4

Coomologia

Chiacchiere.

4.1 Richiami di algebra omologica

In questa sezione riportiamo una serie di definizioni e risultati generali che
saranno utili in seguito.

Definizione 4.1.1. Una successione

i Vi i Vit

Vi1

di omomorfismi (applicazioni lineari, eccetera) di gruppi abeliani (spazi vet-
toriali, eccetera) ¢ esatta in V; se Ker fj1+1 = Im f;; ed ¢ esatta se lo & in tutti
i suoi elementi.

In particolare, una successione esatta della forma

o) v Loy 9w 0 (4.1)

sard detta successione esatta corta.

Osservazione 4.1.2. Nel seguito useremo la parola “morfismo” per indicare
un’applicazione fra due insiemi con struttura che conserva la struttura. Per
esempio, un morfismo fra gruppi sara un omomorfismo, un morfismo fra spazi
vettoriali sara un’applicazione lineare, e cosi via.

Osservazione 4.1.8. Dire che una successione della forma

f

O —U —V

¢ esatta e equivalente a dire che f: U — V e iniettiva; e dire che una successione
della forma
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g
Vv—W — 0
e esatta equivale a dire che g: V' — W ¢ surgettiva. In particolare, in una suc-
cessione esatta corta (4.1) il morfismo f & iniettivo, il morfismo g & surgettivo
e W & isomorfo al quoziente V/f(U).

Definizione 4.1.4. Un gruppo abeliano (spazio vettoriale, eccetera) C' & gra-
duato su N se si puo scrivere come somma diretta di sottogruppi (sottospazi,

eccetera) nella forma
c-@or

keN

Una k-cocatena (o cocatena di grado k) & un elemento di C*. In modo analogo
si definisce un gruppo abeliano (spazio vettoriale, eccetera) graduato su Z.

Un morfismo graduato di grado d € 7Z fra gruppi (spazi vettoriali, eccetera)
graduati € un morfismo F:C' — D che modifica la graduazione di d livelli,
cioe tale che F(C*) C D**? per ogni k € N. Se d = 0 parleremo di morfismo
graduato.

Definizione 4.1.5. Un complesso differenziale (o complesso di cocatene) &
una coppia (C, d) composta da un gruppo abeliano (spazio vettoriale, eccetera)

graduato C' = @ C* e da un morfismo graduato d: C — C' di grado 1, detto
keN
differenziale, tale che

dod=0.

A volte scriveremo d* al posto di d|cx.

Un k-cociclo & un elemento di Z*(C) = Ker d* C C¥; un k-cobordo & un ele-
mento di B¥(C') =Imd*~! C C* (dove per convenzione poniamo B® = {O}).
La condizione dod = O implica che B¥ C ZF per ogni k € N; il k-esimo gruppo
di coomologia H*(C') del complesso differenziale & allora definito come il quo-
ziente H*(C) = Z¥(C)/B*(C). Infine, la coomologia del complesso ¢ il gruppo
(spazio vettoriale, eccetera) graduato H*(C) = @ H¥(C). Indicheremo con

keN

[c] € H1(C) la classe del cociclo ¢ € Z1(C).
Esempio 4.1.6. Sia M una varieta. Allora la coppia (A' (M), d), dove
A (M) = P A*¥ (M)
kEN

(con A¥(M) = (O) se k > dim M) e d & il differenziale esterno, & un complesso
differenziale la cui coomologia & proprio la coomologia di de Rham. Un k-
cociclo € una k-forma chiusa; un k-cobordo ¢ una k-forma esatta.

Osservazione 4.1.7. Un complesso di catene si definisce in modo analogo, ma
con un differenziale di grado —1, cioe tale che d(C*) C C*~1.
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Definizione 4.1.8. Siano (A,da) e (B,dp) due complessi differenziali. Un
morfismo di cocatene & un morfismo graduato F: A — B che commuta con i
differenziali: Fody = dgo F.

Esempio 4.1.9. Se F: M — N ¢ un’applicazione differenziabile fra varieta,
allora F*: A*(N) — A®*(M) ¢ un morfismo di cocatene.

Se F: A — B ¢ un morfismo di cocatene, chiaramente abbiamo
F(ZMA) CZ4B) e F(BY(A) C BX(B)

per ogni k € N. Quindi F induce un morfismo graduato F*: H*(A) — H*(B)
semplicemente ponendo F*([¢]) = [F(c)] per ogni ¢ € Z9(A). In particolare,
una successione di morfismi di cocatene

F G

A— B —C

induce una successione di morfismi graduati

A 53y E v o)

Esempio 4.1.10. In particolare, un’applicazione differenziabile F: M — N fra
varieta induce un morfismo di cocatene F*: H*(N) — H*(M), detto pullback.

Il primo risultato importante ¢ che partendo da una successione esatta
corta di morfismi di cocatene otteniamo in coomologia qualcosa di piu di una
successione esatta corta di morfismi graduati:

Teorema 4.1.11. Sia

0 A5 p Y0 0 (4.2)

una successione esatta corta di morfismi di cocatene. Allora esiste un morfi-
smo graduato d*: H*(C') — H*(A) di grado 1 tale che la successione
. —>Hk(A)LH’“(B)L*H’“(C)LH’“+1(A)—>

(4.3)
sta esatta.

Dimostrazione. 1l fatto che (4.2) sia una sequenza esatta corta di morfismi
di cocatene equivale a dire che il seguente diagramma ¢ commutativo a righe
esatte:



114 4 Coomologia

0 A —E s g G s ohn 0
d d d
0 ar—E g G o 0

Sia ¢ € Z¥(C). Siccome G & surgettiva, troviamo b € B* tale che G(b) = c.
La commutativita del diagramma ci dice che G(db) = dG(b) = dec = O;
quindi db € KerG = ImF, per cui esiste un unico a € AF*! tale che
F(a) = db. Inoltre, F(da) = dF(a) = d(db) = O; essendo F iniettiva tro-
viamo da = O, cioe a € Z¥1(A). Se poi ' € BY & un’altra cocatena tale
che G(V) = ¢, sia @’ € Z*1(A) I'unica cocatena tale che F(a’) = db'. Sicco-
me G(b—b') = O, esiste un unico a” € A* tale che V' — b = F(a”). Quindi
db = db+dF(a") = F(a+da") da cui segue che o’ = a+da”. In altre parole,
a' —a € B*1(A), e la classe di coomologia [a] € H**1(A) dipende solo da
c € Z¥(C) e non dalla scelta di b € B*. Per far vedere che abbiamo definito
un morfismo da H*(C) a H**1(A) rimane da verificare che se ¢ € B*(O)
allora a € B¥*1(A). Ma infatti se ¢ = dc’ per qualche ¢’ € C*~1, scriviamo
¢ = G(') con b € B¥1; allora ¢ = dG(b") = G(db"), per cui possiamo
prendere b = db”, che implica db = O e a = O € B**1(A) come voluto.

0| da —E > ddb = 0
0\ a, o —E b, G s de = O—> 0
d d d
01 o —E S ey 0
L.
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In questo modo abbiamo definito un morfismo d*: H*(C') — H**1(A) per
ogni k € N ; rimane da verificare che (4.3) ¢ esatta.

Esattezza in H*(B): sia [b] € H*(B) tale che G*([b]) = O. Questo si-
gnifica che esiste ¢ € C*~! tale che G(b) = dc, dove b € Z*(B) & un qual-
siasi rappresentante di [b]. Scegliamo b € B*~! tale che G(V') = ¢; siccome
G(dV') = dG(b') = dec = G(b), otteniamo che b — db’ € Ker G = Im F, per cui
esiste a € A* tale che b—db' = F(a). Inoltre F(da) = dF(a) = db— ddb’ = O,
per cui da = O, cioe a € ZF(A). Mettendo il tutto insieme abbiamo
[b] = F*([a]), per cui Ker G* C Im F**. Per il viceversa, se a € Z*(A) abbiamo
G(F(a)) = 0, e quindi Im F* C Ker G*, come voluto.

Esattezza in H*(C): prima di tutto, se [c] = G*([b]) con b € Z*¥(B),
abbiamo db = O e quindi la costruzione del morfismo di connessione implica
subito che d*[c] = O, cio¢ Im G* C Kerd*. Viceversa, se [c] € H*(C) ¢ tale
che d*[c] = O, necessariamente si deve avere ¢ = G(b) con b € Z*(B); quindi
[c] = G*([b]), per cui Kerd* C Im G*, come voluto.

Esattezza in H*"1(A): se [a] = d*[c] € H*1(A), per costruzione abbiamo
F(a) € B*1(B), cioe F*([a]) = O e Imd* C Ker F*. Infine, prendiamo
[a] € H*T1(A) tale che F*([a]) = O. Questo vuol dire che se a € ZFt1(A) &
un rappresentante di [a], abbiamo F(a) = db per un opportuno b € B*. Sia
¢ = G(b); siccome dec = dG(b) = G(db) = G(F(a)) = O, abbiamo ¢ € Z*(C),
e per costruzione d*[c] = [a]. Quindi Ker F* C Im d*, e abbiamo finito. O

Osservazione 4.1.12. La tecnica utilizzata in questa dimostrazione si chiama
inseguimento nel diagramma (in inglese, diagram chasing).

Definizione 4.1.13. La successione (4.3) ¢ detta successione esatta lunga in
coomologia indotta dalla successione esatta corta (4.2), e il morfismo d* &
chiamato morfismo di connessione.

Definizione 4.1.14. Siano F, G: A — B due morfismi di cocatene. Diremo
che F' e GG sono omotopi se esiste un operatore d’omotopia fra F e G, cioé un
morfismo graduato K: A — B di grado —1 tale che

F—-G=dpoK+tKody.

Proposizione 4.1.15. Due morfismi di cocatene omotopi inducono lo stesso
morfismo in coomologia.

Dimostrazione. Sia K: A — B un operatore d’omotopia fra due morfismi di
cocatene F', G: A — B. Se a € Z*(A) abbiamo

F(a) =G(a)+ (dpo K £ K ods)(a) = G(a) + dp(K(a)) ,
per cui [F(a)] = [G(a)]. O

Corollario 4.1.16. Sia (A,d) un complesso differenziale tale che esista un
morfismo graduato K: A — A di grado —1 tale che do K += K od = id. Allora
H*(A)=0.
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Dimostrazione. Infatti K & un operatore di omotopia fra 'identita e il morfi-
smo nullo, e la tesi segue dalla Proposizione 4.1.15. O

Un ultimo risultato generale molto utile & il seguente:

Lemma 4.1.17 (dei cinque). Sia dato il sequente diagramma commautativo
di morfismi con le righe esatte:

1 fa I3 fa

Supponiamo che B e § siano degli isomorfismi. Allora:

(i) se « ¢ surgettivo allora 7y & iniettivo.

(ii) se € é iniettivo allora v ¢é surgettivo.

In particolare, se «, 3, § ed € sono degli isomorfismi, anche v ¢ un isomorfi-
smo.

Dimostrazione. (i) Sia ¢ € C tale che vy(¢) = O. Essendo il diagramma com-
mutativo, abbiamo 5(f3(c)) = fi (’y(c)) = O; siccome § ¢ un isomorfismo,
otteniamo f3(c) = O. L’esattezza della riga superiore implica ¢ = f2(b) per
qualche b € B; inoltre O = ~(f2(b)) = f4(B(b)). L'esattezza della riga infe-
riore ci dice che esiste a’ € A’ tale che §(b) = fi(a’). Essendo « surgettivo,
troviamo a € A tale che @’ = a(a); quindi 8(b) = f{(a(a)) = 3(f1(a)). Ma 3
¢ un isomorfismo; quindi b = fi(a) e ¢ = f2(b) = f2(f1(a)) = O per D'esattezza
della riga superiore, per cui 7y € iniettivo.

