y € T(M) due campi vettoriali su una varietd M. La derivata di Lie di YV
lungo X ¢ il campo vettoriale LxY € T (M) definito da

d d(oft)et(P) (Y) B Yp

LxY(p) = %d(gft)gt(p)(y) = }E)% t
=0

per ogni p € M.

Il risultato tutt’altro che evidente che vogliamo dimostrare ora & che la derivata di Lie di Y lungo X &
esattamente uguale a [X,Y]. Ci serve ancora un lemma:

Lemma 3.3.5: Sia U C M un aperto di una varieta M, § > 0, e h:(=9,0) x U — R una funzione di
classe C* con h(0,q) = 0 per ogni q € U. Allora esiste una g: (—0,9) x U — R di classe C™ tale che

h(t,q) = tg(t, q)

e 9(0,q) = 22(0,q) per ogniq € U.

Dimostrazione: Basta porre
0= [ P
b = S? S;
g(t, q . ot q

infatti

1
to(t.a) = [ G s 0)d(t9) = hit.o),

Allora
Proposizione 3.3.6: Siano X, Y € T (M) due campi vettoriali su una varieta M. Allora LxY = [X,Y].

Dimostrazione: Indichiamo con ©:U4 — M il flusso locale di X. Dato p € M, scegliamo § > 0 e un intorno Uy
di p tali che (=6,0) x Uy C U. Sia (U, f) un rappresentante di un germe in p, dove abbiamo scelto U in
modo che O((—6,8) x U) C Up. Definiamo h:(—4,8) x U — R ponendo h(t,q) = f(q) — f(0-:(q)), e
sia g: (—=6,0) x U — R la funzione data dal lemma precedente. Allora ricordando il Teorema 3.3.4.(vi)
otteniamo

fob-(q) = flg) —tg(t,q) e g(0,9) = Xf(q),

per cui

d(a—t)et(p) (Y)(f) = Yet(p)(f o a—t) = (Yf) (Gt(p)) - t(Ygt)(Gt(p))v
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dove abbiamo posto ¢:(¢) = g(t, ¢). Quindi

tim 21d0_1)0, 0 (V) = 1) = timg CDEDD ZCDO) _ 3
= GNP VXN = X)) - Y (X)) = X YIN)
grazie nuovamente al Teorema 3.3.4.(vi), e ci siamo. O

Se F: M — N ¢ un diffeomorfismo, e X € T (M), allora possiamo definire un campo vettoriale su N,
che indicheremo con dF(X), ponendo
VqEN dF(X)q :dFF*I(q)(XFfl(q))-
Se F: M — N non ¢ un diffeomorfismo, questa formula non si puo applicare: se F' non e surgettiva esi-
stono dei ¢ € N per cui F~1(q) & vuoto, e se F non & iniettiva potrebbero esistere p;, po € M per
cui ¢ = F(p1) = F(p2) ma dF,, (X,,) # dF,,(X,,), per cui questa formula non da un modo univoco
per definire un vettore tangente in ¢. Introduciamo allora la seguente

Definizione 3.3.6: Sia F: M — N un’applicazione di classe C*° fra due varieta. Diremo che un campo
vettoriale V' € T(N) ¢ F-correlato a un campo vettoriale X € T (M) se Vp(,) = dF,(X,) per ognip € M.

Chiaramente, se F' ¢ un diffeomorfismo allora dF'(X) ¢ 'unico campo vettoriale su N che & F-correlato
a X, ma se F' non e un diffeomorfismo potrebbero esistere piu campi vettoriali F-correlati a X, o potrebbe
non esisterne nessuno.

Esercizio 3.3.2. Sia F: M — N un’applicazione di classe C™ fra varieta, X € T(M)eY € T(N). Dimostra
che Y & F-correlato a X se e solo se X(f o F') =Y (f) o F per ogni f € C®(N).
Esercizio 3.3.3. Dimostra che se F: M — N é un diffeomorfismo allora
[dF(X),dF(Y)] = dF([X,Y])
per ogni X, Y € 7(M). Piu in generale, senza assumere che F' sia un diffeomorfismo, dimostra che

se V.€ T(N) & F-correlato a X € T(M) e W € T(N) & F-correlato a Y € T (M), allora [V,W] & F-
correlato a [X,Y].

FEsercizio 3.3.4. Sia F: M — N un’applicazione di classe C*° fra varieta, X € T(M) e Y € T(N). In-
dichiamo con ©:U4/ — M il flusso locale di X, e con ¥:V — N il flusso locale di Y. Dimostra che Y &
F-correlato a X se e solo se per ogni t € R si ha ¢, o F = F o 6; sul;.

Concludiamo questo paragrafo parlando dei campi vettoriali sui gruppi di Lie.

Definizione 3.3.7: Un campo vettoriale X € 7(G) su un gruppo di Lie G & invariante a sinistra se si
ha dLy(X) = X per ogni h € G, cioe se
Vh,x € G d(Lp)(Xz) = Xpa,
dove Lj: G — G ¢ la traslazione sinistra.
Lemma 3.3.7: Sia G un gruppo di Lie di elemento neutro e € G. Allora:

(i) L’applicazione X — X(e) é un isomorfismo fra il sottospazio di T (M) costituito dai campi vettoriali
invarianti a sinistra e lo spazio tangente T.G.
(ii) Se X, Y € T(G) sono invarianti a sinistra, allora anche [X,Y] lo é.

Dimostrazione: (i) Se X € 7(G) ¢ invariante a sinistra, chiaramente abbiamo

Xp = d(Lh)e(XE)
per ogni h € G, per cui X & completamente determinato dal suo valore in e. Viceversa, se scegliamo v € T,G
e definiamo X € 7(G) ponendo X, = d(Lp).(v) € TpG per ogni h € G otteniamo (esercizio) un campo

vettoriale invariante a sinistra che vale v nell’elemento neutro.
(ii) Se X e Y sono campi vettoriali invarianti a sinistra I’Esercizio 3.3.3 dice che

dLy[X,Y] = [dL, X, dL,Y] = [X,Y]

per ogni h € G, per cui anche [X,Y] & invariante a sinistra. Il
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Esercizio 3.3.5. Diremo che una varieta M & parallelizzabile se TM & un fibrato banale. Dimostra che ogni
gruppo di Lie & parallelizzabile.

Dunque lo spazio tangente all’identita di un gruppo di Lie eredita dai campi vettoriali invarianti a
sinistra un’ulteriore struttura algebrica data dalla parentesi di Lie.

Definizione 3.3.8: Uno spazio vettoriale V' dotato di un’ulteriore operazione [-,-]: V x V' — V che soddisfa le
proprieta (i)-(iii) della Proposizione 3.3.2 ¢ detto algebra di Lie. Se V' e W sono algebre di Lie, un morfismo
di algebre di Lie ¢ un’applicazione L: V' — W lineare tale che [L(v1), L(v2)] = L[vy, v2] per ogni vy, vy € V.

EsempPio 3.3.1. Sia A un’algebra non commutativa sul campo K. Allora possiamo fornire A di una
struttura di algebra di Lie tramite il commutatore [-,-]: A x A — A definito da

VX,V € A [X,Y] = XY - YX;

si verifica subito che il commutatore soddisfa le proprieta (i)-(iii) della Proposizione 3.3.2. In particolare, lo
spazio vettoriale delle matrici M, ,,(K) con questa struttura di algebra di Lie verra indicato con gl(n, K).

FEsercizio 8.3.6. Sia sl(n,K) = {X € gl(n,K) | trX = 0} il sottospazio delle matrici quadrate a traccia
nulla, e so(n,K) = {X € gl(n,K) | XT + X = O} il sottospazio delle matrici antisimmetriche. Dimostra
che X, Y € sl(n,K) implica [X,Y] € sl(n,K), e che X, Y € so(n,K) implica [X,Y] € so(n,K), per
cui sl(n,K) e so(n,K) sono delle algebre di Lie.

Definizione 3.3.9: Sia G un gruppo di Lie di elemento neutro e € G. Per ogni v € T.G, indichiamo
con XV € 7(G) il campo vettoriale invariante a sinistra tale che X?(e) = v. Allora lo spazio tangente all’ele-
mento neutro, considerato con la sua struttura di spazio vettoriale e con 'operazione [, |: T.G x T,.G — T.G
definita da [v,w] = [X"¥, X*](e), & detto algebra di Lie g del gruppo G.

