
Capitolo 1

Algebra multilineare

1.1 Prodotto tensoriale

Se V e W sono due spazi vettoriali sul campo K, indicheremo con Hom(V, W ) lo spazio vettoriale delle
applicazioni K-lineari da V in W . In particolare, lo spazio duale di V è lo spazio vettoriale V ∗ = Hom(V, K).
Inoltre, useremo spesso il delta di Kronecker, che è il simbolo

δhk = δh
k =

{
1 se h = k,
0 se h 6= k.

Ricordiamo alcune proprietà fondamentali degli spazi Hom(V, W ) e V ∗:

Proposizione 1.1.1: Siano V e W due spazi vettoriali di dimensione finita sul campo K, e B = {v1, . . . , vn}
una base di V . Allora:

(i) L’applicazione che a ogni L ∈ Hom(V, W ) associa la n-upla
(
L(v1), . . . , L(vn)

)
∈ Wn è un isomorfismo

fra Hom(V, W ) e Wn. In particolare, dim Hom(V, W ) = (dimV )(dimW ), e dimV ∗ = dimV .
(ii) Se indichiamo con vh ∈ V ∗ l’elemento definito da vh(vk) = δh

k , allora B∗ = {v1, . . . , vn} è una base
di V ∗, detta base duale di V ∗.

(iii) L’applicazione Φ: V → (V ∗)∗ data da Φ(v)(ϕ) = ϕ(v) è un isomorfismo canonico fra V e il biduale (V ∗)∗.
(iv) Se (· , ·):V × V → K è un prodotto scalare non degenere, allora l’applicazione Ψ:V → V ∗ data

da Ψ(v) = (·, v) è un isomorfismo.

Esercizio 1.1.1. Dimostra la Proposizione 1.1.1.

In particolare, ogni elemento di Hom(V, W ) è univocamente determinato dai valori che assume su una
base. Data una n-pla (w1, . . . , wn) ∈Wn, l’elemento L di Hom(V, W ) che soddisfa la condizione L(vj) = wj

per j = 1, . . . , n è definito da

L(λ1v1 + · · ·+ λnvn) = λ1w1 + · · ·+ λnwn

per ogni λ1, . . . , λn ∈ K.
Vogliamo introdurre costruzioni analoghe e ottenere risultati simili per applicazioni multilineari.

Definizione 1.1.1: Siano V1, . . . , Vn, W spazi vettoriali sul campo K. Un’applicazione Φ:V1×· · ·×Vn →W si
dice multilineare (o n-lineare) se è lineare separatamente in ciascuna variabile. L’insieme M(V1, . . . , Vn;W )
delle applicazioni multilineari da V1 × · · · × Vn in W è chiaramente uno spazio vettoriale su K.

Per capire meglio il contenuto della prossima proposizione, premettiamo un’osservazione.

Osservazione 1.1.1. Supponiamo dati n numeri interi d1, . . . , dn ∈ N∗ e uno spazio vettoriale W di
dimensione d. Allora lo spazio vettoriale W d1···dn può essere descritto come lo spazio delle “matrici” a n
indici, i cui elementi sono vettori di W , e in cui il j-esimo indice varia fra 1 e dj (per j = 1, . . . , n). In altre
parole, ogni vettore w ∈W d1···dn può essere scritto come

w = (wµ1...µn)(µ1,...,µn)∈{1,...,d1}×···×{1,...,dn}
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con wµ1...µn ∈ W per ogni n-upla (µ1, . . . , µn) ∈ {1, . . . , d1} × · · · × {1, . . . , dn}. In particolare, data
una base {w1, . . . , wd} di W otteniamo una base di W d1···dn considerando i vettori wν1,...,νn,ν al variare
di ν1 ∈ {1, . . . d1}, . . . , νn ∈ {1, . . . , dn}, ν ∈ {1, . . . , d}, dove l’elemento di posto (µ1, . . . , µn) di wν1,...,νn,ν è
dato da

(wν1,...,νn,ν)µ1...µn = δµ1
ν1
· · · δµn

νn
wν . (1.1.1)

In particolare, il vettore eν1...νn della base canonica di Kd1···dn , che ha un 1 al posto (ν1, . . . , νn) e 0 altrove,
ha come (µ1, . . . , µn)-esimo elemento il numero

(eν1...νn)µ1...µn = δµ1
ν1
· · · δµn

νn
.

Proposizione 1.1.2: Siano V1, . . . , Vn e W spazi vettoriali di dimensione finita sul campo K, di dimen-
sione rispettivamente d1, . . . , dn, d. Per j = 1, . . . , n scegliamo una base Bj = {vj,1, . . . , vj,dj

} di Vj , e
sia {w1, . . . , wd} una base di W . Allora l’applicazione A:M(V1, . . . , Vn;W )→W d1···dn data da

A(Φ) =
(
Φ(v1,µ1 , . . . , vn,µn)

)
(µ1,...,µn)∈{1,...,d1}×···×{1,...,dn}

è un isomorfismo. In particolare,

dimM(V1, . . . , Vn;W ) = (dimV1) · · · (dimVn) · (dimW ),

e una base di M(V1, . . . , Vn;W ) è {Φν1,...,νn
ν }(ν1,...,νn,ν)∈{1,...,d1}×···×{1,...,dn}×{1,...,d}, dove Φν1,...,νn

ν è definita
da

Φν1,...,νn
ν (v1,µ1 , . . . , vn,µn

) = δν1
µ1
· · · δνn

µn
wν .

Dimostrazione: L’applicazione A è chiaramente lineare. Ora, per ogni applicazione Φ ∈M(V1, . . . , Vn;W ) e
ogni vj =

∑dj

µ=1 aµ
j vj,µ ∈ Vj , si ha

Φ(v1, . . . , vn) =
d1∑

µ1=1

· · ·
dn∑

µn=1

aµ1
1 · · · aµn

n Φ(v1,µ1 , . . . , vn,µn
);

in particolare, A(Φ) = O implica Φ = O, e quindi A è iniettiva. Viceversa, se scegliamo arbitraria-
mente wµ1...µn

∈ W possiamo definire una Φ ∈ M(V1, . . . , Vn;W ) tale che Φ(v1,µ1 , . . . , vn,µn
) = wµ1...µn

ponendo

Φ(v1, . . . , vn) =
d1∑

µ1=1

· · ·
dn∑

µn=1

aµ1
1 · · · aµn

n wµ1...µn , (1.1.2)

per cui A è surgettiva. Infine, una base di M(V1, . . . , Vn;W ) si ottiene applicando A−1 a una base di W d1···dn ;
l’ultima affermazione segue quindi da (1.1.1).

In altre parole, anche le applicazioni multilineari sono completamente determinate dai valori che assu-
mono su n-uple di elementi delle basi. Quando in seguito costruiremo un’applicazione multilineare prescri-
vendo il suo valore sulle basi e poi invocando questo risultato, diremo che stiamo estendendo per multilinea-
rità.

Esercizio 1.1.2. Siano V1, . . . , Vn W spazi vettoriali sul campo K. Dimostra che gli spazi M(V1, . . . , Vn;W ),
Hom

(
V1, M(V2, . . . , Vn; W )

)
e M

(
V1, . . . , Vn−1; Hom(Vn, W )

)
sono canonicamente isomorfi. [Suggerimento:

se Φ ∈ M(V1, . . . , Vn;W ), considera Φ̂ ∈ Hom
(
V1, M(V2, . . . , Vn;W )

)
e Φ̃ ∈ M

(
V1, . . . , Vn−1; Hom(Vn, W )

)
definite da

Φ̂(v1)(v2, . . . , vn) = Φ̃(v1, . . . , vn−1)(vn) = Φ(v1, . . . , vn) ∈W

per ogni v1 ∈ V1, . . . , vn ∈ Vn.]

Vogliamo descrivere ora una procedura che ci permette di trasformare un’applicazione multilineare in
una lineare cambiando opportunamente il dominio.



1.1 Prodotto tensoriale 3

Teorema 1.1.3: Dati V1, . . . , Vn spazi vettoriali di dimensione finita su K, poniamo T = M(V ∗1 , . . . , V ∗n ; K).
Sia inoltre F ∈M(V1, . . . , Vn;T ) data da

F (v1, . . . , vn)(ϕ1, . . . , ϕn) = ϕ1(v1) · · ·ϕn(vn),

per ogni v1 ∈ V1, . . . , vn ∈ Vn, ϕ1 ∈ V ∗1 , . . . , ϕn ∈ V ∗n . Allora:

(i) Per ogni spazio vettoriale W su K e ogni applicazione multilineare Φ: V1×· · ·×Vn →W esiste un’unica
applicazione lineare Φ̃: T →W tale che Φ = Φ̃ ◦ F (proprietà universale del prodotto tensoriale).

(ii) Se (T ′, F ′) è un’altra coppia soddisfacente (i) allora esiste un unico isomorfismo Ψ:T → T ′ tale che
F ′ = Ψ ◦ F (unicità del prodotto tensoriale).

