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Abstract. In this paper, we study the dynamics of geodesics of Fuchsian meromorphic connections with
real periods, giving a precise characterization of the possible ω-limit sets of simple geodesics in this case. The

main tools are the study of the singular flat metric associated to the meromorphic connection, an explicit

description of the geodesics nearby a Fuchsian pole with real residue larger than −1 and a far-reaching
generalization to our case of the classical Teichmüller lemma for quadratic differentials.
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1. Introduction

A meromorphic connection on a Riemann surface S is a C−linear operator ∇ : MTS → M1
S ⊗MTS ,

where MTS is the sheaf of germs of meromorphic sections of the tangent bundle TS and M1
S is the space of

meromorphic 1-forms on S, satisfying the Leibniz rule ∇(f̃ s̃) = df̃ ⊗ s̃+ f̃∇s̃ for all s̃ ∈ MTS and f̃ ∈ MS .
A geodesic for a meromorphic connection ∇ is a real smooth curve σ : I → So, where I ⊆ R is an interval
and So is the complement of the poles of ∇ in S, satisfying the geodesic equation ∇σ′σ′ ≡ 0.

The Poincaré-Bendixson theorems, which provide a potential classification of ω-limit sets, were inves-
tigated within the context of simple geodesics associated with meromorphic connections in the complex
projective space P1(C) by the first author and Tovena in [2]. Subsequently, in [1], the first author and
Bianchi extended their inquiry to encompass any compact Riemann surface S, successfully establishing
Poincaré-Bendixson theorems for simple geodesics in this more general setting. See also [9] for examples of
particularly interesting ω-limit sets.

In a recent paper [10], the second author provided a relationship between meromorphic connections and
k-differentials and, more generally, dilation surfaces. Nowadays, meromorphic k-differentials and dilation
surfaces are heavily studied (see, for example, [3, 4, 5, 11, 14, 15]); it turns out that some of the possibilities
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described in the quoted Poincarè-Bendixson theorems do not occur in the case of k-differentials. Since k-
differential can be seen a particular case of singular flat metric (see [13]), this suggested us to study Poincarè-
Bendixson theorems for meromorphic connection with real periods, i.e., meromorphic connections sharing
geodesics and singular points with a singular flat metric. Indeed, in this paper we study possible ω-limit sets
for simple geodesics for meromorphic connections with real periods.

We require some definitions before presenting our main result (see Section 2 for more details). Let
{(Uα, zα)} be an atlas for S, and∇ a meromorphic connection on S. By definition, there exists ηα ∈ M1

S(Uα),

such that ∇(∂α) = ηα ⊗ ∂α, where ∂α := ∂
∂zα

is the induced local generator of TS over Uα. We say that

p ∈ S is a Fuchsian pole of a meromorphic connection ∇ if for some (and hence any) chart (Uα, zα) around
p the representation of ∇ has a simple pole at p; the residue Resp ∇ of ∇ at p is the residue of ηα at p. If
all poles of ∇ are Fuchsian then we say that ∇ is a Fuchsian meromorphic connection. A saddle connection
is a simple geodesic connecting two poles. A set W ⊂ S with W̊ = ∅ is a transversally Cantor-like geodesic
set if the following conditions holds:

(1) there exists a maximal non self-intersecting geodesic σ: (ε−, ε+) → So such that W is the closure
of the support of σ;

(2) for any non self-intersecting geodesic γ: (−δ, δ) → S0 transverse to σ the intersection γ|[−δ/2,δ/2]∩W
is a perfect totally disconnected set (a Cantor set).

We can now state our main result.

Theorem 1.1. Let ∇ be a Fuchsian meromorphic connection on a compact Riemann surface S with real
periods. Set So := S \ Σ, where Σ is the set of poles of ∇. Let σ : [0, ε) → S0 be a maximal simple geodesic
for ∇. Then either

(1) the ω-limit set of σ is a pole of ∇; or
(2) σ is a periodic geodesic; or
(3) the ω-limit is a transversally Cantor-like geodesic set; or
(4) the ω-limit set of σ has non-empty interior and non-empty boundary, and each component of its

boundary is a graph of saddle connections with no spikes and at least one pole; or
(5) the ω-limit set of σ is S.

Notice that case (3) was missing from [2] and [1]; in Appendix A we clarify why it should be included,
studying geodesics of meromorphic connections whose ω-limit set coincides with its closure.

The proof depends on two main ingredients. The first one is a detailed study of the behavior of
geodesics around Fuchsian poles. In [10], the second author has shown that if p is a Fuchsian pole with
ReResp ∇ ≤ −1 then the ω-limit set of a geodesic accumulating p must reduce to p. So we concentrate on
the case ReResp ∇ > −1, when we can find local coordinates giving a particularly simple local expression
for the local representation ηα of ∇ (see Lemma 3.1). In particular, when the residue is real we then have
explicit formulas for the geodesics close to the pole (see Proposition 3.3).

The second main ingredient is a formula (Theorem 4.6) relating the internal angles of a graph of saddle
connections between Fuchsian poles with real residues larger than −1 bounding a domain P ⊂ S with the
values of the residues of the poles inside P and the topology of P . This formula is a far-reaching generalization
of the classical Teichmüller lemma for quadratic differentials (see, e.g., [13, Theorem 14.1]); particular cases
were already obtained in [1] and [2].

The paper is organized as follows. In Section 2 we recall some definitions and theorems. In Section 3 we
study the local behaviour of geodesics around Fuchsian poles. In Section 4 we prove our generalization of
Teichmüller lemma. Finally, in Section 5 we prove Theorem 1.1 and in Appendix A we discuss transversally
Cantor-like geodesic sets.

Acknowledgement. The authors would like to thank Xavier Buff, Fabrizio Bianchi and Guillaume
Tahar for useful comments and discussions.

2. Preliminary notions

In this section we recall some definitions and theorems from [2], [1] and [10].
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Definition 2.1. A meromorphic connection on the tangent bundle TS of a Riemann surface S is a
C-linear map ∇ : MTS → M1

S ⊗MTS satisfying the Leibniz rule

∇(f̃ s̃) = df̃ ⊗ s̃+ f̃∇s̃

for all s̃ ∈ MTS and f̃ ∈ MS , where MTS denotes the sheaf of germs of meromorphic sections of TS, while
MS is the sheaf of germs of meromorphic functions and M1

S is the sheaf of meromorphic 1-forms on S.

Let {(Uα, zα)} be an atlas for S and ∇ a meromorphic connection on S. By definition, there exists
ηα ∈ M1

S(Uα), such that
∇(∂α) = ηα ⊗ ∂α,

where ∂α := ∂
∂zα

is the induced local generator of TS over Uα.

Definition 2.2. We say that ηα is the local representation of ∇ on Uα.

Let {ξαβ} be the cocycle representing the cohomology class ξ ∈ H1(S,O∗) of TS (hence ξαβ = ∂zα
∂zβ

).

Over Uα ∩ Uβ we have
∂β = ξαβ∂α

and thus
∇(∂β) = ∇(ξαβ∂α) ⇐⇒ ηβ ⊗ ∂β = ξαβηα ⊗ ∂α + dξαβ ⊗ ∂α,

that happens if and only if

(2.1) ηβ = ηα +
1

ξαβ
∂ξαβ

on Uα ∩ Uβ . In particular, ηα and ηβ have the same poles on Uα ∩ Uβ .

Definition 2.3. A point p ∈ Uα is a pole of the meromorphic connection ∇ if it is a pole of a local
representation ηα of ∇ on Uα. We shall denote by Sing(∇) ⊂ S the set of poles of ∇ and by So = S \Sing(∇)
the set of regular points of ∇. We shall say that ∇ is a holomorphic connection if it has no poles. Clearly,
the restriction of ∇ to So is holomorphic.

Let ∇ be a holomorphic connection (e.g., the restriction of a meromorphic connection to the set of
its regular points). Up to shrinking, if necessary, the open sets Uα, we can find holomorphic functions
Kα ∈ O(Uα) such that ηα = ∂Kα on Uα. Then (2.1) implies that on Uα and Uβ :

(2.2) ξ̂αβ =
exp(Kα)

exp(Kβ)
ξαβ .

is a complex non-zero constant defining a cocycle ξ̂ ∈ H1(S,C∗) representing ξ.

Definition 2.4. The homomorphism ρ:π1(S) → C∗ corresponding to the class ξ̂ under the canonical
isomorphism

H1(S,C∗) ∼= Hom(H1(S,Z),C∗) = Hom(π1(S),C∗)

is the monodromy representation of the holomorphic connection ∇. We say that ∇ has monodromy in a
multiplicative subgroup G of C∗, or that G is a monodromy group for ∇, if the image of ρ is contained

within G. In other words, ξ̂ is the image of a class in H1(S,G) under the natural inclusion G ↪→ C∗.
Furthermore, we say that ∇ has real periods if it has monodromy in S1.

Let us now define the notion of geodesic for meromorphic connections.

Definition 2.5. A geodesic for a meromorphic connection ∇ on TS is a real curve σ: I → So, where
I ⊆ R an interval, such that ∇σ′σ′ ≡ 0.

In the rest of the paper a geodesic and its support will be denoted by the same symbol if there is no risk
of confusion.

Let {(Uα, zα)} be an atlas for S0 and σ: I → Uα a smooth curve. Then σ is a geodesic for a meromorphic
connection ∇ if and only if

(2.3) (zα ◦ σ)′′ + (fα ◦ σ)(zα ◦ σ)′2 ≡ 0

where ηα = fαdzα is the local representation of ∇ on Uα.
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Definition 2.6. The residue Resp ∇ of a meromorphic connection ∇ at a point p ∈ S is the residue at
p of any local representation ηα of ∇ on a local chart (Uα, zα). Thanks to (2.1), it does not depend on the
chosen local representation.

In compact Riemann surfaces the sum of residues is the same for all meromorphic connections and it is
given by 2g − 2, where g is the genus of the surface (see, for example, [8]).

Remark 2.7. If γ ∈ H1(S
o,Z) is represented by a small loop around a pole p ∈ S, then (see [2,

Proposition 3.6])

ρ(γ) = exp

(∫
γ

η

)
,

where η is the local representation of ∇ in a local chart at p. In particular, since

Resp ∇ =
1

2πi

∫
γ

η ,

if ∇ has real periods then all the residues of ∇ are real numbers.

Definition 2.8. We say that p ∈ S is a Fuchsian pole of a meromorphic connection ∇ if for some (and
hence any) chart (Uα, zα) around p the local representation of ∇ has a simple pole at p. If all poles of ∇
are Fuchsian then we say that ∇ is a Fuchsian meromorphic connection. A Fuchsian pole is resonant if its
residue is a negative integer strictly less than −1.

2.1. Local isometries and ∇-charts. In this subsection we recall some properties of local isometries
and ∇-charts; we shall often use these notions in the rest of the paper.

Definition 2.9. Let ∇ be a holomorphic connection on a Riemann surface S. Given a simply connected
chart (Uα, zα) for S, let ηα be the local representation of ∇ on Uα and let Kα:Uα → C be a holomorphic
primitive of ηα. A local isometry of ∇ on Uα is a holomorphic primitive Jα : Uα → C of exp(Kα) on Uα.

Proposition 2.10. Let ∇ be a holomorphic connection on a Riemann surface S. Let {(Uα, zα)} be an
atlas for S with simply connected charts. If Jα is a local isometry of ∇ on Uα then

(1) if ηα ≡ 0 then Jα = azα + b for some a ∈ C∗ and b ∈ C;
(2) if ηα ≡ 0 and (Uβ , zβ) is another chart with ηβ ≡ 0 and Uα ∩ Uβ is connected, then there exists a

local isometry Jβ of ∇ on Uβ such that Jβ |Uα∩Uβ
≡ Jα|Uα∩Uβ

;
(3) if σ is a geodesic for ∇ on Uα then Jα(σ) is a Euclidean segment in zα(Uα);

(4) if J̃α is another local isometry of ∇ on Uα then J̃α = aJα + b for some a ∈ C∗ and b ∈ C;

Proof. (1) If ηα ≡ 0 then Kα is constant and hence Jα = azα + b for some a ∈ C∗ and b ∈ C.
(2) Fix Kα ∈ C such that Jα is a holomorphic primitive of exp(Kα). Since ηβ ≡ 0, we can choose

Kβ ∈ C so that it coincides with Kα on the connected set Uα ∩Uβ ; then choose Jβ so that it coincides with
Jα in one point of Uα ∩ Uβ . It follows that Jβ |Uα∩Uβ

≡ Jα|Uα∩Uβ
.

(3) See [1, Proposition 2.2].