Non avremo il tempo di vederlo nei dettagli, ma si puo ragionevolmente affermare che praticamente
tutte le proprieta di un gruppo di Lie semplicemente connesso si possono ricavare dalle proprieta algebriche
della sua algebra di Lie.

Definizione 3.3.10: Sia G un gruppo di Lie di dimensione n, g la sua algebra di Lie, e B = {v1,...,v,} una
base di g come spazio vettoriale. Allora per ogni i, j = 1,...,n devono esistere cgj, ..., ¢ € R tali che

n
[vi,v,] = Z cfjvk.
k=1

Le costanti cfj € R sono dette costanti di struttura di g rispetto alla base B.

EsempIO 3.3.2.  Sia G = GL(n,R) il gruppo delle matrici invertibili a coefficienti reali; vogliamo dimostrare

che la sua algebra di Lie & lalgebra gl(n,R) introdotta nell’Esempio 3.3.1. Siccome G & un aperto di R"z,
lo spazio tangente nell’identitd a G & canonicamente isomorfo come spazio vettoriale a gl(n,R); dobbiamo
dimostrare che anche le strutture di algebra di Lie coincidono. Per ogni a = (a;;) € gl(n,R) indichiamo
con @ € T(G) la sua estensione come campo vettoriale invariante a sinistra. Se x = (zpx) € G e f € C®(x),
abbiamo

O(foLy)

e (1)

a,(f) = d(Lo)r(a)(f) = a(f o L) = ) ay

ij=1

“Y Y )3 Qo) S~ 2 ()

T Oy; ox
ig=1  hk=1 "Thk 3 Yij i k=1 hk
n
of
= Y g (@)
h,jr=1 J

per cui



56 Elementi di Geometria Differenziale, A.A. 2005/06

Da questo segue facilmente che [@,b], = x(ab — ba), per cui effettivamente la struttura di algebra di Lie &
data dal commutatore:

Va,b € gl(n,R) [a,b] = ab — ba.

In particolare, se indichiamo con B = {E;;}; j=1
al posto (4, 7) e 0 altrove, cioe

» la base canonica di gl(n,R), dove E;; € la matrice con 1

.....

(Eij)rs = (Sir(sjs,
le costanti di struttura di gl(n,R) rispetto a B sono date da

ngs))(hk) = 5ir6k55jh - 57"h53j5ik'-

EseMPIO 3.3.3. Se V & uno spazio vettoriale di dimensione n su R, il gruppo di Lie G = GL(V)
¢ chiaramente isomorfo a GL(n,R), e la sua algebra di Lie gi(V) & isomorfa a gl(n,R). In partico-
lare, gl(V') = Hom(V, V') come spazio vettoriale, e la struttura di algebra di Lie ¢ di nuovo data dal commu-
tatore.

Esercizio 3.3.7. Siano G e H due gruppi di Lie, con algebre di Lie g e b rispettivamente, e sia F: G — H
un morfismo di gruppi di Lie. Dimostra che per ogni X € 7(G) invariante a sinitra esiste un unico
Y = F.(X) € T(H) che & F-correlato a X, e che 'applicazione Fi:g — h definita da Fi.(X.) = (FiX). ¢ un
morfismo di algebre di Lie.

Esercizio 3.3.8. Sia H un sottogruppo di Lie di un gruppo di Lie di algebra di Lie g. Dimostra che
se v, w € T.H C T.G = g allora [v,w] € T,H, per cui T,H & un’algebra di Lie, e dimostra che T.H &
canonicamente isomorfa all’algebra di Lie di H.

Esercizio 3.8.9. Dimostra che l'algebra di Lie di SL(n,R) & canonicamente isomorfa a sl(n,R), e che

lalgebra di Lie di SO(n) ¢ canonicamente isomorfa a so(n, R).

3.4 Il teorema di Frobenius

Questo paragrafo ¢ dedicato alla dimostrazione di un risultato fondamentale per lo studio dei campi vetto-

riali su una varieta: il teorema di Frobenius.
Cominciamo ponendoci un problema preliminare: supponiamo di avere su una varietda M di dimen-

sione n un riferimento locale { X1, ..., X, } del fibrato tangente TM. Quando esiste una carta locale ¢ di M
tale che X1 = 01,..., X, = 8,7 Una condizione necessaria ¢ data dalla Proposizione 3.3.2.(v): si deve
avere [X;, X;] = O per ogni i, j = 1,...,n. Vogliamo dimostrare che questa condizione ¢ (essenzialmente)

anche sufficiente; per farlo procederemo per gradi.

Definizione 3.4.1: Sia X € T (M) un campo vettoriale su una varietd M. Diremo che p € M & un punto
singolare di X se X, = Op; diremo che p & un punto regolare altrimenti.

Proposizione 3.4.1: Sia p € M un punto regolare di un campo vettoriale X € T(M). Allora esiste una
carta locale (U, ) centrata in p tale che X |y = 0/0x".

Dimostrazione: Trattandosi di un problema locale, possiamo supporre M = R™ e p = O. Inoltre, es-
sendo X, # O,, a meno di permutare le coordinate possiamo anche supporre che la prima coordinata di X
non si annulli in p. Il nostro obiettivo & trovare una carta locale (U, ¢) in O tale che si abbia

w(q)>

_ 0
Xg=d(p 1)w(q) (@

per ogni g € U.
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Sia ©:U4 — R™ il flusso locale di X, e scegliamo ¢ > 0 e un intorno aperto Uy dell’origine tali
che (—¢,6) x Uy € U. Poniamo Sy = Uy N{z' =0}, e S = {a’ € R" | (0,2') € Sp} € R"'. Defi-
niamo allora v: (—e,e) x S — R" con

W(t, 2") = 0:(0,2").
L’idea ¢ che di)(0/0t) = X o) e che dipg,o- ¢ invertibile; allora 1 & localmente invertibile, e I'inversa locale ¢

di % ci fornira la carta locale cercata.
Dato (to,z() € (—¢,¢) x S e f € C((—¢,¢) x Up) abbiamo

0 0 0
dt,1) (a ) (f) = a(f 01)) = af(et(oa%)) = (X£)(¥(to, x0)),
(to,z() (to,z() t=to
per cui dy(9/0t) = X o 1), come voluto.
Infine, siccome (0, 2’) = (0, ') per ogni 2’ € S, abbiamo
0 0
d ’ e — -
V.01 ((“)xl) oz,

per ogni ¢ = 2,...,n. Quindi d¢(y o) manda una base di T(y,o/R" in una base di ToR" (ricorda che la
prima coordinata di X ¢ non nullal), per cui di(g o) ¢ invertibile come richiesto, e ci siamo. O

Per trattare il caso generale ci serve la seguente

Proposizione 3.4.2: Siano X,Y € 7 (M) due campi vettoriali su una varieta M. Indichiamo con ©:U — M

il flusso locale di X, e con V:V — M il flusso locale di Y. Allora le seguenti affermazioni sono equivalenti:
(i) [X,Y]=0;

(ii) Y & X-invariante;

(iii) X é Y-invariante;

(iv) s 00y = 0 0 s non appena uno dei due membri é definito.

Dimostrazione: Se Y & X-invariante, chiaramente LxY = O, e quindi [X,Y] = O. Viceversa, supponiamo

che [X,Y] = O; dobbiamo dimostrare che Y & X-invariante. Sia p € M qualsiasi, e sia V:UP — T,M data

da

d
d(o—t)Qt(p) (Y) = %d(e—to—s)&(ﬁg(p) (Y)

t=to

s=0

d
= d(0—t,)e,, () <£d(05)95(9t0(p))(Y)
s=0

V(t) =d(0-t)e,p(Y);
per far vedere che Y ¢ X-invariante ci basta dimostrare che V' ¢ costante. Ma infatti per ogni ty € UP si ha
av d
() = —
a0 =g
d
= 22 d0—t0)0,, () © d(0-5)6, 60,y () (V)
s=0
=d(0-ty)a,, () (LxY) = O,
per cui V(t) = V(0) =Y, e ci siamo.

Abbiamo quindi dimostrato che (i) & equivalente a (ii); essendo [V, X|] = —[X,Y], in modo analogo si
dimostra che (i) & equivalente a (iii).

