
Introduction

Let X be a complex manifold, and f a holomorphic map of X into itself. A natural object
associated to f is the sequence {fk} of iterates of f , where fk is the composition of f with
itself k times. In particular, the asymptotic behavior of the sequence as k goes to infinity
deserves investigation, both for its own sake and for the information we can infer on f
itself.

The investigation of this subject began with the works of Schröder [1870, 1871] and
Kœnigs [1883]. They were mainly interested in the local situation for, of course, holo-
morphic functions of one variable. Let z0 be a point of the complex plane C, and f a
holomorphic function defined in a neighbourhood of z0 such that f(z0) = z0. Then the
behavior of the sequence of iterates of f near z0 depends on the value of the derivative of f
at z0. More specifically, if |f ′(z0)| < 1 every point z sufficiently close to z0 is attracted
by z0 (i.e., fk(z) → z0 as k → +∞); if |f ′(z0)| > 1, the points are repelled away from z0

— or, if you prefer, they are attracted by z0 under the action of f−1, which is defined in
a neighbourhood of z0. Finally, if |f ′(z0)| = 1, the behavior of {fk} is cyclic, with a finite
period if f ′(z0) is a root of unity.

The first really deep work on the global situation is Julia [1918]. He investigated the
iteration of rational functions defined on the extended complex plane Ĉ, and discovered
that the global behavior of the sequence of iterates was both complicated and fascinat-
ing. Near fixed points it is possible to adapt and clarify the local description, but new
phenomena arise, linked for instance to the distribution of fixed points of higher order
(that is, fixed points of fk with k > 1). A main problem was the description of the Julia

set of f , that is of the set of points z0 ∈ Ĉ such that the sequence of iterates {fk} is
equicontinuous in no neighbourhood of z0. The idea is that if {fk} is equicontinuous in a
neighbourhood of z0, then there is a subsequence {fkν} converging uniformly near z0, and
then the behavior of the sequence of iterates is somehow under control. In other words,
the Julia set is in some sense the singular set for the asymptotic behavior of {fk}.

Fatou [1919, 1920a, b, 1926] extended and deepened Julia’s work, also investigating
the iteration of entire functions. Again, a main role is played by the Julia set, defined
replacing the notion of equicontinuity by the notion of normality.

After Fatou, the iteration theory of rational and entire functions momentarily lost
its impetus. Besides the works of Baker [1955, 1958, 1959, 1960], Siegel [1942] and
Töpfer [1949], mainly devoted to the study of fixed points of higher order using Nevan-
linna’s distribution value theory, and Brolin [1965], devoted to a deep investigation of the
iteration of polynomials of low degree, nothing really new appeared. Only recently, the
work of Sullivan, Hubbard, Douady and others has shed a completely new light on the
argument, showing its deep relationship with quasi-conformal mappings and Mandelbrot’s
theory of fractals. Two recent surveys showing (also pictorially) what is going on are
Blanchard [1984] and Peitgen and Richter [1986].

But iteration theory has another, totally different, aspect. As we mentioned before,
investigating the iteration of a rational or entire function f a main problem is the structure
of the set of points where the sequence {fk} is not normal. But if we study the iteration
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of a holomorphic function defined in a smaller domain like, for instance, the unit disk ∆
of C, this problem disappears: the whole family of holomorphic functions of ∆ into itself
is normal. This fact (quite non trivial for domains more general than ∆) completely
changes the situation. In fact, by normality, the function f can be naturally embedded
in a relatively compact set (of a suitable space of functions) depending only on f , namely
the sequence of iterates {fk}, and, as always, the compactness has strong consequences
on the structure of f . For instance, if f is a holomorphic function sending a bounded
but not necessarily simply connected domain into itself, and z0 is a fixed point of f ,
then |f ′(z0)| ≤ 1, |f ′(z0)| = 1 iff f is an automorphism, and f ′(z0) = 1 iff f is the identity.
In fact, the idea is that the sequence of iterates should have a converging subsequence, and
therefore the coefficients of the Taylor expansion of fk at z0 (which essentially are powers
of the coefficients of the Taylor expansion of f) cannot tend to infinity as k → +∞. It
should be remarked that the strength of this approach was completely revealed only after
its application (due to Carathéodory [1932] and H. Cartan [1930b, 1932]) to the theory of
holomorphic maps of several complex variables, probably because in one variable it was
somehow concealed by Schwarz’s lemma.

