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Coomologia

Chiacchiere.

4.1 Richiami di algebra omologica

In questa sezione riportiamo una serie di definizioni e risultati generali che
saranno utili in seguito.

Definizione 4.1.1. Una successione

· · · Vj−1 Vj Vj+1 · · ·................................................................................ ............ ................................................................................ ............
fj

................................................................................ ............
fj+1

................................................................................ ............

di omomorfismi (applicazioni lineari, eccetera) di gruppi abeliani (spazi vet-
toriali, eccetera) è esatta in Vj se Ker fj+1 = Im fj ; ed è esatta se lo è in tutti
i suoi elementi.

In particolare, una successione esatta della forma

O U V W O............................................................... ............ ............................................................... ............
f

............................................................... ............
g

............................................................... ............ (4.1)

sarà detta successione esatta corta.

Osservazione 4.1.2. Nel seguito useremo la parola “morfismo” per indicare
un’applicazione fra due insiemi con struttura che conserva la struttura. Per
esempio, un morfismo fra gruppi sarà un omomorfismo, un morfismo fra spazi
vettoriali sarà un’applicazione lineare, e cos̀ı via.

Osservazione 4.1.3. Dire che una successione della forma

O U V............................................................... ............ ............................................................... ............
f

è esatta è equivalente a dire che f :U → V è iniettiva; e dire che una successione
della forma
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V W O............................................................... ............
g

............................................................... ............

è esatta equivale a dire che g:V → W è surgettiva. In particolare, in una suc-
cessione esatta corta (4.1) il morfismo f è iniettivo, il morfismo g è surgettivo
e W è isomorfo al quoziente V/f(U).

Definizione 4.1.4. Un gruppo abeliano (spazio vettoriale, eccetera) C è gra-
duato su N se si può scrivere come somma diretta di sottogruppi (sottospazi,
eccetera) nella forma

C =
⊕

k∈N
Ck ;

Una k-cocatena (o cocatena di grado k) è un elemento di Ck. In modo analogo
si definisce un gruppo abeliano (spazio vettoriale, eccetera) graduato su Z.

Un morfismo graduato di grado d ∈ Z fra gruppi (spazi vettoriali, eccetera)
graduati è un morfismo F :C → D che modifica la graduazione di d livelli,
cioè tale che F (Ck) ⊆ Dk+d per ogni k ∈ N. Se d = 0 parleremo di morfismo
graduato.

Definizione 4.1.5. Un complesso differenziale (o complesso di cocatene) è
una coppia (C, d) composta da un gruppo abeliano (spazio vettoriale, eccetera)
graduato C =

⊕
k∈N

Ck e da un morfismo graduato d:C → C di grado 1, detto

differenziale, tale che
d ◦ d = O .

A volte scriveremo dk al posto di d|Ck .
Un k-cociclo è un elemento di Zk(C) = Ker dk ⊆ Ck; un k-cobordo è un ele-

mento di Bk(C) = Im dk−1 ⊆ Ck (dove per convenzione poniamo B0 = {O}).
La condizione d◦d = O implica che Bk ⊆ Zk per ogni k ∈ N; il k-esimo gruppo
di coomologia Hk(C) del complesso differenziale è allora definito come il quo-
ziente Hk(C) = Zk(C)/Bk(C). Infine, la coomologia del complesso è il gruppo
(spazio vettoriale, eccetera) graduato H•(C) =

⊕
k∈N

Hk(C). Indicheremo con

[c] ∈ Hq(C) la classe del cociclo c ∈ Zq(C).

Esempio 4.1.6. Sia M una varietà. Allora la coppia
(
A•(M),d

)
, dove

A•(M) =
⊕

k∈N
Ak(M)

(con Ak(M) = (O) se k > dimM) e d è il differenziale esterno, è un complesso
differenziale la cui coomologia è proprio la coomologia di de Rham. Un k-
cociclo è una k-forma chiusa; un k-cobordo è una k-forma esatta.

Osservazione 4.1.7. Un complesso di catene si definisce in modo analogo, ma
con un differenziale di grado −1, cioè tale che d(Ck) ⊆ Ck−1.
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Definizione 4.1.8. Siano (A, dA) e (B, dB) due complessi differenziali. Un
morfismo di cocatene è un morfismo graduato F :A → B che commuta con i
differenziali: F ◦ dA = dB ◦ F .

Esempio 4.1.9. Se F :M → N è un’applicazione differenziabile fra varietà,
allora F ∗:A•(N) → A•(M) è un morfismo di cocatene.

Se F :A → B è un morfismo di cocatene, chiaramente abbiamo

F
(
Zk(A)

)
⊆ Zk(B) e F

(
Bk(A)

)
⊆ Bk(B)

per ogni k ∈ N. Quindi F induce un morfismo graduato F ∗:H•(A) → H•(B)
semplicemente ponendo F ∗([c]) = [F (c)] per ogni c ∈ Zq(A). In particolare,
una successione di morfismi di cocatene

A B C............................................................... ............F ............................................................... ............G

induce una successione di morfismi graduati

H•(A) H•(B) H•(C)..................................................... ............F ∗ ..................................................... ............G∗
.

Esempio 4.1.10. In particolare, un’applicazione differenziabile F :M → N fra
varietà induce un morfismo di cocatene F ∗:H•(N) → H•(M), detto pullback.

Il primo risultato importante è che partendo da una successione esatta
corta di morfismi di cocatene otteniamo in coomologia qualcosa di più di una
successione esatta corta di morfismi graduati:

Teorema 4.1.11. Sia

O A B C O............................................................... ............ ............................................................... ............F ............................................................... ............G ............................................................... ............ (4.2)

una successione esatta corta di morfismi di cocatene. Allora esiste un morfi-
smo graduato d∗:H•(C) → H•(A) di grado 1 tale che la successione

· · · Hk(A) Hk(B) Hk(C) Hk+1(A) · · ·............................................................................................... ............ .............................................................................. ............F ∗ .............................................................................. ............G∗ ................................................................. ............d∗ ................................................................................... ............

(4.3)
sia esatta.

Dimostrazione. Il fatto che (4.2) sia una sequenza esatta corta di morfismi
di cocatene equivale a dire che il seguente diagramma è commutativo a righe
esatte:
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O Ak+1 Bk+1 Ck+1 O

O Ak Bk Ck O
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Sia c ∈ Zk(C). Siccome G è surgettiva, troviamo b ∈ Bk tale che G(b) = c.
La commutatività del diagramma ci dice che G(db) = dG(b) = dc = O;
quindi db ∈ Ker G = Im F , per cui esiste un unico a ∈ Ak+1 tale che
F (a) = db. Inoltre, F (da) = dF (a) = d(db) = O; essendo F iniettiva tro-
viamo da = O, cioè a ∈ Zk+1(A). Se poi b′ ∈ Bq è un’altra cocatena tale
che G(b′) = c, sia a′ ∈ Zk+1(A) l’unica cocatena tale che F (a′) = db′. Sicco-
me G(b − b′) = O, esiste un unico a′′ ∈ Ak tale che b′ − b = F (a′′). Quindi
db′ = db+dF (a′′) = F (a+da′′) da cui segue che a′ = a+da′′. In altre parole,
a′ − a ∈ Bk+1(A), e la classe di coomologia [a] ∈ Hk+1(A) dipende solo da
c ∈ Zk(C) e non dalla scelta di b ∈ Bk. Per far vedere che abbiamo definito
un morfismo da Hk(C) a Hk+1(A) rimane da verificare che se c ∈ Bk(C)
allora a ∈ Bk+1(A). Ma infatti se c = dc′ per qualche c′ ∈ Ck−1, scriviamo
c′ = G(b′′) con b′′ ∈ Bk−1; allora c = dG(b′′) = G(db′′), per cui possiamo
prendere b = db′′, che implica db = O e a = O ∈ Bk+1(A) come voluto.

O da ddb = O

O a, a′ db, db′ dc = O O

O a′′ b, b′ c O

c′b′′ O

................................................................................................................. ............................ ........................................................................................ ............................
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In questo modo abbiamo definito un morfismo d∗:Hk(C) → Hk+1(A) per
ogni k ∈ N ; rimane da verificare che (4.3) è esatta.

Esattezza in Hk(B): sia [b] ∈ Hk(B) tale che G∗([b]) = O. Questo si-
gnifica che esiste c ∈ Ck−1 tale che G(b) = dc, dove b ∈ Zk(B) è un qual-
siasi rappresentante di [b]. Scegliamo b′ ∈ Bk−1 tale che G(b′) = c; siccome
G(db′) = dG(b′) = dc = G(b), otteniamo che b− db′ ∈ Ker G = Im F , per cui
esiste a ∈ Ak tale che b−db′ = F (a). Inoltre F (da) = dF (a) = db−ddb′ = O,
per cui da = O, cioè a ∈ Zk(A). Mettendo il tutto insieme abbiamo
[b] = F ∗([a]), per cui KerG∗ ⊆ Im F ∗. Per il viceversa, se a ∈ Zk(A) abbiamo
G

(
F (a)

)
= O, e quindi ImF ∗ ⊆ Ker G∗, come voluto.

Esattezza in Hk(C): prima di tutto, se [c] = G∗([b]) con b ∈ Zk(B),
abbiamo db = O e quindi la costruzione del morfismo di connessione implica
subito che d∗[c] = O, cioè ImG∗ ⊆ Ker d∗. Viceversa, se [c] ∈ Hk(C) è tale
che d∗[c] = O, necessariamente si deve avere c = G(b) con b ∈ Zk(B); quindi
[c] = G∗([b]), per cui Ker d∗ ⊆ Im G∗, come voluto.

Esattezza in Hk+1(A): se [a] = d∗[c] ∈ Hk+1(A), per costruzione abbiamo
F (a) ∈ Bk+1(B), cioè F ∗([a]) = O e Im d∗ ⊆ Ker F ∗. Infine, prendiamo
[a] ∈ Hk+1(A) tale che F ∗([a]) = O. Questo vuol dire che se a ∈ Zk+1(A) è
un rappresentante di [a], abbiamo F (a) = db per un opportuno b ∈ Bk. Sia
c = G(b); siccome dc = dG(b) = G(db) = G

(
F (a)

)
= O, abbiamo c ∈ Zk(C),

e per costruzione d∗[c] = [a]. Quindi KerF ∗ ⊆ Im d∗, e abbiamo finito. &'

Osservazione 4.1.12. La tecnica utilizzata in questa dimostrazione si chiama
inseguimento nel diagramma (in inglese, diagram chasing).

Definizione 4.1.13. La successione (4.3) è detta successione esatta lunga in
coomologia indotta dalla successione esatta corta (4.2), e il morfismo d∗ è
chiamato morfismo di connessione.

Definizione 4.1.14. Siano F , G:A → B due morfismi di cocatene. Diremo
che F e G sono omotopi se esiste un operatore d’omotopia fra F e G, cioè un
morfismo graduato K:A → B di grado −1 tale che

F −G = dB ◦K ±K ◦ dA .

Proposizione 4.1.15. Due morfismi di cocatene omotopi inducono lo stesso
morfismo in coomologia.

Dimostrazione. Sia K:A → B un operatore d’omotopia fra due morfismi di
cocatene F , G:A → B. Se a ∈ Zk(A) abbiamo

F (a) = G(a) + (dB ◦K ±K ◦ dA)(a) = G(a) + dB

(
K(a)

)
,

per cui [F (a)] = [G(a)]. &'

Corollario 4.1.16. Sia (A, d) un complesso differenziale tale che esista un
morfismo graduato K:A → A di grado −1 tale che d ◦K ±K ◦ d = id. Allora
H•(A) = O.
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Dimostrazione. Infatti K è un operatore di omotopia fra l’identità e il morfi-
smo nullo, e la tesi segue dalla Proposizione 4.1.15. &'

Un ultimo risultato generale molto utile è il seguente:

Lemma 4.1.17 (dei cinque). Sia dato il seguente diagramma commutativo
di morfismi con le righe esatte:

A B C D E

A′ B′ C ′ D′ E′

............................................................... ............
f1

............................................................... ............
f2

............................................................... ............
f3

............................................................... ............
f4

............................................................... ............

f ′1
............................................................... ............

f ′2
............................................................... ............

f ′3
............................................................... ............

f ′4

............................................................
...
.........
...

α
............................................................
...
.........
...

β
............................................................
...
.........
...

γ
............................................................
...
.........
...

δ
............................................................
...
.........
...

ε

Supponiamo che β e δ siano degli isomorfismi. Allora:
(i) se α è surgettivo allora γ è iniettivo.
(ii) se ε è iniettivo allora γ è surgettivo.
In particolare, se α, β, δ ed ε sono degli isomorfismi, anche γ è un isomorfi-
smo.