Dimostriamo ora che (iii) implica (iv). Scegliamo s € R e p € Vs, e consideriamo la curva o:I — M
ottenuta ponendo o = ¥4 0 6P, dove I C R ¢ un intervallo contenente I'origine su cui o € definita. Allora per
ogni t € I abbiamo

o’ (t) = (s 0 0P)' (t) = d(hs)gr () ((07) (£) = d(Ws)or(t)(Xor(t) = Xo(r),
dove l'ultima eguaglianza segue dal fatto che X e Y-invariante. Ma allora questo vuol dire che ¢ ¢ la curva
integrale di X uscente da 14(p), per cui ¥, o 0;(p) & definito se e solo se 6, o Ps(p) lo ¢, e i due sono uguali.

Infine, supponiamo che valga (iv). Allora

_ 4
Cdt

d(1hy),p(X) = %(ﬁt(ws(p))) = (60¥°)(0) = Xy (1)

t=0

(0 ”)| = S (bs00))

t=0 t=0

per cui X ¢ Y-invariante, come voluto. Il



58 Elementi di Geometria Differenziale, A.A. 2005/06

Possiamo allora dimostrare il
Teorema 3.4.3: Siano Xi,..., Xy € T(M) campi vettoriali linearmente indipendenti in ogni punto di una
varieta M di dimensione n. Allora le seguenti affermazioni sono equivalenti:
(i) Per ciascun p € M esiste una carta locale (U, ) centrata in p tale che X;|y = 0/0x% per j =1,...,k;
(ii) [X;, X;] =0 peri,j=1,... k.

Dimostrazione: Abbiamo gia notato che (i) implica (ii); supponiamo allora che (ii) valga. Essendo un
problema locale, possiamo supporre M = R" ¢ p = O. A meno di permutare le coordinate, possiamo anche
supporre che {Xilp, ..., Xk|p, 0/0F"Y,,...,0/05"|,} sia una base di T,M. Indichiamo con ©; il flusso
locale di X, per j =1,...,k. Ragionando per induzione su k si dimostra facilmente che esistono € > 0 e un
intorno W C U di p tali che la composizione (0 )s, o- - -0(61), & ben definita su W per ognity,. .., t € (—¢,€).

Poniamo S = {(z*1,...,2") e R" % | (0,...,0,2*1 ... 2") € W}, e definiamo 1: (—¢,)* x § — R"
con

Pttt R e = (0R) 0 -0 (01)(0,. .., 0, 2R L 2™,

Dimostriamo prima di tutto che

dif (%) = X, (3.4.1)

peri=1,..., k. Infatti, se f € C°(R™) e z € (—¢,¢)* x S la proposizione precedente ci da

di),, ( ; ) (f) = 0 (f0¢)’ 0 () 0+ 0 (61)n(0,...,0,2" . a™))

0
= ﬁf((ei)ti 0 (O)gk 00 (0it1)pi+1 0 (0i—1)pi-1 0 (61)p(0,..., 0,28 ... ,x"))
= (X:f)(¥(x)),

e (3.4.1) ¢ dimostrata. Per concludere la dimostrazione ci basta far vedere che dio ¢ invertibile, perché in
tal caso ¥ e invertibile in un intorno dell’origine, e l'inversa ¢ di ¢ e la carta locale cercata. Ma infatti
siccome (0,...,0, 281 .. 2") = (0,...,0,2FF ... 2"), vediamo subito che

0 0
dbo (a_) = 0

per j =k+1,...,n, e la (3.4.1) insieme all’ipotesi che {Xi|p, ..., Xk|p, 0/0Z**1|,,...,8/07"|,} fosse una
base di T,,M ci da la tesi. O

o

Questo era solo 'antipasto. Una conseguenza del Teorema 3.3.4 € che dato un campo vettoriale mai
nullo X € 7 (M) possiamo decomporre la varieta M nell’'unione delle curve integrali di X: ogni punto di M
appartiene a una e una sola curva integrale, e ciascuna curva integrale ¢ un’immersione (in quanto abbiamo
supposto che X non abbia punti singolari).

Se ci dimentichiamo della parametrizzazione delle curve integrali, possiamo riformulare il risultato in que-
sto modo: da una parte abbiamo selezionato in modo C'*° un sottospazio uni-dimensionale in ciascun spazio
tangente T, M (il sottospazio generato da X,,); dall’altra abbiamo che ogni punto & contenuto nell’immagine
dell’immersione di una varieta 1-dimensionale tangente in ogni punto a questi sottospazi unidimensionali. Il
teorema di Frobenius e la generalizzazione di questo enunciato al caso di sottospazi k-dimensionali.

Introduciamo una serie di definizioni per giungere a un enunciato preciso del teorema di Frobenius.

Definizione 3.4.2: Una distribuzione k-dimensionale su una varietad M & un sottoinsieme D C T'M del fibrato
tangente tale che D, = D NT,M & un sottospazio k-dimensionale di T, M per ogni p € M. Diremo che
la distribuzione k-dimensionale D e liscia se per ogni p € M esiste un intorno aperto U C M di p e k
campi vettoriali locali Y7,...,Y, € T(U) tali che D, = Span(Yl(p)7 e 7Yk(p)) per ogni p € U. La k-
upla (Y1,...,Y%) e detta riferimento locale per D su U.

Esercizio 8.4.1. Dimostra che una distribuzione D C T'M k-dimensionale ¢ una distribuzione liscia se e solo
se € un sottofibrato vettoriale di TM di rango k.
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Definizione 3.4.3: Una sezione locale di una distribuzione liscia D su un aperto U C M di una varieta M &
un campo vettoriale X € 7(U) tale che X,, € D, per ogni p € U. Indicheremo con 7p(U) lo spazio delle
sezioni locali di D sull’aperto U. Diremo che la distribuzione liscia D ¢ involutiva se [X,Y] € Tp(U) per
ogni X,Y € Tp(U) e ogni aperto U C M.

Esercizio 3.4.2. Dimostra che una distribuzione liscia D & involutiva se e solo se per ogni p € M esi-
ste un riferimento locale (Y3,...,Y)) per D su un intorno aperto U di p tale che [Y;,Y;] € Tp(U) per
ognii, j=1,...,k.

Definizione 3.4.4: Una sottovarieta immersa di dimensione k£ in una varieta M e un sottoinsieme S C M
dotato di una struttura di varieta k-dimensionale (non necessariamente con la topologia indotta da M) tale
che l'inclusione ¢: § — M sia un’immersione di classe C*°.

Osservazione 3.4.1. Se F: N — M ¢ un’immersione iniettiva, allora F(N), con la struttura di varieta
indotta da N come descritto nell’Osservazione 2.5.1, € una sottovarieta immersa di M. Inoltre, se S € una
sottovarieta immersa in M, il differenziale dell’inclusione permette di identificare 7,5 con un sottospazio
di T, M per ognip € S.

Esercizio 3.4.3. Siat: S — M una sottovarieta immersa in una varieta M. Dimostra che per ogni X € 7 (M)
tale che X, € T),S per ogni p € S esiste un unico campo vettoriale X |g € 7(S) che & t-correlato a X. Deduci
che se X, Y € T(M) sono tali che X, Y, € T,,S per ogni p € S allora [X,Y], € T,,S per ogni p € S.

Esercizio 3.4.4. Sia S C M un sottoinsieme di una varieta M. Dimostra che per ogni topologia su S
esiste al pit una struttura di varieta differenziabile su S che induce la topologia data su S e la rende una
sottovarieta immersa di M.

Definizione 3.4.5: Sia D C T'M una distribuzione liscia. Una sottovarieta integrale di D & una sottovarieta
immersa S — M tale che T,S = D, per ogni p € S. Diremo che D e integrabile se ogni punto di M e
contenuto in una sottovarieta integrale di D.

Proposizione 3.4.4: Ogni distribuzione liscia integrabile é involutiva.

Dimostrazione: Sia D C T'M una distribuzione integrabile, e X, Y € Tp(U) due sezioni di D su un aperto U.
Preso p € U, sia N C U una sottovarieta integrale di D contenente p. Siccome X e Y sono sezioni di D,
abbiamo X, Y, € T,N per ogni ¢ € N; I’Esercizio 3.4.3 ci dice allora che [X,Y], € T,N = D,. Siccome
questo vale per qualsiasi p € U, otteniamo [X,Y] € Tp(U), come voluto. ]

Come gia succedeva per le curve integrali, le sottovarieta integrali sono (almeno localmente) a due a due
disgiunte e, in un certo senso, parallele. Per precisare questo concetto ci servono un altro paio di definizioni.