(ii) Sia ¢ € C'. Essendo ¢ un isomorfismo, esiste un unico d € D ta-
le che 6(d) = fi(c'). La commutativitd del diagramma e lesattezza del-
la riga inferiore ci dicono che €e(fs(d)) = fi(6(d)) = fi(fi(c)) = O;
essendo € iniettivo, troviamo f4(d) = O. Quindi esiste ¢ € C tale che
f3(C) = D. Applicando di nuovo la commutativita del diagramma trovia-
mo f4(') = 6(d) = 6(f3(c)) = f5(7(c)); quindi ¢/ —(c) € Ker fi. L'esattezza
ci dice che esiste b’ € B’ tale che f4(b') = ¢’ —~(c); essendo S un isomorfismo
troviamo b € B tale che b/ = §8(b). Infine, la commutativitd del diagramma
assicura che 5 (fa(8)) = f3(8)) = f3() = ¢'—(c), per cui & = y(c+fa(b)).
e y e surgettiva. O

4.2 La successione di Mayer-Vietoris
Un esempio di utilizzo della successione esatta lunga di coomologia & la suc-

cessione di Mayer-Vietoris, uno degli strumenti pitt utili per il calcolo della
coomologia.
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Sia U = {Up, U} un ricoprimento aperto di una varietd M composto di
due soli aperti Uy, Uy € M. Indichiamo con Uy | |U; 'unione disgiunta di Uy e
Us, con ¢j: UgNU; — Up | | Uy Vinclusione di UyNU; in U; (con j = 0, 1), e con
7:Uo | |U1 — M Tinclusione. Abbiamo quindi una successione di inclusioni
(L
.&

L1

M<j—U0|_|U1 UQﬂUl

che induce una successione di restrizioni di forme

*

* LO
A*(M) 1> A*(Ug) @ A*(Uy) —_L A*(Uy N Uy)
U] )

Prendendo la differenza degli ultimi due morfismi otteniamo la successione di
Mayer-Vietoris:

* L* _ L*

O —> A*(M) —L A*(Uy) & A*(Uy) —2—05 A*(Uy N U}) —> O

(w, )t T—w

(4.4)

Teorema 4.2.1. Sia U = {Uy, U1} un ricoprimento aperto di una varietd M.
Allora la successione di Mayer-Vietoris (4.4) & esatta, e quindi induce una
successione esatta lunga in coomologia

s HE(M) —> HY(Uy) @ HE(Uy) — HE (U N Uy & HE+1 (M) —>
(4.5)

Dimostrazione. L'esattezza di (4.4) ¢ evidente tranne all’ultimo punto. Sia
{po, p1} una partizione dell’unita subordinata a ¢{. Data w € A®*(UyNU1), no-
tiamo che pjw & ben definita come forma su Uy; analogamente pow € A®(Uy).
Infine

(45 = 1) (—p1eo, pow) = (po + pr)w = w,

per cui (4.4) ¢ esatta. L’ultima affermazione segue dal Teorema 4.1.11. O

Osservazione 4.2.2. Calcoliamo esplicitamente il morfismo di connessione d*
n (4.5). Sia {po,p1} una partizione dell’'unitd subordinata al ricoprimento
aperto {Up, U1}, e sia [w] € H¥(Uy N Uy) rappresentata dalla forma chiu-
sa w € ZF(UyNUp). La forma w & immagine tramite +§ — ¢ della coppia
(—p1w, pow), il cui differenziale esterno & (—d(p1w),d(pow)). Notiamo che

d(pjw) =dp; Nw
in quanto w e chiusa, e che dpg + dp; = O in Uy N Uy; quindi

«t 1 J —ldp1 Aw] inUp,
'] _{[dpo/\w] in Uy .

In particolare, il supporto di d*[w] & contenuto in Uy N Uj.
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Esempio 4.2.3. Calcoliamo la coomologia di R. Le 0-forme sono funzioni. L’u-
nica O-forma esatta & la funzione nulla; una O-forma f & chiusa se e solo se
df =0, cioe se e solo se ¢ costante. Quindi H°(R) = R.

Le 1-forme su R sono tutte (banalmente) chiuse; vogliamo mostrare che
sono anche esatte. Infatti, data w = f dx € A'(R), poniamo

o) = [ ryat;
0
allora si vede subito che dg = w. Riassumendo,

R sek=0
H*(R) = { )
(R) O sek>0.
Osservazione 4.2.4. 11 ragionamento fatto all’inizio dell’esempio precedente
mostra che HY(M) = R® per ogni varietdh M, dove ¢ > 1 & il numero di
componenti connesse di M.

Esempio 4.2.5. Calcoliamo la coomologia di S'. Grazie all’osservazione pre-
cedente abbiamo H(S') = R. Sia {Uy, Uy} il ricoprimento aperto di S* dato
dalUp=(-1/2—¢,1/2+¢) e U; =(1/2—¢,3/2+¢), dove € € (0,1/2) e ov-
viamente stiamo identificando S con R/Z. Siccome Uy e Uy sono diffeomorfi
a R, sappiamo che H°(U;) = R e H*(U;) = O per j = 0, 1 e ogni k > 0.
Inoltre Uy N U, consiste di due intervalli aperti, per cui HO(Uy N U;) = R? e
H*(UyNU;) = O per k > 0. La successione (4.5) diventa quindi

R RoR—2 R@RLHl(Sl)ﬂO

per cui H}(S') =2 (ROR)/Imd, dove 6: HO(Uy) ® HO(Uy) — HO(UoNUy) &l
morfismo indotto in coomologia da ¢ — . Chiaramente, é(a,b) = (b—a,b—a);
quindi dim Im é = 1. Riassumendo,

kraly _ JR sek=0,1;
H(S)_{O sek>1.

Possiamo anche trovare un generatore di H*(S1). Sia o = (1,0) € HY(UyNUy );
chiaramente o ¢ Imd, per cui d*a ¢ un generatore di H!(S'). Ricordando
I’Osservazione 4.2.2, d*« & rappresentato dalla 1-forma

w— dpo su(1/2—-¢,1/2+4¢),
" 1O  altrimenti,

dove {po, p1} & una partizione dell’unitd subordinata a {Up, U1 }.

4.3 1l teorema di Stokes

Per dimostrare il fondamentale teorema di Stokes dobbiamo introdurre il
concetto di varieta con bordo.
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Definizione 4.3.1. Il semispazio superiore H" C R™ di dimensione n ¢
H" = {(z',...,2") € R" | 2™ > 0} .
11 bordo OH™ di H™ & liperpiano {z™ = 0}; 'interno di H" ¢ H™ \ OH".

Definizione 4.3.2. Una wvarieta con bordo di dimensione n & data da una
coppia (M, A), dove M ¢ un insieme e A = {(U,,¥a)} € una famiglia di
applicazioni bigettive v,: U, — V,, dove V,, & un aperto di H", compatibili
a due a due e tali che M = J, Ua. Se V, N OH" # & diremo che (Ua, ¢a)
& una n-carta di bordo; se invece V, N OH" = & diremo che (U,, ¢,) € una
carta interna. L'insieme dei punti p € M che appartengono a ¢, *(0H") per
una carta di bordo (Uy, ¢q) € il bordo OM di M; il complementare del bordo
¢ detto interno della varieta con bordo M. A volte, le varieta nel senso della
Definizione 2.1.5 sono dette varieta senza bordo.

Osservazione 4.3.3. Carte interne sono chiaramente carte locali nel senso visto
finora. Quando parliamo di compatibilita fra due carte di bordo (Uy,¢a) €
(Us, ¢p) intendiamo che ¢, (U, NUg) e pg(Us NUg) sono aperti di H" (non
necessariamente di R™!) e che ¢, o wglzwg(Ua NUg) — @o(Us NUs) & un
diffeomorfismo di classe C*° come applicazione fra sottoinsiemi di R", e quindi
ammette un’estensione C* a un intorno aperto (in R") di ¢g(Us N Ug). In
particolare, ¢, o gogl ¢ un’applicazione aperta, per cui manda il bordo nel
bordo; di conseguenza (perché?) il bordo di una varieta con bordo & ben
definito (cioe se p € 1 (OH™) per qualche carta di bordo allora p € apgl (OH™)
per tutte le carte di bordo in p). Inoltre, la restrizione di ¢, o <p§1 a OH" &
ancora C'°°; quindi le restrizioni a M delle carte di bordo formano un atlante
di &M di dimensione n— 1 (dove stiamo identificando OH" con R™ ! nel modo
ovvio); quindi 9M ha una struttura naturale di varietad (n — 1)-dimensionale.

Definizione 4.3.4. Un atlante orientato di una varieta con bordo € un atlan-
te in cui i determinanti jacobiani dei cambiamenti di coordinate sono tutti
positivi. Una varieta con bordo con un atlante orientato ¢ detta orientata.

Vogliamo far vedere che il bordo di una varieta orientata ¢ automatica-
mente orientato. Per farlo ci serve il seguente

Lemma 4.3.5. Siano Uy, Uy C H" aperti di H" con Uj #+ Fperj=0,1, dove
U; = U;NOH". Sia F: Uy — Uy un diffeomorfismo con determinante jacobiano
sempre positivo. Allora il determinante jacobiano di F' = F|UO: Uy — Uy, visto
come diffeomorfismo di aperti di R™"™Y, ¢ sempre positivo
Dimostrazione. Scriviamo x = (2/,z"), con z’ = (w17.~.. , 2" 1), e analoga-
mente F = (F', F"), con F' = (F', ..., F"1); dunque F(2') = F'(2',0). Per
ogni (z,0) € Uy N OH" abbiamo

Jac F(z') 2E-(a/,0)

0 < det Jac F(2',0) = det | 5pn L
e (@',0) G (21,0)

QY
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Ora, F(Uy) C U, implica F"(z',0) = 0; quindi

n

0 < det Jac F(2',0) = oF

e (,0) - det Jac F(z") .
T

Infine, siccome F manda Uy NH" in U; N H", otteniamo %i: (2',0) > 0, e la
tesi segue. a

Questo lemma ci assicura che l'atlante di M indotto da un’atlante
orientato di M e ancora orientato; possiamo quindi introdurre la seguente

Definizione 4.3.6. Sia M una varieta con bordo di dimensione n, orientata
da un atlante orientato A, e indichiamo con dA 'atlante orientato indotto
da A su OM. L’orientazione indotta su OM ¢ allora quella data da 0A se n ¢
pari, quella opposta se n ¢ dispari.

Osservazione 4.3.7. La differenza di orientazione fra pari e dispari € necessaria
per ottenere I’enunciato del teorema di Stokes senza segni.

Osservazione 4.3.8. Sia M una varieta con bordo, di dimensione n. E chia-
ramente possibile dare un senso anche allo spazio tangente a un punto del
bordo di M, che pero risulta essere uno spazio di dimensione n — 1. Di con-
seguenza, una n-forma su M (pensata come applicazione n-lineare alternante
applicata ai campi vettoriali) si annulla quando ristretta a M. Invece, una
(n—1)-forma su M ristretta a 9M pud essere non nulla. Inoltre, su una varieta
orientata con bordo M possiamo definire I'integrale di una n-forma a supporto
compatto esattamente come nel caso di varieta senza bordo (le dimostrazioni
funzionano identiche); infine, se 7 ¢ una (n — 1)-forma su M, possiamo defi-
nire |, o 11 come l'integrale su OM (orientato con l'orientazione indotta) della
restrizione n|aas-

Teorema 4.3.9 (Stokes). Sia M una varietd orientata di dimensione n con
bordo, e consideriamo OM con l'orientazione indotta. Sia w una (n—1)-forma
con supporto compatto in M. Allora

[aw=[ w. (46)

Dimostrazione. Cominciamo col dimostrarlo quando M = R”. Per linearita, e
a meno di permutare le coordinate, possiamo supporre w = fdz'A---Adz™ L.
Quindi dw = (—1)”_1% da! A -+ Adz™. Tl teorema di Fubini allora ci dice

che N
_ of _
—(—1)" 1 n 1. .. n 1.
/n dw = (-1) /an (/_ e dz >dx dx

/00 a—f(x’,x”) dz" = lim [f(2',t) — f(«',—t)] =0

oo O™ t—+o0
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perché f ha supporto compatto. Quindi f]R" dw = 0; essendo R" senza bordo,
abbiamo dimostrato (4.6) in questo caso.
Consideriamo ora il caso M = H", e scriviamo

n
w:Zgj(x/71'n)dx1/\"'/\d$j/\"'/\dxn,
j=1
dove ’accento circonflesso indica che quell’elemento & assente. Allora

n

i—1 95 n n
dw = Z(—I)J lgjj(x/,x) dzt A Ada™ .

j=1

Ora,sel1 <j<n-—1siha

+oo i )
/ %(x', ™) da?

oo Oxd
= lim [gj(z*,...,27,...,2") —g;(a*,...,—27,...,2")] =0
I —+00
perché g; ¢ a supporto compatto in H". Quindi per j =1,...,n — 1 si ha

agj / n 1 n
/n %(I,z Ydz! - da
+oo +o00 90 | N
= / (/ (/ ag;(m’,xn)dm> d$1,..dxj,_.dxn_1> da™
0 Rn—2 PN T
=0.