Dimostrazione: (i) Per j = 1, . . . , n scegliamo una base Bj = {vj,1, . . . , vj,dj} di Vj , dove dj = dimVj , e
sia B∗j = {v1

j , . . . , v
dj

j } la corrispondente base duale. Poniamo ϕµ1...µn = F (v1,µ1 , . . . , vn,µn) ∈ T ; siccome

ϕµ1...µn(vν1
1 , . . . , vνn

n ) = δν1
µ1
· · · δνn

µn
,

la Proposizione 1.1.2 e l’Osservazione 1.1.1 ci dicono che {ϕµ1...µn
} è una base di T . Ora, se Φ̃ esiste si deve

avere
Φ̃(ϕµ1...µn

) = Φ̃
(
F (v1,µ1 , . . . , vn,µn

)
)

= Φ(v1,µ1 , . . . , vn,µn
);

quindi la Proposizione 1.1.1.(i) ci assicura che esiste un’unica applicazione lineare Φ̃ con le proprietà richieste.
(ii) Se applichiamo (i) alla F ′:V1 × · · · × Vn → T ′ otteniamo una Ψ:T → T ′ tale che Ψ ◦ F = F ′.

Rovesciando i ruoli di T e T ′ otteniamo una Ψ′:T ′ → T tale che Ψ′ ◦ F ′ = F . Quindi (Ψ′ ◦Ψ) ◦ F = F ; ma
anche idT ◦F = F , e l’unicità in (i) implica Ψ′ ◦Ψ = idT . Analogamente si dimostra che Ψ ◦Ψ′ = idT ′ , e ci
siamo.

Definizione 1.1.2: Diremo che due coppie (T1, F1) e (T2, F2), con Tj spazi vettoriali e Fj :V1 × · · · × Vn → Tj

applicazioni n-lineari, sono isomorfe se esiste un isomorfismo Ψ: T1 → T2 tale che F2 = Ψ ◦ F1.

Definizione 1.1.3: Una coppia (T, F ) soddisfacente le proprietà del Teorema 1.1.3.(i) verrà detta prodotto
tensoriale di V1, . . . , Vn, e indicata con V1⊗· · ·⊗Vn; il Teorema 1.1.3.(ii) ci assicura che il prodotto tensoriale
è ben definito a meno di isomorfismi. Gli elementi della forma F (v1, . . . , vn), detti indecomponibili, verranno
indicati con la scrittura v1 ⊗ · · · ⊗ vn.

Osservazione 1.1.2. La dimostrazione del Teorema 1.1.3.(ii) mostra chiaramente come l’unicità del pro-
dotto tensoriale sia conseguenza della proprietà universale.

Osservazione 1.1.3. Il Teorema 1.1.3 e la Proposizione 1.1.2 chiaramente implicano che

dim(V1 ⊗ · · · ⊗ Vn) = (dimV1) · · · (dimVn).

Esercizio 1.1.3. Dimostra che V ⊗K e K⊗V sono canonicamente isomorfi a V per ogni spazio vettoriale V
di dimensione finita sul campo K.

Ci possono essere altre realizzazioni concrete del prodotto tensoriale di spazi vettoriali (vedi per esempio
l’Esercizio 1.1.5); ma noi lo penseremo sempre come spazio di applicazioni multilineari. In particolare,
presi v1 ∈ V1, . . . , vn ∈ Vn allora v1 ⊗ · · · ⊗ vn agisce su V ∗1 × · · · × V ∗n con la seguente regola:

v1 ⊗ · · · ⊗ vn(ϕ1, . . . , ϕn) = ϕ1(v1) · · ·ϕn(vn)

per ogni ϕ1 ∈ V ∗1 , . . . , ϕn ∈ V ∗n .

Osservazione 1.1.4. Se Bj = {vj,1, . . . , vj,dj
} è una base di Vj , per j = 1, . . . , n, allora una base

di V1 ⊗ · · · ⊗ Vn è composta dagli elementi indecomponibili della forma v1,µ1 ⊗ · · · ⊗ vn,µn
. In partico-

lare, gli elementi indecomponibili formano un sistema di generatori di V1 ⊗ · · · ⊗ Vn, ma attenzione: non
tutti gli elementi di V1 ⊗ · · · ⊗ Vn sono indecomponibili. Per esempio, tutti gli elementi indecomponibili
di V ⊗ V sono applicazioni bilineari degeneri (dato v1 ⊗ v2 ∈ V ⊗ V , se prendiamo ϕ1 ∈ V ∗ non nullo tale
che ϕ1(v1) = O, allora v1⊗v2(ϕ1, ·) ≡ O, per cui v1⊗v2 è degenere), e quindi nessuna applicazione bilineare
non degenere di V ∗ × V ∗ in K può essere rappresentata da un singolo elemento indecomponibile.



4 Elementi di Geometria Differenziale, A.A. 2005/06

Osservazione 1.1.5. Se λ ∈ K e v1 ∈ V1, . . . , vn ∈ Vn, la multilinearità di F implica che

λ(v1 ⊗ · · · ⊗ vn) = (λv1)⊗ · · · ⊗ vn = · · · = v1 ⊗ · · · ⊗ (λvn).

Analogamente, se v′j , v′′j ∈ Vj si ha

v1 ⊗ · · · ⊗ (v′j + v′′j )⊗ · · · ⊗ vn = v1 ⊗ · · · ⊗ v′j ⊗ · · · ⊗ vn + v1 ⊗ · · · ⊗ v′′j ⊗ · · · ⊗ vn.

Queste regole determinano completamente la manipolazione algebrica degli elementi del prodotto tensoriale,
come vedremo nell’Esercizio 1.1.5.

Esercizio 1.1.4. Dato un insieme S, indichiamo con K〈S〉 l’insieme

K〈S〉 = {f : S → K | f(s) 6= 0 solo per un numero finito di elementi s ∈ S}.

(i) Dimostra che K〈S〉 è uno spazio vettoriale su K, detto spazio vettoriale libero generato da S.
(ii) Identificando ogni s ∈ S con la funzione in K〈S〉 che vale 1 in s e 0 altrove, dimostra che S è una base

di K〈S〉, e quindi che ogni elemento v ∈ K〈S〉 si scrive in modo unico come combinazione lineare formale
finita di elementi di S a coefficienti in K, cioè nella forma

v =
k∑

j=1

λjsj

per opportuni k ∈ N, λ1, . . . , λk ∈ K e s1, . . . , sk ∈ S.
(iii) Dimostra che per ogni funzione α:S → V a valori in uno spazio vettoriale V qualsiasi esiste un’unica

applicazione lineare A ∈ Hom(K〈S〉, V ) tale che A|S = α (proprietà universale dello spazio vettoriale
libero).

(iv) Dimostra che se (W, ι) è una coppia composta da uno spazio vettoriale W e un’applicazione iniet-
tiva ι:S →W tale che per ogni funzione α:S → V a valori in uno spazio vettoriale V qualsiasi esiste un’u-
nica applicazione lineare Ã ∈ Hom(W, V ) tale che Ã ◦ ι = α allora esiste un isomorfismo T : K〈S〉 → W
tale che T |S = ι.

Esercizio 1.1.5. Siano V1, . . . , Vn spazi vettoriali sul campo K, e indichiamo con K〈V1 × · · · × Vn〉 lo spazio
vettoriale libero generato da V1×· · ·×Vn (vedi l’esercizio precedente). Sia R il sottospazio di K〈V1×· · ·×Vn〉
generato dagli elementi della forma

λ(v1, . . . , vn)− (v1, . . . , λvj , . . . , vn),
(v1, . . . , v

′
j , . . . , vn) + (v1, . . . , v

′′
j , . . . , vn)− (v1, . . . , v

′
j + v′′j , . . . , vn),

e sia T = R〈V1×· · ·×Vn〉/R lo spazio quoziente. Infine, sia π:V1×· · ·×Vn → T l’applicazione che associa a
ciascun elemento di V1 × · · · × Vn la sua classe d’equivalenza in T . Dimostra che (T, π) soddisfa la proprietà
universale del prodotto tensoriale, e deduci quindi che se V1, . . . , Vn hanno dimensione finita allora (T, π) è
isomorfo al prodotto tensoriale (V1 ⊗ · · · ⊗ Vn, F ).

La seguente proposizione contiene degli utili isomorfismi canonici fra prodotti tensoriali (e spazi di
applicazioni lineari):

Proposizione 1.1.4: Siano V , W , V1, . . . , Vn, V ′j spazi vettoriali di dimensione finita sul campo K. Allora

(i) Sia σ una permutazione di {1, . . . , n}, e F̃ :V1 × · · · × Vn → Vσ(1) ⊗ · · · ⊗ Vσ(n) data da

F̃ (v1, . . . , vn) = vσ(1) ⊗ · · · ⊗ vσ(n).