However, there is still the problem of describing the asymptotic behavior of the se-
quence of iterates. As already remarked by Julia [1918], if f is a holomorphic function of
∆ into itself with a fixed point, that we can assume to be the origin, then the behavior of
{fk} can be easily derived by Schwarz’s lemma: if |f ′(0)| < 1 then 0 is attractive, and if
|f ′(0)| = 1 then f is a rotation about the origin. If f has no fixed points in ∆, the problem
was solved by Wolff [1926a, b, c] and Denjoy [1926]. Let x ∈ ∂∆; then as z ∈ ∆ tends
to x, the Poincaré disks of center z and fixed euclidean radius tend to a horocycle at x,
that is to an euclidean disk internally tangent to ∂∆ at x. Then Wolff proved a sort of
Schwarz’s lemma for holomorphic functions without fixed points, using the horocycles: if
f sends ∆ into itself without fixed points, then there exists a unique point x ∈ ∂∆ (called
the Wolff point of f) such that f sends every horocycle at x into itself. It is then an easy
matter to prove that the sequence of iterates {fk} converges, uniformly on compact sets,
to the constant map sending all ∆ in x; this is the Wolff-Denjoy theorem.

For a multiply connected domain D different from C∗ and, more generally, for multi-
ply connected hyperbolic Riemann surfaces∗, the asymptotic behavior of the sequence of
iterates was described by Heins [1941a, 1988]. If f has a fixed point, the local picture forces
the global one, exactly as in ∆; if f has no fixed points then the sequence of iterates tends
to the boundary. In particular, if the boundary of D is sufficiently smooth, then either
the sequence of iterates converges, uniformly on compact sets, to a constant map x ∈ D
or f is an automorphism.

In several variables, the natural setting for this kind of iteration theory is the class of
taut manifolds, a concept introduced by Wu [1967]. A complex manifold X is taut if the
family of holomorphic maps of ∆ into X is normal; for instance, a strongly pseudoconvex
domain is taut, as well as any bounded convex domain. If X is a taut manifold, then the
family of holomorphic maps of X into itself is normal, and hence we can investigate the

∗ R̊adstrom [1953] and Keen [1988] studied the iteration of holomorphic functions in C∗,
miming Julia and Fatou. I do not know any paper on iteration theory of holomorphic
functions defined on a torus.
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iteration theory there.
As we already mentioned, if f is a holomorphic map of a taut manifold into itself, we

can study f imbedding it into its sequence of iterates. In this way Carathéodory [1932] and
H. Cartan [1930b, 1932] developed the classical theory of holomorphic mappings in bounded
domains of Cn, later generalized by Wu [1967] to taut manifolds, and by Kobayashi [1967a]
to even more general manifolds. Furthermore, using H. Cartan’s ideas, (Hervé [1951] for
taut domains in C2 and) Bedford [1983b] characterized the maps of X into X that are
limit of a subsequence {fkν} of iterates of a holomorphic map f of X into itself. It turns
out that the role played by the constant functions in one variable is now played by the
holomorphic retractions, that is by the holomorphic maps ρ of X into itself such that
ρ2 = ρ. Then, as already observed by Hervé [1951] for taut domains in C2, the sequence of
iterates of a holomorphic map f defined on a taut manifold X converges to a holomorphic
map ρ of X into itself iff f has a fixed point z0 such that the spectrum of the differential
of f at z0 is contained in ∆ ∪ {1}; moreover, ρ is a holomorphic retraction.

If X actually is a bounded domain D of Cn, we can ask something more: is it possible
that the sequence of iterates converge to a map sending D into its boundary? In other
words, is it possible to generalize the Wolff-Denjoy theorem to several variables? Clearly,
the first thing we need is a substitute for the horocycles. In the unit ball Bn of Cn we
can use the Bergmann metric to define the horospheres at a point of ∂Bn exactly as we
did with the Poincaré metric in ∆. Then we can practically repeat the proof of the Wolff-
Denjoy theorem and show that if f is a holomorphic map of Bn into itself without fixed
points then the sequence of iterates {fk} converges, uniformly on compact sets, to a point
of ∂Bn, as first shown by Hervé [1963a].

For a more general bounded domain D, the situation is not so clear. The Bergmann
metric in Bn was the right metric to use because it satisfies a Schwarz lemma, i.e., it is
contracted by holomorphic maps; in other domains, the Bergmann metric does not have
this property. On the other hand, Carathéodory [1926] before and Kobayashi [1967a, b]
after have defined two (pseudo)distances on any complex manifold which are, practically
by definition, contracted by holomorphic maps. Using the Kobayashi distance, then, it
is possible to define a notion of horosphere in any bounded domain of Cn, and it turns
out that this is the generalization we need. In particular, we can prove that if f is a
holomorphic map of a bounded strongly convex domain into itself without fixed points,
then the sequence of iterates of f converges, uniformly on compact sets, to a point of the
boundary. The restriction to strongly convex domains is essential: the theorem is false for
non-convex strongly pseudoconvex domains.