Definizione 3.4.6: Sia D C T M una distribuzione liscia k-dimensionale in una varieta di dimensione n. Diremo
che una carta locale (U, @) & piatta per D se o(U) =V’ x V" con V' aperto in R* e V" aperto in R" 7, e
se (0/0x',...,0/02%) & un riferimento locale per D su U. Diremo che D & completamente integrabile se per
ogni p € M esiste una carta locale (U, ¢) in p piatta per D. Se (U, ) ¢ una carta piatta per D, gli insiemi
della forma {zF+1 = cF+1 ... 2" ="} con FTL ... ¢ € R sono detti foglie di U.

Lemma 3.4.5: Ogni distribuzione liscia completamente integrabile é integrabile.

Dimostrazione: Infatti se (U, ) ¢ una carta piatta per una distribuzione k-dimensionale liscia D allora le
foglie di U sono chiaramente delle sottovarieta integrali di D. ]

Dunque completamente integrabile implica integrabile che implica involutiva. Il Teorema di Frobenius
locale ci assicura che queste implicazioni sono in realta delle equivalenze:

Teorema 3.4.6: (Frobenius) Ogni distribuzione liscia involutiva é completamente integrabile.

Dimostrazione: Sia D C T'M una distribuzione k-dimensionale liscia involutiva. Grazie al Teorema 3.4.3, per
dimostrare che D e completamente integrabile ci basta trovare nell’intorno di ogni punto di M un riferimento
locale di D composto da campi vettoriali che commutano.
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Dato p € M, scegliamo una carta locale (U, ) centrata in p tale che esista un riferimento locale
(X1,...,Xg) per D suU. Inoltre, a meno di permutare le coordinate di ¢, possiamo anche supporre che

)

sia una base di T, M. Per comodita di notazione, poniamo X; = 0/0x7 per j = k+1,...,n, e sce-
gliamo a] € C*°(U) tali che

0

".'7_’[1/
» ox

0
{Xl(p)7 s 7Xk(p)a W

n
;0

X; = al —

oxJ

=1

suU, per i =1,...,n. La matrice (a]) ¢ invertibile in p; a meno di restringere ulteriormente U possiamo

supporre che sia invertibile su tutto U, e sia (b%) la sua inversa. Allora

9 <~y - 0
@:;bjxl—:;bj)(ﬁ > i

i=k+1

per j = 1,...,n. Definiamo allora Y; = Zle b;X,- € Tp(U) per j = 1,...,k; per concludere ci basta
dimostrare che (Y1,...,Y%) & un riferimento locale per D composto da campi vettoriali che commutano.
Sia F:U — R* datada F = 7o @, dove m: R" — R* & 1a proiezione sulle prime k coordinate. Allora per

ogni g € U eogni j =1,...,k abbiamo

o, 0 0 9]
dF,(Y;) = dFy(Y;) + Z bj(q) dFy (@) = dF, (@) =5l
i=k+1 F(q)
Quindi gli Y; sono linearmente indipendenti su tutto U, per cui formano un riferimento locale per D, e
qu\Dq e iniettivo per ogni g € U. Inoltre, I’Esercizio 3.3.3 implica che

AF( V) = [ | (Fl@) = 0

perogniq € Uei, j=1,...,k. Ma allora, essendo D involutiva abbiamo [Y;, Y}](¢) € Dy, ed essendo dFy|p,
iniettivo troviamo [Y;,Y;](q) = Oy, come voluto. O

Vogliamo ora dare una descrizione di come sono disposte le sottovarieta integrali, descrizione che ci
servira poi per dare la versione globale del Teorema di Frobenius.

Proposizione 3.4.7: Sia D C T'M una distribuzione liscia involutiva k-dimensionale in una varieta M,
(U, ) una carta piatta per D, e N una sottovarieta integrale di D. Allora N NU ¢é unione disgiunta al piu
numerabile di aperti connessi di foglie di U, ciascuno dei quali é aperto in N ed embedded in M.

Dimostrazione: Siccome l'inclusione 1: N < M & continua, l'intersezione N N U = ~*(U) ¢ aperta in N,
e quindi € unione di una quantita al pitt numerabile di componenti connesse, ciascuna delle quali ¢ aperta
in N.

Sia V una di queste componenti connesse; cominciamo col dimostrare che & contenuta in un’unica foglia
di U. Essendo (U, ) una carta piatta per D, per ogni p € U abbiamo D, = Ker(dz**1) n .. N Ker(dz™).
Quindi la restrizione di dz**! ... dax" a TV & identicamente nulla; essendo V connesso, questo vuol dire
che le funzioni 2**1, ... 2™ sono costanti su V, e quindi V & contenuto in un’unica foglia S di U.

Siccome S € una sottovarieta (embedded) di M, l'inclusione V' — S ¢ di classe C°, essendolo a valori
in M. Ma allora ¢ un’immersione iniettiva fra varieta della stessa dimensione, per cui ¢ un diffeomorfismo
locale e un omeomorfismo con 'immagine, che & aperta in S; in altre parole, € un embedding. Essendo S
embedded in M, ne segue che V' & embedded in M. Il
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Definizione 3.4.7: Una foliazione di dimensione k di una n-varieta € una partizione F di M in sottovarieta
immerse connesse, disgiunte e di dimensione k (dette foglie della foliazione) tali che per ogni punto p € M
esiste una carta locale (U, @) in p per cui o(U) = V' x V", con V' aperto in R* e V" aperto in R" %, e tale
che ogni foglia della foliazione intersechi U o nell’insieme vuoto o in una unione disgiunta al pitt numerabile di
foglie k-dimensionali di U della forma {2z**! = cF*1 ... 2™ = ¢"} per opportune costanti c**1, ... ¢* € R.
Una tale carta locale sara detta piatta per la foliazione F.

Esercizio 3.4.5. Dimostra che I'unione degli spazi tangenti alle foglie di una foliazione k-dimensionale forma
una distribuzione liscia k-dimensionale involutiva.

La versione globale del Teorema di Frobenius ci dice che & vero anche 'inverso di questo esercizio, per
cui foliazioni o distribuzioni involutive sono di fatto la stessa cosa.
Per dimostrarlo, ci serve un ultimo

Lemma 3.4.8: Sia D C TM una distribuzione liscia involutiva in una varieta M, e sia { N, } una collezione
di sottovarieta integrali connesse di D con un punto in comune. Allora N = |, N, ha un’unica struttura di
varieta rispetto alla quale é una sottovarieta integrale connessa di D tale che ciascun N, sia aperto in N.

Dimostrazione: Su ciascun N, fissiamo un atlante composto da carte locali della forma (SNN,, wop), dove S
¢ un’unica foglia di una carta (U, ) piatta per D, e m:R" — R & la proiezione sulle prime k-coordinate.
Se N ha una struttura di varieta che soddisfa le richieste queste carte devono farvi parte; quindi ci basta
dimostrare che mettendole insieme otteniamo un atlante di V.

Per avere la compatibilita topologica delle carte, dobbiamo prima di tutto dimostrare che N, N Ng
¢ aperto in Ng quali che siano « e 5. Prendiamo ¢ € N, N Ng, sia (U, ¢) una carta in ¢ piatta per D,
e indichiamo con V,, (rispettivamente, V) la componente connessa di N, N U (rispettivamente, Ng N U)
contenente g. La Proposizione 3.4.7 ci dice che V,, e V3 sono aperti di una foglia S di U, necessariamente la
stessa per entrambi in quanto deve contenere ¢. Quindi V,, N V3 € aperto in S, e quindi in Ng, come voluto.

Siccome due foglie distinte di una carta piatta sono disgiunte, se (SoNN,)N(SzNNg) # & allora S, = Sg.
Quindi i cambiamenti di coordinate nel nostro atlante saranno della forma 7o ()0 @™ 1) o (|,(5)) !, definiti
su aperti di R* per quanto detto finora, e chiaramente di classe C'*°.

Siccome essere un’immersione € una proprieta locale, I'inclusione N — M & un’immersione, ed & evidente
che IV & una sottovarieta integrale connessa di D.

Rimane quindi da dimostrare che la struttura di varieta cosi definita su N ¢ di Hausdorff e ha una
base numerabile. Se ¢, ¢" € N sono punti distinti, prendiamo intorni disgiunti U e U’ in M; allora, essendo
Pinclusione N < M continua, UNN e U’ NN sono intorni disgiunti di ¢ e ¢’ in N, per cui N & di Hausdorff.

