
Chapter 1.1
Schwarz’s lemma and Riemann surfaces

A characteristic feature of the theory of holomorphic functions is the very strong rela-
tionship between analytical properties of functions and geometrical properties of domains.
One of the most striking examples of this phenomenon is the path connecting Schwarz’s
lemma to Montel’s theorem passing through the Poincaré distance on hyperbolic Riemann
surfaces. One of the main goals of this chapter is to unwind this thread starting from the
very beginning, both for its own interest and because it will provide us with a number of
tools we shall need later on.

The main connection between analytical and geometrical aspects of the theory is the
invariant version of Schwarz’s lemma proved by Pick, stating that any holomorphic function
of the unit disk ∆ of C into itself is a contraction for the Poincaré metric. In other words,
the geometry — i.e., the Poincaré metric — imposes a strong analytic constraint on the
space Hol(∆,∆): the equicontinuity. Now, using the universal covering map, we can carry
over the construction of the Poincaré metric to any hyperbolic Riemann surface and, by
means of the Ascoli-Arzelà theorem, this will eventually lead to a geometrical, and slightly
unusual, proof of Montel’s theorem.

Thus it turns out that the normality of the family of holomorphic functions into a
hyperbolic Riemann surface (and related facts, like Vitali’s theorem) depends essentially
on the existence of a complete distance contracted by holomorphic functions. As we shall
see in the second part of this book, this approach still works for complex manifolds of
dimension greater than one, and this is the main reason we choosed it here. Actually,
we shall push it a little farther, to recover Picard’s theorems; in Kobayashi [1970] and
Lang [1987] it is used to prove even Schottky’s and Bloch’s theorems.

The second main goal of this chapter, besides the setting up of all the preliminary
material, is the description of the boundary behavior of the universal covering map of
hyperbolic domains. This was an argument in great favour in the first thirty years of this
century, but it is almost completely neglected today. We shall need it to study iteration
theory on hyperbolic domains, and so the last section of this chapter is devoted to the
proof of the main statements.

One word about our approach to Riemann surfaces. Our starting point is the quotation
of Riemann’s uniformization theorem; from there the exposition is almost self-contained,
relying heavily on the theory of covering spaces. The inexperienced reader is urged to look
at the first few sections of Forster [1981]; the experienced reader — well, you know what
you have to do, don’t you?

1.1.1 The Poincaré metric

In this section we shall discuss the connections between Schwarz’s lemma and the Poincaré
metric on the open unit disk ∆ of C. We shall also describe the basic geometry of the
Poincaré metric.

We begin with Schwarz’s lemma:
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Theorem 1.1.1: Let f :∆→ ∆ be a holomorphic function such that f(0) = 0. Then

∀z ∈ ∆ |f(z)| ≤ |z| (1.1.1)

and
|f 0(0)| ≤ 1. (1.1.2)

Moreover, equality in (1.1.1) for some non-zero z or in (1.1.2) occurs iff there is θ ∈ R
such that f(z) = eiθz for all z ∈ ∆.

Proof: Since f(0) = 0, we can define a function g:∆ → C by setting g(z) = f(z)/z.
If z ∈ ∆ and we pick |z| < r < 1, then by the maximum principle

|g(z)| ≤ sup
|w|=r

|g(w)| = sup
|w|=r

|f(w)|
r

≤ 1
r
.

Letting r → 1 we get |g(z)| ≤ 1, that is (1.1.2) and (1.1.1) (for g(0) = f 0(0)). If equality
holds in (1.1.2) or in (1.1.1) for some non-zero z, then, again by the maximum principle,
g is constant, and the last assertion follows, q.e.d.

The first application of Schwarz’s lemma is the computation of the automorphism
group of ∆:

Proposition 1.1.2: Every automorphism ∞:∆→ ∆ of ∆ is of the form

∞(z) = eiθ z − a

1− az
(1.1.3)

for some θ ∈ R, where a = ∞−1(0) ∈ ∆. In particular, every ∞ ∈ Aut(∆) extends
continuously to a homeomorphism of ∆ onto itself.

Proof: First of all, every ∞ given by (1.1.3) is an automorphism of ∆. Indeed,

∀z ∈ ∆ 1− |∞(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2 , (1.1.4)

and so ∞(∆) ⊂ ∆; furthermore,

∞−1(z) = e−iθ z + aeiθ

1 + ae−iθz

is the inverse of ∞.
Let Γ be the set composed by the automorphisms of type (1.1.3); it is easy to check that

Γ is a group, acting transitively on ∆. Therefore if ∞ is another automorphism of ∆, there
exists ∞1 ∈ Γ such that ∞1 ◦ ∞(0) = 0; hence it suffices to show that every automorphism ∞
of ∆ leaving 0 fixed is of the form ∞(z) = eiθz for some θ ∈ R, and thus belongs to Γ. But
if we apply (1.1.2) to ∞ and ∞−1, we see that |∞0(0)| = 1, and the assertion follows from
Schwarz’s lemma, q.e.d.
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Thus every automorphism of ∆ extends continuously to a neighbourhood of ∆; ac-
tually, they are restrictions of automorphisms of bC sending ∆ into itself (cf. Proposi-
tion 1.1.22). In particular, every automorphism of ∆ sends @∆ into itself. The corre-
sponding action of Aut(∆) on @∆ is fairly good. We say that a group Γ acting on a set X
is transitive if for every x1, x2 ∈ X there is ∞ ∈ Γ such that ∞(x1) = x2; simply transitive
if the previous ∞ is unique; doubly transitive if for every x1, x2, y1, y2 ∈ X with x1 6= x2

and y1 6= y2 there is ∞ ∈ Γ such that ∞(x1) = y1 and ∞(x2) = y2. Then

Corollary 1.1.3: Aut(∆) acts transitively on ∆, and doubly transitively on @∆.

Proof: The transitivity on ∆ and @∆ follows immediately from Proposition 1.1.2. So
choose σ1, σ2, τ1, τ2 ∈ @∆ with σ1 6= σ2 and τ1 6= τ2; we seek ∞ ∈ Aut(∆) such that
∞(σ1) = τ1 and ∞(σ2) = τ2. Obviously, it is enough to show that such a ∞ exists when σ1 = 1
and σ2 = −1. Moreover, we can also assume τ1 = 1, for Aut(∆) contains the rotations.
In conclusion, given τ ∈ @∆ we want ∞ ∈ Aut(∆) such that ∞(1) = 1 and ∞(−1) = τ . Let
σ ∈ @∆ be the square root of −τ with positive real part; set a = (σ − 1)/(σ + 1) and
α = (σ + 1)/(σ + 1). Then |a| < 1 = |α|, and

∞(z) = α
z − a

1− az
behaves as required, q.e.d.

In particular, then, if we have to prove something (invariant by automorphisms, of
course) about two points σ1, σ2 ∈ @∆ we may assume, without loss of generality, that
σ1 = 1 and σ2 = −1.

On the other hand, the action of Aut(∆) on ∆ is not doubly transitive. Indeed, if
z0 and z1 are in ∆, we can surely find ∞ ∈ Aut(∆) such that ∞(z0) = 0, but then |∞(z1)|
depends only on the two points, and not on the particular ∞ chosen. This is the first clue
to the existence of an underlying geometrical structure that must be preserved by Aut(∆),
and therefore strictly correlated to the holomorphic structure.

To be more specific, using the automorphism group of ∆ we first express Theorem 1.1.1
in a more invariant form:

Corollary 1.1.4: Let f :∆→ ∆ be holomorphic. Then

∀z, w ∈ ∆
ØØØØ

f(z)− f(w)
1− f(w)f(z)

ØØØØ ≤
ØØØØ

z − w

1− wz

ØØØØ, (1.1.5)

and

∀z ∈ ∆
|f 0(z)|

1− |f(z)|2 ≤
1

1− |z|2 . (1.1.6)

Moreover, equality in (1.1.5) for some z, w ∈ ∆ or in (1.1.6) for some z ∈ ∆ occurs iff
f ∈ Aut(∆).

Proof: Fix w ∈ ∆, and let ∞1, ∞2 ∈ Aut(∆) be given by

∞1(z) =
z + w

1 + wz
and ∞2(z) =

z − f(w)
1− f(w)z

.

Then the assertion follows applying Schwarz’s lemma to ∞2 ◦ f ◦ ∞1, q.e.d.
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Note that then every f ∈ Hol(∆,∆) different from the identity has at most one fixed
point: if f(z0) = z0 and f(z1) = z1 for z0 6= z1, then (assuming, as we can, z0 = 0)
f(z) = eiθz for a suitable θ ∈ R; but eiθz1 = z1 implies eiθ = 1, and f = id∆.

Led by (1.1.6), we introduce on ∆ the Poincaré metric

d∑2
z =

dz dz̄

(1− |z|2)2 . (1.1.7)

The differential geometry lovers can verify that d∑2 is a Kähler metric of constant Gaussian
curvature −4. The corresponding distance ω on ∆ will be called the Poincaré distance.

Lemma 1.1.5: For any z ∈ ∆ we have

ω(0, z) = 1
2 log

1 + |z|
1− |z| .

Proof: The expression of d∑2 shows that the complex conjugation and the rotations about
the origin are isometries for the Poincaré metric; hence the reflection with respect to any
straight line passing through the origin must be an isometry too.

Let σ: [0, ε) → ∆ be a geodesic issuing from 0, and let σ̇(0) = v. The reflection of σ
with respect to the line determined by v is another geodesic with the same initial tangent
vector; therefore σ should be radial.

Hence we may compute ω(0, z) for any z ∈ ∆ integrating d∑ along the segment from 0
to z, and we obtain

ω(0, z) =

|z|Z

0

dt

1− t2
= 1

2 log
1 + |z|
1− |z| ,

q.e.d.

So the Poincaré distance from 0 to z is the inverse hyperbolic tangent of |z|.
We may now rephrase Corollary 1.1.4, obtaining the Schwarz-Pick lemma:

Theorem 1.1.6: Let f :∆→ ∆ be holomorphic. Then

∀z, w ∈ ∆ ω
°
f(z), f(w)

¢
≤ ω(z, w), (1.1.8)

and

∀z ∈ ∆ f∗(d∑2
z) ≤ d∑2

z. (1.1.9)

Moreover, equality in (1.1.8) for some z 6= w ∈ ∆ or in (1.1.9) for some z ∈ ∆ occurs iff
f ∈ Aut(∆).

Proof: (1.1.9) is exactly (1.1.6) in the new language. In particular, then, the automor-
phisms of ∆ are isometries for the Poincaré metric, and Lemma 1.1.5 together with Propo-
sition 1.1.2 show that the Poincaré distance is given by

ω(z1, z2) = 1
2 log

1 +
ØØØØ

z1 − z2

1− z2z1

ØØØØ

1−
ØØØØ

z1 − z2

1− z2z1

ØØØØ

. (1.1.10)
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Since 1
2 log[(1 + t)/(1 − t)] is strictly increasing in t, (1.1.8) is exactly (1.1.5), and the

assertion follows, q.e.d.

So we have constructed a distance on ∆ which is contracted by holomorphic functions.
This is exactly the geometrical structure whose existence we suggested before:

Corollary 1.1.7: Let z1, z2, w1, w2 be four points of ∆. Then there exists an automor-
phism ∞ of ∆ such that ∞(z1) = w1 and ∞(z2) = w2 iff ω(z1, z2) = ω(w1, w2).

Proof: It is clear that, by Theorem 1.1.6, the existence of such an automorphism implies
the equality of the Poincaré distances. Conversely, assume ω(z1, z2) = ω(w1, w2). Clearly,
we can suppose w1 = 0. Let ∞1 ∈ Aut(∆) be such that ∞1(z1) = 0 = w1. Then

ω
°
0, ∞1(z2)

¢
= ω(z1, z2) = ω(0, w2),

that is |∞(z2)| = |w2|. Hence there exists a rotation ∞2 about the origin such that
∞2

°
∞1(z2)

¢
= w2, and ∞ = ∞2 ◦ ∞1 is the automorphism we were seeking, q.e.d.