The iteration theory on hyperbolic Riemann surfaces and, more generally, on taut
manifolds is strongly linked to two other topics. First of all, as we have already remarked,
the asymptotic behavior of the sequence of iterates of a map f is strongly affected by the
structure of the fixed point set of f . The influence is reciprocal: iteration theory provides
several effective tools for the construction of fixed points. For instance, let F be a family
of continuous functions of ∆ into itself holomorphic in ∆ such that f ◦ g = g ◦ f for
every f , g ∈ F ; then Shields [1964], using iteration theory, proved that there always exists
a common fixed point of F , that is a point z0 ∈ ∆ such that f(z0) = z0 for all f ∈ F .
Suffridge [1974] extended Shields’ theorem to Bn, and we shall present a proof valid in
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strongly convex domains.
The second topic is the study of the so-called angular derivative. Another appli-

cation of the horocycles in ∆, mainly developed by Julia [1920], Wolff [1926d] and Cara-
théodory [1929], is the study of the behavior of the ratio

(
f(z)−y

)/(
z−x

)
as z → x ∈ ∂∆,

where f is a holomorphic function sending ∆ into itself, and y ∈ ∂∆. The Julia-Wolff-
Carathéodory theorem states that, under some mild hypotheses on f and x, there exists
a unique point y ∈ ∂∆ such that the aforementioned ratio converges non-tangentially to a
finite limit L ∈ C, and, furthermore, the derivative f ′(z) tends to L as z → x within any
angular region of vertex x contained in ∆; for this reason L is called the angular deriva-
tive of f at x. Besides its own interest, this theorem has many important applications
to function theory of hyperbolic Riemann surfaces, and some of them concern iteration
theory.

The corresponding problem in several variables is quite complicated, and reveals new
interesting features concerning the behavior of the differential of f along complex tangential
directions. Hervé [1963a] and Rudin [1980] investigated the situation in the unit ball of Cn,
and we shall present a generalization to strongly convex domains; in both cases, the main
tool in the proofs is provided by the horospheres, exactly as in iteration theory.

Some comments and remarks about the structure of this work are in order. I have
written this book keeping in mind two different goals (and audiences). First of all, this
is intended as a reference book on iteration theory on taut manifolds and related topics.
During my own investigations, I found many beatiful theorems never appeared in book
form (Heins’ theorem on iteration theory of hyperbolic Riemann surfaces, or the Lempert-
Royden-Wong theory on complex geodesics, just to quote two of them); furthermore, the
whole theory seemed to me requiring a comprehensive exposition collecting several results
scattered around in the literature. Of course, one could not discuss every single topic
in only one book; so I decided to concentrate the exposition around three theorems, the
Wolff-Denjoy, Shields’, and the Julia-Wolff-Carathéodory theorems, following them from
the origin to their most recent generalizations. This allowed an unified exposition of the
main results, and a clearer discussion of the threads connecting the three principal themes
of this book, iteration theory, common fixed points and angular derivatives.

So, the first audience of this book is mainly composed by research workers in geometric
function theory; they will find an up-to-date description of the field, open problems to
solve, and even references to several topics not discussed here. But, as already anticipated,
I also had another goal in mind. This book would like to be an introduction to geometric
function theory in several complex variables for, say, first-year graduate students (or,
in Italy, for good fourth-year university students too), giving them both a first sample of
typical features and techniques of the several variables theory, and strong (and aestethical)
motivations provided by the classical one variable theory. Mainly for this reason I devoted
the first part of the book to a comprehensive discussion of one variable theory, starting
from Schwarz’s lemma; besides its own beauty, iteration theory on ∆ is the model inspiring
the whole development of the theory in several variables.

I tried to keep prerequisites down; besides a good knowledge of function theory of one
complex variable and a first acquaintance with function theory of several complex vari-
ables, only a good topological background (up to covering spaces and fundamental group)
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and the basic notions of differential geometry, measure theory and functional analysis are
necessarily required. Here and there we shall use some specialized result taken from other
fields (like differential equations, or algebraic topology); however, we shall always quote
explicitely the needed theorem, and provide a reference to a place where a proof can be
found. Furthermore, I scattered in the book advices to the novice reader, warning him of
particularly dangerous situations. Here is the first one: the last two chapters are consider-
ably more technical than the others, and probably require a working knowledge of complex
analysis in one and several variables to be fully understood (and appreciated).

Let us now briefly describe the actual content of this book; more details can be found
in the introductions to each chapter.