Ora, sia 4 = {U;} un ricoprimento aperto numerabile di M composto da domini di carte piatte per D.
Per far vedere che N ha una base numerabile ¢ sufficiente far vedere che N N U; ¢ contenuto in un’unione
numerabile di foglie di U; per ciascun ¢, in quanto qualsiasi aperto di una foglia ha una base numerabile.

Fissiamo un punto p € M contenuto in tutti gli N,, scegliamo U; € U, e sia S C U; una foglia di U;
contenente un punto ¢ € N. Per definizione, deve esistere un « tale che N, contiene sia p che q. Essendo N,
connesso per archi, esiste una curva continua o: [0, 1] — N, che collega p con ¢. Siccome I'immagine di o
¢ compatta, esiste una partizione 0 = to < t; < --- < t,, = 1 di [0,1] tale che o([t;—1,t;]) € contenuto
in un U;; € U per ogni j = 1,...,m. Essendo o([t;_1,%;]) connesso, ¢ contenuto in un’unica componente
connessa di N, N Ui,, e quindi in un’unica foglia Sij di Ui, .

Diremo che una foglia S di un qualche Uy & accessibile da p se esiste una successione finita di in-
dici g, ..., i, e di foglie S;; C U;; tali che p € Sy, S;,, =S eS;,_, NS;, # I per j =1,...,m. Siccome
ogni foglia S;;_, ¢ a sua volta una sottovarieta integrale di D, per la Proposizione 3.4.7 puo intersecare al
pill una quantita numerabile di foglie di U;;. Questo vuol dire che esistono al pilt una quantita numerabile
di foglie accessibili da p; ma la discussione precedente mostra che ogni foglia che interseca N & accessibile
da p, e abbiamo finito. Il

E infine, ecco il Teorema di Frobenius globale:

Teorema 3.4.9: Sia D C T'M una distribuzione liscia involutiva in una varieta M. Allora la collezione di
tutte le sottovarieta integrali massimali di D forma una foliazione di M.

Dimostrazione: Per ogni p € M indichiamo con L, I'unione di tutte le sottovarieta integrali connesse di D
che contengono p; grazie al lemma precedente, L, ¢ una sottovarieta integrale connessa di D, chiaramente
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massimale. Se L, N L, # &, allora L, U L, & ancora una sottovarieta integrale connessa di D, e quindi
per massimalita L, = L. Quindi le sottovarieta integrali connesse massimali di D formano una partizione
di M.

Se (U, ) € una carta locale piatta per D, allora L, N U & unione al pitt numerabile di aperti di foglie
di U, per la Proposizione 3.4.7. Se per una di tali foglie .S si avesse L, NS # S, allora L, U S sarebbe una
sottovarieta integrale connessa di D contenente propriamente L, contro la massimalita. Quindi L, N U e

sempre unione di una quantita al pitt numerabile di foglie di U, per cui {L,, | p € M} & una foliazione. []

3.5 Forme differenziali e differenziale esterno

In questo paragrafo raccoglieremo alcune proprieta fondamentali delle forme differenziali.
Prima di tutto, se n € A"(M) e w € A%(M) sono rispettivamente una r-forma e una s-forma su una
varieta M, ¢ chiaro che possiamo definire la (r + s)-forma n A w € A™*(M) ponendo

Vpe M nAw(p) =n(p) Aw(p);

in questo modo otteniamo su
dim M

A(M) = P AT(Mm)
r=0

una naturale struttura di algebra associativa e anticommutativa.

Abbiamo notato nel Paragrafo 3.3 che, in generale, ¢ difficile trasportare campi vettoriali da una varieta
a un’altra usando applicazioni differenziabili. Uno dei vantaggi delle forme differenziali € che sono invece
molto semplici da trasportare:

Definizione 3.5.1: Sia w € A"(N) una r-forma sulla varietd N, e F: M — N un’applicazione di classe C>°. 1l
pull-back di w lungo F' ¢ la r-forma F*w € A™(M) definita da

Frwy(vi, ..., 00) = wpgp) (dFp(v1), ..., dF,(vy))

per ogni vq,...,v, € T, M. Si verifica subito (esercizio) che F*w & r-lineare, alternante e di classe C'*°, per
cui & effettivamente una r-forma su M. Se v: M — N & una sottovarieta, scriveremo anche w|y; per t*w.
FEsercizio 3.5.1. Sia F: M — N un’applicazione di classe C*° fra varieta. Dimostra che
(i) F*: A"(N) — A"(M) & lineare per ogni r > 0;
(ii) F*(n Aw) = F*n A F*w per ogni n, w € A*(N);
(iii) se
w= Y wi i dy™t A Ady”

i1 <<y

¢ Despressione in coordinate locali (y!,...,y") di una r-forma w € A"(N), allora

Fro= Z (wilu.ir-oF)d(yilOF)/\~-~/\d(yi7‘oF).

1< <y
In particolare, se M ed N hanno entrambi dimensione n, (z!,...,2") sono coordinate locali su un

aperto U di M, (y,...,y™) sono coordinate locali su un aperto V di N con F(U) CV, e f € C®(V),
allora dimostra che

F*(fdy' A---Ndy™) = (f o F)det(dF)dz* A--- A da™.
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Se f € C*°(M) ¢ una funzione differenziabile su M (ovvero una 0O-forma), il differenziale df induce

un’applicazione C*°(M)-lineare df: 7 (M) — C*°(M), cioe, grazie alla Proposizione 3.2.1.(i), una 1-forma
differenziale. Quindi abbiamo un’applicazione lineare d: A°(M) — A'(M) data in coordinate locali da

j=1

Una delle principali proprieta delle forme differenziali &€ che possiamo estendere quest’applicazione d a
tutto A®(M), cioé possiamo definire in maniera coerente il differenziale di qualsiasi forma differenziale:

Teorema 3.5.1: Sia M una n-varieta. Allora esiste un’unica applicazione lineare d: A*(M) — A*(M)
soddisfacente le quattro condizioni seguenti:

(a) d(A"(M)) C A™1(M) per ognir € N;

(b) se f € C°(M) = A°(M) allora df € AL(M) é il differenziale di f;

(¢) sewe A"(M) en € A°(M) allora

dlwAn)=dwAn+ (—=1)"w A dn;

(d) dod =O.
Questa applicazione soddisfa anche le seguenti proprieta:
(i) d é locale: se w = w' su un aperto U di M, allora (dw)|y = (dw')|v;
(ii) d commuta con la restrizione: se U C M é aperto, allora d(w|y) = (dw)|u;
(iii) pit in generale, d commuta con i pull-back: se F: M — N ¢é di classe C® e w € A"(N), allora
d(F*w) = F*(dw);
(iv) se w € AL(M) & una 1-forma e X,Y € T(M), allora

dw(X)Y) = X(w(Y)) — Y(w(X)) —w([X,Y]);

(v) se (x!,...,2™) sono coordinate locali in un aperto di M, allora
d Z Wiy . i, Az A Adat | = Z dwi, . i, N Az A -+ Adat
1<i1 < <ir<n 1<ii < <ir<n (351)

) i%dﬂAdm“A-nAdm“.

1<iy <--<ip<n j=1

Dimostrazione: Iniziamo con il caso particolare in cui esista una carta globale (M, ), con ¢ = (x!,... "),
e definiamo d: A”(M) — A™1(M) per ogni r € N con la (3.5.1); in particolare, d|a-(ar) = O per ogni r > n.
Chiaramente d & lineare e soddisfa (a) e (b); dobbiamo dimostrare che soddisfa (c) e (d). Per far cio
introduciamo la seguente notazione: se I = (iy,...,%,) ¢ un multiindice, scriveremo dz’ per dz®* A --- Adz'.
Inoltre, useremo il simbolo 37 per indicare la somma su tutti multiindici 7 = (iy, . . ., i,) crescenti, cioe tali
che 1 <4y < -+ <4, <n. Quindi con queste notazioni la (3.5.1) diventa

d (Z/w[ dacI) = Z/dw[ Adzl.
J; J;

In particolare, abbiamo d(f dz!) = df A dx' per ogni multiindice crescente I, e quindi (perché?) per ogni
multiindice I, anche non crescente.
Per dimostrare (c), grazie alla linearita possiamo supporre w = fdx! e n = gdx”’. Allora

dwAn) =d(fgde" Adx?) =d(fg) Adx" A dx’
=df Ndzx! ANgdx! +dg A fdx! ANdx? = (df Ada') A+ (=1)"w A (dg A da”)
=dwAn+(—1)"wAdny,
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dove il fattore (—1)" compare perché dg & una 1-forma mentre dz! & una r-forma.
Per dimostrare (d), supponiamo prima r = 0. Allora

ox? Oxt0xd  OxJOx*

i,7=1 1<i<j<n

~ Of ~ f Pr .
d(df) = d Za— =Y —dat Ada) =Y S — — | da' Ada’ = O.
Sia ora r > 0 qualsiasi. Allora usando il caso r = 0 e la proprieta (c) otteniamo

d(dw)-d(Z/de/\dle/\--~/\dxjr>

J
Z (dwy) A dx?* A .Adxﬂ'r+zz Yodwy Ada?t A Ad(daT) A - Adai = O.
J J =1

Quindi abbiamo ottenuto un’applicazione lineare soddisfacente (a)—(d), e chiaramente valgono anche (i), (ii)
e (v); si possono anche dimostrare le proprieta (iii) e (iv), ma lo rimandiamo al caso generale.