Allora (Vσ(1) ⊗ · · · ⊗ Vσ(n), F̃ ) è isomorfo a (V1 ⊗ · · · ⊗ Vn, F ).
(ii) Scelto j ∈ {1, . . . , n− 1}, sia F̃ :V1 × · · · × Vn → (V1 ⊗ · · · ⊗ Vj)⊗ (Vj+1 ⊗ · · · ⊗ Vn) data da

F̃ (v1, . . . , vn) = (v1 ⊗ · · · ⊗ vj)⊗ (vj+1 ⊗ · · · ⊗ vn).
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Allora
(
(V1 ⊗ · · · ⊗ Vj)⊗ (Vj+1 ⊗ · · · ⊗ Vn), F̃

)
è isomorfo a (V1 ⊗ · · · ⊗ Vn, F ).

(iii) Sia F̃ :V1 × · · · × (Vj ⊕ V ′j )× · · · × Vn → (V1 ⊗ · · · ⊗ Vj ⊗ · · · ⊗ Vn)⊕ (V1 ⊗ · · · ⊗ V ′j ⊗ · · · ⊗ Vn) data da

F̃ (v1, . . . , (vj , v
′
j), . . . , vn) = (v1 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vn, v1 ⊗ · · · ⊗ v′j ⊗ · · · ⊗ vn).

Allora
(
(V1⊗· · ·⊗Vj⊗· · ·⊗Vn)⊕(V1⊗· · ·⊗V ′j⊗· · ·⊗Vn), F̃

)
è isomorfo a

(
V1⊗· · ·⊗(Vj⊕V ′j )⊗· · ·⊗Vn, F

)
.

(iv) Sia F̃ :V ∗ ×W ∗ → (V ⊗W )∗ data da

F̃ (ϕ, ψ)(v ⊗ w) = ϕ(v)ψ(w).

Allora
(
(V ⊗W )∗, F̃

)
è isomorfo a (V ∗ ⊗W ∗, F ).

(v) Sia F̃ :V ∗ ×W → Hom(V, W ) data da

F̃ (ϕ, w)(v) = ϕ(v)w.

Allora
(
Hom(V, W ), F̃ ) è isomorfo a (V ∗ ⊗W, F ).

(vi) L’applicazione A:M(V1, V2;W )→ Hom(V1 ⊗ V2, W ) data da

A(Φ)(v1 ⊗ v2) = Φ(v1, v2)

ed estesa per linearità, è un isomorfismo fra M(V1, V2;W ) e Hom(V1 ⊗ V2, W ).

Dimostrazione: (i) Essendo F̃ un’applicazione n-lineare, la proprietà universale del prodotto tensoriale ci
fornisce una A:V1 ⊗ · · · ⊗ Vn → Vσ(1) ⊗ · · · ⊗ Vσ(n) lineare e tale che F̃ = A ◦ F . Ora, l’immagine di A è
un sottospazio vettoriale di Vσ(1) ⊗ · · · ⊗ Vσ(n) che include F̃ (V1 × · · · × Vn); siccome quest’ultimo insieme,
contenendo tutti i vettori indecomponibili, genera Vσ(1) ⊗ · · · ⊗ Vσ(n), l’applicazione A è necessariamente
surgettiva. Ma V1 ⊗ · · · ⊗ Vn e Vσ(1) ⊗ · · · ⊗ Vσ(n) hanno la stessa dimensione, e quindi A è l’isomorfismo
cercato.

(ii), (iii) e (iv) si dimostrano in modo assolutamente analogo (esercizio).
Anche la (v) si può dimostrare nello stesso modo, ma possiamo anche scrivere in maniera esplicita

l’isomorfismo A:V ∗ ⊗W → Hom(V, W ). Infatti, si verifica subito (esercizio) che estendendo per linearità la

A(ϕ⊗ w)(v) = ϕ(v)w

otteniamo un isomorfismo che soddisfa F̃ = A ◦ F . Nota che, a meno di identificare gli spazi vettoriali con i
loro biduali, questo è esattamente l’isomorfismo dell’Esercizio 1.1.2 applicato a V ∗ ⊗W = M(V, W ∗; K).

(vi) L’applicazione A è lineare e iniettiva fra spazi vettoriali della stessa dimensione, per cui è un
isomorfismo, che realizza esplicitamente la proprietà universale del prodotto tensoriale.

Osservazione 1.1.6. In particolare, combinando gli ultimi tre isomorfismi vediamo che M(V1, V2; W ) è ca-
nonicamente isomorfo a V ∗1 ⊗V ∗2 ⊗W . Più in generale, con la stessa tecnica si verifica che M(V1, . . . , Vn;W ) è
canonicamente isomorfo a V ∗1 ⊗· · ·⊗V ∗n⊗W , che a sua volta è canonicamente isomorfo a M(V1, . . . , Vn; K)⊗W .

Esempio 1.1.1. Uno dei misteri dell’algebra lineare elementare è come mai due nozioni piuttosto diverse,
quali le applicazioni lineari fra due spazi vettoriali e le forme bilineari a valori nel campo base, vengono
rappresentate dallo stesso tipo di oggetti (le matrici). La soluzione del mistero è la Proposizione 1.1.4.(v).
Infatti, dati due spazi vettoriali V e W di dimensione n ed m rispettivamente, la scelta di due basi fornisce
un isomorfismo fra lo spazio delle matrici Mm,n(K) e lo spazio delle applicazioni lineari Hom(V, W ). Grazie
alla Proposizione 1.1.4, quest’ultimo è canonicamente isomorfo a V ∗ ⊗ W , cioè allo spazio delle applica-
zioni bilineari M(V, W ∗; K). Ma la scelta delle basi fornisce anche un isomorfismo di W ∗ con W , e quindi
di M(V, W ∗; K) con Mm,n(K), per cui siamo passati dalle matrici come applicazioni lineari alle matrici come
forme bilineari.⌈

Vi è un’altra interpretazione del prodotto tensoriale in termini matriciali. Dati u ∈ Km e v ∈ Kn,

l’elemento indecomponibile u⊗ v è un’applicazione bilineare di (Km)∗ × (Kn)∗ in K, che è rappresentata da
una matrice m× n a coefficienti in K. È facile vedere (esercizio) che questa matrice è esattamente u · vT .
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Definizione 1.1.4: Dati u ∈ Km e v ∈ Kn, diremo prodotto di Kronecker di u e v la matrice u⊗ v ∈Mm,n(K)
data da u⊗ v = u · vT , il cui elemento di posto (i, j) è uivj . Più in generale, se A ∈Mm,n(K) e B ∈Mh,k(K)
sono due matrici, diremo prodotto di Kronecker di A e B la matrice

A⊗B =

∣∣∣∣∣∣
a11B

T · · · a1nBT

...
. . .

...
am1B

T · · · amnBT

∣∣∣∣∣∣ ∈Mmk,nh(K).

Esercizio 1.1.6. (i) Dimostra che ogni matrice in Mm,n(K) di rango 1 è della forma u ⊗ v per oppor-
tuni u ∈ Km e v ∈ Kn.

(ii) Dimostra che ogni matrice in Mm,n(K) di rango d ≥ 1 è somma di d matrici di rango 1.
(iii) Interpreta il prodotto di Kronecker di matrici in termini di prodotti tensoriali.

Esempio 1.1.2. Se V è uno spazio vettoriale sul campo K, si vede subito che V ⊗ K è isomorfo a V
(esercizio). Se K = R possiamo invece considerare V ⊗C. Come spazio vettoriale reale, V ⊗C ha dimensione
doppia rispetto a V ; ma la cosa interessante è che V ⊗C ha una naturale struttura di spazio vettoriale su C,
con dimensione (complessa) uguale alla dimensione (reale) di V . Infatti, ogni elemento di V ⊗C è somma di
un numero finito di elementi della forma vj ⊗ λj , con vj ∈ V e λj ∈ C; quindi possiamo definire il prodotto
di un numero complesso λ per un elemento di V ⊗ C ponendo

λ ·
r∑

j=1

vj ⊗ λj =
r∑

j=1

vj ⊗ (λλj),

ed è facile verificare che in questo modo si ottiene uno spazio vettoriale su C. In particolare, se {v1, . . . , vn}
è una base di V , una base su R di V ⊗C è data da {v1 ⊗ 1, v1 ⊗ i, . . . , vn ⊗ 1, vn ⊗ i}, mentre una base su C
è semplicemente data da {v1 ⊗ 1, . . . , vn ⊗ 1}.
Definizione 1.1.5: Sia V uno spazio vettoriale su R di dimensione finita. Lo spazio vettoriale complesso V ⊗C

viene detto complessificazione di V , e indicato con V C.

⌋

1.2 L’algebra tensoriale

In geometria differenziale sono particolarmente utili alcuni spazi ottenuti tramite prodotti tensoriali.