Inoltre

Hoe Ogn , , n n . / ’ ’
(z',2")da™ = lm g, (2',t) — gn(2',0) = —g,(2',0) ,
0

ox™ t—4o0

sempre perché g, ¢ a supporto compatto in H". Quindi

+oo
— (_1)n—1/ (/ ggz (.%'/,.”L'n) d$n> dxl . --dwn_l
Rn—1 0 X

= (—1)”/ gn(2',0) dgt- - dz" ' = / w,
R"_l OH"™

dove l'ultima eguaglianza segue dall’orientazione indotta su OH™ e dal fatto
che ogni (n — 1)-forma contenente da™ si annulla identicamente su OH".
Infine, sia M qualsiasi, e scegliamo un atlante orientato A = {(Uq, pa)}
con o (Uy) = R™ o H" per ogni a, e sia {p, } una partizione dell’unita subor-
dinata ad A. Scriviamo w = )" paw; per linearita, basta quindi dimostrare
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(4.6) per ciascun p,w, che & una forma a supporto compatto contenuto in U,,.
Ma allora

/Md(Paw)=/ d(paw):/%(Ua)(w_l)*d(paw)

a

- / (™) (paw) = / (6" (paww)
Soa(Uu) 65041([]04)

- / (01" (puw) = / pas |
@a(UaNOM) oM

dove abbiamo usato (4.6) per R™ ed H". O

Osservazione 4.5.10. In R?, se w = f dz+gdy allora dw = (g—g — —) dxAdy,

per cui il classico Teorema di Gauss-Green diventa un caso particolare del
Teorema di Stokes.
InR3, se w = fydaz! Ada? + f1 dae? Ada® + fo dz® Ada! & una 2-forma allora

dw = (afl + 9 af3) dz! Ada? Ada?; quindi identificando w con il campo

oxq Oxo
vettoriale di coordinate (f1, f2, f3) vediamo che anche il classico teorema della
divergenza € un caso particolare del teorema di Stokes.

Ossem}azione 4.8.11. Se f & una funzione C* in un aperto di R? allora
df = Of qgzt + af dz? + g Ifg dz3, per cui in un certo senso (saremo pilt
precisi quando introdurremo le metrlche Riemanniane) possiamo identificare
df con il gradiente di f. Viceversa, a un campo vettoriale X = (f1, f2, f3) pos-
siamo associare la 1-forma n = f; dz' + f» dz?+ f3 d23. In questo caso abbiamo
dn = (% - %) dz' Ada? +(""f3 - an) Az Ada +(3f1 - 3f3) ded Adat,
per cui dn rappresenta il rotore del campo X. Infine, se al campo X associamo
anche la 2-forma w = fydz! Adz? + f1dz? Adzd + foda? A da?, allora dw
rappresenta chiaramente la divergenza di X.

In particolare, la relazione dod = O ha come casi particolari i fatti ben noti
che il rotore di un gradiente o la divergenza di un rotore sono identicamente
nulli.

4.4 1l lemma di Poincaré

In questa sezione calcoleremo la coomologia di R™ per ogni n > 0, come
conseguenza della seguente proposizione:

Proposizione 4.4.1. Sia M una varieta. Indichiamo con m: M xR — M la
proiezione sul primo fattore, e con o: M — M x R la sezione o(p) = (p,to),
dove ty € R ¢ fissato. Allora 7*: H*(M) — H*(M X R) é un isomorfismo, con
inversa data da o*: H*(M x R) — H*(M).
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Dimostrazione. Da moo = id segue subito o* o™ = id; dobbiamo dimostrare
che 7* o 0* = id a livello di coomologia, tenendo presente che o o # id e
che 7 o 0* # id al livello delle forme. Per avere la tesi costruiremo allora un
operatore d’omotopia fra id e 7* o ¢*, e applicheremo la Proposizione 4.1.15.

Ogni forma differenziale in M x R si scrive in modo unico come combina-
zione lineare dei seguenti due tipi di forme:

7 e fr g Adt,
dove f € C®(M xR) e n € A*(M). Per ogni k > 0 definiamo allora
K:A*(M x R) — A*=1(M x R) ponendo

K(fen=0 o Kwand) =0 ([ o)

dobbiamo verificare che K & un operatore d’omotopia.
Cominciamo con w € A¥(M x R) della forma w = f7*n con n € A*(M).
Prima di tutto notiamo che possiamo scrivere

df = w+ f
dove ¢ in coordinate locali ¢ data da 1/1 = Z;L 1 83:] 7*(da’), e quindi &
combinazione lineare di forme del primo tipo. Quindi

(dK — Kd)w = —Kdw = —K (fd(r*n) + df A7*n)

-K <f7r*(d77) + 1 A4 (=1)F g{ﬂ' 77/\dt>

® 8f * * *
= BP0 dtmn = fatn = f( to)m"n
to
=(id—7"o0"w,
per cui in questo caso ci siamo.

Prendiamo adesso w = fn*n A dt con n € AF¥"1(M). Notando che
o*(dt) =d(o*t) =d(too) =dtp = O e che

dKw = (-1)F"'d K/t(, fp,t) dt) W*n}

=K@ A npAdt) +w+ (=1)F! ( ) f(p,t) dt) dn*n,
to

troviamo

(dK — Kd)w = dKw — K(w/\ﬂ'n/\dt—i-fdﬂ'*)/\dt
=K@WAr'pAdt) +w+ (- (/f )dﬂn

K@ Am*nAdt) — </f )dwn
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e ci siamo. O

Corollario 4.4.2 (Lemma di Poincaré). La coomologia di R"™ ¢ data da

kmny _ JR sek=0,
H(R)_{O sek>0.

Dimostrazione. Segue subito dall’Esempio 4.2.3 e dalla Proposizione 4.4.1,
ragionando per induzione su n. a

Esempio 4.4.3. La coomologia di S™. Scriviamo S™ = Uy U Uy, dove
U0:{$€S”|gjn+1>f€}CRn+l e U1:{$€Sn‘l’n+1<{—:}

per qualche ¢ > 0. Nota che Uy N U; ¢ diffeomorfo a S™~! x R; quindi la
Proposizione 4.4.1 implica H*(Uy N Uy) = H*(S™1). Inoltre Uy e U; sono
diffeomorfi a R™, per cui H*(Uy) = H*(U;) = H*(R"™). La successione di
Mayer-Vietoris

HY(Uy) @ HE(Uy) » H*(Uy 0 Uy) S HA1(S7) —> HEL(U,) @ B (T7)

diventa .
9] ___*}Hk(snfl) _~,_>_ch+1(sn) —> 0

perk>1e

U= *
RoR2A_94 g —2

Hl(Sn)—> 9]

per k =1, dove (¢7—¢§) (A, ) = p— A, per cul ¢ —uf & surgettiva. Lesattezza di
questa successione implica allora (perché?) H'(S™) = O, mentre la successione
precedente ci dice che H¥(S™) = H*=1(S"~!) per ogni k& > 2. Ragionando
per induzione e usando I’Esempio 4.2.5 otteniamo quindi

R sek=0,n
H*(S™) = L
(5) {O altrimenti.

Dimostriamo ora un’altra proprieta importante della coomologia di de
Rham: l'invarianza per omotopia.

Definizione 4.4.4. Un’omotopia liscia fra due applicazioni differenziabili Fy,
Fi:M — N & un’applicazione differenziabile H: M x R — N tale che
Fy=H(-,0) e F1 = H(-,1). In tal caso diremo che Fy e F} sono C°-omotope.

Proposizione 4.4.5. Due applicazioni C*-omotope inducono lo stesso mor-
fismo in coomologia.
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Dimostrazione. Sia H: M x R — N un’omotopia liscia fra due applicazioni
differenziabili Fy, Fi: M — N. Indichiamo con m: M x R — M la proiezione
sul primo fattore, e con og, o1: M — M x R le sezioni 0;(p) = (p,j) per
j =0, 1. Notiamo che ¢} = ¢} in coomologia, in quanto (Proposizione 4.4.1)
sono entrambe uguali a (7*)~!; inoltre, F; = H o o; per j = 0, 1. Quindi

Fy=(Hooy) =o5oH' =0 o H' = (Hom)" = F .
O

Definizione 4.4.6. Diremo che due varieta M e N sono C'*°-omotopicamente
equivalenti se esistono due applicazioni differenziabili F: M — NeG: N — M
tali che FF o G e G o F siano C*-omotope all’identita di N, rispettiva-
mente M. Una varietd C'°°-omotopicamente equivalente a un punto e detta
C'*°-contraibile.

Osservazione 4.4.7. Si puo dimostrare che due varieta sono C'°°-omotopica-
mente equivalenti se e solo se sono topologicamente omotopicamente equi-
valenti (cioe¢ tramite omotopie solo continue). Questo perché ogni applica-
zione continua fra due varieta & topologicamente omotopa a un’applicazione
differenziabile (vedi I’Esercizio 77).

Definizione 4.4.8. Una retrazione liscia di una varieta M su una sottova-
rieta S & un’applicazione differenziabile r: M — S che sia 'identita su S, cioe
tale che ro¢: S — S sia 'identita di S, dove ¢: S — M ¢ l'inclusione. Se esiste
una retrazione liscia r di M su S diremo che S & un retratto liscio di M. Se
inoltre la composizione tor: M — M & C*°-omotopa all’identita di M diremo
che S & un retratto di deformazione liscio di M. Chiaramente in questo caso
M e S sono C*°-omotopicamente equivalenti.

Corollario 4.4.9. Due varieta C*°-omotopicamente equivalenti hanno uguale
coomologia di de Rham. In particolare, se S € un retratto di deformazione di M
allora H*(M) = H*(S).

Dimostrazione. Segue subito dalla Proposizione 4.4.5. a

Corollario 4.4.10. Sia m: E — M un fibrato vettoriale su una varieta M.
Allora H*(E) = H*(M).

Dimostrazione. Identifichiamo M con 'immagine della sezione nulla; per il
precedente corollario ci basta dimostrare che la sezione nulla & un retratto
di deformazione di E. Sia p € C°°(R) tale che p|(_oc,0) = 0, plj1,400) = 1, €
plo,17:10,1] — [0,1] & un diffeomorfismo. Definiamo H: E' x R — E ponendo
H(v,t) = p(t)v; si vede subito che H & un’omotopia liscia fra ¢or e I'identita,
dove 7(v) = Og(y) ¢ la retrazione ovvia di E sulla sezione nulla, e ¢ & I'inclu-
sione della sezione nulla in F. a
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4.5 Coomologia a supporto compatto

Introduciamo ora un altro tipo di coomologia.

Definizione 4.5.1. Sia M una varieta. Il supporto supp(w) di una for-
ma w € A*(M) & la chiusura dell’insieme dei p € M per cui w, # O.
Indichiamo con A%(M) C A®*(M) linsieme delle forme a supporto compatto
in M. A volte scriveremo C°(M) al posto di A%2(M).

La restrizione d: A2(M) — A2(M) del differenziale esterno ad A%(M) &
chiaramente ancora un differenziale sul complesso graduato A®(M). Ponia-
mo Z2(M) = Kerd|asns) € BE(M) = Imd|ae(ar); la corrispondente coo-
mologia HS (M) = Z2(M)/B2(M) ¢ detta coomologia a supporto compatto
di M.