The Poincaré metric is really intimately linked to the holomorphic structure of ∆. It
can be easily checked that it is the unique (up to a multiplicative constant) Riemannian
metric invariant under Aut(∆); furthermore, practically the only isometries of d∑2 are the
automorphisms of ∆:

Proposition 1.1.8: The group of all isometries for the Poincaré metric consists of all
holomorphic and antiholomorphic automorphisms of ∆.

Proof: Let f = u+iv be an isometry for the Poincaré metric, where u and v are real-valued
functions, and write z = x + iy, with x, y ∈ R. Then

1
°
1− (u2 + v2)

¢2

°
(du)2 + (dv)2

¢
=

1
°
1− (x2 + y2)

¢2

°
(dx)2 + (dy)2

¢
,

and this implies





µ
@u

@x

∂2
+

µ
@v

@x

∂2
=

µ
@u

@y

∂2
+

µ
@v

@y

∂2
,

@u

@x

@u

@y
+

@v

@x

@v

@y
= 0,

that is 




@u

@x
= (−1)ε @v

@y
@u

@y
= −(−1)ε @v

@x

with ε = 0 or 1, and thus f is either holomorphic or antiholomorphic, q.e.d.
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Now we would like to describe a bit more the geometry of the Poincaré metric, begin-
ning with the aspect of an open Poincaré disk

Bω(z,R) = {w ∈ ∆ | ω(z, w) < R}

of center z ∈ ∆ and radius R > 0. Since the function t 7→ 1
2 log[(1 + t)/(1− t)] is strictly

increasing, Bω(z,R) is given by

Bω(z,R) =
Ω

w ∈ ∆
ØØØØ

ØØØØ
w − z

1− zw

ØØØØ < tanhR

æ
.

It is then easy to check that Bω(z,R) is the open euclidean disk of center

z0 =
1− (tanhR)2

1− (tanhR)2|z|2 z,

and radius

ρ =
(tanhR)(1− |z|2)
1− (tanhR)2|z|2 . (1.1.11)

In particular, every Bω(z,R) is relatively compact in ∆, and so the Poincaré metric is
complete.

The other thing we shall need to know is the aspect of the geodesics for the Poincaré
metric. We have already seen in the proof of Lemma 1.1.5 that the geodesics issuing from
the origin are the diameters of the circle @∆. Now, Aut(∆) acts simply transitively on the
so-called line elements, i.e., on the pairs composed by a point and a tangent direction at that
point (in a fancier language, on the unit sphere bundle of ∆); this is exactly the content of
Schwarz’s lemma. In particular, then, Aut(∆) acts transitively on the set of all geodesics;
so it suffices to find the images of the diameters of @∆ through the elements of Aut(∆).
Up to compose by rotations, this amounts to finding ∞(C), where C = {z ∈ ∆ | Re z = 0}
and ∞(z) = (z − a)/(1− az) for some a ∈ ∆.

A point w belongs to ∞(C) iff ∞−1(w) ∈ C, i.e., iff

0 = Re
w + a

1 + aw
=

1
|1 + aw|2

©
(1 + |w|2)Re a + Re[(1 + a2)w]

™
.

If Re a = 0, 1 + a2 is real and positive, and so ∞(C) = C. If Re a 6= 0, w ∈ ∆ belongs
to ∞(C) iff

|w|2 + 2Re
∑
1 + a2

Re a
w

∏
+ 1 = 0,

that is iff
|w − b|2 = |b|2 − 1, (1.1.12)

where b = −(1 + a2)/Re a. Since |b| > 1, (1.1.12) is the equation of an euclidean circle
orthogonal to @∆.



1.1.1 The Poincaré metric 9

In conclusion, we have proved that the geodesics of the Poincaré metric are the di-
ameters of the circle @∆ and the intersections of ∆ with the circles orthogonal to @∆. In
particular, given two points of ∆ there exists a unique geodesic connecting them.

We end this section introducing a different model of the unit disk, the upper half-
plane H+ = {z ∈ C | Im z > 0}. The Cayley transform is the function ™:∆ → H+ given
by

™(z) = i
1 + z

1− z
. (1.1.13)

It is easily verified that ™ is a biholomorphism between ∆ and H+, with inverse

™−1(w) =
w − i

w + i
.

If we imbed H+ in the extended complex plane, then ™ extends to a homeomorphism of ∆
with H+, sending 1 in 1, 0 in i and −1 in 0.

Using the Cayley transform, we can transfer the Poincaré metric and distance from ∆
to H+. The Poincaré metric on H+ is

d∑2 =
dw dw̄

4(Imw)2
,

while the Poincaré distance on H+ is given by

ω(w1, w2) = 1
2 log

1 +
ØØØØ
w1 − w2

w1 − w2

ØØØØ

1−
ØØØØ
w1 − w2

w1 − w2

ØØØØ

. (1.1.14)

Again, a holomorphic map f :H+ → H+ contracts both Poincaré metric and distance,
that is

∀w ∈ H+ |f 0(w)|
Im f(w)

≤ 1
Imw

, (1.1.15)

and

∀w1, w2 ∈ H+

ØØØØ
f(w1)− f(w2)
f(w1)− f(w2)

ØØØØ ≤
ØØØØ
w1 − w2

w1 − w2

ØØØØ, (1.1.16)

with equality in (1.1.15) for some w ∈ H+ or in (1.1.16) for some w1 6= w2 ∈ H+ iff
f ∈ Aut(H+).

We can also compute Aut(H+):
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Proposition 1.1.9: Every automorphism ∞:H+ → H+ of H+ is of the form

∞(w) =
aw + b

cw + d
, (1.1.17)

for some a, b, c, d ∈ R such that ad − bc = 1. In particular, Aut(H+) is isomorphic
to PGL(2,R) = SL(2,R)/{± I2}.

Proof: ∞ is an automorphism of H+ iff ™−1 ◦ ∞ ◦ ™ is an automorphism of ∆. Plugging
the Cayley transform into (1.1.3) we find exactly (1.1.17), with a, b, c, d ∈ R satisfying
D = ad− bc > 0. But now if we divide a, b, c and d by

√
D we can express ∞ in the form

(1.1.17) with coefficients satisfying ad− bc = 1.
In other words, the group homomorphism µ:SL(2,R)→ Aut(H+) given by

µ

µ
a b
c d

∂
(w) =

aw + b

cw + d

is surjective. Its kernel is easily seen be equal to {±I2}, and the assertion follows, q.e.d.

The upper half-plane model is sometimes useful to understand questions regarding
the behavior of geometrical objects at a point of the boundary. For instance, the Cayley
transform sends the geodesics ending at 1 ∈ @∆ into the vertical lines in H+, quite a
simpler object. On the other hand, the study of objects linked to internal points may
be formally easier in ∆ than in H+. For instance, the isotropy group of i in H+ is the
composed by the automorphisms of the cumbersome form

∞(w) =
w cos θ − sin θ

w sin θ + cos θ
.

For these reasons, from now on in the proofs we shall often move back and forth from ∆
to H+, according to the current situation.

1.1.2 Fixed points of automorphisms

In this section we have collected several facts about automorphisms of ∆ and H+, mainly
regarding their fixed points.

We recall that an automorphism ∞ of ∆ extends continuosly to ∆, and the extension
(still denoted by ∞) sends ∆ into itself; in particular, it makes sense to look for fixed
points in ∆. Analogously, an automorphism of H+ extends continuously to H+ (where
the closure is taken in the extended complex plane, and thus contains the point at infinity),
and sends H+ into itself. The leading result is:

Proposition 1.1.10: Let ∞ ∈ Aut(∆), ∞ 6= id∆. Then either
(i) ∞ has a unique fixed point in ∆, or
(ii) ∞ has a unique fixed point in @∆, or
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(iii) ∞ has two distinct fixed points in @∆.

Proof: Write
∞(z) = eiθ z − z0

1− z0z
,

for some θ ∈ R and z0 ∈ ∆. The equation satisfied by the fixed points of ∞ is

z0z
2 + (eiθ − 1)z − z0 = 0. (1.1.18)

If z0 = 0, then ∞(z) = eiθz and we are in the first case. If z0 6= 0, then (1.1.18) has
(counting multiplicities) exactly two roots, z1 and z2. Moreover,

|z1||z2| = |z0/z0| = 1.

Therefore either just one of them is in ∆ — and we are again in case (i) —, or both are in
@∆, and we are either in case (ii) or (iii), q.e.d.

An automorphism of ∆ different from the identity is called elliptic if it has a (unique)
fixed point in ∆, parabolic if it has a unique fixed point on @∆, hyperbolic if it has two
distinct fixed points on @∆.

Clearly, the same definitions make sense for automorphisms of H+ (remembering to
include the point at infinity). In this case, we may tell elliptic, parabolic and hyper-
bolic automorphisms directly from their representation as elements of PGL(2,R). Let
∞ ∈ PGL(2,R) be represented by ∞̃ ∈ SL(2,R). Then |tr ∞̃| clearly depends only on ∞,
and not on the particular representative chosen. |tr ∞̃| is called the trace of ∞; it is obviously
invariant under conjugation.

By Proposition 1.1.9, we have also defined the trace of an element of Aut(H+). Then:

Proposition 1.1.11: Let ∞ ∈ Aut(H+), ∞ 6= idH+ . Then ∞ is elliptic (parabolic, hyper-
bolic) iff its trace is less than 2 (equal to 2, greater than 2).

Proof: Let ∞ be represented by (1.1.17). Then the fixed points equation for ∞ is

cw2 + (d− a)w − b = 0.

If c 6= 0, then ∞ is elliptic (parabolic, hyperbolic) iff this equation has two distinct complex
roots (one double real root, two distinct real roots), i.e., iff D = (d − a)2 + 4bc < 0
(respectively, D = 0, D > 0). Using the constraint ad− bc = 1 we easily compute

D = (a + d)2 − 4,

and the assertion follows in this case.
If c = 0, then d = a−1 and ∞ has a fixed point at 1; in particular, ∞ cannot be

elliptic. Hence it is hyperbolic iff it has a fixed point different from1, i.e., iff d 6= a, which
is equivalent to |a + d| > 2, and we are done, q.e.d.
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To better understand the different kinds of automorphisms, we use Corollary 1.1.3. If
∞ ∈ Aut(H+) is hyperbolic, up to conjugation we can assume that the fixed points of ∞
are 0 and 1. Hence ∞(w) = aw for some a > 0, a 6= 1, and its trace is a + a−1 > 2. In
particular, the group of hyperbolic automorphisms fixing two given points of @H+ (or @∆)
is isomorphic to (R+, ·).

Analogously, if ∞ is parabolic we can assume its fixed point is1, and write ∞(w) = w+b
for some b ∈ R∗. In particular, the group of parabolic automorphisms fixing one given
point of @H+ (or @∆) is isomorphic to (R,+).

Finally, if ∞ is elliptic we can assume its fixed point is i, and write

∞(w) =
w cos θ − sin θ

w sin θ + cos θ
(1.1.19)

for some θ ∈ R; the trace of ∞ is then 2| cos θ|. In particular, the group of elliptic auto-
morphisms fixing one given point of H+ (or ∆) is isomorphic to (S1, ·).

Coming back in ∆, an elliptic automorphism ∞ of fixed point 0 is just a rotation about
the origin. For this reason the elliptic automorphisms are sometimes called non-euclidean
rotations.

Clearly, the elliptic automorphisms of trace 0 must be peculiar in one way or another.
Indeed we have

Proposition 1.1.12: Let ∞ ∈ Aut(H+) be different from the identity. Then ∞ has trace
zero iff ∞2 = idH+ .

Proof: Write ∞ as in (1.1.17). Then a computation yields

∞2(w) =
(a + d)(aw + b)− w

(a + d)(cw + d)− 1
,

where we have used ad− bc = 1, and the assertion follows, q.e.d.