Dimostrazione. (i) Sia c ∈ C tale che γ(c) = O. Essendo il diagramma com-
mutativo, abbiamo δ

(
f3(c)

)
= f ′3

(
γ(c)

)
= O; siccome δ è un isomorfismo,

otteniamo f3(c) = O. L’esattezza della riga superiore implica c = f2(b) per
qualche b ∈ B; inoltre O = γ

(
f2(b)

)
= f ′2

(
β(b)

)
. L’esattezza della riga infe-

riore ci dice che esiste a′ ∈ A′ tale che β(b) = f ′1(a′). Essendo α surgettivo,
troviamo a ∈ A tale che a′ = α(a); quindi β(b) = f ′1

(
α(a)

)
= β

(
f1(a)

)
. Ma β

è un isomorfismo; quindi b = f1(a) e c = f2(b) = f2

(
f1(a)

)
= O per l’esattezza

della riga superiore, per cui γ è iniettivo.
(ii) Sia c′ ∈ C ′. Essendo δ un isomorfismo, esiste un unico d ∈ D ta-

le che δ(d) = f ′3(c′). La commutatività del diagramma e l’esattezza del-
la riga inferiore ci dicono che ε

(
f4(d)

)
= f ′4

(
δ(d)

)
= f ′4

(
f ′3(c′)

)
= O;

essendo ε iniettivo, troviamo f4(d) = O. Quindi esiste c ∈ C tale che
f3(C) = D. Applicando di nuovo la commutatività del diagramma trovia-
mo f ′3(c′) = δ(d) = δ

(
f3(c)

)
= f ′3

(
γ(c)

)
; quindi c′−γ(c) ∈ Ker f ′3. L’esattezza

ci dice che esiste b′ ∈ B′ tale che f ′2(b′) = c′ − γ(c); essendo β un isomorfismo
troviamo b ∈ B tale che b′ = β(b). Infine, la commutatività del diagramma
assicura che γ

(
f2(b)

)
= f ′2

(
β(b)

)
= f ′2(b′) = c′−γ(c), per cui c′ = γ

(
c+f2(b)

)
,

e γ è surgettiva. &'

4.2 La successione di Mayer-Vietoris

Un esempio di utilizzo della successione esatta lunga di coomologia è la suc-
cessione di Mayer-Vietoris, uno degli strumenti più utili per il calcolo della
coomologia.
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Sia U = {U0, U1} un ricoprimento aperto di una varietà M composto di
due soli aperti U0, U1 ⊆ M . Indichiamo con U0

⊔
U1 l’unione disgiunta di U0 e

U1, con ιj :U0∩U1 → U0
⊔

U1 l’inclusione di U0∩U1 in Uj (con j = 0, 1), e con
:U0

⊔
U1 → M l’inclusione. Abbiamo quindi una successione di inclusioni

M U0
⊔

U1 U0 ∩ U1
................................................................................


..................................................................................... ι1

.....................................................................................
ι0

che induce una successione di restrizioni di forme

A•(M) A•(U0)⊕A•(U1) A•(U0 ∩ U1).......................................................... ............
∗

.............................................................................. ............

ι∗1

.............................................................................. ............
ι∗0

.

Prendendo la differenza degli ultimi due morfismi otteniamo la successione di
Mayer-Vietoris:

O A•(M) A•(U0)⊕A•(U1) A•(U0 ∩ U1) O

(ω, τ) τ − ω

................................................................................... ............ .................................................................... ............
∗

........................................................................................................................ ............
ι∗1 − ι∗0 ........................................................................... ............

.......................................................................................................................................................................................................................... ............................

(4.4)

Teorema 4.2.1. Sia U = {U0, U1} un ricoprimento aperto di una varietà M .
Allora la successione di Mayer-Vietoris (4.4) è esatta, e quindi induce una
successione esatta lunga in coomologia

· · · Hk(M) Hk(U0)⊕Hk(U1) Hk(U0 ∩ U1) Hk+1(M) · · ·............................................................ ............ ............................................................ ............ ................................. ............ ...................................... ............d∗ ................................................ ............

(4.5)

Dimostrazione. L’esattezza di (4.4) è evidente tranne all’ultimo punto. Sia
{ρ0, ρ1} una partizione dell’unità subordinata a U . Data ω ∈ A•(U0∩U1), no-
tiamo che ρ1ω è ben definita come forma su U0; analogamente ρ0ω ∈ A•(U1).
Infine

(ι∗1 − ι∗0)(−ρ1ω, ρ0ω) = (ρ0 + ρ1)ω = ω ,

per cui (4.4) è esatta. L’ultima affermazione segue dal Teorema 4.1.11. &'

Osservazione 4.2.2. Calcoliamo esplicitamente il morfismo di connessione d∗

in (4.5). Sia {ρ0, ρ1} una partizione dell’unità subordinata al ricoprimento
aperto {U0, U1}, e sia [ω] ∈ Hk(U0 ∩ U1) rappresentata dalla forma chiu-
sa ω ∈ Zk(U0 ∩ U1). La forma ω è immagine tramite ι∗1 − ι∗0 della coppia
(−ρ1ω, ρ0ω), il cui differenziale esterno è

(
−d(ρ1ω),d(ρ0ω)

)
. Notiamo che

d(ρjω) = dρj ∧ ω

in quanto ω è chiusa, e che dρ0 + dρ1 ≡ O in U0 ∩ U1; quindi

d∗[ω] =
{
−[dρ1 ∧ ω] in U0 ,
[dρ0 ∧ ω] in U1 .

In particolare, il supporto di d∗[ω] è contenuto in U0 ∩ U1.
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Esempio 4.2.3. Calcoliamo la coomologia di R. Le 0-forme sono funzioni. L’u-
nica 0-forma esatta è la funzione nulla; una 0-forma f è chiusa se e solo se
df ≡ 0, cioè se e solo se è costante. Quindi H0(R) = R.

Le 1-forme su R sono tutte (banalmente) chiuse; vogliamo mostrare che
sono anche esatte. Infatti, data ω = f dx ∈ A1(R), poniamo

g(x) =
∫ x

0
f(t) dt ;

allora si vede subito che dg = ω. Riassumendo,

Hk(R) =
{ R se k = 0 ,

O se k > 0 .

Osservazione 4.2.4. Il ragionamento fatto all’inizio dell’esempio precedente
mostra che H0(M) = Rc per ogni varietà M , dove c ≥ 1 è il numero di
componenti connesse di M .

Esempio 4.2.5. Calcoliamo la coomologia di S1. Grazie all’osservazione pre-
cedente abbiamo H0(S1) = R. Sia {U0, U1} il ricoprimento aperto di S1 dato
da U0 = (−1/2− ε, 1/2 + ε) e U1 = (1/2− ε, 3/2 + ε), dove ε ∈ (0, 1/2) e ov-
viamente stiamo identificando S1 con R/Z. Siccome U0 e U1 sono diffeomorfi
a R, sappiamo che H0(Uj) = R e Hk(Uj) = O per j = 0, 1 e ogni k > 0.
Inoltre U0 ∩ U1 consiste di due intervalli aperti, per cui H0(U0 ∩ U1) = R2 e
Hk(U0 ∩ U1) = O per k > 0. La successione (4.5) diventa quindi

R R⊕ R R⊕ R H1(S1) O............................................................ ............ ................................................................................... ............δ ........................................................................... ............d∗ ..................................................... ............

per cui H1(S1) ∼= (R⊕R)/ Im δ, dove δ:H0(U0)⊕H0(U1) → H0(U0 ∩U1) è il
morfismo indotto in coomologia da ι∗1−ι∗0. Chiaramente, δ(a, b) = (b−a, b−a);
quindi dim Im δ = 1. Riassumendo,

Hk(S1) =
{ R se k = 0, 1 ;

O se k > 1 .

Possiamo anche trovare un generatore di H1(S1). Sia α = (1, 0) ∈ H0(U0∩U1);
chiaramente α /∈ Im δ, per cui d∗α è un generatore di H1(S1). Ricordando
l’Osservazione 4.2.2, d∗α è rappresentato dalla 1-forma

ω =
{

dρ0 su (1/2− ε, 1/2 + ε) ,
O altrimenti,

dove {ρ0, ρ1} è una partizione dell’unità subordinata a {U0, U1}.

4.3 Il teorema di Stokes

Per dimostrare il fondamentale teorema di Stokes dobbiamo introdurre il
concetto di varietà con bordo.
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Definizione 4.3.1. Il semispazio superiore Hn ⊂ Rn di dimensione n è

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0} .

Il bordo ∂Hn di Hn è l’iperpiano {xn = 0}; l’interno di Hn è Hn \ ∂Hn.

Definizione 4.3.2. Una varietà con bordo di dimensione n è data da una
coppia (M,A), dove M è un insieme e A = {(Uα, ϕα)} è una famiglia di
applicazioni bigettive ϕα:Uα → Vα, dove Vα è un aperto di Hn, compatibili
a due a due e tali che M =

⋃
α Uα. Se Vα ∩ ∂Hn /= ∅ diremo che (Uα, ϕα)

è una n-carta di bordo; se invece Vα ∩ ∂Hn = ∅ diremo che (Uα, ϕα) è una
carta interna. L’insieme dei punti p ∈ M che appartengono a ϕ−1

α (∂Hn) per
una carta di bordo (Uα, ϕα) è il bordo ∂M di M ; il complementare del bordo
è detto interno della varietà con bordo M . A volte, le varietà nel senso della
Definizione 2.1.5 sono dette varietà senza bordo.

Osservazione 4.3.3. Carte interne sono chiaramente carte locali nel senso visto
finora. Quando parliamo di compatibilità fra due carte di bordo (Uα, ϕα) e
(Uβ , ϕβ) intendiamo che ϕα(Uα ∩ Uβ) e ϕβ(Uα ∩ Uβ) sono aperti di Hn (non
necessariamente di Rn!) e che ϕα ◦ ϕ−1

β :ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) è un
diffeomorfismo di classe C∞ come applicazione fra sottoinsiemi di Rn, e quindi
ammette un’estensione C∞ a un intorno aperto (in Rn) di ϕβ(Uα ∩ Uβ). In
particolare, ϕα ◦ ϕ−1

β è un’applicazione aperta, per cui manda il bordo nel
bordo; di conseguenza (perché?) il bordo di una varietà con bordo è ben
definito (cioè se p ∈ ϕ−1

α (∂Hn) per qualche carta di bordo allora p ∈ ϕ−1
β (∂Hn)

per tutte le carte di bordo in p). Inoltre, la restrizione di ϕα ◦ ϕ−1
β a ∂Hn è

ancora C∞; quindi le restrizioni a ∂M delle carte di bordo formano un atlante
di ∂M di dimensione n−1 (dove stiamo identificando ∂Hn con Rn−1 nel modo
ovvio); quindi ∂M ha una struttura naturale di varietà (n− 1)-dimensionale.

Definizione 4.3.4. Un atlante orientato di una varietà con bordo è un atlan-
te in cui i determinanti jacobiani dei cambiamenti di coordinate sono tutti
positivi. Una varietà con bordo con un atlante orientato è detta orientata.

Vogliamo far vedere che il bordo di una varietà orientata è automatica-
mente orientato. Per farlo ci serve il seguente

Lemma 4.3.5. Siano U0, U1 ⊆ Hn aperti di Hn con Ũj /= ∅ per j = 0, 1, dove
Ũj = Uj∩∂Hn. Sia F :U0 → U1 un diffeomorfismo con determinante jacobiano
sempre positivo. Allora il determinante jacobiano di F̃ = F |Ũ0

: Ũ0 → Ũ1, visto
come diffeomorfismo di aperti di Rn−1, è sempre positivo

Dimostrazione. Scriviamo x = (x′, xn), con x′ = (x1, . . . , xn−1), e analoga-
mente F = (F ′, Fn), con F ′ = (F 1, . . . , Fn−1); dunque F̃ (x′) = F ′(x′, 0). Per
ogni (x′, 0) ∈ U0 ∩ ∂Hn abbiamo

0 < det Jac F (x′, 0) = det
∣∣∣∣
Jac F̃ (x′) ∂F ′

∂xn (x′, 0)
∂F n

∂x′ (x′, 0) ∂F n

∂xn (x′, 0)

∣∣∣∣ .
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Ora, F (Ũ0) ⊆ Ũ1 implica Fn(x′, 0) ≡ 0; quindi

0 < det JacF (x′, 0) =
∂Fn

∂xn
(x′, 0) · det Jac F̃ (x′) .

Infine, siccome F manda U0 ∩Hn in U1 ∩Hn, otteniamo ∂F n

∂xn (x′, 0) > 0, e la
tesi segue. &'

Questo lemma ci assicura che l’atlante di ∂M indotto da un’atlante
orientato di M è ancora orientato; possiamo quindi introdurre la seguente

Definizione 4.3.6. Sia M una varietà con bordo di dimensione n, orientata
da un atlante orientato A, e indichiamo con ∂A l’atlante orientato indotto
da A su ∂M . L’orientazione indotta su ∂M è allora quella data da ∂A se n è
pari, quella opposta se n è dispari.

Osservazione 4.3.7. La differenza di orientazione fra pari e dispari è necessaria
per ottenere l’enunciato del teorema di Stokes senza segni.

Osservazione 4.3.8. Sia M una varietà con bordo, di dimensione n. È chia-
ramente possibile dare un senso anche allo spazio tangente a un punto del
bordo di M , che però risulta essere uno spazio di dimensione n − 1. Di con-
seguenza, una n-forma su M (pensata come applicazione n-lineare alternante
applicata ai campi vettoriali) si annulla quando ristretta a ∂M . Invece, una
(n−1)-forma su M ristretta a ∂M può essere non nulla. Inoltre, su una varietà
orientata con bordo M possiamo definire l’integrale di una n-forma a supporto
compatto esattamente come nel caso di varietà senza bordo (le dimostrazioni
funzionano identiche); infine, se η è una (n − 1)-forma su M , possiamo defi-
nire

∫
∂M η come l’integrale su ∂M (orientato con l’orientazione indotta) della

restrizione η|∂M .

Teorema 4.3.9 (Stokes). Sia M una varietà orientata di dimensione n con
bordo, e consideriamo ∂M con l’orientazione indotta. Sia ω una (n−1)-forma
con supporto compatto in M . Allora

∫

M
dω =

∫

∂M
ω . (4.6)

Dimostrazione. Cominciamo col dimostrarlo quando M = Rn. Per linearità, e
a meno di permutare le coordinate, possiamo supporre ω = f dx1∧· · ·∧dxn−1.
Quindi dω = (−1)n−1 ∂f

∂xn dx1 ∧ · · · ∧ dxn. Il teorema di Fubini allora ci dice
che ∫

Rn

dω = (−1)n−1

∫

Rn−1

(∫ +∞

−∞

∂f

∂xn
dxn

)
dx1 · · ·dxn−1 .

Ma ∫ ∞

−∞

∂f

∂xn
(x′, xn) dxn = lim

t→+∞
[f(x′, t)− f(x′,−t)] = 0
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perché f ha supporto compatto. Quindi
∫

Rn dω = 0; essendo Rn senza bordo,
abbiamo dimostrato (4.6) in questo caso.