Definizione 1.2.1: Sia V uno spazio vettoriale sul campo K di dimensione finita. Allora possiamo costruire i
seguenti spazi vettoriali:

T 0
0 (V ) = T0(V ) = T 0(V ) = K, T 1(V ) = T 1

0 (V ) = V, T1(V ) = T 0
1 (V ) = V ∗,

T p(V ) = T p
0 (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸

p volte

, Tq(V ) = T 0
q (V ) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸

q volte

, T p
q (V ) = T p(V )⊗ Tq(V ),

T •(V ) =
⊕
p≥0

T p(V ), T (V ) =
⊕

p,q≥0

T p
q (V ), T•(V ) =

⊕
q≥0

Tq(V ).

Chiaramente, dimT p
q (V ) = (dimV )p+q, mentre T (V ) ha dimensione infinita. Un elemento di T p

q (V ) è detto
tensore p-controvariante e q-covariante, o tensore di tipo

(
p
q

)
, mentre, per motivi che vedremo fra un attimo,

lo spazio T (V ) è detto algebra tensoriale di V .

Osservazione 1.2.1. Ricordo che T p
q (V ) è lo spazio delle applicazioni multilineari da (V ∗)p × V q a K, e

in particolare l’azione degli elementi indecomponibili è data da

u1 ⊗ · · · ⊗ up ⊗ ω1 ⊗ · · · ⊗ ωq(η1, . . . , ηp, v1, . . . , vq) = η1(u1) · · · ηp(up) · ω1(v1) · · ·ωq(vq),

dove u1, . . . , up, v1, . . . , vq ∈ V e ω1, . . . , ωq, η1, . . . , ηp ∈ V ∗. Inoltre, l’Esercizio 1.1.2 implica che T p
q (V )

è isomorfo allo spazio delle applicazioni multilineari da (V ∗)p × V q−1 a V ∗, e a quello delle applicazioni
multilineari da (V ∗)p−1 × V q a V . In particolare, T 1

1 (V ) è isomorfo a Hom(V, V ).
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Ora vogliamo definire su T (V ) un prodotto. Se α ∈ T p1
q1

(V ) e β ∈ T p2
q2

(V ) definiamo α⊗ β ∈ T p1+p2
q1+q2

(V )
ponendo

α⊗ β(η1, . . . , ηp1+p2 , v1, . . . , vq1+q2) = α(η1, . . . , ηp1 , v1, . . . , vq1)β(ηp1+1, . . . , ηp1+p2 , vq1+1, . . . , vq1+q2).

Siccome ogni elemento di T (V ) è somma di un numero finito di elementi di questo tipo, per distributività
possiamo allora definire un prodotto ⊗:T (V ) × T (V ) → T (V ), e

(
T (V ),+,⊗

)
risulta (esercizio) essere un

anello con unità 1 ∈ T 0
0 (V ). Inoltre, per ogni λ ∈ K e v, w ∈ T (V ) abbiamo

λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw),

e quindi
(
T (V ),+,⊗, ·

)
è un’algebra, giustificandone il nome.

Osservazione 1.2.2. Attenzione: il prodotto in T (V ) non è commutativo. Per esempio, sia V = R2 con
base canonica {e1, e2} e base duale {e1, e2}. Allora e1 ⊗ e2 ed e2 ⊗ e1 appartengono a T 2

0 (R2), e quindi sono
applicazioni bilineari su (R2)∗ × (R2)∗. Ma

e1 ⊗ e2(e1, e2) = e1(e1)e2(e2) = 1 6= 0 = e1(e2)e2(e1) = e2 ⊗ e1(e1, e2),

per cui e1 ⊗ e2 6= e2 ⊗ e1.

Osservazione 1.2.3. Spazi vettoriali isomorfi hanno algebre tensoriali isomorfe. Infatti, sia L:V → W
un isomorfismo fra spazi vettoriali di dimensione finita su K, e indichiamo con L∗:W ∗ → V ∗ l’isomorfismo
duale. Allora (L∗)−1:V ∗ →W ∗ è ancora un isomorfismo, e possiamo definire T (L):T (V )→ T (W ) ponendo

T (L)(v1 ⊗ · · · ⊗ vp ⊗ ω1 ⊗ · · · ⊗ ωq) = L(v1)⊗ · · · ⊗ L(vp)⊗ (L∗)−1(ω1)⊗ · · · ⊗ (L∗)−1(ωq)

ed estendendo per linearità. Si vede subito che T (L) è un isomorfismo di algebre che conserva il tipo.

Esercizio 1.2.1. Dimostra che per ogni applicazione lineare L ∈ Hom(V, W ) esistono un unico omomorfismo
di algebre T •(L):T •(V )→ T •(W ) e un unico omomorfismo di algebre T•(L):T•(W )→ T•(V ) che conservano
il tipo e tali che T •(L)|V = L e T•(L)|W∗ = L∗.

Capita spesso che strutture definite sullo spazio vettoriale V possano essere estese all’intera algebra
tensoriale. Un esempio tipico è quello del prodotto scalare:

Proposizione 1.2.1: Sia 〈· , ·〉:V × V → R un prodotto scalare definito positivo su uno spazio vettoriale V
di dimensione finita su R. Allora esiste un unico prodotto scalare definito positivo 〈〈· , ·〉〉: T (V )× T (V )→ R
che soddisfa le seguenti condizioni:

(i) T p
q (V ) è ortogonale a Th

k (V ) se p 6= h o q 6= k;
(ii) 〈〈λ, µ〉〉 = λµ per ogni λ, µ ∈ R = T 0(V );
(iii) 〈〈v, w〉〉 = 〈v, w〉 per ogni v, w ∈ T 1(V ) = V ;
(iv) 〈〈v∗, w∗〉〉 = 〈v, w〉 per ogni v, w ∈ T 1(V ), dove v∗, w∗ ∈ T1(V ) sono dati da v∗ = 〈·, v〉 e w∗ = 〈·, w〉;
(v) 〈〈α1 ⊗ α2, β1 ⊗ β2〉〉 = 〈〈α1, β1〉〉 · 〈〈α2, β2〉〉 per ogni α1, β1 ∈ T p1

q1
(V ) e α1, β2 ∈ T p2

q2
(V ).

Dimostrazione: Sia {v1, . . . , vn} una base di V ortonormale rispetto a 〈· , ·〉; in particolare, {v∗1 , . . . , v∗2} è la
base duale di V ∗. Una base di T p

q (V ) è allora composta da tutti i possibili tensori della forma

vI = vi1 ⊗ · · · ⊗ vip
⊗ v∗ip+1

⊗ · · · ⊗ v∗ip+q
(1.2.1)

al variare di I = (i1, . . . , ip+q) ∈ {1, . . . , n}p+q.
Ora, supponiamo che un prodotto scalare 〈〈· , ·〉〉 che soddisfi (i)–(v) esista. Allora si vede subito

che {v1, . . . , vn} e {v∗1 , . . . , v∗n} sono ortonormali rispetto a 〈〈· , ·〉〉, e quindi〈〈∑
I

λIvI ,
∑

J

µJvJ

〉〉
=

∑
I

∑
J

λIµJ〈〈vI , vJ〉〉 =
∑

I

∑
J

λIµJ〈〈vi1 , vj1〉〉 · · · 〈〈v∗ip+q
, v∗jp+q

〉〉

=
∑

I

λIµI ,
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per cui 〈〈· , ·〉〉 se esiste è unico.
Per l’esistenza, indichiamo con 〈〈· , ·〉〉 l’unico prodotto scalare definito positivo su T (V ) rispetto a cui

gli elementi della forma (1.2.1) formano una base ortonormale. Chiaramente, (i)–(iv) sono soddisfatte;
dobbiamo verificare (v). Ma infatti abbiamo〈〈(∑

I1

λ1
I1

vI1

)
⊗

(∑
I2

λ2
I2

vI2

)
,

(∑
J1

µ1
J1

vJ1

)
⊗

(∑
J2

µ2
J2

vJ2

)〉〉
=

∑
I1,I2,J1,J2

λ1
I1

λ2
I2

µ1
J1

µ2
J2
〈〈vI1 ⊗ vI2 , vJ1 ⊗ vJ2〉〉

=
∑
I1,I2

λ1
I1

λ2
I2

µ1
I1

µ2
I2

=
〈〈∑

I1

λ1
I1

vI1 ,
∑
J1

µ1
J1

vJ1

〉〉
·
〈〈∑

I2

λ2
I2

vI2 ,
∑
J2

µ2
J2

vJ2

〉〉
,

e ci siamo.

Concludiamo questo paragrafo introducendo una famiglia di applicazioni lineari tipiche dell’algebra
tensoriale:

Definizione 1.2.2: La contrazione su T p
q (V ) di tipo

(
i
j

)
con 1 ≤ i ≤ p e 1 ≤ j ≤ q è l’applicazione li-

neare Ci
j :T

p
q (V )→ T p−1

q−1 (V ) definita sugli elementi indecomponibili da

Ci
j(v1 ⊗ · · · ⊗ vp ⊗ ω1 ⊗ · · · ⊗ ωq) = ωj(vi) v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vp ⊗ ω1 ⊗ · · · ⊗ ω̂j ⊗ · · · ⊗ ωq

(dove l’accento circonflesso indica elementi omessi nel prodotto tensoriale), ed esteso per linearità.