(4) It is enough to show that J̃ ′
α = aJ ′

α with a ∈ C∗. By definition J̃ ′
α = exp K̃α, where K̃α is a

holomorphic primitive of ηα. Since Kα too is a holomorphic primitive of ηα there exists c ∈ C such that
K̃α = Kα + c. So J̃ ′

α = exp K̃α = ec expKα = ecJ ′
α. □

Definition 2.11. Let ∇ be a holomorphic connection on a Riemann surface S. A simply connected
chart (Uα, zα) is said to be a ∇−chart if the local representation of ∇ on Uα is identically zero. A ∇−atlas
is an atlas {(Uα, zα)} for S such that all charts are ∇−charts. A Leray atlas for S is a simply connected
atlas {(Uα, zα)} such that intersection of any two charts of the atlas is simply connected or empty.

In [10] it is shown that it is always possible to find a Leray ∇-atlas for any Riemann surface S with a
holomorphic connection ∇. Proposition 2.10 imply that the representation of geodesics on ∇-charts is given
by Euclidean segments.

Lemma 2.12 (See [10, Lemma 2.8]). Let ∇ be a holomorphic connection on a Riemann surface S having
monodromy in G, a multiplicative subgroup of C∗. Then there exists a Leray ∇−atlas {(Uα, zα)} for S such
that the changes of coordinates in the atlas have the form zβ = aαβzα + cαβ on Uα ∩Uβ, where aαβ ∈ G and
cαβ ∈ C.
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Definition 2.13. A Leary ∇-atlas with the property described in the previous lemma will be called a
Leray G-atlas for ∇.

2.2. Poincarè-Bendixson theorems. In this subsection we recall a Poincarè-Bendixson theorem for
meromorphic connections on compact Riemann surfaces, giving a classification of the possible ω-limit sets
for the geodesics of meromorphic connections on compact Riemann surfaces.

Definition 2.14. Let σ: (ε−, ε+) → S be a curve in a Riemann surface S. Then the ω-limit set of σ is
given by the points p ∈ S such that there exists a sequence {tn}, with tn ↑ ε+, such that σ(tn) → p.

Definition 2.15. A geodesic σ: [0, l] → S is closed if σ(l) = σ(0) and σ′(l) is a positive multiple of σ′(0);
it is periodic if σ(l) = σ(0) and σ′(l) = σ′(0).

Definition 2.16. A saddle connection for a meromorphic connection ∇ on S is a maximal geodesic
σ: (ε−, ε+) → So, with ε− ∈ [−∞, 0) and ε+ ∈ (0,+∞], such that σ(t) tends to a pole of ∇ both when t ↑ ε+
and when t ↓ ε−.

A graph of saddle connections is a connected graph in S whose vertices are poles and whose arcs are
disjoint simple (i.e., not self-intersecting) saddle connections. A spike is a saddle connection of a graph which
does not belong to any cycle of the graph.

A boundary graph of saddle connections is a graph of saddle connections which is also the boundary of
a connected open subset of S. A boundary graph is disconnecting if its complement in S is not connected.

Definition 2.17. Let ∇ be a meromorphic connection on a compact Riemann surface S.

• A geodesic (n-)cycle is the union of n simple smooth curves σj : [0, 1] → S such that each restriction
σj |(0,1) is a geodesic for ∇ and their supports are disjoint except for the conditions σj(0) = σj−1(1)
for j = 2, ..., n and σ1(0) = σn(1). The points σj(0) are the vertices of the geodesic cycle. We
say that a geodesic cycle is regular if all vertices of the geodesic cycle are regular points. We say
a geodesic cycle is Fuchsian if any vertex the geodesic cycle is either a Fuchsian pole or a regular
point. A (Fuchsian) geodesic polygon is a connected open set whose boundary is a (Fuchsian)
geodesic cycle.

• A geodesic (m-)multicurve is a union of m disjoint geodesic cycles. A geodesic multicurve will be
said to be disconnecting if it disconnects S, non-disconnecting otherwise. We say that a geodesic
multicurve is Fuchsian (regular) if it is a union of m disjoint Fuchsian (regular) geodesic cycles.

• A part P is the closure of a connected open subset of S whose boundary is a multicurve γ. A
component σ of γ is surrounded if the interior of P contains both sides of a tubular neighbourhood

of σ in S; it is free otherwise. The filling P̃ of a part P is the compact surface obtained by gluing
a disk along each of the free components of γ and not removing any of the surrounded components
of γ.

• A set W ⊂ S with W̊ = ∅ is a transversally Cantor-like geodesic set if the following conditions
holds:
(1) there exists a maximal non self-intersecting geodesic σ: (ε−, ε+) → So such that W is the

closure of the support of σ;
(2) for any simple geodesic γ: (−δ, δ) → S0 transverse to σ the intersection γ([−δ/2, δ/2]) ∩W is

a perfect totally disconnected set (a Cantor set).

Now we state the Poincaré-Bendixson theorem for meromorphic connections on a compact Riemann
surface S proved in [2, Theorem 4.6] and [1, Theorem 4.3], with the missing case included (see Appendix A).

Theorem 2.18 (Abate-Bianchi-Tovena). Let σ: [0, ε) → So be a maximal geodesic for a meromorphic
connection ∇ on S, where So = S \ {p0, p1, . . . , pr} and p0, p1, . . . , pr are the poles of ∇. Then either

(1) σ(t) tends to a pole of ∇ as t → ε; or
(2) σ is closed; or
(3) the ω-limit set of σ is given by the support of a closed geodesic; or
(4) the ω-limit set of σ is a boundary graph of saddle connections; or
(5) the ω-limit set of σ is a transversally Cantor-like geodesic set; or
(6) the ω-limit set of σ is all of S; or
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(7) the ω-limit set of σ has non-empty interior and non-empty boundary and each component of its
boundary is a graph of saddle connections with no spikes and at least one pole; or

(8) σ intersects itself infinitely many times.

Furthermore, in cases (3) or (4) the support of σ is contained in only one of the components of the complement
of its ω-limit set, which is a part P of S having the ω-limit set as boundary.

Remark 2.19. As anticipated in the introduction, case (5) has been missed in [1, Theorem 4.3]. It
appears when the ω-limit set W of σ has an empty interior and supp(σ) ⊆ W , a case not considered in the
proof of [1, Theorem 4.3]; see Appendix A.

Remark 2.20. All cases listed in Theorem 2.18 can be realized: see [1, 2, 4, 9].

2.3. Singular flat metrics, k−differentials and meromorphic connections. In this section we re-
call the relationships among meromorphic connections, singular flat metrics and meromorphic k-differentials
(see [2, 10]).

Definition 2.21. Let S be a Riemann surface and Σ ⊂ S a discrete set having no limit points in S.
Set So := S \ Σ. We say that g is a singular flat metric on S if g is a flat metric on So and for any p ∈ Σ

there exist ρp ∈ R such that, for any chart (Uα, zα) centered at p with Uα ∩Σ = {p}, writing g
1
2 = euα |dzα|

on Uα \ {p} the function euα satisfies

lim
zα→0

euα

|zα|ρp
> 0 .

Notice that saying that g is flat is equivalent to saying that uα:Uα \ {0} → R is harmonic. We say that ρp
is the residue of g at the singular point p and that Σ is the singular set of g.

Definition 2.22. Let ∇ be a meromorphic connection on a Riemann surface S and g a singular flat
metric on S. We say that g and ∇ are adapted to each other if they have the same singular sets and the
same geodesics (intended as parametrized curves).

It turns out that a meromorphic connection is adapted to a singular flat metric if and only if it is
Fuchsian with real periods.

Theorem 2.23 ([2, Proposition 1.2], [10, Theorem 3.8])). Let ∇ be a Fuchsian meromorphic connection
on a Riemann surface S and let Σ be the set of poles of ∇. Set So = S \Σ. If ∇ has real periods then there
exists a singular flat metric g adapted to ∇. Moreover, g is unique up to a positive constant multiple and
the local isometries of ∇ are isometries between (a multiple of) g and the Euclidean metric.

Conversely, if g is a singular flat metric on S with singular set Σ then there exists a unique meromorphic
connection ∇ with Σ as set of poles such that g is adapted to ∇. Moreover, ∇ is Fuchsian with real periods.

Furthermore, if ρp is the residue of a singular point p of g then Resp ∇ = ρp and vice versa.

Remark 2.24. As a consequence of Theorem 2.23, if p is a pole with real residue, we can always construct
a singular flat metric adapted to ∇ in a simply connected neighbourhood U of p not containing other poles,
because ∇ in U has real periods (see Remark 2.7).

The following lemma (see [2, Corollary 4.5] for the case S ⊆ C) shows that if ∇ has real periods then
all closed geodesics are periodic.

Corollary 2.25. Let ∇ be a Fuchsian meromorphic connection on a Riemann surface S with real
periods. Then any closed geodesic of ∇ is periodic.

Proof. By Theorem 2.23 (see [2, Proposition 1.2]) there is a singular flat metric g adapted to ∇. In
particular, the geodesics of ∇ are the same as the geodesics of g. Since closed geodesics of a Riemannian
metric are necessarily periodic, the assertion follows. □

Now we shall describe the relation between meromorphic k-differentials and meromorphic connections.
A k−differential is a global meromorphic section of the line bundle (T ∗S)⊗k. Meromorphic k-differentials
are studied by many authors (see for example [3, 11, 14, 15]). It is not difficult to see that a k-differential
q is given locally as q = q(z)dzk. Then it is possible to prove that there exists a singular flat metric g locally

given as g
1
2 = |q(z)| 1k |dz|. We say g is adapted to q. Similarly, a meromorphic connection ∇ and q are

adapted to each other if there exists a singular flat metric g such that g is adapted to ∇ and q.
6



Theorem 2.26 ([10, Theorem 1.2]). Let ∇ be a Fuchsian meromorphic connection on a Riemann sur-
face S. If ∇ has monodromy in Zk := {ε ∈ S1| εk = 1} then there is a meromorphic k-differential q adapted
to ∇. Moreover, q is unique up to a non-zero constant multiple.

Conversely, if q is a meromorphic k-differential on a Riemann surface S then there exists a unique
meromorphic connection ∇ adapted to q. Moreover, ∇ is Fuchsian and it has monodromy in Zk.

Remark 2.27. Note that if ∇ is a Fuchsian meromorphic connection with monodromy in Zk then the
residues of ∇ are in 1

kZ, by Remark 2.7.

3. Local behaviour around Fuchsian poles

In this section we study the local behaviour of geodesics around non-resonant Fuchsian poles. In Subsec-
tion 3.1, we show the existence a distinguished chart around a non-resonant Fuchsian pole of a meromorphic
connection ∇. In Subsection 3.2 and Subsection 3.3, we study the behaviour of geodesics of a meromorphic
connection ∇ around non-resonant and noncritical Fuchsian poles, respectively. In Subsection 3.4, we study
the singular flat metric adapted to ∇ in a neighbourhood of a Fuchsian pole. Finally, in Subsection 3.5, we
study the ω-limit set of a simple geodesic around a Fuchsian pole with real residue greater than −1.

3.1. Non-resonant Fuchsian poles. As we have recalled above, around any regular point p ∈ So it is
possible to find a ∇-chart, that is a chart (U, z) around p such that the local representation of ∇ is identically
zero. Of course, this is not true around poles. In the next lemma we show there exists a distinguished chart
around non-resonant Fuchsian poles.

Lemma 3.1. Let ∇ be a meromorphic connection on a Riemann surface S. Let p0 ∈ S be a Fuchsian
pole with residue ρ = Resp0

∇ ∈ C. Assume that p0 is non-resonant, that is ρ ̸= −k− 1 for all k ∈ N∗. Then
there exists a chart (U,w) centered at p0 such that the local representation of ∇ on U is of the form

η =
ρ

w
dw.

Proof. Let (V, z) be a simply connected chart centered at p0 such that p0 is the unique pole of ∇ in V .
Since p0 is a Fuchsian pole, the local representation of ∇ on V is of the form

η1 =
(ρ
z
+ f

)
dz,

where f :V → C is a holomorphic function. Let F be a holomorphic primitive of f with F (0) = 0 and write
the Taylor expansion of eF as

(3.1) eF =

∞∑
j=0

cjz
j ,

where c0 = 1. By shrinking V , if necessary, we can define a one-to-one holomorphic function by taking a
branch of the following functions

(3.2) Kρ :=


(

∞∑
j=0

cj
j+ρ+1z

j

) 1
ρ+1

, if ρ ̸= −1,

exp
∞∑
j=1

cj
j z

j , if ρ = −1.

such that

Kρ(0) =


(

1
ρ+1

) 1
ρ+1

, if ρ ̸= −1

1, if ρ = −1.