Osservazione 4.5.2. Chiaramente H? (M) = H*(M) per ogni varieta compat-
ta M; ma su varieta non compatte le due coomologie possono essere diverse.
Infatti, una forma a supporto compatto ¢ chiusa se e solo se ¢ chiusa come
forma tout-court, cioe Z3(M) = Z*(M) N A2(M); ma una forma a supporto
compatto esatta come forma non € detto che sia esatta come forma a suppor-
to compatto, in quanto potrebbe essere il differenziale esterno solo di forme

non a supporto compatto. In particolare, B2 (M) potrebbe essere diverso da
B*(M)nN A2(M).

Esempio 4.5.3. Calcoliamo la coomologia a supporto compatto di R. Le 0-
forme sono funzioni. L’unica O-forma esatta ¢ la funzione nulla; una 0-forma
f € chiusa se e solo se df = 0, cioe se e solo se & costante. Ma 'unica funzione
costante a supporto compatto in R ¢ la funzione nulla; quindi H?(R) = O.

Le 1-forme a supporto compatto su R sono tutte (banalmente) chiu-
se; vogliamo capire quando sono esatte come forme a supporto compatto.
Supponiamo che w = df, con f € A%(R); allora

[o= [ rwat=o.

perché f e a supporto compatto. Quindi 'integrale su R definisce un’appli-
cazione lineare [;: H!(R) — R, chiaramente surgettiva; dimostriamo che &
anche iniettiva. Sia w = gdt € AL(R) con [pw = 0. Allora g € C°(R) ha
supporto compatto, contenuto diciamo nell’intervallo [a, b]. Poniamo

essendo fR gdt = 0, segue che f ha supporto compatto contenuto in [a,b], e
chiaramente d f = w. Quindi fR: H!(R) — R & un isomorfismo, e in particolare
H!(R) = R. Riassumendo,

k _JR sek=1,
HC(R)_{O sek#1.
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Nota che il generatore naturale di H!(R) & rappresentato da una qualsiasi
1-forma a supporto compatto con integrale 1.

Osservazione 4.5.4. 11 ragionamento fatto all’inizio dell’esempio precedente
mostra che H)(M) = R® per ogni varietdh M, dove ¢ > 0 ¢ il numero di
componenti connesse compatte di M.

Vogliamo ora introdurre una successione di Mayer-Vietoris per la coomolo-
gia a supporto compatto. Lo strumento principale € 'operatore di estensione,
che non era disponibile per la coomologia usuale.

Definizione 4.5.5. Sia U C M un aperto di una varieta M, e indichiamo
con j:U < M Vinclusione. L’operatore di estensione j.: A2(U) — A%(M) &
I’operatore che associa a una forma w a supporto compatto in U la forma j.w

a supporto compatto in M ottenuta estendendo a zero w fuori da U.

Sia U = {Up, U1} un ricoprimento aperto di una varietd M composto di
due soli aperti Uy, U; € M. Usando 'operatore di estensione possiamo definire
la successione di Mayer-Vietoris a supporto compatto

O A(M) <2 A2(U0) © AL(U) <2— AU N U) «— O (4.7)

dove s,: A2(Up) ® A2(Ur) — AL(M) & definita da s, (wo,w1) = jewo + jswi, €
0: A2(UgNUL) — A2(Uy) ® A2 (Uy) & definita da 6(n) = (—j«n, j«n)-

Teorema 4.5.6. Sia U = {Uy, U1} un ricoprimento aperto di una varieta M.
Allora la successione di Mayer-Vietoris a supporto compatto (4.7) é esatta, e
quindi induce una successione esatta lunga in coomologia

d.
o — Hy (M) ~— H}(Up) ® Hy (Ur) < HE(Up N Uy) < Hy 71 (M) <— -+
(4.8)

Dimostrazione. L'esattezza di (4.7) ¢ evidente tranne al primo punto. Sia
{po, p1} una partizione dell’unita subordinata a Y. Data w € A% (M), notiamo
che pow & ben definita come forma a supporto compatto in Up; analogamente
prw € A2(Up). Inoltre,

s«(pow, prw) = (po + p1)w = w ,
per cui (4.7) ¢ esatta. L'ultima affermazione segue dal Teorema 4.1.11. O

Osservazione 4.5.7. Calcoliamo esplicitamente il morfismo di connessione d.
n (4.8). Sia {po,p1} una partizione dell’'unitd subordinata al ricoprimen-
to aperto {Up,U;}, e sia [w] € H=1(M) rappresentata dalla forma chiusa
w € ZE=1(M). La forma w & immagine tramite s, della coppia (pow, p1w), il
cui differenziale esterno & (d(pow),d(p1w)). Notiamo che

d(pjw) = dp; Aw
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in quanto w & chiusa, e che dp; = O in M \ (Uy NU1); quindi le forme d(p;w)
sono a supporto compatto in UyNUy, e d(pow) = —d(p1w) in UyNU;. Dunque
d.[w] & rappresentato dalla forma chiusa 7 € A% (Up NU;) data da

T=dpp ANw=—dpg Aw .

Per arrivare a calcolare la coomologia a supporto compatto di R™ ci serve
un risultato analogo alla Proposizione 4.4.1:

Proposizione 4.5.8. Per ogni varieta M, i gruppi di coomologia a supporto
compatto HS(M x R) e H*~Y(M) sono isomorfi.

Dimostrazione. Iniziamo definendo un morfismo e,: HS (M) — HT1 (M xR).
Sia e = e(t) dt € AL(R) un generatore della coomologia a supporto compatto
di R; per quanto visto nell’Esempio 4.5.3 questo vuol dire che e € C°(R) e

Jg e(t) dt = 1. Definiamo ey: AS(M) — A2 (M x R) ponendo

exlm) =nhe.

Essendo e una forma chiusa, d o ex = e4 od, per cui ex induce un morfismo
graduato in coomologia e.: HS(M) — HTH(M x R).

Per trovare un morfismo in direzione opposta, notiamo che ogni forma
differenziale a supporto compatto in M x R si scrive in modo unico come
combinazione lineare dei seguenti due tipi di forme:

7 e frnAdt,

con f € C(M xR)ene A*(M), dove m: M x R — M & la proiezione sul
primo fattore. Definiamo mz: A2(M x R) — A~ (M) ponendo

+oo

w(an=0 o mpimnnan=( [

— 00

f(p;t) dt) n.

Prima di tutto osserviamo che my commuta con d. Infatti, notiamo che
possiamo scrivere
of

df = —dt
=+ Shar,
dove ¢ in coordinate locali & data da ¢ = >0, % 7*(da?), e quindi & com-

binazione lineare di forme del primo tipo. Dunque se fr*n € A¥(M x R) &
una forma del primo tipo otteniamo

Ty (d(f W*n)) =7mu(Y A7) + (—1)k7r# <%§W*n A dt)

— ([ Fwoat)n=0=anu(ran.

in quanto
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/Z %(p, fdt= lim (f(p,t) = f(p, 1) =0 (4.9)

perché f & a supporto compatto. Analogamente, se w = f m*nAdt € AX(M xR)
¢ una forma del secondo tipo, otteniamo

Ty (dw) = T (Y AT *n Adt + fr*dn A dt)

—d(/if(~,t)dt> A+ (/:of(p,t)dt> dy = drry ()

Quindi 74 od = d o my, e, come preannunciato, mx induce un morfismo
graduato in coomologia m,: HS(M x R) — H2=1(M).

Vogliamo dimostrare che e, e m, sono isomorfismi, I'uno inverso dell’al-
tro. Per costruzione, mx o ex = id, e quindi m, o e, = id. Dunque per
far vedere che e, o m, = id, ci basta costruire un operatore di omotopia
K:AS(M xR) — A1 (M x R) fraid e ey o my.

Per ogni k > 0 definiamo K:A*(M x R) — A*~}(M x R) ponendo
K(fmn)=0e

K(frn Adt) = (~1)41 ( | swna-£0 [ eai).

dove

dobbiamo verificare che K ¢ un operatore d’omotopia.
Cominciamo con w € A¥(M x R) della forma w = f7*n con n € A*(M).
Allora

(dK — Kd)w = —Kdw = —K (fd(r*n) + df A7*n)

=-K (fw*(dn) +Y AT+ (—1)’“%#"77 A dt>
= (/oo g{:(p,t)dt> T™n=frn=w
= (id —eg oMy )w ,

per cui in questo caso ci siamo.
Prendiamo adesso w = f7*n A dt con n € A*~1(M). Allora

(id —ex 0 ma)w = frn Adt — </o; F(p,t) dt) T Ae
o = 0 ([ s [~ wna)sy

= (-1)k! (/S f(p,t) dt) m*dn + fr*n Adt
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0 ([ fna) e

- </ f(p,t)dt> mnAe+ K@ Ar*nAdt);
— 00
Kdw =K@ Am*nAdt+ fr*dn A dt

)
= K Am*n Adt) + (—1)F1 (/_Oo f(p,t) dt) m*dn

0@ ([ soa) wa.

e ci siamo. 0

Corollario 4.5.9 (Lemma di Poincaré per la coomologia a supporto
compatto). La coomologia a supporto compatto di R™ ¢ data da

kmny ) R sek=mn,
H(R)_{O sek#n.

Dimostrazione. Segue subito dall’Esempio 4.5.3 e dalla Proposizione 4.5.8,
ragionando per induzione su n. O

4.6 La dualita di Poincaré

Il ragionamento fatto nell’Esempio 4.4.3 suggerisce che, usando la successio-
ne di Mayer-Vietoris, potrebbe essere possibile ricostruire la coomologia di
una varieta partendo dalla combinatoria di un atlante con domini delle car-
te diffeomorfi a R™ e con intersezioni controllate. Lo strumento tecnico che
permette di realizzare questo programma & quello di buon ricoprimento.

Definizione 4.6.1. Un buon ricoprimento (o ricoprimento di Leray) di una
varietad n-dimensionale M ¢ un ricoprimento aperto {U,} di M tale che ogni
intersezione finita non vuota Uy, N---NU,,. sia diffeomorfa a R™. Una varieta
con un buon ricoprimento finito sara detta di tipo finito.

Definizione 4.6.2. Un insieme diretto € un insieme I con un ordine parziale
< tale che per ogni a, b € I esiste ¢ € I con ¢ < a e ¢ < b. Un sottoinsieme
J C I ¢ cofinale se per ogni i € I esiste j € J tale che j < i.

Esempio 4.6.3. L'insieme dei ricoprimenti aperti di uno spazio topologico e
un insieme diretto rispetto all’ordine parziale V < U se e solo se V & un
raffinamento di U, perché due ricoprimenti aperti U = {Uy} e V = {V3}
hanno U NV = {U, N V3} come raffinamento comune.

Esempio 4.6.4. Un altro esempio di insieme diretto che ci servira in seguito
e dato dalla famiglia degli intorni aperti di un punto in uno spazio topologi-
co, rispetto all’ordine parziale dato dall’inclusione. In particolare, un sistema
fondamentale di intorni ¢ esattamente un sottoinsieme cofinale.



4.6 La dualita di Poincaré 131
Il risultato tecnico che ci servira e il seguente:

Teorema 4.6.5. Ogni varieta ha un buon ricoprimento (e in particolare le
varieta compaltte sono di tipo finito). Piu precisamente, i buoni ricoprimenti
sono cofinali nell’insieme di tutti © ricoprimenti aperti di una varieta.

Vedremo la dimostrazione completa di questo teorema solo piu in la, quan-
do introdurremo delle tecniche di geometria Riemanniana. In breve, introdur-
remo il concetto di aperti geodeticamente convessi, che si comportano come i
convessi di R™ (rispetto alle geodetiche della varietd Riemanniana invece che
al segmenti); in particolare, l'intersezione di due aperti geodeticamente con-
vessi € ancora geodeticamente convesso, un aperto geodeticamente convesso
¢ diffeomorfo a R”, e ogni punto di una varietd ha un sistema fondamentale
d’intorni geodeticamente convessi. E quindi chiaro che ogni ricoprimento aper-
to ammette un raffinamento costrituito da aperti geodeticamente convessi, e
che un ricoprimento aperto costituito da aperti geodeticamente convessi ¢ un
buon ricoprimento.