Now we shall meet for the first time one of the main leitmotive of this book: the
relation between commuting functions and fixed points. In this first case the connection
is easily proved:

Proposition 1.1.13: Let ∞1, ∞2 ∈ Aut(∆), both different from the identity. Then
∞1 ◦ ∞2 = ∞2 ◦ ∞1 iff ∞1 and ∞2 have the same fixed points.

Proof: Transfer everything on H+. If ∞1 is parabolic, without loss of generality we can
assume ∞1(w) = w + β, with β ∈ R∗. Write ∞2 as in (1.1.17); then ∞1 ◦ ∞2 = ∞2 ◦ ∞1 yields

µ
a + βc b + βd

c d

∂
= ±

µ
a βa + b
c βc + d

∂
.

Hence c = 0, a = d and ad = 1, showing that ∞2(w) = w + b.
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If ∞1 is hyperbolic, without loss of generality we can assume ∞1(w) = ∏w for some
∏ > 0, ∏ 6= 1. Now ∞1 ◦ ∞2 = ∞2 ◦ ∞1 yields

µ
∏a ∏b
c d

∂
= ±

µ
∏a b
∏c d

∂
.

Hence b = c = 0 and ad = 1, showing that ∞2(w) = a2w.
Finally, if ∞1 is elliptic we can assume without loss of generality that ∞1 is given

by (1.1.19); moreover, since ∞1 6= idH+ , we also have sin θ 6= 0. This time ∞1 ◦ ∞2 = ∞2 ◦ ∞1

yields a = d and b = −c, showing that ∞2 is elliptic and fixes i, q.e.d.

In this book we shall encounter several results of this kind: commuting holomorphic
maps must have common fixed points (under suitable hypotheses, of course). For the
moment, we shall content ourselves with two corollaries, that we shall need in our study
of Riemann surfaces.

Corollary 1.1.14: Let Γ be a discrete abelian subgroup of Aut(∆). Then Γ is cyclic. In
particular, if Γ does not contain elliptic elements, then Γ is isomorphic to Z.

Proof: By Proposition 1.1.13, all elements of Γ (except the identity) have the same fixed
points. Hence Γ is (topologically) isomorphic to a discrete subgroup of R+, R or S1,
according as Γ consists of hyperbolic, parabolic or elliptic automorphisms, and hence it is
cyclic, generated by the element nearest to the identity, q.e.d.

Corollary 1.1.15: Let Γ be a non-abelian subgroup of Aut(∆) without elliptic elements.
Then Γ contains a hyperbolic automorphism.

Proof: Transfer everything on H+, as usual. Assume there is ∞ ∈ Γ parabolic; we can
suppose ∞(w) = w + β for some β real and different from 0. Since Γ is non-abelian, by
Proposition 1.1.13 it contains some other element ∞1 with different fixed point set. If ∞1

is hyperbolic, there is nothing to prove. If ∞1 is parabolic, write it as in (1.1.17); clearly,
c must be non-zero. Then ∞k ◦ ∞1 has trace |a + d + kβc|, and so it is hyperbolic for
k sufficiently large, q.e.d.

We end this section with a technical result we shall need in section 1.1.5.

Lemma 1.1.16: (i) Every ∞ ∈ Aut(∆) sends circular arcs contained in ∆ in circular arcs
contained in ∆.
(ii) Let ∞ ∈ Aut(∆) be a hyperbolic automorphism with fixed points σ, τ ∈ @∆. Then
∞ sends any circular arc C ⊂ ∆ connecting σ with τ into itself.
(iii) Let ∞ ∈ Aut(∆) be a parabolic automorphism with fixed point τ ∈ @∆. Then ∞ sends
any circumference C ⊂ ∆ passing through τ into itself.

Proof: (i) This is a straightforward verification.
(ii) By (i), we can assume σ = 1 and τ = −1 (cf. Corollary 1.1.3). Transfer everything

on H+, via the Cayley transform ™. The image through ™ of a circular arc connecting −1
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with 1 is a half-line issuing from 0; since there is ∏ > 0 such that ™ ◦ ∞ ◦™−1(w) = ∏w for
all w ∈ H+, the assertion follows.

(ii) Without loss of generality, we can assume τ = 1. Transfer everything on H+, via
the Cayley transform ™. The image through ™ of a circumference passing through 1 is a
horizontal line. Since there is b ∈ R such that ™ ◦ ∞ ◦™−1(w) = w + b for all w ∈ H+, the
assertion follows, q.e.d.

1.1.3 Riemann surfaces

In this section we collect the first fundamental facts concerning Riemann surfaces, up to
the classification of Riemann surfaces with abelian fundamental group. As mentioned in
the introduction to this chapter, our main tool will be the theory of covering spaces.

For us, a Riemann surface is a one-dimensional connected complex manifold. The main
fact we shall use without proof is the fundamental Riemann’s uniformization theorem:

Theorem 1.1.17: Every simply connected Riemann surface is biholomorphic either to
the extended complex plane bC, or to the complex plane C, or to the unit disk ∆.

A proof can be found, e.g., in Forster [1981] or in Farkas and Kra [1980].
The importance of this theorem lies in the fact that, as we shall see momentarily,

every Riemann surface is the quotient of a simply connected Riemann surface by a group
of automorphisms; therefore the study of Riemann surfaces is reduced to the investigation
of particular subgroups of Aut(bC), Aut(C) and Aut(∆). We shall consistently use this
approach throughout this section, reverting as needed to a more geometric point of view
in subsequent sections.

Our first aim is then to describe any Riemann surface as quotient of a simply connected
Riemann surface. We begin with:

Lemma 1.1.18: Let X be a Riemann surface. Then there exists a simply connected
Riemann surface eX and a holomorphic covering map π: eX → X. Moreover, eX is uniquely
determined.

Proof: Let π: eX → X be the universal covering map of X; eX is uniquely determined.
Using π we can endow eX with a unique structure of Riemann surface so that π become
holomorphic, and the assertion follows, q.e.d.

Starting from here, we would like to describe at some extent this covering map. First
of all, some definitions. Given a Riemann surface X, the simply connected Riemann
surface whose existence is proved in Lemma 1.1.18 will be called the universal covering
surface of X. X is said elliptic (parabolic, hyperbolic) if its universal covering surface is
bC (respectively C, ∆).

Let π: eX → X be the universal covering map of a Riemann surface X. An auto-
morphism of the covering (or deck transformation) is an automorphism ∞ of eX such that
π ◦ ∞ = π. Then standard covering spaces theory (see Forster [1981]) shows that
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(a) the group Γ of automorphism of the universal covering is isomorphic to the funda-
mental group π1(X) of the surface;

(b) Γ acts transitively on the fibers of the covering, i.e., for any point z ∈ X and any pair
of points w1, w2 ∈ π−1(z) there exists ∞ ∈ Γ such that ∞(w1) = w2;

(c) X is biholomorphic to the orbit space eX/Γ.
So we are lead to characterize the subgroups of Aut( eX) that can arise as fundamental
group of a Riemann surface covered by eX.

Let X be a Riemann surface, and Γ a subgroup of Aut(X). We say that Γ acts freely
on X if no element of Γ other than the identity has a fixed point; Γ is properly discontinuous
at a point z ∈ X if there exists a neighbourhood U of z such that {∞ ∈ Γ | ∞(U)∩U 6= /∞}
is finite; Γ is properly discontinuous tout-court if it is so at every point. Then

Proposition 1.1.19: Let π: eX → X be the universal covering map of a Riemann sur-
face X, and let Γ denote the automorphism group of the covering. Then Γ is properly
discontinuous and acts freely on eX. Conversely, if Γ is a properly discontinuous subgroup
of Aut( eX) acting freely on eX, then eX/Γ has a natural structure of Riemann surface, and
the canonical map π: eX → eX/Γ is its universal covering.

Proof: Fix z0 ∈ eX and a neighbourhood V of π(z0) such that π−1(V ) is a disjoint union of
open subsets of eX biholomorphic through π to V — in short, an admissible neighbourhood
of π(z0). Let U be the component of π−1(V ) containing z0; then π|U is a biholomorphism
between U and V . In particular, if ∞ ∈ Γ is such that ∞(U)∩U 6= /∞, then ∞ is the identity
on U , and hence everywhere. Since z0 is an arbitrary point of eX, this means exactly that
Γ is properly discontinuous and acts freely on eX.

Conversely, if Γ is properly discontinuous and acts freely on eX, then for every z0 ∈ eX
there is a neighbourhood U such that {∞ ∈ Γ | ∞(U) ∩ U 6= /∞} = {ideX}. It is then easy
to check that the natural projection π: eX → eX/Γ is a covering map, and thus induces
on eX/Γ a natural structure of Riemann surface, q.e.d.

So a Riemann surface X is given by its universal covering surface eX and by a properly
discontinuous subgroup Γ of Aut( eX) acting freely on eX and isomorphic to π1(X). Clearly,
two different subgroups of Aut( eX) can give rise to the same Riemann surface. The next
proposition tells when this happens:

Proposition 1.1.20: Two Riemann surfaces X1 and X2 are biholomorphic iff they have
the same universal covering surface eX and their fundamental groups are conjugated in
Aut( eX).

Proof: Let f :X1 → X2 be a biholomorphism. Then X1 and X2 have the same univer-
sal covering surface eX; let πj : eX → Xj denote the corresponding covering map, and let
Γj ⊂ Aut( eX) be the automorphism group of πj . The biholomorphism f lifts to an auto-
morphism ϕ of eX such that π2 ◦ ϕ = f ◦ π1. Then for every ∞1 ∈ Γ1 we have

π2 ◦ ϕ ◦ ∞1 = f ◦ π1 ◦ ∞1 = f ◦ π1 = π2 ◦ ϕ,
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that is ϕ ◦ ∞1 ◦ ϕ−1 ∈ Γ2, and thus Γ2 = ϕΓ1ϕ−1.
Conversely, assume that Γ2 = ϕΓ1ϕ−1 for some ϕ ∈ Aut( eX). Then it is easy to check

that ϕ defines a biholomorphism f :X1 → X2 such that π2 ◦ ϕ = f ◦ π1, q.e.d.

During the proof, we lifted a function of a Riemann surface into itself to a map of its
universal covering into itself. To fix the terminology, we digress a little to better discuss
the argument; a proofs of the following facts can be found, for instance, in Massey [1967].

Let X and Y be two Riemann surfaces, πX : eX → X and πY : eY → Y their universal
covering maps, and ΓX ⊂ Aut( eX) and ΓY ⊂ Aut(eY ) their fundamental groups. Any
function f ∈ Hol(X,Y ) admits a lifting, that is a holomorphic function f̃ ∈ Hol( eX, eY )
such that f ◦ πX = πY ◦ f̃ . f̃ is uniquely determined by its value at one point, and any
other lifting is of the form ∞ ◦ f̃ , where ∞ ∈ ΓY . Furthermore, for every ∞ ∈ ΓX there exists
∞1 ∈ ΓY such that

f̃ ◦ ∞ = ∞1 ◦ f̃ ; (1.1.20)

conversely, a function f̃ ∈ Hol( eX, eY ) is a lifting of a function from X to Y iff (1.1.20) is
satisfied. In particular, f̃ is a biholomorphism iff f is so.

