Capitolo 1

Algebra multilineare

1.1 Prodotto tensoriale

Se V e W sono due spazi vettoriali sul campo K, indicheremo con Hom(V, W) lo spazio vettoriale delle
applicazioni K-lineari da V' in W. In particolare, lo spazio duale di V' & lo spazio vettoriale V* = Hom(V, K).
Inoltre, useremo spesso il delta di Kronecker, che & il simbolo

_n_ |1 seh=k,
5"’“5’“_{0 se h # k.

Ricordiamo alcune proprieta fondamentali degli spazi Hom(V, W) e V*:

Proposizione 1.1.1: SianoV e W due spazi vettoriali di dimensione finita sul campo K, e B = {v1,...,v,}

una base di V. Allora:

(i) L’applicazione che a ogni L € Hom(V, W) associa la n-upla (L(v1),...,L(v,)) € W™ & un isomorfismo
fra Hom(V, W) e W™. In particolare, dim Hom(V, W) = (dim V)(dim W), e dim V* = dim V.

(ii) Se indichiamo con v" € V* I'elemento definito da v"(vy) = 8%, allora B* = {v',...,v"} & una base
di V*, detta base duale di V*.

(iii) L’applicazione ®:V — (V*)* data da ®(v)(¢) = ¢(v) € un isomorfismo canonico fra V e il biduale (V*)*.

(iv) Se (+,-):V x V. — K & un prodotto scalare non degenere, allora l’applicazione ¥:V — V* data
da ¥(v) = (-,v) é un isomorfismo.

Esercizio 1.1.1. Dimostra la Proposizione 1.1.1.

In particolare, ogni elemento di Hom(V, W) & univocamente determinato dai valori che assume su una
base. Data una n-pla (wn,...,wy) € W, I'elemento L di Hom(V, W) che soddisfa la condizione L(v;) = w;
per j =1,...,n e definito da

LA\ 4+ Ay) = Mwy + -+ XNw,
per ogni M\',... A" ¢ K.
Vogliamo introdurre costruzioni analoghe e ottenere risultati simili per applicazioni multilineari.

Definizione 1.1.1: Siano V1,...,V,, W spazi vettoriali sul campo K. Un’applicazione ®:V; x ---xV,, — W si
dice multilineare (o n-lineare) se & lineare separatamente in ciascuna variabile. L’insieme M (Vi,...,V,; W)
delle applicazioni multilineari da V3 x --- x V,, in W & chiaramente uno spazio vettoriale su K.

Per capire meglio il contenuto della prossima proposizione, premettiamo un’osservazione.

Osservazione 1.1.1. Supponiamo dati n numeri interi di,...,d, € N* e uno spazio vettoriale W di
dimensione d. Allora lo spazio vettoriale W7 4n puo essere descritto come lo spazio delle “matrici” a n
indici, i cui elementi sono vettori di W, e in cui il j-esimo indice varia fra 1 e d; (per j =1,...,n). In altre
parole, ogni vettore w € Wddn puo essere scritto come

_ (apHLein
W= (W) () €Ly Y X {1}
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con wttHn € W per ogni n-upla (ui,...,un) € {1,...,d1} x --- x {1,...,d,}. In particolare, data
una base {wi,...,wq} di W otteniamo una base di Wdidn considerando i vettori Wo,,... v @l variare

divy €{1,...dr},...,vp€{1,...,d}, v € {l,...,d}, dove I'elemento di posto (1,..., ) di Wy, ,, 0 €
dato da

(Wor o)t =601 - 50mw,,. (1.1.1)
In particolare, il vettore e,, .. ,, della base canonica di Kdl'“d", che ha un 1 al posto (v1,...,v,) e 0 altrove,
ha come (1, ..., tin)-esimo elemento il numero

Hi--fn — SH1 | SH
(eul...l/n) "= 51/1 61/:

Proposizione 1.1.2: Siano Vi,...,V, e W spazi vettoriali di dimensione finita sul campo K, di dimen-
sione rispettivamente di,...,dn,d. Per j = 1,...,n scegliamo una base B; = {vj1,...,vjq4,} di V;, e
sia {w1, ..., wy} una base di W. Allora I'applicazione A: M(Vy, ..., Vy; W) — W dn data da

A(Q) = (‘I’(Ul,mv e 7v"»#n))(Ml,.“,pn)e{l,“.,dl}><~-~><{1,...,dn}

é un isomorfismo. In particolare,
dim M(Vy,...,Vp; W) = (dim V3) - - - (dim V) - (dim W),

euna base di M(Vi,...,Vi; W) e {®F0 " b o b)efl, i} xox{1,dn} x {1,....d}» dOVve ®V1oVn & definita
da

Vl,..yUn —_ SV Vn
Pyl (V1 ey Unp,) = Sy Oy

Dimostrazione: L’applicazione A & chiaramente lineare. Ora, per ogni applicazione ® € M (Vy,...,V,,; W) e

R A i
ogni v; =37, abv;, €Vj,si ha

in particolare, A(®) = O implica ® = O, e quindi A ¢ iniettiva. Viceversa, se scegliamo arbitraria-
mente wy, ., € W possiamo definire una ® € M(Vi,...,V,; W) tale che ®(v1,y,.. -, Unp,) = Wy oo,
ponendo

di dy,
vy, .. o) = D e YAl altwy, (1.1.2)

p1=1 pn=1

per cui A & surgettiva. Infine, una base di M (Vy, ..., V,; W) si ottiene applicando A~! a una base di W dn;
Pultima affermazione segue quindi da (1.1.1). U

In altre parole, anche le applicazioni multilineari sono completamente determinate dai valori che assu-

mono su n-uple di elementi delle basi. Quando in seguito costruiremo un’applicazione multilineare prescri-
vendo il suo valore sulle basi e poi invocando questo risultato, diremo che stiamo estendendo per multilinea-
rita.
Esercizio 1.1.2. Siano Vi,...,V,, W spazi vettoriali sul campo K. Dimostra che gli spazi M (V,...,V,; W),
Hom(V17 M Vay ..., Vs W)) e M(Vl, ooy Va—1; Hom(V,, W)) sono canonicamente isomorfi. [Suggerimento:
se ® € M(Vi,...,Vn; W), considera & € Hom(Vy, M(Va, ..., Vs W)) e @ € M(V4, ..., Vy_1; Hom(V,, W))
definite da

O(v1)(v2, ... ,vn) = <i)(1)1, coyUne1)(vn) = Pvg, ..., vn) EW
per ogni vy € Vi,...,v, € V]

Vogliamo descrivere ora una procedura che ci permette di trasformare un’applicazione multilineare in
una lineare cambiando opportunamente il dominio.
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Teorema 1.1.3: Dati Vi, ..., V, spazi vettoriali di dimensione finita su K, poniamo T = M (V... , V¥ K).
Sia inoltre F € M(Vy,...,V,;T) data da

F(’Ula s ,Un)(<,01, .- 'a‘pn) = 901(@1) e '@n(vn)a

per ognivy € Vi,... v, € Vi, ot € Vi*, ... " € V¥, Allora:
(i) Per ogni spazio vettoriale W su K e ogni applicazione multilineare ®:Vy x - -- x V,, — W esiste un’unica
applicazione lineare ®: T — W tale che ® = ® o ' (proprieta universale del prodotto tensoriale).
(ii) Se (T',F') & un’altra coppia soddisfacente (i) allora esiste un unico isomorfismo ¥:T — T tale che
F' =W o F (unicita del prodotto tensoriale).