Come primo esempio di applicazione della procedura di Mayer-Vietoris
dimostriamo la seguente

Proposizione 4.6.6. La coomologia di una varieta di tipo finito (per esempio,
di una varietd compatta) & di dimensione finita.

Dimostrazione. Sia 4 = {Up,...,U,} un buon ricoprimento finito di M, e
procediamo per induzione su r. Se 7 = 1, la varieta ¢ diffeomorfa a R", e la
tesi segue dal lemma di Poincaré (Corollario 4.4.2). Supponiamo allora la tesi
vera per tutte le varieta con un buon ricoprimento composto da r — 1 aperti.
Poniamo U = U U---UU,_1 e V = U,.. Per ipotesi induttiva, le coomologie di
U e di V hanno dimensione finita. Inoltre, {U; NU,,...,U,_1 NU,} & un buon
ricoprimento di U NV composto da r — 1 aperti; quindi anche la coomologia
di U NV ha dimensione finita. Dalla successione di Mayer-Vietoris

B U N V)L R U U V) — s BRU) © B (V) — -
deduciamo

HYUUV)=Kerr @Imr = Imd* @ Imr .

Siccome H*(U), H*(V) e H*=}(U NV) hanno dimensione finita, allora anche
H¥(U UV) = H*(M) ha dimensione finita, ed & fatta. O

Definizione 4.6.7. Un’applicazione bilineare (-,-): V x W — R & non dege-
nere se (v, w) = 0 per ogni w € W implica v = O, e (v, w) = 0 per ogni v € V
implica w = O.

Il nostro prossimo obiettivo & un’importante dualita fra la coomologia
usuale e la coomologia a supporto compatto.
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Lemma 4.6.8. Siano V. e W due spazi vettoriali di dimensione finita, e
(-,):V x W — R un’applicazione bilineare. Allora (-,-) & non degenere se
e solo se lapplicazione : V — W* data da ¥(v) = (v,-) é un isomorfismo.

Dimostrazione. Supponiamo che (-, ) sia non degenere. Per definizione, 1) &
iniettiva, per cui dimV < dim W*; per concludere la dimostrazione ci ba-
sta far vedere che dimV = dim W*. La non-degenericita implica che anche
Papplicazione w +— (-, w) & iniettiva; quindi dim W < dim V*, e ci siamo.
Viceversa, supponiamo che 1) sia un isomorfismo; in particolare, (v, w) =0
per ogni w € W implica v = O, e dimV = dim W*. Inoltre, anche
T W = (W*)* — V* & un isomorfismo. Ora, ¥ (w)(v) = ¢ (v)(w) = (v, w);
quindi Y7 (w) = (-,w), e liniettivitd di 97 conclude la dimostrazione della
non-degenericita di (-, -). O

Vogliamo costruire un’applicazione bilineare non degenere definita su
gruppi di coomologia. La prima osservazione ¢ che I'identita

dwAn) =dwAn+ (=D)*wAady

valida per ogni w € A*(M) e n € A"(M) ci dice che il prodotto esterno di due
forme chiuse ¢ una forma chiusa, e che il prodotto esterno di una forma chiusa
con una forma esatta (a supporto compatto) € una forma esatta (a supporto
compatto). Di conseguenza, il prodotto esterno fra due classi di coomologia ¢
ben definito, e otteniamo un prodotto A: H* (M) x H"(M) — H"*(M) che
soddisfa tutte le proprieta del prodotto esterno usuale. Inoltre, & ben definito
(perché?) anche il prodotto esterno di w € H¥(M) con n € HMM), e il
risultato & una classe a supporto compatto w A n € HME(M).

Sia ora n € A?71(M) una forma a supporto compatto su una varieta n-
dimensionale orientata M. Allora non ¢ difficile (Esercizio 4.1) trovare un in-
torno U C M del supporto di ) tale che U sia una varieta con bordo compatta.
Allora il Teorema di Stokes ci dice che

/dnz/ﬁdn:/ n=20.
M U ouU

Di conseguenza, 'integrazione di n-forme a supporto compatto induce un’ope-
ratore lineare fM: H(M) — R. In particolare, per ogni 0 < k < n = dim M
otteniamo un’applicazione bilineare

/:H’“(M) @ H' (M) - R

data da

(w,n)H/ wAn;
M

la dualita di Poincaré dira che questa applicazione ¢ non degenere. Per
dimostrarlo ci serve la seguente
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Proposizione 4.6.9. Siano U, V . C M due aperti di una varieta n-dimen-
sionale orientata M. Allora il sequente diagramma

. —~—>H’“(qu)---+H’“(U)eaH’f(v)---—->H’“(Umv)-i->H’“+1(qu) —
® ® ® ®
n—k 3« n—k n—k 4 n—k dx n—k—1

- <= HIMRUUV)<— HFU)QH! R (V) <— HF(UNV) <— HT Unv) < -

Woow L oo Moo

R R R

ottenuto mettendo insieme le due successioni di Mayer-Vietoris, & commuta-
tivo a meno del segno.

Dimostrazione. La commutativita nel quadrato a sinistra € conseguenza della
formula

/ wA(j*n1+j*772)=/w|Um71+/w|v/\772’
unv U 174

che & chiaramente verificata per ogni w € H¥(U NV), ;1 € HEU) e
2 € Hf(V)
La commutativita nel quadrato centrale & conseguenza della formula

/ wl/\(—jw)‘i'/ wo /\j*ﬁz/ (wa2lunv — wilunv) A7,
U v Unv

chiaramente valida per ogni w; € H*(U), wy € H*(V) ed n € HX(UNV).
La commutativita a meno del segno nel quadrato a destra ¢ conseguenza

della formula
/ wAdin = (—1)k+1/ d*w A,
unv Uuv

per w € HY(UNV) en € H» (U U V), che dobbiamo dimostrare.
Sia {py,pv} una partizione dell’unita subordinata al ricoprimento {U, V'}.
Quanto visto nell’Osservazione 4.5.7 ci dice che

/ w/\d*n:/ w/\dpv/\n:(—l)k/ dpov ANwAn.
unv unv unv

D’altra parte, I’Osservazione 4.2.2 ci dice che

/ d*w/\n:—/ dpy AwAn,
unv unv

e ci siamo. O

Teorema 4.6.10 (Dualita di Poincaré). Sia M una varieta n-dimensionale
orientata di tipo finito. Allora per ogni 0 < k < n [applicazione bilineare
[y HE(M) x H2F(M) — R ¢ non degenere. In particolare,

H*(M) = H*(M)* (4.10)

per ogni 0 < k < n.
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Dimostrazione. Procediamo per induzione sulla cardinalita di un buon rico-
primento {Uy,...,U,} di M. Se r =1, la varietd M & diffeomorfa a R", per
cui la tesi e ovvia per k > 0, grazie ai Corollari 4.4.2 e 4.5.9. Per k = 0, sia
ne H!M) con [,,n=1;allora [, : H'(M) x H?(M) — R & data da

(a,bn) —a [ bn=ab,
M
che ¢ chiaramente non degenere.

Supponiamo allora il teorema vero per tutte le varieta con un buon rico-
primento composto da r — 1 aperti, e poniamo U = Uy U---UU,_1 e V =U,.
Come nella dimostrazione della Proposizione 4.6.6 si verifica facilmente che U,
V e UNV hanno un buon ricoprimento costituito da al piu r—1 aperti; quindi
il Teorema & vero per U, V e U NV. La Proposizione 4.6.9 e il Lemma 4.6.8
ci forniscono allora un diagramma commutativo della forma

H:"YU)eH* (V) ——> HF L (UNV) H* (M) HE(U)Y@H® (V) ——>H*(UNV)

| l l | l

HI LUy @HN 1 (V)* > Hr =L (Unv)* > HP TR (M) —> HP R U)*@H? R (V) —> HI R (Unv)*

in cui la prima, seconda, quarta e quinta freccia verticale sono degli isomor-
fismi. Il Lemma 4.1.17 ci assicura allora che anche la terza freccia centrale &
un isomorfismo, e la tesi segue subito dal Lemma 4.6.8. a

Possiamo spingere questo argomento anche piu in la:

Teorema 4.6.11. Sia M una varieta n-dimensionale orientata. Allora per
ogni 0 < k < n Uapplicazione [,;: H*(M) — H2~F(M)* ¢ un isomorfismo.

Dimostrazione. 1l teorema precedente ci dice che 'enunciato € vero per ogni
varieta di tipo finito. Supponiamo che M sia 'unione disgiunta di una fami-
glia numerabile di varieta n-dimensionali orientate di tipo finito Mj; allora
I’enunciato vale anche per M. Infatti, le restrizioni inducono chiaramente iso-
morfismi r: H*(M) — [[, H*(My) ed s: H2 (M) — @, H? (M), e quindi
(ricordando che il duale della somma diretta & il prodotto diretto dei duali;
vedi la Proposizione ??) un isomorfismo s*: [[, H?(M})* — H2(M)*. Usando
il Teorema 4.6.10 troviamo il diagramma commutativo

H* (M) —— [, H*(Mj)

fM I, ka

HP=*(M)* <], H2 = (My)*

c

Quindi fM =s*o (Hk ka) or € un isomorfismo, e la tesi segue in questo
caso.
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Sia ora M orientata qualsiasi, e 4 = {U,} un buon ricoprimento numera-
bile di M. Siccome M ha una base numerabile, e i buoni ricoprimenti sono
cofinali nella famiglia dei ricoprimenti aperti, possiamo anche supporre che
{U4} sia una base della topologia di M.

Sia f € C°°(M) una esaustione (cioe ffl((foo,a]) ¢ compatto per ogni
a € R). Per ogni m € Z poniamo

An={peM|m< f(p) <m+1},
A, ={peM|m—-3<f(p)<m+3}.

Siccome il & una base, ogni punto di A,, appartiene a un elemento di i
contenuto in A/ . Ma ciascun A,, & compatto; quindi possiamo ricoprire A,,
con un numero finito di elementi di 4 contenuti in A/,. Sia B,, C A/, la loro
unione; in particolare, B,, ¢ di tipo finito.

Per costruzione, B, puod intersecare B, solo se m' = m = 1 (perché?);
quindi se poniamo

U:UB% e V:UBQk+17
kez keZ

allora U e V sono unione disgiunta di varieta di tipo finito. In particolare,
per quanto visto sopra, la tesi vale per U e V. Inoltre, U NV & l'unione
disgiunta delle varieta Bag N Bag41 € Bap N Bag—1 con k € Z, che sono ancora
di tipo finito (perché?); quindi la tesi vale anche per UNV. Allora I’argomento
usato nella dimostrazione del Teorema 4.6.10 implica che la tesi vale anche
per UUV = M, e abbiamo finito. a

Osservazione 4.6.12. 1 gruppi di coomologia delle varieta di tipo finito hanno
dimensione finita (Proposizione 4.6.6); quindi prendendo i duali si ha anche

HE(M) = H"*(M)*

per tutte le varieta orientabili di tipo finito. Questo non & necessariamente
vero per le varieta non di tipo finito.

In realtd, si pud dimostrare che H*(M) = H?» k(M)* vale per tutte le
varieta, non solo quelle di tipo finito, mentre su varieta con coomologia di
dimensione infinita non & detto che H¥(M) sia isomorfo a H™*(M)*.

Corollario 4.6.13. Sia M una varieta compatta di dimensione n. Allora
(i) se M ¢ orientabile allora H™(M) = R;
(ii) se M non ¢ orientabile allora H*(M) = O.

Dimostrazione. La parte (i) segue subito da H™"(M) = HY(M)* = R.

Per la parte (i), sia m: M — M il rivestimento orientabile a due fogli,
e A:M — M Tautomorfismo non banale del rivestimento, che sappiamo
invertire ’orientazione.
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Sia w € A™(M); dobbiamo dimostrare che & esatta. Sia @ = 7*w € A™(M).
Chiaramente, mo A = 7 implica A* o™ = 7*; quindi A*® = ©. D’altra parte,
A inverte orientazione; quindi

da cui segue fM w = 0. La dualita di Poincaré implica allora che w ¢ esatta,
per cui esiste n € A" (M) con & = dn.