Another kind of lifting problem is given f ∈ Hol(X,Y ) to find f̂ ∈ Hol(X, eY ) such that
f = πY ◦ f̂ . This time the problem is not always solvable; f̂ exists iff f∗

°
π1(X)

¢
is trivial,

where f∗:π1(X)→ π1(Y ) is the homomorphism induced by f at the homotopy level. The
relations among f , f̃ and f̂ are summarized by the following commutative diagram:

eX f̃−→ eY
πX

y
f̂

%
yπY

X
f−→ Y

Another way of looking at this question makes use the notion of automorphic function. A
function g ∈ Hol( eX,Y ) is automorphic under ΓX if g◦∞ = g for all ∞ ∈ ΓX . In other words,
g is automorphic under ΓX iff there is a function go ∈ Hol(X,Y ) such that g = go ◦ πX .
This time the explicative commutative diagram is

eX g̃o−→ eY
πX

y
g

&
yπY

eX/ΓX = X
go−→ Y

Coming back to our function f ∈ Hol(X,Y ), we see that f̂ ∈ Hol(X, eY ) exists iff
any lifting (and hence all liftings) f̃ ∈ Hol( eX, eY ) is automorphic under ΓX . For future
reference, we summarize the situation in the following proposition:

Proposition 1.1.21: Let X and Y be two Riemann surfaces, πX : eX → X and πY : eY → Y
their universal covering maps, and ΓX ⊂ Aut( eX) and ΓY ⊂ Aut(eY ) their fundamental
groups. Choose a function f ∈ Hol(X,Y ). Then the following statements are equivalent:
(i) f∗

°
π1(D)

¢
is trivial;
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(ii) there exists f̂ ∈ Hol(X, eY ) such that f = πY ◦ f̂ ;
(iii) a lifting (and hence any lifting) of f is automorphic under ΓX .

The proof can be either considered as an instructive exercise in covering spaces theory
or worked out perusing Massey [1967].

The digression is concluded, and now we of course want to know which subgroups of
Aut(bC), Aut(C) and Aut(∆) are properly discontinuous and act freely. The first step is
describing the automorphism group of the three simply connected Riemann surfaces. We
already know Aut(∆), and the other two are given in

Proposition 1.1.22: (i) Every automorphism ∞ of C is of the form

∞(z) = az + b, (1.1.21)

for some a, b ∈ C, a 6= 0.

(ii) Every automorphism ∞ of bC is of the form

∞(z) =
az + b

cz + d
, (1.1.22)

where a, b, c, d ∈ C are such that ad − bc = 1. The representation is unique up to sign,
and Aut(bC) is isomorphic to PGL(2,C) = SL(2,C)/{±I2}.

Proof: (i) An automorphism of C is an injective entire function, that is a linear polyno-
mial.

(ii) It is clear that every ∞ ∈ Hol(bC, bC) given by (1.1.22) is an automorphism of bC;
moreover, they act transitively on bC. Therefore, it suffices to show that the isotropy group
of 1 consists of automorphisms of the given form. But it is exactly Aut(C), and the
assertion follows from (i), q.e.d.

To determine the right subgroups to consider, we need

Lemma 1.1.23: Let Γ be a group of automorphisms of a Riemann surface X, properly
discontinuous at some point of X. Then Γ is discrete.

Proof: Assume Γ is not discrete. Then there is an infinite sequence of distinct elements
∞∫ ∈ Γ converging to an element ∞ ∈ Γ. Therefore ∞−1 ◦ ∞∫ → idX , and Γ cannot be
properly discontinuous at any point of X, q.e.d.

In the next section, we shall see (Proposition 1.1.48) that if X is a hyperbolic Riemann
surface, then every discrete subgroup of Aut(X) is everywhere properly discontinuous. For
the moment, Lemma 1.1.23 is enough to describe the properly discontinuous subgroups
of Aut(bC) and Aut(C) acting freely on bC, respectively C, that is all the elliptic and
parabolic Riemann surfaces:
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Corollary 1.1.24: (i) No non-trivial subgroup of Aut(bC) acts freely on bC. In particular,
the unique elliptic Riemann surface is bC.
(ii) The properly discontinuous subgroups of Aut(C) acting freely on C are, up to con-
jugation, {idC}, {∞(z) = z + n | n ∈ Z} and Γτ = {∞(z) = z + m + nτ | m, n ∈ Z},
where τ ∈ H+. In particular, the parabolic Riemann surfaces are C, C∗ and the tori
C/Γτ .

Proof: (i) Every element of Aut(bC) has a fixed point in bC, by (1.1.22), and thus no
subgroup of Aut(bC) can act freely on bC.

(ii) By (1.1.21), the only elements of Aut(C) without fixed points are the translations
∞(z) = z+b. In particular, by Lemma 1.1.23, the fundamental group of a parabolic surface
is isomorphic to a discrete subgroup of C.

The discrete subgroups of C are easily described: up to conjugation they are {0}, Z
and Z ⊕ τZ, where τ ∈ H+. They are properly discontinuous, and the assertion follows.
The universal covering map π:C→ C∗ is given by

π(z) = exp(2πiz), (1.1.23)

q.e.d.

Later on we shall see (Corollary 1.1.49) that the properly discontinuous subgroups
of Aut(∆) acting freely on ∆ are exactly the discrete subgroups without elliptic elements.

A scrupulous reader may now properly ask for examples of hyperbolic Riemann sur-
faces. A first list of examples is provided by topology. Riemann surfaces with non-abelian
fundamental group must be hyperbolic, for the non-hyperbolic Riemann surfaces always
have abelian fundamental group. This get rid of compact Riemann surfaces; furthermore,
it is clear that the non-compact Riemann surfaces not biholomorphic to a plane domain
must be hyperbolic.

How about plane domains? First of all, again by topological considerations, a do-
main D ⊂ bC with fundamental group non-trivial and not biholomorphic to Z must be
hyperbolic; for instance, bC minus three points is hyperbolic. Furthermore, every bounded
domain must be hyperbolic, by Liouville’s theorem.

At this point, the above mentioned scrupulous reader may begin suspecting that most
of the plane domains are hyperbolic. In fact, almost all of them are so; this is a corollary
of the following observation showing how non-hyperbolic and hyperbolic Riemann surfaces
live in completely separated realms:

Proposition 1.1.25: Every holomorphic function f :X → Y from an elliptic or parabolic
Riemann surface X into a hyperbolic Riemann surface Y is constant.

Proof: Let f̃ : eX → ∆, where eX = bC or C, be a lifting of f to the universal covering. By
Liouville’s theorem, f̃ is constant, and thus f itself is constant, q.e.d.

Corollary 1.1.26: Every domain D ⊂ bC such that bC \ D contains at least three points
is a hyperbolic Riemann surface.

Proof: In fact, by definition there exists a holomorphic immersion of D into bC minus three
points; therefore D must be hyperbolic by Proposition 1.1.25, q.e.d.
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By the way, if we take X = C in Proposition 1.1.25 we recover the little Picard
theorem: an entire function missing two values is constant.

Another corollary is the commonest form of the Riemann’s mapping theorem:

Corollary 1.1.27: Every simply connected domain D ⊂ C different from C is biholo-
morphic to ∆.

Proof: Indeed, if D 6= C then bC \ D must contain at least three points, and the assertion
follows from Corollary 1.1.26, q.e.d.

Later on we shall need a very natural (and quite difficult to prove) extension of
Riemann’s mapping theorem, the Osgood-Taylor-Carathéodory theorem:

Theorem 1.1.28: Let D ⊂ C be a simply connected bounded domain such that @D is
a Jordan curve. Then every biholomorphism f :D → ∆ extends continuously to a homeo-
morphism between D and ∆. If moreover @D is a C1 curve, then f extends to a C1 dif-
feomorphism between D and ∆.

A proof can be found, e.g., in Burckel [1979] for the Jordan case, and in Goluzin [1969]
for the C1 case.

For obvious reasons, a plane domain D ⊂ bC such that bC \ D contains at least three
points will be called hyperbolic. Note that if D ⊂ bC is hyperbolic then we can always
assume 1 /∈ D. More generally, a hyperbolic domain of a compact Riemann surface bX
is a non-compact domain D ⊂ bX which is hyperbolic as Riemann surface. For the sake
of brevity, we shall often say “a hyperbolic domain D ⊂ bX” instead of “a hyperbolic
domain D of a compact Riemann surface bX”.

Now it is clear that most of Riemann surfaces are hyperbolic, and starting from the
next section most of our theorems will be about hyperbolic Riemann surfaces. On the
other hand, elliptic and parabolic Riemann surfaces share a particular feature: they all
have abelian fundamental groups. This suggests that hyperbolic Riemann surfaces with
abelian fundamental group must be special in some sense. In fact, they are very few. The
classification is given in the following:

Theorem 1.1.29: Let X be a Riemann surface with abelian fundamental group. Then
either
(i) π1(X) is trivial, and X is either bC, C or ∆, or
(ii) π1(X) ∼= Z, and X is either C∗, ∆∗ = ∆ \ {0} or A(r, 1) = {z ∈ C | r < |z| < 1} for
some 0 < r < 1, or
(iii) π1(X) ∼= Z⊕ Z and X is a torus.

Proof: By Corollary 1.1.24, we can limit ourselves to hyperbolic Riemann surfaces. Realize
π1(X) as a subgroup Γ of Aut(∆); by Lemma 1.1.23 and Corollary 1.1.14 Γ is infinite cyclic,
that is π1(X) ∼= Z, and it is generated by a either parabolic or hyperbolic element ∞.

Transfer everything on H+, as usual. If ∞ is parabolic, without loss of generality we
can assume ∞(w) = w + 1. Then H+/Γ is biholomorphic to ∆∗, and the covering map
π:H+ → ∆∗ is given by

π(w) = exp(2πiw). (1.1.24)
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If ∞ is hyperbolic, without any loss of generality we can assume ∞(w) = aw for some a > 1.
Then H+/Γ is biholomorphic to A(r, 1), where r = exp(−2π2/ log a). The covering map
π:H+ → A(r, 1) is given by

π(w) = exp
µ

2πi
log w

log a

∂
, (1.1.25)

where log w is the principal branch of the logarithm in H+. Note that if a1 6= a2, with
both a1 and a2 greater than 1, then the group generated by ∞1(w) = a1w is not conjugated
to the group generated by ∞2(w) = a2w, and the two corresponding Riemann surfaces are
not biholomorphic (by Proposition 1.1.20), q.e.d.

We recall that a Riemann surface X which is not simply connected is usually called
multiply connected; if π1(X) ∼= Z, it is called doubly connected. Then

Corollary 1.1.30: Every doubly connected Riemann surface X is biholomorphic either
to C∗, ∆∗ or to an annulus A(r, 1) for some 0 < r < 1.

In this setting, we can also describe the automorphism group of a Riemann surface:

Proposition 1.1.31: Let π: eX → X be the universal covering of a Riemann surface X.
Realize the fundamental group of X as the automorphism group Γ of the covering, and let
N(Γ) be the normalizer of Γ in Aut( eX). Then Aut(X) ∼= N(Γ)/Γ.

Proof: Arguing exactly as in Proposition 1.1.20 we see that an automorphism of X gives
rise to an automorphism of eX normalizing Γ, and vice versa, q.e.d.

As an application, we may compute the automorphism group of the Riemann surfaces
listed in Theorem 1.1.29:

Proposition 1.1.32: (i) Every ∞ ∈ Aut(C∗) is of the form ∞(z) = ∏z±1, for some ∏ ∈ C∗.
In particular, the connected component at the identity of Aut(C∗) is isomorphic to C∗.
(ii) Let τ ∈ H+, and let Xτ be the torus C/Γτ . Then Aut(Xτ ) is isomorphic to
(R2/Z2) × Z6 if τ = eiπ/3 or e2iπ/3, to (R2/Z2) × Z4 if τ = i, and to (R2/Z2) × Z2

otherwise. In particular, the connected component at the identity of Aut(Xτ ) is always
isomorphic to R2/Z2.
(iii) Every ∞ ∈ Aut(∆∗) is of the form ∞(z) = eiθz for some θ ∈ R.
(iv) Every ∞ ∈ Aut

°
A(r, 1)

¢
is either of the form ∞(z) = eiθz or of the form ∞(z) = eiθrz−1

for some θ ∈ R.

Proof: (i) The fundamental group of C∗ is generated by ∞0(z) = z+1. Then the normalizer
of Γ in Aut(C) is composed by the functions ∞(z) = ±(z + b) with b ∈ C. Using the
universal covering map (1.1.23) to read the automorphisms in C∗, the assertion follows.