Consideriamo ora il caso M = Hn, e scriviamo

ω =
n∑

j=1

gj(x′, xn) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn ,

dove l’accento circonflesso indica che quell’elemento è assente. Allora

dω =




n∑

j=1

(−1)j−1 gj

∂xj
(x′, xn)



 dx1 ∧ · · · ∧ dxn .

Ora, se 1 ≤ j ≤ n− 1 si ha
∫ +∞

−∞

∂gj

∂xj
(x′, xn) dxj

= lim
xj→+∞

[gj(x1, . . . , xj , . . . , xn)− gj(x1, . . . ,−xj , . . . , xn)] = 0

perché gj è a supporto compatto in Hn. Quindi per j = 1, . . . , n− 1 si ha
∫

Hn

∂gj

∂xj
(x′, xn) dx1 · · ·dxn

=
∫ +∞

0

(∫

Rn−2

(∫ +∞

−∞

∂gj

∂xj
(x′, xn) dxj

)
dx1 · · · d̂xj · · ·dxn−1

)
dxn

= 0 .

Inoltre
∫ +∞

0

∂gn

∂xn
(x′, xn) dxn = lim

t→+∞
gn(x′, t)− gn(x′, 0) = −gn(x′, 0) ,

sempre perché gn è a supporto compatto in Hn. Quindi
∫

Hn

dω = (−1)n−1

∫

Hn

∂gn

∂xn
(x′, xn) dx1 · · ·dxn

= (−1)n−1

∫

Rn−1

(∫ +∞

0

∂gn

∂xn
(x′, xn) dxn

)
dx1 · · ·dxn−1

= (−1)n

∫

Rn−1
gn(x′, 0) dx1 · · ·dxn−1 =

∫

∂Hn

ω ,

dove l’ultima eguaglianza segue dall’orientazione indotta su ∂Hn e dal fatto
che ogni (n− 1)-forma contenente dxn si annulla identicamente su ∂Hn.

Infine, sia M qualsiasi, e scegliamo un atlante orientato A = {(Uα, ϕα)}
con ϕα(Uα) = Rn o Hn per ogni α, e sia {ρα} una partizione dell’unità subor-
dinata ad A. Scriviamo ω =

∑
α ραω; per linearità, basta quindi dimostrare
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(4.6) per ciascun ραω, che è una forma a supporto compatto contenuto in Uα.
Ma allora

∫

M
d(ραω) =

∫

Uα

d(ραω) =
∫

ϕα(Uα)
(ϕ−1)∗d(ραω)

=
∫

ϕα(Uα)
d(ϕ−1)∗(ραω) =

∫

∂ϕα(Uα)
(ϕ−1)∗(ραω)

=
∫

ϕα(Uα∩∂M)
(ϕ−1)∗(ραω) =

∫

∂M
ραω ,

dove abbiamo usato (4.6) per Rn ed Hn. &'

Osservazione 4.3.10. In R2, se ω = f dx+g dy allora dω =
(

∂g
∂x −

∂f
∂y

)
dx∧dy,

per cui il classico Teorema di Gauss-Green diventa un caso particolare del
Teorema di Stokes.

In R3, se ω = f3 dx1∧dx2+f1 dx2∧dx3+f2 dx3∧dx1 è una 2-forma allora
dω =

(
∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

)
dx1∧dx2∧dx3; quindi identificando ω con il campo

vettoriale di coordinate (f1, f2, f3) vediamo che anche il classico teorema della
divergenza è un caso particolare del teorema di Stokes.

Osservazione 4.3.11. Se f è una funzione C∞ in un aperto di R3, allora
df = ∂f

∂x1 dx1 + ∂f
∂x2 dx2 + ∂f

∂x3 dx3, per cui in un certo senso (saremo più
precisi quando introdurremo le metriche Riemanniane) possiamo identificare
df con il gradiente di f . Viceversa, a un campo vettoriale X = (f1, f2, f3) pos-
siamo associare la 1-forma η = f1 dx1+f2 dx2+f3 dx3. In questo caso abbiamo
dη =

(
∂f2
∂x1 − ∂f1

∂x2

)
dx1∧dx2+

(
∂f3
∂x2 − ∂f2

∂x3

)
dx2∧dx3+

(
∂f1
∂x3 − ∂f3

∂x1

)
dx3∧dx1,

per cui dη rappresenta il rotore del campo X. Infine, se al campo X associamo
anche la 2-forma ω = f3 dx1 ∧ dx2 + f1 dx2 ∧ dx3 + f2 dx3 ∧ dx1, allora dω
rappresenta chiaramente la divergenza di X.

In particolare, la relazione d◦d = O ha come casi particolari i fatti ben noti
che il rotore di un gradiente o la divergenza di un rotore sono identicamente
nulli.

4.4 Il lemma di Poincaré

In questa sezione calcoleremo la coomologia di Rn per ogni n ≥ 0, come
conseguenza della seguente proposizione:

Proposizione 4.4.1. Sia M una varietà. Indichiamo con π:M × R → M la
proiezione sul primo fattore, e con σ:M → M × R la sezione σ(p) = (p, t0),
dove t0 ∈ R è fissato. Allora π∗:H•(M) → H•(M ×R) è un isomorfismo, con
inversa data da σ∗:H•(M × R) → H•(M).
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Dimostrazione. Da π ◦σ = id segue subito σ∗ ◦π∗ = id; dobbiamo dimostrare
che π∗ ◦ σ∗ = id a livello di coomologia, tenendo presente che σ ◦ π /= id e
che π∗ ◦ σ∗ /= id al livello delle forme. Per avere la tesi costruiremo allora un
operatore d’omotopia fra id e π∗ ◦ σ∗, e applicheremo la Proposizione 4.1.15.

Ogni forma differenziale in M ×R si scrive in modo unico come combina-
zione lineare dei seguenti due tipi di forme:

f π∗η e f π∗η ∧ dt ,

dove f ∈ C∞(M × R) e η ∈ A•(M). Per ogni k ≥ 0 definiamo allora
K:Ak(M × R) → Ak−1(M × R) ponendo

K(f π∗η) = O e K(f π∗η ∧ dt) = (−1)k−1

(∫ s

t0

f(p, t) dt

)
π∗η ;

dobbiamo verificare che K è un operatore d’omotopia.
Cominciamo con ω ∈ Ak(M × R) della forma ω = f π∗η con η ∈ Ak(M).

Prima di tutto notiamo che possiamo scrivere

df = ψ +
∂f

∂t
dt ,

dove ψ in coordinate locali è data da ψ =
∑n

j=1
∂f
∂xj π∗(dxj), e quindi è

combinazione lineare di forme del primo tipo. Quindi

(dK −Kd)ω = −Kdω = −K (fd(π∗η) + df ∧ π∗η)

= −K

(
fπ∗(dη) + ψ ∧ π∗η + (−1)k ∂f

∂t
π∗η ∧ dt

)

=
(∫ s

t0

∂f

∂t
(p, t) dt

)
π∗η = f π∗η − f(·, t0)π∗η

= (id−π∗ ◦ σ∗)ω ,

per cui in questo caso ci siamo.
Prendiamo adesso ω = f π∗η ∧ dt con η ∈ Ak−1(M). Notando che

σ∗(dt) = d(σ∗t) = d(t ◦ σ) = dt0 = O e che

dKω = (−1)k−1d
[(∫ s

t0

f(p, t) dt

)
π∗η

]

= K(ψ ∧ π∗η ∧ dt) + ω + (−1)k−1

(∫ s

t0

f(p, t) dt

)
dπ∗η ,

troviamo

(dK −Kd)ω = dKω −K(ψ ∧ π∗η ∧ dt + fd(π∗η) ∧ dt)

= K(ψ ∧ π∗η ∧ dt) + ω + (−1)k−1

(∫ s

t0

f(p, t) dt

)
dπ∗η

−K(ψ ∧ π∗η ∧ dt)− (−1)k−1

(∫ s

t0

f(p, t) dt

)
dπ∗η

= ω = (id−π∗ ◦ s∗)ω ,
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e ci siamo. &'

Corollario 4.4.2 (Lemma di Poincaré). La coomologia di Rn è data da

Hk(Rn) =
{ R se k = 0 ,

O se k > 0 .

Dimostrazione. Segue subito dall’Esempio 4.2.3 e dalla Proposizione 4.4.1,
ragionando per induzione su n. &'

Esempio 4.4.3. La coomologia di Sn. Scriviamo Sn = U0 ∪ U1, dove

U0 = {x ∈ Sn | xn+1 > −ε} ⊂ Rn+1 e U1 = {x ∈ Sn | xn+1 < ε}

per qualche ε > 0. Nota che U0 ∩ U1 è diffeomorfo a Sn−1 × R; quindi la
Proposizione 4.4.1 implica H•(U0 ∩ U1) = H•(Sn−1). Inoltre U0 e U1 sono
diffeomorfi a Rn, per cui H•(U0) = H•(U1) = H•(Rn). La successione di
Mayer-Vietoris

Hk(U0)⊕Hk(U1) Hk(U0 ∩ U1) Hk+1(Sn) Hk+1(U0)⊕Hk+1(U1)............................ ............ ...................................... ............d∗ ................................................ ............

diventa
O Hk(Sn−1) Hk+1(Sn) O................................................................. ............ ............................................................... ............d∗ .................................................................................................... ............

per k ≥ 1 e

R⊕ R R H1(Sn) O........................................................................................ ............
ι∗1 − ι∗0 ................................................................................................................... ............d∗ ................................................................................................................... ............

per k = 1, dove (ι∗1−ι∗0)(λ, µ) = µ−λ, per cui ι∗1−ι∗0 è surgettiva. L’esattezza di
questa successione implica allora (perché?) H1(Sn) = O, mentre la successione
precedente ci dice che Hk(Sn) = Hk−1(Sn−1) per ogni k ≥ 2. Ragionando
per induzione e usando l’Esempio 4.2.5 otteniamo quindi

Hk(Sn) =
{ R se k = 0, n ,

O altrimenti.

Dimostriamo ora un’altra proprietà importante della coomologia di de
Rham: l’invarianza per omotopia.

Definizione 4.4.4. Un’omotopia liscia fra due applicazioni differenziabili F0,
F1:M → N è un’applicazione differenziabile H:M × R → N tale che
F0 = H(·, 0) e F1 = H(·, 1). In tal caso diremo che F0 e F1 sono C∞-omotope.

Proposizione 4.4.5. Due applicazioni C∞-omotope inducono lo stesso mor-
fismo in coomologia.
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Dimostrazione. Sia H:M × R → N un’omotopia liscia fra due applicazioni
differenziabili F0, F1:M → N . Indichiamo con π:M × R → M la proiezione
sul primo fattore, e con σ0, σ1:M → M × R le sezioni σj(p) = (p, j) per
j = 0, 1. Notiamo che σ∗0 = σ∗1 in coomologia, in quanto (Proposizione 4.4.1)
sono entrambe uguali a (π∗)−1; inoltre, Fj = H ◦ σj per j = 0, 1. Quindi

F ∗0 = (H ◦ σ0)∗ = σ∗0 ◦H∗ = σ∗1 ◦H∗ = (H ◦ σ1)∗ = F ∗1 .

&'

Definizione 4.4.6. Diremo che due varietà M e N sono C∞-omotopicamente
equivalenti se esistono due applicazioni differenziabili F :M → N e G:N → M
tali che F ◦ G e G ◦ F siano C∞-omotope all’identità di N , rispettiva-
mente M . Una varietà C∞-omotopicamente equivalente a un punto è detta
C∞-contraibile.

Osservazione 4.4.7. Si può dimostrare che due varietà sono C∞-omotopica-
mente equivalenti se e solo se sono topologicamente omotopicamente equi-
valenti (cioè tramite omotopie solo continue). Questo perché ogni applica-
zione continua fra due varietà è topologicamente omotopa a un’applicazione
differenziabile (vedi l’Esercizio ??).

Definizione 4.4.8. Una retrazione liscia di una varietà M su una sottova-
rietà S è un’applicazione differenziabile r:M → S che sia l’identità su S, cioè
tale che r ◦ ι:S → S sia l’identità di S, dove ι:S → M è l’inclusione. Se esiste
una retrazione liscia r di M su S diremo che S è un retratto liscio di M . Se
inoltre la composizione ι◦ r:M → M è C∞-omotopa all’identità di M diremo
che S è un retratto di deformazione liscio di M . Chiaramente in questo caso
M e S sono C∞-omotopicamente equivalenti.

Corollario 4.4.9. Due varietà C∞-omotopicamente equivalenti hanno uguale
coomologia di de Rham. In particolare, se S è un retratto di deformazione di M
allora H•(M) = H•(S).

Dimostrazione. Segue subito dalla Proposizione 4.4.5. &'

Corollario 4.4.10. Sia π:E → M un fibrato vettoriale su una varietà M .
Allora H•(E) = H•(M).

Dimostrazione. Identifichiamo M con l’immagine della sezione nulla; per il
precedente corollario ci basta dimostrare che la sezione nulla è un retratto
di deformazione di E. Sia ρ ∈ C∞(R) tale che ρ|(−∞,0] ≡ 0, ρ|[1,+∞) ≡ 1, e
ρ|[0,1]: [0, 1] → [0, 1] è un diffeomorfismo. Definiamo H:E × R → E ponendo
H(v, t) = ρ(t)v; si vede subito che H è un’omotopia liscia fra ι ◦ r e l’identità,
dove r(v) = Oπ(v) è la retrazione ovvia di E sulla sezione nulla, e ι è l’inclu-
sione della sezione nulla in E. &'
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4.5 Coomologia a supporto compatto

Introduciamo ora un altro tipo di coomologia.