Per esempio, C11 :T 1
1 (V )→ K è data sugli elementi indecomponibili da

C11(v ⊗ ω) = ω(v),

mentre C12 :T 2
2 (V )→ T 1

1 (V ) è data sugli elementi indecomponibili da

C12(v1 ⊗ v2 ⊗ ω1 ⊗ ω2) = ω2(v1) v2 ⊗ ω1.

1.3 Algebra esterna

L’Osservazione 1.2.3 ci dice che ogni automorfismo L di uno spazio vettoriale T induce un automorfismo T (L)
dell’algebra tensoriale T (V ). I sottospazi di T (V ) che sono mandati in se stessi da ogni automorfismo del
tipo T (L) sono chiaramente intrinsecamente associati allo spazio vettoriale V (e non a una sua particolare
realizzazione), e quindi ci aspettiamo che siano particolarmente interessanti.

Definizione 1.3.1: Un sottospazio vettoriale S di T (V ) che sia invariante sotto l’azione di T (L) per ogni
automorfismo L di V , cioè tale che T (L)(S) = S per ogni automorfismo L di V , è detto spazio tensoriale.

I principali esempi di spazi tensoriali sono dati dall’insieme dei tensori simmetrici e dall’insieme dei
tensori alternanti. Attenzione: da qui in poi assumeremo sempre che il campo K abbia caratteristica zero (e
gli esempi principali da tenere in mente sono K = R e K = C).

Osservazione 1.3.1. Indicheremo con Sp il gruppo simmetrico su p elementi, cioè il gruppo delle permu-
tazioni di {1, . . . , p}. È noto che ogni permutazione σ ∈ Sp si può scrivere come prodotto di trasposizioni;
questa scrittura non è unica, ma la parità del numero delle trasposizioni necessarie per scrivere σ lo è. In
altre parole, se σ = τ1 · · · τr è una decomposizione di σ ∈ Sp come prodotto di trasposizioni, il segno sgn(σ)
di σ dato da

sgn(σ) = (−1)r ∈ {+1,−1}
è indipendente dalla particolare decomposizione di σ come prodotto di trasposizioni. In particolare si
ha sgn(στ) = sgn(σ) sgn(τ) e sgn(σ−1) = sgn(σ) per ogni σ, τ ∈ Sp.
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Definizione 1.3.2: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare ϕ:V × · · · × V →W
è simmetrica se

ϕ(vσ(1), . . . , vσ(p)) = ϕ(v1, . . . , vp)

per ogni p-upla (v1, . . . , vp) ∈ V p e ogni permutazione σ di {1, . . . , p}. Lo spazio tensoriale Sp(V ) (rispettiva-
mente, Sp(V )) dei tensori simmetrici p-covarianti (rispettivamente, p-controvarianti) è allora il sottospazio
di Tp(V ) (rispettivamente, T p(V )) costituito dalle applicazioni multilineari simmetriche a valori in K.

Definizione 1.3.3: Siano V e W spazi vettoriali sul campo K. Un’applicazione p-lineare ϕ:V × · · · × V →W
è alternante (o antisimmetrica) se

ϕ(vσ(1), . . . , vσ(p)) = sgn(σ) ϕ(v1, . . . , vp)

per ogni p-upla (v1, . . . , vp) ∈ V p e ogni permutazione σ di {1, . . . , p}. Lo spazio tensoriale
∧

p(V ) (rispetti-
vamente,

∧p(V )) dei tensori alternanti p-covarianti (rispettivamente, p-controvarianti) è allora il sottospazio
di Tp(V ) (rispettivamente, T p(V )) costituito dalle applicazioni multilineari alternanti a valori in K.

Esercizio 1.3.1. Dimostra che per ogni applicazione p-lineare ϕ: V × · · · × V →W le seguenti affermazioni
sono equivalenti:
(i) ϕ è simmetrica;
(ii) il valore di ϕ non cambia scambiando due argomenti, cioè

ϕ(v1, . . . , vi, . . . , vj , . . . , vp) = ϕ(v1, . . . , vj , . . . , vi, . . . , vp)

per ogni v1, . . . , vp ∈ V e 1 ≤ i < j ≤ p;
(iii) se ϕi1...ip

sono le coordinate di ϕ rispetto alla base {vi1 ⊗ · · · ⊗ vip} di Tp(V ), dove {v1, . . . , vn} è una
base di V ∗, allora ϕiσ(1)...iσ(p) = ϕi1...ip

per ogni σ ∈ Sp.

Esercizio 1.3.2. Dimostra che per ogni applicazione p-lineare ϕ: V × · · · × V →W le seguenti affermazioni
sono equivalenti:
(i) ϕ è alternante;
(ii) il valore di ϕ cambia di segno scambiando due argomenti, cioè

ϕ(v1, . . . , vi, . . . , vj , . . . , vp) = −ϕ(v1, . . . , vj , . . . , vi, . . . , vp)

per ogni v1, . . . , vp ∈ V e 1 ≤ i < j ≤ p;
(iii) ϕ si annulla ogni volta che due argomenti sono uguali, cioè

ϕ(v1, . . . , v, . . . , v, . . . , vp) = 0

per ogni v1, . . . , v, . . . , vp ∈ V ;
(iv) ϕ(v1, . . . , vp) = 0 non appena i vettori v1, . . . , vp ∈ V sono linearmente dipendenti;
(v) se ϕi1...ip sono le coordinate di ϕ rispetto alla base {vi1 ⊗ · · · ⊗ vip} di Tp(V ), dove {v1, . . . , vn} è una

base di V ∗, allora ϕiσ(1)...iσ(p) = sgn(σ)ϕi1...ip per ogni σ ∈ Sp.

Esercizio 1.3.3. Dimostra che gli spazi Sp(V ), Sp(V ),
∧p(V ) e

∧
p(V ) sono effettivamente spazi tensoriali.

Ora, il prodotto tensoriale di due tensori simmetrici o alternanti non è necessariamente simmetrico o
alternante.

Esempio 1.3.1. Sia V = R2, e indichiamo con {e1, e2} la base canonica, e con {e1, e2} la corrispondente
base duale. Chiaramente, e1, e2 ∈ V =

∧1
V = S1(V ) = V , mentre e1 ⊗ e2 /∈

∧2
V ∪ S2(V ). Infatti,

e1 ⊗ e2(e1, e2) = e1(e1)e2(e2) = 1 6= 0 = ±e1(e2)e2(e1) = ±e1 ⊗ e2(e2, e1).

Esercizio 1.3.4. Dimostra che v1 ⊗ v2 − v2 ⊗ v1 ∈
∧2

V e che v1 ⊗ v2 + v2 ⊗ v1 ∈ S2(V ) per ogni cop-
pia v1, v2 ∈ V di elementi di uno spazio vettoriale V .

Quest’ultimo esercizio fa sospettare che sia possibile definire un prodotto sui tensori alternanti (o simme-
trici) in modo da ottenere un tensore alternante (o simmetrico). Per introdurlo, cominciamo con lo studiare
meglio i tensori alternanti e simmetrici.
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Proposizione 1.3.1: Sia B = {v1, . . . , vn} una base dello spazio vettoriale V sul campo K, e φ:Bp →W una
qualsiasi applicazione a valori in un altro spazio vettoriale W . Allora φ si può estendere a una applicazione
p-lineare alternante (rispettivamente, simmetrica) Φ: V × · · · × V →W se e solo se

φ(vµσ(1) , . . . , vµσ(p)) = sgn(σ)φ(vµ1 , . . . , vµp
) (1.3.1)

(rispettivamente, φ(vµσ(1) , . . . , vµσ(p)) = φ(vµ1 , . . . , vµp
)) per ogni permutazione σ di {1, . . . , p}, e ogni

p-upla (vµ1 , . . . , vµp
) di elementi di B.

Dimostrazione: Per la Proposizione 1.1.2, ogni φ:Bp → W si estende in modo unico a un’applicazione
p-lineare a valori in W tramite la (1.1.2), dove wµ1...µp

= φ(vµ1 , . . . , vµp
), ed è chiaro che l’estensione è

alternante se e solo se vale la (1.3.1). Il ragionamento nel caso simmetrico è identico.

Osservazione 1.3.2. In questo paragrafo d’ora in poi tratteremo solo i tensori alternanti e simmetrici
controvarianti; risultati del tutto analoghi valgono anche per i tensori alternanti e simmetrici covarianti, in
quanto Sp(V ) = Sp(V ∗) e

∧
p(V ) =

∧p(V ∗). Inoltre, saremo principalmente interessati al caso alternante.