Note that Kρ(0) ̸= 0. Set

w = zKρ:V → C.
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By shrinking again V , if necessary, we can assume that w is injective; choose r > 0 so that w(V ) contains
W = {|w|< r}. Then (U,w), with U = w−1(W ), is a chart centered at p0. Let η be the local representation
of ∇ on U ; by the transformation rule we have

η = η1 −
dξ

ξ
,

where ξ = Kρ + zK ′
ρ. Then we have

η =

(
ρ

z
+ f −

2K ′
ρ + zK ′′

ρ

Kρ + zK ′
ρ

)
dz

=
ρKρ + ρzK ′

ρ − 2zK ′
ρ − z2K ′′

ρ + z(Kρ + zK ′
ρ)f

z(Kρ + zK ′
ρ)

dz

=
ρ

w
dw +

zfK2
ρ + (z2f − 2z − ρz)KρK

′
ρ − z2KρK

′′
ρ − ρz2K ′

ρ
2

zKρ(Kρ + zK ′
ρ)

dz.

Hence it is enough to prove that

zfK2
ρ + (z2f − 2z − ρz)KρK

′
ρ − z2KρK

′′
ρ − ρz2K ′

ρ
2 ≡ 0.

Since Kρ ̸= 0 on U , we can multiply both sides of the last equality by a branch of Kρ−1
ρ and divide by z.

Set

A := fKρ+1
ρ + (zf − 2− ρ)Kρ

ρK
′
ρ − zKρ

ρK
′′
ρ − ρzKρ−1

ρ K ′
ρ
2
;

it is enough to prove A ≡ 0. By using the following simple formulas

• for ρ ̸= −1

(1)
(Kρ+1

ρ )′

ρ+1 = Kρ
ρK

′
ρ;

(2)
(Kρ+1

ρ )′′

ρ+1 = Kρ
ρK

′′
ρ + ρKρ−1

ρ K ′
ρ
2
;

• for ρ = −1

(1) (logKρ)
′ =

K′
ρ

Kρ
;

(2) (logKρ)
′′ =

K′′
ρ

Kρ
−K−2

ρ K ′
ρ
2
.

we have

A =

{
1

ρ+1

(
(ρ+ 1)fKρ+1

ρ + zf(Kρ+1
ρ )′ − (ρ+ 2)(Kρ+1

ρ )′ − z(Kρ+1
ρ )′′

)
, if ρ ̸= −1

f + zf(logKρ)
′ − (logKρ)

′ − z(logKρ)
′′, if ρ = −1.

By using (3.1) and (3.2) we have

∞∑
j=1

jcjz
j−1 = (eF )′ = feF =

{
(ρ+ 1)fKρ+1

ρ + zf(Kρ+1
ρ )′, if ρ ̸= −1,

f + zf(logKρ)
′, if ρ = −1.

Furthemore,
∞∑
j=1

jcjz
j−1 =

{
(ρ+ 2)(Kρ+1

ρ )′ + z(Kρ+1
ρ )′′, if ρ ̸= −1,

(logKρ)
′ + z(logKρ)

′′, if ρ = −1.

Consequently, A ≡ 0 and hence

η =
ρ

w
dw,

as claimed. □

Definition 3.2. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a non-resonant
Fuchsian pole of ∇. A simply connected chart (U, z) centered at p is said to be adapted to (∇, p) if

• the local representation of ∇ on U is η := ρ
zdz, where ρ = Resp ∇; and

• z(U) is a disc in C centered in 0 of radius r > 0.

We say r is the radius of (U, z).
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(a) ρ < −1 (b) ρ > −1

Figure 1. Geodesics of ∇ on z(U).

Lemma 3.1 says that for any non-resonant Fuchsian pole p of a meromorphic connection ∇ on a Riemann
surface S there exists a chart adapted to (∇, p). In general, for a resonant Fuchsian pole p there may not
exist a chart adapted to (∇, p). However, the local study of geodesics around a resonant Fuchsian pole is
already covered in [10].

3.2. Geodesics around non-resonant Fuchsian poles with real residues. The next proposition
describes the behaviour of geodesics of a meromorphic connection ∇ around non-resonant Fuchsian poles
having real residues.

Proposition 3.3. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a non-
resonant Fuchsian pole of ∇ with residue ρ ∈ R. Let (U, z) be a chart adapted to (∇, p) with radius r > 0.
Let σ: [0, ε) → U \ {p} be a geodesic of ∇. Fix 0 < β < π

2 . Let

Hρ :=


{w ∈ C | −β < argw < π + β, |w|> rρ+1} if ρ < −1;

{w ∈ C | Im w > 0} if ρ = −1;

{w ∈ C | −β < argw < π + β, 0 < |w|< rρ+1} if ρ > −1.

For α ∈ [0, 2π), let χα
ρ :Hρ → χα

ρ (Hρ) ⊆ z(U) be the holomorphic map given by

χα
ρ (w) =

{
eiαw

1
ρ+1 , if ρ ̸= −1;

reiw if ρ = −1.

(1) If ρ ̸= −1 then a smooth curve σ: [0, ε) → U \ {p} is a geodesic for ∇ if and only if there exists
α ∈ [0, 2π) such that z(σ(t)) = χα

ρ (at+ b) for some a > 0 and b ∈ C with Im b ≥ 0. Furthermore,
setting σ̃ = z ◦ σ we have

α =

{
1

ρ+1 arg (−σ̃(0)ρσ̃′(0)) , if ρ < 0,
1

ρ+1 arg (σ̃(0)
ρσ̃′(0)) , if ρ ≥ 0.

Moreover, a = |(ρ+ 1)σ̃(0)ρσ̃′(0)| and b = e−iα(ρ+1)σ̃(0)ρ+1.
(2) If ρ = −1 then a smooth curve σ: [0, ε) → U \ {p} is a geodesic for ∇ if and only if we have

z(σ(t)) = χ0
−1(at + b) for some a ∈ C∗ and b ∈ C with Im b ≥ 0. Moreover, setting σ̃ = z ◦ σ we

have a = iσ̃′(0)
σ̃(0) and eib = σ̃(0)

r .

Proof. A curve σ: [0, ε) → U \{p} is a geodesic for ∇ if and only if the representation σ̃ = z ◦σ satisfies

(3.3) σ̃′′ +
ρ

σ̃
(σ̃′)2 = 0.

By solving (3.3) we get that σ̃(t) = χα
ρ (at + b). The values of α, a and b follow from σ̃(0) = χα

ρ (b) and
σ̃′(0) = a(χα

ρ )
′(b). □

Figures 1 and 2 contain typical examples of geodesics.
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(a) spirals (b) periodic geodesics

(c) a critical geodesic

Figure 2. ρ = −1

Remark 3.4. Assume ρ > −1. In Proposition 3.3 we can take

H̃ρ := {w ∈ C | 0 < argw < π, 0 < |w|< rρ+1}
instead of Hρ. More precisely, a smooth curve σ: [0, ε) → U \ {p} is a geodesic for ∇ if and only if there
exists α ∈ [0, 2π) such that

z(σ(t)) = χα
ρ (l(t))

for some horizontal Euclidean segment l in H̃ρ.

Actually, Proposition 3.3 is a special case of [2, Theorem 8.1]. We shall need the explicit form of the
parametrization of geodesics around non-resonant Fuchsian poles in the next sections.

3.3. Noncritical geodesics. To study the ω-limit set of a geodesic of a meromorphic connection ∇
on a Riemann surface S it is useful to know the local behavior of geodesics around a pole p.

Theorem 3.5 ([10]). Let ∇ be a meromorphic connection on a Riemann surface S. Set So := S \ Σ
where Σ is the set of poles for ∇. Let σ: [0, ε) → So be a maximal geodesic of ∇ and W its ω-limit set. Let
p be a Fuchsian pole with ReResp ∇ ≤ −1. If p ∈ W then W = {p}.

Thanks to Theorem 3.5, we can see that studying the ω-limit set of geodesics approaching poles with
residues less than or equal to −1 is trivial. Therefore, in this section we study only Fuchsian poles with real
Resp ∇ > −1. Since resonant Fuchsian poles have residue less than −1, we omit the word “non-resonant”
when we speak of poles with real residue greater than −1.

Definition 3.6. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian
pole for ∇ with real Resp ∇ > −1. Let (U, z) be a chart adapted to (∇, p). Let σ: (ε−, ε+) → U \ {p} be
a maximal (maximal in U in both forward and backward time) geodesic for ∇. We say σ is a noncritical
geodesic of ∇ on U if both rays of σ tend to the boundary of U . Otherwise, we say σ is critical. See Figure 3.

Corollary 3.7. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian pole
for ∇ with real residue ρ := Resp ∇ > −1. Let (U, z) be a chart adapted to (∇, p). Let σ: (ε−, ε+) → U \ {p}
be a maximal (both in forward and in backward time) geodesic for ∇. Then

10



(a) noncritical geodesics (b) a critical geodesic

Figure 3. Critical and noncritical geodesics on (U, z).

(1) σ is a non-critical geodesic if and only if there exists α ∈ [0, 2π) such that

z(σ(t)) = eiα(at+ b)
1

ρ+1

for some a > 0 and b ∈ C with Im b > 0. Moreover, |aε±+ b|= rρ+1 and, up to changing the initial
point, we can assume Re b = 0.

(2) σ is a critical geodesic if and only if there exists α ∈ [0, 2π) such that

z(σ(t)) := eiα(at+ b)
1

ρ+1

for some a > 0 and b ∈ R with − b
a ∈ {ε−, ε+}. Actually, one can choose b = ε− = 0 up to changing

the initial point.

Moreover, for each q ∈ U \{p} there exists a unique (up to reparametrization) critical geodesic issuing from q.

Proof. By Proposition 3.3 there exists α ∈ [0, 2π) such that

z(σ(t)) = eiα(at+ b)
1

ρ+1

for suitable a > 0 and b ∈ C with Im b ≥ 0. Let r be the radius of (U, z). By definition σ is noncritical if

and only if |z(σ(t))|→ r in both forward and backward time. Since |z(σ(t))|= |at+ b|
1

ρ+1 we can see that σ
is noncritical if and only if |at+ b|→ rρ+1 in both forward and backward time. Since a > 0 it is not difficult
to see that |at+ b|→ rρ+1 both in forward and backward time if and only if Im b ̸= 0. Hence σ is noncritical
if and only if Im b > 0. Consequently, σ is critical if and only if Im b = 0. Moreover, |at + b|→ 0 in a ray
and hence − b

a ∈ {ε−, ε+}. □

Corollary 3.8. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian
pole for ∇ with real Resp ∇ > −1. Let (U, z) be a chart adapted to (∇, p). Let σ: (ε−, ε+) → U \ {p} be a
critical geodesic. Then arg z(σ(t)) = const. In particular supp(z(σ)) is the support of a radius of z(U).

Proof. By the previous corollary we can assume that ε− = 0 and that there exists α ∈ [0, 2π) and
a > 0 such that

z(σ(t)) = eiα(at)
1

ρ+1 .

Hence arg z(σ(t)) ≡ α = const. □

3.4. Singular flat metric on a chart (U, z) adapted to (∇, p). Let ∇ be a meromorphic connection
on a Riemann surface S. Let p be a Fuchsian pole of ∇ with real residue ρ := Resp ∇ > −1. Let (U, z) be a
chart adapted to (∇, p). Note that the representation of ∇ on U is η = ρ

zdz. Let g be a singular flat metric
adapted to ∇ on U . Thanks to [10, Lemma 3.3] it can be represented by

(3.4) g
1
2 = |z|ρ|dz|

on U . We now collect a few properties of distg, the distance induced by g.
11



Lemma 3.9. Given r > 0, let g be a singular flat metric on ∆r = {z ∈ C | |z|< r} of the form (3.4) with
ρ > −1. Then

distg(z1, z2) <
2rρ+1

ρ+ 1
for any z1, z2 ∈ ∆r.

Proof. It is enough to show that there exists a curve σ: [−1, 1] → ∆r connecting z1 and z2 with

g−length bounded by 2rρ+1

ρ+1 . Set

σ(t) :=

{
−z1t, if t ∈ [−1, 0],

z2t, if t ∈ [0, 1].

Then σ(−1) = z1 and σ(1) = z2. It is not difficult to compute the g−length of σ:

(3.5)

∫
σ

|z|ρ|dz|= |z1|ρ+1

∫ 0

−1

tρdt+ |z2|ρ+1

∫ 1

0

tρdt =
|z1|ρ+1+|z2|ρ+1

ρ+ 1
<

2rρ+1

ρ+ 1

and we are done. □

Remark 3.10. If ρ ≤ −1 then distg is unbounded on ∆r. In particular, a computation similar to (3.5)
shows that an Euclidean segment joining 0 and any point z2 ∈ ∆r has infinite g−length.