The first part is devoted to the one-variable theory. Chapter 1.1 contains the results
of complex analysis that are particularly important for the understanding of the theory:
Schwarz’s lemma, the Poincaré metric and the structure of the automorphism group of ∆;
Montel’s, Vitali’s and Picard’s theorems; the classification of Riemann surfaces and the
boundary behavior of the universal covering map of multiply connected hyperbolic do-
mains.

In chapter 1.2 we introduce the horocycles in ∆ and their main properties, Julia’s and
Wolff’s lemmas. We use them to study the angular derivative of a holomorphic function
of ∆ into itself, proving the Julia-Wolff-Carathéodory theorem, and then to investigate the
structure of the automorphism group of a hyperbolic Riemann surface.

Chapter 1.3 is devoted to iteration theory. We describe the theory of holomorphic
functions with a fixed point; we present two proofs of the Wolff-Denjoy theorem; we develop
the iteration theory on hyperbolic Riemann surfaces, and its version in finitely connected
hyperbolic domains; finally, we prove Shields’ theorem and other facts about fixed points.

In chapter 1.4 we investigate the one-parameter semigroups of holomorphic functions
on a Riemann surface, a natural generalization of the concept of sequence of iterates.
Following Berkson and Porta [1978] and Heins [1981], we present a characterization of
one-parameter semigroups in ∆, their interpretation in terms of translations of domains of
a particular kind, and the classification on Riemann surfaces other than the disk.

The second part is devoted to the several variables theory. In chapter 2.1 we officially
meet taut manifolds, and we describe the basic theory of holomorphic maps on them; in
particular, we characterize the maps arising as a limit of a subsequence of iterates, a main
tool for iteration theory in several variables.

In chapter 2.2 we study the unit ball Bn of Cn. We introduce the Bergmann metric,
the horospheres and the generalizations of Schwarz’s, Julia’s and Wolff’s lemmas; we study
the angular derivatives of a holomorphic map of Bn into itself; we prove the Wolff-Denjoy
theorem in Bn, and Suffridge’s version of Shields’ theorem.

Chapter 2.3 is devoted to the invariant distances, metrics and measures introduced by
Carathéodory and Kobayashi, which are the main tools needed to develop our three main
themes in domains other than Bn. Besides their basic properties, we describe the behavior
of the Kobayashi distance and metric at the boundary of a strongly pseudoconvex domain,
we prove a weak form of Fefferman’s theorem, and a characterization of Bn due to Graham
and Wu [1985a].

In chapter 2.4 we deal with iteration theory in several variables. We study the general
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situation in taut manifolds; we define the horospheres in general domains and we describe
their main properties; finally, we investigate iteration theory in bounded convex domains
of Cn.

In chapter 2.5 we investigate fixed point sets. We prove a characterization of the ball
in terms of its automorphism group due to Wong [1977] and Rosay [1979], and Lempert’s
theorem about fixed points of compact groups of automorphisms of a convex domain; we
describe the structure of the fixed point set of a holomorphic map of a convex domain
into itself, generalizing Shields’ theorem to strongly convex domains, and we end with
one-parameter semigroups on taut manifolds.

Chapter 2.6 is devoted to complex geodesics. After their basic properties, we present
the Lempert-Royden-Wong theory of complex geodesics in convex domains, proving the
facts we shall need to extend the Julia-Wolff-Carathéodory theorem to strongly convex
domains.

Finally, in chapter 2.7 we deal with angular derivatives. After the introduction of
suitable boundary approach regions, we shall discuss a version of Lindelöf’s theorem in
strongly convex domains, and we shall end the book with the last generalization of the
Julia-Wolff-Carathéodory theorem.

Each chapter is equipped with notes, containing history, comments, remarks, indica-
tions of related topics and references to the bibliography. I tried to sistematically trace who
did what when; I shall appreciate any comment regarding missing (or wrong. . . ) references.

Let us end this (long) introduction with the pleasant duty of acknowledgments. Several
people have helped me in one way or another during the researches culminating in this
book. Among them, I wish particularly to thank E. Vesentini for his confidence and support
during the past six years; S. Venturini, who read and substantially improved the whole
manuscript; D. Struppa, for giving me the possibility of publishing this book; and my wife,
for letting me work twenty-five hours a day without (too much) grumbling. Sincere thanks
also to L. Ambrosio, L. Geatti, G. Gentili, W.-Y. Hsiang, S. Kobayashi, F. Podestà, H. Wu
and P. Yang, without whom this book would never be born. Finally, I am very grateful to
my wife for the drawings illustrating this book, and to the AbaTEX Co. for the typing.