Dimostrazione: (i) Per j = 1,...,n scegliamo una base B; = {v;1,...,vj4,} di Vj;, dove d; = dimV}, e
. d; . . .
sia B} = {v}7 .. 7vjj} la corrispondente base duale. Poniamo ¢, . ., = F(v1,4y,- -+, Un,u,) € T; siccome
Vi 1Z __ SV 12
@M1<--Mn(vl ,...,vnn)—ému-éuz,

la Proposizione 1.1.2 e I'Osservazione 1.1.1 ci dicono che {¢,,, ., } € una base di T. Ora, se d esiste si deve
avere

(i)(‘/’m---un) = (i)(F(Ul,uu ces Un,un)) =Q(v1 -, Un,un%

quindi la Proposizione 1.1.1.(i) ci assicura che esiste un’unica applicazione lineare ® con le proprieta richieste.

(ii) Se applichiamo (i) alla F’:V} x --- x V,, — T’ otteniamo una ¥:T — T’ tale che ¥ o F = F’.
Rovesciando i ruoli di T e T otteniamo una ¥': 7" — T tale che ¥/ o F/ = F. Quindi (V' o ¥)o F = F; ma
anche idr oF = F| e l'unicita in (i) implica ¥’ o ¥ = idy. Analogamente si dimostra che ¥ o ¥’ =idy, e ci
siamo. ]

Definizione 1.1.2: Diremo che due coppie (T4, F1) e (T», F»), con T} spazi vettoriali ¢ Fj: Vi x --- x V;, — T
applicazioni n-lineari, sono isomorfe se esiste un isomorfismo ¥:7T; — T5 tale che Fo = Vo F}.

Definizione 1.1.3: Una coppia (T, F) soddisfacente le proprietd del Teorema 1.1.3.(i) verra detta prodotto
tensoriale di V1,...,V,, e indicata con V1 ®- - -®V,,; il Teorema 1.1.3.(ii) ci assicura che il prodotto tensoriale
¢ ben definito a meno di isomorfismi. Gli elementi della forma F'(v1,...,v,), detti indecomponibili, verranno
indicati con la scrittura v1 ® - - - ® v,,.

Osservazione 1.1.2. La dimostrazione del Teorema 1.1.3.(ii) mostra chiaramente come 'unicita del pro-
dotto tensoriale sia conseguenza della proprieta universale.

Osservazione 1.1.3. Il Teorema 1.1.3 e la Proposizione 1.1.2 chiaramente implicano che
dim(Vy ® --- @ V,) = (dimVp) - - - (dim V).

Esercizio 1.1.3. Dimostra che V®K e K® V sono canonicamente isomorfi a V' per ogni spazio vettoriale V'
di dimensione finita sul campo K.

Ci possono essere altre realizzazioni concrete del prodotto tensoriale di spazi vettoriali (vedi per esempio
PEsercizio 1.1.5); ma noi lo penseremo sempre come spazio di applicazioni multilineari. In particolare,
presiv; € Vi,...,vy, € V,, allora v1 ® - - ® vy, agisce su Vi* X --- x V.* con la seguente regola:

V1 ®'~-®Un(<P1a---7<Pn) = ‘F’l(”l)"'wn(v”)
per ogni @' € Vi, ..., 0" € Vi

Osservazione 1.1.4. Se B; = {vj1,...,vj4;} ¢ una base di Vj, per j = 1,...,n, allora una base
di Vi ® ---® V, ¢ composta dagli elementi indecomponibili della forma v ,, ® -+ ® vp,,. In partico-
lare, gli elementi indecomponibili formano un sistema di generatori di V; ® --- ® V,,, ma attenzione: non
tutti gli elementi di V; ® --- ® V,, sono indecomponibili. Per esempio, tutti gli elementi indecomponibili
di V ® V sono applicazioni bilineari degeneri (dato v; ® vo € V ® V, se prendiamo ¢! € V* non nullo tale
che p!(v1) = O, allora v; @ va(pt, ) = O, per cui v; @ vy ¢ degenere), e quindi nessuna applicazione bilineare
non degenere di V* x V* in K puo essere rappresentata da un singolo elemento indecomponibile.
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Osservazione 1.1.5. Se A€ Kewv, € Vq,...,v, € V,, la multilinearita di F' implica che
A1 ® @)= (M) @ ®up = =11 & @ (Avn).
Analogamente, se v, v/ € V; si ha
MO W +U)® QU= @ BB QU F VB DB D .

Queste regole determinano completamente la manipolazione algebrica degli elementi del prodotto tensoriale,
come vedremo nell’Esercizio 1.1.5.

FEsercizio 1.1.4. Dato un insieme S, indichiamo con K(S) I'insieme
K(S) = {f: S — K| f(s) # 0 solo per un numero finito di elementi s € S}.

(i) Dimostra che K(S) & uno spazio vettoriale su K, detto spazio vettoriale libero generato da S.

(ii) Identificando ogni s € S con la funzione in K({S) che vale 1 in s e 0 altrove, dimostra che S ¢ una base
di K(S), e quindi che ogni elemento v € K(S) si scrive in modo unico come combinazione lineare formale
finita di elementi di S a coefficienti in K, cioé nella forma

k
— Jg.
U—E Ms;
=1

per opportuni k € N, AL, ..., f e Kesq,...,s5 € 5.

(iii) Dimostra che per ogni funzione o: S — V a valori in uno spazio vettoriale V' qualsiasi esiste un’unica
applicazione lineare A € Hom(K(S), V) tale che A|s = a (proprieta universale dello spazio vettoriale
libero).

(iv) Dimostra che se (W, ) & una coppia composta da uno spazio vettoriale W e un’applicazione iniet-
tiva t: S — W tale che per ogni funzione a: S — V a valori in uno spazio vettoriale V' qualsiasi esiste un’u-
nica applicazione lineare A € Hom (W, V) tale che A o 1 = « allora esiste un isomorfismo T: K(S) — W
tale che T|s = ¢.

Esercizio 1.1.5. Siano Vi,...,V, spazi vettoriali sul campo K, e indichiamo con K(V; x --- x V,,) lo spazio
vettoriale libero generato da V; x - - - x V,, (vedi I’esercizio precedente). Sia R il sottospazio di K(Vj x---x V)
generato dagli elementi della forma

AW,y U) = (V1,0 AV, L Up),

(V1,0 Vo) A (V1,0 o) = (1, ),

esiaT =R(V} x---xV,)/R lo spazio quoziente. Infine, sia m: V} x ---x V,, — T Papplicazione che associa a
ciascun elemento di V3 x --- x V,, la sua classe d’equivalenza in T'. Dimostra che (7', 7) soddisfa la proprieta

universale del prodotto tensoriale, e deduci quindi che se Vi,...,V,, hanno dimensione finita allora (T, 7) &
isomorfo al prodotto tensoriale (V3 @ --- ® V,,, F).