La Proposizione 1.3.1 implica che una ϕ ∈
∧p

V è completamente determinata dai valori che assume
sulle p-uple della forma (vi1 , . . . , vip) con 1 ≤ i1 < · · · < ip ≤ n, dove B∗ = {v1, . . . , vn} è una base
di V ∗. Analogamente, una φ ∈ Sp(V ) è completamente determinata dai valori che assume sulle p-uple della
forma (vi1 , . . . , vip) con 1 ≤ i1 ≤ · · · ≤ ip ≤ n. Quindi

Corollario 1.3.2: Sia V uno spazio vettoriale di dimensione n ≥ 1 sul campo K, e p ∈ N. Allora

dimSp(V ) =
(

n + p− 1
p

)
,

dim
∧p

V =
{ (

n
p

)
se 0 ≤ p ≤ n,

0 se p > n.

In particolare,

dim
⊕

0≤p≤n

∧p
V = 2n.

Dimostrazione: Per quanto visto sopra, la dimensione di
∧p

V è uguale alla cardinalità dell’insieme delle
p-uple (i1, . . . , ip) con 1 ≤ i1 < · · · < ip ≤ n, cardinalità che è ben nota essere

(
n
p

)
per 0 ≤ p ≤ n e 0

altrimenti. In particolare,

dim
⊕

0≤p≤n

∧p
V =

n∑
p=0

(
n

p

)
= 2n.

Per lo stesso motivo, la dimensione di Sp(V ) è uguale alla cardinalità dell’insieme delle p-uple (i1, . . . , ip)
con 1 ≤ i1 ≤ · · · ≤ ip ≤ n. Ora, si ha 1 ≤ i1 ≤ · · · ≤ ip ≤ n se e solo se

1 ≤ i1 < i2 + 1 < i3 + 2 < · · · < ip + p− 1 ≤ n + p− 1.

Quindi l’insieme delle p-uple (i1, . . . , ip) con 1 ≤ i1 ≤ · · · ≤ ip ≤ n ha la stessa cardinalità dell’insieme delle
p-uple (j1, . . . , jp) con 1 ≤ j1 < · · · < jp ≤ n + p − 1, e la tesi segue dal fatto che quest’ultimo insieme ha
cardinalità

(
n+p−1

p

)
.

Osservazione 1.3.3. In particolare, se V ha dimensione n allora dim
∧n

V = 1. Non è difficile trovare un
generatore di

∧n
V : fissata una base {v1, . . . , vn}, definiamo ω ∈

∧n
V ponendo

ω(ϕ1, . . . , ϕn) = det
(
ϕi(vj)

)
per ogni ϕ1, . . . , ϕn ∈ V ∗. Siccome ω valutato sulla base duale di V ∗ è uguale al determinante della matrice
identica, cioè 1, ne deduciamo che ω 6= O; quindi ogni altro elemento di

∧n
V è un multiplo di ω.
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Esercizio 1.3.5. Sia {v1, . . . , vn} una base di uno spazio vettoriale V , e 1 ≤ p ≤ n. Preso un multi-
indice I = (i1, . . . , ip) con 1 ≤ i1 < · · · < ip ≤ n, definiamo vI ∈

∧p
V ponendo

vI(ϕ1, . . . , ϕp) = det
(
ϕh(vik

)
)

per ogni ϕ1, . . . , ϕp ∈ V ∗. Dimostra che la famiglia delle applicazioni p-alternanti vI al variare di I è una
base di

∧p
V .

Definizione 1.3.4: Sia V uno spazio vettoriale di dimensione finita sul campo K. L’algebra esterna di V è lo
spazio tensoriale ∧

V =
⊕

0≤p≤n

∧p
V,

mentre l’algebra simmetrica di V è lo spazio tensoriale

S(V ) =
⊕
p≥0

Sp(V ).

Abbiamo già osservato che
∧

V e S(V ) non sono sottoalgebre di T (V ). Vogliamo allora introdurre un
nuovo prodotto su

∧
V e un nuovo prodotto su S(V ) in modo da renderli delle algebre. Cominciamo con la

Definizione 1.3.5: Sia V uno spazio vettoriale di dimensione finita su un campo K. L’operatore di antisim-
metrizzazione è l’applicazione lineare A:T •(V )→

∧
V definita da

A(α)(φ1, . . . , φp) =
1
p!

∑
σ∈Sp

sgn(σ) α(φσ(1), . . . , φσ(p))

per ogni α ∈ T p(V ), e φ1, . . . , φp ∈ V ∗. Analogamente, l’operatore di simmetrizzazione S:T •(V )→ S(V ) è
dato da

S(α)(φ1, . . . , φp) =
1
p!

∑
σ∈Sp

α(φσ(1), . . . , φσ(p))

per ogni α ∈ T p(V ), e φ1, . . . , φp ∈ V ∗.

Per ogni τ ∈ Sp si ha

A(α)(φτ(1), . . . , φτ(p)) =
1
p!

∑
σ∈Sp

sgn(σ) α(φτ(σ(1)), . . . , φτ(σ(p)))

=
1
p!

∑
ρ∈Sp

sgn(τ−1ρ) α(φρ(1), . . . , φρ(p)) = sgn(τ)A(α)(φ1, . . . , φp),

per cui l’immagine di A è effettivamente contenuta in
∧

V . È inoltre evidente che A è lineare, e che è
l’identità ristretta a

∧
V .

Esercizio 1.3.6. Dimostra che S:T •(V )→ S(V ) è lineare, ha immagine contenuta in S(V ), ed è l’identità
ristretta a S(V ).

Esercizio 1.3.7. Dato α ∈ T p(V ) dimostra che S(α) è l’unico tensore p-controvariante simmetrico tale che
S(α)(φ, . . . , φ) = α(φ, . . . , φ) per tutti i φ ∈ V ∗.

Definizione 1.3.6: Sia V uno spazio vettoriale di dimensione finita sul campo K, α ∈
∧p

V e β ∈
∧q

V . Allora
il prodotto esterno di α e β è il (p + q)-tensore alternante dato da

α ∧ β =
(p + q)!

p!q!
A(α⊗ β) ∈

∧p+q
V .

Estendendo per bilinearità otteniamo il prodotto esterno ∧:
∧

V ×
∧

V →
∧

V . La quadrupla (
∧

V,+,∧, ·)
è detta algebra esterna di V .
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Definizione 1.3.7: Sia V uno spazio vettoriale di dimensione finita sul campo K, α ∈ Sp(V ) e β ∈ Sq(V ).
Allora il prodotto simmetrico di α e β è il (p + q)-tensore simmetrico dato da

α¯ β =
(p + q)!

p!q!
S(α⊗ β) ∈ Sp+q(V ).

Estendendo per bilinearità riusciamo a definire il prodotto simmetrico ¯:S(V )×S(V )→ S(V ). La quadru-
pla

(
S(V ),+,¯, ·

)
è detta algebra simmetrica di V .

Osservazione 1.3.4. Attenzione: in alcuni testi il prodotto esterno è definito dalla formula

α ∧ β = A(α⊗ β) ∈
∧p+q

V

per ogni α ∈
∧p

V e β ∈
∧q

V . Analogamente, in alcuni testi (non necessariamente gli stessi) il prodotto
simmetrico è definito dalla formula α¯ β = S(α⊗ β).

Proposizione 1.3.3: Sia V uno spazio vettoriale di dimensione finita sul campo K. Allora la quadru-
pla (

∧
V, +,∧, ·) è un’algebra con unità e anticommutativa, nel senso che è un’algebra con unità tale che

α ∧ β = (−1)pqβ ∧ α (1.3.2)

per ogni α ∈
∧p

V e β ∈
∧q

V .

Dimostrazione: La distributività di ∧ rispetto alla somma e al prodotto per scalari seguono subito dalla
definizione e dalla linearità diA, ed è chiaro che 1 ∈

∧0
V è un’unità. Rimangono da dimostrare l’associatività

e l’anticommutatività (1.3.2).
Cominciamo con l’associatività. Prendiamo α ∈

∧p
V , β ∈

∧q
V , γ ∈

∧r
V e φ1, . . . , φp+q+r ∈ V ∗.

Allora

(α ∧ β) ∧ γ(φ1, . . . , φp+q+r)

=
(p + q + r)!
(p + q)!r!

A
(
(α ∧ β)⊗ γ

)
(φ1, . . . , φp+q+r)

=
1

(p + q)!r!

∑
τ∈Sp+q+r

sgn(τ)(α ∧ β)⊗ γ(φτ(1), . . . , φτ(p+q+r))

=
1

(p + q)!r!