Poniamo 7 = %(7) + A*n). Siccome il differenziale esterno commuta con i
pull-back, dij = @; inoltre, essendo A% = idy, si ha A*) = 7. Quest’ultima
affermazione implica che esiste 1 € A"~1(M) tale che 7 = 7*¢. Infatti, sia
U C M un aperto ben rivestito; allora esistono esattamente due sezioni oy,
o1:U — M del rivestimento su U, collegate da o1 = A 0 0. Quindi

ks K AR~ k>
017 = 094 11 =07 ;

dunque ponendo ¥|y = o7 definiamo una (n — 1)-forma globale ¢ su M.
Infine,
dyY|y = dogi = o5di] = 0p@0 = oy w = w|y

in quanto 7 o o9 = idy, e quindi w = d, come voluto. a

4.7 1l principio di Mayer-Vietoris

Per estendere gli argomenti basati sulla successione di Mayer-Vietoris dal caso
di ricoprimenti composti da due (o da un numero finito di) aperti al caso
di ricoprimenti numerabili qualunque ci serviranno alcuni nuovi concetti di
algebra omologica.

Definizione 4.7.1. Un complesso doppio ¢ una tripla (K, d, ) composta da
un gruppo abeliano (spazio vettoriale, eccetera) K con una doppia graduazio-
ne, cioe che si decompone in una somma diretta

K= K»e

p,qEN

di sottogruppi (sottospazi, eccetera), e da due morfismi d, §: K — K che
soddisfano le seguenti proprieta:

(i) d(KP9) C KP4atl e §(KP9) C KPT14 per ogni p, ¢ € N;
(il dod=0¢edod =0,
(iii) dod = d od.

La riga g-esima di un complesso doppio e la successione di morfismi

Ko,q _6>.K1,q _6>_K2,q _6>_K3,q —_— ..
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C’¢ un modo naturale per associare a un complesso doppio (K, d,d) un
complesso differenziale. Prima di tutto, consideriamo K con la graduazione
K =@,y K" ottenuta ponendo

K"= P K».

p+a=n
Poi definiamo D: K — K ponendo
Dlgrs =6+ (~1)7d .
Allora D(K™) C K"1 e per ogni ¢ € KP¢ si ha
D(D(¢)) = D(6¢ + (=1)Pdp) = 66¢ + (—1)PT'dép + (—1)P6dp + ddg = O ;
quindi Do D = O e (K, D) & un complesso differenziale.

Definizione 4.7.2. Sia (K, d, ) un complesso doppio. Il complesso differen-
ziale (K, D) appena definito ¢ il complesso differenziale indotto da (K,d,J).
La coomologia del complesso doppio (K,d,d) ¢ per definizione la coomolo-
gia H} (K) del complesso (K, D) indotto.

Osservazione 4.7.3. Un elemento ¢ € K™ ¢, per definizione, una somma
¢ _ ¢O,n + ¢1,n—1 et ¢n—1,1 + ¢n,0
con ¢ € KP4, Quindi

D¢ _ d(bO,n + (5¢0,n o dqsl,nfl) S (5¢n71,1 + (71)nd¢n,0) +§¢n,0 ,

per cui
dgom sep=0eqgq=n+1;
(DY)P? = ¢ §gpP~14 4 (=1)PdpP4~! se0<p<n+legq=n+1-p;
Jopm0 sep=n+leqg=0.
In particolare,
¢ =0,
Dp=0 <= SpPd = (=1)PdgPT1a7l per0O<p<n,  (411)
5¢"0 =0
e
¢0,n — an,nfl
¢=Dn <= @9 = onP~Le 4+ (=1)PdpP97l perO<p<mn, (4.12)
d)n,O — 6,'7n—1,0 .

Una utile conseguenza di queste formule ¢ il
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Lemma 4.7.4. Sia (K, d,d) un complesso doppio con righe esatte. Allora ogni
classe di coomologia [w] € HE(K) ¢ rappresentata da un elemento w € K%"
che é d-chiuso e §-chiuso.

Dimostrazione. Sia wy = W% + --- + w™% € K™ un D-cociclo rappresen-
tante [w]. Siccome Dwy = O, la (4.11) ci dice che dw™" = O; lesattezza
delle righe implica quindi che esiste ¢ € K"~ 10 tale che w™? = §¢. Poniamo
w1 = wg — D¢; allora wy & ancora un D-cociclo rappresentante [w], ma sen-
za componente in K™% La (4.11) dice allora che la componente in K"~ 1!
di wy & d-chiusa; I'esattezza delle righe implica che & anche d-esatta, e quindi
come prima possiamo sottrarre a w; un D-cobordo in modo da ottenere un
rappresentante di [w] senza componenti né in K™% né in K"~ 11,
Procedendo in questo modo otteniamo un rappresentante w € K% di [w];
e usando ancora (4.11) da D& = O deduciamo dw = O e dw = O, ed ¢ fatta.
O

L’idea & che un complesso doppio con righe esatte puo essere usato per
calcolare la coomologia di un complesso che possa essere inserito come colonna
iniziale del complesso doppio, formando un complesso doppio aumentato:

Definizione 4.7.5. Un complesso doppio aumentato & dato da un complesso
doppio (K,d,d), un complesso differenziale (A,d) e un morfismo A — K
che soddisfa le seguenti condizioni:

(i) 7(A%) C K% per ogni ¢ € N;

(ii) r & iniettivo;
(iii) rod =dor
(iv) dor = 0.

La riga g-esima di un complesso doppio aumentato & la successione di morfismi

0O — A4 _T).Ko,q_6).K1,q_6).K2,q_>.

Teorema 4.7.6. Sia r: (A,d) — (K,d,d) un complesso doppio aumentato. a
righe esatte. Allora r induce un isomorfismo fra H*(A) e H}(K).

Dimostrazione. Siccome
Dor=(+d)or=dor=rod,

il morfismo r ¢ un morfismo di cocatene, e quindi induce un morfismo
r*: H*(A) — Hj/(K) in coomologia; vogliamo dimostrare che r* ¢ un iso-
morfismo.

Sia [w] € H}(K). Per il Lemma 4.7.4, possiamo trovare un d-cociclo e d-
cociclo w € K%" rappresentante [w]. L’esattezza delle righe ci fornisce allora
un ¢ € A" tale che r(¢) = w. Inoltre r(d¢) = dr(¢) = dw = O; essendo
iniettivo troviamo d¢ = O. Quindi ¢ & un d-cociclo tale che r*[¢] = [w], per
cui r* e surgettiva.
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Per dimostrare che r* & iniettivo, sia [¢p] € H™(A) tale che r*[¢] = O.
Questo vuol dire che dp = O e r(¢) = Dn per un opportuno n € K" 1.
Siccome r(¢) € K%, la (4.12) ci dice che dn"~ 1Y = O. L’esattezza delle righe
ci fornisce ¥ € K™ 20 tale che 6y = n® 10 e quindi sottraendo Dy a 7
possiamo supporre che "~ 10 = O.

Procedendo in questo modo, possiamo trovare 77 € K%"~! tale che
D7 = r(¢). In particolare, 67 = O, per cui Pesattezza delle righe ci forni-
sce P € A" 1 tale che 7(¢)) = 7. Quindi r(dy)) = Dr(¢) = Dij = r(¢), per
cui liniettivitad di r implica ¢ = dip, per cui [¢] = O e r* & iniettivo, come
voluto. O

Vogliamo applicare questo risultato per calcolare la coomologia di de Rham
di una varieta generalizzando la successione di Mayer-Vietoris al caso di un
ricoprimento aperto numerabile. Per far cio abbiamo bisogno di costruire un
doppio complesso aumentato.

Definizione 4.7.7. Sia il = {U,}aes un ricoprimento aperto numerabile
(o finito) di una varieta M, dove J & un insieme ordinato. Per r € N e
o, ..., 0, € J poniamo

Usg...o, = Uy N+ NU,, .
Per p, ¢ € N poniamo

P A = [ AUUap..a) -

Q<< ay

Osservazione 4.7.8. Un elemento ¢ € CP(4, A7) & quindi ottenuto assegnando
una g-forma ¢q,...q, su ciascuna intersezione di p aperti Uy, ..., Uy, € U con
ag < -+ < ap. Per convenzione, dato ¢ € CP(U, A7) definiremo ¢, ...q, anche
quando gli indici non sono ordinati ponendo

¢O¢T(0)...O¢T(p> = Sgn(7)¢ao...ap (413)

per ogni permutazione 7 € &,; in particolare ¢q,...o,, = O non appena a; = a;
per qualche i # j.

1l differenziale esterno induce un differenziale d: C? (8, A7) — CP(4, AI+1)
agendo componente per componente. Per avere un complesso doppio, ci serve
un differenziale orizzontale.

Lemma 4.7.9. Sia 4 = {U,} un ricoprimento aperto numerabile di una
varieta M. Per ogni ¢ € CP (4, A?) poniamo

p+1

(0D apir = I 1 By 2o Mgy - (4.14)

=0

dove ['accento circonflesso indica 'omissione di un indice. Allora ¢ — ¢
definisce un differenziale 6: CP (44, A7) — CPT1(4, A?) che commuta con d.
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Dimostrazione. Prima di tutto dobbiamo verificare che (4.14) effettivamente
definisca un elemento di CPT1(4, A?), cioe che soddisfi (4.13). Chiaramente, &
sufficiente verificare (4.13) per le trasposizioni. Omettendo per semplicita di

scrittura 'operatore di restrizione abbiamo

(00)ac...an

Qe Qp 1
h—1
= (_1)J¢ 0 .o/z}...a;L.A.ozk...aerl
§=0
k—1
h .
+(_1) ¢ ..O:;L...ozk...ap+1 Z (_1)j¢ao..ah,..0/¢; ... Op 1
j=h+1
p+1
1)k ~ —1y ~
+( ) ¢a0...ah...ak...ap+1 Z ( 1> ¢ao...ah,...ak...aj...ap+1
j=k+1
h—1
= 72(71)j¢a0 O;;L O Qg
§=0
k—1
h k—h+1
DD T g~ 2 (D g
Jj=h+1
p+1
k h—k+1 =N
+(_1) (_1) (ba() Q.o Op .. Qpt1 - Z (_1)]¢O¢0 A Qp .
j=k+1
= 7(5¢)(10...(1k...Ozh...(lp+1 bl

come voluto.

Per vedere che § o § = O basta osservare che

~ o~

e Qpt2

~ o~

QG Qe Q2

o~

.Oti‘..ap+2

p+2 )
((52¢>a0‘“ap+2 = Z(_l)J (6(25)&0_“0/(;...&@4,2
7=0
p+2j—-1
_ _1)i(—1)*
=22 V(b0 a5
j=0 i=0
p+2 p+2 ) ]
22 VDT, 4 s
j=0i=j+1
_ i+j
= > (1)e,,
0<i<j<p+2
- Z (7]‘)Z+j¢aoo/z:
0<j<i<p+2
=0.

Infine, dod = d od & ovvio.

~
Qj...Qp...Op 1

e Qpg
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Definizione 4.7.10. Sia 4 un ricoprimento aperto numerabile di una va-
rieta M. 11 complesso doppio (C'(ﬂ, A®),d,d) & detto complesso doppio di
Magyer-Vietoris associato al ricoprimento .

Per applicare il Teorema 4.7.6 dobbiamo aumentare il complesso doppio di
Mayer-Vietoris. Sia r: A*(M) — C°(U, A*) il morfismo dato da 7(w), = w|v,
per ogni a € J. L’iniettivita di r segue subito dal fatto che 4l & un ricoprimento.
Inoltre

(7)) ey = @lva, = @0a)Vage, = O
quindi 7: (A’ (M), d) — (C’ (L6, A%),d, 5) ¢ un complesso doppio aumentato.