(ii) The fundamental group Γτ of Xτ is generated by ∞1(z) = z +1 and ∞τ (z) = z +τ .
Let σ(z) = az + b be an automorphism of C, with inverse σ−1(z) = a−1(z − b). Then
σ ∈ N(Γτ ) iff σ−1Γτσ = σΓτσ−1 = Γτ . In other words, σ ∈ N(Γτ ) iff a−1(m + nτ) and
a(m + nτ) belong to Z ⊕ τZ for all m, n ∈ Z. This clearly implies either a = ±1 or
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a = ±τ . The former possibility clearly defines elements of N(Γτ ). On the contrary, the
latter possibility defines elements of N(Γτ ) iff τ2 = p1+q1τ and τ−1 = p2+q2τ for suitable
p1, p2, q1, q2 ∈ Z, that is iff

q1τ + p1 =
1
q2

(1− p2τ).

Recalling that Im τ > 0, we obtain q1 = −p2/q2 and p1 = 1/q2. Hence τ is a root of the
polynomial t2 − εp2t + ε with positive imaginary part, where ε = ±1. This implies ε = 1
and p2

2 < 4, and so the only possibilities are

τ0 = i, τ1 =
1 + i

√
3

2
= eiπ/3 and τ−1 =

−1 + i
√

3
2

= e2iπ/3.

Summing up, if τ 6= τ0, τ1, τ−1 then N(Γτ ) =
©
∞(z) = ±(z + b)

ØØ b ∈ C
™
, whereas if τ is

one of the exceptional values we have
N(Γτ0) =

©
∞(z) = ±(z + b)

ØØ b ∈ C
™
∪

©
∞(z) = ±(iz + b)

ØØ b ∈ C
™

and
N(Γτ±1) =

©
∞(z) = ±(z + b)

ØØ b ∈ C
™
∪

©
∞(z) = ±(τ±1z + b)

ØØ b ∈ C
™
,

and the assertion follows.
(iii) The fundamental group of ∆∗ is generated by ∞0(w) = w+1. Then the normalizer

of Γ in Aut(H+) is given by N(Γ) = {∞(w) = w + b | b ∈ R}. Using the universal covering
map (1.1.24), the assertion follows. Alternatively, note that, by Riemann’s extension
theorem, every automorphism of ∆∗ is the restriction of an automorphism of ∆ leaving
the origin fixed, and apply Schwarz’s lemma.

(iv) The fundamental group of A(r, 1) is generated by ∞0(w) = a0w, where
a0 = exp(−2π2/ log r).

Then N(Γ) is generated by the functions ∞(w) = aw for a > 0 and by ∞(w) = −1/w.
Using the universal covering map (1.1.25), the assertion again follows, q.e.d.

For sake of better place, we end this section recalling some classical facts of complex
analysis we shall need later.

For any z0 ∈ C and r > 0 we shall denote by D(z0, r) ⊂ C the open euclidean disk of
center z0 and radius r. Our rewiew is based on a simplified version of Rouché’s theorem:

Theorem 1.1.33: Let f and g be functions holomorphic in a neighbourhood of a closed
disk D(z0, r) ⊂ C and such that |f − g| < |g| on @D(z0, r). Then f and g have the same
number of zeroes in D(z0, r).

Proof: Let f∏ = g + ∏(f − g) for ∏ ∈ [0, 1]. Then on @D(z0, r)
0 < |g(z)|− |f(z)− g(z)| ≤ |g(z)|− ∏|f(z)− g(z)| ≤ |f∏(z)|.

Let a∏ denote the number of roots of f∏ in D(z0, r). By the logarithmic indicator theorem,

a∏ =
1

2πi

Z

@D(z0,r)

f 0∏(≥)
f∏(≥)

d≥ =
1

2πi

Z

@D(z0,r)

g0(≥) + ∏
°
f 0(≥)− g0(≥)

¢

g(≥) + ∏
°
f(≥)− g(≥)

¢ d≥.

Since a∏ is integer and depends continuosly on ∏, it is constant. In particular a0, the
number of zeroes of g, is equal to a1, the number of zeroes of f , q.e.d.
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A first corollary, that will later be considerably generalized and proved in a different
way (see Proposition 1.3.14 and Corollary 2.1.32), is

Corollary 1.1.34: Let f :∆→ ∆ be holomorphic and such that f(∆) is relatively compact
in ∆. Then f has a fixed point.

Proof: Let r < 1 be such that |f(z)| < r for all z ∈ ∆. Then on @D(0, r)
ØØz −

°
z − f(z)

¢ØØ = |f(z)| < r = |z|.

Hence we may apply Theorem 1.1.33 to id∆ and f− id∆, and f has exactly one fixed point
in D(0, r), q.e.d.

The second application is a list of three results, collectively known as Hurwitz’s the-
orems:

Corollary 1.1.35: Let {f∫} be a sequence of functions holomorphic in a given neighbour-
hood of a closed disk D(z0, r) ⊂ C. Assume that f∫ → f uniformly on D(z0, r), and that
f vanishes nowhere on @D(z0, r). Then for ∫ large enough f∫ has the same number of
zeroes as f in D(z0, r).

Proof: Let m = inf
©
|f(z)|

ØØ z ∈ @D(z0, r)
™

> 0. Since f∫ → f uniformly, for ∫ large
enough we have |f∫ − f | < m ≤ |f | on @D(z0, r). Hence we can apply Theorem 1.1.33
to f∫ and f , q.e.d.

Corollary 1.1.36: Let X and Y be two Riemann surfaces, and {f∫} ⊂ Hol(X,Y ) a se-
quence of holomorphic functions converging, uniformly on compact sets, to a non-constant
function f ∈ Hol(X,Y ). Choose w0 ∈ f(X), and assume f−1(w0) contains at least p dis-
tinct points. Then for all ∫ large enough f−1

∫ (w0) contains at least p distinct points.

Proof: Take z1, . . . , zp ∈ f−1(w0). Choose a neighbourhood V ⊂⊂ Y of w0 and r0 > 0
such that there is a biholomorphism ϕ:V → D(0, r0) with ϕ(w0) = 0. Since f∫ → f
uniformly on compact sets, and f is not constant, for all j = 1, . . . , p we can find a
neighbourhood Uj ⊂⊂ X of zj such that
(a) there are rj > 0 and a biholomorphism √j :D(0, 2rj)→ Uj with √j(0) = zj ;
(b) f∫(Uj) ⊂ V for all ∫ large enough;
(c) Uj ∩ f−1(w0) = {zj} for all j = 1, . . . , p;
(d) Uh ∩ Uk = /∞ if h 6= k.
Then Corollary 1.1.35 applied to ϕ ◦ f∫ ◦ √j :D(0, rj)→ D(0, r0) shows that f−1

∫ (w0)∩Uj

contains at least one point for ∫ large enough (and all j), and we are done, q.e.d.

Corollary 1.1.37: Let X and Y be two Riemann surfaces, and {f∫} ⊂ Hol(X,Y ) a
sequence of injective holomorphic functions converging, uniformly on compact sets, to a
function f ∈ Hol(X,Y ). Then f is either constant or injective.

Proof: Assume f−1(z0) contains at least two points for some z0 ∈ Y . Then, by Corol-
lary 1.1.36, either f ≡ z0 or f−1

∫ (z0) contains at least two points for every ∫ large enough,
impossible, q.e.d.
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1.1.4 Hyperbolic Riemann surfaces and Montel’s theorem

In this section, which is probably the most important of this chapter, we shall use the
geometrical structure induced by the Poincaré distance on any hyperbolic Riemann surface
to derive a direct proof of Montel’s theorem. The significance of this approach is twofold.
On one side, it is a beatiful example of the correlation between geometrical and functional
aspects of the theory of holomorphic functions. On the other side, the constructions
involved here have been the original motivation of the more general arguments we shall
describe in the second part of this book.

Our first aim is to transfer the Poincaré distance from ∆ to any hyperbolic Riemann
surface. Let X be a hyperbolic Riemann surface, and denote by πX :∆ → X its universal
covering map. Then the Poincaré distance ωX :X ×X → R+ on X is given by

∀z, w ∈ X ωX(z, w) = inf
©
ω(z̃, w̃)

ØØ z̃ ∈ π−1
X (z), w̃ ∈ π−1

X (w)
™
. (1.1.26)

We called ωX a distance, but this requires a proof.

Proposition 1.1.38: Let X be a hyperbolic Riemann surface. Then ωX is a distance
on X inducing the standard topology.

Proof: The main fact here is that

∀z, w ∈ X ωX(z, w) = inf
©
ω(z̃, w̃)

ØØ w̃ ∈ π−1
X (w)

™
, (1.1.27)

where z̃ is any point in the fiber π−1
X (z). Indeed, (1.1.27) follows from the fact that the

automorphism group of the covering acts transitively on the fibers. Using (1.1.26) and
(1.1.27) it is now a routine matter to prove that ωX is a distance.

For the last statement, note that πX is a local isometry between (∆,ω) and (X,ωX),
i.e., every point z ∈ ∆ has a neighbourhood U such that πX |U : (U,ω)→ (πX(U),ωX) is an
isometry. From this it easily follows that πX is continuous and open from ∆ to (X,ωX),
and hence ωX induces the standard topology, q.e.d.

From a differential geometric point of view, ωX is but the distance induced by the
Riemannian structure defined on X by means of the Poincaré metric on ∆ and the covering
map πX .

The first question about a distance is: is it complete? In our case the answer is
positive:

Proposition 1.1.39: Let X be a hyperbolic Riemann surface. Then every ωX -bounded
subset of X is relatively compact. In particular, ωX is a complete distance.

Proof: It clearly suffices to show that a generic closed ball B = {w ∈ X | ωX(z, w) ≤ r} is
compact, where z ∈ X and r > 0.

Choose z̃ ∈ ∆ such that πX(z̃) = z, and fix ε > 0. We claim that B is contained
in πX

≥
Bω(z̃, r + ε)

¥
. Indeed, take w ∈ B; then, by (1.1.27), there is w̃ ∈ π−1

X (w) such

that ω(z̃, w̃) < r + ε, and so w̃ ∈ Bω(z̃, r + ε). Since Bω(z̃, r + ε) is compact, the assertion
follows, q.e.d.
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The main property of the Poincarè distance on ∆ was the Schwarz-Pick lemma. Ac-
cordingly, the main property of the Poincaré distance on an arbitrary Riemann surface
is:

Theorem 1.1.40: Let X and Y be two hyperbolic Riemann surfaces, and f :X → Y a
holomorphic function. Then

∀z1, z2 ∈ X ωY

°
f(z1), f(z2)

¢
≤ ωX(z1, z2).

Proof: Lift f to a holomorphic function f̃ :∆ → ∆ such that πY ◦ f̃ = f ◦ πX . Now
take z1, z2 ∈ X, and fix ε > 0. Choose z̃1, z̃2 ∈ ∆ so that πX(z̃j) = zj for j = 1, 2 and
ω(z̃1, z̃2) < ωX(z1, z2) + ε. Then the Schwarz-Pick lemma yields

ωY

°
f(z1), f(z2)

¢
≤ ω

°
f̃(z̃1), f̃(z̃2)

¢
≤ ω(z̃1, z̃2) ≤ ωX(z1, z2) + ε.

Since ε is arbitrary, the assertion follows, q.e.d.

It should be noticed that if we set ωX ≡ 0 for a non-hyperbolic Riemann surface X,
then (recalling Proposition 1.1.25) Theorem 1.1.40 holds for holomorphic functions between
any pair of Riemann surfaces. The real significance of this observation will be revealed in
the second part of this book: ωX is just the Kobayashi distance on X.

An important consequence of Theorem 1.1.40 is that the family of holomorphic func-
tions between two hyperbolic Riemann surfaces is equicontinuous. In particular,

Corollary 1.1.41: Let X and Y be hyperbolic Riemann surfaces. Then the topology of
pointwise convergence on Hol(X,Y ) coincides with the compact-open topology.