Lemma 3.11. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian pole
of ∇ with real residue greater than −1. Let (U, z) be a chart adapted to (∇, p). Let g be a singular flat metric
adapted to ∇ on U . Then all maximal critical geodesics in U have the same g−length.

Proof. By Corollary 3.7 we can see that the support of the representation of a critical geodesic on
z(U) is an Euclidean segment joining 0 with a boundary point of z(U) = ∆r. Then a computation similar
to (3.5) shows that the length depends only the radius r of z(U). □

In the next lemma we study self-intersections of noncritical geodesics around a Fuchsian pole with residue
in (−1,− 1

2 ).

Lemma 3.12. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian pole
of ∇ with real residue ρ := Resp ∇. Let (U, z) be a chart adapted to (∇, p) and g is a singular flat metric
adapted to ∇ on U .

(1) If ρ ∈ (−1,− 1
2 ) then there exists δ0 > 0 such that any noncritical geodesic σ : (ε−, ε+) → U \{p} of

∇ on U with distg(supp(σ), p) < δ0 intersects itself at least once. More precisely, any noncritical
geodesic entering U δ0 = {q ∈ U | distg(q, p) < δ0} intersects itself at least once before exiting Uδ0 .

(2) If ρ > −1 take α1, α2 ∈ R so that

0 < |α1 − α2|<
π

ρ+ 1
.

If L1 and L2 are parametrizations of maximal horizontal Euclidean segments in

Fτ = {w ∈ Hρ | 0 < Im w < τ},
with τ small enough, then the geodesics χα1

ρ ◦ L1 and χα2
ρ ◦ L2 have at least one common point.

Proof. Let r be the radius of (U, z). For 0 < τ < r
1

ρ+1 , set

lτ = {w ∈ Hρ | Im w = τ}.
Let Lτ : (ε−, ε+) → Hρ be the parametrization of the horizontal Euclidean segment lτ ⊂ Hρ given by
Lτ (t) = t+ iτ . Let

β(τ) := sup
w∈lτ

argw − inf
w∈lτ

argw = |argLτ (ε−)− argLτ (ε+)|.

Note that β(τ) is a decreasing function and that

lim
δ↘0

β(τ) = π.

In case (1), since ρ+ 1 < 1
2 , we can choose τ0 small enough so that 2π(ρ+ 1) < β(τ) < π for all 0 < τ ≤ τ0.
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Figure 4. A self-intersecting noncritical geodesic on z(U) (here ρ = −0.9).

Fix α ∈ [0, 2π). Then

στ (t) := σα
τ (t) := χα

ρ (Lτ (t)) = eiα(t+ iτ)
1

ρ+1

is the representation of a noncritical geodesic of ∇ on U . Set

β1
τ =

∣∣∣∣ limt↗ε+
arg στ (t)− lim

t↘ε−
arg στ (t)

∣∣∣∣ .
It is easy to see that β1

τ = 1
ρ+1βτ and that arg στ (t) is a monotone function of t. Since β1

τ > 2π and we

know that both rays of στ tends to the boundary of U and that arg στ (t) is monotone, we conclude that
στ intersects itself at least once. Then the image by χα

ρ of any maximal horizontal interval in Fτ0 intersects
itself. Set

δ0 := distg(supp(στ0), p).

Since multiplication by eiα is an isometry for g we deduce that any maximal noncritical geodesic σ with
distg(supp(σ), p) < δ0 intersects itself, as claimed.

In order to prove the second statement, without loss of generality we can assume that α1 > α2. Set

β := (ρ+ 1)(α1 − α2)

and F β
τ = eiβFτ . Since 0 < β < π we have F β

τ ∩Fτ ̸= ∅. Let Lβ
τ (t) := eiβLτ (t). Since 0 < β < π, there exists

τ0 such that for any 0 < τ < τ0 the segments lτ and lβτ have a common point. By

χα1
ρ (Lτ (t)) = χα2

ρ (Lβ
τ (t))

and lτ ∩ lβτ ̸= ∅, we can see that the supports of χα1
ρ ◦ Lτ and χα2

ρ ◦ Lτ have a common point.

Let L1 and L2 be any maximal horizontal Euclidean segments in Fτ . Since Lτ and Lβ
τ have a common

point we can see that L1 and eiβL2 have a common point. It follows as above that χα1
ρ ◦ L1 and χα2

ρ ◦ L2

have at least one common point. □

Definition 3.13. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian
pole for ∇ with ρ := Resp ∇ > −1. Let (U, z) be a chart adapted to (∇, p). Let σ: (ε−, ε+) → U \ {p} be a
maximal geodesic for ∇ on U . We say σ has α−direction for some α ∈ [0, 2π) if

z(σ) = χα
ρ (at+ b)

for some a ∈ R∗ and b ∈ C. We shall write

̸ (σ) := α.

Of course the notion of direction depends on (U, z). In particular, if σ has α−direction for some
α ∈ [0, 2π) on (U, z), then we can introduce a new chart (U, z′) with z′ = e−iαz so that σ has 0−direction
in (U, z′).
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Corollary 3.14. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian
pole for ∇ with ρ := Resp ∇ > −1. Let (U, z) be a chart adapted to (∇, p) and g a singular flat metric
adapted to ∇ on U . Let β1, β2 ∈ [0, 2π) with β1 < β2 be such that

min(β2 − β1, 2π + β1 − β2) <
π

ρ+ 1
.

Set

(3.6) Iρ[β1, β2] :=

{
[β1, β2], if β2 − β1 < π

ρ+1 ,

[0, β1] ∪ [β2, 2π), otherwise.

Then there exists a number δ0 > 0 depending only on the length of Iρ[β1, β2] such that any two noncritical
geodesics σ1 and σ2 entering

Uδ0 = {q ∈ U | distg(q, p) < δ0}
with ̸ (α1), ̸ (α2) ∈ Iρ[β1, β2] and ̸ (σ1) ̸= ̸ (σ2) have a common point.

Proof. Without loss of generality we can assume that β2 − β1 < π
ρ+1 . So Iρ[β1, β2] = [β1, β2]. Since

̸ (σ1) ̸= ̸ (σ2), the geodesics σ1 and σ2 are distinct. Since they are noncritical, the assertion follows from
Lemma 3.12.(2). □

3.5. The ω-limit sets of simple geodesics around Fuchsian poles. In this section we study the
ω-limit set of a simple geodesic around a Fuchsian pole with real residue greater than −1.

Lemma 3.15. Let ∇ be a meromorphic connection on a Riemann surface S. Set S0 = S \Σ, where Σ is
the set of poles of ∇. Let p be a Fuchsian pole of ∇ with ρ := Resp ∇ > −1. Let (U, z) be a chart adapted
to (∇, p) and g a singular flat metric adapted to ∇ on U . Let σ : [0, ε) → S0 be a maximal simple geodesic
for ∇. Then there exists a number δ0 > 0 such that σ can enter U δ0 = {q ∈ U : distg(q, p) < δ0} only along
finitely many directions.

Proof. Pick a positive integer n > 1 such that β := 2π
n < π

ρ+1 . Choose βj ∈ (0, 2π) for j = 1, ..., n such

that
n−1⋃
j=1

[βj , βj+1] ∪ Iρ[βn, β1] = [0, 2π)

and such that the lengths of Ij := [βj , βj+1] for j = 1, ..., n − 1 and of In := Iρ[βn, β1] = [0, β1] ∪ [βn, 2π)
are all equal to β. Take δ0 = δ0(β) and Uδ0 = {q ∈ U | distg(q, p) < δ0} given by Corollary 3.14. Without
loss of generality assume σ(0) /∈ Uδ0 . Let q be a point of intersection between σ and the boundary of Uδ0 .
If σ in q has the direction of the unique critical geodesic issuing from q then σ is that critical geodesic and,
then, it does not exit from Uδ0 anymore. So in this case the assertion is proved.

Assume then that σ does not enter U δ0 in a critical direction. If, by contradiction, σ enters Uδ0 along
infinitely many directions, then there exists Ij such that σ enters to U δ0 along two different directions
α1, α2 ∈ Ij . Then Corollary 3.14 implies that σ intersects itself, contradiction. □

In Theorem 2.18 we have seen the possible classifications of the ω-limit sets of maximal simple geodesics
of meromorphic connections on compact Riemann surfaces. In the next proposition we study the intersection
of a neighbourhood of a Fuchsian pole with residue greater than − 1

2 with the ω-limit set of a maximal simple
geodesic having non-empty interior.

Proposition 3.16. Let ∇ be a meromorphic connection on a compact Riemann surface S. Set S0 = S\Σ,
where Σ is the set of poles of ∇. Let p be a Fuchsian pole of ∇ with ρ := Resp ∇ ≥ −1

2 . Let σ: [0, ε) → S0 be
a maximal simple geodesic for ∇ and W its ω-limit set. Assume that W has nonempty interior and p ∈ W .
Then there exists a chart (U, z) adapted to (∇, p) with radius r0 > 0 such that

z(U ∩W ) =

m⋃
j=1

Cj ∪ {0},

where

Cj = {δj1 ≤ arg z ≤ δj2, |z|< r0}
14



for some δj1, δ
j
2 ∈ R so that Cj ∩ Ch = ∅ for j ̸= h. Moreover,

(3.7) δj2 − δj1 =
πkj
ρ+ 1

∈ (0, 2π]

for some kj ∈ N.

Remark 3.17. Assume that ρ ∈ (−1,− 1
2 ). If p ∈ W , then σ must enter the neighbourhood Uδ0 given

by Lemma 3.12. Since σ is simple, then it must enter Uδ0 as a critical geodesic, that is it must go directly
to p. In particular, W = {p}.

Proof. Let (U0, z) be a chart adapted to (∇, p) of radius r0. By Theorem 2.18, the boundary of W is

composed by a graph of saddle connections without spikes. If p ∈ W̊ , up to shrinking U0 if necessary, we
can assume that U0 ⋐ W . If p ∈ ∂W , then, for r0 small enough, ∂W ∩U0 must consists of critical geodesics
ending at p. Notice that if γ: (ε−, ε+) → U0 \ {p} is a critical geodesic for ∇ then arg z(γ(t)) = const.
Consequently, there exists m ≥ 1 so that

z(U0 ∩W ) =

m⋃
j=1

Cj ∪ {0}

where Cj ∩ Ch = ∅ for j ̸= h and

Cj = {δj1 ≤ arg z ≤ δj2, |z|< r0}
for some δj1, δ

j
2 ∈ R with

0 < δj2 − δj1 ≤ 2π.

We just have to prove (3.7).
Let Aσ be the set of noncritical geodesics in U0 obtained as intersection of the support of σ with U0;

notice that σ cannot intersect U0 in a critical geodesic because otherwise its ω-limit set would reduce to p.
Since σ is simple, any two geodesics in Aσ are disjoint. Given an integer n > 0, put

(3.8) An
σ =

{
γ ∈ Aσ

∣∣∣∣ distg(supp(γ), p) < 1

n

}
,

where g is a singular flat metric adapted to ∇ on U0. Since p ∈ W , we have An
σ ̸= ∅ for all n > 0. Set

Bn := {α = ̸ (γ) | γ ∈ An
σ} ≠ ∅.

By Lemma 3.15, there exists n0 such that Bn is a finite set for any n > n0. Notice that Bn ⊇ Bn+1. Then
there exists n1 such that for any n ≥ n1 we have Bn = Bn+1 =: B0. Furthermore, for any two different
α1, α2 ∈ Bn we have

min(|α2 − α1|, 2π − |α2 − α1|) ≥
π

ρ+ 1
.