La seguente proposizione contiene degli utili isomorfismi canonici fra prodotti tensoriali (e spazi di
applicazioni lineari):
Proposizione 1.1.4: Siano V., W, Vi,...,Vy, V] spazi vettoriali di dimensione finita sul campo K. Allora
(i) Sia o una permutazione di {1,...,n}, e F:Vix---xV,— Vo) ® -+ - ® Vo data da

F(vi,...,00) = V501) ® -+ @ Ug(n)-

Allora (Vy(1) ® -+ - @ Viy(y), I') & isomorfo a (V1 @ - @ Vy,, F).
(i) Sceltoj € {1,...,n—1},sia F:Vi x - xV, = (V1 @---®V;)® (Vj41 ®---®V,) data da

Fvr,...,0) =1 ® - Q) ® (Vj1 @+ D vy).
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Allora ((V1®---®Vj)®(Vj+1®--~®Vn),15) é isomorfo a (Vi ® --- @ Vy,, F).

(iii) Sia F:Vix -+ x (V;@V))x - xV, = (V@ Ve aV,)eie oV aV,) dta da

F(“hnw(”ﬁ”é‘)wna'”n):('Ul®"'®Uj®"'®vnavl®"'®vé®"'®Un)-

Allora (V1 ®---@V;®---@V,) (Vi ®- - ®Vi®- - '®Vn),ﬁ') & isomorfo a (V1®- - BV;eV))®: -0V, F).
(iv) Sia F:V* x W* — (V @ W)* data da

F(p, ) (0 ® w) = p(v)(w).

Allora ((V @ W)*, F) ¢ isomorfo a (V* @ W* F).
(v) Sia F:V* x W — Hom(V, W) data da

Fp,w)(v) = ¢(v)w.

Allora (Hom(V, W), F) & isomorfo a (V* @ W, F).
(vi) L’applicazione A: M(V1,Va; W) — Hom(V; ® Vo, W) data da

A(®)(v1 ® vg) = D(v1,v2)

ed estesa per linearita, & un isomorfismo fra M (Vy,Va; W) e Hom(V; ® Vo, W).

Dimostrazione: (i) Essendo F un’applicazione n-lineare, la proprieta universale del prodotto tensoriale ci
fornisce una A: V1 @ -+ @V, — V51) ® - @ V() lineare e tale che F = AoF. Ora, I'immagine di A e
un sottospazio vettoriale di V(1) ® - -+ ® V(5 che include F (Vi x -+ x V,,); siccome quest’ultimo insieme,
contenendo tutti i vettori indecomponibili, genera V(1) ® - -+ ® V), Papplicazione A ¢ necessariamente
surgettiva. Ma Vi @ --- @V, e V(1) ® - -+ ® V() hanno la stessa dimensione, e quindi A ¢ I'isomorfismo
cercato.

(ii), (iii) e (iv) si dimostrano in modo assolutamente analogo (esercizio).

Anche la (v) si puo dimostrare nello stesso modo, ma possiamo anche scrivere in maniera esplicita
I’isomorfismo A: V* @ W — Hom(V, W). Infatti, si verifica subito (esercizio) che estendendo per linearita la

Alp @w)(v) = p(v)w

otteniamo un isomorfismo che soddisfa F = A o F. Nota che, a meno di identificare gli spazi vettoriali con i

loro biduali, questo ¢ esattamente 'isomorfismo dell’Esercizio 1.1.2 applicato a V* @ W = M (V, W*; K).
(vi) L’applicazione A ¢ lineare e iniettiva fra spazi vettoriali della stessa dimensione, per cui & un

isomorfismo, che realizza esplicitamente la proprieta universale del prodotto tensoriale. Il

Osservazione 1.1.6. In particolare, combinando gli ultimi tre isomorfismi vediamo che M (Vy, Vo; W) & ca-
nonicamente isomorfo a Vi*®@ V5" @ W. Piu in generale, con la stessa tecnica si verifica che M (Vi,...,V,; W) e
canonicamente isomorfo a Vi*®- - -@V,*®@W, che a sua volta & canonicamente isomorfo a M (Vy, ..., V,; K)@W.

Esempio 1.1.1.  Uno dei misteri dell’algebra lineare elementare € come mai due nozioni piuttosto diverse,
quali le applicazioni lineari fra due spazi vettoriali e le forme bilineari a valori nel campo base, vengono
rappresentate dallo stesso tipo di oggetti (le matrici). La soluzione del mistero & la Proposizione 1.1.4.(v).
Infatti, dati due spazi vettoriali V e W di dimensione n ed m rispettivamente, la scelta di due basi fornisce
un isomorfismo fra lo spazio delle matrici My, ,,(K) e lo spazio delle applicazioni lineari Hom(V, W). Grazie
alla Proposizione 1.1.4, quest’ultimo & canonicamente isomorfo a V* ® W, cioe allo spazio delle applica-
zioni bilineari M (V, W*;K). Ma la scelta delle basi fornisce anche un isomorfismo di W* con W, e quindi
di M(V,W*;K) con M,, ,(K), per cui siamo passati dalle matrici come applicazioni lineari alle matrici come
forme bilineari.

Vi & un’altra interpretazione del prodotto tensoriale in termini matriciali. Dati u € K™ e v € K",

*

Pelemento indecomponibile 4 ® v & un’applicazione bilineare di (K™)* x (K™)* in K, che & rappresentata da
T

una matrice m x n a coefficienti in K. E facile vedere (esercizio) che questa matrice ¢ esattamente w - v* .
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Definizione 1.1.4: Dati v € K™ e v € K", diremo prodotto di Kronecker di u e v la matrice u®v € My, »(K)
data da u®v = u-v’, il cui elemento di posto (i, j) ¢ u'v?. Pilt in generale, se A € M,, »,(K) e B € M, (K)
sono due matrici, diremo prodotto di Kronecker di A e B la matrice
anBT s alnBT
am1BT -+ aumBT
FEsercizio 1.1.6. (i) Dimostra che ogni matrice in M, ,(K) di rango 1 & della forma v ® v per oppor-
tuni u € K™ e v € K",
(i) Dimostra che ogni matrice in M, ,(K) di rango d > 1 & somma di d matrici di rango 1.
(iii) Interpreta il prodotto di Kronecker di matrici in termini di prodotti tensoriali.

EseEmpio 1.1.2. Se V ¢ uno spazio vettoriale sul campo K, si vede subito che V ® K ¢ isomorfo a V
(esercizio). Se K = R possiamo invece considerare V @ C. Come spazio vettoriale reale, V ® C ha dimensione
doppia rispetto a V'; ma la cosa interessante & che V' ® C ha una naturale struttura di spazio vettoriale su C,
con dimensione (complessa) uguale alla dimensione (reale) di V. Infatti, ogni elemento di V@ C & somma di
un numero finito di elementi della forma v; ® A, con v; € V e A; € C; quindi possiamo definire il prodotto
di un numero complesso A per un elemento di V ® C ponendo

A ZU]‘ XN = ZU]' & ()\/\j),
j=1 j=1

ed & facile verificare che in questo modo si ottiene uno spazio vettoriale su C. In particolare, se {v1,...,v,}
¢ una base di V, una base su R di V@ C & data da {v; ® 1,v1 ®4,...,v, ® 1,v, ® i}, mentre una base su C
¢ semplicemente data da {v; ® 1,...,v, ® 1}.

Definizione 1.1.5: Sia V uno spazio vettoriale su R di dimensione finita. Lo spazio vettoriale complesso V @ C

viene detto complessificazione di V, e indicato con V.

1.2 L’algebra tensoriale

In geometria differenziale sono particolarmente utili alcuni spazi ottenuti tramite prodotti tensoriali.