∑
τ∈Sp+q+r

sgn(τ)(α ∧ β)(φτ(1), . . . , φτ(p+q))γ(φτ(p+q+1), . . . , φτ(p+q+r))

=
1

(p + q)!
1

p!q!r!
×

×
∑

τ∈Sp+q+r

∑
σ∈Sp+q

sgn(τ) sgn(σ)α(φστ (1), . . . , φστ (p))β(φστ (p+1), . . . , φστ (p+q))γ(φτ(p+q+1), . . . , φτ(p+q+r)),

dove
(
στ (1), . . . , στ (p+q)

)
è ottenuta applicando la permutazione σ alla (p + q)-upla

(
τ(1), . . . , τ(p+q)

)
. Ora,

è chiaro che
(
στ (1), . . . , στ (p+q), τ(p+q+1), . . . , τ(p+q+r)

)
è ancora una permutazione di (1, . . . , p+q+r),

il cui segno è esattamente sgn(τ) sgn(σ). Inoltre, ogni permutazione in Sp+q+r può essere ottenuta tramite
questo procedimento in esattamente (p + q)! modi diversi; quindi abbiamo

(α ∧ β) ∧ γ(φ1, . . . , φp+q+r)

=
1

p!q!r!

∑
ρ∈Sp+q+r

sgn(ρ)α(φρ(1), . . . , φρ(p))β(φρ(p+1), . . . , φρ(p+q))γ(φρ(p+q+1), . . . , φρ(p+q+r)). (1.3.3)

In maniera analoga si dimostra che quest’ultima espressione è uguale a α∧ (β ∧ γ)(φ1, . . . , φp+q+r), e l’asso-
ciatività è verificata.
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Rimane da dimostrare la anticommutatività. Se α ∈
∧p

V e β ∈
∧q

V abbiamo

α ∧ β(φ1, . . . , φp+q) =
1

p!q!

∑
τ∈Sp+q

sgn(τ)α(φτ(1), . . . , φτ(p))β(φτ(p+1), . . . , φτ(p+q)),

= (−1)pq 1
p!q!

∑
ρ∈Sp+q

sgn(ρ)α(φρ(q+1), . . . , φρ(q+p))β(φρ(1), . . . , φρ(q))

= (−1)pqβ ∧ α(φ1, . . . , φp+q),

per ogni φ1, . . . , φp+q ∈ V ∗, e ci siamo.

Esercizio 1.3.8. Sia V uno spazio vettoriale di dimensione finita sul campo K. Dimostra che la quadru-
pla

(
S(V ),+,¯, ·

)
è un’algebra con unità commutativa.

Osservazione 1.3.5. Ripetendo il ragionamento che ha portato alla (1.3.3) si dimostra che per ogni r-
upla α1 ∈

∧k1 V, . . . , αr ∈
∧kr V e per ogni φ1, . . . , φk1+···+kr ∈ V ∗ si ha

α1 ∧ · · · ∧ αr(φ1, . . . , φk1+···+kr )

=
1

k1! · · · kr!

∑
τ∈Sk1+···+kr

sgn(τ) α1(φτ(1), . . . , φτ(k1)) · · ·αr(φτ(k1+···+kr−1+1), . . . , φτ(k1+···+kr)).

In particolare,
v1 ∧ · · · ∧ vp(φ1, . . . , φp) =

∑
τ∈Sp

sgn(τ)φτ(1)(v1) · · ·φτ(p)(vp)

= det
(
φh(vk)

) (1.3.4)

per ogni v1, . . . , vp ∈ V e φ1, . . . , φp ∈ V ∗.

Esercizio 1.3.9. Dimostra che

v1 ∧ · · · ∧ vp =
∑

τ∈Sp

sgn(τ) vτ(1) ⊗ · · · ⊗ vτ(p)

per ogni v1, . . . , vp ∈ V .

Esercizio 1.3.10. Dimostra che il prodotto esterno è l’unica applicazione da
∧

V ×
∧

V in
∧

V che sia
associativa, bilineare, anticommutativa e soddisfi (1.3.4).

Osservazione 1.3.6. L’anticommutatività implica che se α ∈
∧p

V con p dispari allora α∧α = O. Questo
non è più vero se p è pari: per esempio, se α = e1 ∧ e2 + e3 ∧ e4 ∈

∧2 R4 si ha

α ∧ α = 2e1 ∧ e2 ∧ e3 ∧ e4 6= O.

Avendo a disposizione il prodotto esterno non è difficile trovare una base dell’algebra esterna:

Proposizione 1.3.4: Sia B = {v1, . . . , vn} una base di uno spazio vettoriale V . Allora una base di
∧p

V è
data da

Bp = {vi1 ∧ · · · ∧ vip
| 1 ≤ i1 < · · · < ip ≤ n}.

Dimostrazione: Siccome Bp contiene dim
∧p

V elementi, ci basta dimostrare che sono linearmente indipen-
denti. Sia {v1, . . . , vn} la base duale di V ∗; la Proposizione 1.1.2 ci dice che per vedere se gli elementi
di Bp sono linearmente indipendenti basta calcolare il loro valore sulle p-uple di elementi della base duale e
verificare che si ottengono vettori linearmente indipendenti di Knp

. Siccome i vi1 ∧ · · · ∧ vip
sono alternanti,



14 Elementi di Geometria Differenziale, A.A. 2005/06

è sufficiente calcolarne il valore su p-uple (vj1 , . . . , vjp) con 1 ≤ j1 < · · · < jp ≤ n. Usando (1.3.4) otteniamo
quindi

vi1 ∧ · · · ∧ vip(vj1 , . . . , vjp) =
∑

τ∈Sp

sgn(τ)vjτ(1)(vi1) · · · vjτ(p)(vip)

=
∑

τ∈Sp

sgn(τ)δjτ(1)
i1
· · · δjτ(p)

ip

=
{

0 se (j1, . . . , jp) 6= (i1, . . . , ip),
1 se (j1, . . . , jp) = (i1, . . . , ip),

in quanto i1 < · · · < ip e l’unica permutazione che conserva l’ordine è l’identità, e ci siamo.

Esercizio 1.3.11. Sia {v1, . . . , vn} una base dello spazio vettoriale V . Per ogni multi-indice I = (i1, . . . , ip)
con 1 ≤ i1 < · · · < ip ≤ n dimostra che vI = vi1 ∧ · · · ∧ vip , dove vI ∈

∧p(V ) è definito nell’Esercizio 1.3.5.

Osservazione 1.3.7. Sia (v1, . . . , vp) una p-upla di elementi di uno spazio vettoriale V . Se due di questi
elementi coincidono, l’anticommutatività implica che v1∧· · ·∧vp = O. Più in generale, si vede subito (eserci-
zio) che v1∧· · ·∧vp = O se v1, . . . , vp sono linearmente dipendenti. Viceversa, se {v1, . . . , vp} sono linearmente
indipendenti, possiamo completarli a una base di V e la Proposizione 1.3.4 ci assicura che v1 ∧ · · · ∧ vp 6= O.
In effetti, l’elemento v1 ∧ · · · ∧ vp risulta essere univocamente determinato (a meno di una costante molti-
plicativa non nulla) dal p-piano generato da {v1, . . . , vp}. Più precisamente, sia {w1, . . . , wp} un’altra base
dello stesso p-piano, e sia A = (ak

h) ∈ GL(p, K) la matrice tale che wh = a1
hv1 + · · ·+ ap

hvp per h = 1, . . . , p.
Allora

w1 ∧ · · · ∧ wp = (detA) v1 ∧ · · · ∧ vp.

Infatti se φ1, . . . , φp ∈ V ∗ si ha

w1 ∧ · · · ∧ wp(φ1, . . . , φp) =
∑

τ∈Sp

sgn(τ)φτ(1)(w1) · · ·φτ(p)(wp)

=
p∑

j1=1

· · ·
p∑

jp=1

aj1
1 · · · ajp

p

∑
τ∈Sp

sgn(τ)φτ(1)(vj1) · · ·φτ(p)(vjp
)

=
p∑

j1=1

· · ·
p∑

jp=1

aj1
1 · · · ajp

p vj1 ∧ · · · ∧ vjp
(φ1, . . . , φp)

=
∑

σ∈Sp

sgn(σ)aσ(1)
1 · · · aσ(p)

p v1 ∧ · · · ∧ vp(φ1, . . . , φp)

= det(A)v1 ∧ · · · ∧ vp(φ1, . . . , φp),

grazie all’anticommutatività.

Concludiamo questo paragrafo con una serie di esercizi.

Esercizio 1.3.12. Dimostra che per ogni ω ∈
∧n

V , T ∈ Hom(V ∗, V ∗) e φ1, . . . , φn ∈ V ∗, dove n = dimV ,
si ha ω

(
T (φ1), . . . , T (φn)

)
= (detT )ω(φ1, . . . , φn).

Esercizio 1.3.13. Dimostra che T 2(V ) = S2(V )⊕
∧2

V , e che e1⊗e2⊗e3 /∈ S3(R3)⊕
∧3 R3, dove {e1, e2, e3}

è la base canonica di R3.

Esercizio 1.3.14. Se V e W sono spazi vettoriali di dimensione finita sul campo K, dimostra che ogni appli-
cazione lineare L ∈ Hom(V, W ) si estende a un’applicazione lineare L̃ ∈ Hom(

∧
V,

∧
W ) tale che L̃(1) = 1

e L̃(v1 ∧ · · · ∧ vp) = L(v1) ∧ · · · ∧ L(vp) per ogni v1, . . . , vp ∈ V .