Otherwise, Corollary 3.14 would imply that σ is not simple, impossible.
Choose r < min{r0, 1

n1
} and U ⊂ U0 such that z(U) is the disk of radius r. Take any αj ∈ B0. Then

z(Uαj ) := χ
αj
ρ (H̃ρ) is a sector in z(U) with angle π

ρ+1 , where H̃ρ := {w ∈ C | 0 ≤ argw ≤ π, 0 < |w|< rρ+1}.
Since ρ ≥ − 1

2 we have that χ
αj
ρ is one-to-one. Notice that if σ enters U in the sector Uαj

it leaves U again
by the sector Uαj . As we have shown in the first part of the proof, the interior of z(W ∩ Uαj ) is a sector or
it is empty. Assume, by contradiction, that z(W ∩ Uαj ) is a sector with angle less than π

ρ+1 ; then

Sαj := (χαj
ρ )−1(z(W ∩ Uαj )) ⊂ H̃ρ

is a sector with angle less than π. Since αj ∈ B0, the set {γ ∈ An
σ | ̸ (γ) = αj} is infinite for all n. Then

there exists a sequence of maximal horizontal Euclidean segments {lk} in H̃ρ with

dist(lk, 0) <
1

k

and such that there is σk ∈ Aσ so that σk(t) = χ
αj
ρ (lk(t)), where dist is the Euclidean distance in

H̃ρ. Then there exists a number k0 such that lk leaves the sector Sαj
for any k ≥ k0 and such that

supp(σk0
) ∩ (W ∩ Uαj

) ̸= ∅; hence
(3.9) supp(σk0) ̸⊂ W.
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Since σ enters Uαj only in αj-direction, there exists a sequence of maximal horizontal Euclidean segments

{Lh} on H̃ρ such that χ
αj
ρ ◦ Lh ∈ Aσ and that {Lh} accumulates lk0

∩ Sαj
. Since Lh and lk0

are horizontal

Euclidean segments in H̃ρ, if {Lh} accumulates a subset of lk0
then it accumulates the whole lk0

. Hence
supp(σk0) ⊂ W , against (3.9).

Thus, z(W ∩ Uαj ) is a sector with angle greater or equal to π
ρ+1 . Since z(Uαj

) is a sector with angle
π

ρ+1 , we have Uαj ⊂ W . So we have proved that W ∩ U =
⋃

α∈B0
Uα. Since

min(|αj − αi|, 2π − |αj − αi|) ≥
π

ρ+ 1
,

for any different αj , αi ∈ B0, we can see that Uαi ∩ Uαj has empty interior. Finally, the angle of the sector
z(Uαj

) is π
ρ+1 and we are done. □

Remark 3.18. In Proposition 3.16, if p ∈ W̊ then m = 1 and 2π = δ12 − δ11 = πk
ρ+1 = 2π for a suitable

k ∈ N. Hence, we have ρ ∈ 1
2 (N ∪ {−1}).

A consequence of the previous proposition is the following corollary.

Corollary 3.19. Let ∇ be a meromorphic connection on a compact Riemann surface S. Set So = S\Σ,
where Σ is the set of poles of ∇. Let p be a Fuchsian critical point for ∇ with a residue ρ := Resp ∇ ∈ R\ 1

2 (N∪{−1}).
Let σ : [0, ε) → So be a maximal geodesic and W its ω-limit set. If p is an interior point of W then σ intersect
itself infinitely many times.

Proof. Suppose first ρ ≤ −1. Then, by Theorem 3.5, if p ∈ W then W = {p}, contradiction. Hence
ρ > −1.

Let (U, z) be a chart adapted to (∇, p) with U ⊂ W . Let g be a singular flat metric adapted to ∇
on U . Let first assume −1 < ρ < − 1

2 . Then, by Lemma 3.12, there exists a positive number δ such that

any noncritical geodesic entering U δ := {q ∈ U : distg(p, q) < δ} intersects itself. Since p ∈ W , it is easy to
see that σ must enter Uδ infinitely many times. Hence σ intersects itself in a neighbourhood of p infinitely
many times.

Let assume now ρ ≥ − 1
2 . Assume, by contradiction, that σ intersect itself finitely many times. Then

up to changing the starting point we can assume that σ does not intersect itself. Since p ∈ W̊ , Remark 3.18
implies that

ρ ∈ 1

2
(N ∪ {−1}),

and this contradicts the assumption ρ ∈ R \ 1
2 (N ∪ {−1}). Hence, σ must intersect itself infinitely many

times. □

Another possible ω-limit set of a maximal simple geodesic for a meromorphic connection ∇ on a com-
pact Riemann surface S is a boundary graph of saddle connections. In the next proposition we study the
intersection of such a boundary graph of saddle connections with a neighbourhood of a Fuchsian pole with
real residue greater than −1.

Proposition 3.20. Let ∇ be a meromorphic connection on a compact Riemann surface S. Set So = S\Σ,
where Σ is the set of poles of ∇. Let p be a Fuchsian pole for ∇ with ρ := Resp ∇ > −1. Let σ: [0, ε) → S0 be
a maximal simple geodesic for ∇ and W its ω-limit set. Assume W is a boundary graph of saddle connections
and p ∈ ∂W . Then there exists a chart (U, z) adapted to (∇, p) such that

z(U ∩W ) =

m⋃
j=1

Lj ∪ {0}

where

Lj = {w ∈ z(U) | argw = δj}
for some δj ∈ R. Moreover, for any Lj there exists Lk such that

δj − δk =
π

ρ+ 1
mod 2π.
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Proof. Let (U, z) be a chart adapted to (∇, p) and r its radius. Note that if γ: (ε−, ε+) → U \ {p} is
a critical geodesic for ∇ then arg z(γ(t)) = const. Consequently, we can choose r small enough so that there
exists m ≥ 1 such that

z(U ∩W ) =

m⋃
j=1

Lj ∪ {0}

where Lj is as in the statement. Since σ accumulates Lj , there exists a sequence of noncritical geodesics
γn: (ε

n
−, ε

n
+) → U \ {p} accumulating Lj such that supp(γn) ⊂ supp(σ) and

(3.10) distg(supp(γn), p) <
1

n
.

Then there exist an > 0 and bn ∈ C with Im bn > 0 such that

z(γn(t)) = eiαn(ant+ bn)
1

ρ+1 .

Up to reparametrization we can assume an = 1 and Re bn = 0. Furthermore, (3.10) implies that bn → 0.
Then εn− = −εn+. Let {nk}∞k=1 be a sequence such that the sequence {αnk

} converges to α0 ∈ [0, 2π). Then
γnk

accumulates geodesics γ±: (0, ε+) → U \ {p} such that

z(γ±(t)) = eiα0(±t)
1

ρ+1 .

Then setting δ± = arg(z(γ±(t))) we have δ+−δ− = π
ρ+1 mod 2π. Note that supp(γ±) ⊂ W ∩U . Moreover,

by construction, supp(γ+) ∪ supp(γ−) = Lj ∪ Lk for some Lk and thus we are done. □

Corollary 3.21. Let ∇ be a Fuchsian meromorphic connection with real periods on a compact Riemann
surface S. Set So = S \Σ, where Σ is the set of poles of ∇. Let σ : [0, ε) → So be a maximal simple geodesic
for ∇. Assume the ω-limit set of σ is a boundary graph of saddle connections Γ = ∂V for some connected
open set V ⊂ S. Then the vertices of Γ are Fuchsian poles with residues greater than or equal to − 1

2 ;
moreover, the interior (with respect to V ) angle on a vertex pj of Γ is π

Respj ∇+1 .

Proof. By Theorem 3.5 we know that Respj
∇ > −1. Since σ does not intersect itself, by Lemma 3.12

we have Respj ∇ ≥ − 1
2 . Let (Uj , zj) be a chart adapted to (∇, pj) with radius r. Since Uj ∩ Γ is composed

only by critical geodesics, when r is small enough the first statement of Proposition 3.16 implies that

zj(U ∩ V ) =

mj⋃
i=1

Ci ∪ {0},

where
Ci = {w ∈ z(U) | δ1i < argw < δ2i }

for some δ1i , δ
2
i ∈ R. Note that σ enters each z−1(Ci) infinitely many times. Arguing as in the proof of

Proposition 3.20 we then obtain that

δ2i − δ1i =
π

Respj
∇+ 1

mod 2π,

as claimed. □

4. Generalized Teichmüller formula

Let us recall a formula that was first proved for P1(C) in [2] and later for any compact Riemann surface
in [1].

Theorem 4.1 ([2, Theorem 4.1], [1, Theorem 3.1]). Let ∇ be a meromorphic connection on a compact
Riemann surface S, with poles {p1, ..., pr}, and set So = S \{p1, ..., pr}. Let P be a part of S whose boundary
multicurve γ ⊂ So is regular and it has mf ≥ 1 free components, positively oriented with respect to P . Let
z1, ..., zs denote the vertices of the free components of γ and εj ∈ (−π, π) the external angle at zj. Suppose

that P contains the poles {p1, ..., pg} and denote by gP̂ the genus of the filling P̃ of P . Then

(4.1)

s∑
j=1

εj = 2π

2−mf − 2gP̃ +

g∑
j=1

Re Respj (∇)

 .
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In this section we prove some generalizations of this formula. Let us first study the existence of broken
geodesics connecting two regular points in a neighbourhood of a pole with real residue greater than −1.

Lemma 4.2. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian pole
of ∇ with ρ := Resp ∇ > −1. Let (U, z) be a chart adapted to (∇, p). For α ∈ [0, 2π), let Uα ⊂ U be such
that

Vα := z(Uα) :=

{
w ∈ z(U)

∣∣∣∣ α < argw < α+
π

ρ+ 1

}
.

Then any two points in Uα can be connected by a simple geodesic not leaving Uα.

Proof. For z ∈ Vα put J(z) = (χα
ρ )

−1(z) = e−(ρ+1)αzρ+1. It is not difficult to see that J is a local
isometry of ∇ on Uα and that J(Vα) is an upper half disc. Since it is convex, any two points in J(Vα) can
be joined a Euclidean segment not leaving J(Vα) and we are done. □

Corollary 4.3. Let ∇ be a meromorphic connection on a Riemann surface S. Let p be a Fuchsian
pole of ∇ with Resp ∇ > −1. Let (U, z) be a chart adapted to (∇, p). Let U1 ⊂ U be such that

z(U1) := {w ∈ z(U) | α1 < argw < α2}

for some α1, α2 ∈ R. Then any two points in U1 can be joined by a simple broken geodesic not leaving U1.

Proof. It follows from the previous lemma. □

4.1. Generalized Teichmüller formula. In this subsection we introduce a generalized Teichmüller
formula, which is an extension of (4.1).

Definition 4.4. Let ∇ be a meromorphic connection on a Riemann surface S. Let R0 be a geodesic
polygon and p a vertex of R0. Let ε ∈ (−π, π) be the external angle of R0 in p. We say that v = π− ε is the
internal angle of R0 in p.

Let us prove the main lemma of this section.

Lemma 4.5. Let ∇ be a meromorphic connection on a Riemann surface S. Let p0 be a Fuchsian pole
for ∇ with ρ := Resp0 ∇ > −1. Let (U, z) be a chart adapted to (∇, p0). Let R0 ⊂ U be an s−sided Fuchsian
geodesic polygon with vertices p0, ..., ps−1 such that pj ̸= p0 for j = 1, ..., s−1. Let vj ∈ [0, 2π) be the internal
angle in pj. Then

(4.2)

s−1∑
j=1

(π − vj) = π + v0(ρ+ 1) .

Proof. Let denote by σj : [0, lj ] → U the geodesics composing ∂R0. Since R0 ⊂ U is a simply connected

domain and p0 ∈ ∂R0, there exists a non-self-intersecting smooth curve σ in U \ R0 connecting p0 with a
point in ∂U . Set U1 = U \ supp(σ). Let

η =
ρ

z
dz

be the local representation of ∇ on U . Note that U1 is a simply connected domain and η is holomorphic

on U1. Then J(z) = zρ+1

ρ+1 is a local isometry of ∇ on U1. Let γ : [0, ε) → U1 be a geodesic of ∇. Then there

exists a ∈ C and b ∈ C such that

J(z(γ(t))) = at+ b.

Hence we have

(z(γ))
ρ
dz(γ′) = d(J ◦ z)γ(γ′) ≡ a.

Thus,

0 = d(arg d(J ◦ z)(γ′)) = d(arg(z(γ))ρ) + d(arg dz(γ′)).

Since ∂R0 \ {p0} is composed by geodesics we then have∫
∂R0\{p0}

d(arg zρ) = −
∫
∂R0\{p0}

d(arg dz).
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It is easy to see that∫
∂R0\{p0}

d(arg zρ) =

∫
σ1|(0,l1]

d(arg zρ) +

s−1∑
j=2

∫
σj

d(arg zρ) +

∫
σs|[0,ls)

d(arg zρ)

= arg zρ(σ1(l1))− lim
t↘0

arg zρ(σ1(t))

+

s−1∑
j=2

(
arg zρ(σj(lj))− arg zρ(σj(0))

)
+ lim

t↗ls
arg zρ(σs(t))− arg zρ(σs(0))

= :
∑

1

Since σj(lj) = σj+1(0) = pj for j = 1, ..., s− 1, and σs(ls) = σ1(0) = p0, we have∑
1
= ρ

(
lim
t↗ls

arg z(σs(t))− lim
t↘0

arg z(σ1(t))

)
.

