
Preface

When, some years ago, we started working on a differential geometric study of
the structure of strongly convex domains in Cn, we did not expect to end up writing
a book on global Finsler geometry. But, along the way, we found ourselves needing
several basic results on real and complex Finsler metrics that we were unable to find
in the literature (or at least not in the form necessary to us). So we felt compelled
to provide proofs — and this is the final result of our work.

Our exposition is very much in the vein of the work of Cartan [C], Chern [Ch1,
2], Bao-Chern [BC] and Kobayashi [K]; in particular the latter gave us the pre-
liminary idea for our approach to smooth complex Finsler metrics. We would also
like to say that we would have been very happy to know earlier of [BC], which,
although only marginally related to our work, would have been of great help in
solving questions which we treated independently.

Our starting point was the study of the existence and global behavior of com-
plex geodesics for intrinsic metrics in complex manifolds. Our goal was to look at
this question from a differential geometric point of view, with the hope of possibly
reproducing in a wider class of complex manifolds what Lempert [L] was able to
prove for strongly convex domains in Cn. The idea was to treat complex geodesics
through a point as images of disks through the origin in the tangent space at the
point via the exponential map of a complex Finsler metric; thus we were led to
study the local and global theory of geodesics of a Finsler metric. As in Hermitian
(and Riemannian) geometry, the local theory of geodesics means the study of the
first variation of the length integral, and of the associated Euler-Lagrange equation.
The global theory, on the other hand, involves the accurate control of the second
variation and hence of the curvature, together with Jacobi fields, conjugate points,
the Morse index form and the like. In particular, we needed a Finsler version of the
Cartan-Hadamard theorem (originally proved by Auslander [Au1, 2]), and a way to
apply it in a complex situation.

The main difficulty at this point was that the problems we were interested in
involved complex Finsler metrics, and whereas there is a clear understanding of the
relationship between the complex geometry and the underlying real geometry of a
Hermitian manifold, nothing of the kind was available to us in Finsler geometry. We
then started following the tradition of “linearizing” the questions by passing from
the study of Finsler metrics on the tangent bundle (real or complex) to the study of
the associated Hermitian structure on the tangent bundle of the tangent bundle. At
this level it is also possible to describe the correct relationship between the complex
and the corresponding real structure of objects like connections and curvatures.

But our approach is different from the traditional one for two main reasons.
First of all, we everywhere stress global objects and global definitions (in fact, we
are interested in global results), using local coordinates almost uniquely as a com-
putational tool (in a way not too far from the first chapter of Bejancu [B]). But the
main difference is another one. Possibly because of our motivations, working in this
area we discovered that there might be a danger of carrying out the linearization
program previously described too far. In fact, the formal setting naturally leads to
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very general definitions which make proofs of theorems easier, but do not give much
geometrical insight: we had the feeling that working only at the tangent-tangent
level was too restrictive, too formal, too far away from the actual geometry of the
manifold. For this reason, our point of view now is to stick to notions which really
provide informations about the geometry of geodesics on the manifold, and about
the curvature of the manifold. This approach leads to “minimal” definitions, which
are probably more complicated to state and surely more difficult to handle, but
nevertheless more effective and really conveying the geometry of the manifold. For
instance, there are many ways of generalizing the notion of Kählerianity to Finsler
metrics, but not all of them have non-trivial examples and applications. We shall
show how the notions we singled out can be effectively used by illustrating their
applications in complex geometric function theory.

The first two chapters of this book are devoted to the exposition of our approach
to real and complex Finsler geometry. In the first chapter, after setting the stage
introducing the necessary general definitions and objects, we define in a global way
the classical Cartan connection, and we discuss the variation formulas of the length
integral, the exponential map, Jacobi fields, conjugate points and the Morse index
form up to provide a proof of the Cartan-Hadamard and Bonnet theorems for Finsler
metrics suitable for our needs in complex geometry. In the exposition we stress the
similarities with the standard Riemannian treatment of the subject, as naturally
suggested by our global approach.

In the second chapter we study the geometry of complex Finsler metrics. After
having adapted the general definitions of chapter 1 to the complex setting, we in-
troduce (following Kobayashi [K]) the Chern-Finsler connection, which is our main
tool. We discuss at some length several Kähler conditions, and we introduce the
notion of holomorphic curvature of a complex Finsler manifold, showing the equiva-
lence of the differential geometric definition with a variational definition previously
used in function theory.

Finally the third chapter contains the results and applications that motivated
our work. From a differential geometric point of view, it is devoted to the study
of the function theory on Kähler Finsler manifolds with constant nonpositive holo-
morphic curvature; from a complex analysis point of view, it is devoted to the study
of manifolds where there is a Monge-Ampère foliation with exactly the same prop-
erties as the one discovered by Lempert in strongly convex domains. In particular
we prove the existence of nice foliations and strictly plurisubharmonic exhaustions
satisfying the Monge-Ampère equation on Kähler Finsler manifolds with constant
nonpositive holomorphic curvature. Furthermore we prove that the only complex
manifold admitting such a metric with zero holomorphic curvature is Cn, and we de-
scribe a characterization of strongly convex circular domains in terms of differential
geometric properties of the Kobayashi metric.

Of course, this book is not intended as a definitive treatise on the subject; on the
contrary, it is just the description of an approach to Finsler metrics that we found
reasonable and fruitful, but still leaving a lot of open problems. Just to mention
a couple of them: the comparison between the complex Finsler geometry and the
underlying real one carried out in section 2.6 seems to suggest that the Cartan
connection contains terms which have no direct influence on the geometry of the
manifold — and so maybe it is not the correct connection to use even in real Finsler
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geometry. Or: in the third chapter we give a fairly complete description of the
complex structure of Kähler Finsler manifolds of constant nonpositive holomorphic
curvature, which is satisfying from a geometric function theory point of view, but
it still leaves completely open the problem of classifying the metrics with these
properties (we remark that there are many more such manifolds and metrics than
in the Hermitian case: there are at least all the strongly convex domains in Cn
endowed with the Kobayashi metric, thanks to Lempert’s work [L]) — and in fact
it is even still far from being completed the classification of simply connected real
Finsler manifolds with constant (horizontal flag) real curvature. Or: it follows from
chapter 3 that the only part of Lempert’s results actually depending on the strong
convexity of the domain is the smoothness of the Kobayashi metric. It would be then
interesting to construct directly a smooth weakly Kähler Finsler metric of constant
holomorphic curvature −4 on any strongly convex domain; then this metric would
automatically be the Kobayashi metric of the domain, and we would have recovered
the full extent of Lempert’s work.

So we hope that the possibly new perspectives on Finsler geometry introduced
in this book will eventually lead to new results in this field; and in particular in
geometric function theory of complex Finsler manifolds, where all this work started.