Proof: Since Hol(X,Y ) is equicontinuous, we can quote Kelley [1955], p. 232, q.e.d.

From now on, then, we shall indifferently consider Hol(X,Y ) endowed with the topol-
ogy of pointwise convergence, or with the compact-open topology.

But now we had better to describe the concepts involved in Montel’s theorem. Let X1

and X2 be two Riemann surfaces. A sequence of holomorphic maps {f∫} ⊂ Hol(X1,X2)
is compactly divergent if for every pair of compact sets K1 ⊂ X1 and K2 ⊂ X2 there
is ∫0 ∈ N such that f∫(K1) ∩K2 = /∞ for all ∫ ≥ ∫0. If X2 = C, we shall sometimes say
that {f∫} diverges to infinity, uniformly on compact sets.

A family F ⊂ Hol(X1,X2) of holomorphic maps is said normal if every sequence
in F admits either a convergent subsequence or a compactly divergent subsequence. For
instance, {zk} ⊂ Hol(C,C) is not a normal family, whereas {zk} ⊂ Hol(∆,∆) is.

Normality is a sort of compactness condition; for instance if Y is a compact Riemann
surface, then a family F ⊂ Hol(X,Y ) is normal iff it is relatively compact. So normality
is naturally linked to the Ascoli-Arzelá theorem, that we shall use in the following form:

Theorem 1.1.42: Let X be a locally compact metric space, and Y a metric space. Then
a family F ⊂ C0(X,Y ) is relatively compact iff
(i) F(x) = {f(x) | f ∈ F} is relatively compact in Y for every x ∈ X, and
(ii) F is equicontinuous.

For a proof see, e.g., Kelley [1955], p. 233.
Finally we can state and prove Montel’s theorem:
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Theorem 1.1.43: Let X and Y be hyperbolic Riemann surfaces. Then Hol(X,Y ) is a
normal family.

Proof: Let {f∫} be a sequence of holomorphic functions from X to Y ; we have to prove
that if {f∫} is not compactly divergent then it admits a convergent subsequence.

Assume {f∫} is not compactly divergent; then there are compact sets K1 ⊂ X and
K2 ⊂ Y such that f∫(K1)∩K2 6= /∞ for infinitely many ∫; clearly, up to a subsequence we
can assume f∫(K1) ∩K2 6= /∞ for all ∫.

We claim that {f∫(z)} is relatively compact in Y for any z ∈ X. In fact, fix z0 ∈ X
and w0 ∈ K2; furthermore, let δ1 denote the ωX -diameter of K1, and δ2 the ωY -diameter
of K2. Then Theorem 1.1.40 yields

∀∫ ∈ N ωY

°
f∫(z0), w0

¢
≤ min{ωX(z0, z) | z ∈ K1} + δ1 + δ2.

Hence {f∫(z0)} is ωY -bounded and thus relatively compact in Y , by Proposition 1.1.39,
and the claim is proved.

To finish the proof it suffices now to invoke the Ascoli-Arzelà theorem: its hypotheses
are fulfilled (again by Theorem 1.1.40), and so {f∫} is relatively compact. In particular,
we can extract a converging subsequence, and we are done, q.e.d.

So we have completely traced the way from the seemingly innocuous Schwarz lemma
to the all powerful Montel theorem. The novice reader will soon learn to appreciate the
strength of Montel’s theorem (the experienced reader appreciates it yet, we hope); a first
sample is given by the striking consequences it has on the topology of Hol(X,Y ). For
instance, we have

Corollary 1.1.44: Let X and Y be two hyperbolic Riemann surfaces. Then Hol(X,Y )
is locally compact.

Proof: Take f ∈ Hol(X,Y ), fix z0 ∈ X and let U ⊂ Y be a relatively compact open
neighbourhood of f(z0); it suffices to show that the neighbourhood

W (z0, U) = {g ∈ Hol(X,Y ) | g(z0) ∈ U}
of f is relatively compact in Hol(X,Y ). But indeed no sequence in W (z0, U) can be
compactly divergent, and the assertion follows from Theorem 1.1.43, q.e.d.

But the first really important consequence is that the convergence of a sequence of
functions in the usual compact-open topology is assured by very weak hypotheses, as shown
in Vitali’s theorem:

Theorem 1.1.45: Let X and Y be hyperbolic Riemann surfaces, and let {f∫} be a se-
quence of functions in Hol(X,Y ). Assume there is a set A ⊂ X with at least one accumu-
lation point such that {f∫(z)} converges for every z ∈ A. Then {f∫} converges uniformly
on compact subsets of X.

Proof: Clearly the sequence {f∫} cannot contain compactly divergent subsequences; hence,
by Theorem 1.1.43, it suffices to show that it has only one limit point in Hol(X,Y ). Let
f , g ∈ Hol(X,Y ) be two limit points of {f∫}. Since {f∫(z)} converges for every z ∈ A, it
follows that f ≡ g on A, and hence everywhere, by the identity principle, q.e.d.
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We can also apply Montel’s theorem to the investigation of the topological structure
of the automorphism group of a hyperbolic Riemann surface:

Proposition 1.1.46: (i) Let {f∫} be a sequence of automorphisms of a hyperbolic Rie-
mann surface X converging to a holomorphic function f ∈ Hol(X,X). Then f ∈ Aut(X).
(ii) Let {f∫} be a sequence of automorphisms of a hyperbolic domain D ⊂ bX converging
to a holomorphic function f :D → bX. Then either f is a constant belonging to @D
or f ∈ Aut(D).

Proof: To reduce part (ii) to part (i), it suffices to remark that if f(D) ∩ @D 6= /∞, then
f cannot be open, and so it is a constant belonging to @D. Therefore we can directly
assume f ∈ Hol(D,D) and prove only part (i).

Assume f is not constant. Set g∫ = f−1
∫ ; by Theorem 1.1.43, up to a subsequence we

can assume that either g∫ → g ∈ Hol(X,X) or {g∫} is compactly divergent. Since for any
z ∈ X we have f∫(z)→ f(z) ∈ X and g∫

°
f∫(z)

¢
= z, {g∫} cannot diverge. Then

∀z ∈ X g
°
f(z)

¢
= lim

∫→1
g∫

°
f∫(z)

¢
= z,

and, since g(X) ⊂ X,

∀z ∈ X f
°
g(z)

¢
= lim

∫→1
f∫

°
g∫(z)

¢
= z;

therefore g = f−1.
Finally, assume f ≡ z0 ∈ X. Again, up to a subsequence, we can suppose that the

sequence {f−1
∫ } converges to a function g ∈ Hol(X,X). But then for all z ∈ X we should

have z = lim
∫→1

f−1
∫

°
f∫(z)

¢
= g(z0), impossible, q.e.d.

Corollary 1.1.47: Let X be a hyperbolic Riemann surface. Then Aut(X) is closed
in Hol(X,X), and hence it is locally compact. Furthermore, the isotropy group Autz0(X)
is compact for all z0 ∈ X.

Proof: The closure is Proposition 1.1.46; the local compactness is Corollary 1.1.44; the
compactness follows remarking that no sequence of elements of Autz0(X) can be compactly
divergent, q.e.d.

Now we can keep an old promise:

Proposition 1.1.48: Let X be a hyperbolic Riemann surface. Then every discrete sub-
group Γ of Aut(X) is everywhere properly discontinuous.

Proof: If Γ is not discontinuous at some point z0 ∈ X, there exists an infinite sequence of
distinct elements ∞∫ ∈ Γ and a sequence {z∫} ⊂ X converging to z0 such that ∞∫(z∫)→ z0.
Up to a subsequence, we can assume that ∞∫ tends to a function ∞:X → X, for {∞∫} cannot
have compactly divergent subsequences. By Proposition 1.1.46, ∞ ∈ Aut(X); hence ∞ ∈ Γ,
for Γ is closed, and this is impossible because Γ is discrete, q.e.d.
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Corollary 1.1.49: The properly discontinuous subgroups of Aut(∆) acting freely on ∆
are the discrete subgroups without elliptic elements.

We shall now describe another application of Theorem 1.1.40, giving a proof of the
Big Picard Theorem.

First of all we shall need some information about ω∆∗ . For every r ∈ (0, 1) set
δ(r) = max

©
ω∆∗(reiθ1 , reiθ2)

ØØ θ1, θ2 ∈ R
™
.

Using (1.1.24), (1.1.27) and (1.1.14) it is easy to check that

δ(r) = 1
2 log

p
1 + (log r)2/π2 + 1p
1 + (log r)2/π2 − 1

.

In particular
lim
r→0

δ(r) = 0. (1.1.28)

This has an interesting consequence:

Lemma 1.1.50: Let X be a hyperbolic Riemann surface, and take f ∈ Hol(∆∗,X) such
that there is a sequence {z∫} ⊂ ∆∗ converging to 0 so that f(z∫) → w0 ∈ X as ∫ → +1.
Then f∗

°
π1(∆∗)

¢
is trivial.

Proof: Set r∫ = |z∫ | and let σ∫ : [0, 1]→ ∆∗ be the curve σ∫(t) = r∫e2πit. Clearly, it suffices
to show that the curve f ◦ σ∫ is homotopic to a point in X for ∫ large enough.

Choose a contractible neighbourhood U of w0, and r0 > 0 such that the ωX -disk of
radius 2r0 and center w0 is contained in U . Now we have ωX(f(z∫), w0) < r0 eventually;
hence, by (1.1.28), the image of f ◦ σ∫ is contained in U for ∫ large enough, and we are
done, q.e.d.

The astonishing fact is that the Big Picard Theorem now follows:

Theorem 1.1.51: Let X be a hyperbolic Riemann surface contained in a compact Rie-
mann surface bX. Then every f ∈ Hol(∆∗,X) extends holomorphically to a function
f̃ ∈ Hol(∆, bX).

Proof: Clearly, we can assume bX \ X is a finite set (containing at least three points
if bX = bC, at least one point if bX is a torus, even empty if bX itself is hyperbolic). Suppose
first there is a sequence {z∫} ⊂ ∆∗ converging to 0 such that f(z∫) → w0 ∈ X. By
Lemma 1.1.50, f∗

°
π1(∆∗)

¢
is trivial; hence, by Proposition 1.1.21, f lifts to a function

f̂ :∆∗ → ∆ such that f = π ◦ f̂ , where π:∆ → X is the universal covering map of X.
Then Riemann’s removable singularity theorem implies that f̂ extends holomorphically to
a function f1 ∈ Hol(∆,∆), and clearly f̃ = π ◦ f1 ∈ Hol(∆,X) is the required extension
of f .

So assume now that for no sequence {z∫} ⊂ ∆∗ converging to 0 the sequence {f(z∫)}
converges to a point of X. This means that for every neighbourhood U of bX \X in bX there
is a small disk V about 0 such that f(V \ {0}) ⊂ U . But if we take U biholomorphic to a
(not necessarily connected) bounded open set in C (it is possible because bX \X is finite),
another application of Riemann’s removable singularity theorem shows that f extends
holomorphically across 0 to a function f̃ ∈ Hol(∆, bX), q.e.d.
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We end this section showing that Theorem 1.1.43 characterizes hyperbolic Riemann
surfaces:

Proposition 1.1.52: Let X be a Riemann surface. Then X is hyperbolic iff Hol(X,X) is
normal.

Proof: By Theorem 1.1.43 it suffices to show that if X is not hyperbolic then Hol(X,X)
is not normal.

Since Hol(bC, bC), Hol(C,C) and Hol(C∗,C∗) contain the sequence {zk}, it is clear that
neither of them is normal. To deal with the tori, for every p ∈ N let µ̃p:C→ C be given
by µ̃p(z) = pz. Then every µ̃p induces a holomorphic function µp ∈ Hol(C/Γτ ,C/Γτ ),
where Γτ = Z⊕ τZ and τ ∈ H+. It is easy to check that {µp} does not have converging
subsequences, and we are done, q.e.d.