Definizione 4.7.11. Sia 4 un ricoprimento aperto numerabile di una va-
rietd M. Il complesso doppio aumentato r: (A*(M),d) — (C*(U, A°),d,d)
e detto complesso doppio aumentato di Mayer-Vietoris associato al ricopri-
mento Ll

Il principio di Mayer-Vietoris dichiara allora che il complesso doppio
aumentato di Mayer-Vietoris ha righe esatte:

Teorema 4.7.12. Sia Y un ricoprimento aperto numerabile di una varietd
M. Allora il complesso doppio aumentato di Mayer-Vietoris associato a U
ha righe esatte. In particolare, il morfismo r: A*(M) — C*(4, A®) induce un
isomorfismo fra la coomologia di de Rham H®*(M) di M e la coomologia del
complesso doppio di Mayer-Vietoris.

Dimostrazione. Dobbiamo dimostrare che, per ogni ¢ > 0, la successione

0 — A9(M) > CO(st, A1) O 01 (81, A7) & C2(4, A1) —— -
¢ esatta. L'esattezza in A9(M) & Diniettivita di r; Pesattezza in CO(4, A9)
segue da § or = O e dal fatto che se ¢ € CO(U, A?) & tale che d¢p = O
allora ponendo (/;|UQ = ¢, si ottiene una g-forma globale q~5 € A1(M) tale che
") = 6.

Grazie al Corollario 4.1.16, per dimostrare ’esattezza del resto della suc-
cessione basta trovare un morfismo graduato K:C®(U, A7) — C*(U, A?) di
grado —1 tale che o K + K 0§ = id.

Scegliamo una partizione dell’unita {p,} subordinata al ricoprimento 4, e
per ¢ € CP(4, A7) poniamo

(K¢)a0...ap_1 == Zpa¢aa0...ap_1 .

Allora

(6K S)ag.ay = D (-1 (K)o
j=0
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QM INgE

Z po‘(;saao...o/c;...ap ’
a

(K5¢)0m = (5¢)aagmap
_ +1,
_<ZPO‘>¢O‘O QP+ZZO j aao o Lap
(o9 (e 2]
= (bao.“ap - (5K¢)a0...o¢p 5
e ci siamo. L’ultima affermazione segue dal Teorema 4.7.6. a

Perché questo risultato sia utile, dobbiamo essere in grado di calcolare la
coomologia del complesso doppio di Mayer-Vietoris. La prima osservazione &
che se (K,d, 6) ¢ un complesso doppio, allora il complesso doppio (K d, 5)
definito da KP4 = K9P, d|Kp .= (=1Pde 5|K,, . = (=1)4d, cio¢ scambiando
righe e colonne, ha la stessa coomologia del complesso originale. Aumentare
il complesso doppio (K' , ci, 5) equivale ad aggiungere una riga iniziale al com-
plesso doppio originale, cioe ad avere un complesso differenziale (C,J) e un
morfismo graduato i: C' — K che soddisfa le seguenti condizioni:

(a) i(CP) C KP per ogni p € N;

(b) ¢ & iniettivo;

(c)doi=1io0d;

(d)doi=0.

Il Teorema 4.7.6 quindi ci dice che se le colonne di questo complesso aumentato
sono esatte allora la coomologia del complesso doppio K €& isomorfa alla coo-
mologia del complesso C'. Nota inoltre che una scelta naturale per il complesso
C ¢ prendere C? = Ker(d|k».0), e prendere come differenziale la restrizione del
differenziale ¢ del complesso doppio, e come morfismo i: C — K l’inclusione.

Nel caso del complesso doppio di Mayer-Vietoris, il nucleo del differenziale
d in C? (il, AO) & composto dalle funzioni costanti sulle componenti connesse
delle intersezioni Uy,,...a,,-

Definizione 4.7.13. Sia ${ = {U,} un ricoprimento aperto numerabile di una
varietd M. Per p > 0 indichiamo con C? (U, R) = Ker (d|cp(u,A0)) c CP(u, AY)
lo spazio vettoriale delle funzioni costanti sulle componenti connesse del-
le intersezioni di p + 1 elementi del ricoprimento. Il complesso differenzia-
e (C"(ﬂ, R), 5) & detto complesso di Cech del ricoprimento &, e la sua
coomologia H* (8, R) & la coomologia di Cech del ricoprimento §L.

E importante notare che la coomologia di Cech di un ricoprimento di-
pende soltanto dalla combinatoria del ricoprimento, cioe dalla struttura delle
intersezioni dei vari aperti del ricoprimento.

Inoltre, la dimostrazione del Teorema 4.7.12 non si applica al comples-
so di Cech, in quanto anche se ¢ € CP(4,R) non & affatto detto che



4.8 Coomologia dei fasci e teorema di de Rham 143

K¢ € CP=1(y, AY) appartenga a CP~1(4,R); e infatti, come vedremo, in
generale la coomologia di Cech del ricoprimento  non & banale.

Esempio 4.7.14. Supponiamo che ${ = {U,}qes sia un ricoprimento aper-
to numerabile di una varieta M, composto da aperti connessi. Un elemento
¢ € CO°(U,R) & dato dall’assegnazione di un numero reale ¢, € R per ogni
a € J. Quindi ¢ = O se e solo se ¢ = ¢g ogni volta che U, NUg # &. Segue
subito che H°(4,R) = R®, dove ¢ > 1 & il numero di componenti connesse
di M confronta con I’Osservazione 4.2.4.

La colonna p-esima del complesso doppio di Mayer-Vietoris cosi aumentato
¢ quindi

0 »CP(U,R) > cr(y, A% S or(y, a1 S or(y, 42) —— -

Questa successione & esatta in CP(4,R) e CP(U, A®) per costruzione. L’ostru-
zione all’esattezza della successione in CP(U, A7) per ¢ > 1 € invece data dai
gruppi di coomologia g-esima delle intersezioni di p + 1 elementi di .

Di conseguenza, se 4l & un ricoprimento qualsiasi non e detto che le colonne
del complesso doppio di Mayer-Vietoris siano esatte, per cui la coomologia
di Cech di ¢ non & necessariamente isomorfa alla coomologia del complesso
doppio di Mayer-Vietoris. Ma se 4 & un buon ricoprimento, allora il lemma
di Poincaré ci assicura che la coomologia di tutte le intersezioni & banale;
quindi le colonne del complesso doppio di Mayer-Vietoris sono esatte, e il
Teorema 4.7.6 implica che la coomologia di Cech di un buon ricoprimento &
isomorfa alla coomologia del complesso doppio. Ma il Teorema 4.7.12 ci dice
che quest’ultima é sempre isomorfa alla coomologia di de Rham della varieta;
quindi abbiamo dimostrato il

Corollario 4.7.15. La coomologia di Cech di un buon ricoprimento di una
varieta M e sempre isomorfa alla coomologia di de Rham di M.

Osservazione 4.7.16. In particolare, due buoni ricoprimenti di una varieta
hanno sempre coomologie di Cech isomorfe.

Il Corollario 4.7.15 non ci permette ancora di dedurre che la coomologia
di de Rham é un invariante topologico di una varieta, in quanto il concetto
di buon ricoprimento & ancora un concetto differenziale e non topologico (in
quanto si richiede che le intersezioni siano diffeomorfe a R"™, e non soltanto
omeomorfe). Nella prossima sezione vedremo che, in realta, la coomologia di
Cech di un buon ricoprimento ¢ un invariante topologico della varietd; e questo
implichera che anche la coomologia di de Rham lo e.

4.8 Coomologia dei fasci e teorema di de Rham

La costruzione della coomologia di Cech di un ricoprimento & un caso par-
ticolare di una costruzione molto piu generale, che descriveremo in questa
sezione.
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Iniziamo introducendo una nozione fondamentale nella geometria contem-
poranea.

Definizione 4.8.1. Un prefascio F su uno spazio topologico X & un’applica-

zione che associa a ogni aperto U C X un gruppo abeliano (spazio vettoriale,

modulo, anello, eccetera) F(U), il gruppo delle sezioni di F su U, e a ogni

inclusione di aperti (Y:U < V un morfismo F(.Y) = p¥: F(V) — F(U),

detto restrizione, in modo che le seguenti proprieta siano soddisfatte:

(a) p¥ =idy per ogni aperto U C X;

(b) pY o piyr = p%, ogni volta che U CV C W C X.

Se s € F(V) e U C V, spesso scriveremo s|i; per p¥(s).

Un prefascio F e detto fascio se sono inoltre soddisfatte le tre ulteriori
condizioni:

(c) F(2) = O;

(d) se {U,};es ¢ un ricoprimento aperto dell’aperto U C X, e s, t € F(U)
sono tali che s|y; = t|y, per tuttii j € J, allora s =t (in altre parole, le
sezioni sono univocamente definite dalle loro restrizioni locali);

(e) se {U;};es ¢ un ricoprimento aperto dell’aperto U C X, e s; € F(U;)
sono sezioni tali che Si|UmU]» = 8j|lu;nu; per ogni i, j € J, allora esiste
s € F(U) tale che s|y, = s; per ogni j € J (in altre parole, sezioni locali
compatibili si incollano).

A volte si usa la notazione I'(U, F) per indicare F(U). Gli elementi di F(X)

sono detti sezioni globali di F.

Esempio 4.8.2. Sia M una varieta. Allora possiamo definire un fascio £, as-
sociando a ogni aperto U C M Danello Ey(U) = C°(U) delle funzioni diffe-
renziabili definite su U, e a ogni inclusione di aperti 'operatore di restrizione.
Il fascio &y (a volte indicato con C*) & detto fascio dei germi di funzioni
differenziabili su M; nell’Esempio 4.8.8 giustificheremo questa terminologia.

In modo analogo si pud definire il fascio dei germi di funzioni C* per
qualsiasi k € N, o il fascio A%, dei germi di k-forme su M, o il fascio dei germi
di funzioni analitiche reali su una varieta analitica reale, o il fascio O delle
funzioni olomorfe su una varieta complessa.

Esempio 4.8.3. Sia G un gruppo abeliano qualsiasi. Il fascio banale di grup-
po G su uno spazio topologico X & ottenuto assegnando a ciascun aperto di X
il gruppo G e ponendo pg = idg per ogni coppia di aperti U CV C X.

Esempio 4.8.4. Sia F il prefascio su R che associa a ogni aperto U C R ’anello
delle funzioni continue limitate su U, e a ogni inclusione di aperti 'operatore
di restrizione. Si vede subito che F & un prefascio ma non un fascio, in quanto
la proprieta (e) non & soddisfatta: se U; = (—j,j) per j € N, allora le sezioni
s; = idr |y; € F(U;) sono compatibili ma non sono la restrizione di alcuna
sezione globale s € F(R).
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Definizione 4.8.5. Un morfismo f:F — G fra due (pre)fasci F e G su uno
spazio topologico X & una collezione di morfismi fy: F(U) — G(U) che com-
mutano con le restrizioni: G(¢{/) o fiy = fir o F(:{}) per ogni coppia di aperti
U CV C X. Un isomorfismo di fasci & un morfismo invertibile (cioe tale
che fy € invertibile per ogni aperto U C X). Un fascio costante € un fascio
isomorfo a un fascio banale.

Dato un fascio F su uno spazio topologico X, & possibile associare in modo
unico un gruppo abeliano (spazio vettoriale, eccetera) F, a ogni punto x € X,
tramite il concetto di limite diretto di gruppi.

Definizione 4.8.6. Un sistema diretto di gruppi ¢ dato da una famiglia

{G;}ier di gruppi abeliani indicizzata da un insieme diretto I e da morfismi

sz G; — G; per ogni coppia di indici ¢ < j tali che

(i) fi =idg, per ogni i € I;

(ii) f o fi = fi per ogni tripla di elementi i < j <k in I.