Vediamo ora 'unicita della d, sempre in questo caso particolare. Supponiamo che d: A*(M) — A*(M)
sia un’altra applicazione lineare che soddisfa (a)—(d). Presa w = > w;dz’ € A"(M), usando (b), (c) e (d)
troviamo

dw = Z/JwJ AdzIt A - A dadt 4 (—1)OZ/WJd(d$j1 A AdaiT)
J J

= Z/de AdzIt A NdadT Z/WJ Z:(—l)i*1 dz?t A~ Nd(daT) A - A dadT
J

= dw + ZIWJ D= el A Ad(daT) A A dad = dw,

come voluto. In particolare, dw non dipende dalla carta globale usata in (3.5.1).

Ora sia M una varieta qualsiasi. Se U C M ¢ il dominio di una carta locale, la discussione precedente
ci fornisce un’applicazione lineare dy: A*(U) — A®*(U) che soddisfa (a)—(d), (i), (ii) e (v). Sull’interse-
zione U N U’ dei domini di due carte locali abbiamo

(dyw)|luvnur = duvnvw = (duw)|uno,

grazie a (ii) e all’unicita di dyy e dy/. Quindi possiamo definire un’applicazione lineare d: A*(M) — A*(M)
ponendo
(dw)p = du (wlv)p

per ogni w € A"(M), p € M e carta (U, ) in p, e d soddisfa (a)—(d), (i), (ii) e (v).

Dimostriamo ora I'unicita nel caso generale. Sia d: A*(M) — A®(M) un’altra applicazione lineare che
soddisfa (a)—(d). Cominciamo col dimostrare che d soddisfa anche (i). Chiaramente basta far vedere che
se n € A™(M) & tale che n|y = O per un qualche aperto U C M, allora (dn)|y = O. Sia p € U qualunque,
e sia g € C°°(M) una funzione con g = 1 in un intorno di p e g[yn\y = 0 (vedi la Proposizione 2.3.1).
Allora gn = O su tutto M, per cui

O = d(gn), = dg, A1 + g(p)dn, = dny.

Essendo p generico, otteniamo dNTI\U =0.

Sia ora (U, ¢) una carta locale qualsiasi, e definiamo un’applicazione lineare dy: A*(U) — A*(U) po-
nendo (dyw), = (d@), per ognip € U ew € A"(U), dove & € A" (M) & una r-forma globale che coincide con w
in un intorno di p. L’estensione @ esiste grazie all’Esercizio 3.2.4, e dyw non dipende dall’estensione scelta
grazie alla proprieta (i) di d. Chiaramente, dyy soddisfa (a)—(d); ma allora, per quanto gia visto, dy = dy.
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In particolare, se w € A"(M), p € M e (U,p) & una carta in p, possiamo usare w stessa come estensione
di w|y e quindi . )
(dw)p = (duwlv)p = (duwlv)p = (dw)y.

Essendo p e w generici, otteniamo d = d, e l'unicitd & dimostrata.

Passiamo ora a verificare (iii). Grazie a (i), ci basta dimostrare (iii) nell’intorno di ciascun punto, per
cui possiamo supporre di avere coordinate globali (z!,...,2"). Per linearita, possiamo anche supporre che w
sia della forma w = fdx™ A --- A dxir. Allora 'Esercizio 3.5.1 da

F*(dw) = F*(df Adz™ A---Adz™) =d(f o F)Ad(z" o F)A--- Ad(z' o F)
= d((fo F)d(z™ o F) A+~ Nd(a™ o F)) = d(F*w),
come voluto.

Infine, dobbiamo verificare (iv). Grazie alla linearita e alla proprieta (i), ci basta (perché?) considerare
il caso w = udv. Allora

dw(X,Y):du/\dv( ,Y) = du(X)do(Y
X ()Y (v) +uX (Y (v)) = Y(u

= X(uY(v)) Y (uX(v)) — uX Y](v)
X(w(Y)) =Y (w(X)) - w([X,Y]),

e abbiamo finito. O

) du(Y)dv(X) = X(w)Y (v) = X (v)Y (u)
X(v) —uY (X(v)) —u(X(Y(0)) = V(X(0)))

Definizione 3.5.2: L applicazione lineare d: A*(M) — A®*(M) la cui esistenza & dimostrata nel Teorema 3.5.1
¢ detta differenziale esterno di M.

FEsercizio 3.5.2.  Sia M una varieta, e w € A"(M). Dimostra che

r+1
dw(le cee 7XT+1) = Z(_l)]_lXj (W(Xla BRRE) va BERE) X’r‘Jrl))
j=1
+ Y (F)Mo(IX X)L X X X X)),
1<i<j<r+1
per ogni X1,...,X,11 € T(M), dove 'accento circonflesso indica elementi omessi dalla lista.
FEsercizio 3.5.3. Sia {Fi,...,FE,} un riferimento locale per il fibrato tangente TM di una n-varietd M
sopra un aperto U, e indichiamo con {e!,...,e"} il riferimento locale duale di 7*M sopra U. Siano inol-
tre c . € C*(U) tali che
[E;, Ej] Z ck By,

per i, j, k=1,...,n. Dimostra che

n
k in g
—g cij€ Ne

ij=1
perk=1,....n

Definizione 3.5.3: Diremo che una k-forma w € AF(M) ¢ chiusa se dw = O; diremo che & esatta se esiste
una (k — 1)-forma n € A*~1(M) tale che dn = w. Indicheremo con Z¥(M) il sottospazio delle k-forme
chiuse, e con B¥(M) il sottospazio delle k-forme esatte. Siccome d o d = O, ogni forma esatta & chiusa,
cioe B¥(M) C Z¥(M). 11 k-esimo gruppo di coomologia di de Rham della varietda M & allora definito come
il quoziente HL’;R(M) = ZF(M)/B*(M).

Un risultato fondamentale che non dimostreremo e il Teorema di de Rham, che dice che i gruppi di
coomologia di de Rham sono degli invarianti topologici della varieta:
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Teorema 3.5.2: (de Rham) Per ogni varieta M e ogni k € N il gruppo di coomologia di de Rham Hé“R(M)
& canonicamente isomorfo al k-esimo gruppo di coomologia singolare H*(M;R) di M a coefficienti in R.

Concludiamo questo paragrafo con una serie di esercizi che mostrano come introdurre il concetto di
distribuzione liscia involutiva usando le forme differenziali invece dei campi vettoriali.

FEsercizio 8.5.4. Sia D C TM una distribuzione k-dimensionale su una n-varieta M. Dimostra che D ¢
liscia se e solo se per ogni punto p € M esistono un intorno U di p e w?,...,w" % € AY(U) tali che

D, = Kerw; N---N Kerw(’;_k (3.5.2)

per ogni g € U.

Definizione 3.5.4: Sia D C TM una distribuzione k-dimensionale liscia su una n-varieta M, e U C M
aperto. Ogni (n — k)-upla di 1-forme w!, ... ,w" % € AY(M) che soddisfano (3.5.2) saranno dette forme di
definizione locali per D. Diremo inoltre che una p-forma n € AP(M) annichila D se n(Xi,...,X,) = O per
ogni X1, ..., X, € Tp(M). Indicheremo con Z%,(D) C AP(M) il sottospazio delle p-forme che annichilano D,
e porremo Zy (D) =1% (D) @ --- © I% (D).

FEsercizio 3.5.5. Sia D C T'M una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra che
una p-forma n € AP(M) annichila D se e solo se ogni volta che esistono delle forme di definizione lo-
cali w!,...,w" % € AY(U) per D su un aperto U C M allora

n—~k ) )
77|U — sz /\61
=1

per opportune (p — 1)-forme 8%, ..., 3"~% € AP=L(U).