Since σ1 and σs are critical geodesics of ∇ on U , we also have arg z(σ1(t)) = α1 and arg z(σs(t)) = αs for
some α1, αs ∈ R with αs − α1 = v0. Hence

lim
t↗ls

arg z(σs(t))− lim
t↘0

arg z(σ1(t)) = v0.

Consequently, ∫
∂R0\{p0}

d(arg zρ) = ρv0.

On the other hand, ∫
∂R0\{p0}

d(arg dz) =

∫
σ1|(0,l1]

d(arg dz) +

s−1∑
j=2

∫
σj

d(arg dz) +

∫
σs|[0,ls)

d(arg dz)

=

s∑
j=1

∫ lj

0

d(arg dz(σ′
j(t)))

=

s∑
j=1

(arg dz(σ′
j)(lj))− arg dz(σ′

j)(0))

=

s−1∑
j=1

(arg dz(σ′
j)(lj)− arg dz(σ′

j+1)(0))

+ arg dz(σ′
s)(ls)− arg dz(σ′

1)(0)

= :
∑

2
.

Since

arg dz(σ′
j)(lj)− arg dz(σ′

j+1)(0) = vj − π

and

arg dz(σ′
s)(ls)− arg dz(σ′

1)(0) = v0 + π ,

we have ∑
2
=

s−1∑
j=1

(vj − π) + π + v0.

Consequently,

−ρv0 =

s−1∑
j=1

(vj − π) + π + v0,
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that is,
s−1∑
j=1

(π − vj) = π + v0(ρ+ 1),

as claimed. □

Theorem 4.6. Let ∇ be a meromorphic connection on a compact Riemann surface S with poles {p1, ..., pr}
and set So = S \ {p1, ..., pr}. Let P be a part of S whose boundary is a Fuchsian multicurve γ ⊂ S with
mf ≥ 1 free components, positively oriented with respect to P . Let q1, ..., qs denote the vertices of the free
components of γ and vj ∈ (0, 2π) the internal angle at qj; moreover, assume that ρj := Resqj ∇ > −1 for

j = 1, . . . , s. Suppose that P contains the poles {p1, ..., pg} and denote by gP̃ the genus of the filling P̃ of P .
Then

(4.3)

s∑
j=1

(π − (ρj + 1)vj) = 2π

2−mf − 2gP̃ +

g∑
j=1

Re Respj
(∇)

 .

Proof. Denote by σj : [0, lj ] → S the smooth geodesics composing ∂P . When qj is a pole, let (Uj , zj)
be a chart adapted to (∇, qj). By Corollary 4.3 and recalling the shape of critical geodesics, there exists a
broken geodesic Λj connecting σj and σj+1 not leaving Uj ∩P and not intersecting ∂P outside the extremes.
Let z1j ∈ σj and z2j ∈ σj+1 the extremes of Λj . Let Pj be the simply connected component of P \ Λj

containing qj in its boundary. When qj is not a pole, put Pj = ∅. Set

P̂ = P \
s⋃

j=1

P j .

By construction P̂ is a regular part such that the filling of P and the filling of P̂ have the same genus. For
k = 1, 2, denote by αk

j the interior angle of P̂ at zkj ; we put αk
j = π when qj is not a pole. Denote other

interior angles by βm. By Theorem 4.1, we have

(4.4)

s∑
j=1

2∑
k=1

(π − αk
j ) +

∑
m

(π − βm) = 2π

2−mf − 2gP̃ +

g∑
j=1

Re Respj
(∇)

 .

By using Lemma 4.5 for Pj when qj is a pole we have

π + (ρj + 1)vj =

2∑
k=1

(π − (π − αk
j )) +

∑
mj

(π − (2π − βmj
))

=

2∑
k=1

αk
j +

∑
mj

(βmj
− π),

where βmj
is an interior angle of P̂ adjacent to Pj . By summing up the last equality on all poles we have

(4.5)

s′∑
n=1

2∑
k=1

αk
jn +

∑
mjn

(βmjn
− π) =

s′∑
n=1

(π + (ρjn + 1)vjn),

where jn ∈ {1, ..., s} is such that qjn is a pole and s′ is the number of poles in {q1, ..., qs}. Since αk
j = π

when qj is not a pole, comparing (4.4) and (4.5) we have

2πs−
s∑

j=1

(π + (ρj + 1)vj) = 2π

2−mf − 2gP̃ +

g∑
j=1

Re Respj
(∇)

 .

Consequently,
s∑

j=1

(π − (ρj + 1)vj) = 2π

2−mf − 2gP̃ +

g∑
j=1

Re Respj
(∇)

 ,

as claimed. □
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Corollary 4.7. Let ∇ be a meromorphic connection on P1(C), with poles {p0 = ∞, p1, ..., pr}, and set
S = P1(C)\{p0, ..., pr} ⊆ C. Let R0 ⊂ P1(C) be an s−sided Fuchsian geodesic polygon with vertices q1, ..., qs
so that ρj := Resqj ∇ > −1. For j = 1, ..., s let vj ∈ [0, 2π) be the internal angle in qj and let {p1, ..., pg} be
the poles of ∇ contained in R0. Then

(4.6)

s∑
j=1

(π − vj(ρj + 1)) = 2π

(
1 +

g∑
i=1

Re Respi
∇

)
.

Remark 4.8. If the boundary of P in Theorem 4.6 is regular then the formula (4.3) reduces to (4.1).
If ∇ is Fuchsian with residues in 1

2Z then Corollary 4.7 gives Teichmüller’s lemma (see [13, Theorem 14.1]).
This is the reason why we call (4.3) generalized Teichmüller formula.

As a consequence of the generalized Teichmüller formula we have the following corollary.

Corollary 4.9. Let ∇ be a meromorphic connection on a compact Riemann surface S, with poles
{p0 = ∞, p1, ..., pr}. Let P ⊂ S be a simply connected part of S with connected boundary given by a
Fuchsian 2-geodesic cycle with vertices z0 and z1. Let vj ∈ (0, 2π) the internal angle at zj and assume that
Reszj ∇ > −1 for j = 0, 1. Let {p1, ..., pg} be the poles of ∇ contained in the interior of P . Then

(4.7) (Resz0 ∇+ 1)v0 + (Resz1 ∇+ 1)v1 = −2π

g∑
j=1

Re Respj
(∇).

Proof. It follows from (4.3) with s = 2 because the filling of P has genus zero. □

4.2. Uniqueness of geodesics. In this section we shall prove a result about uniqueness of geodesics
in a given homotopy class.

Corollary 4.10. Let ∇ be a Fuchsian meromorphic connection in a simply connected domain D with
non-negative residues. For i = 0, 1, let σi: [0, li] → D be a smooth simple curve such that σ0(0) = z0 = σ1(0)
and σ0(l0) = z1 = σ1(l1). If σ0 |(0,l0) and σ1 |(0,l1) are geodesics for ∇ then supp(σ0) = supp(σ1). In other
words, any two points of D can be joined by at most one simple geodesic arc.

Proof. Assume, by contradiction, that supp(σ0) ̸= supp(σ1). Without loss of generality we can suppose
that σ0 and σ1 do not intersect except at endpoints. Let {p1, ..., pg} be the poles of ∇ contained in the simply
connected part P bounded by σ0 and σ1 and let vj ∈ (0, 2π) be the internal angle at zj for j = 0, 1. By
Corollary 4.9 we have

(4.8) (Resz0 ∇+ 1)v1 + (Resz1 ∇+ 1)v2 = −2π

g∑
j=1

Respj
(∇) .

Since ∇ has only non-negative residues, this is impossible. □

Theorem 4.11. Let ∇ be a Fuchsian meromorphic connection with non-negative residues on a compact
Riemann surface S with genus g ≥ 1. For i = 0, 1, let σi: [0, 1] → S be smooth simple curves such that
σ0(0) = p0 = σ1(0) and σ0(l0) = p1 = σ1(l1). Assume σ0 |(0,l0) and σ1 |(0,l1) are geodesics for ∇. If σ1 and
σ2 are homotopic then supp(σ0) = supp(σ1).

Proof. Let π: S̃ → S be the universal covering surface of S and choose a point z0 in π−1(p0). Since the

genus of S is greater than 0, we know that S̃ is either C or the unit disc. By the monodromy theorem, the
lifts σ̃0 and σ̃1 of σ0 and σ1, respectively, with initial points z0 have the same terminal point z1 above p1.
Moreover, σ̃0 |(0,l0) and σ̃1 |(0,l1) are geodesics of the lift ∇̃ of ∇. Therefore the previous corollary implies
supp(σ̃0) = supp(σ̃1) and hence supp(σ0) = supp(σ1). □

5. Poincaré–Bendixson theorems

In this section we shall study the ω-limit sets of simple geodesics of a meromorphic connection with real
periods.

Let ∇ be a meromorphic connection on a Riemann surface S and let G be its monodromy group. Fix
a Leray G-atlas {(Uα, zα)} on So (see Definition 2.13; in particular, the transition functions are of the form
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zβ = aαβzα + bαβ with aαβ ∈ G and bαβ ∈ C. Recall that the local representation of ∇ on any chart of the
atlas is identically zero. If σ: [0, ε) → Uα is a geodesic for ∇, then

arg dzα(σ
′(t)) = const.,

because dzα(σ
′(t)) is a non-zero constant. Set

Argασ′∇ :=
dzα(σ

′(t))

|dzα(σ′(t))|
∈ S1 .

This constant depends on (Uα, zα) and σ.
Let now σ: [0, ε) → S be any geodesic for ∇. Let Uα and Uβ be charts such that Uα ∩Uβ ∩ supp(σ) ̸= ∅.

By the form of the transition functions there exists aαβ ∈ G such that

dzβ(σ
′(t)) = aαβdzα(σ

′(t))

for σ(t) ∈ Uα ∩ Uβ . Consequently,

(5.1) Argβσ′∇ =
aαβ
|aαβ |

Argασ′∇.

Thus changing the chart amounts to multiplying Argασ′∇ by an element of the group

G1 =

{
a

|a|

∣∣∣∣ a ∈ G

}
.

Definition 5.1. Set
Argσ′∇ := [Argασ′∇] ∈ S1/G1 ;

by the previous comments we see that Argσ′∇ is well defined, though in principle it depends on the fixed
Leray ∇-atlas.

Given [θ] ∈ S1/G1, if Argσ′∇ = [θ] we shall say that [θ] is the direction of a geodesic σ: [0, ε) → S, or
that σ has θ-direction.

Remark 5.2. The direction of a given geodesic depends on the chosen atlas. On the other hand, from
the definition it follows that for two geodesics having the same direction is a notion independent of the
specific Leray G-atlas chosen.

5.1. Ring domains. Let us first introduce the notion of ring domain.

Definition 5.3. Let ∇ be a meromorphic connection on a Riemann surface S. Set So = S \ Σ, where
Σ is the set of poles of ∇. A connected open set R ⊂ So with π1(R) = Z is said to be a ring domain if there
are simple periodic geodesics σa : R → So for any a ∈ (0, 1) such that σa1 and σa2 have no common points
for a1 ̸= a2, their support supp(σa) depends continuous on a in the Hausdorff topology, and

R =
⋃

a∈(0,1)

supp(σa).

We say σa is a leaf of R. We denote the foliation given by the σa by R.
Assume now that ∇ has real periods and let g be a flat metric on So adapted to ∇. The g−width of the

ring domain R is
sup{distRg (supp(σa1

), supp(σa2
)) | a1, a2 ∈ (0, 1)},

where distRg is the distance induced by g on R.

Example 5.4. Let ∇ be the meromorphic connection on the unit disc D = {z ∈ C | |z|< 1} with the
local representation η = − 1

zdz. Then for any 0 ≤ r1 < r2 ≤ 1 the domain

R = {z ∈ D | r1 < |z|< r2}
is a ring domain for ∇. Indeed, it is not difficult to check that, for r ∈ (0, 1), the curve σr:R → D given by

σr(t) = reit,

is a periodic geodesic for ∇. The singular flat metric g adapted to ∇ is given by

g
1
2 =

|dz|
|z|

.
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Then the g−width of R is equal to log r2 − log r1. In particular, R has infinite g-width when r1 = 0.
Assume now that r1 > 0 and set U := R\R+. Then the local isometry J(z) = log z is well defined on U .

Moreover, g
1
2 = |dJ | on U . It is not difficult to see that

J(U) = {w ∈ C | log r1 < Rew < log r2, 0 < Imw < 2π}
is a rectangle. Moreover, the J-image of any geodesic of ∇ in U is Euclidean segment, because J is a local
isometry. In particular, we have J(σr) = {Rew = log r, 0 < Imw < 2π}.