1.1.5 Boundary behavior of the universal covering map

In this section we want to study more accurately the boundary behavior of the universal
covering map of a particular kind of multiply connected hyperbolic domains. A (always
non-compact) domain D of a compact Riemann surface bX is of regular type if

(a) every connected component of @D is either a Jordan curve (that is a closed simple
continuous curve), or an isolated point, and

(b) for every connected component Σ of @D there exists a neighbourhood V of Σ such
that V ∩ @D = Σ.

Hyperbolic domains of regular type form a large class of Riemann surfaces which are
sufficiently well behaved for our needs and not too much specific. The results we prove
will be used in section 1.3.3.

So let D ⊂ bX be a multiply connected hyperbolic domain of regular type, and
π:∆ → D its universal covering map; realize π1(D) as a subgroup Γ of Aut(∆), as usual.
We recall the definition of the isomorphism µ:π1(D)→ Γ. Let [σ] be an element of π1(D),
and for every z0 ∈ ∆ choose a loop σz0 : [0, 1]→ D representing [σ] such that σz0(0) = π(z0);
two such σz0 are always homotopic. Let σ̃z0 : [0, 1] → ∆ be the unique lifting of σz0 such
that σ̃z0(0) = z0. Then

µ[σ](z0) = σ̃z0(1).

It is clear that µ is well defined, and it is not difficult to check that it is an isomorphism
(see Forster [1981], p. 34).

Now let Σ be a connected component of @D; we shall say that Σ is a point component if
it is an isolated point, a Jordan component otherwise. To every component Σ we associate
the element [σΣ] in π1(D) — and hence ∞Σ = µ[σΣ] ∈ Γ — represented by any simple
loop σΣ in D separating Σ from @D \ Σ, leaving Σ on its left side.

For future reference, we now officially state the following triviality:
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Lemma 1.1.53: Let D ⊂ bX be a hyperbolic domain of regular type. Then @D has a
finite number of connected components, and π1(D) is finitely generated.

Proof: Assume, by contradiction, that {Σ∫} is an infinite sequence of distinct connected
components of @D. Take z∫ ∈ Σ∫ ; up to a subsequence, {z∫} converges to a point w0 ∈ @D.
But then the connected component of @D containing w0 cannot be separated from the other
components, contradiction.

Finally, if Σ0, . . . ,Σp are the connected components of @D, then {[σΣ1 ], . . . , [σΣp ]} is
a set of generators of π1(D), q.e.d.

In particular, therefore, hyperbolic domains of regular type are of finite topological
characteristic (if you know what this means).

We would like to study the relationship between Σ and ∞Σ. As first guiding example,
take D = A(r, 1) ⊂ C, with 0 < r < 1. Then denoting by Σ0 the outer boundary and
by Σ1 the inner boundary, ∞Σ0 and ∞Σ1 are hyperbolic automorphisms of ∆ with fixed
points 1 and −1, and the universal covering map of D extends continuously to @∆ \ {±1}.

As second example, take D = ∆∗, and set Σ0 = {0} and Σ1 = @∆. Then this time ∞Σ0

and ∞Σ1 are parabolic automorphisms of ∆ with fixed point 1, and the universal covering
map π of D extends continuously to @∆ \ {1}. Furthermore, π(z) tends to 0 as z goes to 1
non-tangentially.

The aim of this section is to show that the previous two examples illustrate the general
phenomena. A main tool for our job will be a weak version of Fatou’s uniqueness theorem,
proved by means of the following result, the so-called two constants theorem:

Theorem 1.1.54: Let f :∆ → C be holomorphic and such that |f | ≤ M for a suit-
able M ≥ 0. Assume that on a given arc A ⊂ @∆ of length α we have

∀τ ∈ A lim sup
z→τ

|f(z)| ≤ m,

for a suitable m ≤M . For all 0 < r < 1 set

∏(r) =
α

2π
1− r

1 + r
.

Then for any r ∈ (0, 1) we have

∀z ∈ D(0, r) |f(z)| ≤ m∏(r)M1−∏(r). (1.1.29)

Proof: Assume first that f is continuous in ∆, and define ϕ, h:∆→ R by

ϕ(z) = log
°
max{|f(z)|,m}

¢
,

and
h(z) =

1
2πi

Z

@∆

P (z, ≥)ϕ(≥) d≥,
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where
P (z, ≥) = Re

∑
≥ + z

≥ − z

∏

is the Poisson kernel. Since ϕ is subharmonic on ∆, h is harmonic on ∆ and ϕ = h on @∆,
we have ϕ ≤ h on ∆.

After a rotation, we can assume that A = {eiθ | 0 ≤ θ ≤ α}. On A we have |f(z)| ≤ m,
and so ϕ(z) = log m. Therefore

h(z) ≤ 1
2π

αZ

0

P (z, eiθ) log mdθ +
1
2π

2πZ

α

P (z, eiθ) log M dθ

= log M − √(z)
£
log M − log m

§
,

where

√(z) =
1
2π

αZ

0

P (z, eiθ) dθ ≥ 1
2π

αZ

0

1− |z|
1 + |z| dθ = ∏(|z|).

Hence

h(z) ≤ log M − ∏(|z|)[log M − log m] = ∏(|z|) log m +
°
1− ∏(|z|)

¢
log M.

Since |f | ≤ max{|f |,m} = eϕ ≤ eh, we obtain

|f(z)| ≤ m∏(|z|)M1−∏(|z|), (1.1.30)

and (1.1.29) in this case.
If f is not necessarily continuous on ∆, for every s ∈ (0, 1) define fs:∆ → C by

fs(z) = f(sz). If s > r, (1.1.30) together with the maximum principle yields

∀z ∈ D(0, r) |f(z/s)| ≤
°
sup
τ∈A

|fs(τ)|
¢
∏(r)M1−∏(r).

Letting s→ 1 we obtain (1.1.29), q.e.d.

Then our version of Fatou’s uniqueness theorem is:

Corollary 1.1.55: Let D be a domain in a Riemann surface X such that @D is a Jordan
curve, Y another Riemann surface, and f :D → Y holomorphic. Assume there is a non-void
open arc A ⊂ @D and y0 ∈ Y such that

∀τ ∈ A lim
z→τ

f(z) = y0.

Then f ≡ y0.

Proof: Fix a neighbourhood U of y0 in Y such that there is a biholomorphism φ:U → ∆
with φ(y0) = 0. By continuity we can find a neighbourhood V in X of a point τ0 ∈ A,
a biholomorphism √:V → ∆ and a simply connected subdomain D1 ⊂ D bounded by a
Jordan curve such that D1 ⊂⊂ V , @D1 ∩ @D ⊂ A and f(D1) ⊂ U .

By Theorem 1.1.28 there is a biholomorphism η:√(D1) → ∆ which extends to a
homeomorphism of the closures. Then if we apply Theorem 1.1.54 to φ ◦ f ◦ (η ◦ √)−1 we
find f ≡ y0 on D1, and thus everywhere, q.e.d.
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Now let Σ be a connected component of the boundary of a hyperbolic domain D ⊂ bX
of regular type. Choose a simple loop σ in D separating Σ from @D \Σ, and leaving Σ on
the left. Denote by D1 ⊂ D the doubly connected domain bounded by σ and Σ.

Let σ̃: [0, 1] → ∆ be a lifting of σ; we know that ∞Σ

°
σ̃(0)

¢
= σ̃(1). Let τ1, τ2 ∈ @∆

be the fixed points of ∞Σ (possibly τ1 = τ2). We can enclose the image of σ̃ in a lens L
bounded by two arcs of circumference connecting τ1 and τ2. By Lemma 1.1.16, L is
invariant under ∞Σ; hence the image σ of σ̃

°
[0, 1]

¢
under the action of the cyclic group ΓΣ

generated by ∞Σ is a Jordan arc contained in L and connecting τ1 and τ2 (see Figures 1.1
and 1.2).

Figure 1.1 The point component case.

Figure 1.2 The Jordan component case.

Now let H: [0, 1] × [0, 1] → D1 be an isotopy, i.e., an injective homotopy between σ
and Σ (that is H sends one-to-one (0, 1)× [0, 1) into D1, H(·, 0) = H(·, 1), H(0, ·) = σ and
H(1, ·) = Σ). We can lift H to a homotopy eH: [0, 1) × [0, 1] → ∆ such that eH(0, ·) = σ̃;
using the action of ΓΣ, we can extend eH to a homotopy H: [0, 1) × (−1,+1) → ∆
such that H(0, ·) = σ, lim

t→−1
H(·, t) ≡ τ1 and lim

t→+1
H(·, t) ≡ τ2. The image of H is one

component ∆1 of ∆ \ σ, and π(∆1) = H
°
[0, 1)× [0, 1]

¢
= D1.
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∆1 is bounded by the image of σ and by a closed subarc (possibly reduced to a point)
of @∆; the open arc (possibly void) will be denoted by CΣ and called the principal arc
associated to Σ. If ∆1 ∩ @∆ contains only one point, i.e., if CΣ = /∞ — it can happen
only if ∞Σ is parabolic —, that point will be denoted by τΣ and called the principal point
associated to Σ. Any open arc ∞(CΣ) and any point ∞(τΣ), with ∞ ∈ Γ, will be said
associated to Σ.

Now we have introduced the terminology we need, and we can begin proving theorems.
First of all, we study the situation for a point component:

Theorem 1.1.56: Let Σ = {a} be a point component of the boundary of a multiply
connected hyperbolic domain D ⊂ bX of regular type, and denote by π:∆ → D the
universal covering map of D. Then:
(i) ∞Σ is parabolic;
(ii) CΣ is empty;
(iii) if τ ∈ @∆ is associated to Σ, then π(z) tends to a as z → τ non-tangentially.

Proof: We retain the notations introduced so far. Assume, by contradiction, that CΣ is
not empty, and let {z∫} ⊂ ∆ be any sequence converging to a point of CΣ. Then z∫ ∈ ∆1

eventually, and so every limit point of {π(z∫)} must belong to D1 ∩ @D = Σ; therefore
π(z∫) → a as ∫ → 1. In other words, we have shown that π(z) tends to a as z tends
to CΣ; Corollary 1.1.55 then implies that π is constant, impossible.

Thus CΣ is empty; hence ∞Σ is parabolic, and we have proved (i) and (ii). To prove (iii)
we can assume τ = τΣ; the statements are invariant under the action of Γ.

If we take any euclidean disk ∆0 internally tangent to @∆ in τΣ and containing (or not
containing) the image of σ̃, then ∆0 still contains (or does not contain) the image of σ, by
Lemma 1.1.16. In particular, we can find ∆0 ⊂ ∆1. Now let {z∫} be a sequence converging
to τΣ non-tangentially. Then z∫ ∈ ∆0 ⊂ ∆1 eventually, and again we find that π(z∫) must
converge to a, q.e.d.

Mutatis mutandis, an analogous argument works for Jordan components:

Theorem 1.1.57: Let Σ be a Jordan component of the boundary of a multiply connected
hyperbolic domain D ⊂ bX of regular type, denote by π:∆ → D the universal covering
map of D, and realize the fundamental group of D as a subgroup Γ of Aut(∆). Then:
(i) CΣ is not empty;
(ii) if C ⊂ @∆ is an open arc associated to Σ, then π(z) extends continuosly to C, the
image of C through this extension is exactly Σ and Γ is properly discontinuous at every
point of C.

Proof: We still retain the notations introduced so far. For every ε > 0, set

Dε
1 = H

°
(0, 1)× (ε, 1− ε)

¢
.