Definizione 4.5.1. Sia M una varietà. Il supporto supp(ω) di una for-
ma ω ∈ A•(M) è la chiusura dell’insieme dei p ∈ M per cui ωp /= O.
Indichiamo con A•

c(M) ⊆ A•(M) l’insieme delle forme a supporto compatto
in M . A volte scriveremo C∞c (M) al posto di A0

c(M).
La restrizione d:A•

c(M) → A•
c(M) del differenziale esterno ad A•

c(M) è
chiaramente ancora un differenziale sul complesso graduato A•

c(M). Ponia-
mo Z•

c (M) = Ker d|A•
c(M) e B•

c (M) = Im d|A•
c(M); la corrispondente coo-

mologia H•
c (M) = Z•

c (M)/B•
c (M) è detta coomologia a supporto compatto

di M .

Osservazione 4.5.2. Chiaramente H•
c (M) = H•(M) per ogni varietà compat-

ta M ; ma su varietà non compatte le due coomologie possono essere diverse.
Infatti, una forma a supporto compatto è chiusa se e solo se è chiusa come
forma tout-court, cioè Z•

c (M) = Z•(M) ∩ A•
c(M); ma una forma a supporto

compatto esatta come forma non è detto che sia esatta come forma a suppor-
to compatto, in quanto potrebbe essere il differenziale esterno solo di forme
non a supporto compatto. In particolare, B•

c (M) potrebbe essere diverso da
B•(M) ∩A•

c(M).

Esempio 4.5.3. Calcoliamo la coomologia a supporto compatto di R. Le 0-
forme sono funzioni. L’unica 0-forma esatta è la funzione nulla; una 0-forma
f è chiusa se e solo se df ≡ 0, cioè se e solo se è costante. Ma l’unica funzione
costante a supporto compatto in R è la funzione nulla; quindi H0

c (R) = O.
Le 1-forme a supporto compatto su R sono tutte (banalmente) chiu-

se; vogliamo capire quando sono esatte come forme a supporto compatto.
Supponiamo che ω = df , con f ∈ A0

c(R); allora
∫

R
ω =

∫ +∞

−∞
f ′(t) dt = 0 ,

perché f è a supporto compatto. Quindi l’integrale su R definisce un’appli-
cazione lineare

∫
R:H1

c (R) → R, chiaramente surgettiva; dimostriamo che è
anche iniettiva. Sia ω = g dt ∈ A1

c(R) con
∫

R ω = 0. Allora g ∈ C∞c (R) ha
supporto compatto, contenuto diciamo nell’intervallo [a, b]. Poniamo

f(t) =
∫ t

−∞
g(s) ds ;

essendo
∫

R g dt = 0, segue che f ha supporto compatto contenuto in [a, b], e
chiaramente df = ω. Quindi

∫
R:H1

c (R) → R è un isomorfismo, e in particolare
H1

c (R) = R. Riassumendo,

Hk
c (R) =

{
R se k = 1 ,
O se k /= 1 .
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Nota che il generatore naturale di H1
c (R) è rappresentato da una qualsiasi

1-forma a supporto compatto con integrale 1.

Osservazione 4.5.4. Il ragionamento fatto all’inizio dell’esempio precedente
mostra che H0

c (M) = Rc per ogni varietà M , dove c ≥ 0 è il numero di
componenti connesse compatte di M .

Vogliamo ora introdurre una successione di Mayer-Vietoris per la coomolo-
gia a supporto compatto. Lo strumento principale è l’operatore di estensione,
che non era disponibile per la coomologia usuale.

Definizione 4.5.5. Sia U ⊆ M un aperto di una varietà M , e indichiamo
con j:U ↪→ M l’inclusione. L’operatore di estensione j∗:A•

c(U) → A•
c(M) è

l’operatore che associa a una forma ω a supporto compatto in U la forma j∗ω
a supporto compatto in M ottenuta estendendo a zero ω fuori da U .

Sia U = {U0, U1} un ricoprimento aperto di una varietà M composto di
due soli aperti U0, U1 ⊆ M . Usando l’operatore di estensione possiamo definire
la successione di Mayer-Vietoris a supporto compatto

O A•
c(M) A•

c(U0)⊕A•
c(U1) A•

c(U0 ∩ U1) O....................................................... ................................................................................
s∗ ............................................................................................

δ ................................................................... , (4.7)

dove s∗:A•
c(U0)⊕A•

c(U1) → A∗c(M) è definita da s∗(ω0, ω1) = j∗ω0 + j∗ω1, e
δ:A•

c(U0 ∩ U1) → A•
c(U0)⊕A•

c(U1) è definita da δ(η) = (−j∗η, j∗η).

Teorema 4.5.6. Sia U = {U0, U1} un ricoprimento aperto di una varietà M .
Allora la successione di Mayer-Vietoris a supporto compatto (4.7) è esatta, e
quindi induce una successione esatta lunga in coomologia

· · · Hk
c (M) Hk

c (U0)⊕Hk
c (U1) Hk

c (U0 ∩ U1) Hk−1
c (M) · · ·........................................................................ ........................................................................ ............................................. ..................................................

d∗ ............................................................

(4.8)

Dimostrazione. L’esattezza di (4.7) è evidente tranne al primo punto. Sia
{ρ0, ρ1} una partizione dell’unità subordinata a U . Data ω ∈ A•

c(M), notiamo
che ρ0ω è ben definita come forma a supporto compatto in U0; analogamente
ρ1ω ∈ A•

c(U0). Inoltre,

s∗(ρ0ω, ρ1ω) = (ρ0 + ρ1)ω = ω ,

per cui (4.7) è esatta. L’ultima affermazione segue dal Teorema 4.1.11. &'

Osservazione 4.5.7. Calcoliamo esplicitamente il morfismo di connessione d∗
in (4.8). Sia {ρ0, ρ1} una partizione dell’unità subordinata al ricoprimen-
to aperto {U0, U1}, e sia [ω] ∈ Hk−1

c (M) rappresentata dalla forma chiusa
ω ∈ Zk−1

c (M). La forma ω è immagine tramite s∗ della coppia (ρ0ω, ρ1ω), il
cui differenziale esterno è

(
d(ρ0ω),d(ρ1ω)

)
. Notiamo che

d(ρjω) = dρj ∧ ω
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in quanto ω è chiusa, e che dρj ≡ O in M \ (U0 ∩U1); quindi le forme d(ρjω)
sono a supporto compatto in U0∩U1, e d(ρ0ω) = −d(ρ1ω) in U0∩U1. Dunque
d∗[ω] è rappresentato dalla forma chiusa τ ∈ A•

c(U0 ∩ U1) data da

τ = dρ1 ∧ ω = −dρ0 ∧ ω .

Per arrivare a calcolare la coomologia a supporto compatto di Rn ci serve
un risultato analogo alla Proposizione 4.4.1:

Proposizione 4.5.8. Per ogni varietà M , i gruppi di coomologia a supporto
compatto H•

c (M × R) e H•−1
c (M) sono isomorfi.

Dimostrazione. Iniziamo definendo un morfismo e∗:H•
c (M) → H•+1

c (M×R).
Sia e = e(t) dt ∈ A1

c(R) un generatore della coomologia a supporto compatto
di R; per quanto visto nell’Esempio 4.5.3 questo vuol dire che e ∈ C∞c (R) e∫

R e(t) dt = 1. Definiamo e#:A•
c(M) → A•+1

c (M × R) ponendo

e#(η) = η ∧ e .

Essendo e una forma chiusa, d ◦ e# = e# ◦ d, per cui e# induce un morfismo
graduato in coomologia e∗:H•

c (M) → H•+1
c (M × R).

Per trovare un morfismo in direzione opposta, notiamo che ogni forma
differenziale a supporto compatto in M × R si scrive in modo unico come
combinazione lineare dei seguenti due tipi di forme:

f π∗η e f π∗η ∧ dt ,

con f ∈ C∞c (M × R) e η ∈ A•(M), dove π:M × R → M è la proiezione sul
primo fattore. Definiamo π#:A•

c(M × R) → A•−1
c (M) ponendo

π#(f π∗η) = O e π#(f π∗η ∧ dt) =
(∫ +∞

−∞
f(p, t) dt

)
η .

Prima di tutto osserviamo che π# commuta con d. Infatti, notiamo che
possiamo scrivere

df = ψ +
∂f

∂t
dt ,

dove ψ in coordinate locali è data da ψ =
∑n

j=1
∂f
∂xj π∗(dxj), e quindi è com-

binazione lineare di forme del primo tipo. Dunque se fπ∗η ∈ Ak
c (M × R) è

una forma del primo tipo otteniamo

π#

(
d(f π∗η)

)
= π#(ψ ∧ π∗η) + (−1)kπ#

(
∂f

∂t
π∗η ∧ dt

)

= (−1)k

(∫ ∞

−∞

∂f

∂t
(p, t) dt

)
η = O = dπ#(f π∗η) ,

in quanto
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∫ ∞

−∞

∂f

∂t
(p, t) dt = lim

t→+∞

(
f(p, t)− f(p,−t)

)
= 0 (4.9)

perché f è a supporto compatto. Analogamente, se ω = f π∗η∧dt ∈ Ak
c (M×R)

è una forma del secondo tipo, otteniamo

π#(dω) = π#(ψ ∧ π∗η ∧ dt + fπ∗dη ∧ dt)

= d
(∫ ∞

−∞
f(·, t) dt

)
∧ η +

(∫ +∞

−∞
f(p, t) dt

)
dη = dπ#(ω) .

Quindi π# ◦ d = d ◦ π#, e, come preannunciato, π# induce un morfismo
graduato in coomologia π∗:H•

c (M × R) → H•−1
c (M).

Vogliamo dimostrare che e∗ e π∗ sono isomorfismi, l’uno inverso dell’al-
tro. Per costruzione, π# ◦ e# = id, e quindi π∗ ◦ e∗ = id. Dunque per
far vedere che e∗ ◦ π∗ = id, ci basta costruire un operatore di omotopia
K:A•

c(M × R) → A•−1
c (M × R) fra id e e# ◦ π#.

Per ogni k ≥ 0 definiamo K:Ak(M × R) → Ak−1(M × R) ponendo
K(f π∗η) = O e

K(f π∗η ∧ dt) = (−1)k−1

(∫ s

−∞
f(p, t) dt− E(t)

∫ ∞

−∞
f(p, t) dt

)
π∗η ,

dove

E(t) =
∫ t

−∞
e(s) ds ;

dobbiamo verificare che K è un operatore d’omotopia.
Cominciamo con ω ∈ Ak(M × R) della forma ω = f π∗η con η ∈ Ak(M).

Allora

(dK −Kd)ω = −Kdω = −K (fd(π∗η) + df ∧ π∗η)

= −K

(
fπ∗(dη) + ψ ∧ π∗η + (−1)k ∂f

∂t
π∗η ∧ dt

)

=
(∫ s

−∞

∂f

∂t
(p, t) dt

)
π∗η = f π∗η = ω

= (id−e# ◦ π#)ω ,

per cui in questo caso ci siamo.
Prendiamo adesso ω = f π∗η ∧ dt con η ∈ Ak−1(M). Allora

(id−e# ◦ π#)ω = fπ∗η ∧ dt−
(∫ ∞

−∞
f(p, t) dt

)
π∗ ∧ e ;

dKω = (−1)k−1d
[(∫ s

−∞
f(p, t) dt− E(t)

∫ ∞

−∞
f(p, t) dt

)
π∗η

]

= (−1)k−1

(∫ s

−∞
f(p, t) dt

)
π∗dη + fπ∗η ∧ dt
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−(−1)k−1E(t)
(∫ ∞

−∞
f(p, t) dt

)
π∗dη

−
(∫ ∞

−∞
f(p, t) dt

)
π∗η ∧ e + K(ψ ∧ π∗η ∧ dt) ;

Kdω = K(ψ ∧ π∗η ∧ dt + fπ∗dη ∧ dt)

= K(ψ ∧ π∗η ∧ dt) + (−1)k−1

(∫ s

−∞
f(p, t) dt

)
π∗dη

−(−1)k−1E(t)
(∫ ∞

−∞
f(p, t) dt

)
π∗dη ,

e ci siamo. &'

Corollario 4.5.9 (Lemma di Poincaré per la coomologia a supporto
compatto). La coomologia a supporto compatto di Rn è data da

Hk(Rn) =
{

R se k = n ,
O se k /= n .

Dimostrazione. Segue subito dall’Esempio 4.5.3 e dalla Proposizione 4.5.8,
ragionando per induzione su n. &'

4.6 La dualità di Poincaré

Il ragionamento fatto nell’Esempio 4.4.3 suggerisce che, usando la successio-
ne di Mayer-Vietoris, potrebbe essere possibile ricostruire la coomologia di
una varietà partendo dalla combinatoria di un atlante con domini delle car-
te diffeomorfi a Rn e con intersezioni controllate. Lo strumento tecnico che
permette di realizzare questo programma è quello di buon ricoprimento.

Definizione 4.6.1. Un buon ricoprimento (o ricoprimento di Leray) di una
varietà n-dimensionale M è un ricoprimento aperto {Uα} di M tale che ogni
intersezione finita non vuota Uα1 ∩· · ·∩Uαr sia diffeomorfa a Rn. Una varietà
con un buon ricoprimento finito sarà detta di tipo finito.

Definizione 4.6.2. Un insieme diretto è un insieme I con un ordine parziale
< tale che per ogni a, b ∈ I esiste c ∈ I con c < a e c < b. Un sottoinsieme
J ⊆ I è cofinale se per ogni i ∈ I esiste j ∈ J tale che j < i.

Esempio 4.6.3. L’insieme dei ricoprimenti aperti di uno spazio topologico è
un insieme diretto rispetto all’ordine parziale V < U se e solo se V è un
raffinamento di U , perché due ricoprimenti aperti U = {Uα} e V = {Vβ}
hanno U ∩ V = {Uα ∩ Vβ} come raffinamento comune.

Esempio 4.6.4. Un altro esempio di insieme diretto che ci servirà in seguito
è dato dalla famiglia degli intorni aperti di un punto in uno spazio topologi-
co, rispetto all’ordine parziale dato dall’inclusione. In particolare, un sistema
fondamentale di intorni è esattamente un sottoinsieme cofinale.
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Il risultato tecnico che ci servirà è il seguente:

Teorema 4.6.5. Ogni varietà ha un buon ricoprimento (e in particolare le
varietà compatte sono di tipo finito). Più precisamente, i buoni ricoprimenti
sono cofinali nell’insieme di tutti i ricoprimenti aperti di una varietà.