Il limite diretto 1111;1 G; del sistema diretto {G;} ¢ il quoziente dell’'unione
1€

disgiunta ], ; G; rispetto alla relazione d’equivalenza ~ definita dicendo che
s € G; ¢ equivalente a t € G; se esiste k < i, j tale che fF(s) = ff(t) in Gg.
Si verifica facilmente (Esercizio 4.2) che ~ & una relazione d’equivalenza e che
ll_iEn? G; ha una naturale struttura di gruppo. Indicheremo con f;: G; — 1151} G;
la composizione fra l'inclusione di G; in []
quoziente.

el G; e la proiezione naturale sul

Se F & un (pre)fascio su uno spazio topologico X e x € X, otteniamo un
sistema diretto di gruppi considerando la famiglia {F(U)} indicizzata dagli
aperti contenenti x (vedi I'Esempio 4.6.4) e i morfismi di restrizione; quindi
possiamo considerarne il limite diretto.

Definizione 4.8.7. Sia F & un (pre)fascio su uno spazio topologico X e
x € X. 1l limite diretto F, del sistema diretto di gruppi {F(U)} indiciz-
zato dagli aperti contenenti x e detto spiga di F in z, e gli elementi di F,
sono detti germs di sezioni di F in z.

Esempio 4.8.8. La spiga in un punto p € M del fascio £, su una varieta
differenziabile M coincide (perché?) con 'anello C37(p) dei germi di funzioni
differenziabili in p.

L’Esercizio 4.5 descrive come mettere una topologia sull’'unione disgiun-
ta delle spighe di un fascio in modo che le sezioni locali possano essere
interpretate come funzioni continue a valori in questa unione disgiunta.

Il nostro prossimo obiettivo & definire la coomologia di Cech a valori in un
prefascio, partendo in modo non dissimile da quanto fatto nella sezione prece-
dente ma poi applicando il concetto di limite diretto per togliere la dipendenza
dai singoli ricoprimenti.
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Definizione 4.8.9. Sia 4 = {U,}acs un ricoprimento aperto di uno spa-
zio topologico X, dove J & un insieme totalmente ordinato. Per r € N e
o, - .., € J poniamo

Ung...on. = Uy N---NU,, .
Se F e un prefascio su X e p € N, il gruppo delle p-cocatene su i a valori
n F e
P F) = ] FUsg.a)-

ap<--<ap

Una p-cocatena s € CP(U, F) ¢ una collezione {sq...q, } di sezioni locali del
prefascio F; quando gli indici non sono ordinati, useremo la convenzione

Sar (o) Qr(py = Sgn(T)SOto.-Up

per ogni permutazione 7 € &,; in particolare sq,...o, = O non appena o; = «;
per qualche i # j.

Definizione 4.8.10. Sia {{ = {U, }4cs un ricoprimento aperto di uno spazio
topologico X, dove J & un insieme totalmente ordinato, e F un prefascio su
X. Per ogni p € N sia 0: CP (i, F) — CPTL(8( F) definita da

p+1 _
(6)a-aper = I D (50 2o Mgy -
j=0

dove ’accento circonflesso indica ’omissione di un indice. Si verifica facilmente
(vedi ’Esercizio 4.6) che 4 & ben definita e che §0§ = O; quindi (C* (84, F), §)
& un complesso differenziale. La coomologia H*® (4, F) di questo complesso &
detta coomologia di Cech del ricoprimento . a valori in F.

Osservazione 4.8.11. Se F ¢ il vfasciov banale di gruppo R, allora ﬁ(Ll, F)
coincide con la coomologia di Cech H (4 R) del ricoprimento che avevamo
introdotto nella Definizione 4.7.13.

Come osservato nell’Esempio 4.6.3, 'insieme dei ricoprimenti aperti di uno
spazio topologico ¢ un insieme diretto; questo suggerisce di tentare di trasfor-
mare la coomologia {H®(4, F)} in un sistema diretto di gruppi indicizzato
dai ricoprimenti aperti. Per farlo, abbiamo bisogno di definire un morfismo da
H*(4,F) a H*(0, F) ogni volta che U & un raffinamento di 4.

Definizione 4.8.12. Sia U = {V3}gcp un raffinamento di un ricoprimen-
to aperto Y = {Us}aeca di uno spazio topologico X. Una funzione di
raffinamento ¢ una ¢: B — A tale che Vg C U, gy per ogni 3 € B.

Dato un prefascio F su X e una funzione di raffinamento ¢: B — A
definiamo ¢#: C*® (4, F) — C*(T, F) ponendo

(97 8) 8080 = Se(60)-0(80) Vi ..,
per ogni s € CP(U, F) e pe N.
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Lemma 4.8.13. Sia U = {Va}gep un raffinamento di un ricoprimento

aperto 4 = {Uqy}aca di uno spazio topologico X, e F un prefascio su X.

(i) Sia ¢: B — A una funzione di raffinamento. Allora Uapplicazione indotta
o7 C* (8, F) — C*(V, F) ¢ un morfismo di cocatene, cioé commuta con d.

(ii) Se o, 1: B — A sono due funzioni di raffinamento, allora p* e ¢¥* sono
omotopi.

Dimostrazione. (i) Sia s € CP(4, F). Allora

p+1
(6@#s)ﬁ0u~ﬁp+l = Z(_l)J (¢#S>BOH~/§;'~ﬂp+l|‘/ﬁ0mﬁp+1
7=0
p+1
= —1) — R
‘:O( ) (SW(BO)'"@(ﬁj)"'@(ﬁp+1)‘Vﬁo»«ﬂjmﬁerl)|VBOMBP+1

J
= <6s)<p(,60)...ap(ﬁp+1)|Vg0_,.ﬁp+1 = (30#55),30~ﬂp+1 s

come voluto.

(ii) Definiamo K:CP (U, F) — CP~1(5, F) ponendo

p—1
(K8)g0...8p1 = D (=1 $(80).ccoBy) b8 bBp—) Vi 3y, -
7=0
Allora
p .
(K s)anpp = D (1K), 5,
_Z_ S 50y (85085 )6 (5)
0<j<i<p
_q1yiti—1 /\
+ Z ( 1 5%0(/30)~~~%0(ﬁz‘)~‘~<P(ﬂj)w(ﬁj)~-~1b(/3p)’
0<i<j<p
e
p .
(K8)Bo - Bp = D (=17 (68)(80)..- o8, (8, (5)
7=0
p ' J _
= — J — ? —
jZ::O( 2 g( b SW(ﬁO)ww(ﬁi)»-«O(ﬁj)#’(ﬁj)mw(ﬁp)
p p
BERY; 1)t -
+§< 1) Z;( DS 800085685 B B)
= (—1)"*

5 0(80). -0 ()9 (B0 (85) . 1 (By)
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P
+ Z 56(B0)--- (B —1)%(B1)--(Bp)
=0

—1)"Hitt —
+O<Z<:,< ( %0 (80)--p (8051 (G- (By)
SJ<tsp

p
- Z 80(B0) - (B)Y(Bi+1)---%(Bp)
1=0

= —(0K$)8y...8, T Sp:(Bo)-t(Bn) — So(Bo)--0(Bp) +

dove per semplicita non abbiamo indicato le restrizioni a Vg,. g,, per cui
Yp#* —#* = Kod+ 60K, e K ¢ un’operatore di omotopia fra 1)# e o#. O

Come conseguenza di questo lemma e della Proposizione 4.1.15, per ogni
raffinamento U di un ricoprimento aperto Y abbiamo un ben definito morfismo
in coomologia H*(i, F) — H*(U,F) indipendente dalla funzione di raffina-
mento. Siccome la composizione di funzioni di raffinamento & chiaramente
una funzione di raffinamento, abbiamo quindi ottenuto un sistema diretto di

gruppi.

Definizione 4.8.14. Sia F un prefascio su uno spazio topologico X. La coo-
mologia di Cech di X a valori in F H*(X,F) ¢ il limite diretto del sistema
diretto di gruppi {H (4, F)} indicizzato dai ricoprimenti aperti di X. In par-
ticolare, se G & un gruppo abeliano, la coomologia di Cech H*(X,G) di X a
coefficienti in G & la coomologia di Cech a valori nel fascio banale di gruppo G.

La coomologia di Cech di uno spazio topologico X a coefficienti in un dato
gruppo G é chiaramente un invariante topologico di X . Possiamo quindi final-
mente dimostrare I'importante teorema di de Rham, che implica fra le altre
cose che i gruppi di cooomologia di de Rham sono degli invarianti topologici
di una varieta:

Teorema 4.8.15 (de Rham). La coomologia di de Rham di una varieta é
canonicamente isomorfa alla coomologia di Cech della varieta a coefficienti
in R.

Dimostrazione. Il Teorema 4.6.5 dice che i buoni ricoprimenti sono cofinali
nell’insieme di tutti i ricoprimenti aperti di una varieta; quindi (Esercizio 4.3)
per calcolare la coomologia di Cech a coefficienti in R possiamo limitarci a
fare il limite diretto sui buoni ricoprimenti.

Se 4 & un buon ricoprimento della varieta M, il Corollario 4.7.15 ci for-
nisce un isomorfismo xy: H*(Y4,R) — H*(M), ottenuto componendo l'iso-
morfismo ¢*: H*(8,R) — H*(C*(4, A*)) indotto dall'inclusione con I'inverso
dell’isomorfismo r*: H*(M) — H*(C*(4, A*)) indotto dalle restrizioni. Sic-
come stiamo usando inclusioni e restrizioni, ¢ chiaro (perché?) che se U & un
buon ricoprimento che raffina U e ¢*: H*(U,R) — H*(W,R) & il morfismo
indotto da una funzione di raffinamento, abbiamo xg3 o ¢* = xg(. Da questo
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segue (Eserci?io 4.4) che possiamo passare al limite diretto e ottenere 'iso-
morfismo x: H(M,R) — H*(M) cercato. 0

Esercizi

Esercizio 4.1. Sia K C M un compatto in una varieta. Dimostra che esiste un
intorno aperto U C M di K tale che U sia una varieta con bordo compatta.

Esercizio 4.2. Sia {G;};c; un sistema diretto di gruppi. Dimostra che la re-

lazione ~ introdotta nella Definizione 4.8.6 ¢ una relazione d’equivalenza, e

che il limite diretto hHIl G; ha un’unica struttura di gruppo rispetto a cui le
1€

fiiG; — hHIl G; siano dei morfismi.
i€

Esercizio 4.3. Sia {G; };c; un sistema diretto di gruppi, e J C I un sottoinsie-

me cofinale. Dimostra che lim G; ¢ canonicamente isomorfo a lim Gj.
jeJ iel

Esercizio 4.4. Sia {G; };c un sistema diretto di gruppi. Sia G un gruppo, e sup-

poniamo di avere una famiglia di morfismi x;: G; — G tali che x;o f; = x; per

ogni coppia di indici ¢ < j. Dimostra che esiste un unico morfismo x: hrrll -G
1€

tale che x o f; = x; per ogni ¢ € I. Dimostra inoltre che x & un isomorfismo

se tutti i x; lo sono.

Esercizio 4.5. Sia F un fascio su uno spazio topologico X, e indichiamo con
F = J],cx F» P'unione disgiunta delle spighe del fascio, e indichiamo con
m: F — X Vovvia proiezione. Se U C X ¢ aperto, una sezione s € F(U) deter-
mina un germe s, € F, per ogni x € U, e quindi un’applicazione s:U — F.
Dimostra che esiste un’unica topologia minimale su F' rispetto a cui tutte que-
ste applicazioni s: U — F sono continue e aperte; che questa topologia induce
la topologia discreta su ogni spiga; e che m: F' — X & un omeomorfismo locale.
L’insieme F' con questa topologia e detto spazio €talé associato al fascio F.

Esercizio 4.6. Sia {1 = {Ug }aes un ricoprimento aperto di uno spazio topo-
logico X, dove J & un insieme totalmente ordinato, e F un prefascio su X.
Procedendo come nel Lemma 4.7.9 dimostra che il morfismo § introdotto nella
Definizione 4.8.10 ¢ ben definito e soddisfa d o 6 = O.

Esercizio 4.7. Dimostra che H'(M) = O per ogni varieta M semplicemente
connessa.

Esercizio 4.8. Dimostra che HP(M,Ey;) = O per ogni p > 1 e ogni varieta M,
dove &y ¢ il fascio dei germi di funzioni differenziabili. (Suggerimento: usa le
partizioni dell’unita.)