Definizione 1.2.1: Sia V uno spazio vettoriale sul campo K di dimensione finita. Allora possiamo costruire i
seguenti spazi vettoriali:

TV)=To(V)=T(V) =K, T'(V)=T,(V)=V, T(V)=T(V)=V",
V) =T)(V)=V® -V, T,V)=T)(V)=V"®---@V*, TP(V) =TP(V) @ T,(V),

. , q
p volte q volte
V) =PT1(V), T(V)= P TIV), TV)=PT,V).
p=20 p,q>0 ¢>0

Chiaramente, dim T? (V') = (dim V)", mentre T'(V') ha dimensione infinita. Un elemento di T?(V') & detto
tensore p-controvariante e g-covariante, o tensore di tipo (Z ), mentre, per motivi che vedremo fra un attimo,
lo spazio T'(V) & detto algebra tensoriale di V.

Osservazione 1.2.1. Ricordo che T2 (V') ¢ lo spazio delle applicazioni multilineari da (V*)? x VI a K, e
in particolare I’azione degli elementi indecomponibili ¢ data da

ul®...®U,p®wl®-~-®wq(’(]17...7’f]p,1}1,...,vq) :nl(ul)"'np(up)'wl(vl)”'wq(vq)a

dove uy, ..., up,v1,...,04 € Vew', ... ,wln', ... ,n? € V*. Inoltre, I'Esercizio 1.1.2 implica che T?(V')
¢ isomorfo allo spazio delle applicazioni multilineari da (V*)P x V4=! a V* e a quello delle applicazioni
multilineari da (V*)P~! x V¢ a V. In particolare, T} (V') & isomorfo a Hom(V, V).
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Ora vogliamo definire su 7'(V') un prodotto. Se o € TP* (V') e 8 € TP2(V') definiamo a ® 8 € T(fllf;;z (V)
ponendo

1

a®ﬂ(7717,..777P1+p2,1;1,,,,,yq1+q2) =a(n ,m,npl,vh--.,vql)ﬂ(n““,..

. ’77p1+p2a Ugr+1y -+ vq1+¢12)'
Siccome ogni elemento di T(V') & somma di un numero finito di elementi di questo tipo, per distributivita
possiamo allora definire un prodotto ®:T(V) x T(V) — T(V), e (T(V),+,®) risulta (esercizio) essere un
anello con unita 1 € T(V). Inoltre, per ogni A € K e v, w € T(V) abbiamo

Av@w) =) @w=1v® (Aw),
e quindi (T V), +,®, ) ¢ un’algebra, giustificandone il nome.

Osservazione 1.2.2. Attenzione: il prodotto in T(V) non & commutativo. Per esempio, sia V = R? con
base canonica {e1, e2} e base duale {e',e?}. Allora e; ® e ed ey ® e; appartengono a Tig(R?), e quindi sono
applicazioni bilineari su (R?)* x (R?*)*. Ma

e1 @eg(el,e?) =el(er)e?(e) =1 #0 = el(ex)e(er) = ea @ eq (e, €?),

per cui e; ® es # €3 R €.

Osservazione 1.2.3. Spazi vettoriali isomorfi hanno algebre tensoriali isomorfe. Infatti, sia L:V — W
un isomorfismo fra spazi vettoriali di dimensione finita su K, e indichiamo con L*: W* — V* Iisomorfismo
duale. Allora (L*)~:V* — W* & ancora un isomorfismo, e possiamo definire T'(L): T(V) — T(W) ponendo

TL)(01® @ @w @ @w!)=Lv)®: & Lvy) ® (L) (W) @ ® (L) 7 (w)

ed estendendo per linearita. Si vede subito che T'(L) ¢ un isomorfismo di algebre che conserva il tipo.

FEsercizio 1.2.1.  Dimostra che per ogni applicazione lineare L € Hom(V, W) esistono un unico omomorfismo
di algebre T*(L): T*(V) — T*(W) e un unico omomorfismo di algebre Ty (L): To (W) — T4(V') che conservano
il tipo e tali che T*(L)|y = L e To(L)|w+ = L*.

Capita spesso che strutture definite sullo spazio vettoriale V' possano essere estese all’intera algebra
tensoriale. Un esempio tipico € quello del prodotto scalare:

Proposizione 1.2.1: Sia (-,-): V x V — R un prodotto scalare definito positivo su uno spazio vettoriale V
di dimensione finita su R. Allora esiste un unico prodotto scalare definito positivo {(-,-): T(V) xT(V) — R
che soddisfa le seguenti condizioni:

(i) TP(V) ¢ ortogonale a T}*(V) se p # h 0 q # k;

(i) (A p)) = A per ogni A, p € R =TO(V);
(iii) (v, w)) = (v,w) per ogni v, w € THV) =V;
(iv) (v*,w*) = (v,w) per ogni v, w € T*(V), dove v*, w* € Ty(V) sono dati da v* = {-,v) e w* = (-, w);
(V) (o1 ® az, 1 @ B2)) = ((au, B1)) - (a2, B2)) per ogni aq, 1 € TPH(V) e an, Bo € TP2(V).

Dimostrazione: Sia {v1,...,v,} una base di V ortonormale rispetto a (-,-); in particolare, {v],...,v3} & la
base duale di V*. Una base di T7 (V) ¢ allora composta da tutti i possibili tensori della forma

V=04 ® QU QU Q- ®u; (1.2.1)
al variare di I = (i1,...,%p+q) € {1,...,n}PT2
Ora, supponiamo che un prodotto scalare ((-,-)) che soddisfi (i)—(v) esista. Allora si vede subito
che {vy,...,v,} e {vf,...,vE} sono ortonormali rispetto a ((-,-)), e quindi

(S rron s ) = 2 S hmsfors e = 555 Arseson v+ (55,
I J I J I J
= Z )\I/Lb
I
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per cui (-, -)) se esiste & unico.

Per Vesistenza, indichiamo con ((-,-)) I'unico prodotto scalare definito positivo su T'(V') rispetto a cui
gli elementi della forma (1.2.1) formano una base ortonormale. Chiaramente, (i)—(iv) sono soddisfatte;
dobbiamo verificare (v). Ma infatti abbiamo

() o (o) (mnea) o (o)

= Z )‘}1/\1/’61”‘2]2 <<UI1 R V1,00, ®UJ2>>

Iy,I2,J1,J2
— 14,2 1 2
= E AL AL 1T, HT,
I,1>
_ 1 1 2 2
= << E )\111]]17 § .U’leJl >> : << E >‘I2U127 E ,uJQIUJ2>>7
I J1 Iz J2
e ci siamo. ]

Concludiamo questo paragrafo introducendo una famiglia di applicazioni lineari tipiche dell’algebra
tensoriale:

Definizione 1.2.2: La contrazione su TP(V) di tipo (;) conl <i < pel < j < q e lapplicazione li-

neare C1: TP (V) — T(f:ll(V) definita sugli elementi indecomponibili da

Cin1® - QupBW ® - QW) =w (1)1 ® - BT QUrRW @ - Qw @ Qwl
(dove l'accento circonflesso indica elementi omessi nel prodotto tensoriale), ed esteso per linearita.
Per esempio, C}: T} (V) — K ¢ data sugli elementi indecomponibili da
Cl(v®w) = w(v),
mentre C2: T3 (V) — T}(V) ¢ data sugli elementi indecomponibili da

Ca(v1 ® v @ W ® w?) = w?(v1) V2 ® W'

1.3 Algebra esterna

L’Osservazione 1.2.3 ci dice che ogni automorfismo L di uno spazio vettoriale T induce un automorfismo 7'(L)
dell’algebra tensoriale T'(V). I sottospazi di T(V) che sono mandati in se stessi da ogni automorfismo del
tipo T'(L) sono chiaramente intrinsecamente associati allo spazio vettoriale V' (e non a una sua particolare
realizzazione), e quindi ci aspettiamo che siano particolarmente interessanti.