Now we study the image of a ring domain under local isometries of a meromorphic connection ∇.

Lemma 5.5. Let ∇ be a meromorphic connection on a Riemann surface S. Assume ∇ has real periods.
Set So := S \Σ, where Σ is the set of poles of ∇. Let g be a flat metric adapted to ∇ on So. Let R be a ring
domain with g-width equal to r < ∞. Assume ∂R = γ1 ∪ γ2 with γ1 and γ2 disjoint connected sets. Assume
there exist p1 ∈ γ1 and p2 ∈ γ2 and a simple geodesic β : [0, 1] → R connecting p1 and p2 with g−length
equal to r. Let J be a local isometry of g on U := R \ supp(β). Then J(U) is a rectangle. In particular all
leaves of R have the same g-length.

Proof. Let {Uj}3j=1 be an open cover for R such that:

• both Uj and R \ Uj are simply connected for j = 1, 2, 3;
• Ui ∪ Uj and Ui ∩ Uj are simply connected for i, j = 1, 2, 3;
• U1 ∩ U2 ∩ U3 = ∅;
• supp(β) ⊂ U1 ∩ U3.

Let V0 = (U1 ∪ U2) \ U3 ⊂ U and J0 = J |V0
. Let J1 be the analytic continuation of J0 on V1 = U1 ∪ U2 and

J2 the analytic continuation of J0 on V2 = U2 ∪ U3. Note that for every leaf σ of R we have that Jj(σ ∩ Vj)
is an Euclidean segment in Jj(Vj); moreover, the Jj-images of different leaves are disjoint and their union
is the simply connected domain Jj(Vj). Moreover, Γσ := J1(σ ∩ V1) ∪ J2(σ ∩ V2) is an Euclidean segment
in D := J1(V1)∪ J2(V2) and D = ∪σ∈RΓσ; in other words, D is foliated by the Euclidean segments Γσ with
σ ∈ R. Put βj = Jj(β) for j = 1, 2. Then D \ (β1 ∪ β2) has three connected components; one is J(U).

By construction, J(U) = J(U)∪ β1 ∪ β2 can be written as union of non-intersecting Euclidean segments
starting in β1 and ending in β2. Notice that β1 and β2, being images of a geodesic of length r via a local
isometry, are Euclidean segments of length r. Since J1|U2

−J2|U2
is a constant, β1 and β2 are parallel; hence

J(U) is a parallelogram. But, by definition of g-width of a ring domain, the Euclidean height of J(U)

is equal to r; since the Euclidean length of β1 and β2 is also equal to r, it follows that J(U) must be a
rectangle. Finally, since the J-images of the leaves of R are parallel Euclidean segments joining β1 and β2

foliating J(U), it follows that all leaves of R have the same g-length. □

By definition a ring domain is a union of simple periodic geodesics. In the next lemma we describe the
possible boundaries of ring domains.

Lemma 5.6. Let ∇ be a Fuchsian meromorphic connection on a Riemann surface S with real periods.
Set So = S \ Σ, where Σ is the set of poles of ∇. Let R be a ring domain relatively compact in S. Assume
∂R is not empty. Let γ1 be a maximal connected component of ∂R. Then γ1 is either

(1) a pole of ∇ with residue −1; or
(2) the support of a periodic geodesic; or
(3) a graph of saddle connections.

Proof. Assume γ1 = {p} is a single point. Then every neighbourhood of p contains a periodic geodesic.
In particular, there exists a simply connected part containing p and no poles other than p and whose boundary
is a periodic geodesic. Recalling that, by assumption, ∇ has real periods (and hence real residues), we can
then apply (4.3) with s = 0, mf = 1, gP̃ = 0 and g = 1 to deduce that p must be a pole with residue −1.

Assume now that γ1 is not a single point; then it must contain a regular point p ∈ γ1 ∩S0. Let (U, z) be
a ∇−chart centered at p. Then the leaves of R in z(U ∩R) are parallel Euclidean segments. Hence z(U ∩γ1)
is a Euclidean segment. Consequently, γ1 is locally the support of a geodesic. Since γ1 is compact, each
component of γ1 ∩ So is a geodesic. If γ1 contains no poles then it is the support of a closed or periodic
geodesic; since ∇ has real periods, Lemma 2.25 implies that γ1 is the support of a periodic geodesic. Finally,
if γ1 contains poles then it is a graph of saddle connections. □
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In the next lemma we study the possible boundary of maximal ring domains, i.e., ring domains R which
are not a proper subset of another ring domain.

Lemma 5.7. Let ∇ be a meromorphic connection on a Riemann surface S with real periods; assume that
the residues are all greater than −1. Set So = S \ Σ, where Σ is the set of poles of ∇. Assume there exists

a simple periodic geodesic σ: [0, ε) → So. Then there exists a ring domain R̃ containing σ as a leaf.
Furthermore, if the maximal ring domain R containing σ as a leaf has nonempty boundary then its

boundary is a boundary graph of saddle connections. Moreover, any saddle connection in ∂R has the same
direction as σ.

Proof. Let g be the singular flat metric adapted to ∇. Choose r0 small enough such that for all
0 < r ≤ r0 we have:

• for any q ∈ supp(σ) the g-ball Bg(q, 3r) := {p ∈ S | distg(q, p) < 3r} is simply connected; and
• the boundary of the tubular neighbourhood

Ur(σ) := {p ∈ S | distg(p, supp(σ)) < r}

of radius r of the curve σ is composed by two different smooth curves σi: [0, 1] → S for i = 1, 2, so
that distg(supp(σ1), supp(σ2)) = 2r.

Pick a point p1 ∈ supp(σ). Take a chart (Bg(p1, 2r), z) with r ≤ r0. Let J be a local isometry
of ∇ on Bg(p1, 2r). Then J(supp(σ) ∩ Bg(p1, 2r)) is a Euclidean segment. On the other hand, the Eu-
clidean distance from any point of J(supp(σ1) ∩Bg(p1, 2r)) to J(supp(σ) ∩Bg(p1, 2r)) is equal to r. Hence
J(supp(σ1) ∩ Bg(p1, 2r)) is a Euclidean segment. Consequently, supp(σ1) ∩ Bg(p1, 2r) is the support of a
geodesic. Hence supp(σ1) is the support of a closed or periodic geodesic. Since ∇ has real periods and real
residues, Lemma 2.25 implies that supp(σ1) is the support of a periodic geodesic. Hence for any 0 < r ≤ r0
we have periodic geodesics σ1

r and σ2
r . Then

R = σ ∪
2⋃

j=1

⋃
0<r<r0

σj
r

is a ring domain containing σ as a leaf.
Let now R̃ be the maximal ring domain containing σ as a leaf. Let γ1 be a connected component of ∂R.

Assume γ1 is a single point. Then, by Lemma 5.6, it must be a pole with residue −1, impossible because we
assumed that all residues should be larger than −1.

Assume now that γ1 contains no poles. Then, by the previous Lemma, γ1 is the support of a periodic
geodesic; but in this case, using the previous construction, we might enlarge R̃, again the maximality of R̃.
Consequently, ∂R̃ is a graph of saddle connections.

Finally, assume σ has direction [θ] with respect to a ∇-atlas. Since the image of any leaf σa of R̃ under a
local isometry is locally parallel to the image of σ, it follows that σa has the same direction as σ. Let p ∈ ∂R
be a regular point for ∇. Let (U, z) be a ∇−chart centered at p. Again, since the leaves of R in z(U ∩ R)
are parallel Euclidean segments, it follows that z(U ∩ ∂R) is parallel to these Euclidean segments. Hence if
γ is a saddle connection with supp(γ) ⊂ ∂R then γ must have the same direction as σ. □

Corollary 5.8. Let ∇ be a meromorphic connection on a compact Riemann surface S with real periods;
assume that all the residues are greater than −1. Set So = S \ Σ, where Σ is the set of poles of ∇. Assume
there exists a simple periodic geodesic σ: [0, ε) → So. If ∇ has at least one pole then there exists a saddle
connection having the same direction as σ.

Proof. Let R be the maximal ring domain containing σ as a leaf. Since Σ is not empty, ∂R cannot be
empty. Then, by previous lemma, ∂R contains a saddle connection with the same direction as σ. □

Now we study maximal ring domains with empty boundary.

Lemma 5.9. Let ∇ be a meromorphic connection on a compact Riemann surface S with real periods;
assume that all residues are greater than −1. Set So = S \Σ, where Σ is the set of poles of ∇. Assume there
exists a simple periodic geodesic σ: [0, ε) → So. Let R be the maximal ring domain containing σ as a leaf.
Then ∂R is empty if and only if S is a torus and ∇ is a holomorphic connection with real periods.
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Proof. If ∂R is empty then R = S. Hence ∇ is a holomorphic connection and S is torus.
On the other hand assume S is torus and ∇ is holomorphic. Assume, by contradiction, that ∂R is not

empty. Then, by Lemma 5.7, ∂R would contain at least one pole. But this is impossible, because ∇ is a
holomorphic connection. □

5.2. Periodic geodesics. In this subsection we show that the ω-limit set of a simple non-periodic
geodesic of a meromorphic connection with real periods cannot be a periodic geodesic.

Lemma 5.10. Let ∇ be a Fuchsian meromorphic connection on a Riemann surface S with real periods.
Set So := S \ Σ, where Σ is the set of poles of ∇. Let σ: [0, ε) → So be a simple not closed geodesic for ∇
such that the ω-limit set W of σ is a closed (or periodic) geodesic or a boundary graph of saddle connections.
Then σ does not intersect W .

Proof. Our goal is to show that W ∩ supp(σ) = ∅. Assume, by contradiction, that W ∩ supp(σ) is not
empty and take p0 ∈ W ∩ supp(σ). Notice that p0 is not a pole. Furthermore, σ and W are transversal
at p0, because otherwise we would have supp(σ) ⊆ W and this is impossible, because σ is not closed nor is
a saddle connection.

Let (U, z) be a ∇-chart at p0 such that γ := W ∩U is connected. Notice that z(γ) is a Euclidean segment.
For k ≥ 1, let σk: (εk−1, εk) → So be the geodesics of ∇, with 0 ≤ ε0 < εk < εk+1 < ε, such that supp(σk) is
a connected component of supp(σ)∩U . Since γ is in the ω-limit set of σ, the supports of σk must accumulate
γ. Let σk0 be the segment of σ intersecting transversally γ in p0. Since z(σk) accumulates to z(γ), there
exists k1 > k0 such that z(supp(σk1

)) ∩ z(supp(σk0
)) ̸= ∅. Since σ is simple, we have a contradiction. □

Proposition 5.11. Let ∇ be a meromorphic connection on a Riemann surface S with real periods. Set
So := S \ Σ, where Σ is the set of poles of ∇. Let σ: [0, ε) → So be a simple non-periodic geodesic for ∇.
Then the ω-limit set of σ cannot be the support of a periodic geodesic.

Proof. Assume the ω-limit set of σ is the support of a periodic geodesic γ1:R → So. Thanks to Lemma
5.10, σ does not intersect γ1. Let g be a flat metric adapted to ∇ on So. Let R ⊂ S be a ring domain with
finite g-width containing γ1 as leaf, given by Lemma 5.7. Since the ω-limit set of σ is supp(γ1) there exists
ε0 ∈ [0, ε) such that σ(t) ∈ R for all t ∈ [ε0, ε). Let R1 ⊂ R be a ring domain such that σ(t) ∈ R1 for all
t ∈ [ε0, ε) and ∂R1 ⊃ supp(γ1). More precisely, we can choose as R1 the connected component of R \ γ1
eventually containing σ. Let r be the g-width of R1. Let

∂R1 = supp(γ1) ∪ supp(γ2(r))

for some periodic geodesic γ2(r). Fix p1 ∈ γ1. Choose p2 := p2(r) ∈ γ2(r) such that distg(p1, p2) = r. We

choose r small enough so that there exists a geodesic β : [0, 1] → R1 so that β(0) = p1 and β(1) = p2 and
lengthg(β) = r. Let (U, z) be a chart with U := R1 \ supp(β). Let J be a local isometry of ∇ on U . By
Lemma 5.5, J(U) is a Euclidean rectangle. We shall call “vertical” the two sides transversal to the image
via J of γ1.