Vedremo la dimostrazione completa di questo teorema solo più in là, quan-
do introdurremo delle tecniche di geometria Riemanniana. In breve, introdur-
remo il concetto di aperti geodeticamente convessi, che si comportano come i
convessi di Rn (rispetto alle geodetiche della varietà Riemanniana invece che
ai segmenti); in particolare, l’intersezione di due aperti geodeticamente con-
vessi è ancora geodeticamente convesso, un aperto geodeticamente convesso
è diffeomorfo a Rn, e ogni punto di una varietà ha un sistema fondamentale
d’intorni geodeticamente convessi. È quindi chiaro che ogni ricoprimento aper-
to ammette un raffinamento costrituito da aperti geodeticamente convessi, e
che un ricoprimento aperto costituito da aperti geodeticamente convessi è un
buon ricoprimento.

Come primo esempio di applicazione della procedura di Mayer-Vietoris
dimostriamo la seguente

Proposizione 4.6.6. La coomologia di una varietà di tipo finito (per esempio,
di una varietà compatta) è di dimensione finita.

Dimostrazione. Sia U = {U0, . . . , Ur} un buon ricoprimento finito di M , e
procediamo per induzione su r. Se r = 1, la varietà è diffeomorfa a Rn, e la
tesi segue dal lemma di Poincaré (Corollario 4.4.2). Supponiamo allora la tesi
vera per tutte le varietà con un buon ricoprimento composto da r − 1 aperti.
Poniamo U = U1∪· · ·∪Ur−1 e V = Ur. Per ipotesi induttiva, le coomologie di
U e di V hanno dimensione finita. Inoltre, {U1∩Ur, . . . , Ur−1∩Ur} è un buon
ricoprimento di U ∩ V composto da r − 1 aperti; quindi anche la coomologia
di U ∩ V ha dimensione finita. Dalla successione di Mayer-Vietoris

· · · Hk−1(U ∩ V ) Hk(U ∪ V ) Hk(U)⊕Hk(V ) · · ·.................................................................... ............ ................................................................. ............d∗ .......................................................................................... ............r ..................................................... ............

deduciamo
Hk(U ∪ V ) ∼= Ker r ⊕ Im r ∼= Im d∗ ⊕ Im r .

Siccome Hk(U), Hk(V ) e Hk−1(U ∩V ) hanno dimensione finita, allora anche
Hk(U ∪ V ) = Hk(M) ha dimensione finita, ed è fatta. &'

Definizione 4.6.7. Un’applicazione bilineare 〈· , ·〉:V ×W → R è non dege-
nere se 〈v, w〉 = 0 per ogni w ∈ W implica v = O, e 〈v, w〉 = 0 per ogni v ∈ V
implica w = O.

Il nostro prossimo obiettivo è un’importante dualità fra la coomologia
usuale e la coomologia a supporto compatto.
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Lemma 4.6.8. Siano V e W due spazi vettoriali di dimensione finita, e
〈· , ·〉:V × W → R un’applicazione bilineare. Allora 〈· , ·〉 è non degenere se
e solo se l’applicazione ψ:V → W ∗ data da ψ(v) = 〈v, ·〉 è un isomorfismo.

Dimostrazione. Supponiamo che 〈· , ·〉 sia non degenere. Per definizione, ψ è
iniettiva, per cui dimV ≤ dimW ∗; per concludere la dimostrazione ci ba-
sta far vedere che dimV = dimW ∗. La non-degenericità implica che anche
l’applicazione w 5→ 〈·, w〉 è iniettiva; quindi dimW ≤ dimV ∗, e ci siamo.

Viceversa, supponiamo che ψ sia un isomorfismo; in particolare, 〈v, w〉 = 0
per ogni w ∈ W implica v = O, e dim V = dimW ∗. Inoltre, anche
ψT :W = (W ∗)∗ → V ∗ è un isomorfismo. Ora, ψT (w)(v) = ψ(v)(w) = 〈v, w〉;
quindi ψT (w) = 〈·, w〉, e l’iniettività di ψT conclude la dimostrazione della
non-degenericità di 〈· , ·〉. &'

Vogliamo costruire un’applicazione bilineare non degenere definita su
gruppi di coomologia. La prima osservazione è che l’identità

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

valida per ogni ω ∈ Ak(M) e η ∈ Ah(M) ci dice che il prodotto esterno di due
forme chiuse è una forma chiusa, e che il prodotto esterno di una forma chiusa
con una forma esatta (a supporto compatto) è una forma esatta (a supporto
compatto). Di conseguenza, il prodotto esterno fra due classi di coomologia è
ben definito, e otteniamo un prodotto ∧:Hk(M)×Hh(M) → Hh+k(M) che
soddisfa tutte le proprietà del prodotto esterno usuale. Inoltre, è ben definito
(perché?) anche il prodotto esterno di ω ∈ Hk(M) con η ∈ Hh

c (M), e il
risultato è una classe a supporto compatto ω ∧ η ∈ Hh+k

c (M).
Sia ora η ∈ An−1

c (M) una forma a supporto compatto su una varietà n-
dimensionale orientata M . Allora non è difficile (Esercizio 4.1) trovare un in-
torno U ⊂ M del supporto di η tale che U sia una varietà con bordo compatta.
Allora il Teorema di Stokes ci dice che

∫

M
dη =

∫

U
dη =

∫

∂U
η = 0 .

Di conseguenza, l’integrazione di n-forme a supporto compatto induce un’ope-
ratore lineare

∫
M :Hn

c (M) → R. In particolare, per ogni 0 ≤ k ≤ n = dimM
otteniamo un’applicazione bilineare

∫
:Hk(M)⊗Hn−k

c (M) → R

data da
(ω, η) 5→

∫

M
ω ∧ η ;

la dualità di Poincaré dirà che questa applicazione è non degenere. Per
dimostrarlo ci serve la seguente
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Proposizione 4.6.9. Siano U , V ⊂ M due aperti di una varietà n-dimen-
sionale orientata M . Allora il seguente diagramma

··· Hk(U∪V ) Hk(U)⊕Hk(V ) Hk(U∩V ) Hk+1(U∪V ) ···
⊗ ⊗ ⊗ ⊗

··· Hn−k
c (U∪V ) Hn−k

c (U)⊕Hn−k
c (V ) Hn−k

c (U∩V ) Hn−k−1
c (U∩V ) ···

R R R R

................................................ ............ .............................................................................. ............ ........................................................................................ ............ ................................................................................ ............d∗ ............................................. ............

............................................... .......................................................
s∗

.................................................................
δ ...................................................................

d∗ .............................................

..................................................
...
.........
...

∫
U∪V

..................................................
...
.........
...

∫
U

+
∫

V

..................................................
...
.........
...

∫
U∩V

..................................................
...
.........
...

∫
U∪V

ottenuto mettendo insieme le due successioni di Mayer-Vietoris, è commuta-
tivo a meno del segno.

Dimostrazione. La commutatività nel quadrato a sinistra è conseguenza della
formula

∫

U∩V
ω ∧ (j∗η1 + j∗η2) =

∫

U
ω|U ∧ η1 +

∫

V
ω|V ∧ η2 ,

che è chiaramente verificata per ogni ω ∈ Hk(U ∩ V ), η1 ∈ Hk
c (U) e

η2 ∈ Hk
c (V ).

La commutatività nel quadrato centrale è conseguenza della formula
∫

U
ω1 ∧ (−j∗η) +

∫

V
ω2 ∧ j∗η =

∫

U∩V
(ω2|U∩V − ω1|U∩V ) ∧ η ,

chiaramente valida per ogni ω1 ∈ Hk(U), ω2 ∈ Hk(V ) ed η ∈ Hk
c (U ∩ V ).

La commutatività a meno del segno nel quadrato a destra è conseguenza
della formula ∫

U∩V
ω ∧ d∗η = (−1)k+1

∫

U∪V
d∗ω ∧ η ,

per ω ∈ Hk(U ∩ V ) e η ∈ Hn−k−1
c (U ∪ V ), che dobbiamo dimostrare.

Sia {ρU , ρV } una partizione dell’unità subordinata al ricoprimento {U, V }.
Quanto visto nell’Osservazione 4.5.7 ci dice che

∫

U∩V
ω ∧ d∗η =

∫

U∩V
ω ∧ dρV ∧ η = (−1)k

∫

U∩V
dρV ∧ ω ∧ η .

D’altra parte, l’Osservazione 4.2.2 ci dice che
∫

U∩V
d∗ω ∧ η = −

∫

U∩V
dρV ∧ ω ∧ η ,

e ci siamo. &'

Teorema 4.6.10 (Dualità di Poincaré). Sia M una varietà n-dimensionale
orientata di tipo finito. Allora per ogni 0 ≤ k ≤ n l’applicazione bilineare∫

M :Hk(M)×Hn−k
c (M) → R è non degenere. In particolare,

Hk(M) ∼= Hn−k
c (M)∗ (4.10)

per ogni 0 ≤ k ≤ n.
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Dimostrazione. Procediamo per induzione sulla cardinalità di un buon rico-
primento {U1, . . . , Ur} di M . Se r = 1, la varietà M è diffeomorfa a Rn, per
cui la tesi è ovvia per k > 0, grazie ai Corollari 4.4.2 e 4.5.9. Per k = 0, sia
η ∈ Hn

c (M) con
∫

M η = 1; allora
∫

M :H0(M)×Hn
c (M) → R è data da

(a, bη) 5→ a

∫

M
bη = ab ,

che è chiaramente non degenere.
Supponiamo allora il teorema vero per tutte le varietà con un buon rico-

primento composto da r− 1 aperti, e poniamo U = U1 ∪ · · · ∪Ur−1 e V = Ur.
Come nella dimostrazione della Proposizione 4.6.6 si verifica facilmente che U ,
V e U ∩V hanno un buon ricoprimento costituito da al più r−1 aperti; quindi
il Teorema è vero per U , V e U ∩ V . La Proposizione 4.6.9 e il Lemma 4.6.8
ci forniscono allora un diagramma commutativo della forma

Hk−1(U)⊕Hk−1(V ) Hk−1(U∩V ) Hk(M) Hk(U)⊕Hk(V ) Hk(U∩V )

Hn−k+1
c (U)∗⊕Hn−k+1

c (V )∗ Hn−k+1
c (U∩V )∗ Hn−k

c (M)∗ Hn−k
c (U)∗⊕Hn−k

c (V )∗ Hn−k
c (U∩V )∗

................................................................................ ............ ............................................................ ............ .................................................................................................. ............ ........................................................................................ ............

............................ ............ ......................... ............ ............................................. ............ ................................... ............

............................................................
...
.........
...

............................................................
...
.........
...

............................................................
...
.........
...

............................................................
...
.........
...

............................................................
...
.........
...

in cui la prima, seconda, quarta e quinta freccia verticale sono degli isomor-
fismi. Il Lemma 4.1.17 ci assicura allora che anche la terza freccia centrale è
un isomorfismo, e la tesi segue subito dal Lemma 4.6.8. &'

Possiamo spingere questo argomento anche più in là:

Teorema 4.6.11. Sia M una varietà n-dimensionale orientata. Allora per
ogni 0 ≤ k ≤ n l’applicazione

∫
M :Hk(M) → Hn−k

c (M)∗ è un isomorfismo.

Dimostrazione. Il teorema precedente ci dice che l’enunciato è vero per ogni
varietà di tipo finito. Supponiamo che M sia l’unione disgiunta di una fami-
glia numerabile di varietà n-dimensionali orientate di tipo finito Mk; allora
l’enunciato vale anche per M . Infatti, le restrizioni inducono chiaramente iso-
morfismi r:H•(M) →

∏
k H•(Mk) ed s:H•

c (M) →
⊕

k H•
c (Mk), e quindi

(ricordando che il duale della somma diretta è il prodotto diretto dei duali;
vedi la Proposizione ??) un isomorfismo s∗:

∏
k H•

c (Mk)∗ → H•
c (M)∗. Usando

il Teorema 4.6.10 troviamo il diagramma commutativo

H•(M)
∏

k H•(Mk)

Hn−•
c (M)∗

∏
k Hn−•

c (Mk)∗

...................................................................................................................... ............r
..............................................................................................................
...
.........
...

∫
M

..............................................................................................................
...
.........
...

∏
k

∫
Mk

............................................................................................
s∗

Quindi
∫

M = s∗ ◦
(∏

k

∫
Mk

)
◦ r è un isomorfismo, e la tesi segue in questo

caso.
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Sia ora M orientata qualsiasi, e U = {Uα} un buon ricoprimento numera-
bile di M . Siccome M ha una base numerabile, e i buoni ricoprimenti sono
cofinali nella famiglia dei ricoprimenti aperti, possiamo anche supporre che
{Uα} sia una base della topologia di M .

Sia f ∈ C∞(M) una esaustione (cioè f−1
(
(−∞, a]

)
è compatto per ogni

a ∈ R). Per ogni m ∈ Z poniamo

Am = {p ∈ M | m ≤ f(p) ≤ m + 1} ,

A′m = {p ∈ M | m− 1
2 < f(p) < m + 3

2} .

Siccome U è una base, ogni punto di Am appartiene a un elemento di U
contenuto in A′m. Ma ciascun Am è compatto; quindi possiamo ricoprire Am

con un numero finito di elementi di U contenuti in A′m. Sia Bm ⊆ A′m la loro
unione; in particolare, Bm è di tipo finito.