Esercizio 1.3.15. Sia V uno spazio vettoriale di dimensione finita, e F :V p →
∧p

V l’applicazione p-lineare
alternante data da F (v1, . . . , vp) = v1 ∧ · · · ∧ vp. Dimostra che la coppia (

∧p
V, F ) è l’unica coppia (a

meno di isomorfismi) che soddisfa la seguente proprietà universale: per ogni applicazione p-lineare alter-
nante A:V p →W a valori in uno spazio vettoriale W esiste un’unica applicazione lineare Ã:

∧p
V →W tale

che A = Ã ◦ F .
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Esercizio 1.3.16. Sia V uno spazio vettoriale di dimensione finita. Dimostra che (
∧p

V )∗ è isomorfo
a

∧p(V ∗). (Suggerimento: Usa l’esercizio precedente e l’applicazione Φ: (V ∗)p → (
∧p

V )∗ definita da

Φ(φ1, . . . , φp)(v1 ∧ · · · ∧ vp) = det
(
φi(vj)

)
per v1, . . . , vp ∈ V e φ1, . . . , φp ∈ V ∗.)

Esercizio 1.3.17. Se 〈· , ·〉 è un prodotto scalare sullo spazio vettoriale V , sia 〈〈· , ·〉〉 il prodotto scalare
su T (V ) costruito nella Proposizione 1.2.1. Dimostra che

〈〈v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp〉〉 = p! det(〈vi, wj〉)
per ogni v1, . . . , vp, w1, . . . , wp ∈ V .

Esercizio 1.3.18. Enuncia e dimostra per l’algebra simmetrica S(V ) risultati analoghi a quelli contenuti nei
quattro esercizi precedenti.

Esercizio 1.3.19. Sia {e1, e2, e3} la base canonica di R3. Dimostra che per ogni u, w ∈ R3 =
∧1 R3 le

coordinate di u ∧ v ∈
∧2 R3 rispetto alla base {e2 ∧ e3, e3 ∧ e1, e1 ∧ e2} sono esattamente le coordinate del

classico prodotto vettore di u e v rispetto alla base canonica.

1.4 Tensori simplettici⌈
Dedichiamo quest’ultimo paragrafo a un tipo particolare di 2-tensori covarianti alternanti, utili in di-

verse questioni di geometria differenziale e di fisica matematica. Di nuovo, lavoriamo su un campo K di
caratteristica zero.

Definizione 1.4.1: Un 2-tensore covariante ω ∈ T2(V ) è detto non degenere se ω(v, w) = 0 per ogni w ∈ V
implica v = O. Un tensore simplettico è un 2-tensore covariante alternante non degenere. Una coppia (V, ω)
dove V è uno spazio vettoriale e ω ∈

∧
2 V è un tensore simplettico, è detta spazio vettoriale simplettico.

Esercizio 1.4.1. Sia ω ∈ T2(V ) un 2-tensore covariante su uno spazio vettoriale V di dimensione finita.
Dimostra che le seguenti affermazioni sono equivalenti:
(i) ω è non degenere.
(ii) L’applicazione ω̃:V → V ∗ data da ω̃(v)(w) = ω(v, w) per ogni v, w ∈ V è un isomorfismo.
(iii) Scelta una base {v1, . . . , vn} di V ∗, la matrice (ωhk) delle coordinate di ω rispetto alla base {vh ⊗ vk}

di T2(V ) è invertibile.

Esempio 1.4.1. Sia V uno spazio vettoriale di dimensione 2n. Scegliamo una base {v1, w1, . . . , vn, wn}, e
indichiamo con {v1, w1, . . . , vn, wn} la corrispondente base duale. Sia allora ω ∈

∧
2 V dato da

ω =
n∑

j=1

vj ∧ wj . (1.4.1)

Vogliamo dimostrare che ω è un tensore simplettico. Prima di tutto, la sua azione sugli elementi della base
è data da

ω(vi, wj) = −ω(wj , vi) = δij , ω(vi, vj) = ω(wi, wj) = 0 (1.4.2)

per ogni 1 ≤ i, j ≤ n. Supponiamo allora che v =
∑

i(a
ivi + biwi) ∈ V sia tale che ω(v, w) = 0 per

ogni w ∈ V . In particolare 0 = ω(v, vj) = −bj e 0 = ω(v, wj) = aj per 1 ≤ j ≤ n; quindi v = O e ω è non
degenere.

Definizione 1.4.2: Sia (V, ω) uno spazio vettoriale simplettico. Il complemento simplettico di un sottospa-
zio W ⊆ V è il sottospazio

W⊥ = {v ∈ V | ω(v, w) = 0 per ogni w ∈W}.
Contrariamente al caso dei complementi ortogonali, non è detto che W ∩W⊥ = {O}. Per esempio, se

dimW = 1 allora l’antisimmetria di ω implica che W ⊆ W⊥. Questa osservazione suggerisce di classificare
i sottospazi di uno spazio vettoriale simplettico come segue:
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Definizione 1.4.3: Sia (V, ω) uno spazio vettoriale simplettico. Un sottospazio W ⊆ V di V sarà detto
simplettico se W ∩W⊥ = {O}; isotropo se W ⊆W⊥; coisotropo se W ⊇W⊥; Lagrangiano se W = W⊥.

Esercizio 1.4.2. Sia (V, ω) uno spazio vettoriale simplettico, e W ⊆ V un sottospazio di V . Dimostra che:
(i) dimW + dimW⊥ = dimV .
(ii) (W⊥)⊥ = W .
(iii) W è simplettico se e solo se ω|W×W è non degenere.
(iv) W è isotropo se e solo se ω|W×W = O.
(v) W è Lagrangiano se e solo se ω|W×W = O e dim V = 2 dimW .

L’unico risultato che dimostriamo sui tensori simplettici è che possono sempre essere espressi nella forma
indicata dall’Esempio 1.4.2.

Proposizione 1.4.1: Sia (V, ω) uno spazio vettoriale simplettico. Allora dimV = 2n è pari, ed esiste una
base di V rispetto a cui ω è data da (1.4.1).

Dimostrazione: Si verifica facilmente che ω è della forma (1.4.1) rispetto a una base {v1, w1, . . . , vn, wn} di V
se e solo se l’azione di ω sui vettori della base è data da (1.4.2). Dimostreremo allora che esiste una base per
cui (1.4.2) vale procedendo per induzione su m = dimV .

Per m = 0 non c’è nulla da dimostrare. Supponiamo allora che (V, ω) sia uno spazio vettoriale simplettico
di dimensione m ≥ 1, e che la proposizione sia vera per tutti gli spazi vettoriali simplettici di dimensione
minore di m. Sia v1 ∈ V un vettore non nullo. Essendo ω non degenere, esiste un vettore w1 ∈ V tale
che ω(v1, w1) 6= 0; a meno di moltiplicare w1 per una costante, possiamo anche supporre che ω(v1, w1) = 1.
Siccome ω è alternante, v1 e w1 sono linearmente indipendenti.

Sia W il sottospazio generato da v1 e w1. L’Esercizio 1.4.2.(i) ci assicura che dimW⊥ = m − 2.
Siccome ω|W×W è chiaramente non degenere, l’Esercizio 1.4.2.(iii) implica che W è simplettico; ma al-
lora W ∩ W⊥ = {O} e quindi, grazie all’Esercizio 1.4.2.(ii), anche W⊥ è simplettico. Per l’ipotesi in-
duttiva, dimW⊥ è pari, ed esiste una base {v2, w2, . . . , vn, wn} di W⊥ che soddisfa (1.4.2). Ma allora
{v1, w1, v2, w2, . . . , vn, wn} è una base di V che soddisfa (1.4.2), e ci siamo.

Definizione 1.4.4: Sia (V, ω) uno spazio vettoriale simplettico. Una base {v1, w1, . . . , vn, wn} di V rispetto a
cui ω è data da (1.4.1) è detta base simplettica di V .

Esercizio 1.4.3. Sia (V, ω) uno spazio vettoriale simplettico di dimensione 2n. Dimostra che per ogni
sottospazio simplettico (rispettivamente, isotropo, coisotropo, Lagrangiano) W di V esiste una base simplet-
tica {v1, w1, . . . , vn, wn} di V tale che:
(i) se W è simplettico allora W = Span(v1, w1, . . . , vk, wk) per qualche 1 ≤ k ≤ n;
(ii) se W è isotropo allora W = Span(v1, . . . , vk) per qualche 1 ≤ k ≤ n;
(iii) se W è coisotropo allora W = Span(v1, . . . , vn, w1, . . . , wk) per qualche 1 ≤ k ≤ n;

(iv) se W è Lagrangiano allora W = Span(v1, . . . , vn).

⌋