Since σ accumulates γ1, it must intersect β infinitely many times. Moreover, the intersections are
transversal, because β is a geodesic different from σ, and they accumulate only at p1; in particular, they are
countable. Therefore we can find a strictly increasing sequence {εj} ⊂ [ε0, ε) such that

supp(σ) ∩ supp(β) = {σ(εj) | j ∈ N}.
Put σj := σ |(εj ,εj+1). Then σj is a maximal geodesic arc in U tending to supp(β) both in backward and
in forward time. Since σj is a geodesic segment, J(supp(σj)) is an Euclidean segment. Since J(U) is a
rectangle, the Euclidean segment J(supp(σj)) intersects with the same angle the two vertical sides of J(U).
Since σj+1 is the continuation of σj we see that J(supp(σj)) and J(supp(σj+1)) must intersect the vertical
sides of J(U) at the same angle. Hence J(supp(σj)) and J(supp(σj+1)) are parallel.

By assumption, we know that {J(supp(σj))}∞j=1 accumulates to lγ1 ⊂ ∂J(U), a side of the rectangle
J(U). Hence lγ1

is parallel to J(supp(σj)), because otherwise there would exist j0 such that J(supp(σj0))
intersect lγ1

. Since U ⊂ R1, any maximal Euclidean segment l1 ⊂ J(U) which is parallel to lγ1
is the image

of the support of a periodic geodesic; hence supp(σj) is the support of a periodic geodesic. Since σ is not
a periodic geodesic and σj is a part of it we have a contradiction. Hence, the ω-limit set of σ cannot be a
periodic geodesic. □
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We explicitly remark that this proposition holds for any meromorphic connection ∇ with real periods,
without any limitation of the value of the residues.

Corollary 5.12. Let ∇ be a meromorphic connection on P1(C). Set So := P1(C) \ Σ, where Σ is the
set of poles of ∇. Let σ: [0, ε) → So be a simple non-periodic geodesic for ∇. Then the ω-limit set of σ
cannot be the support of a periodic geodesic.

Proof. Assume the ω-limit set of σ is the support of a periodic geodesic γ1 : R → So. Note that since
σ is simple γ1 cannot intersect itself. Hence γ1 is a simple periodic geodesic and, by [2, Corollary 4.5], it
surrounds poles p1, p2, . . . , pg with

(5.2)

g∑
j=1

Respj
∇ = −1.

Without loss of generality we can assume that γ1 and its interior are contained in C.
Let U := Ur(γ1) ⊂ C be a tubular r-neighbourhood (with respect to the Euclidean metric in C) of γ1

such that U ∩ Σ = ∅. Then U is a doubly connected domain eventually containing σ. By Proposition 5.11,
it is enough to show that ∇ has real periods in U .

The fundamental group of U is generated by γ1; moreover, [2, Proposition 3.6] implies that the mon-
odromy representation is given by

ρ(γ1) = exp

(∫
γ1

η

)
,

where η is the local representation of ∇ on U . Now, let D be the union of U with the interior of γ1, so that
D is a simply connected domain in C containing p1, . . . , pg. The form η then extends to a meromorphic form
on D, still denoted by η, with poles p1, . . . , pg. Since γ1 is a simple closed curve surrounding p1, . . . , pg we
have

1

2πi

∫
γ1

η =

g∑
j=1

Respj
∇ ;

therefore recalling (5.2) we get ρ(γ1) = exp(−2πi) = 1, that is, the monodromy group of ∇ on U is trivial
and hence ∇ has real periods on U , as required. □

Corollary 5.13. Let ∇ be a meromorphic connection on P1(C). Set So := P1(C) \ Σ, where Σ is the
set of poles of ∇. Let σ: [0, ε) → So be a simple non-periodic geodesic for ∇. If the ω-limit set of σ is the
support of a closed geodesic γ then γ surrounds poles p1, p2, ..., pg with

g∑
j=1

ReRespj
∇ = −1

and
g∑

j=1

ImRespj
∇ ≠ 0.

Proof. It follows by the previous corollary and [2, Corollary 4.5]. □

There are examples of simple non-periodic geodesics in P1(C) whose ω-limit set is a closed non-periodic
geodesic; see [2].

5.3. Boundary graph of saddle connections. By Theorem 2.18, another possible ω-limit set of
a simple maximal geodesic of a meromorphic connection ∇ on a compact Riemann surface S is a bound-
ary graph of saddle connections. In this section we shall prove that this cannot happen for a Fuchsian
meromorphic connection with real periods.

As we have seen in Lemma 5.7, any simple periodic geodesic is a leaf of a ring domain. Now we prove a
similar property for a boundary graph of saddle connections.

26



Lemma 5.14. Let ∇ be a Fuchsian meromorphic connection on a Riemann surface S with real periods.
Set So = S \Σ, where Σ is the set of poles of ∇. Let Γ ⊂ S be a boundary graph of saddle connections, and
choose a connected open set V such that Γ is a connected component of ∂V . Assume Γ is the ω-limit set of
a simple geodesic σ: [0, ε) → So; then there exists a ring domain R ⊂ V such that ∂R = Γ ∪ γ, where γ is
the support of a periodic geodesic.

Proof. Since ∇ has real periods there exists a singular flat metric g on S adapted to ∇. Let W ⊂ S
be a connected open set containing Γ such that

W ∩ Σ = Γ ∩ Σ =: Σ1.

By Corollary 3.21, for any p ∈ Σ1 we have Resp ∇ ≥ −1
2 . Hence, by Lemma 3.9, Γ has finite g-length.

For pj ∈ Σ1, let (Uj , zj) be a chart adapted to (∇, pj) such that Uj ⊂ W . Let rj be the g-radius
of Uj , i.e., the g-length of a critical geodesic in Uj (by Lemma 3.11 all critical geodesics in Uj have the same
g−length). Choose 0 < r0 < 1

6 min rj such that for any point q ∈ Γ the set

Bg(q, 3r0) := {p ∈ S | distg(p, q) < 3r0}
is a simply connected subset of W such that Γ ∩ Bg(q, 3r0) is connected; such an r0 exists because Γ is
compact and locally connected. For 0 < r ≤ r0 set

Ur(Γ) := {p ∈ V ∩W | distg(p,Γ) < r}.
Then ∂Ur(Γ) has two connected components. One is Γ; let γ(r) be the other one. To prove the statement
it is enough to prove that Ur(Γ) is a ring domain and that γ(r) is the support of a periodic geodesic.

By construction, for any zr ∈ γ(r) we have

distg(Γ, γ(r)) = distg(Γ, zr) = r.

Note that, by Proposition 3.20, z(Uj ∩ V ) = ∪m
k=1C

k
j , where Ck

j is a sector with interior angle π
ρj+1 ≤ 2π.

We claim that γk
j := γk

j (r) := γ(r) ∩ z−1(Ck
j ) is the support of a geodesic. Since (Uj , zj) is a chart adapted

to (∇, pj) the local representation of ∇ on Uj is ηj =
ρj

zj
dzj . Then the map J(zj) = z

ρj+1
j is a local isometry

of ∇ on Ck
j . Moreover,

J(Ck
j ) = {w ∈ C | αk

j < argw < π + αk
j , |w|< r̃j}

is a half disc for some αk
j ∈ [0, π] and r̃j > 0. Put Γk

j = ∂Ck
j ∩ z(Γ ∩ Uj). By construction, J continuously

extends to C
k

j and J(Γk
j ) is the diameter of the half disc. Since J is a local isometry of ∇ on Ck

j and any

point of γk
j has the same g−distance from Γk

j , we can see that J(zj(γ
k
j )) is a Euclidean segment parallel to

J(zj(Γ
k
j )). Hence γk

j is the support of a geodesic.

Since r < 1
6 min rj , we can find qk ∈ Γ for k = 1, . . . , n such that

(1) there are no poles of ∇ in Bg(qk, 2r), i.e., Bg(qk, 2r) ∩ Σ1 = ∅;
(2) γ is contained in

n⋃
k=1

Bg(qk, 2r) ∪
⋃
j

Uj .

As in the proof of Lemma 5.7 we can show that γ(r)∩Bg(qk, 2r) is the support of a geodesic. Consequently,
γ(r) is the support of a closed geodesic. Since ∇ has real periods γ is the support of a periodic geodesic.
Since this holds for all 0 < r <0 and Ur0(Γ) is foliated by γ(r) we have found a ring domain R with g−width
equal to r such that ∂R = Γ ∪ γ where γ is the support of a periodic geodesic. □

Remark 5.15. In Lemma 5.14, we can also assume that the support of σ is eventually contained
in R ⊆ V . Indeed, σ cannot intersect Γ by Lemma 5.10 (see also [1, Proposition 4.1]). Therefore, supp(σ)
is a subset of a connected component C of S \ Γ and then it suffices to take V contained in C.

By using Lemma 5.14, and the same technique used in the proof of Proposition 5.11 we get the following
result.

Proposition 5.16. Let ∇ be a Fuchsian meromorphic connection on a Riemann surface S with real
periods. Set So := S \Σ, where Σ is the set of poles of ∇. Let σ: [0, ε) → So be a simple non-periodic geodesic
for ∇. Then the ω-limit set of σ cannot be a boundary graph of saddle connections.
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Proof. Assume, by contradiction, that the ω-limit set of σ is a boundary graph of saddle connections Γ.
Let V be a connected open subset of S eventually containing σ and such that Γ is a connected component
of ∂V .

Thanks to Lemma 5.10, σ does not intersect Γ. Let g be a singular flat metric adapted to ∇. By Lemma
5.14, there exists a ring domain R ⊂ V with g−width equal to r > 0 such that

∂R = Γ ∪ γ(r),

where γ(r) is a periodic geodesic for ∇. Moreover, by Remark 5.15, we can also assume that the support
of σ is eventually contained in R, i.e., there exists ε0 ∈ [0, ε) such that σ(t) ∈ R for all t ∈ [ε0, ε). Notice
that R does not contain any pole of ∇.

Fix p1 ∈ Γ. Choose p2 := p2(r) ∈ γ(r) such that distg(p1, p2) = r. We can choose r small enough so that

there exists a geodesic segment β: [0, 1] → R such that β(0) = p1 and β(1) = p2 and lengthg(β) = r. Let
(U, z) be a chart with U := R \ supp(β). Let η be the representation of ∇ on U . Let J be a local isometry
of ∇ on U . By Lemma 5.5, J(U) is a rectangle (even if the boundary of U contains poles). The rest of the
proof is the same as the proof of Proposition 5.11. □

Proof of Theorem 1.1. It follows from Theorem 2.18 together with Propositions 5.11 and 5.16. □

Appendix A. Transversally Cantor-like geodesic sets

Definition A.1. Let ∇ be a meromorphic connection on a compact Riemann surface S. A set W ⊂ S
with W̊ = ∅ is said to be a transversally Cantor-like geodesic set if the following conditions hold:

(1) there exists a maximal non self-intersecting geodesic σ: (ε−, ε+) → So such that W is the closure
of the support of σ;

(2) for any non self-intersecting geodesic γ: (−δ, δ) → S0 transverse to σ the intersection γ|[−δ/2,δ/2]∩W
is a perfect totally disconnected set (a Cantor set).

Lemma A.2. Let ∇ be a meromorphic connection on a compact Riemann surface S. Let σ: (ε−, ε+) → So

be a maximal simple geodesic and denote by W its ω-limit set. Assume supp(σ) ⊆ W . Then either

(1) W has non-empty interior; or
(2) σ is a closed geodesic and W = supp(σ); or
(3) W is a transversally Cantor-like geodesic set.

Proof. Assume W has empty interior. Pick a point z0 ∈ σ. For δ small enough let γ: (−δ, δ) → So be
a geodesic transversal to σ at z0 such that γ(0) = z0. Since supp(σ) ⊆ W , then σ must intersect γ infinitely
many times (not necessarily in distinct points). Assume that z is isolated in supp(γ) ∩W , i.e., there exists
a neighbourhood U of z such that U ∩ (supp(γ) ∩W ) = {z}. Then σ must pass through z infinitely many
times; since σ is simple we deduce that σ is a closed geodesic.

Assume now σ is not a closed geodesic. Then there are no isolated point in γ|[−δ/2,δ/2]∩W ; to complete
the proof that W is a transversally Cantor-like geodesic set we must prove that γ|[−δ/2,δ/2]∩W is totally
disconnected. Indeed, if not, it must contain a closed interval. Then, since σ is transversal to γ, we can apply
[1, Proposition 4.1] to show that the ω-limit set W has not empty interior, against our assumption. □

Thus the ω-limit set W of a non-closed geodesic is a transversally Cantor-like geodesic set when W has
empty interior and contains supp(σ), a possiblity not considered in the proofs of [1, Theorem 4.3] and [2,
Theorem 0.1]. An example of this phenomenon can be found in [4].
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