Definizione 1.3.1: Un sottospazio vettoriale S di T(V) che sia invariante sotto I'azione di T(L) per ogni
automorfismo L di V, cioe tale che T(L)(S) = S per ogni automorfismo L di V, & detto spazio tensoriale.

I principali esempi di spazi tensoriali sono dati dall’insieme dei tensori simmetrici e dall’insieme dei
tensori alternanti. Attenzione: da qui in poi assumeremo sempre che il campo K abbia caratteristica zero (e
gli esempi principali da tenere in mente sono K =R e K = C).

Osservazione 1.3.1. Indicheremo con &, il gruppo simmetrico su p elementi, cio¢ il gruppo delle permu-
tazioni di {1,...,p}. E noto che ogni permutazione o € &, si pud scrivere come prodotto di trasposizioni;
questa scrittura non € unica, ma la parita del numero delle trasposizioni necessarie per scrivere o lo ¢. In
altre parole, se ¢ = 7y - - - 7, € una decomposizione di ¢ € &,, come prodotto di trasposizioni, il segno sgn(o)
di o dato da
sgn(o) = (-1)" € {+1,-1}

¢ indipendente dalla particolare decomposizione di o come prodotto di trasposizioni. In particolare si
ha sgn(o7) = sgn(o) sgn(r) e sgn(o~!) = sgn(o) per ogni o, 7 € S,,.
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Definizione 1.3.2: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare p:V x --- xV — W
& simmetrica se

@(UU(I)a tee 7U0'(p)) = @(Ula ey Up)
per ogni p-upla (v1,...,v,) € VP e ogni permutazione o di {1,...,p}. Lo spazio tensoriale S,(V') (rispettiva-
mente, SP(V)) dei tensori simmetrici p-covarianti (rispettivamente, p-controvarianti) € allora il sottospazio
di T,,(V) (rispettivamente, T?(V')) costituito dalle applicazioni multilineari simmetriche a valori in K.

Definizione 1.3.3: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare p:V x --- x V. — W
¢ alternante (o antisimmetrica) se

O(Vo(1), -+ Vo(p)) = 880(0) @(v1,...,p)

per ogni p-upla (v1,...,v,) € VP e ogni permutazione o di {1,...,p}. Lo spazio tensoriale \ (V) (rispetti-
vamente, A\”(V')) dei tensori alternanti p-covarianti (rispettivamente, p-controvarianti) ¢ allora il sottospazio
di T,,(V) (rispettivamente, T?(V)) costituito dalle applicazioni multilineari alternanti a valori in K.

Esercizio 1.8.1. Dimostra che per ogni applicazione p-lineare ¢: V x --- x V — W le seguenti affermazioni
sono equivalenti:

(i) ¢ & simmetrica;

(ii) il valore di ¢ non cambia scambiando due argomenti, cioe

(U1, e Vi ey Vs, Up) = (U1, ey Uy e ey Ve vn, Up)

per ogni vy,...,vp, € Vel <i<j<p;
(iii) se ¢, ...;, sono le coordinate di ¢ rispetto alla base {v"* ® --- ®@v'»} di T,(V'), dove {vl,...,v"} & una
base di V*, allora Dig1y- = i,...i, Per ogni o € S,.

o (p)
Esercizio 1.8.2. Dimostra che per ogni applicazione p-lineare ¢: V x --- x V. — W le seguenti affermazioni
sono equivalenti:

(i) ¢ ¢ alternante;

(ii) il valore di ¢ cambia di segno scambiando due argomenti, cioe

(U1, Vi Uy Up) = — (U1, Ve, Uy, Up)

per ogni vy,...,vp, € Vel <i<j<p;
(iii) ¢ si annulla ogni volta che due argomenti sono uguali, cioe

V1, 0,0, 0p) =0
per ogni vi,...,v,...,v, € V;
(iv) ¢(v1,...,vp) = 0 non appena i vettori vi,...,v, € V sono linearmente dipendenti;
(v) se ¢j,...i, sono le coordinate di ¢ rispetto alla base {v"* @ --- @ v’} di T,(V), dove {v',...,v"} & una

base di V*, allora ¢;_, . = sgn(o)e;,...i, per ogni o € &,

o (p)

Esercizio 1.3.3. Dimostra che gli spazi SP(V), S,(V), A’(V) e A, (V) sono effettivamente spazi tensoriali.

Ora, il prodotto tensoriale di due tensori simmetrici o alternanti non & necessariamente simmetrico o
alternante.

EsEMPIO 1.3.1. Sia V = R?, e indichiamo con {e1,es} la base canonica, e con {e',e?} la corrispondente
base duale. Chiaramente, e1, e; € V.= A\'V = S1(V) =V, mentre e; @ e5 ¢ AV U S2(V). Infatti,

e1 @eg(el,e?) =el(er)e?(ez) =1 # 0 = el (ea)e?(e1) = +e1 @ ea(e?,el).
Esercizio 1.3.4. Dimostra che v; ® vo — v9 ® v1 € /\2 V e che v1 @ vg + 15 ® v1 € Sz(V) per ogni cop-
pia vy, v € V di elementi di uno spazio vettoriale V.

Quest’ultimo esercizio fa sospettare che sia possibile definire un prodotto sui tensori alternanti (o simme-
trici) in modo da ottenere un tensore alternante (o simmetrico). Per introdurlo, cominciamo con lo studiare
meglio i tensori alternanti e simmetrici.
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Proposizione 1.3.1: Sia B = {v1,...,v,} una base dello spazio vettoriale V sul campo K, e ¢: B> — W una
qualsiasi applicazione a valori in un altro spazio vettoriale W. Allora ¢ si puo estendere a una applicazione
p-lineare alternante (rispettivamente, simmetrica) ®:V x --- x V. — W se e solo se

D(Vpayrys v s Vi) = SEN(T)P(Vpiys - -5 Vp,) (1.3.1)

rispettivamente, ¢(v ey U = ¢(vyy,...,0 per ogni permutazione o di {1,...,p}, e ogni
Ho(1) Ho(p) M1 Hp
p-upla (vy,,...,v,, ) di elementi di B.

Dimostrazione: Per la Proposizione 1.1.2; ogni ¢: BP — W si estende in modo unico a un’applicazione
p-lineare a valori in W tramite la (1.1.2), dove wy,. ., = &(Vuy,-..,Vy,), ed & chiaro che l'estensione ¢
alternante se e solo se vale la (1.3.1). Il ragionamento nel caso simmetrico € identico. O

Osservazione 1.3.2. In questo paragrafo d’ora in poi tratteremo solo i tensori alternanti e simmetrici
controvarianti; risultati del tutto analoghi valgono anche per i tensori alternanti e simmetrici covarianti, in
quanto Sp,(V) = SP(V*) e A\, (V) = AP(V*). Inoltre, saremo principalmente interessati al caso alternante.