Per costruzione, Bm può intersecare Bm′ solo se m′ = m ± 1 (perché?);
quindi se poniamo

U =
⋃

k∈Z
B2k e V =

⋃

k∈Z
B2k+1 ,

allora U e V sono unione disgiunta di varietà di tipo finito. In particolare,
per quanto visto sopra, la tesi vale per U e V . Inoltre, U ∩ V è l’unione
disgiunta delle varietà B2k ∩B2k+1 e B2k ∩B2k−1 con k ∈ Z, che sono ancora
di tipo finito (perché?); quindi la tesi vale anche per U∩V . Allora l’argomento
usato nella dimostrazione del Teorema 4.6.10 implica che la tesi vale anche
per U ∪ V = M , e abbiamo finito. &'

Osservazione 4.6.12. I gruppi di coomologia delle varietà di tipo finito hanno
dimensione finita (Proposizione 4.6.6); quindi prendendo i duali si ha anche

Hk
c (M) ∼= Hn−k(M)∗

per tutte le varietà orientabili di tipo finito. Questo non è necessariamente
vero per le varietà non di tipo finito.

In realtà, si può dimostrare che Hk(M) ∼= Hn−k
c (M)∗ vale per tutte le

varietà, non solo quelle di tipo finito, mentre su varietà con coomologia di
dimensione infinita non è detto che Hk

c (M) sia isomorfo a Hn−k(M)∗.

Corollario 4.6.13. Sia M una varietà compatta di dimensione n. Allora
(i) se M è orientabile allora Hn(M) = R;
(ii) se M non è orientabile allora Hn(M) = O.

Dimostrazione. La parte (i) segue subito da Hn(M) ∼= H0(M)∗ = R.
Per la parte (ii), sia π: M̃ → M il rivestimento orientabile a due fogli,

e A: M̃ → M̃ l’automorfismo non banale del rivestimento, che sappiamo
invertire l’orientazione.
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Sia ω ∈ An(M); dobbiamo dimostrare che è esatta. Sia ω̃ = π∗ω ∈ An(M̃).
Chiaramente, π ◦A = π implica A∗ ◦π∗ = π∗; quindi A∗ω̃ = ω̃. D’altra parte,
A inverte l’orientazione; quindi

∫

M̃
ω̃ = −

∫

M̃
A∗ω̃ = −

∫

M̃
ω̃ ,

da cui segue
∫

M̃ ω̃ = 0. La dualità di Poincaré implica allora che ω̃ è esatta,
per cui esiste η ∈ An−1(M̃) con ω̃ = dη.

Poniamo η̃ = 1
2 (η + A∗η). Siccome il differenziale esterno commuta con i

pull-back, dη̃ = ω̃; inoltre, essendo A2 = idM̃ , si ha A∗η̃ = η̃. Quest’ultima
affermazione implica che esiste ψ ∈ An−1(M) tale che η̃ = π∗ψ. Infatti, sia
U ⊂ M un aperto ben rivestito; allora esistono esattamente due sezioni σ0,
σ1:U → M̃ del rivestimento su U , collegate da σ1 = A ◦ σ0. Quindi

σ∗1 η̃ = σ∗0A∗η̃ = σ∗0 η̃ ;

dunque ponendo ψ|U = σ∗0 η̃ definiamo una (n − 1)-forma globale ψ su M .
Infine,

dψ|U = dσ∗0 η̃ = σ∗0dη̃ = σ∗0 ω̃ = σ∗0π∗ω = ω|U ,

in quanto π ◦ σ0 = idU , e quindi ω = dψ, come voluto. &'

4.7 Il principio di Mayer-Vietoris

Per estendere gli argomenti basati sulla successione di Mayer-Vietoris dal caso
di ricoprimenti composti da due (o da un numero finito di) aperti al caso
di ricoprimenti numerabili qualunque ci serviranno alcuni nuovi concetti di
algebra omologica.

Definizione 4.7.1. Un complesso doppio è una tripla (K, d, δ) composta da
un gruppo abeliano (spazio vettoriale, eccetera) K con una doppia graduazio-
ne, cioè che si decompone in una somma diretta

K =
⊕

p,q∈N
Kp,q

di sottogruppi (sottospazi, eccetera), e da due morfismi d, δ:K → K che
soddisfano le seguenti proprietà:
(i) d(Kp,q) ⊆ Kp,q+1 e δ(Kp,q) ⊆ Kp+1,q per ogni p, q ∈ N;
(ii) d ◦ d = O e δ ◦ δ = O;
(iii) d ◦ δ = δ ◦ d.
La riga q-esima di un complesso doppio è la successione di morfismi

K0,q K1,q K2,q K3,q · · ·..................................................... ............δ ..................................................... ............δ ..................................................... ............δ .......................................................... ............
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C’è un modo naturale per associare a un complesso doppio (K, d, δ) un
complesso differenziale. Prima di tutto, consideriamo K con la graduazione
K =

⊕
n∈N Kn ottenuta ponendo

Kn =
⊕

p+q=n

Kp,q .

Poi definiamo D:K → K ponendo

D|Kp,q = δ + (−1)pd .

Allora D(Kn) ⊆ Kn+1, e per ogni φ ∈ Kp,q si ha

D
(
D(φ)

)
= D

(
δφ + (−1)pdφ

)
= δδφ + (−1)p+1dδφ + (−1)pδdφ + ddφ = O ;

quindi D ◦D = O e (K, D) è un complesso differenziale.

Definizione 4.7.2. Sia (K, d, δ) un complesso doppio. Il complesso differen-
ziale (K, D) appena definito è il complesso differenziale indotto da (K, d, δ).
La coomologia del complesso doppio (K, d, δ) è per definizione la coomolo-
gia H•

D(K) del complesso (K, D) indotto.

Osservazione 4.7.3. Un elemento φ ∈ Kn è, per definizione, una somma

φ = φ0,n + φ1,n−1 + · · ·+ φn−1,1 + φn,0

con φp,q ∈ Kp,q. Quindi

Dφ = dφ0,n + (δφ0,n − dφ1,n−1) + · · ·+ (δφn−1,1 + (−1)ndφn,0) + δφn,0 ,

per cui

(Dφ)p,q =






dφ0,n se p = 0 e q = n + 1 ;
δφp−1,q + (−1)pdφp,q−1 se 0 < p < n + 1 e q = n + 1− p ;
δφn,0 se p = n + 1 e q = 0 .

In particolare,

Dφ = O ⇐⇒






dφ0,n = O ,
δφp,q = (−1)p dφp+1,q−1 per 0 < p < n ,
δφn,0 = O ;

(4.11)

e

φ = Dη ⇐⇒






φ0,n = dη0,n−1 ,
φp,q = δηp−1,q + (−1)p dηp,q−1 per 0 < p < n ,
φn,0 = δηn−1,0 .

(4.12)

Una utile conseguenza di queste formule è il
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Lemma 4.7.4. Sia (K, d, δ) un complesso doppio con righe esatte. Allora ogni
classe di coomologia [ω] ∈ Hn

D(K) è rappresentata da un elemento ω ∈ K0,n

che è d-chiuso e δ-chiuso.

Dimostrazione. Sia ω0 = ω0,n + · · · + ωn,0 ∈ Kn un D-cociclo rappresen-
tante [ω]. Siccome Dω0 = O, la (4.11) ci dice che δωn,0 = O; l’esattezza
delle righe implica quindi che esiste φ ∈ Kn−1,0 tale che ωn,0 = δφ. Poniamo
ω1 = ω0 − Dφ; allora ω1 è ancora un D-cociclo rappresentante [ω], ma sen-
za componente in Kn,0. La (4.11) dice allora che la componente in Kn−1,1

di ω1 è δ-chiusa; l’esattezza delle righe implica che è anche δ-esatta, e quindi
come prima possiamo sottrarre a ω1 un D-cobordo in modo da ottenere un
rappresentante di [ω] senza componenti né in Kn,0 né in Kn−1,1.

Procedendo in questo modo otteniamo un rappresentante ω ∈ K0,n di [ω];
e usando ancora (4.11) da Dω̃ = O deduciamo dω = O e δω = O, ed è fatta.

&'

L’idea è che un complesso doppio con righe esatte può essere usato per
calcolare la coomologia di un complesso che possa essere inserito come colonna
iniziale del complesso doppio, formando un complesso doppio aumentato:

Definizione 4.7.5. Un complesso doppio aumentato è dato da un complesso
doppio (K, d, δ), un complesso differenziale (A,d) e un morfismo r:A → K
che soddisfa le seguenti condizioni:
(i) r(Aq) ⊆ K0,q per ogni q ∈ N;
(ii) r è iniettivo;
(iii) r ◦ d = d ◦ r;
(iv) δ ◦ r = O.
La riga q-esima di un complesso doppio aumentato è la successione di morfismi

O Aq K0,q K1,q K2,q · · ·............................................................... ............ .......................................................... ............r ..................................................... ............δ ..................................................... ............δ .......................................................... ............

Teorema 4.7.6. Sia r: (A,d) → (K, d, δ) un complesso doppio aumentato. a
righe esatte. Allora r induce un isomorfismo fra H•(A) e H•

D(K).

Dimostrazione. Siccome

D ◦ r = (δ + d) ◦ r = d ◦ r = r ◦ d ,

il morfismo r è un morfismo di cocatene, e quindi induce un morfismo
r∗:H•(A) → H•

D(K) in coomologia; vogliamo dimostrare che r∗ è un iso-
morfismo.

Sia [ω] ∈ Hn
D(K). Per il Lemma 4.7.4, possiamo trovare un δ-cociclo e d-

cociclo ω ∈ K0,n rappresentante [ω]. L’esattezza delle righe ci fornisce allora
un φ ∈ An tale che r(φ) = ω. Inoltre r(dφ) = dr(φ) = dω = O; essendo r
iniettivo troviamo dφ = O. Quindi φ è un d-cociclo tale che r∗[φ] = [ω], per
cui r∗ è surgettiva.
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Per dimostrare che r∗ è iniettivo, sia [φ] ∈ Hn(A) tale che r∗[φ] = O.
Questo vuol dire che dφ = O e r(φ) = Dη per un opportuno η ∈ Kn−1.
Siccome r(φ) ∈ K0,n, la (4.12) ci dice che δηn−1,0 = O. L’esattezza delle righe
ci fornisce ψ ∈ Kn−2,0 tale che δψ = ηn−1,0, e quindi sottraendo Dψ a η
possiamo supporre che ηn−1,0 = O.

Procedendo in questo modo, possiamo trovare η̃ ∈ K0,n−1 tale che
Dη̃ = r(φ). In particolare, δη̃ = O, per cui l’esattezza delle righe ci forni-
sce ψ ∈ An−1 tale che r(ψ) = η̃. Quindi r(dψ) = Dr(ψ) = Dη̃ = r(φ), per
cui l’iniettività di r implica φ = dψ, per cui [φ] = O e r∗ è iniettivo, come
voluto. &'

Vogliamo applicare questo risultato per calcolare la coomologia di de Rham
di una varietà generalizzando la successione di Mayer-Vietoris al caso di un
ricoprimento aperto numerabile. Per far ciò abbiamo bisogno di costruire un
doppio complesso aumentato.

Definizione 4.7.7. Sia U = {Uα}α∈J un ricoprimento aperto numerabile
(o finito) di una varietà M , dove J è un insieme ordinato. Per r ∈ N e
α0, . . . , αr ∈ J poniamo

Uα0...αr = Uα0 ∩ · · · ∩ Uαr .

Per p, q ∈ N poniamo

Cp(U, Aq) =
∏

α0<···<αp

Aq(Uα0...αp) .

Osservazione 4.7.8. Un elemento φ ∈ Cp(U, Aq) è quindi ottenuto assegnando
una q-forma φα0...αp su ciascuna intersezione di p aperti Uα0 , . . . , Uαp ∈ U con
α0 < · · · < αp. Per convenzione, dato φ ∈ Cp(U, Aq) definiremo φα0...αp anche
quando gli indici non sono ordinati ponendo

φατ(0)...ατ(p) = sgn(τ)φα0...αp (4.13)

per ogni permutazione τ ∈ Sp; in particolare φα0...αp = O non appena αi = αj

per qualche i /= j.

Il differenziale esterno induce un differenziale d:Cp(U, Aq) → Cp(U, Aq+1)
agendo componente per componente. Per avere un complesso doppio, ci serve
un differenziale orizzontale.

Lemma 4.7.9. Sia U = {Uα} un ricoprimento aperto numerabile di una
varietà M . Per ogni φ ∈ Cp(U, Aq) poniamo

(δφ)α0...αp+1 =
p+1∑

j=0

(−1)j(φ
α0...α̂j ...αp+1

)|Uα0...αp+1
, (4.14)

dove l’accento circonflesso indica l’omissione di un indice. Allora φ 5→ δφ
definisce un differenziale δ:Cp(U, Aq) → Cp+1(U, Aq) che commuta con d.
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Dimostrazione. Prima di tutto dobbiamo verificare che (4.14) effettivamente
definisca un elemento di Cp+1(U, Aq), cioè che soddisfi (4.13). Chiaramente, è
sufficiente verificare (4.13) per le trasposizioni. Omettendo per semplicità di
scrittura l’operatore di restrizione abbiamo

(δφ)α0...αh...αk...αp+1

=
h−1∑

j=0

(−1)jφ
α0...α̂j ...αh...αk...αp+1

+(−1)hφ
α0...α̂h...αk...αp+1

+
k−1∑

j=h+1

(−1)jφ
α0...αh...α̂j ...αk...αp+1

+(−1)kφ
α0...αh...α̂k...αp+1

+
p+1∑

j=k+1

(−1)jφ
α0...αh...αk...α̂j ...αp+1

= −
h−1∑

j=0

(−1)jφ
α0...α̂h...αj ...αk...αp+1

+(−1)h(−1)k−h+1φ
α0...αk...α̂h...αp+1

−
k−1∑

j=h+1

(−1)jφ
α0...αk...α̂j ...αh...αp+1

+(−1)k(−1)h−k+1φ
α0...α̂k...αh...αp+1

−
p+1∑

j=k+1

(−1)jφ
α0...αk...αh...α̂j ...αp+1

= −(δφ)α0...αk...αh...αp+1 ,

come voluto.
Per vedere che δ ◦ δ = O basta osservare che

(δ2φ)α0...αp+2 =
p+2∑

j=0

(−1)j(δφ)
α0...α̂j ...αp+2

=
p+2∑

j=0

j−1∑

i=0

(−1)j(−1)iφ
α0...α̂i...α̂j ...αp+2

+
p+2∑

j=0

p+2∑

i=j+1

(−1)j(−1)i−1φ
α0...α̂j ...α̂i...αp+2

=
∑

0≤i<j≤p+2

(−1)i+jφ
α0...α̂i...α̂j ...αp+2

−
∑

0≤j<i≤p+2

(−1)i+jφ
α0...α̂j ...α̂i...αp+2

= O .