Esercizio 3.5.6. Sia D C T'M una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra che D
¢ involutiva se e solo se per ogni aperto U C M si ha d(Z}(D)) C ZZ (D).

Esercizio 8.5.7. Sia D C TM una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra
che D ¢ involutiva se e solo se per ogni aperto U C M e ogni (n — k)-upla di forme di definizione lo-
cali w!,...,w" % € AL(U) per D sopra U esistono delle 1-forme o € AY(U) tali che

n—k
dw' = g wl A oz;-
=1

peri=1,....n—k.

Definizione 3.5.5: Un ideale di A®*(M) ¢ un sottospazio vettoriale T C A*(M) tale che w A n € T per
ogni w € A*(M) e ognin € .

FEsercizio 3.5.8. Sia D C TM una distribuzione k-dimensionale liscia su una n-varieta M. Dimostra

che Zp;(D) & un ideale di A*(M), e che D ¢ involutiva se e solo se d(Za (D)) € Zas (D).

3.6 Orientabilita

Scopo di questo paragrafo e dare una definizione di orientabilita adatta a varieta di dimensione qualunque.

Definizione 3.6.1: Diremo che una varietd connessa M ¢ orientabile se esiste una n-forma v € A™(M) che
non si annulla mai. Diremo che due n-forme mai nulle vy, vy € A"(M) determinano la stessa orientazione
se esiste una funzione f € C°°(M) sempre positiva tale che vo = fr;. Una n-forma mai nulla su M & detta
forma (o elemento) di volume di M. Una varieta su cui sia stata fissata una forma di volume ¢ detta varieta
orientata.
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Definizione 3.6.2: Sia M una varietd orientata da una forma di volume v € A"(M). Diremo che una
base {v1,...,v,} di T,M & positiva se v,(v1, ..., v,) > 0; negativa altrimenti (nota che v, (v1, ..., v,) € neces-
sariamente diverso da zero; perché?). Una carta (U, o) sara detta orientata se esiste una funzione f € C*°(U)
sempre positiva tale che dz! A--- Adx™ = fv|y, dove ¢ = (x!,...,2™) come al solito. In altre parole, (U, ©)
e orientata se e solo se {01,...,0,} € una base positiva di T, M per ogni p € U (perché?).

Definizione 3.6.3: Diremo che due carte (Uy, ¢o) € (Ug, pg) di una varietd M sono equiorientate se il deter-
minante del differenziale del cambiamento di coordinate ¢, o @51 & positivo in tutti i punti di ¢g(Us N Upg).
Un atlante A = {(U,, pa)} € orientato se ogni coppia di carte in 4 & equiorientata.

Proposizione 3.6.1: Sia M una varieta connessa n-dimensionale. Allora M é orientabile se e solo se
ammette un atlante orientato.

Dimostrazione: Supponiamo che M sia orientabile, e sia v € A™(M) una n-forma mai nulla. Prendiamo
un atlante A = {(U,,¢a)} con ciascun U, connesso. Allora dzl A --- A da? € A"(U,) ¢ una n-forma
locale mai nulla; siccome A" M ha rango 1, deve esistere una funzione f, € C°*°(U,) mai nulla tale
che dzl A--- ANda" = f,v|y,. Essendo U, connesso, la funzione f, ha segno costante; quindi a meno
di modificare ¢, scambiando le ultime due coordinate possiamo supporre che tutte le f, siano positive.
Vogliamo dimostrare che I'atlante A cosi ottenuto ¢ orientato. Infatti I’'Esempio 3.2.3 ci da

1 n oz 1 oxh
faVlv.nu, = dxg Ao+ Ndry, = det axg drg A+ Ndrj = det ﬁxﬁ Jev|vanus,

per cui fo|y,nu, = det < > Jslu.nu, e dunque det < xg) > 0 come voluto.

Viceversa, sia A = {(Uq, vo)} un atlante orientato, e sia {p,} una partizione dell’unita subordinata a
questo atlante. Poniamo

V:Zpadxi/\~-~/\dxz
[}

Le proprieta delle partizioni dell’unita ci assicurano (perché) che v € A™(M) & globalmente definita; dob-
biamo dimostrare che non ¢ mai nulla. Ora, ciascuna dzl A --- A dz” non si annulla mai; inoltre

dzl A

6h
-Ndzxl, = det 8% dzxl 5/ /\da:g

su U, NUg, per cui dzl A--- Ada” e d;vé A~ Ndag differiscono per un fattore moltiplicativo strettamente
positivo in quanto I'atlante & orientato. Quindi nell’intorno di ogni punto v &€ somma di un numero finito di
termini che sono tutti un multiplo positivo I’'uno dell’altro, per cui v non si puo¢ mai annullare. O

Dunque una varieta e orientabile se e solo se possiamo orientare coerentemente tutti gli spazi tangenti.

ESEMPIO 3.6.1. Una varieta con un atlante costituito da una sola carta (esempio: un grafico) o da due
carte che abbiano intersezione connessa (esempio: la sfera) & chiaramente orientabile.

Esercizio 3.6.1. Sia F: M — N un diffeomorfismo locale fra due varietd di dimensione n. Dimostra che
se v € A"(N) & una forma di volume su N allora F*v & una forma di volume su M.

Definizione 3.6.4: Sia F': M — N un diffeomorfismo locale fra due varieta orientate. Diremo che F' conserva
Dorientazione se F*v determina l’orientazione data su M per ogni forma di volume v € A™(N) che determina
l'orientazione data su IV; altrimenti diremo che F' inverte ’orientazione.

Esercizio 3.6.2. Sia F: M — N un diffeomorfismo locale fra due varieta orientate. Dimostra che F' conserva
l'orientazione se e solo se detJac(i) o F o ¢~1) > 0 per ogni carta orientata (U,¢) di M e ogni carta
orientata (V,4) di N tali che F(U) C V.

Esercizio 8.6.3. Sia F: M — N un diffeomorfismo locale fra due varieta orientate di dimensione n. Dimostra
che F' conserva 'orientazione se e solo se per ogni p € M I'immagine tramite dF, di una base positiva di T, M
¢ una base positiva di Tr,)N.
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FEsercizio 3.6.4. Dimostra che P"(R) & orientabile se e solo se n & dispari.
Esercizio 8.6.5. Dimostra che il prodotto di due varieta orientabili ¢ orientabile.
Esercizio 3.6.6. Sia M una varieta tale che T'M sia il fibrato banale. Dimostra che M ¢ orientabile.

Esercizio 3.6.7. Posto I = [0,1], sia p: I — S! data da p(t) = e****. Indichiamo inoltre con m: I x R — I la
proiezione sul primo fattore. Sia ~ la relazione d’equivalenza su I x R che identifica i punti (0,y) € {0} xR
con i punti (1, —y) € {1} x R. Poniamo E = (I x R)/ ~. Siccome pom:I x R — S & costante sulle classi
d’equivalenza di ~, otteniamo un’applicazione continua surgettiva m: E — S'. Dimostra che questo ¢ un
fibrato vettoriale di rango 1 su S! (detto fibrato di Mébius), che E & una varietd non orientabile, e deduci
che F non ¢ un fibrato banale.

Non tutte le varieta connesse sono orientabili (vedi gli Esercizi 3.6.4 e 3.6.7). Esiste perod una procedura
standard per ottenere una varieta orientabile a partire da una non orientabile:

Proposizione 3.6.2: Sia M una varieta connessa non orientabile. Allora esiste un rivestimento liscio a
due fogli m: M — M tale che M sia una varieta connessa orientabile. Inoltre il gruppo di automorfismi
del rivestimento & isomorfo a Zs, e se F: M — M ¢ Iautomorfismo diverso dall’identita allora F inverte
Porientazione di M.

Dimostrazione: Per ogni p € M indichiamo con 4, e —, le due possibili orientazioni su 7, M; inoltre,
se {e1,...,en} & una base di T, M indichiamo con [e; ...e,] l'orientazione indotta da questa base. Infine,
indichiamo con M l'unione disgiunta delle coppie (p, +p) € (p, —p), cioe

M = U {(p, +p)7<p? _P)}a

peEM

e sia m: M — M data da m(p,£p) = p. Vogliamo definire su M una struttura di varietd soddisfacente le
richieste.