La Proposizione 1.3.1 implica che una ¢ € AP’V & completamente determinata dai valori che assume
sulle p-uple della forma (v™,...,v%) con 1 < iy < -+ < i, < n, dove B* = {v!,...,v"} & una base
di V*. Analogamente, una ¢ € SP(V') & completamente determinata dai valori che assume sulle p-uple della
forma (v,...,v%) con 1 <i; <.+ < ip < n. Quindi

Corollario 1.3.2: Sia V' uno spazio vettoriale di dimensione n > 1 sul campo K, e p € N. Allora

dim S7(V) = (”“’ - 1),

p
(Z) se0<p<n,
0 sep>n.

dim/\pV:{

In particolare,

dim @ APV =2"

0<p<n

Dimostrazione: Per quanto visto sopra, la dimensione di A’V & uguale alla cardinalita dell’insieme delle

p-uple (i1,...,4p) con 1 < i3 < --- < i, < n, cardinalita che & ben nota essere (Z) per 0 <p<neo
altrimenti. In particolare,
n
n
dim @ /\”VZ( )2”.
0<p<n p=0 P
Per lo stesso motivo, la dimensione di SP(V) ¢ uguale alla cardinalita dell’insieme delle p-uple (i1, ..., i)

conl<i; <--- <4, <n. Ora,sihal<i <--- <4y <nse e solo se

1§i1<i2+1<i3—|—2<~-~<ip—|-p—1§n—|—p—1.

Quindi I'insieme delle p-uple (i1,...,4,) con 1 <43 <--- <4, <n ha la stessa cardinalita dell’insieme delle
p-uple (ji,...,5p) con 1 < j; <--- < j, <n+p—1, e la tesi segue dal fatto che quest’ultimo insieme ha
cardinalita ("+5_1). ]

Osservazione 1.3.3. In particolare, se V ha dimensione n allora dim A"V = 1. Non ¢ difficile trovare un
generatore di A" V: fissata una base {v1,...,v,}, definiamo w € A"V ponendo

w(ph, ... ") = det(gpi(vj))

per ogni !, ..., ¢" € V*. Siccome w valutato sulla base duale di V* & uguale al determinante della matrice
identica, cio¢ 1, ne deduciamo che w # O; quindi ogni altro elemento di A" V' & un multiplo di w.
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FEsercizio 1.3.5. Sia {v1,...,v,} una base di uno spazio vettoriale V, e 1 < p < n. Preso un multi-
indice I = (i1,...,4p) con 1 < iy < --- < i, <n, definiamo v; € A’V ponendo
h
vr(pt, . @) = det (" (v3,))
per ogni ¢!, ... P € V*. Dimostra che la famiglia delle applicazioni p-alternanti v; al variare di I & una
base di AP V.

Definizione 1.3.4: Sia V uno spazio vettoriale di dimensione finita sul campo K. L’algebra esterna di V ¢ lo
spazio tensoriale
AV= & NV,
0<p<n
mentre 1’algebra simmetrica di V' & lo spazio tensoriale

S(V) = s (v).

p=>0
Abbiamo gia osservato che AV e S(V) non sono sottoalgebre di T(V'). Vogliamo allora introdurre un
nuovo prodotto su A V' e un nuovo prodotto su S(V) in modo da renderli delle algebre. Cominciamo con la

Definizione 1.3.5: Sia V uno spazio vettoriale di dimensione finita su un campo K. L’operatore di antisim-
metrizzazione ¢ Papplicazione lineare A:T*(V) — AV definita da

1
A@)(@" 8" = o D sen(@) (@7, ¢7)
. 0661,
per ogni a € TP(V), e ¢',...,¢P € V*. Analogamente, I'operatore di simmetrizzazione S:T*(V) — S(V) &
dato da 1
S@@ - ) = 5 3 al@" o)

€6,
per ogni a« € TP(V), e ¢pt,... o7 € V*.
Per ogni 7 € &, si ha
Al@)(¢™,...,¢™") = % 3 sen(o) a(em" W), g @)
e,
= % Y sen(r o) a(¢!M, ., ¢ P)) = sen(7) A(e) (6., ¢7),
eSS,

per cui Pimmagine di A & effettivamente contenuta in A V. E inoltre evidente che A & lineare, e che &
lidentita ristretta a A V.

FEsercizio 1.3.6. Dimostra che S:T*(V) — S(V) & lineare, ha immagine contenuta in S(V'), ed & l'identita
ristretta a S(V).

Esercizio 1.3.7. Dato a € TP(V) dimostra che S(a) € 'unico tensore p-controvariante simmetrico tale che

S(a)(d,...,0) =ap,...,¢) per tuttii ¢ € V*.

Definizione 1.3.6: Sia V uno spazio vettoriale di dimensione finita sul campo K, a € A"V e 3 € A?V. Allora
il prodotto esterno di o e § & il (p + ¢)-tensore alternante dato da

(+9)!
0[/\5: WA(O&@ﬂ) 6/\p+qV.

Estendendo per bilinearita otteniamo il prodotto esterno A: AV x AV — AV. La quadrupla (A V,+, A, )
¢ detta algebra esterna di V.
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Definizione 1.3.7: Sia V uno spazio vettoriale di dimensione finita sul campo K, a € SP(V) e g € S1(V).
Allora il prodotto simmetrico di o e 8 & il (p + ¢)-tensore simmetrico dato da

a®f= %S(a ® B) € SPTI(V).

Estendendo per bilinearita riusciamo a definire il prodotto simmetrico ®: S(V') x S(V) — S(V'). La quadru-
pla (S(V), +,©, ) ¢ detta algebra simmetrica di V.

Osservazione 1.3.4. Attenzione: in alcuni testi il prodotto esterno ¢ definito dalla formula
anB=Ala®p) e NPTV

per ogni « € AV e 8 € A\?V. Analogamente, in alcuni testi (non necessariamente gli stessi) il prodotto

simmetrico & definito dalla formula a ® § = S(a ® B).

Proposizione 1.3.3: Sia V uno spazio vettoriale di dimensione finita sul campo K. Allora la quadru-

pla (AV,+,A,-) é un’algebra con unita e anticommutativa, nel senso che é un’algebra con unita tale che

aNf=(-1)PIB A (1.3.2)

perognia € N'VepBe N'V.

Dimostrazione: La distributivita di A rispetto alla somma e al prodotto per scalari seguono subito dalla
definizione e dalla linearita di A, ed & chiaro che 1 € /\O V' ¢ un’unita. Rimangono da dimostrare I’associativita
e lanticommutativita (1.3.2).

Cominciamo con l'associativitd. Prendiamo a € APV, 3 € AV, vy e NV e ¢!,... ¢PTIH" € V.
Allora

(@A B) A, ¢PTarT)
(p+aq+n)

=t g Al B @)@ g7
1
- Z sgn(7)(a A f) ® 7(¢r(1)’ o ¢T(p+q+r))
(p+o'r! i
_ (1) () (4T (p+aH+1) I
(p+q)'r! Tegi}ﬂ sgn(7)(a A B) (@™, )7(o ) )
TN
~ (p+q)! plglr!