Infine, d ◦ δ = δ ◦ d è ovvio. &'
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Definizione 4.7.10. Sia U un ricoprimento aperto numerabile di una va-
rietà M . Il complesso doppio

(
C•(U, A•),d, δ) è detto complesso doppio di

Mayer-Vietoris associato al ricoprimento U.

Per applicare il Teorema 4.7.6 dobbiamo aumentare il complesso doppio di
Mayer-Vietoris. Sia r:A•(M) → C0(U, A•) il morfismo dato da r(ω)α = ω|Uα

per ogni α ∈ J . L’iniettività di r segue subito dal fatto che U è un ricoprimento.
Inoltre (

δr(ω)
)
α0α1

= (ω|Uα1
− ωUα0

)|Uα0α1
= O ;

quindi r:
(
A•(M),d

)
→

(
C•(U, A•),d, δ

)
è un complesso doppio aumentato.

Definizione 4.7.11. Sia U un ricoprimento aperto numerabile di una va-
rietà M . Il complesso doppio aumentato r:

(
A•(M),d

)
→

(
C•(U, A•),d, δ)

è detto complesso doppio aumentato di Mayer-Vietoris associato al ricopri-
mento U.

Il principio di Mayer-Vietoris dichiara allora che il complesso doppio
aumentato di Mayer-Vietoris ha righe esatte:

Teorema 4.7.12. Sia U un ricoprimento aperto numerabile di una varietà
M . Allora il complesso doppio aumentato di Mayer-Vietoris associato a U
ha righe esatte. In particolare, il morfismo r:A•(M) → C•(U, A•) induce un
isomorfismo fra la coomologia di de Rham H•(M) di M e la coomologia del
complesso doppio di Mayer-Vietoris.

Dimostrazione. Dobbiamo dimostrare che, per ogni q ≥ 0, la successione

O Aq(M) C0(U, Aq) C1(U, Aq) C2(U, Aq) · · ·........................................... ............ .......................................................... ............r ........................................... ............δ ........................................... ............δ .............................................................................. ............

è esatta. L’esattezza in Aq(M) è l’iniettività di r; l’esattezza in C0(U, Aq)
segue da δ ◦ r = O e dal fatto che se φ ∈ C0(U, Aq) è tale che δφ = O
allora ponendo φ̃|Uα = φα si ottiene una q-forma globale φ̃ ∈ Aq(M) tale che
r(φ̃) = φ.

Grazie al Corollario 4.1.16, per dimostrare l’esattezza del resto della suc-
cessione basta trovare un morfismo graduato K:C•(U, Aq) → C•(U, Aq) di
grado −1 tale che δ ◦K + K ◦ δ = id.

Scegliamo una partizione dell’unità {ρα} subordinata al ricoprimento U, e
per φ ∈ Cp(U, Aq) poniamo

(Kφ)α0...αp−1 =
∑

α

ραφαα0...αp−1 .

Allora

(δKφ)α0...αp =
p∑

j=0

(−1)j(Kφ)
α0...α̂j ...αp
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=
p∑

j=0

∑

α

(−1)jραφ
αα0...α̂j ...αp

;

(Kδφ)α0...αp =
∑

α

ρα(δφ)αα0...αp

=

(
∑

α

ρα

)
φα0...αp +

∑

α

p∑

j=0

(−1)j+1ραφ
αα0...α̂j ...αp

= φα0...αp − (δKφ)α0...αp ,

e ci siamo. L’ultima affermazione segue dal Teorema 4.7.6. &'

Perché questo risultato sia utile, dobbiamo essere in grado di calcolare la
coomologia del complesso doppio di Mayer-Vietoris. La prima osservazione è
che se (K, d, δ) è un complesso doppio, allora il complesso doppio (K̃, d̃, δ̃)
definito da K̃p,q = Kq,p, d̃|K̃p,q = (−1)pδ e δ̃|K̃p,q = (−1)qd, cioè scambiando
righe e colonne, ha la stessa coomologia del complesso originale. Aumentare
il complesso doppio (K̃, d̃, δ̃) equivale ad aggiungere una riga iniziale al com-
plesso doppio originale, cioè ad avere un complesso differenziale (C, δ) e un
morfismo graduato i:C → K che soddisfa le seguenti condizioni:
(a) i(Cp) ⊆ Kp,0 per ogni p ∈ N;
(b) i è iniettivo;
(c) δ ◦ i = i ◦ δ;
(d) d ◦ i = O.
Il Teorema 4.7.6 quindi ci dice che se le colonne di questo complesso aumentato
sono esatte allora la coomologia del complesso doppio K è isomorfa alla coo-
mologia del complesso C. Nota inoltre che una scelta naturale per il complesso
C è prendere Cp = Ker(d|Kp,0), e prendere come differenziale la restrizione del
differenziale δ del complesso doppio, e come morfismo i:C → K l’inclusione.

Nel caso del complesso doppio di Mayer-Vietoris, il nucleo del differenziale
d in Cp

(
U, A0

)
è composto dalle funzioni costanti sulle componenti connesse

delle intersezioni Uα0...αp .

Definizione 4.7.13. Sia U = {Uα} un ricoprimento aperto numerabile di una
varietà M . Per p ≥ 0 indichiamo con Cp(U, R) = Ker

(
d|Cp(U,A0)

)
⊂ Cp(U, A0)

lo spazio vettoriale delle funzioni costanti sulle componenti connesse del-
le intersezioni di p + 1 elementi del ricoprimento. Il complesso differenzia-
le

(
C•(U, R), δ

)
è detto complesso di Čech del ricoprimento U, e la sua

coomologia Ȟ•(U, R) è la coomologia di Čech del ricoprimento U.

È importante notare che la coomologia di Čech di un ricoprimento di-
pende soltanto dalla combinatoria del ricoprimento, cioè dalla struttura delle
intersezioni dei vari aperti del ricoprimento.

Inoltre, la dimostrazione del Teorema 4.7.12 non si applica al comples-
so di Čech, in quanto anche se φ ∈ Cp(U, R) non è affatto detto che



4.8 Coomologia dei fasci e teorema di de Rham 143

Kφ ∈ Cp−1(U, A0) appartenga a Cp−1(U, R); e infatti, come vedremo, in
generale la coomologia di Čech del ricoprimento U non è banale.

Esempio 4.7.14. Supponiamo che U = {Uα}α∈J sia un ricoprimento aper-
to numerabile di una varietà M , composto da aperti connessi. Un elemento
φ ∈ C0(U, R) è dato dall’assegnazione di un numero reale φα ∈ R per ogni
α ∈ J . Quindi δφ = O se e solo se φα = φβ ogni volta che Uα∩Uβ /= ∅. Segue
subito che Ȟ0(U, R) = Rc, dove c ≥ 1 è il numero di componenti connesse
di M ; confronta con l’Osservazione 4.2.4.

La colonna p-esima del complesso doppio di Mayer-Vietoris cos̀ı aumentato
è quindi

O Cp(U, R) Cp(U, A0) Cp(U, A1) Cp(U, A2) · · ·................................. ............ ................................................ ............i ........................................... ............d ........................................... ............d .............................................................................. ............

Questa successione è esatta in Cp(U, R) e Cp(U, A0) per costruzione. L’ostru-
zione all’esattezza della successione in Cp(U, Aq) per q ≥ 1 è invece data dai
gruppi di coomologia q-esima delle intersezioni di p + 1 elementi di U.

Di conseguenza, se U è un ricoprimento qualsiasi non è detto che le colonne
del complesso doppio di Mayer-Vietoris siano esatte, per cui la coomologia
di Čech di U non è necessariamente isomorfa alla coomologia del complesso
doppio di Mayer-Vietoris. Ma se U è un buon ricoprimento, allora il lemma
di Poincaré ci assicura che la coomologia di tutte le intersezioni è banale;
quindi le colonne del complesso doppio di Mayer-Vietoris sono esatte, e il
Teorema 4.7.6 implica che la coomologia di Čech di un buon ricoprimento è
isomorfa alla coomologia del complesso doppio. Ma il Teorema 4.7.12 ci dice
che quest’ultima è sempre isomorfa alla coomologia di de Rham della varietà;
quindi abbiamo dimostrato il

Corollario 4.7.15. La coomologia di Čech di un buon ricoprimento di una
varietà M è sempre isomorfa alla coomologia di de Rham di M .

Osservazione 4.7.16. In particolare, due buoni ricoprimenti di una varietà
hanno sempre coomologie di Čech isomorfe.

Il Corollario 4.7.15 non ci permette ancora di dedurre che la coomologia
di de Rham è un invariante topologico di una varietà, in quanto il concetto
di buon ricoprimento è ancora un concetto differenziale e non topologico (in
quanto si richiede che le intersezioni siano diffeomorfe a Rn, e non soltanto
omeomorfe). Nella prossima sezione vedremo che, in realtà, la coomologia di
Čech di un buon ricoprimento è un invariante topologico della varietà; e questo
implicherà che anche la coomologia di de Rham lo è.

4.8 Coomologia dei fasci e teorema di de Rham

La costruzione della coomologia di Čech di un ricoprimento è un caso par-
ticolare di una costruzione molto più generale, che descriveremo in questa
sezione.
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Iniziamo introducendo una nozione fondamentale nella geometria contem-
poranea.

Definizione 4.8.1. Un prefascio F su uno spazio topologico X è un’applica-
zione che associa a ogni aperto U ⊆ X un gruppo abeliano (spazio vettoriale,
modulo, anello, eccetera) F(U), il gruppo delle sezioni di F su U , e a ogni
inclusione di aperti ιUV :U ↪→ V un morfismo F(ιUV ) = ρU

V :F(V ) → F(U),
detto restrizione, in modo che le seguenti proprietà siano soddisfatte:
(a) ρU

U = idU per ogni aperto U ⊆ X;
(b) ρU

V ◦ ρV
W = ρU

W ogni volta che U ⊆ V ⊆ W ⊆ X.
Se s ∈ F(V ) e U ⊆ V , spesso scriveremo s|U per ρU

V (s).
Un prefascio F è detto fascio se sono inoltre soddisfatte le tre ulteriori

condizioni:
(c) F(∅) = O;
(d) se {Uj}j∈J è un ricoprimento aperto dell’aperto U ⊆ X, e s, t ∈ F(U)

sono tali che s|Uj = t|Uj per tutti i j ∈ J , allora s = t (in altre parole, le
sezioni sono univocamente definite dalle loro restrizioni locali);

(e) se {Uj}j∈J è un ricoprimento aperto dell’aperto U ⊆ X, e sj ∈ F(Uj)
sono sezioni tali che si|Ui∩Uj = sj |Ui∩Uj per ogni i, j ∈ J , allora esiste
s ∈ F(U) tale che s|Uj = sj per ogni j ∈ J (in altre parole, sezioni locali
compatibili si incollano).

A volte si usa la notazione Γ (U,F) per indicare F(U). Gli elementi di F(X)
sono detti sezioni globali di F .

Esempio 4.8.2. Sia M una varietà. Allora possiamo definire un fascio EM as-
sociando a ogni aperto U ⊆ M l’anello EM (U) = C∞(U) delle funzioni diffe-
renziabili definite su U , e a ogni inclusione di aperti l’operatore di restrizione.
Il fascio EM (a volte indicato con C∞) è detto fascio dei germi di funzioni
differenziabili su M ; nell’Esempio 4.8.8 giustificheremo questa terminologia.

In modo analogo si può definire il fascio dei germi di funzioni Ck per
qualsiasi k ∈ N, o il fascio Ap

M dei germi di k-forme su M , o il fascio dei germi
di funzioni analitiche reali su una varietà analitica reale, o il fascio O delle
funzioni olomorfe su una varietà complessa.

Esempio 4.8.3. Sia G un gruppo abeliano qualsiasi. Il fascio banale di grup-
po G su uno spazio topologico X è ottenuto assegnando a ciascun aperto di X
il gruppo G e ponendo ρU

V = idG per ogni coppia di aperti U ⊆ V ⊆ X.

Esempio 4.8.4. Sia F il prefascio su R che associa a ogni aperto U ⊆ R l’anello
delle funzioni continue limitate su U , e a ogni inclusione di aperti l’operatore
di restrizione. Si vede subito che F è un prefascio ma non un fascio, in quanto
la proprietà (e) non è soddisfatta: se Uj = (−j, j) per j ∈ N, allora le sezioni
sj = idR |Uj ∈ F(Uj) sono compatibili ma non sono la restrizione di alcuna
sezione globale s ∈ F(R).
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Definizione 4.8.5. Un morfismo f :F → G fra due (pre)fasci F e G su uno
spazio topologico X è una collezione di morfismi fU :F(U) → G(U) che com-
mutano con le restrizioni: G(ιUV ) ◦ fV = fU ◦ F(ιUV ) per ogni coppia di aperti
U ⊆ V ⊆ X. Un isomorfismo di fasci è un morfismo invertibile (cioè tale
che fU è invertibile per ogni aperto U ⊆ X). Un fascio costante è un fascio
isomorfo a un fascio banale.

Dato un fascio F su uno spazio topologico X, è possibile associare in modo
unico un gruppo abeliano (spazio vettoriale, eccetera) Fx a ogni punto x ∈ X,
tramite il concetto di limite diretto di gruppi.