Fix ε > 0; then the function f = eH ◦ H−1:Dε
1 → ∆1 is holomorphic, being an inverse

of π. If CΣ were empty, and thus ∞Σ parabolic, the same argument used in the proof of



1.1.5 Boundary behavior of the universal covering map 33

Theorem 1.1.56 would show that f(z) would tend to the unique fixed point of ∞Σ as z goes
to Σ ∩Dε

1, and this is impossible, again by Corollary 1.1.55.
To prove (ii), we can assume C = CΣ. Fix a point τ ∈ CΣ; then we can choose

the homotopy eH and ε > 0 in such a way that τ is in the boundary of f(Dε
1) — see

Figure 1.2. Then f is a biholomorphism between Dε
1 and f(Dε

1), with inverse π, and
both Dε

1 and f(Dε
1) are simply connected domains bounded by Jordan curves (for H is an

isotopy). Therefore, by Theorem 1.1.28, π extends continuously to a neighbourhood (in ∆)
of τ . Furthermore, π is then locally injective at τ ; hence Γ must be properly discontinuous
at τ , and we are done, q.e.d.

It would be nice if the automorphism associated to a Jordan component were hyper-
bolic. This is true with only one exception:

Proposition 1.1.58: Let D ⊂ bX be a multiply connected hyperbolic domain of regular
type, not biholomorphic to ∆∗. Then a connected component Σ of @D is Jordan iff ∞Σ is
hyperbolic.

Proof: If ∞Σ is hyperbolic, CΣ is not empty and thus Σ must be Jordan, by Theorem 1.1.56.
Conversely, let Σ be a Jordan component, and assume, by contradiction, that ∞Σ is
parabolic. Then since CΣ must be not empty, CΣ = @∆ \ {τΣ}, where τΣ is the unique
fixed point of ∞Σ.

Let ∞ ∈ Γ be different from the identity. Clearly, Γ cannot be properly discontinuous
at a fixed point of ∞; hence, by Theorem 1.1.57.(ii), ∞ must be parabolic with fixed point τΣ.
But then, by Proposition 1.1.13, Γ is abelian and composed only by parabolic elements;
therefore D is biholomorphic to ∆∗, by Theorem 1.1.29, q.e.d.

We end this section with an observation regarding the boundary behavior of the
Poincaré distance we shall need in section 1.3.3:

Proposition 1.1.59: Let D ⊂ bX be a hyperbolic domain of regular type. Take τ0 ∈ @D,
and a sequence {z∫} ⊂ D converging to τ0. Let {w∫} ⊂ D be another sequence, and
assume there is M > 0 so that

∀∫ ∈ N ωD(z∫ , w∫) ≤M. (1.1.31)

Then w∫ → τ0 as ∫ → +1.

Proof: Assume first D = ∆. Then (1.1.31) is equivalent to the existence of δ < 1 such
that

∀∫ ∈ N
ØØØØ

z∫ − w∫

1− w∫z∫

ØØØØ ≤ δ < 1. (1.1.32)

Let {w∫j} be a subsequence converging to σ0 ∈ ∆. If σ0 6= τ0, (1.1.32) would yield

1 =
ØØØØ

τ0 − σ0

1− σ̄0τ0

ØØØØ = lim
j→1

ØØØØ
z∫j − w∫j

1− w∫j z∫j

ØØØØ ≤ δ,
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contradiction; hence σ0 = τ0, and w∫ → τ0.
In the disk, (1.1.31) says something more. Assume that {z∫} tends non-tangentially

to τ0; in other words, assume there is M1 > 0 such that

∀∫ ∈ N
|τ0 − z∫ |
1− |z∫ |

< M1. (1.1.33)

Now, a computation shows that

∀z, w ∈ ∆
|τ0 − w|
1− |w| ≤

|τ0 − z|
1− |z| · e2ω(z,w);

hence (1.1.33) yields

∀∫ ∈ N
|τ0 − w∫ |
1− |w∫ |

≤M1e
2M ,

that is w∫ → τ0 non-tangentially.
Now let D be any hyperbolic domain of regular type, and denote by π:∆ → D

its universal covering map. We shall first consider the case of τ0 belonging to a Jordan
component of @D. By Theorem 1.1.57, we can find τ̃0 ∈ @∆ and {z̃∫} ⊂ ∆ so that
π(z̃∫) = z∫ , π(τ̃0) = τ0 and z̃∫ → τ̃0 as ∫ → +1. The definition of the Poincaré distance
on D — namely, (1.1.27) — implies that we can find { ew∫} ⊂ ∆ so that π( ew∫) = w∫ and
ω(z̃∫ , ew∫) ≤ M + 1 for all ∫ ∈ N. But then, by the first part of the proof, ew∫ → τ̃0, and
so w∫ → τ0.

Finally, assume {τ0} is a point component of @D. Since D is compact, it suffices to
show that if a subsequence {w∫j} of {w∫} converges to σ0 ∈ D, then σ0 = τ0. Up to a
subsequence, we can assume (cf. the proof of Theorem 1.1.56) that {z∫j} converges to τ0 in
such a way that we can find a point τ̃0 ∈ @∆ associated to {τ0} and a sequence {z̃j} ⊂ ∆
converging non-tangentially to τ̃0 so that π(z̃j) = z∫j for all j ∈ N. As before, choose
{ ewj} ⊂ ∆ so that π( ewj) = w∫j and ω∆(z̃j , ewj) ≤ M + 1 for all j ∈ N. But then we saw
that this forces ewj → τ̃0 non-tangentially and hence, by Theorem 1.1.56, w∫j → τ0, q.e.d.

Notes

In 1869, Schwarz [1869] proved the following result: let f :∆ → ∆ be a holomorphic in-
jective function continuous up to the boundary such that f(0) = 0 and ρ1 ≤ |f(τ)| ≤ ρ2

for all τ ∈ @∆; then ρ1|z| ≤ |f(z)| ≤ ρ2|z| for all z ∈ ∆. Only forty-three years later
Carathéodory [1912] recognized the real significance of this result, and gave it the state-
ment, the proof (inspired by E. Schmidt; see also Poincaré [1884] and Carathéodory [1905])
and the name we know today. It is interesting to notice that both Poincaré and Cara-
théodory used Schwarz’s lemma essentially to show that Aut(∆) acts simply transitively
on line elements.

The fully invariant version Theorem 1.1.6 calling in the Poincaré metric is due to
Pick [1915a, b], though Carathéodory [1912] already knew Corollary 1.1.4. The Poincaré
metric itself was first investigated by Riemann [1854], as an example (in modern terminol-
ogy) of metric with constant Gaussian curvature. The first one to use the Poincaré metric



Notes 35

to study non-euclidean geometry and to devise the disk model of the Lobačevski hyperbolic
plane was Beltrami [1868a, b]. Only on 1882 Poincaré [1882] began to deal with the metric
that now bears his name, both in ∆ and in H+, using it for his work on Fuchsian groups.
More on the geometry of the Poincaré metric can be found, e.g., in Bianchi [1927].

The whole section 1.1.2 as well as the approach we used in our study of Riemann
surfaces is essentially taken from the theory of Fuchsian and Kleinian groups, as developed
by Poincaré [1882, 1883, 1884]. A modern introduction to this beatiful theory is Kra [1972].

The Uniformization Theorem 1.1.17 was first stated by Riemann [1851], but his proof
had some gaps. The complete proof evolved in more than half a century, together with
the modern concept of Riemann surface and n-dimensional manifold, through the works of
many people. The most important are Poincaré [1883] (who introduced new powerful meth-
ods and gave a partial proof of the existence of the universal covering map), Osgood [1900]
(who proved the theorem for plane domains), Hilbert [1904] (who rigorously proved Dirich-
let’s principle, a main tool), Poincaré [1907a] and Kœbe [1907] (who proved the complete
statement) and Weyl [1913] (who put the result in the today perspective). A direct proof
or Riemann’s mapping theorem Corollary 1.1.27 can be found, e.g., in Rudin [1966].

The Little Picard Theorem was first proved by Picard [1879a].
The Osgood-Taylor-Carathéodory Theorem 1.1.28 was conjectured by Osgood in 1901,

and proved almost simultaneously by Osgood and Taylor [1913] and Carathéodory [1913a].
Carathéodory himself, in his papers [1913b, c], with his theory of prime ends made definitive
investigations about the boundary behavior of the universal covering map of arbitrary
simply connected domains; a modern account can be found in Pommerenke [1975]. The
C1 part of Theorem 1.1.28 is due to Kellogg [1912].

Theorem 1.1.33 is the easiest version of a general result of Rouché [1862], where the
disk is replaced by any bounded domain of C. Our proof follows Saks and Zygmund [1971],
and it is inspired by Cohn [1922]. Corollaries 1.1.35, 1.1.36 and 1.1.37 are in Hurwitz [1889].

A different generalization of Schwarz’s lemma is due to Lindelöf [1909]: if GX is the
Green function of a hyperbolic Riemann surface X, then GY

f(z) ◦ f ≥ GX
z for every holo-

morphic function f between two hyperbolic Riemann surfaces X and Y and every z ∈ X.
Montel’s Theorem 1.1.43 was first proved by Montel [1912], at least for hyperbolic

domains. Montel’s proof used the modular function, i.e., the universal covering map
of C\{0, 1}. Later on other proofs were devised, relying only on more elementary facts; see
for instance Gerretsen and Sansone [1969] or Burckel [1979]. These proofs use Schottky’s
theorem (due to Schottky [1904, 1906]), that states that for any holomorphic function
f :∆→ C \ {0, 1} we have

log |f(z)| < (π + log+ |f(0)|) 1 + |z|
1− |z| ,

where log+ is the positive part of the logarithm (this form of Schottky’s theorem is due
to Hayman [1947]; cf. also Ahlfors [1938]). A proof in our spirit of Schottky’s theorem is
described in Kobayashi [1970]: it relies on an explicit metric of negative Gaussian curvature
on C \ {0, 1} (constructed by Grauert and Rieckziegel [1965]), and on Ahlfors’ differential
geometric version of Schwarz’s lemma (see Ahlfors [1938, 1973]). Our approach to Montel’s
theorem is motivated by the several variables theory we shall develop in the second part of
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this book; using the terminology we shall discuss there, Montel’s theorem says that every
hyperbolic Riemann surface is taut. Our proof is adapted from a more general argument
due to Wu [1967].

Usually, the name Montel’s theorem is ascribed to another result, previously proved
by Montel himself (Montel [1907]; but cf. also Stieltjes [1894] and Kœbe [1908]): ev-
ery sequence of holomorphic functions from a Riemann surface X into a bounded do-
main D ⊂⊂ C has a subsequence converging in Hol(X,C); in other words, Hol(X,D) is
relatively compact in Hol(X,C). This is now an immediate consequence of our Montel’s
theorem: it suffices to imbed D into a bigger bounded domain D1 ⊃⊃ D, and then to
invoke the normality of Hol(X,D1). As we shall see later on, this says that a bounded
domain is tautly imbedded in C.

Theorem 1.1.45 is in Vitali [1903, 1904] (see also Stieltjes [1894], Porter [1904] and
Carathéodory and Landau [1911]).

Corollary 1.1.47 is the first step toward the proof of a general fact stating that the
automorphism group of a complex manifold equipped with a distance contracted by holo-
morphic maps is a finite dimensional Lie group (see H. Cartan [1935], Wu [1967] and
Kobayashi [1970]).

The Big Picard Theorem is originally appeared in Picard [1879b], and subsequently
strengthened by Julia [1924]. Our proof is modelled on Huber [1953] and Kobayashi [1970].
For generalizations see Kobayashi [1976], Lang [1987] and references therein.

Section 1.1.5 is adapted from Julia [1934], and form a short account of the works of
Schottky [1877, 1897], Picard [1913], Kœbe [1916, 1918], de la Vallée-Poussin [1930, 1931]
and Julia [1932] himself on the uniformization theory of multiply connected domains. For
further information on this matter, consult Goluzin [1969].

The two constants Theorem 1.1.54 is due to Ostrowsky [1922]; our proof is taken
from Burckel [1979]. Fatou’s uniqueness theorem states that if f :∆ → C is a bounded
holomorphic function such that lim

r→1
f(reiθ) = 0 for all eiθ belonging to a subset of @∆

of positive measure, then f ≡ 0 (Fatou [1906]). A modern proof can be found, e.g., in
Rudin [1966].