XZ Z sgn(7) sgn(o)a(¢? M. g7 PN B(g7 D) gor )y (gTpratD) o gr(ptatn)y

T€6p+q+7' 066p+q

dove (0,(1),...,0.(p+q)) & ottenuta applicando la permutazione o alla (p + ¢)-upla (7(1),...,7(p+q)). Ora,
¢ chiaro che (0-(1),...,0-(p+q),7(p+q+1),...,7(p+q+7)) & ancora una permutazione di (1,...,p+q+r),
il cui segno ¢ esattamente sgn(7) sgn(o). Inoltre, ogni permutazione in S, 44, pud essere ottenuta tramite
questo procedimento in esattamente (p + ¢)! modi diversi; quindi abbiamo

(aAB) A 7(¢1, e, @GP

:_'1” 3 sgulp)al¢? V.. P D) B(@IPT L gDy (gp et gelpratn)), (1.3.3)
plg!r!
P€6p+q+r

In maniera analoga si dimostra che quest™ultima espressione ¢ uguale a a A (B A7) (¢!, ..., ¢pPT9HT) e lasso-
ciativita e verificata.
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Rimane da dimostrare la anticommutativita. Se « € A’V e 8 € A’V abbiamo

a ﬁ(d)l, c, @PTY) = p'iq' Z sgn(T)a((bT(l), s (bT(P))ﬁ((ﬁT(p-‘rl)) . ,¢T(p+q))’

T€6p+q

= (-1

p!_q! Z Sgn(p)a(qu(q-ﬁ-l)’ e ¢P(Q+P))ﬂ(¢p(l)7 o ¢p(q))

P€6p+q

= (71)pqﬂ A a(éla ceey ¢p+q),

per ogni ¢',...,¢P+T9 € V*, e ci siamo. O

Esercizio 1.3.8. Sia V uno spazio vettoriale di dimensione finita sul campo K. Dimostra che la quadru-
pla (S(V), +,©, ) ¢ un’algebra con unita commutativa.

Osservazione 1.3.5. Ripetendo il ragionamento che ha portato alla (1.3.3) si dimostra che per ogni r-
upla ar € A V..., € A" V e per ogni ¢!,... ¢k TF c V* g ha
ar A A Oér(gbl, . ¢k1+~~-+kr)

_ ﬁ Z sgn(T) 011(¢T(1),...,(ﬁ‘r(kl))"~Ozr((j)‘r(k1+"'+k7'*1+1),...,¢T(k1+"'+kf)).
ek

T€6k1+...+k7.

In particolare,

v A Avp(@h, @) = D sen(r) "M (v1) -+ 7P (vy)
TEGP (134)

= det(qﬁh(vk))
per ogni vi,...,v, € Ve oL, .., P eV,

FEsercizio 1.3.9. Dimostra che

VIA- - Av, = Z SEN(T) Vr(1) ® - @ Vr(p)
TEGP

per ogni vi,...,v, € V.

FEsercizio 1.3.10. Dimostra che il prodotto esterno ¢ 'unica applicazione da AV x AV in AV che sia
associativa, bilineare, anticommutativa e soddisfi (1.3.4).

Osservazione 1.3.6. L’anticommutativita implica che se a € A” V con p dispari allora a Ao = O. Questo
non € pill vero se p € pari: per esempio, se « =e; Aes +e3Aeg € /\2 R* si ha

aNa=2e; Neg Neg Aeg # O.

Avendo a disposizione il prodotto esterno non ¢ difficile trovare una base dell’algebra esterna:

Proposizione 1.3.4: Sia B = {vy,...,v,} una base di uno spazio vettoriale V. Allora una base di \"V &
data da

Bp:{vil/\~~/\vip|1§i1<~-~<ip§n}.

Dimostrazione: Siccome B, contiene dim A” V' elementi, ci basta dimostrare che sono linearmente indipen-
denti. Sia {v!,...,v"} la base duale di V*; la Proposizione 1.1.2 ci dice che per vedere se gli elementi
di B, sono linearmente indipendenti basta calcolare il loro valore sulle p-uple di elementi della base duale e
verificare che si ottengono vettori linearmente indipendenti di K™, Siccome i Vi, A+ - Awg, sono alternanti,
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¢ sufficiente calcolarne il valore su p-uple (v71,...,v%) con 1 < j; < --- < j, < n. Usando (1.3.4) otteniamo
quindi
v A Ay (VL 07P) = Z sgn(7)v/ ™ (v;,) -+ 09 @) (v;)
TEGP
= > sgu(r)d @ a
TGGP

{O se (J1,- -+, Jp) 7 (i1, -+, 1p),
1 se (Ji,. -y 0p) = (41, .., 0p),
in quanto ¢; < --- < i, e I'unica permutazione che conserva 'ordine e l'identita, e ci siamo. O

FEsercizio 1.3.11. Sia {v1,...,v,} una base dello spazio vettoriale V. Per ogni multi-indice I = (i1,...,1%p)
con 1 <iy <--- <ip <n dimostra che vy = v, A---Av;,, dove vy € AP(V) & definito nell’Esercizio 1.3.5.

Osservazione 1.3.7. Sia (v1,...,v,) una p-upla di elementi di uno spazio vettoriale V. Se due di questi
elementi coincidono, ’anticommutativita implica che v1 A---Av, = O. Pil in generale, si vede subito (eserci-
zio) che vy A- - -Av, = O se vy, . . ., Up sono linearmente dipendenti. Viceversa, se {v1,. .., vp} sono linearmente
indipendenti, possiamo completarli a una base di V' e la Proposizione 1.3.4 ci assicura che vy A--- Av, # O.
In effetti, I’elemento vy A --- A v, risulta essere univocamente determinato (a meno di una costante molti-
plicativa non nulla) dal p-piano generato da {v1,...,v,}. Pill precisamente, sia {w1,...,w,} un’altra base
dello stesso p-piano, e sia A = (af) € GL(p,K) la matrice tale che wy, = ajvy + -+ alv, per h=1,...,p.
Allora
wi A Awp = (det A) vy A=+ Ay,

Infatti se ¢',...,¢P € V* si ha

wlA"'Awp(¢1a"'7¢p)

sgn(r)¢™ M (wy) - - 7P (w,,)

TEGP
= Z al' - aly Z Sgn(T)¢T(1)(Ujl)"'¢T(p)(Ujp)
a=l jp=1 €6,

p p
:Z ajll...aépvjl/\"'/\’Ujp(d)l,...,qbp)

Ji=1 Jp=1
= Z sgn(o)af(l) - -ag(”)vl A Nog(dt, ... éP)
cc6,
=det(A)vy A+ Avp(oh,..., ¢),
grazie all’anticommutativita.
Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 1.8.12. Dimostra che per ogni w € A"V, T € Hom(V*,V*) e ¢',...,¢" € V*, dove n = dim V,
siha w(T(¢Y),...,T(¢")) = (det Tw(dt, ..., ¢").

Esercizio 1.3.13. Dimostra che T2(V) = S2(V)@& A\’ V, e che e1 @es@es ¢ S3(R3) @ A\* R?, dove {e1, eq, €3}
¢ la base canonica di R

Esercizio 1.5.14. Se V e W sono spazi vettoriali di dimensione finita sul campo K, dimostra che ogni appli-
cazione lineare L € Hom(V, W) si estende a un’applicazione lineare L € Hom(A V, AW) tale che L(1) = 1
e L(vy A+~ Avp) = L(v1) A--- A L(vp) per ogni vy,...,v, € V.