Definizione 4.8.6. Un sistema diretto di gruppi è dato da una famiglia
{Gi}i∈I di gruppi abeliani indicizzata da un insieme diretto I e da morfismi
f i

j :Gj → Gi per ogni coppia di indici i ≤ j tali che

(i) f i
i = idGi per ogni i ∈ I;

(ii) f i
j ◦ f j

k = f i
k per ogni tripla di elementi i ≤ j ≤ k in I.

Il limite diretto lim
i∈I

Gi del sistema diretto {Gi} è il quoziente dell’unione

disgiunta
∐

i∈I Gi rispetto alla relazione d’equivalenza ∼ definita dicendo che
s ∈ Gi è equivalente a t ∈ Gj se esiste k ≤ i, j tale che fk

i (s) = fk
j (t) in Gk.

Si verifica facilmente (Esercizio 4.2) che ∼ è una relazione d’equivalenza e che
lim
i∈I

Gi ha una naturale struttura di gruppo. Indicheremo con fj :Gj → lim
i→I

Gi

la composizione fra l’inclusione di Gj in
∐

i∈I Gi e la proiezione naturale sul
quoziente.

Se F è un (pre)fascio su uno spazio topologico X e x ∈ X, otteniamo un
sistema diretto di gruppi considerando la famiglia {F(U)} indicizzata dagli
aperti contenenti x (vedi l’Esempio 4.6.4) e i morfismi di restrizione; quindi
possiamo considerarne il limite diretto.

Definizione 4.8.7. Sia F è un (pre)fascio su uno spazio topologico X e
x ∈ X. Il limite diretto Fx del sistema diretto di gruppi {F(U)} indiciz-
zato dagli aperti contenenti x è detto spiga di F in x, e gli elementi di Fx

sono detti germi di sezioni di F in x.

Esempio 4.8.8. La spiga in un punto p ∈ M del fascio EM su una varietà
differenziabile M coincide (perché?) con l’anello C∞M (p) dei germi di funzioni
differenziabili in p.

L’Esercizio 4.5 descrive come mettere una topologia sull’unione disgiun-
ta delle spighe di un fascio in modo che le sezioni locali possano essere
interpretate come funzioni continue a valori in questa unione disgiunta.

Il nostro prossimo obiettivo è definire la coomologia di Čech a valori in un
prefascio, partendo in modo non dissimile da quanto fatto nella sezione prece-
dente ma poi applicando il concetto di limite diretto per togliere la dipendenza
dai singoli ricoprimenti.
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Definizione 4.8.9. Sia U = {Uα}α∈J un ricoprimento aperto di uno spa-
zio topologico X, dove J è un insieme totalmente ordinato. Per r ∈ N e
α0, . . . , αr ∈ J poniamo

Uα0...αr = Uα0 ∩ · · · ∩ Uαr .

Se F è un prefascio su X e p ∈ N, il gruppo delle p-cocatene su U a valori
in F è

Cp(U,F) =
∏

α0<···<αp

F(Uα0...αp) .

Una p-cocatena s ∈ Cp(U,F) è una collezione {sα0...αp} di sezioni locali del
prefascio F ; quando gli indici non sono ordinati, useremo la convenzione

sατ(0)...ατ(p) = sgn(τ)sα0...αp

per ogni permutazione τ ∈ Sp; in particolare sα0...αp = O non appena αi = αj

per qualche i /= j.

Definizione 4.8.10. Sia U = {Uα}α∈J un ricoprimento aperto di uno spazio
topologico X, dove J è un insieme totalmente ordinato, e F un prefascio su
X. Per ogni p ∈ N sia δ:Cp(U,F) → Cp+1(U,F) definita da

(δs)α0...αp+1 =
p+1∑

j=0

(−1)j(s
α0...α̂j ...αp+1

)|Uα0...αp+1
,

dove l’accento circonflesso indica l’omissione di un indice. Si verifica facilmente
(vedi l’Esercizio 4.6) che δ è ben definita e che δ ◦ δ = O; quindi

(
C•(U,F), δ

)

è un complesso differenziale. La coomologia Ȟ•(U,F) di questo complesso è
detta coomologia di Čech del ricoprimento U a valori in F .

Osservazione 4.8.11. Se F è il fascio banale di gruppo R, allora Ȟ(U,F)
coincide con la coomologia di Čech Ȟ(U, R) del ricoprimento che avevamo
introdotto nella Definizione 4.7.13.

Come osservato nell’Esempio 4.6.3, l’insieme dei ricoprimenti aperti di uno
spazio topologico è un insieme diretto; questo suggerisce di tentare di trasfor-
mare la coomologia {Ȟ•(U,F)} in un sistema diretto di gruppi indicizzato
dai ricoprimenti aperti. Per farlo, abbiamo bisogno di definire un morfismo da
Ȟ•(U,F) a Ȟ•(V,F) ogni volta che V è un raffinamento di U.

Definizione 4.8.12. Sia V = {Vβ}β∈B un raffinamento di un ricoprimen-
to aperto U = {Uα}α∈A di uno spazio topologico X. Una funzione di
raffinamento è una ϕ:B → A tale che Vβ ⊆ Uϕ(β) per ogni β ∈ B.

Dato un prefascio F su X e una funzione di raffinamento ϕ:B → A
definiamo ϕ#:C•(U,F) → C•(V,F) ponendo

(ϕ#s)β0...βp = sϕ(β0)...ϕ(βp)|Vβ0...βp

per ogni s ∈ Cp(U,F) e p ∈ N.
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Lemma 4.8.13. Sia V = {Vβ}β∈B un raffinamento di un ricoprimento
aperto U = {Uα}α∈A di uno spazio topologico X, e F un prefascio su X.
(i) Sia ϕ:B → A una funzione di raffinamento. Allora l’applicazione indotta

ϕ#:C•(U,F) → C•(V,F) è un morfismo di cocatene, cioè commuta con δ.
(ii) Se ϕ, ψ:B → A sono due funzioni di raffinamento, allora ϕ# e ψ# sono

omotopi.

Dimostrazione. (i) Sia s ∈ Cp(U,F). Allora

(δϕ#s)β0...βp+1 =
p+1∑

j=0

(−1)j(ϕ#s)
β0...β̂j ...βp+1

|Vβ0...βp+1

=
p+1∑

j=0

(−1)j(s
ϕ(β0)...ϕ̂(βj)...ϕ(βp+1)

|V
β0...β̂j ...βp+1

)|Vβ0...βp+1

= (δs)ϕ(β0)...ϕ(βp+1)|Vβ0...βp+1
= (ϕ#δs)β0...βp+1 ,

come voluto.
(ii) Definiamo K:Cp(U,F) → Cp−1(V,F) ponendo

(Ks)β0...βp−1 =
p−1∑

j=0

(−1)jsϕ(β0)...ϕ(βj)ψ(βj)...ψ(βp−1)|Vβ0...βp−1
.

Allora

(δKs)β0...βp =
p∑

i=0

(−1)i(Ks)
β0...β̂i...βp

=
∑

0≤j<i≤p

(−1)i+js
ϕ(β0)...ϕ(βj)ψ(βj)...ψ̂(βi)...ψ(βp)

+
∑

0≤i<j≤p

(−1)i+j−1s
ϕ(β0)...ϕ̂(βi)...ϕ(βj)ψ(βj)...ψ(βp)

,

e

(Kδs)β0 . . . βp =
p∑

j=0

(−1)j(δs)ϕ(β0)...ϕ(βj)ψ(βj)...ψ(βp)

=
p∑

j=0

(−1)j
j∑

i=0

(−1)is
ϕ(β0)...ϕ̂(βi)...ϕ(βj)ψ(βj)...ψ(βp)

+
p∑

j=0

(−1)j
p∑

i=j

(−1)i+1s
ϕ(β0)...ϕ(βj)ψ(βj)...ψ̂(βi)...ψ(βp)

=
∑

0≤i<j≤p

(−1)i+js
ϕ(β0)...ϕ̂(βi)...ϕ(βj)ψ(βj)...ψ(βp)



148 4 Coomologia

+
p∑

j=0

sϕ(β0)...ϕ(βj−1)ψ(βj)...ψ(βp)

+
∑

0≤j<i≤p

(−1)i+j+1s
ϕ(β0)...ϕ(βj)ψ(βj)...ψ̂(βi)...ψ(βp)

−
p∑

i=0

sϕ(β0)...ϕ(βi)ψ(βi+1)...ψ(βp)

= −(δKs)β0...βp + sψ(β0)...ψ(βp) − sϕ(β0)...ϕ(βp) ,

dove per semplicità non abbiamo indicato le restrizioni a Vβ0...βp , per cui
ψ# − ϕ# = K ◦ δ + δ ◦K, e K è un’operatore di omotopia fra ψ# e ϕ#. &'

Come conseguenza di questo lemma e della Proposizione 4.1.15, per ogni
raffinamento V di un ricoprimento aperto U abbiamo un ben definito morfismo
in coomologia Ȟ•(U,F) → Ȟ•(V,F) indipendente dalla funzione di raffina-
mento. Siccome la composizione di funzioni di raffinamento è chiaramente
una funzione di raffinamento, abbiamo quindi ottenuto un sistema diretto di
gruppi.

Definizione 4.8.14. Sia F un prefascio su uno spazio topologico X. La coo-
mologia di Čech di X a valori in F Ȟ•(X,F) è il limite diretto del sistema
diretto di gruppi {Ȟ•(U,F)} indicizzato dai ricoprimenti aperti di X. In par-
ticolare, se G è un gruppo abeliano, la coomologia di Čech Ȟ•(X, G) di X a
coefficienti in G è la coomologia di Čech a valori nel fascio banale di gruppo G.

La coomologia di Čech di uno spazio topologico X a coefficienti in un dato
gruppo G è chiaramente un invariante topologico di X. Possiamo quindi final-
mente dimostrare l’importante teorema di de Rham, che implica fra le altre
cose che i gruppi di cooomologia di de Rham sono degli invarianti topologici
di una varietà:

Teorema 4.8.15 (de Rham). La coomologia di de Rham di una varietà è
canonicamente isomorfa alla coomologia di Čech della varietà a coefficienti
in R.

Dimostrazione. Il Teorema 4.6.5 dice che i buoni ricoprimenti sono cofinali
nell’insieme di tutti i ricoprimenti aperti di una varietà; quindi (Esercizio 4.3)
per calcolare la coomologia di Čech a coefficienti in R possiamo limitarci a
fare il limite diretto sui buoni ricoprimenti.

Se U è un buon ricoprimento della varietà M , il Corollario 4.7.15 ci for-
nisce un isomorfismo χU: Ȟ•(U, R) → H•(M), ottenuto componendo l’iso-
morfismo ι∗: Ȟ•(U, R) → H•(C•(U, A•)

)
indotto dall’inclusione con l’inverso

dell’isomorfismo r∗:H•(M) → H•(C•(U, A•)
)

indotto dalle restrizioni. Sic-
come stiamo usando inclusioni e restrizioni, è chiaro (perché?) che se V è un
buon ricoprimento che raffina U e ϕ∗: Ȟ•(U, R) → Ȟ•(V, R) è il morfismo
indotto da una funzione di raffinamento, abbiamo χV ◦ ϕ∗ = χU. Da questo
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segue (Esercizio 4.4) che possiamo passare al limite diretto e ottenere l’iso-
morfismo χ: Ȟ(M, R) → H•(M) cercato. &'

Esercizi

Esercizio 4.1. Sia K ⊂ M un compatto in una varietà. Dimostra che esiste un
intorno aperto U ⊆ M di K tale che U sia una varietà con bordo compatta.

Esercizio 4.2. Sia {Gi}i∈I un sistema diretto di gruppi. Dimostra che la re-
lazione ∼ introdotta nella Definizione 4.8.6 è una relazione d’equivalenza, e
che il limite diretto lim

i∈I
Gi ha un’unica struttura di gruppo rispetto a cui le

fi:Gi → lim
i∈I

Gi siano dei morfismi.

Esercizio 4.3. Sia {Gi}i∈I un sistema diretto di gruppi, e J ⊆ I un sottoinsie-
me cofinale. Dimostra che lim

j∈J
Gj è canonicamente isomorfo a lim

i∈I
Gi.

Esercizio 4.4. Sia {Gi}i∈I un sistema diretto di gruppi. Sia G un gruppo, e sup-
poniamo di avere una famiglia di morfismi χi:Gi → G tali che χi◦f i

j = χj per
ogni coppia di indici i ≤ j. Dimostra che esiste un unico morfismo χ: lim

i∈I
→ G

tale che χ ◦ fi = χi per ogni i ∈ I. Dimostra inoltre che χ è un isomorfismo
se tutti i χi lo sono.

Esercizio 4.5. Sia F un fascio su uno spazio topologico X, e indichiamo con
F =

∐
x∈X Fx l’unione disgiunta delle spighe del fascio, e indichiamo con

π:F → X l’ovvia proiezione. Se U ⊆ X è aperto, una sezione s ∈ F(U) deter-
mina un germe sx ∈ Fx per ogni x ∈ U , e quindi un’applicazione s:U → F .
Dimostra che esiste un’unica topologia minimale su F rispetto a cui tutte que-
ste applicazioni s:U → F sono continue e aperte; che questa topologia induce
la topologia discreta su ogni spiga; e che π:F → X è un omeomorfismo locale.
L’insieme F con questa topologia è detto spazio étalé associato al fascio F .

Esercizio 4.6. Sia U = {Uα}α∈J un ricoprimento aperto di uno spazio topo-
logico X, dove J è un insieme totalmente ordinato, e F un prefascio su X.
Procedendo come nel Lemma 4.7.9 dimostra che il morfismo δ introdotto nella
Definizione 4.8.10 è ben definito e soddisfa δ ◦ δ = O.

Esercizio 4.7. Dimostra che H1(M) = O per ogni varietà M semplicemente
connessa.

Esercizio 4.8. Dimostra che Hp(M, EM ) = O per ogni p ≥ 1 e ogni varietà M ,
dove EM è il fascio dei germi di funzioni differenziabili. (Suggerimento: usa le
partizioni dell’unità.)