Sia A = {(Ua, pa)} un atlante di M tale che ogni U,, sia connesso, e tale che per ogni p € M esistano
due carte locali (Uy,; 0u), (Uars o) € A in p tali che [01,4lp---On,alp] = e [O1alp-- Onarlp) = —p- Per

ogni (Uy, ¢a) € A definiamo 94: 0o (Us) — M ponendo
dla(.’li) = ((p;l(lf), [817a|%71(m) - 8n7a|@;1(m)]),

dove p = @ '(z). Ogni ¢, & chiaramente iniettiva; la sua inversa ¢ data da ¢, = @q o m, definita
su Uy = Ya(pa(Us)). Allora A = {(Us, o)} & un atlante su M. Infatti, copre M per llpote51 su A,
e le carte sono compatibili in quanto

@a‘”ﬁglzﬁaaoﬂ'owﬁ:@ao@gl-

Siccome ¢, oo @, ! = id, la proiezione 7 & differenziabile e chiaramente surgettiva. Inoltre se —U,CMe
definito da (p, +,) € —U, se e solo se (p, Fp) € Uy, allora 71 (U,) = U, U (—U,), e 7 ristretto sia a U, che
a —U,, ¢ un diffeomorfismo con Ug; quindi 7 € un rivestimento a due fogli.
Ora, se U, N Uﬁ # & allora U, NUg # @ e in ogni punto di Uy, NUg si ha [01,4...0n,a] = [01,5---0n gl,
per cui
det Jac(pq © @El) = det Jac(pq © <p51) > 0,

e quindi A ¢ orientato.

Se M non fosse connessa, la restrizione di 7 a ciascuna componente connessa sarebbe un rivestimento a
un foglio, cioe un diffeomorfismo, e M sarebbe orientabile, contraddizione.

Essendo 7 un rivestimento a due fogli, il gruppo di automorfismi di 7 & necessariamente Zs. L’automor-
fismo F ¢ dato da F'(p, £,) = (p, Fp), e si verifica subito che F inverte 'orientazione. Infatti, preso p € M,
sia (U, ¢) una carta in p tale che [0; ...0,] = +,, ¢ indichiamo con (U, ¢ ™) la carta ottenuta invertendo le
ultime due coordinate di ¢. Allora

g oFog T a) =T o F¢ ™M (@), +p1() = @ (¢ (@) —p1() =9~ 09 H(2) = (a2,
e la tesi segue dall’Esercizio 3.6.2. O
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Corollario 3.6.3: Ogni varieta connessa semplicemente connessa € orientabile.

Dimostrazione: Se non fosse orientabile, per la proposizione precedente dovrebbe avere un rivestimento a
due fogli e quindi non potrebbe essere semplicemente connessa. ]

Esercizio 3.6.8. Sia E un fibrato vettoriale di rango = su una varieta n-dimensionale M. Indichiamo
con O C F I'immagine della sezione nulla, e poniamo E, = E\ Og. 1l proiettivizzato P(E) & I'insieme otte-
nuto quozientando E, rispetto alla relazione d’equivalenza v ~ w se e solo se esiste A\ € R* tale che v = \w.
Dimostra che P(E) ha una naturale struttura di varieta di dimensione r + n — 1 tale che la proiezione na-
turale m: P(E) — M & C*. Inoltre, dimostra che 7~ !(p) & diffeomorfo a P"~!(R) per ogni p € M. Infine
dimostra che la varieta M introdotta nella Proposizione 3.6.2 ¢ diffeomorfa a P(A™M).

Esercizio 3.6.9. Sia M una varieta connessa di dimensione 1. Dimostra che M ¢ necessariamente diffeomorfa
a R oppure a S! nel seguente modo:

(i) Dimostra la tesi quando M & orientabile costruendo un campo vettoriale su M mai nullo e applicando
I'Esercizio 3.3.1.

(ii) Dimostra che M & sempre orientabile, facendo vedere che il suo rivestimento universale & diffeomorfo
a R e che ogni diffeomorfismo di R che inverte 1’orientazione ha necessariamente un punto fisso.

Il motivo per cui una n-forma mai nulla si chiama forma di volume & che permette di integrare delle

funzioni a supporto compatto su una varieta. Questo perché, come discuteremo fra un attimo, su una varieta

orientata di dimensione n € sempre possibile integrare n-forme a supporto compatto; e allora se v & una forma

di volume e g € una funzione a supporto compatto, possiamo definire I'integrale di g come l'integrale di gv.
Ma andiamo per gradi.

Lemma 3.6.4: Sia M una varieta n-dimensionale orientata, ew € A" (M) una n-forma a supporto compatto.
Supponiamo di avere due carte orientate (U, ) e (U, ) tali che il supporto di w sia contenuto in U N U.

Allora
/ (w‘l)*w=/ (T w.
e(U) PU)

Dimostrazione: Ricordo che se n = fda' A --- A dz™ & una n-forma con supporto compatto in un aperto V/

di R™ abbiamo per definizione
/ 77:/ fdazt---dz",
v v

dove a secondo membro abbiamo 1'usuale integrale di Lebesgue. ~
Scriviamo allora (¢~ ')*w = fdaz' A--- Ada"™ e (¢7!)*w = fdE' A--- A dZ", per opportune fun-
zioni f € C*(p(U)) e f € C=(p(U)). Siccome

@E ) w=(pod ) (¢ ) w,
troviamo )
f=fo(pop t) detJac(po@™t).
Siccome le carte sono orientate, abbiamo det Jac(po@~!) > 0, per cui la formula di cambiamento di variabile
negli integrali multipli ci da

[ oeve= [ @ye=[  faateea
@) e(UNY) e(UNU)

:/ fo(pogt)detJac(po@ t)dit - di™
GUNU)

:/ fo(po@™h)|det Jac(po g™ di' - dz"
(UND)

= / i fdxt- . da" = / (o) *w.
o(UND) »(U)
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Quindi se w € A"(M) & una n-forma con supporto compatto contenuto nel dominio di una carta
orientata (U, ¢) qualsiasi, possiamo definire f W ponendo

[ w- / e

La definizione dell’integrale per forme a supporto compatto qualunque si ottiene allora usando le partizioni
dell’unita:

Lemma 3.6.5: Sia M una varieta n-dimensionale orientata, e scegliamo un atlante orientato A = {(Uq, va)}
e una partizione dell’unita {p, } subordinata a questo atlante. Allora per ogni n-formaw € A™(M) a supporto

compatto il numero
w= Paw (3.6.1)
L=,

non dipende né dall’atlante orientato scelto né dalla partizione dell’unita scelta.

Dimostrazione: Prima di tutto notiamo che siccome il supporto di w & compatto, e i supporti delle funzioni
della partizione dell’unita formano un ricoprimento localmente finito, la somma in (3.6.1) contiene solo un
numero finito di termini non nulli, per cui ¢ ben definita.

Sia A = {(Ugs, $s)} un altro atlante orientato di M, e {j3} una partizione dell’unita a lui subordinata.

Per ogni o abbiamo
/ PaW = / Zﬁﬁ PaW = Z/ ﬁﬁpawa
M M\ 5 M

L’integrando di ciascun addendo a secondo membro ha supporto compatto contenuto nel dominio di una
singola carta (U, oppure Uﬁ, per esempio), per cui il valore di ciascun addendo non dipende dalla carta
usata per calcolarlo.

In maniera analoga otteniamo

e sommando su « otteniamo

; /M Bow = ; /M Pafiow,

e la tesi segue. Il

Definizione 3.6.5: Sia M una varietd orientata n-dimensionale. L’integrale [ 1w di una n-forma w € A" (M)
a supporto compatto su M ¢ definito dalla formula (3.6.1). In particolare, se v € A™(M) ¢ una forma di
volume per M e f € C*(M) & a supporto compatto, poniamo

-1,

Se M & compatta, diremo v-volume di M il numero vol, (M) = [, v.

Non posso concludere questo capitolo senza citare un caso particolare (ma particolarmente importante)
del fondamentale Teorema di Stokes:

Teorema 3.6.6: (Stokes) Sia M una varieta compatta orientata n-dimensionale, e n € A"~Y(M). Allora

/ dn = 0.
M

In generale, si puo definire il concetto di varieta con bordo in modo che il bordo OM di una varieta M
con bordo n-dimensionale orientata sia una varietd (senza bordo) orientata (n — 1)-dimensionale. Allora il
Teorema di Stokes generale dice che
L= L
M oM

per ogni (n — 1)-forma 7 a supporto compatto in M J