Esercizio 1.3.15. Sia V uno spazio vettoriale di dimensione finita, e F: VP — APV DPapplicazione p-lineare
alternante data da F(v1,...,v,) = v1 A --- A v,. Dimostra che la coppia (A”V,F) & I'unica coppia (a
meno di isomorfismi) che soddisfa la seguente proprietd universale: per ogni applicazione p-lineare alter-
nante A: VP — W a valori in uno spazio vettoriale W esiste un’unica applicazione lineare A: ANV — W tale
che A= AoF.
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Esercizio 1.8.16. Sia V uno spazio vettoriale di dimensione finita. Dimostra che (A” V)* ¢ isomorfo
a A\"(V*). (Suggerimento: Usa l'esercizio precedente e I'applicazione ®: (V*)P — (AP V)* definita da

(B, ..., ") (v1 A Avp) = det(d(v;))
per vy,...,vp, €V edl,... ¢ € V*)
FEsercizio 1.3.17. Se (-,-) & un prodotto scalare sullo spazio vettoriale V', sia ((-,-)) il prodotto scalare
su T(V) costruito nella Proposizione 1.2.1. Dimostra che
(vi A Nvp,wy A=+ Awp)) = pldet((v;, wy))
per ogni vi,...,Vp, Wi,...,wy € V.
FEsercizio 1.8.18. Enuncia e dimostra per l’algebra simmetrica S(V') risultati analoghi a quelli contenuti nei

quattro esercizi precedenti.

Esercizio 1.3.19. Sia {e1,es,e3} la base canonica di R®. Dimostra che per ogni u, w € R® = /\1 R? le
coordinate di u A v € /\2 R? rispetto alla base {ea Nesg,e3 Aer,e; Aes} sono esattamente le coordinate del
classico prodotto vettore di u e v rispetto alla base canonica.

1.4 Tensori simplettici

Dedichiamo quest’ultimo paragrafo a un tipo particolare di 2-tensori covarianti alternanti, utili in di-

verse questioni di geometria differenziale e di fisica matematica. Di nuovo, lavoriamo su un campo K di
caratteristica zero.

Definizione 1.4.1: Un 2-tensore covariante w € T5(V') ¢ detto non degenere se w(v,w) = 0 per ogni w € V
implica v = O. Un tensore simplettico ¢ un 2-tensore covariante alternante non degenere. Una coppia (V,w)
dove V' & uno spazio vettoriale e w € A\, V' & un tensore simplettico, & detta spazio vettoriale simplettico.

Esercizio 1.4.1. Sia w € T»(V) un 2-tensore covariante su uno spazio vettoriale V' di dimensione finita.
Dimostra che le seguenti affermazioni sono equivalenti:
(i) w & non degenere.
(ii) L’applicazione @:V — V* data da &(v)(w) = w(v, w) per ogni v, w € V & un isomorfismo.
(iii) Scelta una base {v!,...,v"} di V*, la matrice (wp) delle coordinate di w rispetto alla base {v" @ v*}
di T»(V) & invertibile.

EseMPIO 1.4.1. Sia V uno spazio vettoriale di dimensione 2n. Scegliamo una base {vy, w1, ..., v, Wy}, €
indichiamo con {v!,w!,... ,v™, w"} la corrispondente base duale. Sia allora w € A, V dato da

n

w= Zvj Aw?. (1.4.1)

Jj=1

Vogliamo dimostrare che w & un tensore simplettico. Prima di tutto, la sua azione sugli elementi della base
¢ data da

w(vi, wy) = —w(wj, v;) = dy5, w(vi,v5) = w(w;,w;) =0 (1.4.2)
per ogni 1 < i,j < n. Supponiamo allora che v = Y, (a’v; + b'w;) € V sia tale che w(v,w) = 0 per
ogni w € V. In particolare 0 = w(v,v;) = —b e 0 = w(v,w;) = a’ per 1 < j < n; quindi v = O e w & non
degenere.

Definizione 1.4.2: Sia (V,w) uno spazio vettoriale simplettico. Il complemento simplettico di un sottospa-
zio W C V ¢ il sottospazio

Wt ={veV|ww) =0 per ogniw € W}.

Contrariamente al caso dei complementi ortogonali, non & detto che W N W+ = {O}. Per esempio, se
dim W = 1 allora I'antisimmetria di w implica che W C W+. Questa osservazione suggerisce di classificare
i sottospazi di uno spazio vettoriale simplettico come segue:
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Definizione 1.4.3: Sia (V,w) uno spazio vettoriale simplettico. Un sottospazio W C V di V sara detto
simplettico se W N W+ = {O}; isotropo se W C W coisotropo se W O W, Lagrangiano se W = W+,

FEsercizio 1.4.2. Sia (V,w) uno spazio vettoriale simplettico, e W C V un sottospazio di V. Dimostra che:
(i) dim W + dim W+ = dim V.
(i) (W =w.
(iii) W e simplettico se e solo se w|wxw € non degenere.
(iv) W e isotropo se e solo se w|wxw = O.
(v) W ¢ Lagrangiano se e solo se w|wxw = O e dimV = 2dim W.

L’unico risultato che dimostriamo sui tensori simplettici € che possono sempre essere espressi nella forma
indicata dall’Esempio 1.4.2.

Proposizione 1.4.1: Sia (V,w) uno spazio vettoriale simplettico. Allora dim'V = 2n é pari, ed esiste una
base di V rispetto a cui w é data da (1.4.1).

Dimostrazione: Si verifica facilmente che w & della forma (1.4.1) rispetto a una base {v1, w1, ..., vp, w, } di V
se e solo se lazione di w sui vettori della base ¢ data da (1.4.2). Dimostreremo allora che esiste una base per
cui (1.4.2) vale procedendo per induzione su m = dim V.

Per m = 0 non c¢’¢ nulla da dimostrare. Supponiamo allora che (V, w) sia uno spazio vettoriale simplettico
di dimensione m > 1, e che la proposizione sia vera per tutti gli spazi vettoriali simplettici di dimensione
minore di m. Sia v; € V un vettore non nullo. Essendo w non degenere, esiste un vettore w; € V tale
che w(v1,w1) # 0; a meno di moltiplicare w; per una costante, possiamo anche supporre che w(vy,w;) = 1.
Siccome w ¢ alternante, v; e wy sono linearmente indipendenti.

Sia W il sottospazio generato da v; e w;. L’Esercizio 1.4.2.(i) ci assicura che dim W+ = m — 2.
Siccome w|wxw € chiaramente non degenere, 'Esercizio 1.4.2.(iii) implica che W & simplettico; ma al-
lora W N W+ = {O} e quindi, grazie all'Esercizio 1.4.2.(ii), anche W+ & simplettico. Per Iipotesi in-

duttiva, dim W+ & pari, ed esiste una base {ve,ws,...,v,, w,} di W+ che soddisfa (1.4.2). Ma allora
{v1, w1, v2, W3, ..., Vs, w,} & una base di V' che soddisfa (1.4.2), e ci siamo. O
Definizione 1.4.4: Sia (V,w) uno spazio vettoriale simplettico. Una base {vy,w1,...,v,,w,} di V rispetto a

cui w e data da (1.4.1) & detta base simplettica di V.

Esercizio 1.4.3. Sia (V,w) uno spazio vettoriale simplettico di dimensione 2n. Dimostra che per ogni
sottospazio simplettico (rispettivamente, isotropo, coisotropo, Lagrangiano) W di V esiste una base simplet-
tica {vy, w1, ..., v, w,} di V tale che:
(i) se W & simplettico allora W = Span(vy, ws, ..., v, wy) per qualche 1 < k < n;
) se W & isotropo allora W = Span(vy,...,v;) per qualche 1 < k <mn;
(iii) se W & coisotropo allora W = Span(vy, ..., vy, w1, ..., wy) per qualche 1 < k < n;
)

se W & Lagrangiano allora W = Span(vy,...,v,).



